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Let (M5, α, gα, J) be a 5-dimensional Sasakian Einstein manifold with con-
tact 1-form α, associated metric gα and almost complex structure J , and let
L be a contact stationary Legendrian surface in M5. We will prove that L
satisfies the equation

−1νH + (K − 1)H = 0,

where1ν is the normal Laplacian with respect to the metric g on L induced
from gα and K is the Gauss curvature of (L, g).

Using this equation and a new Simons’ type inequality for Legendrian
surfaces in the standard unit sphere S5, we prove an integral inequality for
contact stationary Legendrian surfaces in S5. In particular, we prove that
if L is a contact stationary Legendrian surface in S5 and B is the second
fundamental form of L, with S= |B|2, ρ2 = S− 2H2 and

0≤ S ≤ 2,

then we have either ρ2 = 0 and L is totally umbilic or ρ2 6= 0, S = 2, H = 0
and L is a flat minimal Legendrian torus.

1. Introduction

Let (M2n+1, α, gα, J ) be a 2n+1 dimensional contact metric manifold with contact
structure α, associated metric gα and almost complex structure J . Assume that
(L , g) is an n-dimensional compact Legendrian submanifold of M2n+1 with metric
g induced from gα. The volume of L is defined by

(1-1) V (L)=
∫

L
dµ,

where dµ is the volume form of g. A contact stationary Legendrian submanifold
of M2n+1 is a Legendrian submanifold of M2n+1 which is a stationary point of V
with respect to Legendrian deformations. That is we call a Legendrian submanifold
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L ⊆ M2n+1 a contact stationary Legendrian submanifold, if for any Legendrian
deformations L t ⊆ M2n+1 with L0 = L we have

dV (L t)

dt

∣∣∣∣
t=0
= 0.

Remark 1.1. L t is a Legendrian deformation of L := L0, if L t is a Legendrian
submanifold for every t .

The E–L equation for a contact stationary Legendrian submanifold L is [Iriyeh
2005; Castro et al. 2006]

(1-2) divg(JH)= 0,

where divg is the divergence with respect to g and H is the mean curvature vector
of L in M2n+1.

Remark 1.2. The notion of a contact stationary Legendrian submanifold was first
defined by Iriyeh [2005] and Castro et al. [2006] independently, where they used
the name of Legendrian minimal Legendrian submanifold and contact minimal
Legendrian submanifold, respectively. In this paper we prefer to use the name of
contact stationary Legendrian submanifold.

The study of contact stationary Legendrian submanifolds is motivated by the
study of Hamiltonian minimal Lagrangian (briefly, HSL) submanifolds, which was
first studied by Oh [1990; 1993]. An HSL submanifold in a Kähler manifold is a
Lagrangian submanifold which is a stationary point of the Volume functional under
Hamiltonian deformations. By [Reckziegel 1988], Legendrian submanifolds in a
Sasakian manifold M2n+1 can be seem as links of Lagrangian submanifolds in the
cone CM2n+1, which is a Kähler manifold with proper metric and complex structure
(see Section 2). In fact, a close relation between contact stationary Legendrian
submanifolds and HSL submanifolds was found by Iriyeh [2005] and Castro et al.
[2006]. Precisely, they independently proved that C(L) is an HSL submanifold in
Cn(n ≥ 2) if and only if L is a contact stationary Legendrian submanifold in S2n−1

and L is a contact stationary Legendrian submanifold in S2n+1(n ≥ 1) if and only if
5(L) is an HSL submanifold in CPn , where5 :S2n+1

→CPn is the Hopf fibration.
From the definition we see that minimal Legendrian submanifolds are a special

