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LARGE-SCALE RIGIDITY PROPERTIES
OF THE MAPPING CLASS GROUPS

BRIAN H. BOWDITCH

We study the coarse geometry of the mapping class group of a compact
orientable surface. We show that, apart from a few low-complexity cases,
any quasi-isometric embedding of a mapping class group into itself agrees
up to bounded distance with a left multiplication. In particular, such a map
is a quasi-isometry. This is a strengthening of the result of Hamenstädt and
of Behrstock, Kleiner, Minsky and Mosher that the mapping class groups
are quasi-isometrically rigid. In the course of proving this, we also develop
the general theory of coarse median spaces and median metric spaces with
a view to applications to Teichmüller space, and related spaces.

1. Introduction

One of the main aims of this paper is to give an account of the quasi-isometric rigidity
of the mapping class group of a closed orientable surface. Quasi-isometric rigidity
was established in [Hamenstädt 2005; Behrstock, Kleiner, Minsky and Mosher
2012]. Here, we give a strengthening of this result which applies to quasi-isometric
embeddings (see Theorem 1.1 below).

Many of our arguments have parallels with those of [Behrstock, Kleiner, Minsky
and Mosher 2012], though the details are different. Another aim of this paper is to
set these arguments in a broader context. The key observation, made in [Bowditch
2013], is that the mapping class group admits a “coarse median” structure. The
median in this case is the centroid constructed in [Behrstock and Minsky 2011].
Here, in Section 7, we list a set of axioms related to subsurface projection (cf.,
[Masur and Minsky 2000]) which imply the existence of medians (see Theorem 1.4
below). The point is that the same axioms apply in other situations, notably to
Teichmüller space in either the Teichmüller metric or the Weil–Petersson metric.
It then follows that these also admit a coarse median structure. This is explained,
respectively, in [Bowditch 2016a] and [Bowditch 2015], where various consequences
of this observation for the large-scale geometry of these spaces are explored. Again,
many of the arguments follow along similar lines, and several general results of this
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paper are used in those papers (see, for example, Propositions 1.2 and 1.3 below, as
well as the structure of cubes discussed in Sections 10–12).

We begin by outlining the main results of this paper.
Let 6 be a compact orientable surface of genus g with p boundary components.

Let ξ(6)= 3g+ p−3 be the complexity of6. Write Map(6) for the mapping class
group. When this is viewed as a geometric object, we will use different notation.
In particular, we will write M(6) for the “marking graph” of 6 as discussed in
Section 8. In fact, any proper geodesic space on which Map(6) acts isometrically,
properly discontinuously and compactly (such the Cayley graph with respect to any
finite generating set) would serve for the present discussion. Any two such spaces
will be Map(6)-equivariantly quasi-isometric, by the Schwarz–Milnor Lemma.

It is shown in [Hamenstädt 2005; Behrstock and Minsky 2008] that M(6) has
coarse rank equal to ξ(6); that is the maximal dimension ν such that M(6) admits
a quasi-isometric embedding of Rν (see also [Eskin, Masur and Rafi 2017, Corollary
C] and [Bowditch 2013, Theorem 2.6]). Note that it follows that if6 and6′ are com-
pact orientable surfaces with M(6) quasi-isometric to M(6′), then ξ(6)= ξ(6′).

We will show:

Theorem 1.1. Suppose that6 and6′ are compact orientable surfaces with ξ(6)=
ξ(6′) ≥ 4, and that φ : M(6)→ M(6′) is a quasi-isometric embedding. Then
6 =6′, and φ is a bounded distance from the isometry of M(6) induced by some
element of Map(6).

It immediately follows that φ is, in fact, a quasi-isometry. One can also deal,
modulo some qualifications, with lower-complexity cases (see the discussion after
Theorem 15.2 here). As observed above, if one assumes that φ is a quasi-isometry
(and that6=6′), then this statement is given in [Hamenstädt 2005] and [Behrstock,
Kleiner, Minsky and Mosher 2012].

We remark that if one assumes quasi-isometric rigidity as given in those papers,
then one recovers (indirectly) that the quasi-isometry type of M(6) determines
the topological type of 6 (modulo a few low-dimensional exceptional cases) since
it determines Map(6) up to isomorphism (see, for example, [Rafi and Schleimer
2011] for a proof that Map(6) determines 6). Given this, Theorem 1.1 would
be equivalent to asserting that any quasi-isometric embedding of M(6) into itself
is necessarily a quasi-isometry (at least when ξ(6) ≥ 4). However, we will give
another proof of the rigidity statement in this paper.

As noted above, we base our account around the notion of a coarse median space,
as defined in [Bowditch 2013]. This is a geodesic metric space equipped with a
ternary operation satisfying certain conditions. Roughly speaking, these say that
when dealing with a finite number of points in the space, the ternary operation
behaves, up to bounded distance, like the standard median operation on the vertex
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set of a (finite) CAT(0) cube complex. Such a space comes with a notion of “rank”
which is the maximal dimension of such a cube complex needed for the hypothesis.

A related, but different, notion is that of a median metric space, which is also
central to our discussion. The definition of a median metric space is quite simple,
and is given in Section 2. For further discussion, see [Verheul 1993; Chatterji,
Druţu and Haglund 2010; Bowditch 2016c]. This has also been studied from a
combinatorial viewpoint; see for example, [Chepoi 2000]. In a median metric space,
any triple of points has a unique “median”, that is, a point lying between any pair
in the triple. This defines a continuous ternary operation, and gives the space the
structure of a topological median algebra. (For expositions of the theory of median
algebras, see [Isbell 1980; Bandelt and Hedlíková 1983; Roller 1998].) Again, one
can associate a “rank” to such a space as the maximal dimension of an embedded
cube. (Any CAT(0) cube gives rise example of such a space, after one replaces the
euclidean metric on each cube with the l1 metric. The vertex set is then also such a
space.) One can show that a complete connected median metric space of finite rank
is canonically bi-Lipschitz equivalent to a CAT(0) metric, [Bowditch 2016c].

The asymptotic cone (see [van den Dries and Wilkie 1984; Gromov 1993]) of a
coarse median space is a topological median algebra. If the space has finite rank ν,
then the asymptotic cone is bi-Lipschitz equivalent to a median metric space of rank
at most ν (see [Behrstock, Druţu and Sapir 2011; Bowditch 2014a] and Theorem
6.9 here). Also, the dimension of any compact subset thereof has dimension at most
ν. (This follows from [Bowditch 2013] as we discuss in Section 2.) From the fact
that Map(6) is a coarse median space one gets a median on its asymptotic cone.
This was previously obtained by other means in [Behrstock, Druţu and Sapir 2011].
Much of this is elaborated upon in [Bowditch 2013; 2014a]. Here we obtain more
information about the flats in such spaces, which we use for the rigidity result of
Theorem 1.1. Similar statements can be found in [Behrstock, Kleiner, Minsky and
Mosher 2012], though more specifically for the mapping class group.

We remark that, in [Rafi and Schleimer 2011], the rigidity of the mapping class
group is used to deduce the rigidity of the curve graph. Again, it would be interesting
to generalise this to quasi-isometric embeddings. As the authors observe, much
of their paper works for such embeddings. However there is a key point (aside
from their references to [Hamenstädt 2005; Behrstock, Kleiner, Minsky and Mosher
2012]) where an inverse quasi-isometry is needed.

We briefly state a few of the key results proven in this paper, which are used in
proving Theorem 1.1, and/or have applications elsewhere.

The first two relate to a median metric space. By a real cube in such a space,
we will mean a median-convex subset isometric to a finite l1-product of compact
real intervals. (See Section 3 for more precise definitions.) A (closed) subset is
cubulated if it is a locally finite union of real cubes. We show:
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Proposition 1.2. Suppose that M is a complete median metric space of rank ν <∞,
and that 8⊆ M is a closed subset homeomorphic to Rν. Then 8 is cubulated.

This is proven in Section 4 (see Proposition 4.3). Under additional topological
assumptions one can show that 8 is median-convex and isometric to Rν with the l1

metric (see Proposition 4.6). Using this, one gets a result about products of R-trees:

Proposition 1.3. Suppose that M is a complete median metric space of rank ν <∞,
with ν ≥ 2. Suppose that D is a direct product of ν R-trees, and that none of the
factors has a point of valence 2 (i.e., a point which separates the R-tree into exactly
2 components). Suppose that f : D→ M is a continuous injective map, with closed
image, f (D)⊆M. Then f is a median homomorphism, and f (D) is median-convex
in M.

This is shown at the end of Section 4 (Proposition 4.8). This result is used in
[Bowditch 2015; 2016a]. A more direct proof in a specific case is given in [Bowditch
2016b] (see Proposition 2.1 thereof). Analogous, but different, statements can be
found in [Kleiner and Leeb 1997] and [Kapovich, Kleiner and Leeb 1998].

We make much use of subsurface projections from the marking graph, M(6),
to curve graphs associated to subsurfaces of 6. In Section 7, we condense the
essential information we need into a set of axioms, (A1)–(A10). This means that
much of the argument can be put in a more general setting. In particular, we have the
following paraphrasing of a result which will be stated more formally in Section 7;
see Theorems 7.1 and 7.2.

Theorem 1.4. Suppose that to each subsurface, X, of 6, we have associated
geodesic metric spaces, M(X) and G(X), together with a collection of projection
maps between them satisfying axioms (A1)–(A10). Then each M(X) has the natural
structure of a coarse median space in such a way that each projection map is a
quasimorphism (i.e., a median homomorphism up to bounded distance).

Note that this includes the case where X = 6. Here, the spaces G(X) are
(assumed to be) uniformly hyperbolic and the median is the usual centroid in such
a space. The various constants involved in the conclusion depend only on those of
the hypotheses (A1)–(A10).

In this paper, we are interested mainly in the case where M(X) and G(X)
are respectively the marking graph, M(X) and G(X) and the curve graph of the
subsurface X. The same axioms can also be applied to Teichmüller space in either
the Teichmüller metric [Bowditch 2016a] or the Weil–Petersson metric [Bowditch
2015].

A simple consequence of Theorem 1.4 is that the asymptotic cone of M(6) is a
topological median algebra. In fact, it is bi-Lipschitz equivalent to a median metric
space, which then allows us to bring the results mentioned above into play.
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In outline this paper is structured as follows. Sections 2 to 4 are devoted to a
general discussion of median metric spaces. In Section 5 we review properties
of asymptotic cones. In Section 6 we discuss general coarse median spaces. In
Section 7 we give a set of hypotheses relating to subsurface projection which imply
that a geodesic metric space admits a coarse median, and give a precise formulation
and proof of Theorem 1.4. This is then applied to the marking graph in Section 8.
In Sections 9 to 13, we explore further properties of the marking graph and its
asymptotic cone, setting as much as possible in a general context (so that it can
be applied elsewhere to Teichmüller space). In Section 14, we explain, in general
terms, how the asymptotic cone can be used to control Hausdorff distance. Finally,
in Section 15, this applied to the marking complex, to give a proof of Theorem 1.1,
together with some discussion of the lower complexity cases.

Notation. Throughout this paper, we will use G(X) and M(X) respectively to
denote the curve graph and marking graph of a subsurface X of 6. (We allow
X =6, and we need to modify the definitions in the case where X is an annulus,
as discussed in Section 8.) We will use the notation G(X) and M(X) when the
statements apply to the more general spaces satisfying the axioms laid out in
Section 7. (This symbol M will generally denote a coarse median space, as in
Section 6.) Note that the curve graph G(X) plays two slightly different roles: it
is one of the family of spaces satisfying these axioms; also its vertex set can be
identified with the set of annular subsurfaces of X , and which in this capacity can
be viewed as an indexing set. (We remark that in [Bowditch 2013], and some
other references, the notation 2(X) and 3(X) was used respectively for G(X) and
M(X).) For the main applications in the present paper, there would be no loss in
interpreting G(X),M(X) as G(X),M(X), respectively.

2. Median metric spaces

We begin with some general discussion of median metric spaces. For elaboration
relevant to this paper, see for example, [Verheul 1993; Chatterji, Druţu and Haglund
2010; Bowditch 2016c].

Let (M, ρ) be a metric space. Given a, b ∈ M, let

[a, b] = [a, b]ρ = {x ∈ M | ρ(a, b)= ρ(a, x)+ ρ(x, b)}.

Thus, [a, b] = [b, a] and [a, a] = {a}.

Definition. We say ρ is a median metric if, for all a, b, c∈M, [a, b]∩[b, c]∩[c, a]
consists of exactly one element of M.

We denote this element by µ(a, b, c)— the median of a, b, c. It follows using
[Sholander 1954] that (M, µ) is a median algebra (see [Verheul 1993; Chatterji,
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Druţu and Haglund 2010] and Section 2 of [Bowditch 2016c]). Moreover, [a, b]
is exactly the median interval between a and b, i.e., [a, b] = [a, b]µ = {x ∈ M |
µ(a, b, x) = x}. Conversely, note that if (M, µ) is a median algebra, and ρ is
a metric satisfying [a, b]µ = [a, b]ρ for all a, b ∈ M, then ρ is a median metric
inducing µ. Also, the map µ : M3

→ M is continuous (that is, M is a “topological
median algebra”).

The following definitions only require the median structure on M.

Definition. A subset B ⊆ M is a subalgebra if it is closed under µ. It is convex if
[a, b] ⊆ B for all a, b ∈ B. An n-cube is a subset of M median-isomorphic to the
direct product of n two-point median algebras: {−1, 1}n. (Note that any two-point
set admits a unique median structure.) We refer to a 2-cube as a square. The rank
of M is the maximal n such that M contains an n-cube. The rank is deemed to be
infinite if there are cubes of all dimensions.

Given A ⊆ M write 〈A〉 and hull(A) respectively for the subalgebra generated
by A and the convex hull of A, that is, respectively, the smallest subalgebra and
smallest convex set in M containing A. Clearly 〈A〉⊆ hull(A). If A is finite, then so
is 〈A〉. In fact, |〈A〉| ≤ 22|A|. Any finite median algebra can be canonically identified
as the vertex set of a finite CAT(0) complex; see [Chepoi 2000].

Note that any interval in a connected median metric space is connected (since
the map x 7→ µ(a, b, x) is a continuous retraction to [a, b]). It follows that any
connected component of a median metric space is convex.

Definition. We say that a median metric space is proper if it is connected, complete
and has finite rank.

Henceforth we will assume that M is a proper median metric space, though as
we will comment, many of the constructions only require it to be a median metric
space, or indeed just a median algebra.

It was shown in [Bowditch 2014a, Corollary 1.3] that if M is proper, then every
interval [a, b] in M is compact. (One can go on to deduce that the convex hull of
any compact set is compact.)

We say that a topological median algebra is locally convex if every point has a
base of convex neighbourhoods.

Lemma 2.1. Any median metric space M of finite rank is locally convex.

Proof. This follows since M is “weakly locally convex” in the sense of [Bowditch
2013, Section 7]. (Note that if a, b ∈ M, then the diameter of [a, b] is equal to
ρ(a, b).) Since it has finite rank, Lemma 7.1 of [loc. cit.], tells us that it is locally
convex. �

(In the case of interest here, namely the asymptotic cone of a finite rank coarse
median space, the conclusion also follows from Lemma 9.2 of [loc. cit.].)
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It was also shown there (Theorem 2.2) that any locally compact subset of M has
topological dimension at most rank(M). (For more discussion of dimension, see
Section 4 of the present paper.)

Theorem 2.2 [Bowditch 2016c, Theorem 1.1]. If (M, ρ) is a proper median metric
space, then there is a canonically associated bi-Lipschitz equivalent metric, σρ , on
M for which (M, σρ) is CAT(0).

In fact, we can arrange that ρ/
√

rank(M)≤ σρ ≤ ρ.
Note that it immediately follows that M is contractible.
A simple example is Rn with the l1 metric. In this case, σρ recovers the euclidean

metric on Rn. Any convex subset of Rn has the form P =
∏n

i=1 Ii where I ⊆ R is
a real interval (possibly unbounded). If each Ii is either a singleton or all of R, we
refer to P as a coordinate plane. If each Ii = [ai , bi ] with ai < bi , we refer to P
as an l1 cube. We refer to P =

∏n
i=1(ai , bi ) as the relative interior of P, and we

refer to the elements of Q =
∏n

i=1{ai , bi } as the corners of P. Note that these are
determined by the intrinsic geometry of P. Also P = hull(Q). In fact, P = [a, b]
where a, b are any pair of opposite corners of P.

Another class of examples arise from CAT(0) complexes. Suppose that ϒ is (the
topological realisation of) a finite CAT(0) complex. Suppose that each cell is given
the structure of an l1-cube. This induces a path metric, ρ, on ϒ , so that (ϒ, ρ) is
a median metric space. In this case, (ϒ, σρ) is a euclidean CAT(0) cube complex,
where we can allow the cells to be rectilinear parallelepipeds.

Definition. We refer to a space of the form (ϒ, ρ) as an l1-cube complex.

There is a sense in which any proper metric median space can be approximated
by subspaces of this form. The following was shown in [Bowditch 2016c, Lemmas
7.5 and 7.6].

Lemma 2.3. Let (M, ρ) be a complete connected median metric space. Suppose
that 5 ⊆ M is a finite subalgebra. Then there is a closed subset ϒ ⊆ M which
has the structure of a finite l1-cube complex in the induced metric ρ, and such that
5⊆ ϒ is exactly the set of vertices of this complex.

The statement is taken to imply that the metric ρ restricted to ϒ is already a path
metric on ϒ . In general, ϒ will not be unique. (One can make a canonical choice
by taking cells to be totally geodesic in the metric σρ on M, but we will not need
this here.) Note that we do not assume here that the cells of ϒ are convex in M. (If
that were the case, we refer to ϒ as a “straight” cube complex, as we will define
more formally in Section 3.)

We continue with some more general observations. For the moment, M can be
any median metric space.
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Given a, b ∈ M, we define φ = φa,b : M→ [a, b] by φ(x)= µ(a, b, x). This is
a 1-Lipschitz median epimorphism.

Definition. We say that two pairs (a, b), (c, d) in M2 are parallel if [b, c] = [a, d].

It is equivalent to saying that both b, c ∈ [a, d] and a, d ∈ [b, c]. When a, b, c, d
are all distinct, it is also equivalent to saying that a, b, d, c is a square. Note that
parallelism is an equivalence relation on M2. If a, b and c, d are parallel, then
φa,b|[c, d] is an isometry (hence a median isomorphism) from [c, d] to [a, b]. Its
inverse is φc,d |[a, b].

The following is a standard notion for median algebras.

Definition. If C ⊆ M is closed and convex, we say that φ : M→ C is a gate map
of M to C if φ(x) ∈ [x, c] for all x ∈ M and c ∈ C .

A more detailed discussion of gate maps can be found in [Bowditch 2016a,
Section 2.4].

One verifies that φ is a 1-Lipschitz retraction of M to C , and a median homo-
morphism. If φ exists then it is unique. Note that the map φa,b of the previous
paragraph is a gate map to [a, b]. In fact, if M is proper, then gate maps to closed
convex sets always exist. This can be seen using the fact that intervals are compact,
though we will not need this here.

Definition. A wall in M is a partition of M into two nonempty convex subsets.

This is equivalent to a median epimorphism φ :M→{−1, 1}, where the partition
is given by {φ−1(−1), φ−1(1)}. We can speak about an oriented or unoriented
wall according to whether we consider the partition as an ordered or an unordered
pair. Any two disjoint convex subsets, C, D, of M are separated by some wall,
that is, C ⊆ φ−1(−1) and D ⊆ φ−1(1). We say two walls, φ,ψ , cross if the map
(φ, ψ) : M→ {−1, 1}2 is surjective. The rank of M can be equivalently defined
as the maximal cardinality of a set of pairwise crossing walls. We say that M is
n-colourable if we can colour the walls of M with n colours such that no two walls
of the same colour cross. This implies that rank(M) ≤ n. (See [Bowditch 2013,
Section 12] for more discussion of colourability.)

These notions only require the median structure on M. If 5 is a finite median
algebra, then we can identify the set of (unoriented) walls with the set of hyperplanes
in the associated finite CAT(0) complex. In this case, two walls cross if and only if
the corresponding hyperplanes intersect.

If a, b ∈ M, then [a, b] admits a partial order defined by x ≤ y if x ∈ [a, y] (or
equivalently y ∈ [x, b]). If [a, b] has rank 1, this is a total order. If M is connected
and metrisable, then [a, b] is isometric to a compact real interval. In particular, any
connected median metric space of rank 1 is an R-tree. (In this case, the metric σρ ,
described above, agrees with ρ.)
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We also note the following construction of quotient median algebras. Suppose
that M is a median algebra, and that ∼ is an equivalence relation on M such that
whenever a, b, c, d ∈ M with c ∼ d, then µ(a, b, c)∼ µ(a, b, d). Let P = M/∼.
Given x, y, z ∈ P, set µP(x, y, z) to be the equivalence class of µ(a, b, c), where
a, b, c are representatives of x, y, z respectively. This is well defined, the quotient
(P, µP) is a median algebra, and the quotient map is an epimorphism. Indeed any
epimorphism of median algebras arises in this way.

We finish this section with the following proposition which will be applied to
asymptotic cones of finite-rank coarse median spaces (see Lemma 6.6).

Proposition 2.4. Let (M, µ) be a median algebra with rank(M) ≤ ν, and let
ρ be a geodesic metric on M. Suppose that there is some k ≥ 1 such that for
all a, b, c, d ∈ M, we have ρ(µ(a, b, c), µ(a, b, d)) ≤ kρ(c, d). Then there is a
median metric λ on M, bi-Lipschitz equivalent to ρ, and which induces the median µ.
Moreover, the bi-Lipschitz constants depend only on ν and k.

The second hypothesis asserts that the projection to intervals is uniformly Lips-
chitz. (It is precisely axiom (L2) of [Bowditch 2014a, Section 1].) It implies that
the median operation is Lipschitz hence continuous (so M is a topological median
algebra). In fact, we can weaken the geodesic condition to assert that M is Lipschitz
path-connected, in the sense of axiom (L3) there. The proof is the same, but we
won’t need the more general statement here.

In the same work, it was shown that if (M, µ) is also finitely colourable, then
it embeds in a finite product of trees, so the induced metric is median. The proof
below amounts to observing that, under the weaker hypothesis of finite rank, the
same construction gives a median metric directly.

Proof of Proposition 2.4. We write 〈a, b:c〉λ = 1
2(λ(a, c)+ λ(b, c)− λ(a, b)) (i.e.,

the “Gromov product”). Then [a, b]λ = {x ∈ M | 〈a, b:x〉λ = 0}. Thus, λ is a
median metric inducing µ if and only if [a, b]λ = [a, b] for all a, b ∈ M. In this
case, given any a, b, c ∈ M we have ρ(c, d)= 〈a, b:d〉λ, where d =µ(a, b, c) (see,
for example, [Bowditch 2014a, Section 2]).

Now, if 5⊆ M is a finite subalgebra, we put a metric, λ5, on 5 as in [Bowditch
2014a, Section 5]. (To each wall, W, of 5 we associate a “width”, λ(W ), and set
λ5(a, b) =

∑
W λ(W ), as W ranges over the set, W(a, b), of walls separating a

from b.) It is easily seen that [a, b]λ5 = [a, b] ∩5, the latter being the intrinsic
median interval in5. (This holds since W(a, b)⊆W(a, c)∪W(b, c), with equality
if and only if c ∈ [a, b] ∩5.) Therefore λ5 is a median metric on 5.

Moreover, λ5 is uniformly bi-Lipschitz equivalent to ρ restricted to 5. This
follows as in [Bowditch 2014a, Section 5]. Note that if x, y ∈ M, then [x, y] ∩5
has rank at most ν. It follows by Dilworth’s lemma that [x, y] ∩5 is ν-colourable
(Lemma 2.3 of the same work) and so embeddable as a subalgebra of the cube



10 BRIAN H. BOWDITCH

[0, 1]ν (Proposition 1.4 there). Lemmas 5.2 and 5.4 there then respectively give us
lower and upper bounds on λ(x, y) in terms of ρ(x, y). (Note that, in the notation
of that work, T ≤ ρ(x, y), if we assume that M is a geodesic space.)

As in Section 6 of [Bowditch 2014a], we note that the set of finite subalgebras
of M, ordered by inclusion, is cofinal in the set of all finite subsets of M. Therefore,
by Tychonoff’s theorem, we find a cofinal set of finite subalgebras, 5, so that
λ5(a, b) → λ(a, b) for all a, b ∈ M, where λ is a metric on M, bi-Lipschitz
equivalent to ρ.

To see that λ is a median metric inducing ρ, we need to check that [a, b]λ=[a, b].
To this end, suppose a, b, c ∈ M and let d = µ(a, b, c). Note that a, b, c, d ∈ 5
for a cofinal subset of those 5 in our cofinal set of subalgebras. If c ∈ [a, b],
then 〈a, b:c〉λ5 = 0 for all such 5, so 〈a, b:c〉λ = 0, so c ∈ [a, b]λ. Conversely, if
c∈[a, b]λ, then λ5(c, d)=〈a, b:c〉λ5→0, so λ(c, d)=0, so c=d , so c∈[a, b]. �

3. Blocks

In this section, we describe top-dimensional cubes in median metric spaces.
Let M be a proper median metric space. Throughout this section, we will use ν

to denote rank(M).

Definition. An n-block in M is a convex subset isometric to an l1
− product of n

nontrivial compact real intervals.

This is equivalent to saying that it is convex and median-isomorphic to [−1, 1]n.
Clearly, n ≤ ν.

We write P ≡
∏n

i=1 Ii , where each Ii is a compact real interval, and can be
identified with a 1-face of P.

Let Q(P) be the set of corners of P, that is, Q(P)=
∏

i {ai , bi }where Ii =[ai , bi ].
It is clear that Q(P) is intrinsically an n-cube in P, hence an n-cube in M. We see
P = hull(Q(P)). In fact, P = [a, b], where a, b are any pair of opposite corners
of Q.

Lemma 3.1. Let M be a proper median metric space of rank ν. The following are
equivalent for a subset P ⊆ M :

(1) P is ν-block.

(2) P is the convex hull of a ν-cube in M.

(3) P is isometric to a ν-dimensional l1-cube.

