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BACH-FLAT ISOTROPIC GRADIENT RICCI SOLITONS

ESTEBAN CALVIÑO-LOUZAO, EDUARDO GARCÍA-RÍO,
IXCHEL GUTIÉRREZ-RODRÍGUEZ AND RAMÓN VÁZQUEZ-LORENZO

We construct examples of Bach-flat gradient Ricci solitons in neutral signa-
ture which are neither half conformally flat nor conformally Einstein.

1. Introduction

Let (M, g) be a pseudo-Riemannian manifold. Let f ∈ C∞(M). We say that
(M, g, f ) is a gradient Ricci soliton if the equation

(1) Hes f +ρ = λ g,

is satisfied for some λ ∈ R, where ρ is the Ricci tensor, and Hes f = ∇d f is the
Hessian tensor acting on f . A gradient Ricci soliton is said to be trivial if the
potential function f is constant, since (1) reduces to the Einstein equation ρ = λg.
Gradient Ricci solitons have been extensively investigated and their classification
under geometric conditions is a problem of current interest. We refer to [Cao 2010]
for more information.

The gradient Ricci soliton equation codifies geometric information of (M, g)
in terms of the Ricci curvature and the second fundamental form of the level sets
of the potential function f . The fact that the Ricci tensor completely determines
the curvature tensor in the locally conformally flat case has yielded some results
in this situation [Cao and Chen 2012; Munteanu and Sesum 2013; Petersen and
Wylie 2010]. Any locally conformally flat gradient Ricci soliton is locally a warped
product in the Riemannian setting [Fernández-López and García-Río 2014]. The
higher signature case, however, allows other possibilities when the level sets of
the potential function are degenerate hypersurfaces [Brozos-Vázquez et al. 2013].
Four-dimensional half conformally flat (i.e., self-dual or anti-self-dual) gradient
Ricci solitons have been investigated in the Riemannian and neutral signature cases
[Brozos-Vázquez and García-Río 2016; Chen and Wang 2015]. While they are
locally conformally flat in the Riemannian situation, neutral signature allows other
examples given by Riemannian extensions of affine gradient Ricci solitons.

MSC2010: primary 53C25; secondary 53C20, 53C44.
Keywords: gradient Ricci soliton, Bach tensor, Riemannian extension, affine surface.

75

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2018.293-1
http://dx.doi.org/10.2140/pjm.2018.293.75


76 CALVIÑO-LOUZAO, GARCÍA-RÍO, GUTIÉRREZ-RODRÍGUEZ AND VÁZQUEZ-LORENZO

Let W be the Weyl conformal curvature tensor of (M, g). The Bach tensor,
Bi j =∇

k
∇
`Wki j`+

1
2ρ

k`Wki j` , is conformally invariant in dimension 4. Bach-flat
metrics contain half conformally flat and conformally Einstein metrics as special
cases [Besse 1987]. Hence, a natural problem is to classify Bach-flat gradient Ricci
solitons. The Riemannian case was investigated in [Cao et al. 2014; Cao and Chen
2013] both in the shrinking and steady cases. In all situations the Bach-flat condition
reduces to the locally conformally flat one under some natural assumptions.

Our main purpose in this paper is to construct new examples of Bach-flat gradient
Ricci solitons in neutral signature. The corresponding potential functions have
degenerate level set hypersurfaces and their underlying structure is never locally
conformally flat, in sharp contrast with the Riemannian situation. These metrics are
realized on the cotangent bundle T ∗6 of an affine surface (6, D), and they may
be viewed as perturbations of the classical Riemannian extensions introduced by
Patterson and Walker [1952].

Here is a brief guide to some of the most important results of this paper. In
Theorem 3.1 we show that, for any affine surface (6, D) admitting a parallel
nilpotent (1, 1)-tensor field T, the modified Riemannian extension (T ∗6, gD,T,8) is
Bach-flat. Moreover we show that Bach-flatness is independent of the deformation
tensor field 8, thus providing an infinite family of Bach-flat metrics for any initial
data (6, D, T ). Affine surfaces admitting a parallel nilpotent (1, 1)-tensor field
T are characterized in Proposition 3.3 by the recurrence of the symmetric part of
the Ricci tensor, being ker T a parallel one-dimensional distribution whose integral
curves are geodesics.

The previous construction is used in Theorem 4.3 to show that, for any smooth
function h ∈ C∞(6), there exist appropriate deformation tensor fields 8 such
that (T ∗6, gD,T,8, f = h ◦ π) is a steady gradient Ricci soliton if and only if
dh(ker T )= 0. This provides infinitely many examples of Bach-flat gradient Ricci
solitons in neutral signature.

Theorems 5.1 and 6.1 show that (T ∗6, gD,T,8) is generically strictly Bach-flat,
i.e., neither half conformally flat nor conformally Einstein. Moreover, Theorem 5.1
is used in Proposition 5.2 to construct new examples of anti-self-dual metrics.
Turning to gradient Ricci solitons, we show in Theorem 5.4 the existence of anti-
self-dual steady gradient Ricci solitons which are not locally conformally flat.

The paper is organized as follows. Some basic results on the Bach tensor and
gradient Ricci solitons are introduced in Section 2, as well as a sketch of the
construction of modified Riemannian extensions gD,8,T . We use these metrics in
Section 3 to show that, for any parallel tensor field T on (6, D), gD,8,T is Bach-flat
if and only if T is either a multiple of the identity or nilpotent (see Theorem 3.1).
In Section 4 we show that for each initial data (6, D, T ) there are an infinite
number of Bach-flat steady gradient Ricci solitons (see Theorem 4.3). Nontriviality
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of the examples is obtained after an examination of the half conformally flat
condition (see Section 5) and the conformally Einstein property (see Section 6) of
the modified Riemannian extensions introduced in Section 2. Finally, we specialize
this construction in Section 7 to provide some illustrative examples.

2. Preliminaries

Let (Mn, g) be a pseudo-Riemannian manifold with Ricci curvature ρ and scalar
curvature τ . Let W denote the Weyl conformal curvature tensor and define

W [ρ](X, Y )=
∑

i j

εiε j W (Ei , X, Y, E j )ρ(Ei , E j ),

where {Ei } is a local orthonormal frame and εi = g(Ei , Ei ). Then the Bach tensor
is defined (see [Bach 1921]) by

(2) B= div1 div4 W + n−3
n−2

W [ρ],

where div is the divergence operator.
Let S = ρ − τ/(2(n − 1)) g denote the Schouten tensor of (M, g). Let C be

the Cotton tensor, Ci jk = (∇iS) jk − (∇ jS)ik ; it provides a measure of the lack
of symmetry on the covariant derivative of the Schouten tensor. Since div4 W =
−(n − 3)/(n − 2)C, the Bach and the Cotton tensors of any four-dimensional
manifold are related by B = 1

2(− div1 C+W [ρ]).
The Bach tensor, which is trace-free and conformally invariant in dimension

n = 4, has been broadly investigated in the literature, both from the geometrical
and physical viewpoints (see, for example, [Chen and He 2013; Derdzinski 1983;
Dunajski and Tod 2014]). It is the gradient of the L2 functional of the Weyl curvature
on compact manifolds. The field equations of conformal gravity are equivalent to
setting the Bach tensor equal to zero and it is also central in the study of the Bach
flow, a geometric flow which is quadratic on the curvature and whose fixed points
are the vacuum solutions of conformal Weyl gravity [Bakas et al. 2010].

Besides the half conformally flat metrics and the conformally Einstein ones, there
are few known examples of strictly Bach-flat manifolds, meaning the ones which are
neither half conformally flat nor conformally Einstein (see, for example, [Abbena
et al. 2013; Hill and Nurowski 2009; Leistner and Nurowski 2010]). Motivated by
this lack of examples, we first construct new explicit four-dimensional Bach-flat
manifolds of neutral signature.

Riemannian extensions. In order to introduce the family of metrics under consid-
eration, we recall that a pseudo-Riemannian manifold (M, g) is a Walker manifold
if there exists a parallel null distribution D on M. Walker metrics, also called
Brinkmann waves in the literature, have been widely investigated in the Lorentzian
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setting (pp-waves being a special class among them). They appear in many geomet-
rical situations showing a specific behavior without Riemannian counterpart (see
[Brozos-Vázquez et al. 2009]).