kind of contact stationary Legendrian submanifold. Another special kind of contact
stationary Legendrian submanifold are Legendrian submanifolds with parallel mean
curvature vector fields in the normal bundle. The study of (nonminimal) contact
stationary Legendrian submanifolds of S2n+1 is relatively recent endeavor. For
n = 1, by [Iriyeh 2005], contact stationary Legendrian curves in S3 are the so
called (p, q) curves discovered by Schoen and Wolfson [2001], where p and q are
relatively prime integers. For n = 2, since a harmonic 1-forms on a 2-sphere must
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be trivial, contact stationary Legendrian 2-spheres in S5 must be minimal and so
must be the equatorial 2-spheres by Yau’s result [1974]. There are a lot of contact
stationary doubly periodic surfaces form R2 to S5 by lifting Hélein and Romon’s
examples [2002] and more contact stationary Legendrian surfaces (mainly tori) are
constructed in [Mironov 2003; 2008; Iriyeh 2005; Hélein and Romon 2005; Ma
2005; Ma and Schmies 2006; Butscher and Corvino 2012]. And general dimension
examples are constructed in [Oh 1993; Mironov 2004; Dong and Han 2007; Dong
2007; Butscher 2009; Joyce et al. 2011; Lee 2012; Chen et al. 2012]. See also
[Ono 2005; Hunter and McIntosh 2011; Kajigaya 2013] for other studies of contact
stationary Legendrian submanifolds.

In this paper we will study pinching properties of contact stationary Legendrian
surfaces in S5. To do this we first prove an equation satisfied by contact stationary
Legendrian surfaces in a Sasakian Einstein manifold, which we hope will be useful
in analyzing analytic properties of contact stationary Legendrian surfaces.

Theorem 1.3. Let L be a contact stationary Legendrian surface in a 5-dimensional
Sasakian Einstein manifold (M5, α, gα, J ), then L satisfies the following equation:

(1-3) −1νH + (K − 1)H = 0,

where 1ν is the normal Laplacian with respect to the metric g on L induced from
gα and K is the Gauss curvature of (L , g).

We recall that the well-known Clifford torus is

(1-4) TClif = S1
( 1
√

2

)
×S1

( 1
√

2

)
⊆ S5.

In the theory of minimal surfaces, the following Simons’ integral inequality and
pinching theorem due to Simons [1968], Lawson [1969] and Chern et al. [1970]
are well known.

Theorem 1.4. Let M be a compact minimal surface in a unit sphere S3 and B be
the second fundamental form of M in S3. Set S = |B|2, then we have∫

M
S(2− S) dµ≤ 0.

In particular, if
0≤ S ≤ 2,

then either S = 0 and M is totally geodesic, or S = 2 and M is the Clifford torus
TClif, which is defined by (1-4).

The above integral inequality was proved by Simons [1968] in his celebrated
paper and the classification result was given by Chern et al. [1970] and Lawson
[1969], independently.
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For minimal surfaces in a sphere with higher codimension, a corresponding
integral inequality was proved by Benko et al. [1979] and Kozlowski and Simon
[1984]. In order to state their result, we first record an example.

Example. The Veronese surface is a minimal surface in S4
⊆ R5 defined by

u : S2(
√

3)⊆ R3
→ S4(1)⊆ R5

(x, y, z) 7→ (u1, u2, u3, u4, u5)

where

u1 =
yz
√

3
, u2 =

xz
√

3
, u3 =

xy
√

3
, u4 =

x2
− y2

2
√

3
, u5 =

x2
+ y2
− 2z2

6
.

Here, u defines an isometric immersion of S2(
√

3) into S4(1), and it maps two
points (x, y, z) and (−x,−y,−z) of S2(

√
3) into the same point of S4(1), and so

it imbeds the real projective plane into S4(1).

We have

Theorem 1.5 [Benko et al. 1979]. Let M be a minimal surface in an n-dimensional
sphere Sn , then

(1-5)
∫

M
S
(
2− 3

2 S
)

dµ≤ 0.

In particular, if
0≤ S ≤ 4

3 ,

then either S = 0 and M is totally geodesic, or S = 4
3 , n = 4 and M is the Veronese

surface.

The above classification for minimal surfaces in a sphere with S = 4
3 was also

shown by Chern et al. [1970].
We see that the (first) pinching constant for minimal surfaces in S3 is 2, but it

is 4
3 for minimal surfaces of higher codimension. This is an interesting phenomenon

and we think it is due to the complexity of the normal bundle, because for minimal
Legendrian surfaces in S5, the (first) pinching constant is also 2.

Theorem 1.6 [Yamaguchi et al. 1976]. If M is a minimal Legendrian surface of the
unit sphere S5 and 0≤ S ≤ 2, then S is identically 0 or 2.

Remark 1.7. For higher dimensional case of this theorem we refer to [Dillen and
Vrancken 1990].