Proof. The fact that (2) implies (1) was proven in [Bowditch 2016c, Proposition 5.6].
Suppose (3) holds. Let a, b be opposite corners of P (defined intrinsically). Directly
from the definition of intervals in M, we can see that P⊆[a, b], and so P⊆hull(Q),
where Q is the set of corners of P. By the observation preceding the lemma, we
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know that hull(Q) is a ν-block, and it now follows easily that we must have
P = hull(Q). �

In (3) here, we are assuming that P is isometric to an l1-cube in the induced
metric. We suspect that it would be sufficient to assume that this were the case for
the induced path-metric. We will show this to be the case under some regularity
assumptions (see Lemma 3.4 below).

Lemma 3.2. Let M be a proper median metric space of rank ν. Suppose that
P, P ′ ⊆ M are ν-blocks, and that P ∩ P ′ is a common codimension-1 face. Then
P ∪ P ′ is also a ν-block.

Proof. Let R0=Q(P∩P ′)=Q(P)∩Q(P ′). Let R=Q(P)\R0 and R′=Q(P ′)\R0.
Thus R0, R, R′ are parallel (ν − 1)-cubes. In particular, R ∪ R′ is a ν-cube. Let
P ′′= hull(R∪ R′). By Lemma 3.1, this is a ν-block. We claim that R0⊆ P ′′. For if
r0 ∈ R0, let r ∈ R and r ′ ∈ R′ be adjacent vertices of Q(P) and Q(P ′) respectively.
Thus, [r0, r ] and [r0, r ′] are 1-faces of Q(P) and Q(P ′). In particular, [r0, r ] ∩
[r0, r ′]={r0} and so r0∈[r, r ′]⊆ P ′′ as claimed. It now follows that P∪P ′= P ′′. �

More generally, if P, P ′ are any two blocks, then so is P ∩ P ′ provided it is
nonempty. In fact, P ∩ P ′ = hull(Q), where Q is the projection (image of the gate
map) of Q(P ′) to P. In particular, Q(P ∩ P ′)⊆ 〈Q(P)∪ Q(P ′)〉.

We have the following procedure for subdividing blocks. Suppose P ≡
∏n

i=1 Ii .
If Fi ⊆ Ii are finite subsets containing the endpoints, then F =

∏n
i=1 Ii is a finite

subalgebra of P. In fact, any finite subalgebra of P containing Q has this form. We
can represent P as an l1-cube complex whose vertex set is exactly F. We refer to
this as a subdivision of P.

Lemma 3.3. Suppose that P is a finite set of blocks in M. Then we can subdivide
these blocks to find another set of blocks, P ′, with

⋃
P =

⋃
P ′ such that any two

blocks of P ′ meet, if at all, in a common face.

Proof. Let A=
⋃

P∈P Q(P) and let 5= 〈A〉. If P ∈P , then P∩5 is a subalgebra
of P containing Q(P) and so determines a subdivision of P. We subdivide each
element of P in this way to give us our new collection P ′. Now if P, P ′ ∈ P ′, then
Q(P ∩ P ′) ⊆ 〈Q(P) ∪ Q(P ′)〉 ⊆ 5. But by construction, P ∩5 ⊆ Q(P) and
P ′ ∩5 ⊆ Q(P ′), so Q(P ∩ P ′) ⊆ P ∩ P ′ ∩5 ⊆ Q(P)∩ Q(P ′). It now follows
that P ∩ P ′ is a common face of P and P ′ as claimed. �

In other words, we can realise
⋃

P as an l1-cube complex in M all of whose
cells are blocks.

Definition. A straight cube complex in M is an embedding of a locally finite cube
complex in M such that each cell is a block (necessarily of the corresponding
dimension).
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The following is equivalent to the informal definition of “cubulated” given in
Section 1.

Definition. A cubulated set is a subset of M which is a locally finite union of
blocks.

A cubulated set, 8, is clearly closed, and by the above, we see that any point
x ∈8 has a neighbourhood in 8 which is a straight cube complex contained in 8.
In fact, we can assume that x is a vertex of this cube complex. Note also that a
finite union or a finite intersection of cubulated sets is also cubulated.

In fact, if 81, . . . , 8n is a finite set of cubulated sets, with x ∈
⋂

i 8i , then
we can find a straight cube complex, ϒ ⊆

⋃
i 8i as above, with each ϒ ∩8i a

subcomplex of ϒ . (This is a consequence of the construction of Lemma 3.3.)

Lemma 3.4. Suppose that 8⊆ M is cubulated. Suppose that P ⊆8 is isometric
to a ν-dimensional l1-cube in the path-metric induced from ρ. Then P is a ν-block
in M.

Proof. By Lemma 3.3 we can find a straight cube complex ϒ ⊆8, with P ⊆ ϒ .
We can assume that the intrinsic corners of P are all vertices of ϒ . It now follows
that P is a union of ν-blocks of M, which are ν-cells of ϒ . These determine a
subdivision of P in the induced path metric on P. Applying Lemma 3.2 inductively,
we see that P is a block in M. �

Definition. Suppose that 8⊆ M is cubulated. We say that a point x ∈8 is regular
if it has a neighbourhood in 8 which is a ν-block in M. Otherwise, we say that x
is singular. We write 8S for the set of singular points of 8.

Note that 8S is a cubulated set of dimension at most ν− 1.
Suppose now that 8 is cubulated and homeomorphic to Rν. If K ⊆8 is compact,

then K lies inside a straight cube complex, ϒ , in 8. Moreover, we can assume that
any (ν− 1)-cell of ϒ meeting K lies in exactly two ν-cells of ϒ . By Lemma 3.2,
the union of these to cells is also a ν-block in M. From this, we deduce:

Lemma 3.5. Suppose that 8⊆ M is cubulated and homeomorphic to Rν. Then 8S

is a cubulated set of dimension at most ν− 2.

Note that, if P is any block in 8, then the relative interior of P in 8 is exactly
the intrinsic relative interior of P, as defined earlier.

Definition. A leaf segment of 8 is a closed subset, L , of 8 homeomorphic to a
real interval such that if x ∈ L , then there is a block P ⊆ 8 containing x in its
relative interior, with L ∩ P lying in a coordinate line of P. If the real interval is
the whole real line, we refer to L as a leaf.

Clearly this implies that L ∩8S =∅. We note:

Lemma 3.6. Every leaf segment of 8 is convex in M.
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Proof. Let L ⊆8 be a leaf segment, and suppose I ⊆ L is a compact subinterval.
Since I ∩8S = ∅, we can find a subset P ⊆ 8 which is a block in the intrinsic
path metric on P, and with I ⊆ P an intrinsic coordinate line with respect to that
structure. But by Lemma 3.4, P is a block in M, and so I is convex. It now follows
that L is convex. �

Definition. A flat in M is a closed convex subset isometric to Rν with the l1 metric.

(Note that we always take a flat to be of maximal dimension; that is, ν= rank(M).)
In fact (as with blocks), we see that any closed subset of M which is isometric

to Rν in the induced metric is flat. (Indeed, we suspect this remains true if we
substituted “induced path-metric” for “induced metric” in the above.) Also, any
closed convex subset of M median isomorphic to Rν, with the standard product
structure, is a flat. In particular, the notion depends only on the topology and median
structure.

Clearly a flat is a cubulated set with empty singular set. Conversely, we have:

Lemma 3.7. Suppose that8⊆ M is a cubulated set homeomorphic to Rν, and with
8S =∅. Then 8 is a flat.

Proof. First note that, in the intrinsic path metric, 8 is locally isometric to Rν in the
l1 metric. Since it is complete, it must be globally isometric. By Lemma 3.4 any
subset of 8 that is intrinsically a block is indeed a block in M, and so, in particular,
convex. Since any two points of 8 are contained in such a subset, it follows that 8
is convex. The induced path metric is therefore the same as the induced metric. �

Here is a criterion for recognising that a cubulated set is indeed nonsingular:

Lemma 3.8. Suppose that8⊆M is cubulated, and that there is a homeomorphism
f : Rν→8 such that if H ⊆ Rν is any codimension-1 coordinate plane in Rν then
f (H) is cubulated. Then 8 is a flat, and f is a median isomorphism.

Proof. Suppose that L ⊆ Rν is a coordinate line, and that x ∈ L with f (x) /∈8S .
Let H1, H2, . . . , Hn be the codimension-1 coordinate planes through x , with L =⋂n

i=2 Hi , and with H1 orthogonal to L . As noted after Lemma 3.3, we can find a
neighbourhood, ϒ , of f (x) in 8, which is a straight cube complex, with f (x) a
vertex, and each f (Hi )∩ϒ a subcomplex of ϒ . In particular, f (L)=

⋂n
i=2 f (Hi )

is a 1-dimensional subcomplex, and so meets f (x) in a pair of 1-cells of ϒ . Let 1
be the link of f (x) in ϒ . Since f (x) /∈8S , this is a cross polytope. Note that f (L)
determines two vertices, p, q, of 1. Now f (H1) separates the two rays of f (L)
with basepoint f (x) in 8. It therefore determines a subcomplex of 1 separating p
from q in 1. It follows that p and q must be opposite vertices of 1. We see that
the union of the two 1-cells of f (L) meeting x is convex.

In summary, we have shown that, away from 8S , the images of coordinate lines
are locally convex, that is, leaf segments of 8. By a simple compactness argument,
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it now follows that if I ⊆ Rν is a compact interval lying in a coordinate line with
f (I )∩8S =∅, then f (I ) is a leaf segment of8. We can now deduce that if P ⊆8
is any ν-block in 8 \8S , then f −1

|P is a median isomorphism to a block f −1(P)
in Rν. In fact, it is enough that P should not meet 8S in its relative interior.

Suppose now that y ∈ 8. Let ϒ ⊆ 8 be a straight cube complex that is a
neighbourhood of y, and with y as a vertex. To simplify notation, suppose that
f −1(y) is the origin in Rν. Let P be a cube of ϒ with y a corner of P. Then
f −1 P has the form

∏ν
i=1[0,±ti ] for some ti > 0. Since there are only finitely many

such P, after shrinking them, we can assume that the preimages all have the form∏ν
i=1[0,±t] for some t > 0. We see that there are exactly 2ν such cubes, which fit

together into a bigger cube of the form f ([−t, t]ν). In particular, the link of y in
ϒ is a cross polytope, and y is regular.

We have shown that 8S =∅, and so by Lemma 3.7, 8 is a flat. �

For reference elsewhere (see Proposition 4.8 below) we note that there is a
variation on Lemma 3.8, where Rν is replaced by a real cube, [−1, 1]ν, and 8=
f ([−1, 1]ν). In fact, it is enough to assume that the relative interior, f ((−1, 1)n)⊆
8, is cubulated (in the sense that any compact subset of f ((−1, 1)ν) lies inside
another compact subset of 8 which is cubulated). Also, we only need to consider
coordinate planes restricted to the interior of 8. The argument is essentially the
same, this time applied to the relative interior of 8 and then taking the closure.

4. Cubulating planes

In this section, we discuss the regularity of “top-dimensional manifolds” in M. These
play an important role in [Kleiner and Leeb 1997; Kapovich, Kleiner and Leeb
1998; Behrstock, Kleiner, Minsky and Mosher 2012]. Our argument is analogous
to those to be found there, though set in a somewhat different context. Here, we
interpret this in terms of cubulations. We will only use dimension of (locally)
compact sets, so all the standard definitions are equivalent. For definiteness, we can
interpret the dimension of a topological space to be its covering dimension. (Note
that this differs from the notion of “topological rank” used in [Kleiner and Leeb
1997].)

Suppose that (M, ρ) is a complete median metric space. We first note:

Lemma 4.1. Any locally compact subset of M has topological dimension at most
rank(M).

Proof. First note that by Lemma 2.1, M is locally convex. The statement then
follows by Theorem 2.2 and Lemma 7.6 of [Bowditch 2013]. �

From this we see that if M is homeomorphic to Rν, then ν = rank(M). (The
fact that ν ≥ rank(M) is an immediate consequence of Lemma 4.1. For the other
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direction, note that by Lemma 2.3, any n-cube in M is the vertex set of an embedded
l1-cube in M, and so n ≤ ν, and it follows that rank(M)≤ ν.)

In fact, we can say a lot more about the regularity of such a space:

Lemma 4.2. If M is a complete median metric space homeomorphic to Rν, then M
is cubulated.

In particular, we see that M is locally isometric to Rν with the l1 metric away
from a cubulated singular set of dimension at most ν − 2. (Note that we are not
claiming that the cubulation is combinatorial in the sense of PL manifolds. Certainly
the link of any cell in the cubulation will be a homology sphere. It is not clear
whether it need be a topological sphere in this situation.)

Proof of Lemma 4.2. Let B1 ⊆ B0 be topological ν-balls in M. We suppose
that N (B1; 2u) ⊆ B0, where N ( · ; r) denotes the metric r-neighbourhood with
respect to the metric ρ. Let 0 < s < t < u be sufficiently small depending on
u, as described below. We take a topological triangulation of ∂B0, all of whose
simplices have diameter at most s. Let A ⊆ ∂B0 ⊆ M be the set of vertices of this
triangulation, and let5=〈A〉⊆M. By Lemma 2.3,5 is the vertex set of an l1-cube
complex ϒ embedded in M. We extend the inclusion of A into ϒ to a continuous
map f : ∂B0→ϒ . Provided s is small enough in relation to t , we can arrange that
the ρ-diameter of the image of each simplex is at most t . (For example, take the
corresponding euclidean metric, σϒ , on ϒ . Then (ϒ, σϒ) is CAT(0), and we can
map in simplices, inductively on the 1-skeleta by taking geodesic rulings. In this
way the σϒ -diameter of the image of any simplex is at most s. Now ρ ≤ σϒ

√
ν, so

this works provided s
√
ν ≤ t .) Now ρ(x, f (x))≤ s+ t for all ∂B0. Again, provided

t is small enough in relation to u, we can find a homotopy, F : ∂B0×[0, 1] → M,
between f and the inclusion of B0 into M whose trajectories all have length at
most u. In particular, the image of the homotopy lies in N (∂B0; u) and is therefore
disjoint from B1. For this, it is convenient to take the CAT(0) metric, σ , on M, as
given by Theorem 2.2. We can then use linear isotopy in this metric, that is, the
trajectory from x to f (x) is the σ -geodesic segment. Again we note that ρ ≤ σ

√
ν,

so this works provided (s+ t)
√
ν ≤ u.

Now ϒ is a CAT(0) complex in the euclidean metric, and so in particular is
contractible. We can therefore extend f : ∂B0 → ϒ arbitrarily to a continuous
map f : B0→ ϒ . We combine this with the homotopy constructed above to give a
continuous map g : B0→ M which restricts to inclusion on ∂B0. More formally, if
x ∈ B0 \ {0}, write x = λx̂ , where λ ∈ (0, 1] and x̂ ∈ ∂B0 (via any homeomorphism
of B0 with the unit ball in Rν). If λ ≤ 1

2 , then set g(x) = f (2λx̂). If λ ≥ 1
2 , then

set g(x)= F(x̂, 2λ− 1). We set g(0)= 0. Note that g(B0)= f (B0)∪ image(F),
and we have noted that B1∩ image(F)=∅, and so B1∩ g(B0)⊆ f (B0). But now,
B0⊆ g(B0) (since g|∂B0 is just inclusion). It therefore follows that B1⊆ f (B0)⊆ϒ .
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We do not know a priori that ϒ is a straight complex. However, every ν-cell of
ϒ must be a ν-block. Moreover, B1 must lie in the union of these ν-cells. (For if
x ∈ B1, then any cell of ϒ must lie in a ν-cell, otherwise some neighbourhood of x
in B1 would have dimension at most ν− 1.) Since B1 was an arbitrary ν-ball in M,
we see that every compact subset of M lies in a finite union of ν-blocks of M. It
follows that M is cubulated. �

We can give a more general version of this for subsets of a proper median metric
space as follows (given as Proposition 1.2 in Section 1).

Proposition 4.3. Suppose that M is a complete median metric space of rank at most
ν, and that 8⊆ M is a closed subset homeomorphic to Rν. Then 8 is cubulated.

Clearly, in this case, the rank will be exactly ν. As before, we see that 8 is
locally isometric to Rν in the l1 metric away from a codimension-2 singular set
(see Lemma 3.5).

Note that there is no loss in assuming that M is connected (hence “proper”
in the terminology of Section 3) since we can simply restrict to the component
containing 8. We have already observed in Section 2 that this is convex, hence
intrinsically a complete median metric space.

For the proof, will need the following two topological lemmas:

Lemma 4.4. Suppose that X is a Hausdorff topological space and that B, P ⊆ X
are embedded topological n-balls, with intrinsic boundary spheres S(B) and S(P)
respectively. Suppose that P \ S(P) is open in X , that P ∩ S(B) = ∅ and that
B ∩ P \ S(P) 6=∅. Then P ⊆ B.

Proof. Write I (B)= B \S(B) and I (P)= P \S(P) for the relative interiors. These
are both homeomorphic to Rn. Let U = I (P)∩ B = I (P)∩ I (B). By assumption,
U 6=∅. Now I (P) is open in X , so U is open in I (B). Thus, U is homeomorphic
to an open subset of Rn, hence, by invariance of domain, it is also open in I (P). But
U = I (P)∩ B, so U is also closed in I (P), and so, by connectedness, U = I (P).
In other words, I (P)⊆ I (B), and it follows that P ⊆ B as claimed. �

For the second topological lemma, we need the following definition.

Definition. The (locally) compact dimension of a Hausdorff topological space is
the maximal topological dimension of any (locally) compact subset.

Clearly the compact dimension is at most the locally compact dimension, which in
turn is at most the “separation dimension” as defined in [Bowditch 2013, Section 7].

Lemma 4.5. Suppose that M is a Hausdorff topological space of compact dimen-
sion at most ν. Suppose that B is a topological ν-ball with boundary ∂B. Suppose
that f0, f1 : B→ M are continuous and homotopic relative to ∂B, and that f0 is
injective. Then f0(B)⊆ f1(B).
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The proof is based on an argument in Section 6.1 of [Kleiner and Leeb 1997]. A
related, but slightly different statement can be found in [Behrstock, Kleiner, Minsky
and Mosher 2012, Section 6]. In what follows, Hr will denote Čech homology
with coefficients in a field (say Z2 to be specific). We will only deal with compact
spaces, so that the usual homology axioms, in particular, homotopy, excision and
exactness, hold. We need compact spaces and field coefficients for exactness; see
[Eilenberg and Steenrod 1952, Chapter IX]. (Note that in [Kleiner and Leeb 1997],
it is implicit from context that singular homology is being used. As a consequence
they use open sets instead of compact sets.) Note that, if K is compact and of
dimension at most ν, then Hn(K , A) is trivial for any compact A ⊆ K and any
n > ν.

Proof. Let C = f0(B), D = f1(B), S = f0(∂B) = f1(∂B) and let E ⊆ M
be the image of a homotopy from f0 to f1. Thus, S ⊆ C ∩ D ⊆ C ∪ D ⊆ E
are all compact. Suppose, for contradiction, that p ∈ C \ D. Let N ⊆ C be
an open neighbourhood of p in C , whose closure is homeomorphic to a closed
ν-ball disjoint from D. Now Hν(C,C \ N ) ∼= Hν−1(S) ∼= Z2, but the image of
Hν(C,C \ N ) in Hν(E,C ∪ D \ N ) is trivial. (Note that this corresponds to the
image of Hν−1(∂B) under that map induced by f1 ' f0.) Now the natural map
Hν(C,C \ N )→ Hν(C ∪ D,C ∪ D \ N ) is an isomorphism, by excision. Also,
since Hν+1(E,C∪D) is trivial, the exact sequence of triples tells us that the natural
map, Hν(C ∪ D,C ∪ D \ N )→ Hν(E,C ∪ D \ N ) is injective. Composing, we
get that the natural map Hν(C,C \ N )→ Hν(E,C ∪ D \ N ) is injective, giving a
contradiction. �

We can now give the proof of Proposition 4.3. We have already observed that we
can assume M to be connected. We recall that M is contractible (see Theorem 2.2),
and has locally compact dimension at most ν (Lemma 4.1).

Proof of Proposition 4.3. This is an extension of the argument for Lemma 4.2. This
time, we take three closed topological balls, B2⊆ B1⊆ B0⊆8⊆M. We assume that
B2 is contained in the relative interior of B1, and that N (B1; 2u)⊆ B0 (in the metric ρ
on M). We start as before, triangulating ∂B0, to give us a complexϒ ⊆M, a continu-
ous map f : B0→ϒ , and a homotopy in M from f |∂B0 to the inclusion of ∂B0. We
can arrange that the homotopy does not meet B1. We combine f with this homotopy
to give a continuous map, g : B0→ M, which restricts to the identity on ∂B0.

Since M is contractible, g is homotopic to the inclusion of B0 in M, relative to
∂B0. Therefore, Lemma 4.5 tells us that B0 ⊆ g(B0). Moreover, as observed above,
the homotopy part of g does not meet B1 and so we see that B1 ⊆ f (B0)⊆ ϒ .

In summary, we have B2 ⊆ B1 ⊆ϒ . After subdividing, we can suppose that any
cell of ϒ meeting B2 is disjoint from the spherical boundary, S(B1), of B1. Let P
be the set of ν-cells of ϒ meeting B2 in their relative interiors. Each of these is a
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ν-block, and by the same dimension argument as in the proof of Lemma 4.2, we
have B2 ⊆

⋃
P . We claim that

⋃
P ⊆8.

In fact suppose that P ∈ P . We apply Lemma 4.4 with X =ϒ , B = B1. Since
ϒ is a complex of dimension ν, we have P \ S(P) open in ϒ . Also, P \ S(B1)=∅,
and by assumption B2 ∩ P \ S(P) ⊆ B1 ∩ P \ S(P) is nonempty. It follows that
P ⊆ B1, so in particular, P ⊆8.

Since B2 can be chosen arbitrarily, we see that any compact subset of 8 is
contained in a finite union of ν-blocks contained in 8, and so 8 is cubulated as
required. �

Remark. In fact, the argument shows that if B ⊆ M is homeomorphic to a closed
ν-ball, and K ⊆ B \ ∂B is a compact subset of the relative interior, then there is a
compact cubulated set, ϒ , with K ⊆ ϒ ⊆ B.

Combining Proposition 4.3 and Lemma 3.8, we get:

Proposition 4.6. Suppose that M is a complete median metric space, and that
8⊆ M is a closed subset and that there is a homeomorphism f : Rν→8 with the
following property. For each codimension-1 coordinate plane, H ⊆ Rν, there is a
closed subset, 9 ⊆ M, homeomorphic to Rν such that f (H)=8∩9. Then 8 is a
flat, and f is a median isomorphism.

Note that the hypotheses on 8 only depend on the topological structure of M.
We conclude, in particular, that 8 is isometric to Rν with the l1 metric.
This is all we will need for our discussion of the marking graph. We also include

the following results which will be relevant to applications elsewhere; see [Bowditch
2015; 2016a].

Definition. We say that an R-tree is furry if every point has valence at least 3.

Proposition 4.7. Suppose that M is a complete median metric space of rank ν,
that D is a direct product of ν furry R-trees, and that f : D→ M is a continuous
injective map with closed image. Then f is a median homomorphism. Moreover,
f (D) is convex.

Proof. By a product flat in D we mean a direct product of bi-infinite geodesics
in each of the factors. If every point in each factor has valence at least 4 (as in
the cases of genuine interest) then we see that every product flat 8 satisfies the
hypotheses of Proposition 4.6, and so f |8 is a median homomorphism. Now any
two points, a, b lie in some such product flat 8 and [a, b] ⊆8. Thus, if c ∈ [a, b],
then f c ∈ [ f a, f b], and it follows that f is a median homomorphism on all of D.

If we allow for vertices of valence 3, then we just note that any codimension-1
coordinate plane in 8 is the intersection of three product flats, hence cubulated. We
can then apply Lemma 3.8 directly, to see that f is a median homomorphism on 8,
hence, as above, everywhere. �
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We remark that Proposition 4.7 applies in particular if M is also a product of ν
R-trees. It follows that f splits as a direct product of embeddings, up to permutation
of the factors. Some further discussion of this, with applications, can be found in
[Bowditch 2016b].

Definition. A tree product, T, in M is a convex subset median isomorphic to a
direct product of ν nontrivial rank-1 median algebras. It is maximal if it is not
contained in any strictly larger tree product.

Note that T is an l1-product of R-trees. It is easily seen that the closure of a tree
product is a tree product, and so any maximal tree product is closed.

Note that in the above terminology, any closed subset of M homeomorphic to a
direct product of ν furry R-trees for ν ≥ 2 is a tree product by Proposition 4.7.

For applications elsewhere, in particular in [Bowditch 2016a], we note that we
can relax the “furriness” condition somewhat.

Definition. An R-tree is almost furry if it is infinite, and no point has valence equal
to 2.

In this case, by removing the extreme (valence-1) points, we obtain the maximal
furry subtree. The following was given as Proposition 1.3 in the introduction.

Proposition 4.8. Suppose that M is a complete median metric space of rank ν, that
D is a direct product of ν almost furry R-trees, and that f : D→ M is a continuous
injective map with closed image. Then f is a median homomorphism. Moreover,
f (D) is convex.

Proof. We can apply the arguments to the maximal subset which is a product of furry
trees, and then take its closure. We have already observed that the key statements,
in particular Lemma 3.8 and Proposition 4.3, have local versions which can be
applied to this case. �

5. Ultraproducts

In this section, we give some general background to the theory of ultraproducts and
asymptotic cones. The notion of an asymptotic cone was introduced in [van den
Dries and Wilkie 1984]; see also [Gromov 1993]. The idea behind this is to keep
rescaling the metric so that points move closer and closer together, and then pass
to an “ultralimit” of the resulting spaces. (Here, the term “ultralimit” is used in
the sense of [Gromov 1993], rather than in the usual sense of model theory.) We
then factor out “infinitesimals” to give what we call here an “extended asymptotic
cone”. If we also throw away the “unlimited” parts (beyond infinity), we get the
usual asymptotic cone. In principle, this may depend on the choice of rescaling
factors and (if the continuum hypothesis fails) on the choice of ultrafilter, but such
ambiguity will not matter to us here.
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Let Z be a countable set equipped with a nonprincipal ultrafilter. We can think
of this as a finitely additive measure on Z, taking values in {0, 1}, such that Z
itself has measure 1, and any finite subset of Z has measure 0. If a predicate, P(ζ ),
depends on ζ ∈ Z, we say that P holds almost always if the set of ζ for which it
holds has measure 1.

