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IRREDUCIBILITY OF THE MODULI SPACE
OF STABLE VECTOR BUNDLES OF RANK TWO AND

ODD DEGREE ON A VERY GENERAL QUINTIC SURFACE

NICOLE MESTRANO AND CARLOS SIMPSON

The moduli space M(c2) of stable rank-two vector bundles of degree one on
a very general quintic surface X ⊂P3 is irreducible for all c2 ≥ 4 and empty
otherwise. On the other hand, for a very general sextic surface, the moduli
space at c2 = 11 has at least two irreducible components.

1. Introduction

Let X ⊂ P3
C

be a very general quintic hypersurface. Let M(c2) := MX (2, 1, c2)

denote the moduli space [Huybrechts and Lehn 1997] of stable rank 2 vector bundles
on X of degree 1 with c2(E)= c2. Let M(c2) := M X (2, 1, c2) denote the moduli
space of stable rank 2 torsion-free sheaves on X of degree 1 with c2(E)= c2. Recall
that M(c2) is projective, and M(c2)⊂ M(c2) is an open set, whose complement is
called the boundary. Let M(c2) denote the closure of M(c2) inside M(c2). This
might be a strict inclusion, as will in fact be the case for c2 ≤ 10.

In [Mestrano and Simpson 2011] we showed that M(c2) is irreducible for 4≤
c2 ≤ 9, and empty for c2 ≤ 3. In [Mestrano and Simpson 2013] we showed that
the open subset M(10)sn

⊂ M(10) of bundles with seminatural cohomology is
irreducible. Nijsse [1995] showed that M(c2) is irreducible for c2 ≥ 16.

In the present paper, we complete the proof of irreducibility for the remaining
intermediate values of c2.

Theorem 1.1. For any c2 ≥ 4, the moduli space of bundles M(c2) is irreducible.
For c2 ≥ 11, the moduli space of torsion-free sheaves M(c2) is irreducible. On

the other hand, M(10) has two irreducible components: the closure M(10) of the
irreducible open set M(10); and the smallest stratum M(10, 4) of the double dual
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stratification corresponding to torsion-free sheaves whose double dual has c′2 = 4.
Similarly M(c2) has several irreducible components when 5≤ c2 ≤ 9, too.

The moduli space M(c2) is good for c2 ≥ 10, generically smooth of the expected
dimension 4c2− 20, whereas for 4≤ c2 ≤ 9, the moduli space M(c2) is not good.
For c2 ≤ 3 it is empty.

Yoshioka [1997; 1999; 2001], Gómez [1997] and others have shown that the
moduli space of stable torsion-free sheaves with irreducible Mukai vector (which
contains, in particular, the case of bundles of rank 2 and degree 1) is irreducible,
over an abelian or K3 surface. Those results use the triviality of the canonical
bundle, leading to a symplectic structure and implying among other things that
the moduli spaces are smooth [Mukai 1984]. Notice that the case of K3 surfaces
includes degree 4 hypersurfaces in P3.

We were motivated to look at a next case, of bundles on a quintic or degree
5 hypersurface in P3 where K X = OX (1) is ample but not by very much. This
paper is the third in a series starting with [Mestrano and Simpson 2011; 2013]
dedicated to Professor Maruyama who, along with Gieseker, pioneered the study of
moduli of bundles on higher dimensional varieties [Gieseker 1977; 1988; Maruyama
1973; 1975; 1982]. Recall that the moduli space of stable bundles is irreducible
for c2 � 0 on any smooth projective surface [Gieseker and Li 1994; Li 1993;
O’Grady 1993; 1996], but there exist surfaces, such as smooth hypersurfaces in
P3 of sufficiently high degree [Mestrano 1997], where the moduli space is not
irreducible for intermediate values of c2.

Our theorem shows that the irreducibility of the moduli space of bundles M(c2),
for all values of c2, can persist into the range where K X is ample. On the other hand,
the fact that M(10) has two irreducible components, means that if we consider
all torsion-free sheaves, then the property of irreducibility in the good range has
already started to fail in the case of a quintic hypersurface.