All of these results are based on calculating the Laplacian of S and then getting
Simons’ type equalities or inequalities, a powerful method which was originated by
Simons [1968]. The minimal condition is used to cancel some terms in the resulting
calculation and to some extent it is important. In this note we prove a Simons’ type
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inequality (Lemma 3.8) for Legendrian surfaces in S5, without minimal condition.
By using (1-3) and this Simons’ type inequality we get

Theorem 1.8. Let L :6→ S5 be a contact stationary Legendrian surface, where
S5 is the unit sphere with standard contact structure and metric (as given at the end
of Section 2). Then we have∫

L
ρ2(3− 3

2 S+ 2H 2) dµ≤ 0,

where ρ2
:= S− 2H 2. In particular, if

0≤ S ≤ 2,

then either ρ2
= 0 and L is totally umbilic, or ρ2

6= 0, S = 2, H = 0 and L is a flat
minimal Legendrian torus.

Remark 1.9. Because minimal Legendrian surfaces are contact stationary Legen-
drian surfaces and satisfy ρ2

= S, and because totally umbilic minimal surfaces are
totally geodesic, we see that Theorem 1.6 is a corollary of Theorem 1.8.

Integral inequality and gap phenomenon for submanifolds satisfying a fourth
order quasielliptic nonlinear equation was first studied by Li [2001; 2002a; 2002b]
who proved several gap theorems for Willmore submanifolds in a sphere. These
results are partial motivations of our paper.

We end this introduction by recalling a classification theorem of flat minimal
Legendrian tori in S5. For a constant θ let Tθ be the 2-torus in S5 defined by

Tθ =
{
(z1, z2, z3) ∈ C3

: |zi | =
1
3 , i = 1, 2, 3 and

∑
i

arg zi = θ
}
.

Tθ is called the generalized Clifford torus and it is a flat minimal Legendrian torus
in S5. Its projection under the Hopf map π :S5

→CP2 is a flat minimal Lagrangian
torus, which is also called a generalized Clifford torus. It is proved in [Ludden et al.
1975] that a flat minimal Lagrangian torus in CP2 must be S1

×S1. By the correspon-
dence of minimal Lagrangian surfaces in CP2 and minimal Legendrian surfaces in
S5 (see [Reckziegel 1988]), we see that a flat minimal Legendrian torus in S5 must
be a generalized Clifford torus. For more details we refer to [Haskins 2004, p. 853].

The rest of this paper is organized as follows: In Section 2 we collect some
basic material from Sasakian geometry, which will be used in the next section. In
Section 3 we prove our main results, Theorems 1.3 and 1.8.

2. Preliminaries on contact geometry

In this section we recall some basic material from contact geometry. For more
information we refer to [Blair 2002].
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Contact manifolds.

Definition 2.1. A contact manifold M is an odd dimensional manifold with a one
form α such that α∧ (dα)n 6= 0, where dim M = 2n+ 1.

Assume now that (M, α) is a given contact manifold of dimension 2n+ 1. Then
α defines a 2n-dimensional vector bundle over M , where the fiber at each point
p ∈ M is given by

ξp = Kerαp.

Since α∧ (dα)n defines a volume form on M , we see that

ω := dα

is a closed nondegenerate 2-form on ξ⊕ξ and hence it defines a symplectic product
on ξ such that (ξ, ω|ξ⊕ξ ) becomes a symplectic vector bundle. A consequence of
this fact is that there exists an almost complex bundle structure

J̃ : ξ → ξ

compatible with dα, i.e., a bundle endomorphism satisfying

(1) J̃ 2
=− idξ ,

(2) dα( J̃ X, J̃ Y )= dα(X, Y ) for all X, Y ∈ ξ ,

(3) dα(X, J̃ X) > 0 for X ∈ ξ \ 0.

Since M is an odd dimensional manifold, ω must be degenerate on TM , and so
we obtains a line bundle η over M with fibers

ηp := {V ∈ Tp M |ω(V,W )= 0,∀W ∈ ξp}.

Definition 2.2. The Reeb vector field R is the section of η such that α(R)= 1.

Thus α defines a splitting of TM into a line bundle η with the canonical section
R and a symplectic vector bundle (ξ, ω|ξ ⊕ ξ). We denote the projection along η
by π , i.e.,

π : TM→ ξ, π(V ) := V −α(V )R.