We refer to a sequence of objects indexed by Z as a Z-sequence. Typically, we
will use the notation EX = (Xζ )ζ for such a sequence. If these are all sets, we write∏
EX =

∏
ζ Xζ for their product. Given Ex, Ey ∈

∏
EX , we write Ex ≈ Ey to mean that

xζ = yζ almost always. Thus, ≈ is an equivalence relation on
∏
EX , and we write

U EX =
∏
EX/≈ for the quotient.

Definition. We refer to U EX as the ultraproduct of the Z-sequence EX .

Note that we only need to have xζ defined almost always to determine an element
of U EX . We write x = [Ex] for this element.

We write P( EX) for the Z-sequence (P(Xζ ))ζ , where P denotes power set. There
is a natural map UP( EX)→P(U EX), defined by sending EY to the set of x=[Ex] ∈U EX
such that xζ ∈ Yζ almost always. We can identify the image of this map with U EY.
Note that we can define unions and intersections in P( EX) (by taking unions and in-
tersections on each ζ -coordinate). These operations are respected by the above map.

Given two Z-sequences of sets, EX and EY, we can form the direct product EX × EY
as (Xζ × Yζ )ζ , and we see that U( EX × EY ) is naturally identified with U EX ×U EY. A
Z-sequence of relations on Xζ × Yζ give rise to a relation on U EX × U EY via the
map from UP( EX × EY ) to P(U EX ×U EY ). In other words, x is related to y if xζ is
almost always related to yζ . A particular case is when relation on Xζ ×Yζ is almost
always the graph of a function. In fact, the following is a simple exercise:

Lemma 5.1. Given any Z-sequence of functions, fζ : Xζ → Yζ , there is a unique
function U f : U EX → U EY, such that y = U f (x) if and only if yζ = fζ (xζ ) almost
always.

We also note that the discussion of relations also applies to finite products of
sets, and so to n-ary relations and n-ary operations for any finite n. For example, if
E0 is a sequence of groups, then U E0 has the structure of a group. If each 0ζ acts on
a set Xζ , then U E0 acts on U EX .

Suppose that Xζ = X is constant. In this case, we write UX = U EX .

Definition. We refer to UX as the ultrapower of the set X.

There is a natural injection X into UX obtained by taking constant sequences.
We refer to the image of this map as the standard part of UX. We usually identify
X with the standard part of UX. If X is finite, then UX is equal to its standard part.

Note that the ultrapower, UR, of the real numbers is an ordered field. We say
that x ∈ UR is limited if |x| ≤ y for some y ∈ R⊆ UR (where |x| =max{x,−x}).
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Otherwise it is unlimited. We say that x is infinitesimal if |x| ≤ y for all positive
standard y. Note that 0 is the only standard infinitesimal, and that the nonzero
infinitesimals are exactly the reciprocals of unlimited numbers.

There is a well defined map st : UR→ [−∞,∞] = R ∪ {−∞,∞} such that
st(x) = ∞ if x is positive unlimited, st(x) = −∞ if x is negative unlimited,
and x − st(x) is infinitesimal if x is limited. We refer to st(x) as the standard
part of x. We will usually restrict attention to nonnegative numbers, so we get a
map st : U[0,∞)→ [0,∞]. If (xζ )ζ is a Z-sequence of real numbers, we write
xζ → x ∈ R∪ {∞} to mean that x = st(x). (This is the same as taking limits in R

with respect to the ultrafilter.)
In the case of the natural number, there are no infinitesimals, and N is an initial

segment of UN. We get a map st : UN→ N∪ {∞} which is the identity on N.
Given any set M we define an nonstandard metric on M to be a metric with

values in UR. In other words, it is a map M2
→U[0,∞) satisfying the same axioms

as a metric, except with R replaced by UR. Note that, if σ is a nonstandard metric,
the composition σ̂ = st ◦σ : M2

→[0,∞] is an idealised pseudometric on M. Here,
we use the term idealised to mean that we allowing points to be an infinite distance
apart. As with usual pseudometric spaces, we can take the Hausdorffification, M̂ ,
of M. In other words, given x, y ∈ M, we write x ' y to mean that σ̂ (x, y) = 0.
Thus ' is an equivalence relation on M, and we set M̂ = M/'. The induced map,
σ̂ : M̂2

→ [0,∞] is an idealised metric on M̂ . Note that the relation on M̂ given
by deeming x to be equivalent to y if σ̂ (x, y) <∞ is an equivalence relation.

Definition. A component of an idealised metric space, M̂ , is an equivalence class
under the above relation.

Note that components are both open and closed in the topology induced on M̂ .
Also any component is a metric space in the usual sense. Note that we can speak
about an extended metric space as being complete; that is, all its components are
complete metric spaces. (We will see that, in the cases of interest in this paper, this
notion “component” will coincide with the usual notion of a connected component).

Suppose that ((Xζ , σζ ))ζ is a Z-sequence of metric spaces. This gives rise to
a nonstandard metric, Uσ , on U EX, and hence to an idealised pseudometric, σ̂ , on
U EX. Let X̂ be the Hausdorffification, with idealised metric σ̂ : X̂2

→ [0,∞].
If xζ ∈ Xζ , we write xζ → x to mean that x ∈ X̂ is the image of the sequence x

under the natural maps. We think of x as the limit of the xζ . By construction, every
sequence has a unique limit.

For the following lemma, we use the fact that Z is countable to find a Z-sequence
(nζ )ζ in N with nζ →∞. For example let, n : Z→ N be any injective map. (This
is true of a broader class of cardinals than ℵ0, though we won’t pursue that issue
here — we will have no need of any uncountable indexing sets.)
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Lemma 5.2. (X̂ , σ̂ ) is complete.

Proof. Let (x i )i∈N be a Cauchy sequence in X̂ . It is enough to show that (x i )i

has a convergent subsequence. We can suppose that σ̂ (x i , x i+1)≤ 1/2i+1 for all i .
Given i ∈ N, let (x i

ζ )ζ be some representative of x i in EX = (Xζ )ζ . Let Z0( j) =
{ζ ∈ Z | σζ (x

j
ζ , x j+1

ζ ) ≤ 1/2 j
}, let Z(i) =

⋂
j≤i Z0( j) and Z(∞) =

⋂
∞

j=0 Z0( j).
Given ζ ∈ Z \Z(∞), let i(ζ )=max{i | ζ ∈ Z(i)}, and let yζ = x i(ζ )

ζ . Note that if
ζ ∈ Z(i), then σζ (yζ , x i

ζ )≤
∑

j≥i (1/2
i )≤ 2/2i. We distinguish two cases.

If Z(∞) has measure 0, then yζ is defined almost always. Let y be the image of
(yζ )ζ in X̂ . Now σζ (yζ , x i

ζ )≤ 2/2i almost always, and so σ̂ (y, x i )≤ 2/2i, showing
that x i converges to y.

If Z(∞) has measure 1, we set yζ = xnζ
ζ , where nζ→∞, and argue as before. �

Suppose that Aζ ⊆ Xζ (almost always). As discussed earlier, this gives rise
to a subset of U EX which can be identified with U EA. We denote its image in X̂
by Â. In fact, restricting the metrics, ( Â, σ̂ ) is the limit of the subspaces (Aζ , σζ )
constructed intrinsically. Note that x ∈ Â if and only if σζ (xζ , Aζ )→ 0 (where
we are taking limits with respect to the ultrafilter on Z). We also note that Â is
closed in the induced topology on X̂ . This can be seen by a similar argument to
Lemma 5.2, or simply by noting that Â is complete in the induced metric. Note
that R̂ is an ordered abelian group, which we refer to as the extended reals. (In this
paper, this will usually be denoted instead by R∗, for the reasons given below.)

Suppose that fζ : Xζ → Yζ is a Z-sequence of maps between the metric spaces
(Xζ , σζ ) and (Yζ , σ ′ζ ). We have a map, U f :U EX→U EY given by Section 1. Suppose
there is a constant, k∈[0,∞), and a Z-sequence, (hζ )ζ , in [0,∞)with hζ→0, such
that for almost all ζ and all x, y ∈ Xζ we have σ ′ζ ( fζ (x), fζ (y))≤ kσζ (x, y)+ hζ .
Then, U f induces a k-Lipschitz map f̂ : X̂→ Ŷ . (The graph of f̂ is the limit of
the graphs of the fζ , taking the l1 metrics on Xζ × Yζ .) The image f̂ (Ŷ ) is the
limit of the images, fζ (Xζ ), in the sense of the previous paragraph.

Suppose that ((Xζ ,Z))ζ is a Z-sequence of geodesic metric spaces. Then
the components of (X̂ , σ̂ ) are precisely the connected components, and each such
component is a geodesic space. (This can be seen by applying the previous paragraph
to geodesics, thought of as uniformly Lipschitz maps of a compact real interval
into the spaces Xζ .)

Suppose that (Xζ , ρζ ) = (X, ρ) a constant sequence. In this case, we get a
natural injective map of (X, ρ) into the limit (X̂ , ρ̂), which is an isometry onto its
range. The closure of this range in X̂ is just the metric completion of X.

More interestingly, we can take a positive infinitesimal, t ∈ UR, and set σζ = tζρ
to be the rescaled pseudometric. In this case, we write (X∗, ρ∗)= (X̂ , σ̂ ) for the
limiting space. Note that this is the same as taking the rescaled metric space (X̂ , tρ̂)
and passing to its Hausdorffification.
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Definition. We refer to (X∗, ρ∗) as the extended asymptotic cone of X with respect
to t .

Note that X∗ has a preferred basepoint, namely that given by any constant
sequence in EX. This, in turn, determines a preferred component, X∞, of X∗, namely
that containing this basepoint.

Definition. We refer to X∞ as the asymptotic cone of X with respect to t .

By Lemma 5.2, the asymptotic cone is always complete. If X is a geodesic space,
so is X∞.

One can generalise the above to a Z-sequence of metric spaces, (Xζ , ρζ ), rescaled
by an infinitesimal t , to give an extended asymptotic cone, (X∗, ρ∗). In this case,
one needs a sequence of basepoints, eζ ∈ Xζ to determine a basepoint and base
component of X∗.

Definition. We say that a Z-sequence of maps, fζ : Xζ → Yζ between metric
spaces are uniformly coarsely Lipschitz if there are constants, k, h ≥ 0, such that for
almost all ζ ∈Z and all x, y ∈ Xζ , we have σ ′ζ ( fζ x, fζ y)≤ kσζ (x, y)+h. They are
uniform quasi-isometric embeddings if also σζ (x, y) ≤ kσ ′ζ ( fζ x, fζ y)+ h. They
are uniform quasi-isometries if also Yζ = N ( fζ (Xζ ); h).

Lemma 5.3. A Z-sequence of uniformly coarsely Lipschitz maps, fζ : Xζ → Yζ ,
induces a Lipschitz map, f ∗ : X∗→ Y ∗, which restricts to a map f∞ : X∞→ Y∞.
If the maps fζ are uniform quasi-isometric embeddings, then f ∗ and f∞ are
bi-Lipschitz onto their range. If they are quasi-isometries, then f ∗ and f∞ are
bi-Lipschitz homeomorphisms.

Proof. By Lemma 5.1, we have a map U f : UX→ UY. This descends to a map
f ∗ : X∗→ Y ∗ (since tζσζ (xζ , yζ )→ 0 implies tζσ ′ζ ( fζ (xζ ), fζ (yζ ))→ 0). The
fact that f ∗ and its restriction f∞ are (bi-)Lipschitz follows since the htζ → 0, so
the additive constant disappears in the limit. �

In particular, quasi-isometric spaces have bi-Lipschitz equivalent asymptotic
cones (for the same scaling sequence).

An example of the above construction is given by a sequence, EG = (Gζ )ζ of
graphs. Let Vζ = V (Gζ ) be the vertex sets. The adjacency relations on the Vζ
determine an adjacency relation on U EV, so as to give it the structure of the vertex
set V (U EG) of a graph U EG. If each Gζ is connected, the combinatorial distance
functions on Vζ give us a limiting nonstandard metric and hence an idealised metric
on U EV, with values in N∪ {∞}. This is the same as the combinatorial idealised
metric given by UV =V (U EG). In particular, the components are again the connected
components. (Note that we lose some information in the standardisation process,
since different pairs of components might be at different unlimited distances apart.)
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Suppose that E0 = (0ζ )ζ is a Z-sequence of groups. Then U E0 is also a group.
If each 0ζ acts on a set Xζ , then U E0 acts on U EX. If 0ζ acts by isometry in some
metric space, then so does U E0. If 0 and X are fixed, then any two points of X ⊆U EX
in the same U0-orbit also lie in the same 0-orbit (since if y = gx for some g ∈ U0,
then y = gζ x for almost all gζ , and so certainly for some gζ ).

If 0 is a fixed group acting on a metric space, X, we get an induced action
of U0 on the extended asymptotic cone, X∗ (with respect to any infinitesimal t).
Note that we can identify 0 as a normal subgroup of U0. In fact, we have normal
subgroups, 0 GU10, U10 GU00 and U00 G0∞ of 0∞, where U10 is the stabiliser
of the basepoint of X∗, and U00 is the setwise stabiliser of the asymptotic cone,
X∞. Note that U10 and U00 may depend on t .

If the action of 0 on X is cobounded (i.e., X is a bounded neighbourhood of
some, hence any, 0-orbit), then the actions of U0 on X∗ and of U00 on X∞ are
transitive. In particular, X∗ and X∞ are homogeneous (extended) metric spaces.

Note that a special case of this construction is R∗, which is always isomorphic to
the extended reals, R̂. If X is a Gromov hyperbolic space, then X∗ is an R∗-tree, and
X∞ is an R-tree. Of course, this also applies to the asymptotic cone of a sequence
of uniformly hyperbolic spaces.

Terminology. To briefly summarise our terminology, we use “nonstandard” to
refer to ultralimits, “extended” to refer to the standard part of a nonstandard number
(quotienting out by infinitesimals), and “idealised” to mean we are adjoining±∞. In
this way, we have the extended reals R∗ as a subset (or quotient) of the nonstandard
reals UR. We can view the idealised reals, [−∞,∞], as a quotient of R∗.

6. Coarse median spaces

Coarse median spaces were defined in [Bowditch 2013]. The main point here is that
they give a means of talking about (quasi)cubes or (quasi)flats in a geodesic space.
Following the construction of [Behrstock and Minsky 2011], this is applicable to the
mapping class group, as shown in [Bowditch 2013]. It also applies to Teichmüller
space in either the Teichmüller metric, [Bowditch 2016a] or the Weil–Petersson
metric [Bowditch 2015]. We remark that another class of space which encompasses
these cases, and which implies coarse median, is described in [Behrstock, Hagen
and Sisto 2015; 2017].

Before continuing, we introduce the following general conventions.

Conventions. Given two points, x, y, in a metric space, and r ≥ 0, we will write
x ∼r y to mean that the distance between them is at most r . We will often simply
write x ∼ y, and behave as though this relation were transitive. Here is understood
that, at any given stage, the bound r depends only on the constants introduced at
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the beginning of an argument. It can be explicitly determined by following through
the steps of the argument, though we will not usually explicitly estimate it.

Similarly, given two functions f, g, we will write f ∼ g to mean that f (x)∼ g(x)
for all x in the domain.

We are often only interested in maps defined up to bounded distance. For a
graph it would therefore be enough to specify a map on the set of vertices. When
referring to a finite product of metric spaces, we can always take the l1 metric. For
a finite product of graphs, we can always restrict to the 1-skeleton of the product
cube complex. In any case, we will only be interested in the product metric defined
up to bi-Lipschitz equivalence.

We will sometimes adopt a similar convention for linear bounds. Given λ≥ 1
and r ≥ 0, we write x �λ,r y to mean that λ−1(x − r) ≤ y ≤ λx + r . Again, we
usually omit λ, r from the notation, and write x � y.

When we come to discuss marking graphs, the constants implicit in the notation
∼ and � will ultimately depend only on the complexity, ξ(6), of our surface, 6,
as defined in Section 7. We will make this explicit at the relevant points.

Let (M, ρ) be a geodesic metric space.

Definition. We say that a ternary operation, µ :M3
→M, is a “coarse median” if

it satisfies the following:

(C1) There are constants, k, h(0), such that for all a, b, c, a′, b′, c′ ∈M we have
ρ(µ(a, b, c), µ(a′, b′, c′))≤ k(ρ(a, a′)+ ρ(b, b′)+ ρ(c, c′))+ h(0), and

(C2) There is a function, h : N→ [0,∞), with the following property. Suppose
that A⊆M with 1≤ |A| ≤ p<∞. Then there is a median algebra, (5,µ5)
and maps π : A → 5 and λ : 5 →M such that for all x, y, z ∈ 5 we
have ρ(λµ5(x, y, z), µ(λx, λy, λz)) ≤ h(p) and for all a ∈ A, we have
ρ(a, λπa)≤ h(p).

We say that M has rank at most n if we can always take 5 to have rank at most
n (as a median algebra). We say that M is n-colourable if we can always take 5 to
be n-colourable. We refer to (M, ρ, µ) as a coarse median space. We refer to k, h
as the parameters of M.

From (C2) we can deduce that, if a, b, c ∈M, then µ(a, b, c), µ(b, a, c) and
µ(b, c, a) are a bounded distance apart, and that ρ(µ(a, a, b), a) is bounded. Since
we are only really interested in µ up to bounded distance, we can assume that µ is
invariant under permutation of a, b, c and that µ(a, a, b)= a.

Note that in (C2), we can always assume that 5= 〈π A〉 (in particular, that it is
finite). Also, if we are not concerned about rank, we can always take 5 to be the
free median algebra on A, and π to be the inclusion of A in 5.
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Note that a direct of product of coarse median spaces is also a coarse median
space.

For future reference, we note:

Lemma 6.1. Suppose a, b, c ∈M, and r ≥ 0 with ρ(µ(a, b, c), c) ≤ r . Then
ρ(a, c)+ρ(c, b)≤ k1ρ(a, b)+ k2, where k1 and k2 depend only on the parameters
of M.

Proof. Using property (C1), we see that the maps x 7→µ(a, c, x) and x 7→µ(b, c, x)
are coarsely Lipschitz, and so we get linear bounds on ρ(a, c) and ρ(b, c) in terms
of ρ(a, b). �

With the conventions introduced earlier, this shows ρ(a, b)� ρ(a, c)+ ρ(c, b).
(where the implicit constants depend only on the parameters of M).

Given two spaces X, Y, equipped with ternary operations µX and µY , together
with a metric ρ on Y, we say that a map φ : X → Y is an l-quasimorphism if
ρ(φµX (x, y, z), µY (φx, φy, φz)) ≤ l for all x, y, z ∈ X. Typically, Y will be a
coarse median space, and X will be either a median algebra or a coarse median
space. (Note that the map λ featuring in (C2) is an h(p)-quasimorphism.)

Lemma 6.2. Suppose that 5 is a median algebra generated by a finite subset,
B ⊆5. Suppose that λ, λ′ :5→M are l-quasimorphisms with ρ(λb, λ′b)≤ l for
all b ∈ B. Then, for all x ∈5, ρ(λx, λ′x) is bounded above by some linear function
of l, depending only on the parameters of M and the cardinality of B.

Proof. Define Bi ⊆5 inductively by B0= B and Bi+1=µ(B3
i ). We see inductively

that λ|Bi and λ′|Bi are a bounded distance apart, where the bound depends on i
and is linear in l. Now |5| ≤ q = 22p

where p = |B|, and so certainly, 5 = Bq ,
and the result follows. �

In particular, in clause (C2) of the definition, if we assume that 5= 〈π A〉, then
the map λ is unique up to bounded distance depending only on the parameters and p.

The following will allow us to assume that quasimorphisms of cubes are in fact
uniform quasimorphisms:

Lemma 6.3. Given n ∈ N, there are constants k0, h0 and h1 depending only on n
and the parameters of M such that the following holds. Suppose that Q = {−1, 1}n

and that ψ : Q →M is an l-quasimorphism for some l ≥ 0. Then there is an
h0-quasimorphism, φ : Q→M, with ρ(φx, ψx)≤ k0l + h1 for all x ∈ Q.

Proof. Let 5 be the free median algebra on the set Q, and let θ :5→ Q be the
unique median homomorphism extending the identity on Q (thought of as a map
from a set to a median algebra). Now there is a median monomorphism, ω : Q→5

with θ ◦ω the identity on Q. (To see this, we can think of 5 as the vertex set of a
finite CAT(0) cube complex. Every pair of intrinsic faces of Q ⊆5 are separated
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by some hyperplane of 5, and these must all intersect in some n-cell of 5. Each
element, x ∈ Q, determines a unique vertex ω(x) of this n-cell. This gives us a
homomorphism ω : Q→5, with ω(Q) equal to the vertex set of the n-cell. Note
that ω is not canonically determined: it might depend on the choice of cell.)

Now apply (C2) to ψ(Q) ⊆M to give an h(2n)-quasimorphism λ : 5→M
with λ|Q ∼h(2n) ψ . Let φ = λ ◦ω : Q→M. This is an h0-quasimorphism, where
h0 = h(2n).

Let λ′ = λ ◦ θ :5→M. Thus λ′ is a l-quasimorphism, and λ′|Q = ψ = λ|Q.
By Lemma 6.2, we have ρ(λx, λ′x)≤ k0l + h2 for all x ∈5, where k0, h2 depend
only on the parameters of M. But λ′ ◦ω|Q = λ ◦ θ ◦ω|Q = λ|Q ∼h(2n) ψ , and so
we see that ρ(φx, ψx)≤ k0l + h1 for all x ∈ Q, where h1 = h2+ h(2n). �

The following two lemmas will be used to establish that statements that hold in
a median algebra hold up to bounded distance in a coarse median space.

Lemma 6.4. Suppose that (M, ρ, µ) is a coarse median space. Suppose that5 is a
finite median algebra with |5|≤q<∞, and that λ :5→M is an l-quasimorphism.
Given t ≥ 0, there is a finite median algebra 5′, a map λ′ : 5′ →M and an
epimorphism θ :5→5′ such that for all distinct x, y ∈5′, ρ(λ′x, λ′y) > t , and
for all z ∈5, ρ(λz, λ′θ z)≤ s, where s depends only on q, h, t and the parameters
of M.

Proof. Define a relation, ≈, on 5, by setting x ≈ y if ρ(λx, λy)≤ t . Let ' be the
smallest equivalence relation on 5 containing ≈ with the property that whenever
x, y, z, w ∈5 with z 'w, we have µ5(x, y, z)' µ5(x, y, w). Let 5′ =5/' be
the quotient median algebra as defined at the end of Section 2, and let θ :5→5′

be the quotient map. Define λ′ : 5′→M by setting λ′(x) to be the λ-image of
any representative of the '-class of x in 5. Since ' includes ≈, we see that
ρ(λ′x, λ′y) > t for all distinct x, y ∈5′.

We claim that if x, y ∈5, with x ' y, then ρ(θλx, θλy) is bounded above in
terms of q, h, t and the parameters of M. To see this, note that' can be constructed
from ≈ by iterating two operations. We start with ≈. Whenever z ≈ w, then we
set µ5(x, y, z) related to µ5(x, y, w) for all x, y ∈5. Also, if a ≈ b and b ≈ c,
then we set a to be related to c. We continue again with the relation thus defined.
After at most q steps, this process stabilises on the relation '. From the fact that λ
is a quasimorphism, and from property (C1) for M, we see that at each stage the
maximal distance between the λ-images of related elements of 5 can increase by
at most a linear function which depends only on l and the parameters of M. This
now proves the claim.

Suppose that z ∈5. By construction, λ′θ z = λw for some w ' z. By the above,
ρ(λz, λ′θ z)= ρ(λz, λw) is bounded as required. �
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Note that λ′ is itself an l ′-quasimorphism, where l ′ depends only on q, h, t and
the parameters of M. This enables us to give a refinement of (C2) as follows:

Corollary 6.5. Suppose that (M, ρ, µ) is a coarse median space, and t ≥ 0. Then
there is a function, ht : N→ [0,∞) with the following property. Suppose that
A ⊆M with 1 ≤ |A| ≤ p <∞. Then there is a finite median algebra, (5,µ5),
and maps π : A→5 and λ :5→M such that λ is a ht(p)-quasimorphism with
ρ(λx, λy) > t for all distinct x, y ∈ 5, and such that ρ(a, λπa) ≤ ht(p) for all
a ∈ A.

Proof. Start with 5,π, λ as given by (C2) for M (so that λ :5→M is an h(p)-
quasimorphism, with h(p) independent of t). We can assume that |5| ≤ 22p

. We
now apply Lemma 6.4 to give 5′, λ′ and θ :5→5′. Now replace 5 by 5′, π by
θ ◦π , and λ by λ′. �

By an “identity” in a median algebra, we mean an expression equating two terms
featuring only the median operation. We refer to it as a “tautological identity” if it
holds, whatever the arguments in any median algebra, M. (For example, we have
the tautological identity: µ(a, b, µ(a, b, c))= µ(a, b, c), for all a, b, c ∈ M.) We
remark that an identity can easily be verified algorithmically: it is sufficient to check
it for all possible assignments of the arguments in the two-point median algebra
{−1, 1}. We make the following general observation.

General Principle. Any tautological median identity holds up to bounded distance
in any coarse median space, M.

More formally, this says that if P and Q are formulae defining P(a1, . . . , an)

and Q(a1, . . . , an) in terms of µ, and the identity P(a1, . . . , an)= Q(a1, . . . , an)

holds for any a1, . . . , an ∈ M in any median algebra (M, µ) then it follows that
ρ(P(a1, . . . , an), Q(a1, . . . , an)) is bounded for any a1, . . . , an ∈M in any coarse
median space (M, µ, ρ). The bound only depends on (the complexity of) the
formulae P, Q and the parameters of M.

For example, for all a, b, c ∈M, ρ(µ(a, b, µ(a, b, c)), µ(a, b, c)) is bounded
above by a constant depending only on the parameters of M for all a, b, c ∈M.

To prove this principle, let A⊆M be the set of elements occurring as arguments,
and let π : A→5 and λ :5→M be as given by (C2) of the hypotheses. Now
apply either side of the identity to the π -images in 5 to give an element x ∈5 (by
assumption, this will be the same element for either side). We can also apply each
side of the same identity to the elements of A, using the median structure, µ, on
M. In this way, we get two elements of M. Using (C1) and (C2) directly, we see
that these are both a bounded distance from λx , and so, a bounded distance from
each other. The claim follows.