We furthermore show in Section 11 below that irreducibility fails for stable vector
bundles on surfaces of degree d = 6. This improves the result of [Mestrano 1997]
where nonirreducibility had been obtained on surfaces of degree d ≥ 27.

A possible application of the irreducibility theorem to the case of Calabi–Yau
varieties could be envisioned by noting that a general hyperplane section of a quintic
threefold in P4 will be a quintic surface X ⊂ P3.

Outline of the proof. The starting point is O’Grady’s [1993; 1996] method of
deformation to the boundary, as exploited by Nijsse [1995] in the case of a very
general quintic hypersurface. We use in particular some of the intermediate results
of Nijsse who showed, for example, that M(c2) is connected for c2 ≥ 10.
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Application of these techniques is made possible by the explicit description of
the moduli spaces M(c2) for 4≤ c2 ≤ 9 and the partial result for M(10) obtained
in [Mestrano and Simpson 2011; 2013].

Our approach therefore has a botanical flavor. The information gleaned from the
descriptions in [Mestrano and Simpson 2011] allows us to understand the boundary
components. It turns out that the bigger components growing out of these will
correspond to bundles with seminatural cohomology, so that the result of [Mestrano
and Simpson 2013] applies. We should stress that it is not a priori clear something
like this should happen — the possibility of getting to the proof in this way becomes
accessible only through an understanding of the components at lower levels. This
will present a challenge for generalization to other surfaces.

The boundary ∂M(c2) := M(c2) − M(c2) is the set of points corresponding
to torsion-free sheaves which are not locally free. We just endow ∂M(c2) with
its reduced scheme structure. There might in some cases be a better nonreduced
structure which one could put on the boundary or onto some strata, but that won’t
be necessary for our argument and we don’t worry about it here.

We can further refine the decomposition

M(c2)= M(c2)t ∂M(c2)

by the double dual stratification [O’Grady 1996]. Let M(c2; c′2) denote the locally
closed subset, again with its reduced scheme structure, parametrizing sheaves F
which fit into an exact sequence

0→ F→ F∗∗→ S→ 0

such that F ∈ M(c2) and S is a coherent sheaf of finite length d = c2− c′2 hence
c2(F∗∗) = c′2. Notice that E = F∗∗ is also stable so it is a point in M(c′2). The
stratum can be nonempty only when c′2 ≥ 4, which shows by the way that M(c2) is
empty for c2 ≤ 3. The boundary now decomposes into locally closed subsets

∂M(c2)=
∐

4≤c′2<c2

M(c2; c′2).

Let M(c2, c′2) denote the closure of M(c2, c′2) in M(c2). Notice that we don’t know
anything about the position of this closure with respect to the stratification; its
boundary will not in general be a union of strata. We can similarly denote by M(c2)

the closure of M(c2) inside M(c2), a subset which might well be strictly smaller
than M(c2).

The construction F 7→ F∗∗ provides, by the definition of the stratification, a
well-defined map

M(c2; c′2)→ M(c′2).
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The fiber over E ∈M(c′2) is the Grothendieck Quot-scheme Quot(E; d) of quotients
of E of length d := c2− c′2.

It follows from Li’s theorem [Li 1993, Proposition 6.4] that if M(c′2) is irre-
ducible, then M(c2; c′2) and hence M(c2; c′2) are irreducible, with dim(M(c2; c′2))=
dim(M(c′2)) + 3(c2 − c′2). See Corollary 4.3 below. From the previous papers
[Mestrano and Simpson 2011; 2013], we know the dimensions of M(c′2), so we can
fill in the dimensions of the strata, as will be summarized in Table 2. Furthermore, by
[Mestrano and Simpson 2011] and Li’s theorem, the strata M(c2; c′2) are irreducible
whenever c′2 ≤ 9.

Nijsse [1995] proves that M(c2) is connected whenever c2≥ 10, using O’Grady’s
[1993; 1996] techniques. This is discussed and we review the proof in [Mestrano
and Simpson 2016]. By [Mestrano and Simpson 2011], the moduli space M(c2) is
good, that is to say it is generically reduced of the expected dimension 4c2− 20,
whenever c2 ≥ 10. In particular, the dimension of the Zariski tangent space, minus
the dimension of the space of obstructions, is equal to the dimension of the moduli
space. The Kuranishi theory of deformation spaces implies that M(c2) is locally a
complete intersection. Hartshorne’s [1962] connectedness theorem now says that
if two different irreducible components of M(c2) meet at some point, then they
intersect in a codimension 1 subvariety. This intersection has to be contained in the
singular locus.