Using this projection we extend the almost complex structure J̃ to a section J ∈
0(T ∗M ⊗ TM) by setting

J (V )= J̃ (π(V )),

for V ∈ TM .
We call J an almost complex structure of the contact manifold M .

Definition 2.3. Let (M, α) be a contact manifold, a submanifold L of (M, α) is
called an isotropic submanifold if Tx L ⊆ ξx for all x ∈ L .
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For algebraic reasons the dimension of an isotropic submanifold of a 2n + 1
dimensional contact manifold can not be bigger than n.

Definition 2.4. An isotropic submanifold L ⊆ (M, α) of maximal possible dimen-
sion n is called a Legendrian submanifold.

Sasakian manifolds. Let (M, α) be a contact manifold, with the almost complex
structure J and Reeb field R. A Riemannian metric gα defined on M is said to be
associated, if it satisfies the following three conditions:

(1) gα(R, R)= 1.

(2) gα(V, R)= 0, ∀V ∈ ξ .

(3) ω(V, J W )= gα(V,W ), ∀V,W ∈ ξ .

We should mention here that on any contact manifold there exists an associated
metric on it, because we can construct one in the following way. We introduce a
bilinear form b by

b(V,W ) := ω(V, J W ),

then the tensor
g := b+α⊗α

defines an associated metric on M .
Sasakian manifolds are the odd dimensional analogue of Kähler manifolds. They

are defined as follows.

Definition 2.5. A contact manifold (M, α) with an associated metric gα is called
Sasakian, if the cone CM equipped with the following extended metric g

(2-1) (CM, g)= (R+×M, dr2
+ r2gα)

is Kähler with respect to the following canonical almost complex structure J on
TCM = R⊕〈R〉⊕ ξ :

J (r∂r)= R, J (R)=−r∂r.

Furthermore if gα is Einstein, M is called a Sasakian Einstein manifold.

We record several lemmas which are well known in Sasakian geometry. These
lemmas will be used in the next section.

Lemma 2.6. Let (M, α, gα, J ) be a Sasakian manifold. Then

(2-2) ∇X R =−J X,
and

(2-3) (∇X J )(Y )= g(X, Y )R−α(Y )X,

for X, Y ∈ TM , where ∇ is the Levi–Civita connection on (M, gα).
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Lemma 2.7. Let L be a Legendrian submanifold in a Sasakian Einstein manifold
(M, α, gα, J ), then the mean curvature form ω(H, ·)|L defines a closed one form
on L.

For a proof of this lemma we refer to [Lê 2004, Proposition A.2] or [Smoczyk
2003, Lemma 2.8]. In fact they proved this result under the weaker assumption
that (M, α, gα, J ) is a weakly Sasakian Einstein manifold, where weakly Einstein
means that gα is Einstein only when restricted to the contact hyperplane Kerα.

Lemma 2.8. Let L be a Legendrian submanifold in a Sasakian manifold(M,α,gα,J )
and B be the second fundamental form of L in M. Then we have

(2-4) gα(B(X, Y ), R)= 0,

for any X, Y ∈ TL.

Proof. For any X, Y ∈ TL ,

〈B(X, Y ), R〉 = 〈∇X Y, R〉

= −〈Y,∇X R〉

= 〈Y, J X〉

= ω(X, Y )

= dα(X, Y )

= 0,

where in the third equality we used (2-2). �

In particular this lemma implies that the mean curvature H of L is orthogonal to
the Reeb field R.

Lemma 2.9. For any Y, Z ∈ Kerα, we have

(2-5) gα(∇X (JY ), Z)= gα(J∇X Y, Z).

Proof. Note that
(∇X J )Y = ∇X (JY )− J∇X Y.

Therefore by using (2-3) we have

〈∇X (JY ), Z〉 = 〈(∇X J )Y, Z〉+ 〈J∇X Y, Z〉

= 〈J∇X Y, Z〉,

for any Y, Z ∈ Kerα. �

A canonical example of Sasakian Einstein manifolds is the standard odd dimen-
sional sphere S2n+1.
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The standard sphere S2n+1. Let Cn
= R2n+2 be the Euclidean space with

coordinates (x1, . . . , xn+1, y1, . . . , yn+1) and S2n+1 be the standard unit sphere in
R2n+2. Define

α0 =
1
2

n+1∑
j+1

(x j dy j − y j dx j ),

then
α := α0|S2n+1

defines a contact one form on S2n+1. Assume that g0 is the standard metric on
R2n+2 and J0 is the standard complex structure of Cn . We define

gα = g0|S2n+1 and J = J0|S2n+1,

then (S2n+1, α, gα, J ) is a Sasakian Einstein manifold with associated metric gα.
Its contact hyperplane is characterized by

Kerαx = {Y ∈ Tx S2n+1
|〈Y, J x〉 = 0}.