Let (M, g,D) be a four-dimensional Walker manifold of neutral signature and
D of maximal rank. Then there are local coordinates (x1, x2, x1′, x2′) so that the
metric g is given (see [Walker 1950]) by

(3) g = 2 dx i
◦ dxi ′ + gi j dx i

◦ dx j ,

where “◦” denotes the symmetric product ω1 ◦ω2 :=
1
2(ω1⊗ω2+ω2⊗ω1) and

(gi j ) is a 2× 2 symmetric matrix whose entries are functions of all the variables.
Moreover, the parallel degenerate distribution is given by D = span{∂x1′

, ∂x2′
}.

A special family of four-dimensional Walker metrics is provided by the Riemann-
ian extensions of affine connections to the cotangent bundle of an affine surface.
Next we briefly sketch their construction. Let T ∗6 be the cotangent bundle of
a surface 6 and let π : T ∗6 → 6 be the projection. Let p̃ = (p, ω) denote a
point of T ∗6, where p ∈6 and ω ∈ T ∗p6. Local coordinates (x i ) in an open set U
of 6 induce local coordinates (x i , xi ′) in π−1(U ), where one sets ω =

∑
xi ′ dx i.

The evaluation functions on T ∗6 play a central role in the construction. They are
defined as follows. For each vector field X on 6, the evaluation of X is the real
valued function ιX : T ∗6→ R given by ιX (p, ω)= ω(X p). Vector fields on T ∗6
are characterized by their action on evaluations ιX and one defines the complete lift
to T ∗6 of a vector field X on 6 by XC(ιZ)= ι[X, Z ], for all vector fields Z on 6.
Moreover, a (0, s)-tensor field on T ∗6 is characterized by its action on complete
lifts of vector fields on 6.

Next, let D be a torsion-free affine connection on 6. The Riemannian exten-
sion gD is the neutral signature metric gD on T ∗6 characterized by the identity
gD(XC , Y C) = −ι(DX Y + DY X) (see [Patterson and Walker 1952]). They are
expressed in the induced local coordinates (x i , xi ′) as follows:

(4) gD = 2 dx i
◦ dxi ′ − 2xk′

D0i j
kdx i
◦ dx j ,

where D0i j
k denote the Christoffel symbols of D. The geometry of (T ∗6, gD) is

strongly related to that of (6, D). Recall that the curvature of any affine surface is
completely determined by its Ricci tensor ρD . Moreover, the symmetric and skew-
symmetric parts given by ρD

sym(X, Y )= 1
2{ρ

D(X, Y )+ ρD(Y, X)} and ρD
sk(X, Y )=

1
2{ρ

D(X, Y )− ρD(Y, X)} play a distinguished role.
Let 8 be a symmetric (0, 2)-tensor field on 6. Then the deformed Riemannian

extension, gD,8 = gD +π
∗8, is a first perturbation of the Riemannian extension.

A second one is obtained as follows. Let T = T k
i dx i

⊗ ∂xk be a (1, 1)-tensor field
on 6. Its evaluation ιT defines a one-form on T ∗6 characterized by ιT (XC) =

ι(T X). The modified Riemannian extension gD,8,T is the neutral signature metric
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on T ∗6 defined (see [Calviño-Louzao et al. 2009]) by

(5) gD,8,T = ιT ◦ ιT + gD +π
∗8,

where 8 is a symmetric (0, 2)-tensor field on 6. In local coordinates one has

gD,8,T = 2 dx i
◦ dxi ′ +

{1
2 xr ′xs′(T r

i T s
j + T r

j T s
i )− 2xk′

D0i j
k
+8i j

}
dx i
◦ dx j .

The case when T is a multiple of the identity (T = c Id, c 6= 0) is of special interest.
It was shown in [Calviño-Louzao et al. 2009] that for any affine surface (6, D), the
modified Riemannian extension gD,8,c Id is an Einstein metric on T ∗6 if and only
if the deformation tensor 8 is the symmetric part of the Ricci tensor of (6, D).
Moreover, a slight generalization of the modified Riemannian extension allows a
complete description of self-dual Walker metrics as follows.

Theorem 2.1 [Calviño-Louzao et al. 2009; Díaz-Ramos et al. 2006]. A four-
dimensional Walker metric is self-dual if and only if it is locally isometric to
the cotangent bundle T ∗6 of an affine surface (6, D), with metric tensor

g = ιX (ι id ◦ι id)+ ι id ◦ιT + gD +π
∗8,

where X, T, D and 8 are a vector field, a (1, 1)-tensor field, a torsion-free affine
connection and a symmetric (0, 2)-tensor field on 6, respectively.

As a matter of notation, we will write ∂k = ∂/∂xk and ∂k′ = ∂/∂xk′ , unless we
want to emphasize some special coordinates. We will let

φk = (∂/∂xk)φ and φk′ = (∂/∂xk′)φ

denote the corresponding first derivatives of a smooth function φ.

Gradient Ricci solitons and affine gradient Ricci solitons. Let (M, g, f ) be a
gradient Ricci soliton. The level set hypersurfaces of the potential function play a
distinguished role in analyzing the geometry of gradient Ricci solitons. Hence we
say that the soliton is nonisotropic if ∇ f is nowhere lightlike (i.e., ‖∇ f ‖2 6= 0),
and that the soliton is isotropic if ‖∇ f ‖2 = 0, but ∇ f 6= 0.

Nonisotropic gradient Ricci solitons lead to local warped product decompositions
in the locally conformally flat and half conformally flat cases, and their geometry
resembles the Riemannian situation [Brozos-Vázquez and García-Río 2016; Brozos-
Vázquez et al. 2013]. The isotropic case is, however, in sharp contrast with the
positive definite setting since ∇ f gives rise to a Walker structure. Self-dual gradient
Ricci solitons which are not locally conformally flat are isotropic and steady (λ= 0
in (1)). Moreover, they are described in terms of Riemannian extensions as follows.

Theorem 2.2 [Brozos-Vázquez and García-Río 2016]. Let (M, g, f ) be a four-
dimensional self-dual gradient Ricci soliton of neutral signature which is not locally
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conformally flat. Then (M, g) is locally isometric to the cotangent bundle T ∗6 of
an affine surface (6, D) equipped with a modified Riemannian extension gD,8,0.

Moreover any such gradient Ricci soliton is steady and the potential function is
given by f = h ◦π for some h ∈ C∞(6) satisfying the affine gradient Ricci soliton
equation

(6) HesD
h +2ρD

sym = 0,

for any symmetric (0, 2)-tensor field 8 on 6.

The previous result relates the affine geometry of (6, D) and the pseudo-
Riemannian geometry of (T ∗6, gD,8,0), allowing the construction of an infinite
family of steady gradient Ricci solitons on T ∗6 for any initial data (6, D, h)
satisfying (6). It is important to remark here that the existence of affine gradient
Ricci solitons imposes some restrictions on (6, D), as shown in [Brozos-Vázquez
et al. 2018] in the locally homogeneous case.

3. Bach-flat modified Riemannian extensions

The use of modified Riemannian extensions with T = c Id allowed the construction
of many examples of self-dual Einstein metrics [Calviño-Louzao et al. 2009]. One
of the crucial facts in understanding the metrics gD,8,c Id is that the (1, 1)-tensor field
T = c Id is parallel with respect to the connection D. Hence, a natural generalization
arises by considering arbitrary tensor fields T which are parallel with respect to the
affine connection D.

Let (6, D, T ) be a torsion-free affine surface equipped with a parallel (1, 1)-
tensor field T. Parallelizability of T guarantees the existence of local coordinates
(x1, x2) on 6 so that

T ∂1 = T 1
1 ∂1+ T 2

1 ∂2,

and
T ∂2 = T 1

2 ∂1+ T 2
2 ∂2,

for some real constants T j
i . Let (T ∗6, gD,8,T ) be the modified Riemannian exten-

sion given by (5). Further note that D and 8 are taken with full generality. Thus,
the corresponding Christoffel symbols D0k

i j and the coefficient functions 8i j are
arbitrary smooth functions of the coordinates (x1, x2).