The singular locus in M(c2) contains a subvariety denoted V (c2), which is the
set of bundles E with h0(E) > 0. It is the image of the space 6c2 of extensions

0→OX → E→ JP(1)→ 0,

where P satisfies Cayley–Bacharach for quadrics. For c2 ≥ 10, V (c2) is irreducible
of dimension 3c2− 11. For c2 ≥ 11 one can see directly that the closure of V (c2)

meets the boundary. For c2 = 10, bundles in V (10) almost have seminatural
cohomology, in the sense that any deformation moving away from V (10) will have
seminatural cohomology, so V (10) is contained only in the irreducible component
constructed in [Mestrano and Simpson 2013], and that component meets the bound-
ary. On the other hand, any other irreducible components of the singular locus have
strictly smaller dimension [Mestrano and Simpson 2011, Corollary 7.1].

These properties of the singular locus, together with the connectedness statement
of [Nijsse 1995], allow us to show that any irreducible component of M(c2) meets
the boundary. O’Grady proves furthermore an important lemma, that the intersection
with the boundary must have pure codimension 1.

We explain the strategy for proving irreducibility of M(10) and M(11) below,
but it will perhaps be easiest to explain first why this implies irreducibility of M(c2)

for c2 ≥ 12. Based on O’Grady’s method, this is the same strategy as was used by
Nijsse who treated the cases c2 ≥ 16.
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Suppose c2≥12 and Z⊂M(c2) is an irreducible component. Suppose inductively
we know that M(c2 − 1) is irreducible. Then ∂Z := Z ∩ ∂M(c2) is a nonempty
subset in Z of codimension 1, thus of dimension 4c2− 21. However, by looking at
Table 2, the boundary ∂M(c2) is a union of the stratum M(c2, c2−1) of dimension
4c2 − 21, plus other strata of strictly smaller dimension. Therefore, ∂Z must
contain M(c2, c2− 1). But, the general torsion-free sheaf parametrized by a point
of M(c2, c2−1) is the kernel F of a general surjection E→ S from a stable bundle
E general in M(c2−1), to a sheaf S of length 1. We claim that F is a smooth point
of the moduli space M(c2). Indeed, if F were a singular point then there would
exist a nontrivial coobstruction φ : F → F(1); see [Langer 2008; Mestrano and
Simpson 2011; Zuo 1991]. This would have to come from a nontrivial coobstruction
E→ E(1) for E , but that cannot exist because a general E is a smooth point since
M(c2 − 1) is good. Thus, F is a smooth point of the moduli space. It follows
that a given irreducible component of M(c2, c2 − 1) is contained in at most one
irreducible component of M(c2). On the other hand, by the induction hypothesis
M(c2− 1) is irreducible, so M(c2, c2− 1) is irreducible. This gives the induction
step, that M(c2) is irreducible.

The strategy for M(10) is similar. However, due to the fact that the moduli
spaces M(c′2) are not good for c′2 ≤ 9, in particular they tend to have dimensions
bigger than the expected dimensions, there are several boundary strata which can
come into play. Luckily, we know that the M(c′2), hence all of the strata M(10, c′2),
are irreducible for c′2 ≤ 9.

The dimension of M(10), equal to the expected one, is 20. Looking at the row
c2= 10 in Table 2 below, one may see that there are three strata M(10, 9), M(10, 8)
and M(10, 6) with dimension 19. These can be irreducible components of the
boundary ∂Z if we follow the previous argument. More difficult is the case of
the stratum M(10, 4) which has dimension 20. A general point of M(10, 4) is
not in the closure of M(10), in other words M(10, 4), which is closed since it is
the lowest stratum, constitutes a separate irreducible component of M(10). Now,
if Z ⊂ M(10) is an irreducible component, ∂Z could contain a codimension 1
subvariety of M(10, 4).