3. Proof of the theorems

Several lemmas. In this part we assume that (M, α, gα, J ) is a Sasakian manifold.
We show several lemmas which are analogous to results in Kähler geometry.

The first lemma shows ω = dα when restricted to the contact hyperplane Kerα
behaves as the Kähler form on a Kähler manifold.

Lemma 3.1. Let X, Y, Z ∈ Kerα, then

(3-1) ∇Xω(Y, Z)= 0,

where ∇ is the derivative with respect to gα.

Proof.

∇Xω(Y, Z)= X (ω(Y, Z))−ω(∇X Y, Z)−ω(Y,∇X Z)

=−Xgα(Y, J Z)−ω(∇X Y, Z)−ω(Y,∇X Z)

=−gα(∇X Y, J Z)− gα(Y,∇X J Z)+ gα(∇X Y, J Z)+ gα(Y, J∇X Z)

= 0,

where in the third equality we used gα(Y,∇X J Z)= gα(Y, J∇X Z), which is a direct
corollary of (2-3). �

Now let L be a Legendrian submanifold of M . We have a natural identification
of NL ∩Kerα with T ∗L , where NL is the normal bundle of L and T ∗L is the
cotangent bundle.
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Definition 3.2. ω̃ : NL ∩Kerα→ T ∗L is the bundle isomorphism defined by

ω̃p(vp)= (vpcωp)|Tp L ,

where p ∈ L and vp ∈ (NL ∩Kerα)p.

Recall that ω(R) = 0 and gα(V,W ) = ω(V, J W ) for any V,W ∈ ξ , hence ω̃
defines an isomorphism.

We have

Lemma 3.3. Let V ∈ 0(NL ∩Kerα). Then

(3-2)

ω̃(1νV −〈1νV, R〉R+ V )=1(ω̃(V )), i.e.,

(1νV + V )cω =1(V cω),

where 1 is the Laplace–Beltrami operator on (L , g).

Remark 3.4. This kind of lemma in the context of symplectic geometry was
proved by Oh [1990, Lemma 3.3]. Our proof follows his argument with only slight
modifications.

Proof. We first show that

(3-3) ∇X (ω̃(V ))= ω̃
(
∇
ν
X V −〈∇νX V, R〉R

)
for any X ∈ TL . Equality (3-3) is equivalent to

(3-4) ∇X (ω̃(V ))(Y )= ω̃
(
∇
ν
X V −〈∇νX V, R〉R

)
(Y )

for any Y ∈ TL .

∇X (ω̃(V ))(Y )=∇X (ω̃(V )(Y ))− ω̃(V )(∇X Y )

= ∇X (ω(V, Y ))− ω̃(V )(∇X Y )

= ω(∇νX V, Y )+ω(V,∇X Y )−ω(V,∇X Y )

= ω(∇νX V, Y )

= ω̃
(
∇
ν
X V −〈∇νX V, R〉R

)
(Y ),

where in the third equality we used ∇Xω = 0, when restricted to Kerα, which is
proved in Lemma 3.1.

Let p ∈ L and choose an orthonormal frame {E1, . . . , En} on TL such that
∇Ei E j (p)= 0, then the general Laplacian 1 can be written as

1ψ(p)=
n∑

i=1

∇Ei∇Eiψ(p),
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where ψ is a tensor on L . Therefore

(ω̃−1
◦1 · ω̃(V ))(p)

=

(
ω̃−1
◦

n∑
i=1

∇Ei∇Ei ω̃(V )
)
(p)

=

n∑
i=1

(ω̃−1
∇Ei ω̃ · ω̃

−1
∇Ei ω̃(V ))(p)

=

n∑
i=1

(
ω̃−1
∇Ei ω̃

(
∇
ν
Ei

V −〈∇νEi
V, R〉R

))
(p)