Our first main result concerns the construction of Bach-flat metrics:

Theorem 3.1. Let (6, D, T ) be a torsion-free affine surface equipped with a par-
allel (1, 1)-tensor field T. Let 8 be an arbitrary symmetric (0, 2)-tensor field on
6. Then the Bach tensor of (T ∗6, gD,8,T ) vanishes if and only if T is either a
multiple of the identity or nilpotent.
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Proof. In order to compute the Bach tensor of (T ∗6, gD,8,T ), first of all observe
that being T -parallel imposes some restrictions on the components T j

i as well as
on the Christoffel symbols of the connection D:

(7) DT = 0⇒



T 1
2

D02
11− T 2

1
D01

12 = 0,

T 1
2

D02
12− T 2

1
D01

22 = 0,

T 2
1

D01
11+ (T

2
2 − T 1

1 )
D02

11− T 2
1

D02
12 = 0,

T 1
2

D01
11+ (T

2
2 − T 1

1 )
D01

12− T 1
2

D02
12 = 0,

T 2
1

D01
12+ (T

2
2 − T 1

1 )
D02

12− T 2
1

D02
22 = 0,

T 1
2

D01
12+ (T

2
2 − T 1

1 )
D01

22− T 1
2

D02
22 = 0.

Then, expressing the Bach tensor Bi j =B(∂i , ∂ j ) in induced coordinates (x i , xi ′),
a long but straightforward calculation shows that

(8) (Bi j )=

 B11 B12

B12 B22
B̃

B̃ 0

,
where

B̃= 1
6

(
(T 1

1 − T 2
2 )

2
+ 4T 1

2 T 2
1
)
· (T 1

1 + T 2
2 ) ·

(
T 1

1 − T 2
2

2T 1
2

2T 2
1

T 2
2 − T 1

1

)
and where the coefficients B11, B12 and B22 can be written in terms of d= det(T )
and t= tr(T ) as follows:

B11=−
1
6

{
10d3
−2
(
t2+13T 2

2 t−15(T 2
2 )

2)d2
+(5t−T 2

2 )(t−T 2
2 )t

2d−(t−T 2
2 )

2t4
}

x2
1′

−
1
6

{
(T 2

1 )
2(30d2

+ t2d− t4)
}

x2
2′

−
1
3

{
(13t− 30T 2

2 )d
2
+ (3t− T 2

2 )t
2d− (t− T 2

2 )t
4}T 2

1 x1′x2′

−
1
3

{(D01
11+ 2 D02

12
)
(t− 2T 2

2 )+ 2T 2
1

D02
22
}
(t2− 4d)t x1′

−
1
3

{D02
11(t− 2T 2

2 )+ 2T 2
1

D02
12
}
(t2− 4d)t x2′

−
1
6

{
10d2
+
(
3t2− 22T 2

2 t+ 14(T 2
2 )

2)d− (t2− 4T 2
2 t+ 2(T 2

2 )
2)t2}811

−
1
3

{
(11t− 14T 2

2 )d− 2(t− T 2
2 )t

2}T 2
1 812

+
1
3

{
t2− 7d

}
(T 2

1 )
2822

−
2
3

(
∂2

D02
11− ∂1

D02
12
)
(4d− t2),
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B12 =−
1
6

{
(13t− 30T 2

2 )d
2
+ (3t− T 2

2 )t
2d− (t− T 2

2 )t
4}T 1

2 x2
1′

+
1
6

{
(17t− 30T 2

2 )d
2
− (2t+ T 2

2 )t
2d+ T 2

2 t
4}T 2

1 x2
2′

+
1
6

{
20d3
+ 4

(
4t2− 15T 2

2 t+ 15(T 2
2 )

2)d2

−
(
3t2+ 2T 2

2 t− 2(T 2
2 )

2)t2d+ 2(t− T 2
2 )T

2
2 t

4}x1′x2′

−
1
3

{D01
12(t− 2T 2

2 )+ 2T 2
1

D01
22
}
(t2− 4d)tx1′

−
1
3

{D02
12(t− 2T 2

2 )+ 2T 2
1

D02
22
}
(t2− 4d)tx2′

−
1
6

{
(11t− 14T 2

2 )d− 2(t− T 2
2 )t

2}T 1
2 811

+
1
6

{
4d2
+
(
6t2− 28T 2

2 t+ 28(T 2
2 )

2)d− (t− 2T 2
2 )

2t2
}
812

+
1
6

{
(3t− 14T 2

2 )d+ 2T 2
2 t

2}T 2
1 822

−
1
3

{(
∂2

D01
11− ∂1

D01
12− ∂2

D02
12+ ∂1

D02
22
)
(t2− 4d)

}
,

B22 =−
1
6

{
30d2
− t4+ t2d

}
(T 1

2 )
2x2

1′

−
1
6

{
10d3
+ 2

(
t2− 17T 2

2 t+ 15(T 2
2 )

2)d2
+ (4t+ T 2

2 )T
2

2 t
2d− (T 2

2 )
2t4
}

x2
2′

+
1
3

{
(17t− 30T 2

2 )d
2
− (2t+ T 2

2 )t
2d+ T 2

2 t
4}T 1

2 x1′x2′

−
1
3

{D01
22(t− 2T 2

2 )+ 2T 1
2

D02
22
}
(t2− 4d)tx1′

+
1
3

{D02
22(t− 2T 2

2 )− 2T 2
1

D01
22
}
(t2− 4d)tx2′

−
1
3(7d− t2)(T 1

2 )
2811

+
1
3

{
(3t− 14T 2

2 )T
1

2 d+ 2T 1
2 T 2

2 t
2}812

−
1
6

{
10d2
−
(
5t2+ 6T 2

2 t− 14(T 2
2 )

2)d+ t4− 2(T 2
2 )

2t2
}
822

−
2
3(∂2

D01
12− ∂1

D01
22)(t

2
− 4d).

Suppose first that the Bach tensor of (T ∗6, gD,8,T ) vanishes. We start analyzing
the case T 1

2 = 0. In this case, the expression of B̃ in (8) reduces to

(9) B̃= 1
6(T

1
1 − T 2

2 )
2
· (T 1

1 + T 2
2 ) ·

(
T 1

1 − T 2
2

0
2T 2

1

T 2
2 − T 1

1

)
.

If T 2
2 = T 1

1 , we differentiate the component B11 in (8) twice with respect to x2′

to obtain T 2
1 T 1

1 = 0. Thus, either T 2
1 = 0 and T is a multiple of the identity, or

T 1
1 = 0 and, in such a case, T is determined by T ∂1 = T 2

1 ∂2 and therefore it is
nilpotent. If T 2

2 6= T 1
1 , then (9) implies that T 2

2 =−T 1
1 . In this case, we differentiate
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the component B22 in (8) twice with respect to x2′ and obtain T 1
1 = 0. Thus, as

before, T is nilpotent.
Next we analyze the case T 1

2 6= 0. We use (7) to express

D01
11 =

T 1
1 −T 2

2
T 1

2

D01
12+

T 2
1

T 1
2

D01
22,

D02
11 =

T 2
1

T 1
2

D01
12,

D02
12 =

T 2
1

T 1
2

D01
22,

D02
22 =

D01
12−

T 1
1 −T 2

2
T 1

2

D01
22.

Considering the component B̃11 in (8),

B̃11 =
1
6(T

1
1 − T 2

2 ) · (T
1

1 + T 2
2 ) ·

(
(T 1

1 − T 2
2 )

2
+ 4T 1

2 T 2
1
)
,

we analyze separately the vanishing of each one of the three factors in B̃11.
Assume that T 2

2 = T 1
1 . In this case, component B̃12 in (8) reduces to B̃12 =

8
3 T 1

2 (T
2

1 )
2T 1

1 ; since we are assuming that T 1
2 6= 0, then either T 2

1 = 0 or T 2
1 6= 0

and T 1
1 = 0. If T 2

1 = 0, the only nonzero component of the Bach tensor is given by

B22 =−(T 1
2 )

2(T 1
1 )

2(3(T 1
1 )

2x2
1′ +811),

from where it follows that T 1
1 = 0 and hence T is determined by T ∂2 = T 1

2 ∂1 and
is nilpotent. If T 2

1 6= 0 and T 1
1 = 0, then we differentiate the component B12 in (8)

with respect to x1′ and x2′ to get T 1
2 T 2

1 = 0, which is not possible since both T 1
2 and

T 2
1 are non-null.