The next idea is to use the main result of [Mestrano and Simpson 2013], that the
moduli space M(10)sn of bundles with seminatural cohomology, is irreducible. To
prove that M(10) is irreducible, it therefore suffices to show that a general point of
any irreducible component Z , has seminatural cohomology. From [Mestrano and
Simpson 2013] there are two conditions that need to be checked: h0(E)= 0 and
h1(E(1))= 0. The first condition is automatic for a general point, since the locus
V (10) of bundles with h0(E) > 0 has dimension 3 ·10−11= 19 so cannot contain
a general point of Z . For the second condition, it suffices to note that a general
sheaf F in any of the strata M(10, 9), M(10, 8) and M(10, 6) has h1(F(1))= 0;
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and to show that the subspace of sheaves F in M(10, 4) with h1(F(1)) > 0 has
codimension ≥ 2. This latter result is treated in Section 7, using the dimension
results of Ellingsrud and Lehn for the scheme of quotients of a locally free sheaf,
generalizing Li’s theorem. This is how we will show irreducibility of M(10).

The full moduli space of torsion-free sheaves M(10) has two different irreducible
components, the closure M(10) and the lowest stratum M(10, 4). This distinguishes
the case of the quintic surface from the cases of abelian and K3 surfaces, where the
full moduli spaces of stable torsion-free sheaves were irreducible [Yoshioka 1999;
2001; Gómez 1997].

For M(11), the argument is almost the same as for c2 ≥ 12. However, there
are now two different strata of codimension 1 in the boundary: M(11, 10) coming
from the irreducible variety M(10), and M(11, 4) which comes from the other
20-dimensional component M(10, 4) of M(10). To show that these two can give
rise to at most a single irreducible component in M(11), completing the proof, we
will note that they do indeed intersect, and furthermore that the intersection contains
smooth points.

After the end of the proof of Theorem 1.1, the last two sections of the paper treat
some related considerations.

In Section 10 we provide a correction and improvement to [Mestrano and Simpson
2011, Lemma 5.1] and answer that paper’s Question 5.1. Recall from there that a
coobstruction may be interpreted as a sort of Higgs field with values in the canonical
bundle K X ; it has a spectral surface Z ⊂ Tot(K X ). The question was to bound the
irregularity of a resolution of singularities of the spectral surface Z . We show in
Lemma 10.1 that the irregularity vanishes.

Example on a sextic. At the end of the paper in Section 11, we show Theorem 1.1
is sharp as far as the degree 5 of the very general hypersurface is concerned. In
the case of bundles on very general hypersurfaces X6 of degree 6, we show in
Theorem 11.4 that the moduli space MX6(2, 1, 11) of stable rank two bundles of
degree 1 and c2 = 11 has at least two irreducible components. This improves the
result of [Mestrano 1997], bringing from 27 down to 6 the degree of a very general
hypersurface on which there exist two irreducible components. We expect that there
will be several irreducible components in any degree ≥ 6 but that isn’t shown here.

2. Preliminary facts

The moduli space M(c2) is locally a fine moduli space. The obstruction to existence
of a Poincaré universal sheaf on M(c2) × X is an interesting question but not
considered in the present paper. A universal family exists étale-locally over M(c2)

so for local questions we may consider M(c2) as a fine moduli space.
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c2 4 5 6 7 8 9
dim(M) 2 3 7 9 13 16

dim(obs) 6 3 3 3 1 1
h1(E(1)) 0 1 0 0 0 0

generically sm sm sm nr sm nr

Table 1. Moduli spaces for c2 ≤ 9.

The Zariski tangent space to M(c2) at a point E is Ext1(E, E). If E is locally
free, this is the same as H 1(End(E)). The space of obstructions obs(E) is by
definition the kernel of the surjective map

Tr : Ext2(E, E)→ H 2(OX ).

The space of coobstructions is the dual obs(E)∗ which is, by Serre duality with
K X =OX (1), equal to Hom0(E, E(1)), the space of maps φ : E→ E(1) such that
Tr(φ)= 0 in H 0(OX (1))∼= C4. Such a map is called a coobstruction.