=

n∑
i=1

∇
ν
Ei

(
∇
ν
Ei

V −〈∇νEi
V, R〉R

)
−
〈
∇
ν
Ei

(
∇
ν
Ei

V −〈∇νEi
V, R〉R

)
, R
〉
R

=1νV −〈1νV, R〉R+ V,

where in the third and fourth equalities we used (3-3) and in the last equality we
used equality (2-2). �

Proof of Theorem 1.3. We see that for any function s defined on L ,

0=
∫

L
s div JH dµ =

∫
L

g(JH,∇s) dµ

=

∫
L
ω(H,∇s) dµ=

∫
L
〈ωcH, ωc∇s〉 dµ

=

∫
L
〈ωcH, ds〉 =

∫
L
δ(ωcH)s dµ.

Therefore the E–L equation for L is equivalent to

(3-5) δ(ωcH)= 0,

where δ is the adjoint operator of d on L .
By Lemma 2.7 we see that L satisfies

(3-6) 1h(ωcH)= 0,

where 1h := δd + dδ is the Hodge–Laplace operator. That is the mean curvature
form of L is a harmonic one form.

To proceed on, we need the following Weitzenböck formula

Lemma 3.5. Let M be an n dimensional oriented Riemannian manifold. If {Vi } is
a local orthonormal frame field and {ωi

} is its dual coframe field, then

1h =−
∑

i

D2
Vi Vi
+

∑
i j

ωi
∧ i(V j )RVi V j ,
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where D2
XY ≡ DX DY −DDX Y represents the covariant derivatives,1d = dδ+δd is

the Hodge–Laplace and RXY =−DX DY + DY DX + D[X,Y ] is the curvature tensor.

Remark 3.6. For a detailed discussion on the Weitzenböck formula we refer to
Wu [1988].

Using the Weitzenböck formula we have

(3-7) −1(ωcH)+
∑

i j

ωi
∧ i(V j )RVi V j (ωcH)= 0,

where {Vi } is a local orthogonal frame field and {ωi
} is its dual coframe field on L .

Denote ωcH by θH =
∑

k θkω
k , we have∑

i j

ωi
∧ i(V j )RVi V j θH =

∑
i j

RVi V j θH (V j )ω
i

=

∑
i jk

RVi V jω
k(V j )θkω

i

=−

∑
i jk

ωk(RVi V j V j )θkω
i

=−

∑
i jk

〈RVi V j V j , Vk〉θkω
i

=−

∑
i j

〈RVi V j V j , Vi 〉θiω
i

= K θH .

That is

(3-8)
∑

i j

ωi
∧ i(V j )RVi V j (ωcH)= KωcH.

Recall that H ∈ NL ∩Kerα, using (3-2) on H we get

(3-9) 1(ωcH)= (1νH + H)cω.

Combining (3-7)–(3-9), we have

0=−1νHcω− H + KωcH = (−1νH + (K − 1)H)cω,

which implies that

(3-10) −1νH + (K − 1)H = f R

for some function f on L .
The next lemma is one of our key observations which states that a Legendrian

submanifold in a Sasakian manifold is contact stationary if and only if 〈1νH, R〉=0.
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Lemma 3.7. Let L ⊆ (M2n+1, α, gα, J ) be a contact stationary Legendrian sub-
manifold. Then 1νH is orthogonal to R.

Proof. For any point p ∈ L , we choose a local orthonormal frame {Ei : i = 1, . . . , n}
of L such that ∇Ei E j (p)= 0. We have at p (in the following computation we adopt
the Einstein summation convention)

〈1νH, R〉 = 〈∇νEi
∇
ν
Ei

H, R〉

= Ei 〈∇
ν
Ei

H, R〉− 〈∇νEi
H,∇Ei R〉

= Ei 〈∇
ν
Ei

H, R〉+ 〈∇νEi
H, JEi 〉

= Ei (Ei 〈H, R〉− 〈H,∇Ei R〉)+〈∇νEi
H, JEi 〉

= Ei 〈H, JEi 〉+ 〈∇
ν
Ei

H, JEi 〉

= 2〈∇νEi
H, JEi 〉+ 〈H,∇Ei JEi 〉

= 2〈∇νEi
H, JEi 〉+ 〈H, J∇Ei Ei 〉

= 2〈∇νEi
H, JEi 〉

= 2〈∇Ei H, JEi 〉

= −2〈J∇Ei H, Ei 〉

= −2〈∇Ei JH, Ei 〉

= −2〈∇Ei JH, Ei 〉

= −2 divg(JH)

= 0.