Suppose now that T 2
2 =−T 1

1 . In this case, we differentiate the component B22 in
(8) twice with respect to x1′ and as a consequence we obtain T 1

2 (T
1

2 T 2
1 +(T

1
1 )

2)= 0;
since we are assuming T 1

2 6= 0, it follows that T 2
1 =−(T

1
1 )

2/T 1
2 . Thus, the (1, 1)-

tensor field T is given by T ∂1 = T 1
1 ∂1− (T 1

1 )
2/T 1

2 ∂2 and T ∂2 = T 1
2 ∂1− T 1

1 ∂2, and
therefore it is nilpotent as well.

Finally, suppose that (T 1
1 −T 2

2 )
2
+4T 1

2 T 2
1 = 0; since T 1

2 6= 0, this is equivalent to
T 2

1 =−(T
1

1 − T 2
2 )

2/(4T 1
2 ). Now, we differentiate the component B22 in (8) twice

with respect to x1′ to obtain T 1
2 (T

1
1 + T 2

2 )= 0. Thus, we have T 2
2 =−T 1

1 and T is
given by T ∂1 = T 1

1 ∂1− (T 1
1 )

2/T 1
2 ∂2 and T ∂2 = T 1

2 ∂1− T 1
1 ∂2, which again implies

that T is nilpotent.
To conclude the proof we show the “only if” part. If T is a multiple of the identity,

then (T ∗6, gD,8,T ) is self-dual by Theorem 2.1 and therefore it has vanishing Bach
tensor. Thus, we suppose T is parallel and nilpotent and, in this case, we can
choose a system of coordinates (x1, x2) such that T is determined by T ∂1 = ∂2 and
T ∂2 = 0. Hence, examining (8), clearly B̃ = 0 and, since d = t = 0, one easily
checks that B11 =B12 =B22 = 0, showing that the Bach tensor of (T ∗6, gD,8,T )

vanishes. �
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Remark 3.2. We emphasize that even though the Bach tensor of the metrics gD,8,T

depends on the choice of 8 (as shown in the proof of Theorem 3.1), the existence
of Bach-flat metrics in Theorem 3.1 is independent of the symmetric (0, 2)-tensor
field8, thus providing an infinite family of examples for each initial data (6, D, T ).
Moreover, note that the metrics gD,8,T are generically nonisometric for different
deformation tensor fields 8.

The Bach-flat modified Riemannian extensions in Theorem 3.1 obtained from a
(1, 1)-tensor field of the form T = c Id are not of interest for our purposes since they
all are half conformally flat (see Theorem 2.1). Hence, in what follows we focus
on the case when T is a parallel nilpotent (1, 1)-tensor field and refer to gD,8,T as
a nilpotent Riemannian extension.

Affine connections supporting parallel nilpotent tensors. It is shown in the proof
of Theorem 3.1 that the existence of a parallel nilpotent tensor field T on a torsion-
free affine surface (6, D) imposes some restrictions on D.

Proposition 3.3. Let (6, D, T ) be a torsion-free affine surface equipped with a
nilpotent (1, 1)-tensor field T. If T is parallel, then:

(i) ker T is a parallel one-dimensional distribution whose integral curves are
geodesics of (6, D).

(ii) The symmetric part of the Ricci tensor, ρD
sym, is zero or of rank one and

recurrent, i.e.,
DρD

sym = η⊗ ρ
D
sym,

for some one-form η.

Proof. Let (6, D) be a torsion-free affine surface admitting a parallel nilpotent
(1, 1)-tensor field T. Then there exist suitable coordinates (x1, x2) where T ∂1 = ∂2,
T ∂2 = 0 and it follows from (7) that the Christoffel symbols of D satisfy

(10) D01
12 = 0, D02

12 =
D01

11,
D01

22 = 0, D02
22 = 0.

In such a case the one-dimensional distribution ker T (= span{∂2}) is parallel and
∂2 is a geodesic vector field, thus showing (i). Moreover, the Ricci tensor of any
affine connection given by (10) satisfies

ρD
=

(
∂2

D02
11− ∂1

D01
11

−∂2 D01
11

∂2
D01

11
0

)
,

from where it follows that the symmetric and the skew-symmetric parts of the Ricci
tensor are given by

ρD
sym =

(
∂2

D02
11− ∂1

D01
11
)

dx1
◦ dx1, ρD

sk = ∂2
D01

11 dx1
∧ dx2.



BACH-FLAT ISOTROPIC GRADIENT RICCI SOLITONS 85

Hence ρD
sym is either zero or of rank one. Moreover, a straightforward calculation

of the covariant derivative of the symmetric part of the Ricci tensor gives

(D∂1ρ
D
sym)(∂1, ∂1)= ∂12

D02
11− ∂11

D01
11− 2 D01

11(∂2
D02

11− ∂1
D01

11),

(D∂2ρ
D
sym)(∂1, ∂1)= ∂22

D02
11− ∂12

D01
11,

with the other components being zero. This shows that ρD
sym is recurrent, i.e.,

DρD
sym = η⊗ ρ

D
sym, with recurrence one-form

(11) η =
{
∂1 ln ρD

sym(∂1, ∂1)− 2 D01
11
}

dx1
+ ∂2 ln ρD

sym(∂1, ∂1) dx2,

which proves (ii). �

Remark 3.4. It follows from the expression of ρD
sk in the proof of Proposition 3.3

that any connection given by (10) has symmetric Ricci tensor if and only if
∂2

D01
11 = 0, in which case ρD is recurrent. Now, it follows from the work of

Wong [1964] that any such connection can be described in suitable coordinates
(u1, u2) by

D∂u1∂u1 =
u02

11(u
1, u2)∂u2,

where u02
11(u

1, u2) is an arbitrary function satisfying ∂u2
u02

11(u
1, u2) 6= 0. Further,

the only nonzero component of the Ricci tensor is ρD(∂u1, ∂u1)= ∂u2
u02

11, and the
recurrence one-form ω is given by

(12) ω = ∂u1(ln ∂u2
u02

11)du1
+ ∂u2(ln ∂u2

u02
11)du2.

Further assume that T is a parallel nilpotent (1, 1)-tensor field on (6, D). Then
a straightforward calculation shows that its expression in the coordinates (u1, u2)

is given by T ∂u1 = T 2
1 ∂u2 and T ∂u2 = 0, for some T 2

1 ∈ R, T 2
1 6= 0. Hence, consid-

ering the modified coordinates (u1, u2)= (u1, (T 2
1 )
−1u2) one has that T ∂u1 = ∂u2

and T ∂u2 = 0, and the connection is determined by the only nonzero Christoffel
symbol u02

11. Moreover, it follows from the expression of the recurrence one-form
ω that ω(ker T )= 0 if and only if ∂22

u02
11 = 0.

4. Bach-flat gradient Ricci solitons

Let 8 be a symmetric (0, 2)-tensor field on (6, D, T ). One uses the nilpotent
structure T to construct an associated symmetric (0, 2)-tensor field 8̂ given by
8̂(X, Y ) = 8(T X, T Y ), for all vector fields X, Y on 6. Further, let (x1, x2) be
local coordinates where T ∂1 = ∂2, T ∂2 = 0 and let 8 = 8i j dx i

⊗ dx j. Then 8̂
expresses as 8̂= 8̂i j dx i

⊗ dx j
=822dx1

⊗ dx1.
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Einstein nilpotent Riemannian extensions.
Theorem 4.1. Let (6, D, T ) be an affine surface equipped with a parallel nilpotent
(1, 1)-tensor field T and let 8 be a symmetric (0, 2)-tensor field on 6. Then
(T ∗6, gD,8,T ) is Einstein (indeed, Ricci-flat) if and only if 8̂=−2ρD

sym.