Since a torsion-free sheaf E of rank two and odd degree can have no rank-one
subsheaves of the same slope, all semistable sheaves are stable, and Gieseker and
slope stability are equivalent. If E is a stable sheaf then Hom(E, E)=C so the space
of trace-free endomorphisms is zero. Notice that H 1(OX )= 0 so we may disregard
the trace-free condition for Ext1(E, E). An Euler characteristic calculation gives

dim(Ext1(E, E))− dim(obs(E))= 4c2− 20,

and this is called the expected dimension of the moduli space. The moduli space is
said to be good if the dimension is equal to the expected dimension.

Lemma 2.1. If the moduli space is good, then it is locally a complete intersection.

Proof. Kuranishi theory expresses the local analytic germ of the moduli space
M(c2) at E , as 8−1(0) for a holomorphic map of germs 8 : (Ca, 0)→ (Cb, 0)
where a = dim(Ext1(E, E)) (resp. b = dim(obs(E))). Hence, if the moduli space
has dimension a− b, it is a locally complete intersection. �

We investigated closely the structure of the moduli space for c2 ≤ 9 in [Mestrano
and Simpson 2011].

Proposition 2.2. The moduli space M(c2) is empty for c2 ≤ 3. For 4 ≤ c2 ≤ 9,
the moduli space M(c2) is irreducible. It has dimension strictly bigger than the
expected one, for 4≤ c2 ≤ 8, and for c2 = 9 it is generically nonreduced but with
dimension equal to the expected one; it is also generically nonreduced for c2 = 7.
The dimensions of the moduli spaces, the dimensions of the spaces of obstructions
at a general point, and the dimensions h1(E(1)) for a general bundle E in M(c2),
are given in Table 1 above.
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The proof of Proposition 2.2 will be given in the next section, with a review of
the cases c2 ≤ 9 from the paper [Mestrano and Simpson 2011].

We also proved that the moduli space is good for c2 ≥ 10, known by Nijsse
[1995] for c2 ≥ 13.

Proposition 2.3. For c2 ≥ 10, the moduli space M(c2) is good. The singular locus
M(c2)

sing is the union of the locus V (c2) consisting of bundles with h0(E) > 0,
which has dimension 3c2 − 11, plus other pieces of dimension ≤ 13 which in
particular have codimension ≥ 6.

Proof. Following O’Grady’s and Nijsse’s terminology V (c2) denotes the locus
which is the image of the moduli space of bundles together with a section, called
6c2 or sometimes {E, P}. See [Mestrano and Simpson 2011, Theorem 7.1]. Any
pieces of the singular locus corresponding to bundles which are not in V (c2), have
dimension ≤ 13 by [Mestrano and Simpson 2011, Corollary 5.1] (see Lemma 10.1
below for a correction and improvement of this statement). �

The case c2 = 10 is an important central point in the classification, where the
case-by-case treatment gives way to a general picture. In [Mestrano and Simpson
2013], we proved the following partial result that will be used in the present paper
to complete the proof of irreducibility.

Proposition 2.4. Let M(10)sn
⊂ M(10) denote the open subset of bundles E ∈

M(10) which have seminatural cohomology, that is, where for any m at most one
of hi (E(m)) is nonzero for i = 0, 1, 2. Then E ∈ M(10)sn if and only if h0(E)= 0
and h1(E(1))= 0. The moduli space M(10)sn is irreducible.

Proof. See [Mestrano and Simpson 2013], Theorem 0.2 and Corollary 3.5. �

3. Review of c2 ≤ 9

Our strategy of proof uses in a fundamental way an understanding of the irreducible
components for c2 ≤ 9 that were studied in [Mestrano and Simpson 2011]. The
discussion of these moduli spaces went by a sometimes exhaustive classification
of cases Lemmas 7.3, 7.4 there. In retrospect we can give more uniform proofs of
some parts. For this reason, and for the reader’s convenience, it is worthwhile to
review here some of the arguments leading to the proof of Proposition 2.2. This
section may, however, be skipped or perused lightly on the first reading.