A more general statement holds for conditional identities. Suppose that some
finite set of identities (the “input identities”) imply another identity (the “derived
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identity”) in any median algebra. (For example, d ∈ [a, b] ∩ [b, c] ∩ [c, a] implies
d = µ(a, b, c).) We have the following generalisation.

General Principle. Given a finite set of input identities, and a derived identity, if
we suppose that the input identities hold up to bounded distance for a particular set
of elements in a coarse median space, M, then the derived identity also holds up to
bounded distance for this set of elements.

(So, for example, if a, b, c, d ∈M, with the three distance ρ(µ(a, b, d), d),
ρ(µ(b, c, d), d) and ρ(µ(c, a, d), d) all bounded, then ρ(µ(a, b, c), d) is also
bounded.)

The argument is essentially the same. This time, we apply Corollary 6.5 to
the set A instead of (C2) directly. Suppose that x, y ∈ 5 are respectively the
π -images of the left and right sides of one of the input identities. As in the previous
argument, we see that λx and λy are respectively a bounded distance from the result
of applying the same formulae in M, which by assumption, are a bounded distance
apart in M. It follows that ρ(λx, λy) is bounded. By choosing the constant t in
Corollary 6.5 to be larger than this bound, we see that we must have x = y. In other
words, this input identity holds exactly in 5, for the π -images of the elements of A.
We can assume this is true of all the input identities. Therefore, the derived identity
must hold too. Now, again, as in the previous argument, we see that the derived
identity holds up to bounded distance in M. This proves the claim.

We can apply the these principles in the following discussion.
Given a, b ∈M, we define the coarse interval between a and b as [a, b] =
{µ(a, b, x) | x ∈M}. By the observation above, we see that is a bounded Hausdorff
distance from {x ∈ M | ρ(µ(a, b, x), x)≤ r} for any fixed sufficiently large r ≥ 0.

Definition. We say that a subset, C ⊆M, of a coarse median space, (M, ρ, µ), is
k-(median) quasiconvex if for all a, b ∈ C and x ∈M, ρ(µ(a, b, x),C)≤ k.

From property (C1) we see that any quasiconvex set is quasi-isometrically
embedded in M (or more precisely, some uniform neighbourhood of C is quasi-
isometrically embedded with respect to the induced path-metric). Note also quasi-
convexity of C is equivalent to asserting that for all a, b∈C, the coarse interval [a, b]
lies in a uniform neighbourhood of C. Note that Lemma 6.1 implies that if a, b, c ∈
M and c ∈ [a, b], then ρ(a, b) agrees with ρ(a, c)+ ρ(c, b) up to linear bounds.

We next recall the following standard notion for any median algebra, M. Suppose
that C ⊆ M is (a priori) any subset. We say that a map f : M→ C is a gate map
if f x ∈ [x, c] for all x ∈ M and c ∈ C. Note that if a, b ∈ M and c ∈ [a, b] then
f c ∈ [a, c]∩ [b, c] ∈ {c}, so f c= c. It follows immediately that f |C is the identity

(since c ∈ [c, c]), and that C is convex (since c= f c ∈C). We also claim that f is a
homomorphism. For this, it is enough to show that if c ∈ [a, b], then f c ∈ [ f a, f b].
But now the identities c ∈ [a, b], f c ∈ [c, f b] and f b ∈ [b, f c] together imply
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f c ∈ [a, f b]. Thus (by the same observation, with a, b, c replaced by f b, a, f c)
we get f c= f f c ∈ [ f a, f b] as required. We also note that if a gate map exists for
a given C, then it is unique.

We can now define the corresponding notion in a coarse median space, M.

Definition. A map φ :M→ C to a subset C ⊆M is an r-coarse gate map if for
all x ∈M and c ∈ C, we have ρ(x, µ(x, φx, c))≤ r .

Lemma 6.6. If φ :M→ C is an r-coarse gate map, then C is k-quasiconvex, φ is
an l-quasimorphism, and ρ(c, φc)≤ h for all c ∈ C, where k, l, h depend only on r
and the parameters of M.

Proof. We follow the same argument as for a median algebra described above,
except that now equalities and inclusions are assumed to hold up to bounded
distance, depending only on r , and the parameters of M. By the general principles
described above, any deduction (based on a finite sequence of identities) in a median
algebra holds also in a coarse median algebra, interpreting everything up to bounded
distance. �

Suppose now that ((Mζ , ρζ , µζ ))ζ is a Z-sequence of uniformly coarse median
spaces (i.e., with parameters independent of ζ ). Let t ∈UR be a positive infinitesimal.
We get a limiting space, (M∗, ρ∗, µ∗), where (M∗, ρ∗) is the extended asymp-
totic cone, and where (M∗, µ∗) is a topological median algebra (that is, the map
µ∗ : (M∗)3→M∗ is continuous). If each Mζ has rank at most n (as a coarse median
space), then M∗ has rank at most n (as a median algebra). Note that (M∗, µ∗)

need not be a median metric space, though it satisfies a weaker metric condition
described in [Bowditch 2013; 2014a], namely that the maps x 7→ µ(a, b, x) are
uniformly Lipschitz, for all a, b ∈M∗, (see Proposition 9.1 and Lemma 9.2 of
[Bowditch 2013]). Note that this is the hypothesis of Proposition 2.4 here.

In those papers, we restricted attention to the asymptotic cone, M∞, but that
does not affect the above observations.

Lemma 6.7. Let M∗ be an extended asymptotic cone of a Z-sequence of uniformly
coarse median spaces. Suppose that Q ⊆M∗ is an n-cube. Then we can find a
sequence of l0-quasimorphisms φζ : Q→Mζ such that for all x ∈ Q, φζ x→ x ,
where l0 depends only on n and the uniform parameters of the Mζ .

Proof. To begin, take any sequence of maps, ψζ : Q→Mζ , with ψζ x→ x for all
x ∈ Q. (Such maps exist directly from the definition of the asymptotic cone.) Since
µ∗ is, by definition, the limit of the µζ , it follows that ψζ is a hζ -quasimorphism,
where tζhζ → 0 (since they must converge to a monomorphism in M∗). Let
φζ : Q →Mζ be the l0-quasimorphism given by Lemma 6.3. For all x ∈ Q,
ρζ (φζ x, ψζ x)≤ khζ + h1 so tζρζ (φζ x, ψζ x)≤ ktζhζ + h1tζ → 0. Thus φζ x→ x ,
as required. �
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Note that, if we have a sequence of uniformly quasiconvex sets, Cζ ⊆Mζ ,
we have a limiting bi-Lipschitz embedded closed convex subset C∗ ⊆M∗ in the
extended asymptotic cone M∗. If φζ :Mζ → Cζ are a sequence of uniform coarse
gate maps, the limiting map φ∗ :M∗

→ C∗ is a gate map.
As in [Bowditch 2013, Section 12], we say that a median algebra, 5, is n-

colourable if there is an n-colouring of the walls such that no two walls of the same
colour cross. We say that a coarse median space M is n-colourable if in (C2) we can
always choose5 to be n-colourable as a median algebra. Clearly this implies that M
has rank at most n. The following was shown in [Bowditch 2014a, Proposition 12.5].

Theorem 6.8. Suppose that ((Mζ , ρζ , µζ ))ζ is a sequence of n-colourable uniform
coarse median spaces, for some fixed n. Then M∗ admits a metric ρ ′, bi-Lipschitz
equivalent to ρ∗, such that (M∗, ρ ′) is an (extended) median metric space with
median µ∗. Moreover, M∗ is n-colourable as a median algebra.

In fact, the bi-Lipschitz constant only depends on the parameters of the coarse
median spaces.

The construction however is not canonical. Note that the median metric space
arising is necessarily proper.

In particular, we see that the asymptotic cone of a sequence of finitely colourable
coarse median spaces is bi-Lipschitz equivalent to a proper median metric space,
and hence in turn to a CAT(0) space (by Theorem 2.2). In fact, the same holds for a
sequence of finite-rank coarse median spaces. This relies on the following variation
of Theorem 6.8:

Theorem 6.9. Suppose that ((Mζ , ρζ , µζ ))ζ is a sequence of coarse median spaces
of rank n, for some fixed n. Then M∗ admits an extended metric, ρ ′, bi-Lipschitz
equivalent to ρ∗, such that (M∗, ρ ′) is an (extended) median metric space of rank
n, with median µ∗.

Proof. As already observed, it is easily seen from axiom (C1) that ρ∗ satisfies the
hypotheses of Proposition 2.4, when restricted to any component of M∗. We can
therefore apply Proposition 2.4 to each component separately. �

We finish this section by briefly discussing the special case of a Gromov hyper-
bolic space (M, ρ). See [Bowditch 2013, Section 3] for elaboration.

Given a, b, c ∈M, write

〈a, b:c〉 = 1
2(ρ(a, c)+ ρ(b, c)− ρ(a, b))

for the “Gromov product”. Up to bounded distance, this is the same as the distance
of c to some (or any) geodesic from a to b.

Definition. We say that m ∈M is an r-centroid for a, b, c ∈M if 〈a, b:m〉 ≤ r ,
〈b, c:m〉 ≤ r and 〈c, a:m〉 ≤ r .
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Provided r is a sufficiently large in relation to the hyperbolicity constant, such an
r -centroid will always exist. We will fix such an r and simply refer to m as a centroid.
In fact, m is well defined up to bounded distance, and we write µ(a, b, c)= m for
some choice of m. With this structure, (M, ρ, µ) is a coarse median space of rank
at most 1. Indeed, any rank-1 coarse median space arises in this way. (We note that
rank-0 is trivially equivalent to having finite diameter.)

If (Mζ )ζ is a sequence of uniformly hyperbolic spaces, then (M∗, µ∗) is a rank-
1 median algebra (variously known in the literature as a “tree algebra”, “median
pretree”, etc.). As already observed in Section 5, (M∗, ρ∗) is an R∗-tree, and
(M∞, ρ∞) is an R-tree.

It is shown in [Bowditch 2013] that if M is a coarse median space of rank at
most n, then there is no quasi-isometric embedding of Rn+1 into M (since this
would give rise to an injective map of Rn+1 into M∞, contradicting the fact that
M∞ has locally compact dimension at most n). In fact, the same argument can be
applied to bound the radii of quasi-isometrically embedded balls. To state this more
precisely, write Bn

r for the ball of radius r in the euclidean space Rn.

Lemma 6.10. Let M be a coarse median space of rank at most n. Given parameters
of M and of quasi-isometry, there is some constant r ≥ 0, such that there is no
quasi-isometric embedding of Bn+1

r into M with these parameters.

Proof. Suppose that, for each i ∈ N, the ball, Bi , of radius i admits a uniformly
quasi-isometric embedding, φi : Bi →M. Now pass to the asymptotic cone with
indexing set, Z = N, and with scaling factors 1/ i . We end up with a continuous
injective map, φ∞ : B1→M∞, contradicting the fact that M∞ has locally compact
dimension at most n.

To see that only the parameters of M are relevant to the value of r , we should
allow M also to vary among coarse median spaces with these parameters when
taking the asymptotic cone. More precisely, suppose we have a sequence, φi :

Bi →Mi , of uniformly quasi-isometric maps, where the Mi are uniform coarse
median spaces. This time, we get a limiting map φ∞ : B1 →M∞, where M∞

is the ultralimit of the spaces (Mi )i again scaled by 1/ i . This leads to the same
contradiction. In other words, there must be a bound on the diameter of a euclidean
ball which we can quasi-isometrically embed, for any fixed parameters. �

Note that it follows, for example, that M admits no quasi-isometrically embedded
euclidean half-space of dimension n+ 1.

Remark. The last paragraph of the proof of Lemma 6.10 is a standard trick to obtain
uniform constants and will be used again later. (See the remark after Lemma 14.5.)
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7. A general construction of coarse medians

In this section, we give a general criterion for the existence of coarse medians on
certain types of spaces associated to a surface. In particular, we will apply this to
the marking graph in Section 8, to recover the result of [Behrstock and Minsky
2011]. The argument follows broadly as in that work using [Behrstock, Kleiner,
Minsky and Mosher 2012]. In doing this, under our hypotheses, we give a version
of the compatibility theorem for medians. To this end, we will list a set of axioms
((A1)–(A10) below) which relate to “projection maps” to spaces indexed by a set,
X , namely the collection of “subsurfaces” of a surface 6. The main results of this
section, namely Theorems 7.1 and 7.2, together give a more precise statement of
Theorem 1.1.

In Section 8, we will explain how this applies, in particular, to the marking graph,
and recover the result of [Behrstock and Minsky 2011].

As mentioned in Section 1, the main purpose of keeping the discussion general is
that one can readily check that the hypotheses we give here apply in other situations —
notably to Teichmüller space in either the Teichmüller or Weil–Petersson metrics;
see [Bowditch 2016a; 2015]. This also applies to most of the discussion in Sections
9–12 here.

We remark that in [Behrstock, Hagen and Sisto 2017], the authors define the
notion of a “hierarchically hyperbolic” space, based on a different (though related)
set of axioms. These allow for more general indexing sets. However in the case
where the indexing set is taken to be X , as in the present paper, one can verify that
hierarchically hyperbolic spaces satisfy our axioms, and are hence coarse median.
See [Behrstock, Hagen and Sisto 2015, Section 7] for more discussion of this.

Let 6 be a compact orientable surface. Let ξ(6) be its complexity, that is,
ξ(6) = 3g + p − 3, where g is the genus, and p is the number of boundary
components. If ξ(6)= 0 then 6 is a three-holed sphere. If ξ(6)= 1 then 6 is a
four-holed sphere, or a one-holed torus. We will write Sg,p to denote the topological
type of surface of genus g and p boundary components.

Definition. By an essential curve in 6, we mean a simple closed curve which
homotopically nontrivial and nonperipheral (not homotopic into ∂6). By a curve
we mean a free homotopy class of essential curves.

Definition. By an essential subsurface6 we mean a compact connected subsurface,
X ⊆6, such that each boundary component of X is either a component of ∂6, or
else an essential (and nonperipheral) simple closed curve in 6 \ ∂6, and such that
X is not homeomorphic to a three-holed sphere.

Note that we are allowing 6 itself as a subsurface, as well as nonperipheral
annuli.
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Definition. A subsurface is a free homotopy class of essential subsurfaces.

We refer to an essential surface in the given homotopy class as a realisation of
the subsurface. Note that there is a natural bijective correspondence between curves
and annular subsurfaces.

Given X, Y ∈ X , we distinguish five mutually exclusive possibilities denoted as
follows:

(1) X = Y : X and Y are homotopic.

(2) X ≺ Y : X 6= Y, and X can be homotoped into Y but not into ∂Y.

(3) Y ≺ X : Y 6= X, and Y can be homotoped into X but not into ∂X.

(4) X ∧ Y : X 6= Y, and X, Y can be homotoped to be disjoint.

(5) X t Y : none of the above.

In (2)–(4) one can find realisations of X, Y in 6 such that X ⊆ Y, Y ⊆ X,
X ∩ Y =∅, respectively. (Note that X ∧ Y covers the case where X is an annulus
homotopic to a boundary component of Y, or vice versa.) We can think of (5) as
saying that the surfaces “overlap”. We write X � Y to mean X ≺ Y or X = Y.
(Note that this excludes the case where Y is homotopic to an annular boundary
component of a nonannular subsurface, X.)

We note that

X ∧ Y ⇔ Y ∧ X, X t Y⇔ Y t X,

X ≺ Y ≺ Z ⇒ X ≺ Z , X ∧ Y and Z ≺ Y⇒ X ∧ Z .

Given X ∈ X , write X (X)= {Y ∈ X | Y � X}.
We now introduce the hypotheses of the main result of this section.
We suppose that to each X ∈ X , we have associated geodesic metric spaces

(M(X), ρX ) and (G(X), σX ), as well as a map χX :M(X) → G(X). We will
generally abbreviate ρ = ρX and σ = σX , where there is no confusion. Given
X, Y ∈ X with Y ≺ X, we suppose that we have a map ψY X :M(X)→M(Y ).
We write θY X = χY ◦ψY X :M(X)→ G(Y ). We also assume that if X, Y ∈ X with
Y t X, or Y ≺ X, then we have associated an element θX Y ∈ G(X). If α is a curve,
we will write θXα = θX Y, where Y = X (α) is the annular neighbourhood of α. It
will be seen that the hypotheses laid out below only really require these maps to be
defined up to bounded distance.

(In Section 8, we will be setting M(X) =M(X) and G(X) = G(X), to be the
intrinsic marking graphs and curve graph respectively, when X ∈ XN . The map χX

is the natural projection, and ψY X is the usual subsurface projection. If X ∈ XA,
then G(X)=G(X) is the usual graph that measures twisting around the core curve.
In this case, we set M(X)= G(X) and χX to be the identity map.)

We will assume:
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(A1) “hyperbolic”: There exists k≥0 such that for all X ∈X , G(X) is k-hyperbolic.

(A2) “χ Lipschitz and cobounded”: there exist k1, k2, k3 ≥ 0 such that for all
X ∈ X and for all a, b ∈M(X), σ(χX a, χX b) ≤ ρ(a, b)+ k2 and G(X) =
N (χX (M(X)); k3)

(A3) “ψ Lipschitz”: there exist k1, k2 ≥ 0 such that for all X ∈ X and for all
Y ∈ X (X) and for all a, b ∈M(X), ρ(ψY X a, ψY X b)≤ ρ(a, b)+ k2.

(A4) “composition”: There is some s0≥ 0 such that if X, Y, Z ∈X with Z ≺Y ≺ X
and a ∈M(X), then ρ(ψZ X a, ψZY ◦ψY X a)≤ s0.

(A5) “disjoint projection”: there exists s1 ≥ 0 such that for all X ∈ X if Y, Z ∈ X
with Y ∧ Z or Y ≺ Z , then σ(θX Y, θX Z) ≤ s1 whenever θX Y and θX Z are
defined.

Thus, (A2) and (A3) tell us that our maps are all uniformly coarsely Lipschitz. In
view of (A4) we will abbreviate θY X to θY and ψY X to ψY , whenever the domain of
the map is clear. If X = Y, we set ψX =ψX X to be the identity map on M(X). Note
that, with these conventions, we can also write χX as θX . We will also abbreviate
σY (a, b)= σ(θY a, θY b) and ρY (a, b)= ρ(ψY a, ψY b). To simplify the exposition,
we will view θX as a map from M(X)tX (X) to G(Y ).

Given a, b ∈M(X), write RX (a, b)=max{σY (a, b) | Y ∈ X (X)}. Similarly, if
a ∈M(X) and Z ∈ X (X) \ {X}, write

RX (a, Z)=max{σY (a, Z)}

as Y ranges over those elements of X (X) with either with Y ≺ Z or Y t Z . (In the
context of marking graphs, one can view RX as measuring intersection numbers.)

We assume:

(A6) “finiteness”: there exists r0≥0 such that for all X ∈X and for all a,b∈M(X),
the set of Y ∈ X (X) with σY (a, b)≥ r0 is finite.

(A7) “distance bound”: for all r ≥ 0 there exists r ′ ≥ 0 such that for all X ∈ X
and for all a, b ∈M(X), if RX (a, b)≤ r , then ρ(a, b)≤ r ′.

(A8) “bounded image”: there exists r0 such that for all X ∈X and for all Y ∈X (X)
and for all a, b ∈M(X), if 〈θX a, θX b:θX Y 〉 ≥ r0, then σY (a, b)≤ r0.

(A9) “overlapping subsurfaces”: there exists r0 such that for all X ∈ X and for
all Y, Z ∈ X (X), if Y t Z and x ∈M(X)tX (X), then

min{σY (x, Z), σZ (x, Y )} ≤ r0.

(A10) “realisation”: there exists r0 such that for all X ∈ X , if Y ⊆ X (X) with
Y ∧ Z for all distinct Y, Z ∈ Y , and if to each Y ∈ Y we have associated
some aY ∈M(Y ), then there is some a ∈M(Y ) with ρ(aY , ψY a)≤ r0 and
RX (a, Y )≤ r0 for all Y ∈ X .
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In fact, for (A10) it would be enough to take Y to consist of an annular subsurface
together with any non-S0,3 complementary components — we can then keep cutting
the surface into smaller and smaller pieces, and the general case follows by an
inductive application of (A4) “composition”.

Note that, using by (A2) “χ Lipschitz and cobounded” and (A3) “ψ Lipschitz”
we have a reverse inequality in (A7) “distance bound”, namely that RX (a, b) is
(linearly) bounded above in terms of ρ(a, b).

We note that (A6) “finiteness” and (A7) “distance bound” are both consequences
of the following distance formula.

Given r ≥ 0, we write

AX (a, b; r)= {Y ∈ X (X) | σY (a, b) > r}.

Given a, b ∈M0(6) and r ≥ 0, let DX (a, b; r)=
∑

Y∈AX (a,b;r) σY (a, b).
We suppose:

(B1) “distance formula”: there exists r0 ≥ 0 such that for all r ≥ r0, there exist
k1 > 0, h1, k2, h2 ≥ 0 such that for all X ∈ X and for all a, b ∈M(X),

k1ρ(a, b)− h1 ≤ DX (a, b; r)≤ k2ρ(a, b)+ h2.

We will sometimes abbreviate this statement to DX (a, b; r)� ρ(a, b).

Less formally, this says that distances in M(X) agree to within linear bounds
with the sum of all sufficiently large projected distances in G(Y ) as Y ranges over
subsurfaces of X. Here “sufficiently large” implies a lower threshold below which
we ignore any contributions. The linear bounds will depend on the particular choice
of threshold. For this to work, the threshold must be assumed sufficiently large.

In the case of markings, (B1) is the distance formula of [Masur and Minsky 2000],
who also stated it for the pants complex. (We remark that for the Teichmüller metric,
a similar formula has been proven by Rafi and by Durham, and is used in [Bowditch
2016a]. A more general version, which encompasses these cases is proven in
[Behrstock, Hagen and Sisto 2015].) Again for markings, (A8) “bounded image”
is a consequence of their bounded geodesic image theorem, (A9) “overlapping
subsurfaces” is a consequence of Behrstock’s lemma, and (A10) “realisation” is a
simple explicit construction. We will elaborate on this in Section 8.

Given Y ∈X , we write µY : (G(Y ))3→G(Y ) for the usual median (or “centroid”)
operation on the uniformly hyperbolic space G(Y ). (That is, µ(a, b, c) is a bounded
distance from any geodesic connecting any two distinct points of {a, b, c}.)

We will show:

Theorem 7.1. Under the hypotheses (A1)–(A10) above, there is some t0 ≥ 0
depending only on the parameters of the hypotheses such that if X ∈ X and
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a, b, c ∈M(X), there is some m ∈M(X) such that for all Y ∈ X (X) we have
σ(θY m, µY (θY a, θY b, θY c))≤ t0.

By (A7) “distance bound”, m is well defined up to bounded distance. We set
µX (a, b, c)= m for some such m to give us a ternary operation µX : (M(X))3→
M(X). Using (A4) “composition”, we see that if Y ∈ X (X), then ψY :M(X)→
M(Y ) is a uniform quasimorphism, that is,

ρY (µY (ψY a, ψY b, ψY c), ψYµX (a, b, c))≤ h for all a, b, c ∈M(X),

where h ≥ 0 depends only on the parameters of the hypotheses.

Theorem 7.2. Under the hypotheses (A1)–(A10), there is a ternary operation, µX ,
defined on each space M(X) such that (M(X), ρX , µX ) is a coarse median space,
and such that the maps θY X :M(X)→ G(Y ) for Y � X are all median quasimor-
phisms. The median µX is unique with this property, up to bounded distance. The
maps ψY X :M(X)→M(Y ) for Y � X are also median quasimorphisms. The
coarse median space (M(X), ρX , µX ) is finitely colourable, and has rank at most
ξ(X). Moreover, all constants of the conclusion (coarse median property, and
quasimorphism) depend only on the constants of the hypotheses (A1)–(A10).

Proof. Given Theorem 7.1, this follows directly from the results of [Bowditch
2013], in particular, Propositions 10.1 and 10.2 thereof. We just need to check that
the respective hypotheses (P1)–(P4) and (P3′) are satisfied.

Here, (P1) is (A7) “distance bound” and (P2) is (A1) “hyperbolic”. (P3) is
the statement that one can embed at most ξ subsurfaces disjointly in a surface of
complexity ξ . Finally, (P4) follows exactly as in Lemma 11.7 there, which only uses
properties (A8) “bounded image” and (A9) “overlapping subsurfaces”. Moreover,
property (P3′) also holds here, for the same reason. �

(In some cases, one can improve on the rank bound of Theorem 7.2, as in the
case of the Weil–Petersson metric [Bowditch 2015].)

So far, we have made no reference to the action of Map(6). In applications, the
spaces and maps will be equivariant (up to bounded distance), and it follows that the
medians we construct will necessarily also be equivariant up to bounded distance.

We now set about the proof of Theorem 7.1. To simplify the exposition, we
will construct the median µ = µ6 on 6. The same arguments apply working
intrinsically in any subsurface X ∈ XN .

We begin with some general observations about the treelike (rank-1 median)
nature of hyperbolic spaces.

Definition. A spanning tree for a finite set A consists of a finite simplicial tree, 1,
and a map π = π1 : A→ V (1) to the vertex set.
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Recall that the vertex set of a finite simplicial tree is a rank-1 median algebra (and
every finite rank-1 median algebra has this form). We can assume that every terminal
(i.e., degree-1) vertex of 1 lies in π A. We say that 1 is trivial if it is a singleton.

Suppose that T is another spanning tree with an embedding of 1 in T. There is
a natural retraction, ω, of T onto 1, and hence of V (T ) to V (1). We say that the
spanning tree T is an enlargement of 1 if π1 = ωπT .

Suppose that {1i }i∈J is a finite collection of spanning trees for A, indexed by
some set J . We say that a spanning tree T for A is a common enlargement of
{1i }i∈J if we can embed the 1i simultaneously in T so that their interiors are
disjoint, and such that T is an enlargement of each 1i . Note that (after collapsing
complementary trees), we may as well suppose that T =

⋃
i∈J 1i . We write

T = T ({1i }i∈J ). (There may be some ambiguity, in that we may be able to swap
to trees each consisting of single edge, and meeting at a vertex not in π A. However,
this ambiguity will not matter to us.)

Definition. We say that a collection of spanning trees is coherent if it has a common
enlargement.

