Vol. 293, No. 1, 2018

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Irreducibility of the moduli space of stable vector bundles of rank two and odd degree on a very general quintic surface

Nicole Mestrano and Carlos Simpson

Vol. 293 (2018), No. 1, 121–172
Abstract

The moduli space M(c2) of stable rank-two vector bundles of degree one on a very general quintic surface X 3 is irreducible for all c2 4 and empty otherwise. On the other hand, for a very general sextic surface, the moduli space at c2 = 11 has at least two irreducible components.

Keywords
vector bundle, surface, moduli space, deformation, boundary
Mathematical Subject Classification 2010
Primary: 14D20
Secondary: 14H50, 14J29
Milestones
Received: 25 January 2017
Revised: 7 September 2017
Accepted: 11 September 2017
Published: 3 November 2017
Authors
Nicole Mestrano
Laboratoire J. A. Dieudonné
Université Côte d’Azur
Nice
France
Carlos Simpson
Laboratoire J. A. Dieudonné
Université Côte d’Azur
Nice
France