Proof. Let (x1, x2) be local coordinates on 6 so that T ∂1 = ∂2, T ∂2 = 0, and
consider the induced coordinates (x1, x2, x1′, x2′) on T ∗6. A straightforward
calculation shows that the Ricci tensor of any nilpotent Riemannian extension
gD,8,T is determined by

ρ(∂1, ∂1)=8(∂2, ∂2)+ 2ρD
sym(∂1, ∂1),

the other components being zero. Hence the Ricci operator is nilpotent and gD,8,T

has zero scalar curvature. Moreover, the Ricci tensor vanishes if and only if
8(∂2, ∂2)+ 2ρD

sym(∂1, ∂1)= 0. The result now follows. �

Remark 4.2. The Weyl tensor of a pseudo-Riemannian manifold is harmonic if
and only if the Cotton tensor vanishes. Let (6, D, T ) be an affine surface equipped
with a parallel nilpotent (1, 1)-tensor field T and let 8 be a symmetric (0, 2)-tensor
field on 6. Let (x1, x2) be local coordinates on 6 so that T ∂1 = ∂2, T ∂2 = 0,
and consider the induced coordinates (x1, x2, x1′, x2′) on T ∗6. A straightforward
calculation shows that the Cotton tensor of (T ∗6, gD,8,T ) is given by

C(∂1, ∂2, ∂1)=−{∂28(∂2, ∂2)+ 2∂2 ρ
D
sym(∂1, ∂1)},

the other components being zero. Hence (T ∗6, gD,8,T ) has harmonic Weyl tensor if
and only if D̂8=−2 η̂⊗ ρD

sym, where η̂(X)= η(T X), η being the recurrence one-
form given in (11), and D̂8(X, Y ; Z)= D8(T X, T Y ; T Z).

Gradient Ricci solitons on nilpotent Riemannian extensions. From Theorem 2.2,
recall that the affine gradient Ricci soliton equation HesD

h +2ρD
sym=0 determines the

potential function of any self-dual gradient Ricci soliton which is not locally confor-
mally flat, independently of the deformation tensor8. The next theorem shows that,
in contrast with the previous situation, for any h ∈ C∞(6) with dh(ker T )= 0, one
may use the symmetric (0, 2)-tensor field HesD

h +2ρD
sym to determine a deformation

tensor field 8 so that the resulting nilpotent Riemannian extension is a Bach-flat
steady gradient Ricci soliton with potential function f = h ◦π .

Theorem 4.3. Let (6, D, T ) be an affine surface equipped with a parallel nilpotent
(1, 1)-tensor field T and let 8 be a symmetric (0, 2)-tensor field on 6. Let h ∈
C∞(6) be a smooth function. Then (T ∗6, gD,8,T , f =h◦π) is a Bach-flat gradient
Ricci soliton if and only if dh(ker T )= 0 and

(13) 8̂=−HesD
h −2ρD

sym.

Moreover the soliton is steady and isotropic.
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Proof. Let (x1, x2) be local coordinates on 6 so that T ∂1 = ∂2, T ∂2 = 0, and
consider the induced coordinates (x1, x2, x1′, x2′) on T ∗6. Setting f = h ◦π , one
has that Hes f (∂1, ∂1′)+ρ(∂1, ∂1′)= λg(∂1, ∂1′) leads to λ= 0, which shows that the
soliton is steady. A straightforward calculation shows that the remaining nonzero
terms in the gradient Ricci soliton equation are given by

Hes f (∂2, ∂2)+ ρ(∂2, ∂2)= ∂22h,

Hes f (∂1, ∂2)+ ρ(∂1, ∂2)= ∂12h− D01
11∂2h,

Hes f (∂1, ∂1)+ ρ(∂1, ∂1)= x2′ ∂2h− D02
11 ∂2h+ ∂11h− D01

11∂1h

+822+ 2∂2
D02

11− 2∂1
D01

11.

It immediately follows from the equation (Hes f +ρ)(∂1, ∂1)= 0 that ∂2h= 0, which
shows that dh(ker T )= 0. The only remaining equation now becomes

Hes f (∂1, ∂1)+ ρ(∂1, ∂1)= ∂11h− D01
11∂1h+822+ 2∂2

D02
11− 2∂1

D01
11

=8(∂2, ∂2)+HesD
h (∂1, ∂1)+ 2ρD

sym(∂1, ∂1),

from which (13) follows. Moreover, it also follows from the form of the potential
function that ∇ f = h′(x1)∂1′ , and thus ‖∇ f ‖2 = 0 (equivalently the level hypersur-
faces of the potential function are degenerate submanifolds of T ∗6), which shows
that the soliton is isotropic. �

Remark 4.4. The potential functions of the gradient Ricci solitons in Theorem 4.3
are of the form f = h ◦π for some h ∈ C∞(6). Next we show that this is indeed
the case if the Ricci tensor of (6, D) is nonsymmetric.

Let (T ∗6, gD,8,T , f ) be a gradient Ricci soliton with potential function f ∈
C∞(T ∗6). Take local coordinates (x1, x2, x1′, x2′) on T ∗6 as in the proof of
Theorem 4.3. Since Hes f (∂i ′, ∂ j ′) = ∂i ′ j ′ f (x1, x2, x1′, x2′), it follows from the
expression of the Ricci tensor in Theorem 4.1 and the metric tensor (5), that the
potential function is determined by f = ιX +h ◦π , for some h ∈ C∞(6) and some
vector field X on 6, where ιX is the evaluation map acting on X.

Further set X= A(x1, x2)∂1+B(x1, x2)∂2 in the local coordinates (x1, x2) above,
for some A, B ∈ C∞(6). Then Hes f (∂2, ∂1′)= ∂2 A(x1, x2), from where it follows
that X = A(x1)∂1 + B(x1, x2)∂2. Considering the component Hes f (∂2, ∂2′) =

−A′′(x1)+ ∂2 B(x1, x2), one has that X = A(x1)∂1 + (P(x1)+ x2 A′(x1))∂2 for
some smooth function P(x1). Next the component

Hes f (∂1, ∂2′)= A(x1) D02
11− x2′ A(x1)

+
D01

11
(
P(x1)+ x2 A′(x1)

)
+ P ′(x1)+ x2 A′′(x1)

shows that A= 0 and it reduces to Hes f (∂1, ∂2′)= P ′(x1)+P(x1) D01
11. A solution

P(x1) of the equation P ′(x1)+ P(x1) D01
11 = 0 either vanishes identically (and
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hence X = 0) or it is nowhere zero, in which case ∂2
D01

11 = 0 (see the proof
of Theorem 6.1). In the latter case Proposition 3.3 shows that the Ricci tensor
of (6, D) is symmetric and thus recurrent of rank one. Therefore Theorem 4.3
describes all possible gradient Ricci solitons on (T ∗6, gD,8,T ) whenever ρD

sk is
nonzero.

Remark 4.5. The tensor field Di jk =Ci jk+Wi jk`∇` f introduced in [Cao and Chen
2013] plays an essential role in analyzing the geometry of Bach-flat gradient Ricci
solitons. Local conformal flatness in [Cao et al. 2014; Cao and Chen 2013] follows
from D= 0, which is obtained under some natural assumptions.

Gradient Ricci solitons in Theorem 4.3 satisfy ∇ f = h′(x1)∂1′ . Then, a straight-
forward calculation shows that D is completely determined by

D121 =−2h′(x1)∂2
D01

11(x
1, x2),

the other components being zero. Hence it follows from the proof of Proposition 3.3
that the tensor field D vanishes if and only if the Ricci tensor ρD is symmetric.
However Theorem 5.1 shows that (T ∗6, gD,8,T ) is never locally conformally flat.

5. Half conformally flat nilpotent Riemannian extensions

The existence of a null distribution D on a four-dimensional manifold (M, g) of
neutral signature defines a natural orientation on M : the one which, for any basis
u, v of D, makes the bivector u ∧ v self-dual (see [Derdzinski 2008]). We consider
on T ∗6 the orientation which agrees with D = kerπ∗, and thus self-duality and
anti-self-duality are not interchangeable. The following result shows that they are
essentially different for nilpotent Riemannian extensions.

Theorem 5.1. Let (6, D, T ) be an affine surface equipped with a parallel nilpotent
(1, 1)-tensor field T. Then

(i) (T ∗6, gD,8,T ) is never self-dual for any deformation tensor field 8.

(ii) If (T ∗6, gD,8,T ) is anti-self-dual, then D is either a flat connection or (6, D)
is recurrent with symmetric Ricci tensor of rank one.