We shall assume henceforth that all our spanning trees are nontrivial.

Lemma 7.3. Two spanning trees 10 and 11 are coherent if and only if there are
vertices, v01 ∈ V (10) and v10 ∈ V (11) such that A = π−1

0 v01 ∪π
−1
1 v10.

Proof. If T = T (10,11) is a common spanning tree for A, then T is obtained
by taking 10 t11 and identifying a vertex v01 ∈ V (10) with v10 ∈ V (11), to
give a vertex w ∈ V (T ). Note that π : A→ T is given by π |(A \ π−1

0 v01) = π0,
π |(A \ π−1

1 v10) = π1 and π(π−1
0 v01 ∩ π

−1
1 v10) = {w}. We can clearly invert the

above process. �

Suppose that {10,11,12} are coherent. Let T = T (10,11,12). Up to permu-
tation of indices, there are two possibilities:

(1) 10, 11, 12 meet at a common vertex w = V (T ). In this case, v01 = v02,
v12 = v10 and v20 = v21. Note that these vertices all get identified to w in T.

(2) 11 and12 do not meet in T. In this case, v01 6= v02, v12= v10 and v20= v21.

Note that the conditions on vertices above make sense if we assume only that
10, 11 and 12 are pairwise coherent.

Lemma 7.4. Let {10,11,12} be pairwise coherent. Then it is coherent if an only
if at most one of the three equalities v01 = v02, v12 = v10 and v20 = v21 does not
hold.

Proof. We have explained “only if”, so we prove “if”:
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(1) Suppose all the equalities hold. Let w0 = v01 = v02, w1 = v12 = v10 and
w2 = v20 = v21. Let T be obtained from 10 t11 t12 by identifying w0, w1 and
w2 to a single point w ∈ V (T ). We define π : A→ V (T ) by π |(A \π−1

i wi )= πi

for i = 0, 1, 2 and setting π(π−1
0 w0 ∩π

−1
1 w1 ∩π

−1
2 w2)= {w}.

(2) If not, then, without loss of generality, v01 6= v02. Let w1 = v12 = v10 and
w2 = v20 = v21. We construct T from 10 t11 t12 by identifying v01 with w1 to
give x1 ∈ V (T ) and v02 with w2 to give x2 ∈ V (T ). Note that A can be partitioned
into five disjoint sets:

A1 = π
−1
0 v01 \π

−1
1 w1, A01 = π

−1
0 v01 ∩π

−1
1 w1, A0 = π

−1
1 w1 ∩π

−1
2 w2,

A02 = π
−1
0 v02 ∩π

−1
2 w2, A2 = π

−1
0 v02 \π

−1
2 w2.

We define π : A→V (T ) by setting π |Ai =πi for i =0, 1, 2 and setting π(A01)= x1

and π(A02)= x2. �

In fact, three trees are enough: a finite collection of spanning trees for A is
coherent if and only if every subset of at most three elements is coherent. This is
not hard to verify, but since we won’t be needing it, we omit the proof.

We now move on to consider hyperbolic spaces. Recall that

〈x, y:z〉 = 1
2(σ (x, z)+ σ(y, z)− σ(x, y))

for the Gromov product.

Lemma 7.5. Suppose that (G, σ ) is k-hyperbolic, p ∈ N, and t ≥ 0. Given a set
B ⊆ G with |B| ≤ p, there is a simplicial tree, 1, and maps π : B→ V (1) and
λ :V (1)→G such that for all x, y, z∈V (1), if 〈λx, λy:λz〉≤ t , then z∈[x, y]V (1).
Moreover, λ is an h-quasimorphism and for all x ∈ B we have σ(x, λπx) ≤ h,
where h depends only on k, p and t.

Proof. This is proven in [Bowditch 2013, Lemma 10.3]. It is a simple consequence
of the fact that any finite set of points in a Gromov hyperbolic space can be
approximated up to an additive constant by a finite tree (with vertex set B). The
additive constant depends only on p and k. For the clause about Gromov products
we need to collapse down “short” edges of the tree (hence the dependence of h
on s). This can also be phrased in terms of Corollary 6.5 here. (In [Bowditch 2013]
we had a stronger condition on the “crossratios” of four points of B, which is easily
seen to imply the condition on Gromov products given here.) �

We will apply this to the spaces G(X) featuring in the hypotheses of Theorem 7.1.
By (A1) these are all k-hyperbolic. Recall that we have maps θX :M(X)→ G(X).

We fix some A ⊆M(6) with |A| = p < ∞. (In our applications here we
will have p ≤ 4, but we can keep the discussion general for the moment.) We
will choose universal t ≥ 0 sufficiently large (depending only on p) as described
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below. We apply Lemma 7.5 to B = θX (A) ⊆ G(X) with t as above, to get a
tree 1(X) and maps π : B→ V (1(X)) and λX = λ : V (1(X))→ G(X). We set
πX = π ◦ θX : A→ V (1(X)).

All we require of this until Lemma 7.11, is:

(*) If a, b, c ∈ A with 〈θX a, θX b:θX c〉 ≤ t , then πX c ∈ [πX a, πX b]V (1(X)).

In particular, if σ(θX a, θX b) ≤ t , then πX a = πX b (since 〈θX a, θX a:θX b〉 ≤ t , so
πX b ∈ [πX a, πX a] = {πX a}). It follows that if diam(θX A) ≤ t (p), then 1(X) is
trivial (i.e., a singleton).

For future reference (see Lemma 7.11) we also note that λ is an l-quasimorphism,
and that for all a ∈ A, σ(θX a, λXπX a)≤ l, where l = h(p) depends only on p.

Lemma 7.6. Let X, Y ∈ X with X t Y, then there are points, vXY ∈ V (1(X)) and
vY X ∈ V (1(Y )) such that A = π−1

X vXY ∪π
−1
Y vY X .

Proof. We can assume that neither V (1(X)) nor V (1(Y )) is trivial. Note that if
a ∈ A, with σ(θX a, θX Y ) > r0, then σ(θY a, θY X) ≤ r0. If this were true for all
a ∈ A, we would conclude that diam(θY A)≤ 2r0 < t (p) giving the contradiction
that V (1(Y )) is trivial. We can thus find aXY ∈ A with σ(θX aXY , θX Y )≤ r0. We
set vXY = πX aXY ∈ V (1(X)). We similarly define vY X = πY aY X ∈ V (1(Y )).

Now suppose that b ∈ A \ (π−1
X vXY ∪ π

−1
Y vY X ). Then πX b 6= πX aXY , and

so σ(θX b, θX aXY ) ≥ t (p). Thus, σ(θX b, θX Y ) ≥ t (p) − r0 > r0. Similarly,
σ(θY b, θY X) > r0. This contradicts property (A9) “overlapping subsurfaces”,
proving that no such b exists. �

Note that, by Lemma 7.3, we can naturally combine 1(X) and 1(Y ) into a
larger tree by identifying the vertices vXY and vY X . In other words, {1(X),1(Y )}
is coherent. We write 1(X, Y ) for the common enlargement.

Note that by construction if1(X) and1(Y ) are nontrivial, then σ(θX aXY ,θX Y )≤
r0, where aXY ∈ A is as in the proof of Lemma 7.6. By the same argument, if
Z ∈ X with 1(Z) nontrivial, we have σ(θX aX Z , θX Z) ≤ r0, for some aX Z ∈ A.
If σ(θX Y, θX Z) < t − 2r0, then σ(θX aXY , θX aX Z ) < s(p), so vXY = πX aXY =

πX aX Z = vX Z . For future reference (Lemma 7.11) we also note that

σ(θX aXY , λXvXY )= σ(θX aXY , λXπX aXY )≤ l,

so σ(θX Y, λXvXY )≤ r0+ l).
We write X0 for the set of X ∈ X such that 1(X) is nontrivial. It follows from

property (A6) “finiteness”, that X0 is finite.
Note that if X, Y ∈ X0 and X t Y, then {1(X),1(Y )} is coherent. This is an

immediate consequence of Lemmas 7.4 and 7.6. Note that this determines vertices
vXY ∈1(X) and vY X ∈1(Y ) which get identified in 1(X, Y ).
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Lemma 7.7. Suppose that X, Y, Z ∈X0 and that X t Y and X t Z and vXY 6= vX Z .
Then Y t Z.

Proof. If not, then (since there must be boundary curves of Y and Z which are
disjoint) and by (A5) “disjoint projection” we must have σ(θX Y, θX Z)≤ r , for some
constant r depending only on that of (A5), which in turn depends only (or at most)
on ξ(6). Provided we have chosen t > l + 2r0, this implies that vXY = vX Z . �

Lemma 7.8. Suppose that X, Y, Z ∈ X0 and that X t Y, X t Z and Y t Z. Then
{1(X),1(Y ),1(Z)} is coherent.

Proof. By Lemma 7.7, it’s enough to show that at least two of vXY =vX Z , vY Z =vY X ,
vZ X = vZY must hold.

By property (A9) “overlapping subsurfaces”,

min{σ(θX Y, θX Z), σ (θY X, θY Z)} ≤ r0.

Therefore, if t ≥ 3r0, we see that either vXY = vX Z or vY Z = vY X . Similarly, we have
(vY Z = vY X or vZ X = vZY ) and (vZ X = vZY or vXY = vX Z ), and so the statement
follows. �

We can now start on the proof of Theorem 7.1
Suppose a, b, c ∈ M(6). We want to find a median for a, b, c in M(6).

First choose any d ∈M(6) with σ6(θ6d, µ6(θ6a, θ6b, θ6c)) bounded in G(6).
(Such a d exists, since χ6(M(6)) is cobounded in G(6) by (A2) “χ Lipschitz an
cobounded”.)

Now set A= {a, b, c, d}, and let πX : A→1(X) be as described in Lemma 7.5.
Let h = h(4). Write dX = πX d and eX = µX (πX a, πX b, πX c). Recall that X0 is
the (finite) set of X ∈X such that 1(X) is nontrivial. Let X1 = {X ∈X0 | eX 6= dX }.
By the choice of d, we see that 6 /∈ X1.

Suppose that X, Y ∈ X1 with X t Y. Recall that T = 1(X, Y ) is obtained by
identifying vXY ∈ 1(X) with vY X ∈ 1(Y ), to give w ∈ T. Note that πT d and
µT (πT a, πT b, πT c) must be distinct from w, and must lie in different subtrees
1(X) and 1(Y ). It follows that exactly one of the following must hold:

(1) dY = vY X and eX = vXY , or

(2) dX = vXY and eY = vY X .

We write these cases respectively as X � Y and Y � X (which we take to imply
that X t Y ).

(Intuitively, we think of these relations as follows. We imagine any finite set of
elements of X embedded disjointly as “horizontal” surfaces in6×R; that is, X ∈X
is identified with X ×{x} for some x ∈ R. The relations =, ≺, ∧ and t have their
usual meaning on projecting to6, and X�Y means that X tY and X is “to the left”
of Y in the sense that it has smaller R-coordinate. The relations are well defined up
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to isotopy, and satisfy the same properties as those laid out here. This picture ties
in with the Minsky model for hyperbolic 3-manifolds homeomorphic to 6×R.)

Lemma 7.9. If X, Y, Z ∈ X1 and X � Y and Y � Z , then X � Z.

Proof. Since X�Y, vXY =dY . Since Y� Z , vXY =dY . Since Y ∈X1, dY 6= eY , so
vY X 6= vY Z . By Lemmas 7.7 and 7.8, X t Z , and {1(X),1(Y ),1(Z)} is coherent.
In particular, eX = vXY = vX Z and dZ = vZY = vZ X so X � Z . �

Recall that X ≺ Y implies that X 6= Y and X is homotopic into Y. We therefore
have two strict partial orders� and ≺ on X1. Moreover, by hypothesis, X � Y is
incompatible with any of X ≺ Y, Y ≺ X, or X ∧ Y.

Lemma 7.10. Given X, Y, Z ∈ X1 with X � Y and Y ≺ Z , then either X � Z or
X ≺ Z.

Proof. Recall that X t Z implies X � Z or Z � X. Thus, if the conclusion of
the lemma fails, the only alternatives would be Z = X, Z ≺ X, Z � X or Z ∧ X.
Now Z = X or Z ≺ X both give Y ≺ X contradicting X � Y ; Z � X gives Z � Y
contradicting Y ≺ Z , and finally, Z ∧ X gives Y ∧ X, contradicting X � Y. �

Now write X < Y to mean that either X � Y or X ≺ Y. This relation is
antisymmetric on X1. It is not in general transitive, but in view of Lemma 7.10, any
relation of the form X < Y < Z <W can be reduced to X < V <W for V ∈ {Y, Z}.
In particular, there are no cycles. It follows that X1 contains an element U which
is maximal with respect to this relation. In other words, if X ∈ X1, then we have
neither U � X nor U ≺ X. Note that 6 /∈ X1, so U 6=6.

From this, we can deduce:

Lemma 7.11. There is some universal u0 > 0, such that if a, b, c ∈M(6), there is
some curve α such that if X ∈ X , with α t X or α ≺ X, then

σ(θXα,µX (θX a, θX b, θX c))≤ u0.

Proof. Let U ∈ X1 be maximal with respect to <, as above. Let α be a component
of the relative boundary of U in 6. Suppose that X ∈X with α≺ X or α t X. Then
either U ≺ X or U t X. According to the conventions described in Section 6, we
use the notation ∼ to mean “up to bounded distance”. In all cases, θXα is defined
and θXα ∼ θXU, by (A5) “disjoint projection”. Let λX : V (1X )→ G(X) be the
quasimorphism described above (as given by Lemma 7.5). Now,

λX eX = λXµV (1(X))(πX a, πX b, πX c)

∼ µX (λXπX a, λXπX b, λXπX c)

∼ µX (θX a, θX b, θX c).

We therefore want to show that θXU ∼ λX eX . Note that λX dX = λXπX d ∼ θX d .
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Suppose first that U ≺ X. Thus X /∈ X1, so dX = eX . Now λX eX = λX dX , is
a centroid for θX a, θX b, θX c in G(X), and so θX d is also a centroid. Therefore,
if θXU were far enough away from θX d, (depending only on the hyperbolicity
constant), then we can assume that the Gromov products 〈θX a, θX b:θXU 〉 and
〈θX a, θX d:θXU 〉 are both greater than r0 (after permuting a, b, c as necessary).
By property (A8) “bounded image”, this implies that σU (θU a, θU b) ≤ r0 and
σU (θU a, θU d) ≤ r0. It then follows that πU a = πU b = πU d ∈ V (1(U )), so
eU = µV (1(U ))(πU a, πU b, πU c) = πU d = dU , contradicting the fact that U ∈ X1.
We have shown that if U ≺ X, then θXU ∼ λX eX as required.

Suppose now that U t X. In this case, by Lemma 7.6, the trees 1(X) and
1(U ) are coherent. Moreover, since 1(U ) is nontrivial, we have θXU ∼ λXvXU .
If X ∈ X1, then X �U, so eX = vXU , thus θXU ∼ λXvXU = λX eX as required. So
we can suppose that X /∈ X1 — in other words, dX = eX . If X /∈ X0, then 1(X)
is trivial, so eX = dX = vXU , and we are done, as above. If X ∈ X0, then again
dX = vXU , otherwise we would get eU = dU contradicting U ∈ X1.

In all cases, we have shown that θXU ∼ λX eX , as required. �

We can now prove the main result of this section:

Proof of Theorem 7.1. Uniqueness up to bounded distance is an immediate conse-
quence of property (A7) “distance bound” here, so we prove existence.

Let a, b, c ∈M(6). Let α be a curve as given by Lemma 7.11. Given X ∈ X ,
write δX = µX (θX a, θX b, θX c) ∈ G(X). So θXα ∼ δX for all X with α t X or
α ≺ X. We consider only the case when α separates 6. The nonseparating case is
essentially the same.

Let 6 = Y ∪ Z , where Y ∩ Z = α. Suppose first that neither Y nor Z is a
S0,3, so that Y, Z ∈ X . By induction on the complexity of 6, we can assume that
Theorem 7.1 holds intrinsically to Y and Z . Thus, we can find mY ∈M(Y ), such
that if X = Y or X ≺ Y, then σ(θX mY , δX ) is bounded. We have a similar element,
m Z ∈M(Z). Let � ∈ XA be the annulus with core curve α. We apply property
(A10) “realisation” with Y = {X, Y, �} to give m ∈M(6) such that ρ(ψY m,mY ),
ρ(ψZ m,m Z ) and ρ�(ψ�m, δ�) are bounded. By (A4) “composition” and the
construction of mY and m Z , we have θX m ∼ δX for all X � Y all X � Z .

Suppose that X ∈ X . If X � Y, X � Z or X =�, then σ(θX m, δX ) is bounded
by construction. If not, then either α ≺ X or α t X. But then, by the choice of
α, σ(θXα, δX ) is bounded as already observed. But σ(θX m, θXα) ≤ R6(m, a) is
bounded by (A10) “realisation”, so we are done in this case.

If either Y or Z is an S0,3, we just omit that subsurface from Y , and proceed in
the same way.

If α does not separate, we set Y to consist of X (α) together with complement of
α and proceed similarly. �
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8. The marking complex

In this section, we apply the results of Theorem 7.1 to the marking complex of 6,
to recover the result of [Behrstock and Minsky 2011], stated as Theorem 8.2 here.
We first describe the curve graph associated to a compact surface, 6.

For ξ(6)≥ 1, let G= G(6) be the curve graph of 6. Its vertex set, G0, is the
set of free homotopy classes of essential nonperipheral simple closed curves in 6.
As before, we refer to elements of G0 simply as curves. Two curves, α, β ∈ G0 are
adjacent if ι(α, β) is equal to 2 if 6 is an S0,4; equal to 1 if 6 is an S1,1; or equal
to 0 if ξ(6)≥ 2. Here ι(α, β) denotes the geometric intersection number.

In all cases, G(6) is connected. A key result in the subject is:

Theorem 8.1. There is a universal constant k such that for any compact surface 6,
G(6) is k-hyperbolic.

The existence of such a k, depending on ξ(6), was proven by Masur and
Minsky [1999]. The fact that it is uniform (independent of ξ(6)) was proven
independently in [Aougab 2013; Bowditch 2014b; Clay, Rafi and Schleimer 2014;
Hensel, Przytycki and Webb 2015]. (The uniformity is not essential to the main
results of this paper: we will only be dealing with finitely many topological types at
any given time, namely subsurfaces of a given surface 6. One can therefore simply
assert dependence of constants on ξ(6) at the relevant points.)

Given nonempty a, b ⊆ G0, let ι(a, b)=max{ι(α, β) | α ∈ a, β ∈ b}. We write
ι(a)= ι(a, a).

Definition. If ι(a)= 0, we refer to a as a multicurve.

Intuitively, we think of a multicurve in terms of its realisation as 1-manifold in M.

Definition. We say that a ⊆ G0 fills 6 if i(a, γ ) 6= 0 for all γ ∈ G0.

If we realise a minimally, then this is the same as saying that all complementary
components of

⋃
a are disc or peripheral annuli.

Given p, q ∈ N, define a graph M=M(6, p, q) by taking the vertex set, M0 to
be the set of a ⊆G0 such that a fills 6 and ι(a)≤ p, and by deeming a, b ∈M0 to
be adjacent if ι(a, b)≤ q. This graph is always locally finite. Provided p is large
enough and q is large enough in relation to p (independently of 6) it will always
be nonempty and connected. For definiteness, we can set M(6) = M(6, 2, 4),
though the actual choice will not matter. (The inclusion of M(6, 2, 4) into any
larger M(6, p, q) is a quasi-isometry.)

Definition. We refer to M(6) as the marking graph of 6.

(This is a slight variation on the marking complex of [Masur and Minsky 2000].)
Note that the mapping class group Map(6) acts on G(6) and on M(6) with

finite quotient. In particular, we see that Map(6) is quasi-isometric to M(6). Note



LARGE-SCALE RIGIDITY PROPERTIES OF THE MAPPING CLASS GROUPS 45

also that bounding distance in the marking complex is equivalent to bounding
intersection numbers between markings.

Recall that X = XA tXN is the set of (non-S0,3) subsurfaces of 6, partitioned
into annular and nonannular subsurfaces.

If X ∈XN , we can define G(X) and M(X) intrinsically to X as above. If X ∈XA,
one needs to define G(X) as an arc complex in the annular cover of6 corresponding
to X ; see [Masur and Minsky 2000, Section 2.4]. This is quasi-isometric to the real
line. In this case, we set M(X)= G(X). (One could give a unified description in
terms of covers of 6 corresponding to subsurfaces, though we will omit discussion
of that here.) We will write G(γ )=G(X) and M(γ )=M(X), when γ ∈G0, where
X = X (γ ) is the annular neighbourhood of γ .

We will write σ = σX and ρ = ρX respectively for the combinatorial metrics on
G(X) and M(X).

Given X ∈X we have a map χX :M(X)→G(X). If X ∈XA, this is the identity.
If X ∈ XN , it just chooses some curve from the marking. Up to bounded distance,
the map χX is determined by the fact that ι(a, χX a) is bounded for all a ∈M(X).

Given X,Y ∈X with Y � X, we have a subsurface projectionψY X :M(X)→M(Y ).
This is the same construction as in [Masur and Minsky 2000]. We realise a and Y
in minimal general position (so that a ∩ Y has a minimal number of components).
Now a∩Y consists of a collection of arcs and curves. We say two arcs are “parallel”
if they are homotopic, sliding the endpoints in the boundary components of Y. For
each parallel class of arcs we get a disjoint curve (namely the boundary component
of a regular neighbourhood of the arc union the boundary components it meets). The
collection of such curves, together with the curves of a already lying in Y, give us a
collection of curves of Y of bounded self-intersection, and hence give rise to a mark-
ing of Y. We write this asψY X a. Up to bounded distance, the mapψY X is determined
by the fact that the intersection of ψY X a with every component of a∩ X is bounded.

We set θY = χY ◦ψY X :M(X)→ G(Y ).
One can also define subsurface projection for curves. Suppose γ ∈ G0(6) and

X ∈ X with γ t X or γ ≺ X, then we can define θX (γ ) ∈G(X). This is consistent
with that already defined, in that if γ ∈ a ∈ M0(X), then θX (γ ) ∼ θX (a). In
particular, θX ◦ χX (a) ∼ θX (a) when this is defined. Similarly, if X, Y ∈ X with
Y t X or Y ≺ X we can define θX (Y ) ∈ G(X). This can be defined by setting
θX (Y )= θX (γ ) for some boundary curve, γ , of Y.

We can now deduce the following result [Behrstock and Minsky 2011]:

Theorem 8.2. There is a constant t0, depending only on ξ(6), such that if a, b, c ∈
M(6), then there is some m ∈M(6) such that for all X ∈ X (6),

σ(θX m, µX (θX a, θX b, θX c))≤ t0.
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Moreover, if m′ ∈M(6) is another such element, then ρ(m,m′)≤ t1, where t1 is a
constant depending only on ξ(6).

We can therefore define a median map µ : (M(6))3→M(6) by µ(a, b, c)=m.
Of course, it is enough to define µ(a, b, c) for a, b, c in the vertex set, M0(6), of
M(6).

To prove Theorem 8.2, we set M(X) = M(X) and G(X) = G(X). We verify
(A1)–(A10) of Section 7 for these spaces and the maps χX and ψY X defined above.
In fact, for (A6) “finiteness” and (A7) “distance bound” we will verify (B1) “distance
formula”.

Note that (A1) “hyperbolicity” is an immediate consequence of Theorem 8.1
above. Properties (A2) “χ Lipschitz and cobounded”, (A3) “ψ Lipschitz” and (A4)
“composition” are elementary properties of subsurface projection, and (A5) “disjoint
projection” holds with s1 = 1 in this case.

Property (B1) “distance formula” is an immediate consequence of the following
due to Masur and Minsky [2000] (applied intrinsically to subsurfaces).

Theorem 8.3 [Masur and Minsky 2000]. There is some r0 ≥ 0 depending only on
ξ(6) such that for all r ≥ r0, there are constants, k1 > 0, h1, k2, h2 ≥ 0 depending
only on r and ξ(6) such that if a, b ∈M0(6), then k1ρ(a, b)−h1 ≤ D6(a, b; r)≤
k2ρ(a, b)+ h2.

This implies (A6) and (A7). Property (A8) “bounded image” is an immediate
consequence of the bounded geodesic image theorem; [Masur and Minsky 2000,
Theorem 3.1]. (Note that the Gromov product 〈α, β:γ 〉X is, up to an additive
constant, the same as the distance from γ to any geodesic from α to β.) A simpler
proof of the bounded geodesic image theorem (with uniform constants, independent
of ξ(6)) is given in [Webb 2015].

Property (A9) “overlapping subsurfaces” is an immediate consequence of Behr-
stock’s lemma:

Lemma 8.4. There is some universal r0 such that if X, Y ∈ X and γ ∈ G0(6) with
X t Y, γ t X and γ t Y, then min{σ(θX (γ ), θX (Y )), σ (θY (γ ), θY (X))} ≤ r0.

This is Theorem 4.3 of [Behrstock 2006] (where r0 may depend on ξ(6)). A
simpler proof, which gives explicit universal constants can be found in [Mangahas
2010].

Property (A10) “realisation” is a simple explicit construction. We can assume
that X =6. Let τ be the multicurve consisting of the union of the ∂6Y, as Y ranges
over Y . Each marking mY for Y ∈ Y ∩XN gives us a marking on some component
of 6 \ τ . We now take the union of τ with the union of all these markings. We add
in curves transverse to each of the elements of τ to give us a set of curves which
fill 6 with bounded self-intersection. We can arrange (after applying suitable Dehn



LARGE-SCALE RIGIDITY PROPERTIES OF THE MAPPING CLASS GROUPS 47

twists about the elements of τ ) that the marking has the correct projection to the
elements of Y ∩XA. Note that this construction automatically gives us a marking,
m, with ι(m, τ ) bounded. By construction, ψY ∼ mY for all Y ∈ Y . Also if Z ∈ X
and Y ∈ Y with Y ≺ Z or Y t Z , then θZ m ∼ θZτ ∼ θZ Y, so σZ (m, Y )∼ 0, and it
follows that R6(m, Y )∼ 0 as required for (A10).

Finally note that bounding the distance, ρ(a, b) between two markings, a, b ∈
M0(6) is equivalent to bounding their intersection number, ι(a, b), which in turn, is
equivalent to bounding the quantity, R6(a, b) featuring in (A7) “distance bounds”.
One can find explicit estimates in the references cited, though we will not need
them here.