Note that in this computation we used Equation (2-3) and Lemmas 2.8 and 2.9
several times and the last equality holds because L is contact stationary. �

Therefore we have
(−1νH + (K − 1)H)⊥R

by this lemma and Lemma 2.8, which shows f ≡ 0, i.e.,

−1νH + (K − 1)H = 0,

and we are done with the proof of Theorem 1.3.

Proof of Theorem 1.8. Let L be a Legendrian surface in S5 with the induced
metric g. Let {e1, e2} be an orthogonal frame on L such that {e1, e2, Je1, Je2, R}
is an orthonormal frame on S5.

In the following we use indices i, j, k, l, s, t,m and β and γ such that

1≤ i, j, k, l, s, t,m ≤ 2, 1≤ β, γ ≤ 3, γ ∗ = γ + 2 and β∗ = β + 2.
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Let B be the second fundamental form of L in S5 and define

hk
i j = gα(B(ei , e j ), Jek),(3-11)

h3
i j = gα(B(ei , e j ), R).(3-12)

Then

hk
i j = h j

ik = hi
k j ,(3-13)

h3
i j = 0.(3-14)

The Gauss equations and Ricci equations are

Ri jkl = (δikδ jl − δilδ jk)+
∑

s

(hs
ikhs

jl − hs
ilh

s
jk)(3-15)

Rik = δik + 2
∑

s

H shs
ik −

∑
s, j

hs
i j h

s
jk,(3-16)

2K = 2+ 4H 2
− S,(3-17)

R3412 =
∑

i

(h1
i1h2

i2− h1
i2h2

i1)

= det h1
+ det h2,(3-18)

where h1 and h2 are the second fundamental forms with respect to the directions
Je1 and Je2.

In addition we have the following Codazzi equations and Ricci identities

hβi jk = hβik j ,(3-19)

hβi jkl − hβi jlk =
∑

m

hβmj Rmikl +
∑

m

hβmi Rmjkl +
∑
γ

hγi j Rγ ∗β∗kl .(3-20)

Using these equations, we can get the following Simons’ type inequality:

Lemma 3.8. Let L be a Legendrian surface in S5. Then we have

(3-21) 1
2
1
∑
i, j,β

(hβi j )
2
≥ |∇

T h|2− 2|∇T H |2− 2|∇νH |2+
∑

i, j,k,β

(hβi j h
β

kki ) j

+ S− 2H 2
+ 2(1+ H 2)ρ2

− ρ4
−

1
2

S2,

where |∇T h|2 =
∑

i, j,k,s(h
s
i jk)

2 and |∇T H |2 =
∑

i,s(H
s
i )

2.
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Proof. Using equations (3-15)–(3-20), we have

(3-22) 1
2
1
∑
i, j,β

(hβi j )
2

=

∑
i, j,k,β

(hβi jk)
2
+

∑
i, j,k,β

hβi j h
β

ki jk

=|∇h|2−4|∇νH |2+
∑

i, j,k,β

(hβi j h
β

kki ) j+
∑

i, j,l,k,β

hβi j (h
β

lk Rli jk+hβil Rl j )

+

∑
i, j,k,β,γ

hβi j h
γ

ki Rγ ∗β∗ jk

= |∇h|2−4|∇νH |2+
∑

i, j,k,s

(hs
i j h

s
kki ) j +2Kρ2

−2(det h1
+det h2)2

≥ |∇h|2− 4|∇νH |2+
∑

i, j,k,β

(hβi j h
β

kki ) j + 2(1+ H 2)ρ2
− ρ4
−

1
2 S2,

where ρ2
:= S− 2H 2 and in the above calculations we used the identities∑

i, j,k,l,β

hβi j (h
β

lk Rli jk + hβil Rl j )= 2Kρ2,

∑
i, j,k,β,γ

hβi j h
γ

ki Rγ ∗β∗ jk =−2(det h1
+ det h2)2,

where in the first equality we used Rli jk = K (δl jδik − δlkδi j ) and Rl j = K δl j in a
proper coordinate, because L is a surface.