There is a change of notation with respect to that work. There we considered
bundles of degree −1. The bundle of degree 1 denoted here by E is the same as
the bundle denoted by E(1) there. Thus Lemma 5.2 there speaks of h1(E) in our
notation. The present notation was already in effect in [Mestrano and Simpson 2013].
Fortunately, the indexing by second Chern class remains the same in both cases.
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Following O’Grady, we denote by V (c2)⊂M(c2) the subvariety of bundles such
that h0(E)> 0. For c2≤ 9 the Euler characteristic argument of [Mestrano and Simp-
son 2011, §6.1] tells us that h0(E) > 0 for any E , so V (c2) is the full moduli space.

It will be useful to consider the moduli space 6c2 consisting of pairs (E, η)
where E ∈ M(c2) and η ∈ H 0(E) is a nonzero section. The pairs are taken up to
isomorphism, i.e., up to scaling of the section, so the fiber of the map 6c2→ V (c2)

over a bundle E is the projective space PH 0(E).
Each irreducible component of 6c2 has dimension ≥ 3c2 − 11, see [O’Grady

1996; Nijsse 1995] or [Mestrano and Simpson 2011, Corollary 3.1].
A point of 6c2 may also be considered as an extension of the form

0→OX → E→ JP/X (1)→ 0,

again up to isomorphism. We therefore employ the notation {E, P} :=6c2 , too.
Such an extension exists, with E a bundle, if and only if P ⊂ X is locally a

complete intersection of length c2 and satisfies the Cayley–Bacharach condition for
quadrics denoted CB(2). See [Barth 1977; Griffiths and Harris 1978; Reider 1988]
and the references for the Hartshorne–Serre correspondence discussed in [Arrondo
2007] for the origins of this principle.

Denote by {P} the Hilbert scheme of l.c.i. subschemes P that satisfy CB(2).
The map {E, P}→ {P} has fibers described as follows: the fiber over P is a dense
open subset1 of the projective space of all extensions P Ext1(JP/X (1),OX ); its
dimension by duality is h1(JP/X (1))− 1.

Consider c the number of conditions imposed by P on quadrics. This is related
to h1(E(1)) by the exact sequences

H 0(OX (2))→ H 0(OP(2))→ H 1(JP/X (2))→ 0

and

0→ H 1(E(1))→ H 1(JP/X (2))→ H 2(OX (1))→ 0,

where H 2(E(1)) = H 0(E(1))∗ = 0 by stability, and H 2(OX (1)) = H 2(K X ) =

C. The number c is the rank of the evaluation map of H 0(OX (2)) on P, so
h1(JP/X (2)) = c2 − c, and by the second exact sequence we have h1(E(1)) =
c2− c− 1.

The number c2 − c− 1 is also equal to the dimension of the fiber of the map
from the space of extensions {E, P} to the Hilbert scheme of subschemes {P}. As
stated previously, the space of extensions {E, P} fibers over the moduli space of
bundles {E} with fiber PH 0(E) of dimension h1(JP/X (1)).

1It is the open subset of extensions such that E is locally free, nonempty because of the conditions
on P.
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The locus V (c2), image of 6c2 , is the main piece of the set of potentially ob-
structed bundles, that is to say bundles for which the space of obstructions is nonzero.

The other pieces are of smaller dimension. There was an error in the proof of
this dimension estimate, Lemma 5.1 and hence Corollary 5.1 in [Mestrano and
Simpson 2011]. These will be corrected and improved in a separate section at the
end of the present paper, see Lemma 10.1 below.

Using the Cayley–Bacharach condition. Recall that a 0-dimensional subscheme
P ⊂ P3 satisfies the Cayley–Bacharach condition CB(n) if, for any subscheme
P ′ ⊂ P with length `(P ′)= `(P)− 1, a section f ∈ H 0(OP3(n)) vanishing on P ′

must also vanish on P. When P ⊂ X this is the condition governing the existence
of an extension of JP/X (n− 1) by OX that is locally free. For the study of 6c2 we
are therefore interested in subschemes satisfying CB(2).

See [Mestrano and Simpson 2011; 2013] and the survey [Mestrano and Simpson
2016] for details on the basic techniques we use to analyze the Cayley–Bacharach
condition.

If U ⊂ P3 is a divisor, usually for us a plane, and P a subscheme, there is a
residual subscheme P ′ for P with respect to U. In the case of distinct points it
is just the complement of P ∩U, but more generally it has a schematic meaning
with `(P ′)+ `(P ∩U )= `(P). If P satisfies CB(n) and U has degree m then the
residual P ′ satisfies CB(n−m).