In the later case there exist local coordinates (u1, u2)where the only nonzero
Christoffel symbol is u02

11 and the tensor field T is given by T ∂u1 = ∂u2 ,
T ∂u2 = 0. Moreover, (T ∗6, gD,8,T ) is anti-self-dual if and only if the sym-
metric (0, 2)-tensor field 8 satisfies the equations

(14)

D̂8=−2ω̂⊗ ρD,

0= 1
28̂⊗ 8̂(∂1, ∂1, ∂1, ∂1)+ 2(8̂⊗ ρD)(∂1, ∂1, ∂1, ∂1)

+ D28(∂1, ∂1; T ∂1, T ∂1)+ D28(T ∂1, T ∂1; ∂1, ∂1)

− 2 D28(∂1, T ∂1; T ∂1, ∂1),
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where
D̂8(X, Y, Z)= D8(T X, T Y ; T Z),

ω is the recurrence one-form given by DρD
= ω⊗ ρD, and ω̂(X) = ω(T X).

Proof. A direct computation using the expression of the anti-self-dual curvature
operator of any four-dimensional Walker metric obtained in [Díaz-Ramos et al. 2006]
shows that, for any nilpotent Riemannian extension gD,8,T , W− takes the form

(15) W− =
1
2

−1 0 1
0 0 0
−1 0 1

,
thus showing that the anti-self-dual Weyl curvature operator W− is nilpotent and
hence (T ∗6, gD,8,T ) is never self-dual, which proves (i).

Next we show (ii). Let (M, g) be a four-dimensional Walker metric (3) and set
the metric components g11 = a, g12 = c and g22 = b, where gi j are functions of the
Walker coordinates (x1, x2, x1′, x2′). Then the self-dual Weyl curvature operator
takes the form (see [Díaz-Ramos et al. 2006])

(16) W+ =


W+11 W+12 W+11+

τ
12

−W+12
τ
6 −W+12

−W+11−
τ
12 −W+12 −W+11−

τ
6

,
where

(17) W+11 =
1

12

(
6ca1b2− 6a1b1′ − 6ba1c2+ 12a1c2′ − 6ca2b1+ 6a2b2′

+ 6ba2c1+ 6a1′b1− 6a2′b2− 12a2′c1+ 6ab1c2− 6ab2c1

+ 12b2c1′ − 12b1′c2− a11− 12c2a11− 12bca12+ 24ca12′

− 3b2a22+ 12ba22′ − 12a2′2′ − 3a2b11+ 12ab11′ − b22

− 12b1′1′ + 12acc11− 2c12+ 6abc12− 24cc11′ − 12ac12′

− 12bc21′ + 24c1′2′
)
,

and

(18) W+12 =
1
4

(
−2ca11− ba12+ 2a12′ + ab12− 2b21′ + ac11− 2cc12

−2c11′ − bc22+ 2c22′
)
.

Since any anti-self-dual metric is Bach-flat, we proceed as in the proof of
Theorem 3.1 considering local coordinates (x1, x2) on the surface 6 such that
T is determined by T ∂1 = ∂2 and T ∂2 = 0. Since T is parallel, the Christoffel
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symbols must satisfy (10), i.e.,

D01
12 = 0, D02

12 =
D01

11,
D01

22 = 0, D02
22 = 0.

Next, we analyze the self-dual Weyl curvature operator, which is completely deter-
mined by the scalar curvature and its components W+11 and W+12 already described
in equations (17) and (18). The scalar curvature is zero by Theorem 4.1, and
W+12 = −2∂2

D01
11, from where it follows that the Ricci tensor ρD is symmetric

of rank one and recurrent (see Remark 3.4). Take local coordinates (u1, u2) as in
Remark 3.4 so that the only nonzero Christoffel symbol is u02

11 and T ∂u1 = ∂u2 ,
T ∂u2 = 0. Finally, we compute the component W+11 given by (17) in the coordinates
(u1, u2, u1′, u2′) of T ∗6, obtaining

W+11 = (∂2822+ 2∂22
u02

11) u2′ −
1
2(822)

2
− 2822∂2

u02
11− ∂2822

u02
11

+2∂12812− ∂22811− ∂11822.

Thus (T ∗6, gD,8,T ) is anti-self-dual if and only if

∂2822+ 2∂22
u02

11 = 0,
1
2(822)

2
+ 2822∂2

u02
11+ ∂2822

u02
11 = 2∂12812− ∂22811− ∂11822,

from where (14) follows. �

Anti-self-dual gradient Ricci solitons. Self-dual gradient Ricci solitons which are
not locally conformally flat are described in Theorem 2.2. In contrast, no explicit
examples of strictly anti-self-dual gradient Ricci solitons were previously reported.
In this section we use nilpotent Riemannian extensions to construct anti-self-dual
isotropic gradient Ricci solitons. In this case, Theorem 5.1 shows that (6, D) must
have symmetric Ricci tensor.

Proposition 5.2. Let (6, D, T,8) be an affine surface with symmetric Ricci tensor
equipped with a parallel nilpotent (1, 1)-tensor field T and a parallel symmetric
(0, 2)-tensor field 8. Then (T ∗6, gD,8,T ) is anti-self-dual if and only if ω̂= 0 and
8̂= 0, where ω is the recurrence one-form given by (12).

Proof. If the Ricci tensor ρD is symmetric of rank one and 8 is parallel, then the
equations in Theorem 5.1 reduce to ω̂ = 0 and 8̂ = 0, which proves the result.
If (6, D) is a flat surface then a straightforward calculation shows that anti-self-
duality is equivalent to 8̂= 0, being 8 a parallel tensor. �

Since the deformation tensor 8 of any gradient Ricci soliton in Theorem 4.3
must satisfy 8̂=−HesD

h −2ρD
sym, the condition 8̂= 0 in the previous proposition

restricts the consideration of Ricci solitons on (T ∗6, gD,8,T ) to those originated
by affine gradient Ricci solitons on (6, D).
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Proposition 5.3. Let (6, D, T ) be an affine surface equipped with a parallel nilpo-
tent (1, 1)-tensor field T and let h ∈ C∞(6). Then:

(i) (6, D, T, h) is an affine gradient Ricci soliton with dh(ker T )= 0 if and only
if (T ∗6, gD,8̂,T , f = h ◦ π) is a Bach-flat steady gradient Ricci soliton for
any symmetric (0, 2)-tensor field 8.

(ii) (6, D, T, h) is a nonflat affine gradient Ricci soliton with dh(ker T ) = 0 if
and only if the recurrence one-form η in (11) satisfies η̂ = 0.

Proof. Since T is nilpotent, 8̂(T X, T Y )= 0 for any (0, 2)-tensor field 8. Hence
(13) shows that (T ∗6, gD,8̂,T , f = h ◦π) is a gradient Ricci soliton if and only if
(6, D, T, h) is an affine gradient Ricci soliton with dh(ker T )= 0, which shows (i).

Next take local coordinates (x1, x2) on 6 so that T ∂1 = ∂2, T ∂2 = 0. Since
the Christoffel symbols D0k

i j are given by (10), using the expression of ρD
sym

in Proposition 3.3, one has (HesD
h +2ρD

sym)(∂2, ∂2)= ∂22h. Thus h(x1, x2) =

x2 P(x1)+Q(x1) for some P, Q ∈ C∞(6). Hence dh(ker T )= 0 holds if and only
if P = 0. Since h(x1, x2)= Q(x1), one has that (HesD

h +2ρD
sym)(∂1, ∂2)= 0, and

the only remaining equation is

0= (HesD
h +2ρD

sym)(∂1, ∂1)= Q′′+ 2
(
∂2

D02
11− ∂1

D01
11
)
= Q′′+ 2ρD(∂1, ∂1).

Therefore, the integrability condition becomes ∂2ρ
D(∂1, ∂1)= 0. Hence, it follows

from (11) that (6, D, T, h) is an affine gradient Ricci soliton with dh(ker T )= 0 if
and only if the symmetric part of the Ricci tensor ρD

sym is recurrent with recurrence
one-form η satisfying η(ker T )= 0. Assertion (ii) now follows. �

A direct application of the previous propositions gives the desired examples.

Theorem 5.4. Let (6, D, T,8) be an affine surface with symmetric Ricci tensor
equipped with a parallel nilpotent (1, 1)-tensor field T and a parallel symmetric
(0, 2)-tensor field 8.

(i) (6, D, h) is an affine gradient Ricci soliton with dh(ker T ) = 0 if and only
if (T ∗6, gD,8̂,T , f = h ◦π) is an anti-self-dual steady gradient Ricci soliton
which is not locally conformally flat.