Note that

(3-23) |∇h|2 =
∑

i, j,k,β

(hβi jk)
2
= |∇

T h|2+
∑
i, j,k

(h3
i jk)

2

= |∇
T h|2+

∑
i, j,k

(hk
i j )

2
= |∇

T h|2+ S,

where in the third equality we used

h3
i jk = 〈∇ek B(ei , e j ), R〉 = −〈B(ei , e j ),∇ek R〉

= 〈B(ei , e j ), Jek〉 = hk
i j .

Similarly we have

(3-24) |∇
νH |2 = |∇T H |2+ H 2.

Combing (3-22), (3-23) and (3-24) we get (3-21). �

Now we prove an integral equality for L , by using (1-3).
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Lemma 3.9. Let L : 6→ S5 be a contact stationary Legendrian surface, where
S5 is the unit sphere with standard contact structure and metric. Then

(3-25)
∫

L
|∇

νH |2 dµ=−
∫

L
(K − 1)H 2 dµ,

where |∇νH |2 =
∑

β,i (H
β

i )
2.

Proof. By using (1-3) we have

(3-26) |∇
νH |2 =

∑
β,i

(Hβ

i )
2

=

∑
β,i

(Hβ

i Hβ)i −
∑
β

Hβ1νHβ

=

∑
β,i

(Hβ

i Hβ)i − (K − 1)H 2.

We get (3-25) by integrating over (3-26). �

Integrating over (3-21) and using |∇T h|2 ≥ 3|∇T H |2 (see Lemma A.1) we get

0≥
∫

L

[
(|∇T h|2−2|∇T H |2)−2|∇νH |2+S−2H 2

+2(1+H 2)ρ2
−ρ4
−

1
2 S2] dµ

≥

∫
L

[
−2|∇νH |2+S−2H 2

+2(1+H 2)ρ2
−ρ4
−

1
2 S2] dµ

=

∫
L
(2−ρ2)ρ2dµ+

∫
L

2H 2ρ2
+2(K−1)H 2

−2H 2
+S− 1

2 S2 dµ

=

∫
L
(2−ρ2)ρ2dµ+

∫
L

2H 2ρ2
+(4H 2

−S)H 2
−2H 2

+S− 1
2 S2 dµ

=

∫
L
(2−ρ2)ρ2dµ+

∫
L

H 2S−2H 2
+S− 1

2 S2 dµ

=

∫
L
(2−ρ2)ρ2dµ+

∫
L

H 2(S−2)+ 1
2 S(2−S) dµ

=

∫
L
(2−ρ2)ρ2

+(2−S)
( 1

2 S−H 2) dµ

=

∫
L
ρ2(2−ρ2)+ 1

2ρ
2(2−S) dµ

=

∫
L

3
2ρ

2(2−S)+2H 2ρ2 dµ,

where in the second equality we used the Gauss equation 2K = 2+ 4H 2
− S.
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Therefore we obtain the desired integral inequality∫
L
ρ2(3− 3

2 S+ 2H 2) dµ≤ 0.

Particularly if 0≤ S ≤ 2, we must have ρ2
= 0 and L is totally umbilic or ρ2

6= 0,
which implies S = 2, H = 0 and L is a flat minimal Legendrian torus. Thus we
have proved Theorem 1.8.

Appendix

In this section we prove the following lemma.

Lemma A.1. Let L be a Legendrian surface in S5, and assume that |∇T h|2 and
|∇

T H |2 are defined as in Lemma 3.8. Then we have

|∇
T h|2 ≥ 3|∇T H |2.

Proof. We construct the flowing symmetric tracefree tensor:

(A-27) F s
i jk = hs

i jk −
1
2
(H s

i δ jk + H s
j δik + H s

k δ j i ).

Then it is easy to see that

|F |2 = |∇T h|2− 3|∇T H |2,

and we get |∇T h|2 ≥ 3|∇T H |2. �

Final discussions. To end this paper we propose several questions which we will
study in the future.

Problem 1. Is any umbilical contact stationary Legendrian surface in S5 with
0≤ S ≤ 2 totally geodesic?

Problem 2. Assume that L is a closed csL submanifold in S2n+1, satisfying 0≤
S ≤ n, then is L totally geodesic or S = n?

Problem 3. Is any contact stationary Legendrian surface in S5 with second funda-
mental form of constant length minimal?

Problem 4. What is the second gap for minimal Legendrian submanifolds in a
sphere?
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