The following fact will be used often: if P ′ is the residual of P with respect to U,
and if Z ⊂ P3 is a subvariety, then the length of Z ∩ P at any point is at least equal
to the length of Z ∩ P ′. So for example if P ′ has 3 points in a line (schematically),
then P does too.

It is easy to see that the Cayley–Bacharach condition CB(2) cannot be satisfied
by ≤ 3 points, so the moduli space is empty for c2 ≤ 3. Here is a case-by-case
review of the cases 4≤ c2 ≤ 9.

For c2=4, 5. Here the subscheme P is either 4 or 5 points contained in a line. Both
of these configurations impose c = 3 conditions on quadrics, since h0(OP1(2))= 3.
This gives values of 4− 3− 1 = 0 and 5− 3− 1 = 1 for h1(E(1)) respectively.
The moduli space is generically smooth and its dimension is equal to c2 − 2 by
[Mestrano and Simpson 2011, Lemma 7.7]. This may be seen directly from the
more explicit descriptions we shall give in Section 7 below. We get the dimension of
the space of coobstructions by subtracting the expected dimension. This completes
the proof of Proposition 2.2 for the columns c2 = 4, 5.

For c2 = 6, 7. In both cases, the Euler characteristic argument of [Mestrano and
Simpson 2011, Section 6.1] gives h0(E) = 2, hence h0(JP/X (1)) = 1 and P is
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contained in a unique plane U. By Lemma 5.5 there, the space of obstructions has
dimension 3.

For c2 = `(P)= 6, see Proposition 7.4 there that we now review. The number c
of conditions imposed on quadrics has to be ≤ 5, in particular P is contained in
a planar conic Y ⊂U. However, c ≤ 4 may be ruled out by the size of P and the
Cayley–Bacharach condition; see the second paragraph of §7.5 there. It follows
that the dimension of {E, P} equals the dimension of {P}, and as noted above this
dimension is ≥ 3c2− 11= 7.

Look at the family of length 6 subschemes P ⊂ X ∩ Y such that all points of
P are located either at smooth points of Y, or at smooth points of X ∩U. Such a
subscheme is uniquely determined by its multiplicities at each point, so given Y the
set of choices of P is discrete and if we generalize Y, the subscheme P generalizes.
Therefore, this defines a set of irreducible components of dimension equal to the
dimension of the space of choices of Y, that is 8. For U fixed and Y general, the
choice of P is equivalent to the choice of complementary set of 4 points in Y ∩ X ;
but since any 4 points in the plane lie on a conic, the monodromy action as we
move Y can take any choice of 4 points to any other one. Therefore, this family is
a single irreducible component of dimension 8.

The remaining locus of P containing a point where Y is singular and U is tangent
to X, has dimension ≤ 5. For example if there is one such point, then the space of
choices of U has dimension 2; the space of choices of Y has dimension 2; and by
the precise estimate of [Briançon et al. 1981, Proposition 4.3], noting that Y has
multiplicity 2 at the singular point, the space of choices of P has dimension ≤ 1.
For more points, we get one further dimension of the space of choices of P for each
other point but more than 1 new condition imposed by the tangencies. Therefore,
the locus of subschemes not fitting into the situation of the previous paragraph has
dimension < 7, and it cannot produce a new irreducible component.

This completes the discussion for c2 = 6: we have an irreducible component of
{E, P} of dimension 8 whose general point consists of a choice of 6 out of the 10
intersection points in X ∩Y for a plane conic Y. Since h0(E)= 2 the dimension of
{E} is 7. For the table, notice that h1(E(1))= 6−5−1= 0. Comparing dimension,
expected dimension 4 · 6− 20= 4 and the dimension 3 of the space of obstructions,
we find that the moduli space is generically smooth with vanishing obstruction maps.