(ii) (6, D, h) is an affine gradient Ricci soliton with dh(ker T )= 0 if and only if
there exist local coordinates (u1, u2) on 6 so that the only nonzero Christoffel
symbol is given by u02

11 = P(u1)+ u2 Q(u1) and the potential function h(u1)

is determined by h′′(u1)=−2Q(u1), for any P, Q ∈ C∞(6).

Proof. (T ∗6, gD,8̂,T , f = h ◦π) is a gradient Ricci soliton by Proposition 5.3(i).
Anti-self-duality now follows from Proposition 5.2 and Proposition 5.3(ii), showing
assertion (i).

Assertion (ii) follows from Proposition 5.3(ii) and the expression of the recur-
rence form ω in (12). Take local coordinates (u1, u2) on 6 as in the proof of
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Proposition 5.3(ii). Then it follows from (12) that ω̂ = 0 if and only if ∂22
u02

11 = 0.
Thus,

u02
11(u

1, u2)= P(u1)+ u2 Q(u1),

for some P, Q ∈ C∞(6) and h′′(u1)=−2Q(u1). �

6. Conformally Einstein nilpotent Riemannian extensions

A pseudo-Riemannian manifold (Mn, g) is said to be (locally) conformally Einstein
if every point p ∈ M has an open neighborhood U and a positive smooth function ϕ
defined on U such that (U, g = ϕ−2g) is Einstein. Brinkmann [1924] showed that a
manifold is conformally Einstein if and only if the equation

(19) (n− 2)Hesϕ +ϕ ρ− 1
n {(n− 2)1ϕ+ϕ τ }g = 0

has a positive solution. Despite its apparent simplicity, the integration of the
conformally Einstein equation is surprisingly difficult (see [Kühnel and Rademacher
2008] for more information). It was shown in [Gover and Nagy 2007; Kozameh
et al. 1985] that any four-dimensional conformally Einstein manifold satisfies

(20) (i) C+W ( · , · , · ,∇σ)= 0, (ii) B= 0,

where the conformal metric is given by g = e2σ g.
Conditions (i) and (ii) above are also sufficient to be conformally Einstein if

(M, g) is weakly-generic (i.e., the Weyl tensor viewed as a map T M→
⊗3 T M

is injective). Since nilpotent Riemannian extensions are not weakly generic (see
the expression of W− in the proof of Theorem 5.1), we will analyze the confor-
mally Einstein equation (19), seeking solutions on nilpotent Riemannian extensions
(T ∗6, gD,8,T ).

Theorem 6.1. Let (6, D, T ) be a torsion-free affine surface equipped with a par-
allel nilpotent (1, 1)-tensor field T. Then any solution of (19) is of the form
ϕ = ιX +φ ◦π for some vector field X on 6 such that X ∈ ker T and tr(DX)= 0.

Moreover (T ∗6, gD,8,T ) is conformally Einstein if and only if one of the fol-
lowing holds:

(i) The conformally Einstein equation (19) admits a solution ϕ = φ ◦π for some
φ ∈C∞(6) with dφ(ker T )= 0, and the deformation tensor8 is determined by

φ 8̂+ 2(HesD
φ +φ ρ

D
sym)= 0.

(ii) The conformally Einstein equation (19) admits a solution ϕ = ιX +φ ◦π for
some φ ∈ C∞(6) and some nonzero vector field X on 6 such that X ∈ ker T
and tr(DX)= 0.
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In this case, the Ricci tensor ρD is symmetric of rank one and recurrent.
Moreover, there are local coordinates (u1, u2) on 6 so that

ϕ(u1, u2, u1′, u2′)= κu2′ +φ(u1, u2)

is a solution of (19) if and only if

dφ(T ∂1)=
κ
28(T ∂1, T ∂1),

HesD
φ (∂1, ∂1)+φ ρ

D(∂1, ∂1)=−
1
2

(
φ+ 2κ u02

11
)
8(T ∂1, T ∂1)

+
κ
2

{
2(D∂18)(T ∂1, ∂1)− (DT ∂18)(∂1, ∂1)

}
.

Proof. Let (x1, x2) be local coordinates on 6 so that T ∂1 = ∂2, T ∂2 = 0, and
consider the induced coordinates (x1, x2, x1′, x2′) on T ∗6. Since T is parallel, we
obtain directly from (7) that

D01
12 = 0, D02

12 =
D01

11,
D01

22 = 0, D02
22 = 0.

In order to analyze the conformally Einstein equation (19), consider the symmetric
(0, 2)-tensor field

E = 2 Hesϕ +ϕ ρ− 1
4{21ϕ+ϕ τ }g

and set E = 0. Let Ei j = E(∂i , ∂ j ) and let ϕ ∈ C∞(T ∗6) be a solution of (19). Then
one computes

E33 = 2∂1′1′ϕ, E34 = 2∂1′2′ϕ, E44 = 2∂2′2′ϕ,

to show that any solution of (19) must be of the form

(21) ϕ(x1, x2, x1′, x2′)= A(x1, x2)x1′ + B(x1, x2)x2′ +ψ(x1, x2),

for some smooth functions A, B and ψ depending only on the coordinates (x1, x2).
This shows that any solution of the conformally Einstein equation on (T ∗6, gD,8,T )

is of the form
ϕ = ιX +ψ ◦π,

where ιX is the evaluation of a vector field X = A∂1+ B∂2 on 6, ψ ∈ C∞(6) and
π : T ∗6→6 is the projection.

Now, the conformally Einstein condition given in (19) can be expressed in matrix
form as follows:

(22) (Ei j )=


E11 E12 ∂1 A− ∂2 B 2

(
D02

11 A+ D01
11 B+ ∂1 B− Ax2′

)
∗ E22 2∂2 A −∂1 A+ ∂2 B
∗ ∗ 0 0
∗ ∗ ∗ 0


where positions with ∗ are not written since the matrix is symmetric, and where
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E11 =−
(
∂1 A− ∂2 B− 4 D01

11 A
)
x2

2′

+
{

A822+ 2
(
∂11 A− D02

11∂2 A+ D01
11∂2 B+ A∂2

D02
11− B∂2

D01
11
)}

x1′

−
{

B822+ 2A812− 2
(
∂11 B+ D02

11∂1 A− D01
11∂1 B

+
(
∂1

D02
11− 2 D01

11
D02

11
)

A+
(
∂1

D01
11− 2

(D01
11
)2)B+ ∂2ψ

)}
x2′

+ 2∂2 Ax1′x2′

− (∂1 A+ ∂2 B)811+ 2
(D02

11 A+ D01
11 B

)
812+

(
2 D02

11 B+ψ
)
822

− A∂1811+ B∂2811− 2B∂1812

+ 2∂11ψ − 2 D01
11∂1ψ − 2 D02

11∂2ψ − 2(∂1
D01

11− ∂2
D02

11)ψ,

E12 = 2
(
∂12 A− D01

11∂2 A+ A∂2
D01

11
)
x1′

+ 2
(
∂12 B+ D01

11∂1 A+ A∂2
D02

11
)
x2′

− (∂1 A+ ∂2 B)812+ 2 D01
11 B822− A∂2811− B∂1822

+ 2∂12ψ − 2 D01
11∂2ψ,

E22 = 2∂22 Ax1′ + 2
(
∂22 B+ 2A∂2

D01
11
)
x2′

−
(
∂1 A+ ∂2 B+ 2 D01

11 A
)
822− 2A∂2812+ A∂1822− B∂2822+ 2∂22ψ.

First, we use component

E14 = 2
(D02

11 A+ D01
11 B+ ∂1 B− Ax2′

)
in (22); note that ∂2′E14 =−2A, and so A(x1, x2)= 0, which shows that X ∈ ker T.
Now component E13 in (22) gives ∂2 B = 0, which implies B(x1, x2)= P(x1) for
some smooth function P depending only on the coordinate x1, i.e., the vector field
X = B∂2 satisfies tr(DX)= 0.