9. Multicurves

Again, in this section, 6 will be a compact surface with ξ(6)≥ 1. We will again
assume the hypotheses of Section 7, as we recall below.

Let τ ⊆ G0(6) be a multicurve in 6. As usual, we will often identify τ with its
realisation as a 1-manifold in 6. Let XA(τ )= {X (γ ) ∈ XA | γ ∈ τ } be the set of
annular surfaces corresponding to the components of τ . Let XN (τ )⊆XN be the set
of components of 6 \ τ which are not the S0,3. We write X (τ )= XA(τ )tXN (τ ).

Given Y ∈ X , we write τ t Y to mean that γ t Y or γ ≺ Y for some γ ∈ τ . Let
XT (τ )= {Y ∈ X | Y t τ }. Let XI (τ )= X \XT (τ ). It is easily seen that Y ∈ XI (τ )

if and only if Y � X for some X ∈ X (τ ). In other words, Y can be homotoped into
some component of 6 \ τ . (This includes the possibility that Y is homotopic to a
component of τ .)

Now suppose we have spaces G(X), M(X) and maps ψY X , χX , θX , etc., satisfy-
ing the hypotheses (A1)–(A10) of Section 7. We refer to the constants featuring in
these axioms as the parameters of M(6).

Given X ∈ XT (τ ), we set θX (τ ) = θX (γ ) for some γ ∈ τ . By (A5) “disjoint
projection”, we have σ(θXτ, θX Y ) ≤ s1 for all Y ∈ XI (τ ). In particular, θX (τ )

is well defined up to bounded distance. As usual, we will abbreviate σX (τ, a) =
σ(θXτ, θX a) for a ∈M(6) etc.

Given a ∈M(6), write

R(a, τ )=max{σX (a, τ ) | X ∈ XT (τ )}.

Thus R(a, τ )=max{R(a, γ ) | γ ∈ τ } (cf., the definition of R6 in Section 7). (In
the case of markings, one can think of this as measuring intersection numbers; see
Lemma 9.7.) Given r ≥ 0, let

T (τ ; r)= {a ∈M(6) | R(a, τ )≤ r}.
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Note that if a∈T (τ ; r) and Y ∈XI (τ ), then σ(a, Y )≤r+s1 (by (A10) “realisation”).
Also, if for each X ∈ X (τ ), we have associated some aX ∈M(X); then by (A10),
there is some a∈T (τ ; r ′0)with ρ(aX , ψX a)≤r0 for all X ∈XT (τ ), where r ′0=r0+s1.
Note that a is well defined up to bounded distance. In fact:

Lemma 9.1. If a, b ∈ T (τ ; r) with ρX (a, b)≤ r ′ for all X ∈ X (τ ), then ρ(a, b) is
bounded above in terms of r and r ′.

Proof. Suppose that Y ∈ X . If Y ∈ XI (τ ), then σY (a, b) is bounded using (A5)
“disjoint projection”. If Y ∈ XT (τ ), the σY (a, τ ) and σY (b, τ ) are both bounded
above by hypothesis, so σY (a, b) is again bounded. The statement now follows by
(A7) “distance bound”. �

We will abbreviate T (τ )= T (τ ; r ′0).
Let T (τ ) =

∏
X∈X (τ )M(X). We give T (τ ) the l1 metric (though any quasi-

isometrically equivalent metric would serve for our purposes). Note that T (τ ) is a
coarse median space, with the median defined coordinatewise. We can combine the
maps ψX :M(6)→M(X) for X ∈ X (τ ), to give a uniformly coarsely Lipschitz
quasimorphism, ψτ :M(6)→ T (τ ).

By Lemma 9.1 and the subsequent remark, we get a map υτ : T (τ )→ T (τ )⊆
M(6), such that ψτ ◦ υτ : T (τ )→ T (τ ) is the identity up to bounded distance.
Note that υτ is also a uniformly coarsely Lipschitz quasimorphism, whose image is
a uniformly bounded Hausdorff distance from T (τ ).

This in turn gives rise to a quasimorphism, ωτ = υτ ◦ψτ :M(6)→ T (τ ). It is
characterised by the property that ψX ◦ωτ ∼ ψX for all X ∈ X (τ ), or equivalently,
that θY ◦ωτ ∼ θY for all Y ∈ XI (τ ). We note:

Lemma 9.2. Given r ≥ 0, there is some r ′ depending only on r and the parameters
of the hypotheses, such that for any multicurve, τ , T (τ ; r)⊆ N (T (τ ); r ′).

Proof. Let b = ωτ (a) ∈ T (τ ). By the above, we have θY a ∼ θY b for all Y ∈ XI (τ ).
Also θY a ∼ θY τ ∼ θY b for all Y ∈ XT (τ ). Since X = XI (τ )∪XT (τ ), we see that
R6(a, b) is bounded. Property (A7) “distance bound” now tells us that a ∼ b. �

This shows that T (τ ; r) is well defined up to bounded Hausdorff distance for all
r ≥ r ′0, and can be described as the set of a ∈M(6) such that θY a ∼ θY τ for all
Y ∈ XT (τ ).

Lemma 9.3. T (τ ) is uniformly quasiconvex in M(6).

Proof. Suppose a, b ∈ T (τ ) and c ∈M(6). If X ∈ XT (τ ), then

θXµ6(a, b, c)∼ µX (θX a, θX b, θX c)∼ µX (θXτ, θXτ, θX c)∼ θXτ,

and so by Lemma 9.2, µ6(a, b, c) is a bounded distance from T (τ ). �

Lemma 9.4. The map ωτ :M(6)→ T (τ ) is a coarse gate map.
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Proof. Let x ∈M(X) and c ∈ T (τ ). If X ∈ XT (τ ), then ωτ x ∈ T (τ ), and

θXµ6(x, ωτ x, c)∼µX (θX x, θXωτ x, θX c)∼µX (θX x, θXτ, θXτ)∼ θXτ ∼ θXωτ x .

If X ∈ XI (τ ), then

θXµ6(x, ωτ x, c)∼µX (θX x, θXωτ x, θX c)∼µX (θX x, θX x, θX c)∼ θX x ∼ θXωτ x .

Since X =XI (τ )∪XT (τ ), property (A7) “distance bound” tells us µ6(x, ωτ x, c)∼
ωτ x , as required. �

Note that, if a, b ∈M(6), then ωτa lies in a coarse interval from a to b, and
ωτb lies on a coarse interval from a to ωτa. By Lemma 6.6, ωτ is a uniform
quasimorphism (depending on ξ(6)). Note that the proof of Lemma 9.4 shows
that µX (θX a, θXωτa, θXωτb) ∼ θXωτa (putting x = a and c = b). Similarly,
µX (θX b, θXωτb, θXωτa)∼ θXωτb. It follows that ρ(ωτa, ωτb) is bounded above
by a linear function of ρ(a, b). We see that σX (ωτa, ωτb) is bounded above by a
linear function of σX (a, b). In particular, if θX a ∼ θX b, then θX (ωτa)∼ θX (ωτb).

Lemma 9.5. If τ and τ ′ are two multicurves which together fill6, then the diameter
of ωτ (T (τ ′)) in M(6) is finite and bounded above in terms of ξ(6).

(Here, we are assuming that we have fixed, once and for all, the constant r ′0 used
in defining T (τ ), in terms of ξ(6).

Proof. Note that if X ∈ X , then either X ∈ XT (τ ) or X ∈ XT (τ
′). Let a, b ∈ T (τ ′).

If X ∈ XT (τ ), then θX (ωτa) ∼ θXτ ∼ θX (ωτb). If X ∈ XT (τ
′) then θX a ∼ θX b,

and by the observation preceding the lemma, θX (ωτa)∼ θX (ωτb). It now follows
by (A7) “distance bound” that a ∼ b as required. �

If τ, τ ′ fill 6, we choose elements ωτ (τ ′) ∈ ωτ (T (τ ′)) and ωτ ′(τ ) ∈ ωτ ′(T (τ )).
These are well defined up to bounded distance.

Now if a ∈ T (τ ) and b ∈ T (τ ′), then ωτ ′(τ ) lies in a coarse interval from
a to b, and ωτ (τ ′) lies in a coarse interval from a to ωτ ′(τ ). It follows that
ρ(a, b)� ρ(a, ωτ (τ ′))+ ρ(ωτ (τ ′), ωτ ′(τ ))+ ρ(ωτ ′(τ ), b).

We can use this observation to prove the following.

Lemma 9.6. Suppose that τ, τ ′ fill6, and that any pair of points of T (τ ′)⊆M(6)

lie a bounded distance from some uniform bi-infinite quasigeodesic in T (τ ′). Then
there are constants k, t ≥ 0, depending only on the constants of the hypotheses, such
that if x ∈ T (τ ′) and r ≥ 0, then there is some y ∈ T (τ ′) with ρ(y, T (τ ))≥ r and
ρ(x, y)≤ kr + t .

Proof. From the hypotheses, there is a uniformly quasigeodesic ray with basepoint
ωτ ′(τ ) and containing x . Now choose y to be a suitable point on this ray beyond x ,
and apply the above observation. �
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For the remainder of this section, we explore these statements further in the
specific case where M(6)=M(6) is the marking graph of 6. (Note that in this
case all the parameters of M(6) depend only on ξ(6).)

Given k ≥ 0, let T̂ (τ ; k)= {a ∈M0(6) | ι(a, τ )≤ k}.

Lemma 9.7. (1) For all k ≥ 0, there is some r ≥ 0, depending on k and ξ(6),
such that T̂ (τ ; k)⊆ N (T (τ ), r).

(2) There is some k0 ≥ 0, depending only on ξ(6), such that T (τ )∩M0(6)⊆

T̂ (τ ; k0).

Proof. (1) It is an elementary property of subsurface projection that if a ∈M0(6),
γ ∈ G0(6) and X ∈ X with γ ≺ X or γ t X, then σX (γ, a) is bounded above in
terms of ι(γ, a). It follows that T̂ (τ ; k)⊆ T (τ ; r ′′) for some r ′′ depending only on
r and k. We now apply Lemma 9.2.

(2) We have observed that, in the case of markings, the verification of (A10)
“realisation” gives us a marking which has bounded intersection with τ (where τ
is the union of all boundary curves of the set of surfaces). This was used in the
construction of υτ and hence of ωτ . In particular, it follows that if a ∈M(6), then
ι(ωτa, τ ) is bounded for any a ∈M(6). Now if a ∈ T (τ )∩M0(6) then (since ωτ
is a coarse gate map) ρ(a, ωτa) is bounded. It follows that ι(a, ωτa) is bounded,
and so ι(a, τ ) is bounded. This bound depends only on ξ(6). �

Definition. A complete multicurve is a multicurve, τ , such that each component of
6 \ τ is an S0,3.

In other words, XN (τ ) = ∅, so X (τ ) = XA(τ ). It is equivalent to saying that
τ has exactly ξ(6) components. (It is essentially the same thing as a “pants
decomposition” in other terminology.)

Suppose that τ is a complete multicurve. In this case,

X (τ )= XA(τ )= {X (γ ) | γ ∈ τ }.

If X ∈ X (τ ), then G(X)=M(X) is quasi-isometric to the real line, and so T (τ ) is
quasi-isometric to Rξ. Thus, υτ gives rise to a quasi-isometric embedding of Rξ

into M(6), whose image is a bounded Hausdorff distance from T (τ ).
We can also view this in terms of the action of Map(6). Let G(τ ) ≤Map(6)

be the group generated by Dehn twists about the elements of τ . Thus, G(τ )∼= Zξ.
We put the standard word metric on G(τ ). Now G(τ ) acts coboundedly on T (τ )
hence also on T (τ ).

The following result, proven in [Farb, Lubotzky and Minsky 2001], is an imme-
diate consequence, though it also follows directly from the distance formula [Masur
and Minsky 2000] (given as Theorem 8.3 here).
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Lemma 9.8. Given any multicurve τ there is some a ∈M(6) such that the map
a 7→ ga : G(τ )→M(6) is a uniform quasi-isometric embedding.

In fact, we can take any a ∈ T (τ ), and the orbit, G(τ )a, is a uniformly bounded
Hausdorff distance from T (τ ). (The uniformity is somewhat spurious here, since
there are only finitely many orbits of multicurves under the action of Map(6);
though our arguments give explicit bounds.)

We will refer to a set of the form T (τ ) for a complete multicurve, τ , as a coarse
Dehn twist flat (generally regarded as defined up to a uniformly bounded Hausdorff
distance).

Lemma 9.9. There are uniform constants k, t ≥ 0 such that if τ, τ ′ are complete
multicurves, with τ 6= τ ′, x ∈ T (τ ′) and r ≥ 0, then there is some y ∈ T (τ ′) with
ρ(y, T (τ ))≥ r and ρ(x, y)≤ kr + t .

Proof. If τ ∩ τ ′ = ∅, then τ, τ ′ fill 6, so the result follows immediately from
Lemma 9.6. (Note that any path in a Dehn twist flat lies in a uniform bi-infinite
quasigeodesic.)

For the general case, let τ0 = τ ∩ τ
′. Now T (τ0) is, up to quasi-isometry, a direct

product of a euclidean space (given by Dehn twists about the elements of τ0) and
copies of M(X) as X ranges over the elements of XN (τ0). Applying the above intrin-
sically to the restrictions of τ and τ ′ to any such X we deduce the general case. �

10. Quasicubes

Throughout this section, we again suppose that M(6) satisfies the axioms (A1)–
(A10) of Section 7. We refer the constants involved as the “parameters of M(6)”.

Definition. A quasicube in M(6) is an l-quasimorphism φ : Q→M(6), where
Q is an n-cube.

We refer to it as an l-quasi-n-cube, if we want to specify the parameters.
In this section, we give a description of “nondegenerate” quasicubes of maximal

rank. In Section 11, we will apply this to the (extended) asymptotic cone M∗(6).
We begin by recalling the following fact:

Lemma 10.1. There is some l0 ≥ 0, depending only ξ(6) such that if X, Y ∈X and
there exist a, b, c, d ∈M(6) with (a, b : c, d)X ≥ l0 and (a, c : b, d)Y ≥ l0, then
X ∧ Y.

Here (a, b : c, d)X denotes the “crossratio”

(a,b :c,d)X=
1
2(max{σX (a,c)+σX (b,d),σX (a,d)+σX (b,c)}−(σX (a,b)+σX (c,d)))

in G(X). Similarly for (a, b : c, d)Y in G(Y ).
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Proof. This is property (P4) in [Bowditch 2013], and was verified for the marking
graph by Lemma 11.7 of that paper. As already observed (in Section 7 here) the proof
there only made use of properties (A8) “bounded image” and (A9) “overlapping
subsurfaces”. �

Recall, from Section 7, that AX (a, b; r)= {Y ∈ X (X) | σY (a, b) > r}.

Definition. Given a, b∈M(X) and r≥0, we say that a, b are weakly (X, r)-related
if for all Y ∈A(a, b; r), we have Y � X.

Intuitively, we can think of a, b as being “close outside X”. More specifically, if
Z ∈ X , with Z ∧ X, then A(a, b; r)∩X (Z)=∅, so by (A7) “distance bound”, we
see that ρZ (a, b) is bounded.

Definition. We say that a, b are (X, r)-related if they are weakly (X, r)-related
and ρ(a, T (∂6X))≤ r and ρ(b, T (∂6X))≤ r .

We will often suppress mention of r where a choice (ultimately depending on
the parameters of M(6)) is clear from context, and simply refer to a, b as being
“(weakly) X -related”.

Note that this property is “median convex” in the sense that if c ∈M(6), with
ρ(µ(a, b, c), c)≤ l, then c is (X, r ′)-related to a and to b, where r ′ depends only
on r , l and the parameters of the hypotheses.

Lemma 10.2. If a, b ∈M(6) are (X, r)-related, then ρ(a, b) agrees with ρ(a, b)
up to linear bounds depending only on r and ξ(6).

Proof. The fact that ψX :M(6)→M(X) is uniformly coarsely Lipschitz immedi-
ately gives a linear upper bound for ρX (a, b). For the other direction, set τ = ∂6X.
Then, up to bounded distance,ψτa andψτb differ only in the X -coordinate. Since υτ
is uniformly coarsely Lipschitz, we have that ρ(ωτa, ωτb)= ρ(υτψτa, υτψτb) is
linearly bounded above by ρX x(ψX a, ψX b)=ρX (a, b). By assumption ρ(a, T (τ ))
and ρ(b, T (τ )) are bounded. By Lemma 9.4, since ωτ is a coarse gate map to
T (τ ), it follows that ρ(a, ωτa) and ρ(b, ωτb) are bounded. This bounds ρ(a, b),
as required. �

Note that by median convexity, we see also that ρX (x, y) � ρ(x, y) for any
x, y ∈M(6) with µ(a, b, x)∼ x and µ(a, b, y)∼ y.

Here is a criterion which implies that two elements of M(6) are X -related:

Lemma 10.3. There is a constant r1≥ 0 depending only on ξ(6) with the following
property. Suppose r2 ≥ r1, and that a, b ∈M(6) and X ∈ X . Suppose that for
all Z ∈A(a, b; r2) we have Z � X. Suppose moreover that whenever γ is a curve
with γ t X, there is some Y ∈A6(a, b; r1) with γ t Y and Y � X. Then a, b are
(X, r)-related for some r depending only on r2 and the parameters of M(6).
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Proof. By assumption, a, b are weakly (X, r)-related, so we just need to check that
ρ(a, T (τ )) and ρ(b, T (τ )) are bounded, where τ = ∂6(X).

By Lemma 9.2, it is enough to check that σU (a, τ ) and σU (b, τ ) are bounded
for all U ∈ XT (τ ). Now if U ∈ XT (τ ), then U contains or crosses some boundary
curve of X, and so U t X or X ≺U. Either way, U will contain a curve, γ , with
γ t X. By hypothesis, there is some Y � X, with Y t γ and Y ∈ A6(a, b; r1).
Note that either Y ≺U or Y tU.

Now σY (a, b) > r1. Also, since U is not contained in X, it does not lie in
A6(a, b; r2), i.e., σU (a, b)≤ r2. Suppose first that Y ≺U. If r1 is greater than r0,
the constant of (A8) “bounded image”, then it follows 〈θU a, θU b:θU Y 〉 ≤ r0, and so,
by the definition of Gromov product, σU (a, Y )+ σU (b, Y )≤ 2(r2+ r0). Suppose
instead that Y t U. If r1 is bigger than twice the constant, r0, of (A9) “overlap-
ping subsurfaces”, then without loss of generality (swapping a and b), we have
σY (a,U ) > r0, so by (A9) we must have σU (a, Y ) ≤ r0. Since σU (a, b) ≤ r2, it
follows that σU (b, Y )≤ r2+ r0. Thus, in all cases, we have shown that σU (a, Y )
and σU (b, Y ) are bounded.

But now, Y � X, so Y ∧ τ . Thus, by (A5) “disjoint projection”, we have that
σU (Y, τ ) is bounded. We deduce that σU (a, τ ) and σU (b, τ ) are bounded for all
U ∈ XT (τ ) as claimed. �

We now move on to consider quasicubes.
Suppose that Q = {−1, 1}n is an n-cube. By an i -th side of Q, we mean an

unordered pair, c, d ∈ Q, which differ precisely in their i-th coordinates. Note that
any two i-th sides are parallel in the median sense. If a, b ∈ Q, we can speak of
the sides of Q crossed by a, b, that is those which (up to parallelism) correspond
to the coordinates for which a, b differ. (Note that the walls of Q are in bijective
correspondence with the parallel classes of sides.)

Suppose that φ : Q→M(6) is an l-quasimorphism. If c, d and c′, d ′ are both
i-th sides of Q, then ρ(φc, φd) � ρ(φc′, φd ′). (Since µ(φc, φd, φc′) ∼ φc and
µ(φc, φd, φd ′) ∼ φd, we get a linear upper bound for ρ(φc, φd), and the lower
bound follows symmetrically.) We will write si = min ρ(φc, φd) as c, d ranges
over all i-th sides. Thus ρ(φc′, φd ′) � si for any other i-th sides, c′, d ′. We also
note that for all X ∈ X , we have σX (φc, φd) � σX (φc′, φd ′) and ρX (φc, φd) �
ρX (φc′, φd ′) (similarly, since θX ◦φ and ψX ◦φ are quasimorphisms to G(X) and
M(X) respectively). Here, the linear bounds depend implicitly on l.

If a, b ∈ Q, then a repeated application of Lemma 6.1 shows ρ(φa, φb)�
∑

i si ,
where the sum is taken over all sides of Q crossed by a, b.

Lemma 10.4. Let φ : Q→M be an l-quasicube. There is some k0 ≥ 0, depend-
ing only on h and the parameters of the hypotheses, such that if X, Y ∈ X with
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σX (φc, φd)≥ k0 and σY (φc′, φd ′)≥ k0, where c, d and c′, d ′ are respectively i-th
and j-th sides of Q, then either i = j or X ∧ Y.

Proof. This is an immediate consequence of Lemma 10.1 above. �

It follows from Lemma 10.4 that for each i , there is a (possibly empty, pos-
sibly disconnected) subsurface, Yi , of 6, which contains all X ∈ X , for which
σX (φc, φd)≥ k0 for any i-th side, c, d, of Q. (Here, we are using the term “sub-
surface” to mean a disjoint union of essential subsurfaces as defined in Section 7.)
We can also take Yi to be minimal with this property. To ensure that each Yi must
be nonempty, we will assume that φ is nondegenerate, that is, for each side, c, d,
A6(c, d; r) 6= ∅, for a fixed r ≥ k0. Note that, by (A7) “distance bound”, this is
implied by placing a suitable lower bound on min{si | 1≤ i ≤ n}. We will also take
r to be at least the constant r1 featuring in Lemma 10.3.

Recall that ξ(6) is the maximal number of disjoint and distinct (non-S0,3) sub-
surfaces we can embed in 6. Thus, if n = ξ(6), we see that if φ is nondegenerate,
then each Yi is connected and is either an annulus, or has complexity-1 (that is a
S0,4 or S1,1).

Definition. We say that a multicurve τ is big if each component of 6 \ τ is a S0,3,
S0,4 or S1,1.

In this case, the set of all relative boundary components of all the Yi is a big
multicurve, τ , such that X (τ ) is precisely the set of Yi .

Lemma 10.5. Suppose that Q is a ξ -cube, and that φ : Q→M(6) is a nonde-
generate quasimorphism. Then there is a big multicurve, τ ⊆6, such that we can
write X (τ ) = {Y1, . . . , Yξ }, so that if c, d is any i-th side of Q, then φc, φd are
Yi -related.

(We remark that it follows that φ(Q) lies in a bounded neighbourhood of T (τ ).)

Proof. We construct disjoint surfaces Yi as above, and as already observed, the set
of these Yi is precisely X (τ ) for a big multicurve, τ . Recall that for all X ∈ X ,
if c, d and c′, d ′ are i-th sides of Q, the σX (φc, φd) � σX (φc′, φd ′). Let r1 be
the constant of Lemma 10.3. If the nondegeneracy constant is sufficiently large,
then A(φc, φd; r) 6=∅. So if r ≥max{r1, k0}, the subsurfaces of A(φc, φd; r) fill
Yi , so φc, φd, Yi satisfy the hypotheses of Lemma 10.3. We see that φc, φd are
Yi -related as claimed �

Note that a big multicurve τ satisfying the conclusion of Lemma 10.5 might not
be unique. For example, if γ ∈ τ bounds an S0,3 component of 6 \ τ on both sides
(perhaps the same S0,3), then we can remove it, and the conclusion will still hold.
However, this is essentially the only ambiguity that can arise.

We will also need:
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Lemma 10.6. Suppose that Q is a ξ -cube, and that φ : Q →M(6) is a non-
degenerate quasimorphism, and that c, d is an i-th side of Q. Let Yi be as
given by Lemma 10.5. Suppose that x, y ∈M(6) with µ(φc, φd, x) ∼ x and
µ(φc, φd, y) ∼ y. Then ρ(x, y) � ρYi (x, y), where the additive bounds depend
only on l, n and the parameters of M(6).

Proof. By Lemma 10.4, and φc, φd are Yi -related, and so therefore are x, y (with
suitable constants). The statement then follows by Lemma 10.2 and the subsequent
observation. �

11. The asymptotic cone of M(6)

As in Section 5, let M∗(6) be the extended asymptotic cone of a space M(6)

satisfying the hypotheses (A1)–(A10).
Let Z be a countable set with a nonprincipal ultrafilter, as in Section 5. Let

UG=UG(6) be the ultrapower of G(6). This is a graph with vertex set UG0. Note
that the intersection number, ι, extends to a map U ι : (UG0)2→ UN. We also have
an ultrapower, UX = UX A tUX N. There is a natural bijection between UX A and
UG0. (Here, G0 is playing its role as an indexing set.)

We can extend the notation introduced in Section 5. For example, if X, Y ∈ UX ,
we write X ∧ Y to mean that Xζ ∧ Yζ almost always. We similarly define X ≺ Y
and X t Y. Since there are only finitely many possibilities (in fact, five), we have
the following pentachotomy: if X, Y ∈ X , exactly one of X = Y, X ∧ Y, X ≺ Y,
Y ≺ X or X t Y must hold (exactly as in Section 7).

Note that U Map(6) acts on both UG and UX with finite quotient.

Terminology. In this section, we refer to an element of UG0 as a curve and an
element of G0

⊆ UG0 as standard curve. We similarly refer to “subsurfaces”,
“standard subsurfaces” etc.

As observed in Section 5, two standard objects lie in the same U Map(6)-orbit,
then they lie in the same Map(6)-orbit.

Moreover, any configuration of curves and surfaces of bounded complexity can
be assumed standard up to the action of the mapping class group. One way to
express this is as follows.

Lemma 11.1. Suppose that a ⊆ UG0 and U ι(a) ∈ N, then there is some g ∈
U Map(6) with ga ⊆ G0.

Proof. By hypothesis, ι(aζ ) is almost always constant. Therefore, we can find
gζ ∈Map(6) such that gζaζ ⊆ G0(6) lies is one of only finitely many possible
subsets of G0(6). Therefore, gζaζ is almost always constant, that is, ga is standard,
where g is the limit of (gζ )ζ . �
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Note that this applies, for example, to multicurves, or to collections of pairwise
disjoint subsurfaces of 6. In particular, it makes sense to refer to the topological
type of a subsurface; for example, that it is an S1,1 or an S0,4 (up to the action
of U Map(6)). We can also refer to boundary curves of a surface, or say that a
collection of curves fill a subsurface, etc.