At this point, the conformal function ϕ has the coordinate expression

ϕ(x1, x2, x1′, x2′)= P(x1)x2′ +ψ(x1, x2)

and the possible nonzero components in (22) are E11, E12, E22 and E14. Considering
the component E14 = 2(P ′(x1)+ D01

11(x
1, x2)P(x1)), we distinguish two cases

depending on whether the function P vanishes identically or not. Indeed, if P(x1)

is a solution of the equation E14 = 0, then

∂1
(
P(x1)e

∫ D01
11(x

1,x2) dx1)
= e

∫ D01
11(x

1,x2) dx1{
P ′(x1)+ P(x1)D01

11(x
1, x2)

}
= 0,

which shows that P(x1)e
∫ D01

11(x
1,x2) dx1

=Q(x2) for some smooth function Q(x2).
Now, if the function Q(x2) vanishes at some point, then P(x1)= 0 at each point.
Otherwise, if Q(x2) is not equal to 0 at each point, neither is P(x1).
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First, suppose that P(x1) ≡ 0, and hence ϕ = ψ ◦ π . In this case, component
E22 in (22) yields ∂22ψ = 0, which implies ψ(x1, x2)= Q(x1)x2

+φ(x1) for some
smooth functions Q and φ depending only on the coordinate x1. Now, the only
components in (22) which could be non-null are

E11 = 2Qx2′ +
(
Q822+ 2Q′′− 2 D01

11 Q′− 2
(
∂1

D01
11− ∂2

D02
11
)
Q
)
x2

+φ822+ 2φ′′− 2 D01
11φ
′
− 2

(
∂1

D01
11− ∂2

D02
11
)
φ− 2 D02

11 Q,

E12 = 2
(
Q′− D01

11 Q
)
.

Now, ∂2′E11 = 2Q implies Q = 0, thus showing that dϕ(ker T )= 0. Then E12 = 0
and the component E11 reduces to

E11 = φ822+ 2φ′′− 2 D01
11φ
′
− 2

(
∂1

D01
11− ∂2

D02
11
)
φ.

Since ϕ(x1, x2, x1′, x2′)= φ(x1), φ must be non-null and we obtain that E11 = 0
is equivalent to

822 =−
2
φ

{
φ′′− D01

11φ
′
−
(
∂1

D01
11− ∂2

D02
11
)
φ
}
,

=−
2
φ

{
HesD

φ (∂1, ∂1)+φ ρ
D
sym(∂1, ∂1)

}
,

from where (i) is obtained.
Finally, we analyze the case in which the function P(x1) does not vanish identi-

cally. Since E14 = 2(P ′(x1)+ D01
11(x

1, x2)P(x1)), we have ∂2
D01

11 = 0. Now it
follows from Remark 3.4 that the Ricci tensor ρD is symmetric of rank one and
recurrent. Specialize the local coordinates (u1, u2) on 6 so that the only nonzero
Christoffel symbol of D is u02

11(u
1, u2) and T ∂u1 = ∂u2 , T ∂u2 = 0. Then any

solution of the conformally Einstein equation takes the form

ϕ(u1, u2, u1′, u2′)=A(u1)u2′ +φ(u1, u2).

Now, considering the component E41 of the conformally Einstein equation in the new
coordinates (u1, u2), one has E41= 2A′(u1), which shows that ϕ(u1, u2, u1′, u2′)=

κu2′ +φ(u1, u2) for some κ 6= 0. Considering now the component

E11 = (2∂2φ− κ822)u2′ + 2∂11φ− 2∂2φ
u02

11

+2φ∂2
u02

11+φ822+ 2κ822
u02

11+ κ∂2811− 2κ∂1812

it follows that the conformally Einstein equation reduces to

κ822 = 2∂2φ,

(φ+ 2κ u02
11)822 =−2

(
HesD

φ (∂u1, ∂u1)+φρD(∂u1, ∂u1)
)
+ κ(2∂1812− ∂2811),

from where (ii) is obtained. �
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7. Examples

Nilpotent Riemannian extensions with flat base. Let (6, D) be a flat torsion-free
affine surface. Take local coordinates on 6 so that all Christoffel symbols vanish.
Let T be a parallel nilpotent (1, 1)-tensor field. Since T is parallel, its components
T j

i are necessarily constant on the given coordinates. Hence one may further
specialize the local coordinates (x1, x2), by using a linear transformation, so that
T ∂1=∂2, T ∂2=0 and all the Christoffel symbols D0k

i j remain identically zero. Now
Theorem 3.1 shows that (T ∗6, gD,8,T ) is Bach-flat for any symmetric (0, 2)-tensor
field8 on6. Moreover it follows from Theorem 4.3 that (T ∗6, gD,8,T , f = h ◦π)
is a steady gradient Ricci soliton for any h ∈ C∞(6) with dh ◦ T = 0 and any
symmetric (0, 2)-tensor field 8 such that 822(x1, x2)=−h′′(x1).

Further note from Remark 4.5 that the steady gradient Ricci soliton

(T ∗6, gD,8,T , f = h ◦π)

satisfies D= 0. Moreover, since 822 =−h′′(x1), one has that (T ∗6, gD,8,T ) is in
the conformal class of an Einstein metric (just considering the conformal metric
g = φ−2gD,8,T determined by the equation φ′′(x1)− 1

2φ(x
1)h′′(x1)= 0).

Remark 7.1. Set 6 = R2 with usual coordinates (x1, x2) and put T ∂1 = ∂2,
T ∂2 = 0. For any smooth function h(x1) consider the deformation tensor 8 given
by 822(x1, x2)=−h′′(x1) (the other components being zero). Then, the nonzero
Christoffel symbols of gD,8,T are given by

02
11 =−x2′ =−0

1′
12′, 02′

11 =−h′′(x1)x2′, 02′
12 =−

1
2 h(3)(x1)=−01′

22.

Hence a curve γ (t)= (x1(t), x2(t), x1′(t), x2′(t)) is a geodesic if and only if

ẍ1(t)= 0, ẍ2(t)− x2′(t) ẋ1(t)2 = 0,

ẍ1′(t)+ 2 x2′(t) ẋ1(t)ẋ2′(t)+ 1
2 h(3)(x1(t)) ẋ2(t)2 = 0,

ẍ2′(t)− h′′(x1(t)) x2′(t) ẋ1(t)2− h(3)(x1(t)) ẋ1(t) ẋ2(t)= 0.

Thus x1(t)= at + b for some a, b ∈ R and

ẍ2(t)− a2 x2′(t)= 0,

ẍ2′(t)− h′′(at + b) a2 x2′(t)− h(3)(at + b) a ẋ2(t)= 0,

ẍ1′(t)+ 2a x2′(t) ẋ2′(t)+ 1
2 h(3)(at + b) ẋ2(t)2 = 0.

Now the first two equations above are linear and thus x2(t) and x2′(t) are globally
defined. Finally, since ẍ1′(t)+ 2a x2′(t) ẋ2′(t)+ 1

2 h(3)(at + b) ẋ2(t)2 = 0 is also
linear on x1′(t), one has that geodesics are globally defined.
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Then it follows from Theorem 4.3 that (T ∗R2, gD,8,T , f = h ◦π) is a geodesi-
cally complete steady gradient Ricci soliton, which is conformally Einstein by
Theorem 6.1.

Nilpotent Riemannian extensions with nonrecurrent base. Let (T ∗6, gD,8,T ,

f = h ◦π) be a nontrivial Bach-flat steady gradient Ricci soliton as in Theorem 4.3.
Further assume that the Ricci tensor ρD is nonsymmetric, i.e., ρD

sk 6= 0 (equivalently
∂2

D01
11 6= 0 as shown in the proof of Proposition 3.3). Then it follows from

Theorem 5.1 that (T ∗6, gD,8,T ) is not half conformally flat.
Theorem 6.1 shows that (T ∗6, gD,8,T ) is conformally Einstein if and only if

there exists a positive φ ∈ C∞(6) with dφ ◦ T = 0 such that

φ 8̂+ 2(HesD
φ +φ ρ

D
sym)= 0.

Hence it follows from Theorem 4.3 that HesD
h =

2
φ

HesD
φ , which means(

2φ
′

φ
− h′

)
D01

11 = 2φ
′′

φ
− h′′.

Taking derivatives with respect to x2 and, since ∂2
D01

11 6= 0, the equation above
splits into

2
φ′

φ
− h′ = 0, and 2

φ′′

φ
− h′′ = 0,

which only admits constant solutions. Summarizing the above one has the following:
Let (6, D, T ) be an affine surface with nonsymmetric Ricci tensor (i.e., ρD

sk 6= 0).
Then any Bach-flat gradient Ricci soliton (T ∗6, gD,8,T , f = h ◦π) is neither half
conformally flat nor conformally Einstein.
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