If τ is a multicurve, we can define UX (τ )⊆ UX as in Section 9. (It is the limit
of the sets X (τζ ).)

In what follows we deal mostly with extended asymptotic cones. This seems
more natural in this context than restricting to the asymptotic cone, though most of
the discussion would apply equally well in both situations.

We assume that M(6) and G(6) are spaces satisfying properties (A1)–(A10) of
Section 7.

Let t ∈ UR be a positive infinitesimal. Rescaling as in Section 5 we get ex-
tended asymptotic cones, M∗

=M∗(6) and G∗ = G∗(6) of M(6) and G(6),
respectively. (We topologise them as the disjoint union of their components.) We
write ρ∗, σ ∗, respectively, for the limiting nonstandard metrics. The asymptotic
cones, (M∞(6), ρ∞) and (G∞(6), σ∞) are complete metric spaces. In fact,
since G(6) is hyperbolic, G∗(6) is an R∗-tree, and G∞(6) is an R-tree. The map
χ :M(6)→ G(6) is coarsely Lipschitz, and (after the rescaling) gives rise to a
Lipschitz map χ∗ :M(6)→ G(6).

The coarse median µ on M(6) gives rise to a median µ∗ on M∗, and restricts
to a median, µ∞ on the asymptotic cone, M∞. By Theorems 6.8 and 6.9, ρ∞ is
bi-Lipschitz equivalent to a median metric inducing the same median structure. The
construction is not canonical, but we will write ρ∞M for some choice of such median
metric. We similarly define ρ∗M bi-Lipschitz equivalent to ρ∗ on M∗.

Suppose that X ∈ UX . The spaces G(Xζ ) give rise to an extended asymptotic
cone, denoted G∗(X) which is an R∗-tree. The maps θXζ are uniformly coarsely
Lipschitz, and give rise to a Lipschitz homomorphism, θ∗X :M

∗(X)→ G∗(X).
Similarly, we have a limit M∗(X) of the spaces M(Xζ ). This has a median µ∗

arising from the coarse medians µζ and we again get a topological median algebra.
We similarly have limiting Lipschitz homomorphisms ψ∗X :M

∗(6)→M∗(X).
In fact, as observed above, up to the action of U Map(6), we could take X to be
standard, and so M∗(X) is isomorphic to the space defined intrinsically on a surface
of this topological type.

If X, Y ∈UX , with X �Y, then we have a limiting map, ψ∗Y X :M
∗(X)→M∗(Y ),

with ψ∗Y X ◦ψ
∗

X = ψ
∗

Y . We will generally abbreviate ψ∗XY to ψ∗X , when the domain
is clear from context.

Note that if γ ∈ UG0 and X ∈ UX with γ � X or γ t X, we have a well defined
subsurface projection, θ∗X (γ ) ∈ G∗(X). Similarly, if X, Y ∈ UX , with Y ≺ X or
Y t X, we can define θ∗X (Y ) ∈ G

∗(X).
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We also note that if γ ∈ UG0, then we can write M∗(γ )= G∗(γ )= G∗(X) where
X = X (γ ) is an annular neighbourhood of γ .

Suppose that τ ⊆ UG0 is a multicurve. Let T ∗(τ )⊆M∗(6) be the limit of the
subsets T (τζ )⊆M(6). This is a closed subset of M∗(6). (Note that it is also the
limit of the sets T (τζ ; r) for any sufficiently large r ∈ [0,∞).)

We can describe the structure of T ∗(τ ) as follows.
Let UX (τ ) ⊆ UX be the ultraproduct of the X (τζ ). (By Lemma 11.1, this is

finite, and standard up to the action of U Map(6).) Let T ∗(τ ) be the direct product
of the spaces M∗(X) for X ∈ UX (τ ) in the l1 extended metric. This is the same as
the extended asymptotic cone of the spaces T (τζ ).

Recall that in Section 9, we defined maps ψτζ :M(6)→ T (τζ ), υτζ : T (τζ )→
T (τζ ) and ωτζ = υτζ ◦ ψτζ :M(6)→ T (τζ ). These are all uniformly coarsely
Lipschitz quasimorphisms, and so give rise to maps, ψ∗τ :M∗(6)→ T ∗(τ ), υ∗τ :
T ∗(τ )→ T (τ ) and ω∗τ = υ

∗
τ ◦ψ

∗
τ :M∗(6)→ T ∗(τ ). In fact, from Lemma 9.4, we

see that ω∗τ :M∗(6)→ T ∗(τ ) is a gate map.
It follows that T ∗(τ ) is convex, and that ω∗τ is the unique gate map to T ∗(τ ).

Note also that if γ ∈ UG0(6) with τ t γ and a ∈ T ∗(τ ), then θ∗γ (a)= θ
∗
γ (τ ).

Given a subset, S ⊆M∗(6), write

C(S)= {X ∈ UX | θ∗X |S is injective},

and
D(S)= {X ∈ UX | ψ∗X |S is injective}.

Clearly C(S)⊆ D(S). We write D0(S)= C(S)∩UX A = D(S)∩UX A, which we
can identify as a subset of UG0.

Given a, b ∈ M∗(6), write C(a, b) = C([a, b]), D(a, b) = D([a, b]) and
D0(a, b)= D0([a, b]).

We also write A(a, b)=C({a, b})= {X ∈ UX | θ∗X a 6= θ∗X b}. Clearly C(a, b)⊆
A(a, b).

Lemma 11.2. Suppose that a, b, c, d ∈M∗(6) are all distinct. Suppose X, Y ∈UX
c ∈ [a, d], b ∈ [a, c], X ∈ A(a, b)∩ A(c, d) and Y ∈ A(b, c), then either X = Y
or X ∧ Y.

Proof. Suppose first, for contradiction, that X tY. (This is the case that is actually of
interest to us.) Let aζ , bζ , cζ , dζ ∈M(Xζ ) be sequences converging to a, b, c, d ∈
M∗(6). We can suppose that ρXζ (cζ , µ(aζ , cζ , dζ )) and ρXζ (bζ , µ(aζ , bζ , cζ )) are
bounded (after replacing cζ by µ(aζ , cζ , dζ )) and then bζ by µ(aζ , bζ , cζ ))). Now
σXζ (aζ , bζ )→∞ (since θXζ aζ → θ∗X a and θXζ bζ → θ∗X b, which by hypothesis are
distinct). In particular, σXζ (aζ , bζ ) is almost always greater than 2r0, where r0 is
the constant of property (A9) “overlapping subsurfaces”. Thus, θXζ Yζ must be at
distance greater than r0 from either θXζ aζ or θXζ bζ , and so by (A9), θYζ Xζ is within
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a distance r0 from either θYζ aζ or θYζ bζ . Similarly, θYζ Xζ is also almost always
within distance r0 of either θYζ cζ or θYζ dζ . But G(Yζ ) is uniformly hyperbolic, and
θXζ is a median quasimorphism. Therefore, up to bounded distance, θYζ bζ and
θYζ cζ lie on a geodesic from θYζ aζ to θYζ dζ , and occur in this order. Therefore,
whichever of the above possibilities arises, we see that σYζ (bζ , cζ ) is bounded, and
so σ ∗Y (b, c)= 0. That is, θ∗X b = θ∗X c, so Y /∈ A(b, c).

After swapping the roles of X and Y if necessary, we also need the to rule out the
possibility that X ≺ Y. If that were the case, we could derive a similar contradiction
using property (A8) “bounded image”. Briefly, if σXζ (aζ , bζ ) is large then θYζ Xζ
must lie close to any geodesic in G(Yζ ) from θYζ aζ to θYζ bζ . Similarly, θYζ Xζ lies
close to any geodesic from θYζ cζ to θYζ dζ . We again get that σYζ (bζ , cζ ) is bounded,
and so derive a contradiction. (We omit details, since we will not need this case in
this paper.) �

We say that a subset O of M∗(6) is monotone if it admits a total order < such
that if x < y < z in O then y ∈ [x, z].

Recall that, C(O) is the set of X ∈ UX such that θ∗X |O : O→ G∗(X) is injective.
The following is an immediate corollary of Lemma 11.2.

Corollary 11.3. If O ⊆M∗(6) is monotone, |O| ≥ 4, and X, Y ∈ C(O), then
either X = Y, or X ∧ Y.

(In fact, the only information we really need from Lemma 11.2 and Corollary 11.3
is that X and Y cannot cross.)

Note, in particular, this applies if O⊆M∗(6) is a convex subset order-isomorphic
to a totally ordered set.

In particular, Corollary 11.3 tells us that, if |O| ≥ 4, then C0(O) is a multicurve.
Note, in particular, this applies if O ⊆M∗(6) is a nontrivial convex subset

order-isomorphic to a totally ordered set.

12. Cubes in M∗(6)

Let Q ⊆M∗(6) be an n-cube. If c, d and c′, d ′ are both i-th sides of Q, then
the intervals [c, d] and [c′, d ′] are parallel. That is, the maps x 7→ µ(c′, d ′, x) and
x 7→ µ(c, d, x) are inverse median isomorphisms between [c, d] and [c′, d ′]. Now
if x, y ∈ [c, d], let x ′=µ(c′, d ′, x) and y′=µ(c′, d ′, y). Given X ∈UX , and θ∗X x =
θ∗X y, then θ∗X x ′= θ∗X y′. We see that if θ∗X |[c

′, d ′] is injective, then so is θ∗X |[c, d] and
conversely by symmetry. The same applies to ψ∗X . Thus C([c, d])= C([c′, d ′]), so
we can write this as Ci (Q). We similarly write Di (Q)= D([c, d])= D([c′, d ′]).
We write D0

i (Q)= Di (Q)∩UG0(6)= Ci (Q)∩UG0(6), which we identify with
the set of curves γ ∈ UG0(6) such that θ∗γ |[c, d] is injective.

Suppose now that n = ξ . In this case, if c, d is any side of Q, then [c, d] is a
rank-1 median algebra (a totally ordered set). We refer to [c, d] as a face of the
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convex hull, hull(Q), of Q. In fact, hull(Q) is a median direct product of its faces.
If n = ξ , then each of the faces has rank 1. Such a face is linearly ordered, and so
it is isometric in ρ∗M to an interval in R∗ (via the map x 7→ ρ∗(c, x)).

Applying Corollary 11.3, we immediately get:

Lemma 12.1. If X, Y ∈ Ci (Q) for any i , then either X = Y or X ∧ Y.

Recall that by Lemma 6.3, there are uniform quasimorphisms, φζ : Q→M(6),
such that φζ x → x for all x ∈ Q. Note that, necessarily, we have that φζ is
nondegenerate for almost all ζ .

Lemma 12.2. If X ∈ Ci (Q) and Y ∈ C j (Q), then either i = j or X ∧ Y.

Proof. Let φζ : Q→M(6) be Z-sequence of uniform quasimorphisms as given by
Lemma 6.7, with φζ x→ x for all x ∈ Q. Let c, d and c′, d ′ be i-th and j -th sides of
Q, respectively. Then σXζ (φζ c, φζd)→∞ and σYζ (φζ c′, φζd ′)→∞, and so for
almost all ζ , σXζ (φζ c, φζd)≥ k0 and σYζ (φζ c′, φζd ′)≥ k0, where k0 is the constant
of Lemma 10.4. If i 6= j, then by Lemma 10.4, Xζ ∧Yζ , so it follows that X ∧Y. �

Given that D0
i (Q) ⊆ Ci (Q), we see that if α ∈ D0

i (Q) and β ∈ D0
j (Q), then

either α = β or α∧β, and in the former case, i = j.

Lemma 12.3. Suppose that γ ∈ D0
i (Q) and that X ∈ Dj (Q) is a complexity-1

subsurface (i.e., an S0,4 or S1,1). If γ ≺ X, then i = j .

Proof. Let k0 be the constant of Lemma 10.4. Let φζ , c, d, c′, d ′ be as in the proof
of Lemma 12.2. Now σγζ (φζ c, φζd)→∞, and ρXζ (φζ c′, φζd ′)→∞. Thus we
have the following for almost all ζ . First, σγζ (φζ c, φζd)≥ k0. Second, using (A7)
“distance bound”, there is some Yζ � Xζ with σYζ (φζ c, φζd)≥ k0. Third, γζ ≺ Xζ
and Xζ has complexity 1. It follows that either γζ � Yζ or γζ t Yζ . But then, by
Lemma 10.4, we must have i = j. �

Lemma 12.4. Let Q ⊆M∗(6) be a ξ -cube. Then there is a big multicurve τ
such that we can write UX (τ ) = {Y1, . . . , Yξ } with the Yi all distinct, and with
Yi ∈ Di (Q).

Proof. Let φζ : Q→M∗(6) be uniform quasimorphisms as in the two previous
proofs. Let τζ be the standard big multicurve given by Lemma 10.5, and write
X (τζ ) = {Y1,ζ , . . . , Yξ,ζ }. Let c, d be an i-th side of Q. Then φζ c and φζd are
Yi,ζ -related. Write cζ = φζ c and dζ = φζd. Let τ be the limit of (τζ )ζ , and let Yi

be the limit of (Yi,ζ )ζ . Thus UX (τ )= {Y1, . . . , Yξ }.
It remains to show that Yi ∈ Di (Q). Suppose that x, y ∈ [c, d]. Let xζ , yζ ∈

M(6) with xζ → x and yζ → y. After replacing xζ by µ(cζ , dζ , xζ ) and yζ by
µ(cζ , dζ , yζ ), we can assume that µ(cζ , dζ , xζ ) ∼ xζ and µ(cζ , dζ , yζ ) ∼ yζ . By
Lemmas 10.5, φζ c, φζd are X -related. By Lemma 10.2 and subsequent remarks, it
follows that ρ(xζ , yζ )�ρYi,ζ (xζ , yζ ). But ρ(xζ , yζ )→ρ(x, y) and ρYi,ζ (xζ , yζ )→
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ρYi (x, y), and so ρ(x, y) and ρYi (x, y) are bi-Lipschitz related. In particular, if
ψ∗Yi

x = ψ∗Yi
y, then ρYi (x, y) = 0, so ρ(x, y) = 0, so x = y. In other words, this

shows that ψ∗Yi
|[c, d] is injective, so Yi ∈ Di (Q) as claimed. �

Let I be the set of i such that Yi = X (γi ) is an annulus. Thus, γi ∈ D0
i (Q), and

τ = {γi | i ∈ I }. By Lemmas 12.2 and 12.4, we see that, in fact, D0
i (Q) = {γi }.

Moreover, if D0
j (Q) 6=∅ for some j /∈ I, then using Corollary 11.3 and Lemmas

12.2 and 12.3, we again see that D0
j (Q) consists of a single curve γ j , with γ j ≺ Yj .

Now write I (Q)= {i | D0
i (Q) 6=∅}, and let τ(Q)= {γi | i ∈ I (Q)}. We see that

τ(Q) is a big multicurve containing τ and that it also satisfies the conclusion of
Lemma 12.4 since UX N (τ (Q))⊆ UX N (τ ). (Therefore retrospectively, we could
have taken τ = τ(Q) in Lemma 12.4.)

We have shown that each of the maps θγi or ψYi restricted to the i-th face of
hull(Q) is injective. It follows that the map ψ∗τ : hull(Q)→ T ∗(τ ), and hence
ω∗τ : hull(Q)→ T ∗(τ ), is injective.

Up until now, we have just assumed (A1)–(A10). To proceed, we will need also
to assume the distance formula (B1) given in Section 7. As a consequence, we can
weaken the hypotheses of Lemma 10.2 as follows:

Lemma 12.5. If a, b ∈M(6) are weakly (X, r)-related, then ρ(a, b) agrees with
ρX (a, b) up to linear bounds depending only on r and on ξ(6).

Proof. The only contribution to the distance formula (property (B1)) in M(6)

comes from subsurfaces of X, and so gives the same answer in M(X) up to linear
bounds. �

Lemma 12.6. Let Q ⊆M∗(6) be a ξ -cube. Then Q ⊆ T ∗(τ (Q)).

Proof. Suppose, for contradiction, that a ∈ Q \ T ∗(τ ). We can write hull(Q) as a
direct product of the intervals [a, ai ], where {a, ai } is the i-th side of Q containing a.
By Lemma 2.1, M∗(6) is locally convex (since every component is), so there is a
convex neighbourhood C of a with C ∩ T ∗(τ )=∅. Since M∗(6) has no isolated
points, we can find some bi ∈ ([a, ai ] ∩ C) \ {a}. Now, since ω∗τ is injective,
ω∗τbi 6= ω

∗
τa. Let Wi be a wall of M∗(6) separating ω∗τbi from ω∗τa. Since ω∗τ

is a gate map to T ∗(τ ), this also separates bi from a. Also, since C and T ∗(τ )
are convex, there is another wall W separating C from T ∗(τ ). (Any two disjoint
convex subsets of a median algebra are separated by a wall.) We see that the walls,
W,W1, . . . ,Wξ , all pairwise cross. We deduce that M∗(6) has rank at least ξ + 1,
contradicting Lemma 6.6. �

Lemma 12.7. Suppose that γ ∈ D0
i (Q) and that X ∈ Dj (Q) is a complexity-1

subsurface. If i 6= j, then either γ ∧ X, or there is some (unique) β ∈ D0
j (Q) with

β ≺ X.
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Proof. If γ is not disjoint from X, then we must have γ ≺ X or γ t X, but the first
possibility is ruled out by Lemma 12.3. Since X has complexity 1, either γ t Y for
all Y � X, or else there is a unique β ≺ X such that γ t Y whenever Y ≺ X and
Y 6= X (β). (In the former case, γ ∩ X cuts X into a collection of discs, and in the
later it cuts X into discs together with one annulus, and we take β to be its core
curve.) We claim that the latter case holds, and that β ∈ Dj (Q).

Let φζ , c, d, c, d ′ be as in the proof of Lemma 12.2. In the first case above, we
follow the argument of Lemma 12.3 to derive a contradiction. In the second case,
let βζ→ β. For almost all ζ , we have βζ ≺ Xζ and γζ t Xζ . Given such ζ , suppose
that Yζ � Xζ and Y 6= X (βζ ). Then almost always, σζ (φζ c′, φζd ′) is bounded.
(Otherwise, since γζ t Yζ we derive a contradiction, as in the proof of Lemma 12.2.)
Given any e, f ∈ [φc, φd], we see that σYζ (eζ , fζ ) is (almost always) bounded.
Thus, intrinsically to M(Xζ ), we see that ψXζ eζ and ψXζ fζ are weakly βζ -related.
It follows that σβζ (eζ , fζ ) � ρXζ (eζ , fζ ). Thus, if e 6= f , then since X ∈ Dj (Q),
we have ρX (e, f ) 6= 0, so σβ(e, f ) 6= 0. It follows that θ∗β |[φc′, φd ′] is injective. In
other words, β ∈ D0

j (Q) as claimed. �

We can summarise what we have shown as follows. Recall that Di (Q) is the set
of subsurfaces, X, for which ψ∗X |[c, d] is injective for some (or equivalently any)
i-th side, [c, d], of Q.

Proposition 12.8. For any i , the set D0
i (Q) is either empty or consists of a single

curve γi ∈ UG0. If it is empty, then there is a unique complexity-1 subsurface
Yi ∈ Di (Q). The set of γi are all disjoint, and they form a big multicurve τ(Q). The
Yi are also disjoint, and are precisely the complexity-1 components of τ(Q).

We note, in particular, that γi or Yi is completely determined intrinsically by any
i-th side of Q, without reference to Q itself.

13. Flats in M∗(6)

In this section, we restrict to the case where M(6)=M(6) is the marking graph,
and consider flats in the (extended) asymptotic cone. The parameters now depend
only on ξ(6).

First, we consider a particular case arising from complete multicurves. Suppose
that τ ⊆ UG0 is a (nonstandard) complete multicurve. In other words, τ has ξ
components and cuts 6 into S0,3’s. In this case, each factor is a copy of R∗, so
T ∗(τ ) is isomorphic to (R∗)ξ. We refer to T ∗(τ ) as an extended Dehn twist flat.

More generally, if τ is big (that is each component of the complement is an S0,3,
S0,4, or S1,1), then again UX (τ ) has ξ elements, and T ∗(τ ) is a direct product of ξ
R∗-trees.

If X ∈ UX , then M∗(X) and G∗(X) have preferred basepoints. These are defined
as follows. Fix any a ∈ M(6) and let eX ∈ M∗(X) be the limit of the points
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ψXζ (a) ∈M∗(Xζ ). This limit is independent of a. We similarly define fX ∈G∗(6)

as the limit of θXζ (a) (or equivalently, as fX = χ
∗eX ). Let M∞(X) and G∞(X) be

the components containing eX and fX respectively. Using Lemma 11.1, one sees
that these are isomorphic to the asymptotic cones defined intrinsically on a standard
surface of the topological type of X (unless X is an annulus, in which case, they
are both isometric copies of R). Note that θ∗X (M

∞(6))⊆G∞(6). We will denote
the restriction of θ∗X to M∞(6) by θ∞X .

If τ is a complete multicurve, we write T∞(τ ) = T ∗(τ ) ∩M∞(6). This is
either empty or isomorphic to Rξ. In the latter case, this is naturally identified with
T ∞(τ )— the direct product of M∞(X) for X ∈ UX T (τ ).

Definition. A Dehn twist flat in M∞(6) is a nonempty set of the form T ∗(τ )∩
M∞(6), where τ ⊆ UG0(τ ) is a complete multicurve.

(We will explain the general term “flat” in this context below.)
By Lemma 11.1, up to the action of U Map(6), we can take τ to be standard.

One way to construct T∞(τ ) in this case is as follows. Recall that G(τ ) ∼= Zξ is
the subgroup of Map(6) generated by Dehn twists about the components of τ . Let
a be any element of M(6). The orbit, Ga, is a bounded Hausdorff distance from
T (τ ), and so T∞(τ ) is the limit of Ga in the asymptotic cone M∞(6). The natural
map from Zξ ∼= G to Ga limits on an isomorphism from Rξ to T∞(τ ), where we
view Rξ as the asymptotic cone of Zξ.

More generally, if τ is a big multicurve, then T∞(τ )= T ∗(τ )∩M∞(6) is either
empty or a direct product of ξ R-trees. In the latter case, it will contain many flats.
We aim to show that every (maximal dimensional) flat in M∞(6) has this form.
First, we consider the case of an S1,1 or S0,4.

Suppose that 6 is an S1,1 or S0,4. In this case, G(6) is a Farey graph, and (up
to quasi-isometry) M(6) is the dual 3-valent tree (that is the dual to the Farey
complex obtained by attaching a 2-simplex to every 3-cycle in G(6)). To each
γ ∈G0(6) we can associate a bi-infinite geodesic, or axis, in M(6). Up to bounded
Hausdorff distance, we can identify this axis with the space T (γ )= T ({γ }) defined
in Section 9, which we can, in turn, identify up to quasi-isometry, with M(γ )=G(γ ).
Any two distinct axes meet in at most a single edge of M(6).

As noted before, in this case, M∗(6) and G∗(6) are both R∗-trees. If γ ∈
UG0(6), we get a closed convex subset T ∗(γ )⊆M∗(6), which can be identified
with M∗(γ ) = G∗(γ ) ∼= R∗. If α, β ∈ UG0(6) are distinct, then T ∗(α) ∩ T ∗(β)
consists of at most one point. The gate map ω∗γ :M

∗(6)→ T ∗(γ ) is the limit of
subsurface projection.

We now want to describe flats more generally. In this context, we make the
following definition:

Definition. A flat in M∗(6) is a closed convex subset median isomorphic to Rξ.
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Note that, in the case of a median metric space, this notion is equivalent to the
notion of a flat as defined in Section 3. (In particular, “flats” are always assumed
to have maximal rank.) In fact, we know that M∗(6) is bi-Lipschitz equivalent
to a median metric space, so with respect to this median metric, the two notions
coincide.

Let 8 ⊆M∞(6) be a flat. We identify 8 with Rξ via a median isomorphism.
Given i ∈ {1, . . . , ξ}, let L i ⊆8 be an i-th coordinate line. (Note that two such are
parallel. Moreover, they are determined up to permutation of the indices i .) Let
Di (8)= D(L i ), that is, the set of X ∈ UX (6) such that ψ∞X |L i is injective. (This
is independent of the choice of L i .) We similarly define D0

i (8)⊆ UG0(6), which
we can identify as a subset of Di (8).

We now bring Proposition 12.8 into play. Note that if Q is any ξ -cube in 8, then
Di (Q) ⊇ Di (8). In fact, there is some ξ -cube Q0 ⊆ 8, with Di (Q0) = Di (8)

for all i , and so Di (Q) = Di (8) for any cube in 8 bigger than Q0 (that is, with
Q0⊆hull(Q)). In particular, |D0

i (8)|≤1. Let I (8)={i |D0
i (8) 6=∅}. If i ∈ I (8),

write D0
i (8)= {γi }, and let τ(8)= {γi | i ∈ I (8)}. Thus, τ = τ(8)= τ(Q0) is a

big multicurve. If Q is any bigger cube, then Lemma 12.6 tells us that Q ⊆ T∞(τ ).
Since hull(Q) is exhausted by such hulls, we conclude:

Proposition 13.1. If 8 ⊆ M∞(6) is a flat, then τ(8) is a big multicurve, and
8 ⊆ T∞(τ (8)). Moreover, if Y ∈ UX N (τ (8)), then Y ∈ Di (8) for some i ∈
{1, . . . , ξ} \ I (8).

Note also, as in Proposition 12.8, that each Y ∈ UX (τ ) lies in Di (8) for some
unique i /∈ I (8).

Note that, applying Lemma 12.7 to a large cube in 8, we see that if γ ∈ D0
i (8),

then for all j ∈ {1, . . . , ξ} \ I (8) if X ∈ Dj (8) is an S1,1 or S0,4, and i 6= j, then
γ ∧ X (since the second possibility is ruled out by the fact that D0

j (8)=∅).
Next, we aim to describe when two flats meet in a codimension-1 plane (neces-

sarily a coordinate subspace).

Lemma 13.2. Let 80,81, be two flats with 80 ∩81 a codimension-1 coordinate
plane. Then τ = τ(80) ∩ τ(81) is a big multicurve. Moreover, |τ(8i ) \ τ | ≤ 1.
If β0 ∈ τ(80) \ τ and β1 ∈ τ(81) \ τ then β0 6= β1 and β0 and β1 lie in the same
complementary component of τ .

Proof. Choose coordinates on80 and81 so that80∩81 is a plane orthogonal to the
1st axis, and so that the other coordinates agree on 80 ∩81. Write Ii = I (8i ) and
τi = τ(8i ). Let τ = τ0∩τ1. Now I0 \{1} = I1 \{1} (since these sets are determined
by lines in 80 ∩81). The only case we need to consider is where 1 ∈ I0 ∩ I1

(otherwise, at least one of τ0 or τ1 agrees with τ and the statement follows). We
aim to show that τ0 and τ1 differ only inside a complexity-1 component of 6 \ τ ,
and it will follow that τ is big.
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So suppose that 1∈ I0∩ I1. Then τ0= τ∪{β0} and τ1= τ∪{β1}. Let Yi ∈UX N (τ )

be the component containing βi .
If Y0 6= Y1, then Y0 ∈ UX N (τ1), so Y0 ∈ Di (81) for some i 6= 1 (as observed

after Proposition 13.1). But Di (80)= Di (81). In other words, we have β0 ≺ Y0,
β0 ∈ D1(80), Y0 ∈ Di (80) and Y0 is an S1,1 or S0,4. It now follows that β0 ∧ Y0,
giving a contradiction.

Thus, Y0 = Y1 = Y, say. Since 80 6=81, we must have β0 6= β1. We claim that
Y is an S1,1 or an S0,4. For suppose not. We use the fact that τ0 and τ1 are big.
Either β0 t β1 or β0∧β1. In the former case, we have β0 t Z for some Z ∈ UX (τ1)

and we get a contradiction as before. In the latter case, we have β0 ≺W for some
W ∈ UX (τ1) and we derive a similar contradiction.

Thus, Y is an S1,1 or S0,4. Since τ0 and τ1 are big, and differ only in the curves
β0, β1, it follows that τ is big. �

Elaborating on the above proof, we see that there are essentially three possibilities
(up to swapping 80 and 81). Let us suppose that 80 and 81 differ in the first
coordinate. We have one of the following:

(1) τ(80)= τ(81)= τ . In this case, there is some Y ∈ UX N (τ ) corresponding
to the first factor of both T (τ0) and T (τ1), so that 80 and 81 project to lines
meeting in a single point in the R-tree M∞(Y ).

(2) τ(80) = τ and τ(81) = τ ∪ {β}. Let Y ∈ UX N (τ ) be the component
containing β. In the R-tree M∞(Y ), 81 projects to the axis corresponding
to β, and 80 projects to a line meeting this axis in a single point.

(3) τ(80)= τ ∪ {β0} and τ(81)= τ ∪ {β1}. Let Y ∈ UX (τ ) be the component
containing β0 and β1. Then 80 and 81 respectively project to the axes in
M∞(Y ) corresponding to β0 and β1. These axes intersect in a single point.

We next want to characterise Dehn twist flats.

Lemma 13.3. Suppose that 8⊆M∞(6) is a flat. Suppose that for each i there is
another flat8i ⊆M∞(6) with8∩8i a codimension-1 coordinate plane orthogonal
to the i-th axis. Then 8 is a Dehn twist flat.

In fact, it is enough to assume the hypothesis for those i ∈ I (8).

Proof. Suppose i ∈ I (8). Let γi ∈τ(8) be the corresponding curve. By Lemma 13.2
and subsequent discussion, we see that τ(8i ) is obtained from τ(8) by deleting
γi and possibly replacing it by another curve in the complementary component of
τ(8)\{γi } that contained γi . But τ(8i ) is big, so either way, it follows that γi must
lie in an S1,1 or S0,4 component of the complement of τ(8)\ {γi }. Put another way,
γi bounds an S0,3 component of 6 \ τ(8) (possibly the same S0,3) on each side.
Since this holds for all i ∈ I (8) (that is for all components of τ(8)) it follows that
each component of 6 \ τ(8) is an S0,3. In other words, τ(8) is complete. �
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For the converse, suppose that 8 is a Dehn twist flat. For simplicity, we can
assume that τ = τ(8) is standard. Let G = G(τ ) ⊆ Map(6) be the subgroup
generated by Dehn twists about the components of τ . Thus G ∼= Zξ. Let UG ≤
U Map(6) be its ultraproduct, and let U0G = UG ∩ U0 Map(6). (Recall, from
Section 5, that U0 Map(6) is defined to be the setwise stabiliser of M∞(6).) Then
U0G acts transitively on 8, preserving the coordinate directions.

Lemma 13.4. Suppose that 8 is a Dehn twist flat. Then if 2 is any codimension-1
coordinate subspace in 8, then there is some Dehn twist flat 9 with 2=8∩9.

Proof. For simplicity, we can assume τ =τ(8) to be standard. Let γ ∈τ be the curve
corresponding to the coordinate direction perpendicular to 2. Let Y ∈ UX (τ \ {γ })
be the component containing γ . Let γ ∈G0(6) be any other standard curve in Y.
Now the axes of β and γ in G∞(Y ) meet in a single point. Let τ ′ = (τ \ {γ })∪{β},
and let 9 = T (τ ′). Then 9 is a Dehn twist flat meeting 8 is a codimension-1
plane parallel to 2. By the homogeneity of 8 described before the statement of the
lemma, this is sufficient to prove the result. �

Putting the above together with Proposition 4.6, we get:

Proposition 13.5. Suppose that 8⊆M∞(6) is a closed subset and that there is a
homeomorphism f : Rξ →8 with the following property. For each codimension-1
coordinate plane H ⊆ Rξ there is a closed subset 9 ⊆ M∞(6) homeomorphic
to Rξ such that f (H) = 8∩9. Then 8 is a Dehn twist flat, and f is a median
isomorphism. Moreover, every Dehn twist flat arises in this way.

In particular, we see that the collection of Dehn twist flats is determined by the
topology of M∞(6), as shown in [Behrstock, Kleiner, Minsky and Mosher 2012].
In fact, we only need an injective map. Moreover, we can take two different surfaces
with the same complexity. In summary, we conclude:

Theorem 13.6. Suppose that6 and6′ are compact surfaces with ξ(6)=ξ(6′)≥2.
Suppose that we have a continuous injective map f : M∞(6)→ M∞(6′) with
closed image. If 8 is a Dehn twist flat in M∞(6), then f (8) is a Dehn twist flat in
M∞(6′).

Note that this applies equally well to any components of M∗(6) and M∗(6′),
since they are all respectively isomorphic to M∞(6) and to M∞(6′).

14. Controlling Hausdorff distance

We begin a general statement, which generalises a construction of [Behrstock,
Kleiner, Minsky and Mosher 2012].

Let (M, ρ) be a metric space. Given subsets, A, B, D ⊆ M, we say that A, B
are r-close on D if A∩ D ⊆ N (B; r) and B ∩ D ⊆ N (A; r). (Thus r-close on M
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means that the Hausdorff distance, hd(A, B), from A to B is at most r .) Let t be a
positive infinitesimal, and let M∗ be the extended asymptotic cone determined by t .
Given e ∈ M∗, let M∞e be the component of M∗ containing e. Let r = 1/t .

Let UP(M) be the ultrapower of the power set, P(M), of M. Given A∈UP(M),
let U A and A∗ ⊆ M∗ be the images of A under the natural maps UP(M) →
P(U(M))→ P(M∗) (as discussed in Section 5).

The following is a simple observation (a similar statement is used in [Behrstock,
Kleiner, Minsky and Mosher 2012]).

Lemma 14.1. Suppose that A, B ∈UP(M), and e∈U A (that is eζ ∈ Aζ for almost
all ζ ). Let e ∈ M∗ be the image of e in M∗ (so that e ∈ A∗). Suppose that ε, R > 0
are positive real numbers. Then A∗, B∗ are ε-close on N (e; R) if and only if , for
all R′ > R and all ε′ > ε, the sets Aζ , Bζ are ε′rζ -close on N (eζ ; R′rζ ) for almost
all ζ .

In particular, if A∗∩M∞e = B∗∩M∞e , then for all R>ε > 0, the sets Aζ , Bζ are
almost always εrζ -close on N (eζ ; Rrζ ). (Here “almost” may depend on ε and R.)
Note that, in the above, only the component, M∞e , of M∗ containing e is relevant.

Lemma 14.2. Suppose that for all R > ε > 0 there is some e ∈ A∗ such that
A∗, B∗ are ε-close on N (e; R). Then, there is some component M0 of M∗ such that
A∗ ∩M0

= B∗ ∩M0
6=∅.

Proof. Given any n ∈ N, there is some en such that A∗, B∗ are 1/(2n)-close on
N (en; 2n). Write en = (en,ζ )ζ . Let Zn be the set of ζ ∈ Z such that Aζ , Bζ are
rζ/n-close on N (en,ζ ; nrζ ). Thus, for all n, Zn has measure 1. Given ζ ∈ Z, let
m(ζ )=max({n |ζ ∈Zn}∪{0})∈N∪{∞}. Let p :Z→N be any map with p(ζ )→∞
(for example, any injective map from Z to N). Let n(ζ )= min{m(ζ ), p(ζ )} ∈ N.
Note that n(ζ )→∞ (since for any n ∈N, p(ζ ) > n almost always, and ζ ∈ Zn so
that m(ζ )> n almost always). Let eζ = en(ζ ),ζ , and let e be the image of (eζ )ζ in A∗.
Now, for all n, Aζ , Bζ are almost always rζ/n-close on N (eζ ; nrζ ), so A∗, B∗ are
1/n-close on N (e; n). Since this holds for all n, we have A∗∩M∞e = B∗∩M∞e 6=∅,
as required. �

Suppose now that E and F are collections of subsets of M. We write UE and
UF for their respective ultrapowers.

We suppose:

(S1) E is (coarsely) connected for all E ∈ E .

(S2) If F, F′ ∈ UF and there is some component M0 of M∗ such that F∗ ∩M0
=

(F ′)∗ ∩M0
6=∅, then F = F′.

(S3) For all E ∈ UE , and for all components M0 of M∗, there is some F ∈ UF
such that E∗ ∩M0

= F∗ ∩M0.
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In fact, we only really require (S3) if E∗ ∩M0
6=∅.

(In (S1), “coarsely connected” can be taken to mean that N (E; s) is connected
for some fixed s ∈ [0,∞)⊆ R.)

Lemma 14.3. If E,F satisfy (S1)–(S3) above, then there is some k > 0 such that
for all E ∈ E , there is some F ∈ F , such that hd(E, F)≤ k.

Proof. Suppose not. Let ε > 0. Given any ζ ∈Z , there is some Eζ ∈ E such that for
all F ∈ F , hd(Eζ , F) > εrζ . Let E = (Eζ )ζ ∈ UE . Let eζ be any element of Eζ
(so that e ∈ E∗). By (S3), there is some F ∈ UF such that E∗ ∩M∞e = F∗ ∩M∞e .
In particular, for all R > 4ε, we have that Eζ , Fζ are almost always εrζ/2-close on
N (eζ ; 2Rrζ ). But hd(Eζ , Fζ ) > εrζ , so there is some e′ζ ∈ Eζ such that Eζ , Fζ are
not εrζ/2-close on N (e′ζ ; 2Rrζ ). By (S1), we can find qζ , q ′ζ ∈ Eζ with ρ(qζ , q ′ζ )
bounded such that Eζ , Fζ are εrζ/2-close on N (qζ ; 2Rrζ ) but not on N (q ′ζ ; 2Rrζ ).
But by (S3) again, there is almost always some F ′ζ ∈ F such that Eζ , F ′ζ are εrζ/2-
close on N (q ′ζ ; 2Rrζ ). Clearly F ′ζ 6= Fζ . It follows that Fζ , F ′ζ are εrζ -close on
N (qζ ; Rrζ )⊆ N (qζ ; 2Rrζ )∩N (q ′ζ ; 2Rrζ ). (Almost always, ρ(qζ , q ′ζ ) < Rrζ .) Let
F′ = (F ′ζ )ζ . We see that F∗, (F ′)∗ are ε-close on N (q; R). Since R > 4ε > 0 were
arbitrary, it follows from Lemma 14.2 that there is some component, M0, of M∗

such that F∗ ∩ M0
= (F ′)∗ ∩ M0

6= ∅. By (S2), we have F = F′. But F ′ζ 6= Fζ
almost always, giving a contradiction. �

We have the following criterion to verify (S2).
Given A, B ⊆ M, we say that B linearly diverges from A if there are constants

k, t ≥ 0 such that for all r ≥ 0 and all x ∈ B, there is some y ∈ B with ρ(y, A)≥ r
and ρ(x, y)≤ kr+ t . We say that a collection F of subsets of M linearly diverges if
given any distinct A, B ∈ F , B linearly diverges from A, with k, t uniform over F .

Lemma 14.4. If a family F of subsets linearly diverges, then it satisfies (S2) above.

Proof. Suppose that A, B ∈UF and A∗∩M0
= B∗∩M0

6=∅, for some component
M0 of M∗. If e ∈ B∗ ∩M0, then we have eζ ∈ Bζ with eζ → e. Setting ε = 1 and
R > 3k, we have that Aζ and Bζ are almost always rζ -close on N (e; Rrζ ). If Aζ 6=
Bζ , then there is some y ∈ Bζ , with ρ(y, Aζ )≥ 2rζ and ρ(eζ , y)≤ 2krζ + t < 3krζ
almost always. Thus, y ∈ N (e; Rrζ ), so we get the contradiction that ρ(y, Aζ )≤ rζ .
Thus Aζ = Bζ almost always, that is, A= B. �

Finally, we apply this to the marking complexes to show that coarse Dehn twist
flats get sent (close) to coarse Dehn twist flats under a quasi-isometric embedding.

Suppose that 6 and 6′ are compact surfaces with ξ = ξ(6)= ξ(6′). Suppose
that φ :M(6)→M(6′). This gives rise to a continuous map φ∗ :M∗(6)→M∗(6′)

with closed image. In fact, each component M∗e(6) of M∗(6) gets sent into the
component M∗φ∗(e)(6

′) of M∗(6′). Moreover, distinct components get sent into
distinct components.
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Let F(6) be the set of coarse twist flats, T (τ ), as τ ranges over all complete
multicurves, τ . This satisfies (S1). Also, it is linearly divergent, by Lemma 9.9,
and so therefore satisfies (S2) by Lemma 14.4. Note that a Dehn twist flat in a
component M0 of M∗(6) is by definition a nonempty set of the form F∗ ∩M0 for
some F ∈ UF(6). The same discussion applies to F(6′).

Let E = {φ(F) | F ∈ F(6)}. We claim that E,F(6′) satisfies (S3) with
M =M(6′).

Suppose E∈UE . Then E= (φWζ )ζ , where Wζ ∈F(6). Thus E∗=φ∗W ∗, where
W = (Wζ )ζ . Suppose that M0 is a component of M∗(6′)with E∗∩M0

6=∅. Choose
any e ∈ W ∗ with φ∗e ∈ M0. Thus, M0

=M∗φ∗(e)(6
′). We see that φ∗(M∗e(6)) =

M0
∩φ∗(M∗(6)). Now W ∗∩M∗e(6) is a Dehn twist flat in M0, so by Theorem 13.6,

S∗ ∩ M0
= φ(W ∗)∩ M0

= φ(W ∗)∩M∗e(6) is a Dehn twist flat in M0. In other
words, there is some F ∈ UF(6′) with F∗∩M0

= E∗∩M0. This verifies property
(S3) for E,F(6′).

Lemma 14.5. Suppose that6 and6′ are compact orientable surfaces with ξ(6)=
ξ(6′)≥ 2, and that φ :M(6)→M(6′) is a quasi-isometric embedding. Then there
is some k ≥ 0 such that if τ is a complete multicurve in 6, then there is a complete
multicurve τ ′ in 6′ such that hd(T (τ ′), φT (τ ))≤ k.

Proof. We apply Lemma 14.3 to the sets E = {φ(F) | F ∈ F(6)} and F = F(6′).
We have verified that E and F satisfy (S1)–(S3). �

As we have stated it (to keep the logic of the argument simpler) the bound k might
depend on the particular map φ. In fact, it can be seen to depend only on ξ and the
parameters of φ. For this, fix some parameters of quasi-isometry, and now take E
to the set of all images φ(F), both as F ranges of the set of coarse Dehn twist flats,
F(6), and as φ ranges over all quasi-isometric embeddings from M(6) to M(6′)

with these parameters. To verify (S3) we take E= (φζWζ )ζ and apply Theorem 13.6,
to the limiting map φ∗ of (φζ )ζ . The same argument now gives us a uniform constant
k independent of any particular φ. (See the remark at the end of Section 6.)

15. Rigidity of the marking graph

In this section, we show that, modulo a few exceptional cases, a quasi-isometric
embedding between mapping class groups is a bounded distance from a left mul-
tiplication (hence a quasi-isometry). This strengthens the result of [Hamenstädt
2005; Behrstock, Kleiner, Minsky and Mosher 2012].

Let (X, ρ) be a geodesic space. Given A, B ⊆ X , write A ∼ B to mean that
hd(A, B) <∞. Clearly, this is an equivalence relation, and we write B(X) for
the set of ∼-classes. Let Q(X) ⊆ B(X) denote the set of ∼-classes of images of
bi-infinite quasigeodesics.
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If A, B ∈ B(X), we write A ≤ B to mean that some representative of A is
contained in some representative of B. This “coarse inclusion” defines a partial
order on B(X).

We say that two sets A, B ⊆ X have coarse intersection if there is some r ≥ 0
such that for all s ≥ r , N (A; r)∩ N (B; r)∼ N (A; s)∩ N (B; s) (cf., [Behrstock,
Kleiner, Minsky and Mosher 2012]). Clearly, this depends only on the ∼-classes of
A and B, and determines an element of B(X), denoted A∧ B.

Note that if φ : X→Y is a quasi-isometric embedding of X into another geodesic
space, Y, then φ induces an injective map from B(X) to B(Y ). Note that this respects
inclusion and coarse intersection.

Suppose now that 0 is a group acting by isometry on X. We say that 0
acts discretely if for some (or equivalently any) a ∈ X and any r ≥ 0, the set
{g ∈ 0 | ρ(a, ga)≤ r} is finite. (In other words, a has finite stabiliser and locally
finite orbit.) We will assume the action to be discrete here.

Any subgroup, G ≤0 determines an element B(G) of B(X), namely the ∼-class
of any G-orbit. If G ≤ H ≤ 0, then B(G) ≤ B(H), with equality if and only if
G has finite index in H. In fact, if G, H ≤ 0, then B(G) = B(H) if and only
if G, H are commensurable in 0 (i.e., G ∩ H has finite index in both G and H ).
More generally, for any G, H ≤ 0, B(G) and B(H) have coarse intersection, and
B(G∩H)= B(G)∩ B(H). Note that B(G) is the class of bounded sets if and only
if G is finite. Also, the class B(G) contains a bi-infinite quasigeodesic if and only
if G is two-ended (virtually Z) and undistorted in X.

Now, let 6 be a compact surface. Note that Map(6) acts discretely on M(6). If
τ ⊆6 is a multicurve, let G(τ )⊆Map(6) be the group generated by twists about
the elements of τ . Thus, G(τ ) ∼= Z|τ |. Write B(τ ) = B(G(τ )). Note that B(τ )
determines τ uniquely. If τ, τ ′ are multicurves, then G(τ ∩τ ′)=G(τ )∩G(τ ′), and
so B(τ ∩ τ ′)= B(τ )∧ B(τ ′). Note that if τ is a complete multicurve, then B(τ ) is
the class of the coarse Dehn twist flat, T (τ ).

Now if γ ∈ G0(6), then we can always find complete multicurves τ, τ ′ with
τ ∩ τ ′ = {γ }. (In fact, we can choose τ, τ ′ with ι(τ, τ ′) uniformly bounded.) If
γ, δ ∈ G0(6), then γ, δ are equal or adjacent in G(6) if and only if there is a
complete multicurve, τ containing both γ and δ. Thus, B(γ ), B(δ)≤ B(τ ).

Suppose now that 6,6′ are compact surfaces with ξ(6)= ξ(6′)≥ 2. Suppose
that φ :M(6)→M(6′) is a quasi-isometric embedding.

Suppose that τ ⊆ 6 is a complete multicurve. Now Lemma 14.5 gives us a
complete multicurve τ ′ ⊆ 6′ with hd(T (τ ′), φT (τ )) bounded and, in particular,
finite. Thus, φ(B(τ )) = B(τ ′). Moreover, this determines τ ′ uniquely, and we
denote it by θτ . Note that, from the remark following Lemma 14.5, we see that
the bound depends only on the complexity of the surfaces and the parameters of
quasi-isometry.
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Suppose that γ ∈ G0(6). Choose complete multicurves τ, τ ′ with τ ∩ τ ′ = {γ }.
Thus B(τ )∧ B(τ ′) = B(γ ) ∈ Q(M(6)), and so B(θτ )∧ B(θτ ′) ∈ Q(M(6′)). It
follows that θτ ∩ θτ ′ consists of a single curve, δ ∈ G0(6′). Note that B(δ) =
φ(B(γ )), and we see that δ is determined by γ . We write it as θγ . We have shown
that there is a unique map, θ :G0(6)→G0(6′) such that B(θγ )=φB(γ ) for all γ ∈
G0(6). Since φ : B(M(6))→ B(M(6′)) is injective, it follows that θ is injective.

Moreover, if γ, δ are equal or adjacent in G(6), then γ, δ ∈ τ for some complete
multicurve τ . So B(γ ), B(δ) ≤ B(τ ), so B(θγ ), B(θδ) ≤ B(θτ ), and so θγ, θδ
are equal or adjacent in G(6′). In other words, θ gives an injective embedding of
G(6) into G(6′).

We now use the following fact from [Shackleton 2007]:

Theorem 15.1. Suppose that6 and6′ are compact surfaces with ξ(6)=ξ(6′)≥4.
If θ : G(6)→ G(6′) is an injective embedding, then 6 = 6′ and there is some
g ∈Map(6) such that θγ = gγ for all γ ∈ G0(6). The same conclusion holds if
6,6′ are both an S2,0; if both an S0,6; if both an S0,5; or if at least one is an S1,3,
and the other has complexity ξ = 3.

Applying this to our situation, we see that 6 = 6′, and that there is some
g∈Map(6)with θγ =gγ for all g∈G0(6). After postcomposing with g−1, we may
as well assume that g is the identity. In particular, it follows that B(τ )= φ(B(τ ))
for all complete multicurves τ in 6. Now Lemma 14.5 gives us a uniform k such
that hd(T (τ ′), φT (τ )) ≤ k for some multicurve τ ′ in 6. But we now know that
τ ′ = τ , and so we deduce that hd(T (τ ), φT (τ ))≤ k for all multicurves, τ .

Now if x ∈M(6), we can always find τ, τ ′ with τ ∩ τ ′ =∅, and with ι(τ, τ ′),
ρ(x, T (τ )) and ρ(x, T (τ ′)) all uniformly bounded. It follows that φx is a bounded
distance from both φT (τ ) and φT (τ ′) and so ρ(φx, T (τ )) and ρ(φx, T (τ ′)) are
also uniformly bounded. But T (τ ) and T (τ ′) coarsely intersect in the class of
bounded sets. Since there are only finitely many possibilities for the pair τ, τ ′ up to
the action of Map(6) we can take the various constants to be uniform. This shows
that ρ(x, φx) is bounded.

We have shown:

Theorem 15.2. Suppose that6 and6′ are compact surfaces with ξ(6)=ξ(6′)≥4,
and that φ :M(6)→M(6′) is a quasi-isometric embedding. Then 6 = 6′ and
there is some g ∈ Map(6) such that for all a ∈ M(6), we have ρ(φa, ga) ≤ k,
where k depends only on ξ(6)= ξ(6′) and the parameters of quasi-isometry of φ.

(Note that if6,6′ are compact surfaces and there is a quasi-isometric embedding
of M(6) into M(6′), then certainly ξ(6)≤ ξ(6′), since the complexity, ξ = ξ(6),
is the maximal dimension of a quasi-isometrically embedded copy of Rξ in M(6).
It is not clear when a quasi-isometric embedding exists if ξ(6) < ξ(6′).)
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One can also describe the lower complexity cases. Note that complexity ξ = 3
corresponds to one of S2,0, S1,3 and S0,6. Suppose that ξ(6)= ξ(6′)= 3. Then the
result of [Shackleton 2007], quoted as Theorem 15.1 here, tells us if S1,3 ∈ {6,6

′
},

then again 6 =6′ in which case, the conclusion of the theorem holds. Otherwise,
it is necessary to assume that 6 =6′, and then the conclusion holds. Note that, in
fact, the centre of Map(S2,0) is Z2, generated by the hyperelliptic involution. The
quotient Map(S2,0)/Z2 is isomorphic to Map(S0,6). Thus, M(S2,0) and M(S0,6) are
quasi-isometric. Of course, the above allows us to describe the quasi-isometric
embeddings between them up to bounded distance, as compositions of maps of the
above type.

Suppose that ξ(6)= ξ(6)=2. In this case6∈{S1,2, S0,5}. If6=6′= S0,5 then
the result again holds (using Theorem 15.1). However, if 6 =6′ = S1,2, then the
conclusion of Theorem 15.1 fails without further hypotheses; see [Shackleton 2007].
Note however, that the centre of Map(S1,2) is Z2, and the quotient is isomorphic to
the index-5 subgroup of Map(S0,5)which fixes a boundary curve. Therefore M(S1,2)

is quasi-isometric to M(S0,5), and this fact allows us again to describe all quasi-
isometric embeddings between the marking complexes of surfaces of complexity 2
up to bounded distance. In particular, they are again all quasi-isometries.

The complexity-1 case corresponds to S1,1 or S0,4. In these cases the mark-
ing complexes are quasitrees, and there are uncountably many classes of quasi-
isometries between them up to bounded distance. Finally, the mapping class groups
of S0,3, S0,2, S0,1 and S0,0 are all finite.

Note that this gives a complete quasi-isometry classification of the groups
Map(6)— they are all different apart from the classes {S2,0, S0,6}, {S1,2, S0,5},
{S1,1, S1,0, S0,4} and {S0,3, S0,2, S0,1, S0,0}.
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