Consider now the case c2 = 7. See [Mestrano and Simpson 2011, Proposition
7.3] to be reviewed as follows. As previously from the second paragraph of §7.5 the
same work, the case c ≤ 4 may be ruled out. If c = 5, then P would be contained
in a plane conic Y ⊂ U, but using the same arguments as before the dimension
of the space of choices of P would be ≤ 8; however any irreducible component
of {E, P} has dimension ≥ 3 · 7− 11 = 10 and the fiber of the map to {P} has
dimension 1, so a family of subschemes P of dimension ≤ 8 cannot contribute an
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irreducible component. Therefore we may suppose c= 6, the dimensions of {E, P}
and {P} are the same and are ≥ 10. For a given plane U the space of choices of
subscheme P ⊂ X ∩U of length 7 has dimension 7 by [Briançon et al. 1981]. The
space of choices of P such that U ∩ X is singular (i.e., U tangent to X ), therefore
has dimension ≤ 9 and cannot contribute. If U is a plane such that X ∩U is smooth,
the Hilbert scheme of P ⊂ X ∩U is irreducible and a general point corresponds to
choosing 7 distinct points. We conclude that {E, P} is irreducible of dimension 10
with general point consisting of a general subscheme P ⊂U ∩ X of length 7 that
indeed satisfies CB(2) imposing c = 6 conditions on quadrics.

Notice that since h0(E)= 2 the map {E, P} → {E} is a fibration with fibers P1

so the corresponding irreducible component of the moduli space has dimension
9 as filled into the table. At a general point where P imposes c = 6 conditions
on quadrics, we get h1(E(1)) = 7− 6− 1 = 0. From [Mestrano and Simpson
2011, Proposition 7.3], by comparing dimensions the moduli space is generically
nonreduced. This treats the column c2 = 7.

For c2 = 8. See the discussion in [Mestrano and Simpson 2011, Section 6.2] and
Theorem 7.2 there which will now be reviewed with some improvement in the
arguments allowing us to bypass certain case-by-case considerations.

Any component of {E, P} has dimension ≥ 3 · 8− 11= 13.
The following technique, involving the residual subscheme recalled above, will

be useful.

Lemma 3.1. Suppose U ⊂ P3 is a plane, and let P ′ denote the residual subscheme
for P with respect to U. If nonempty, P ′ satisfies CB(1), so `(P ′)≥ 3 and in case
of equality P ′ is collinear.

Let c be the number of conditions imposed on quadrics in P3 passing through
P, and let n be the number of additional conditions on these quadrics needed to
insure their vanishing on U. Suppose 10− c ≥ n+ 1. Then there exists a quadric
containing P of the form U ∪ U ′ where U ′ is another plane, containing P. In
particular, P ′ ⊂ U ′. If 10 − c ≥ n + 2 then P ′ is contained in a line, and if
10− c ≥ n+ 3 then P ⊂U.

Proof. The first paragraph is a restatement of the basic property of the residual
subscheme. Note that one or two points, or three noncollinear points, cannot be
CB(1).

In the second paragraph, we could define n as the dimension of the image of

H 0(JP/P3(2))→ H 0(OU (2)).

If 10− c ≥ n+ 1, then it means that we can impose n additional conditions (say,
vanishing at general points of U ) on the (10 − c)-dimensional space quadrics
H 0(JP/P3(2)), to get one that vanishes on U. This quadric has the form U ∪U ′ of
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the union of U with another plane U ′. By definition the residual is contained in U ′.
If 10− c ≥ n+ 2, then the U ′ move in a 2-dimensional family so they cut out a
line containing P ′. If 10− c ≥ n+ 3, the family of U ′ cuts out a point; however P ′

satisfying CB(1) cannot be a single point, so in this case it is empty and P ⊂U. �

Look at the value of c at a general point of an irreducible component. The case
c ≤ 5 may be ruled out (using a simpler version of the subsequent arguments), so
we may assume either c = 6 or c = 7. If c = 6 then the fiber of {E, P} → {P} has
dimension 1 and {P} has dimension ≥ 12, whereas if c = 7 then the irreducible
component of {E, P} is the same as that of {P}, and {P} has dimension ≥ 13.

It follows that a general P is not contained in any multiple of a plane. Indeed,
the space of the m.U has dimension 3 whereas for any one, the dimension of the
space of length 8 subschemes P ⊂ X ∩m.U is ≤ 8 by [Briançon et al. 1981]. (Here
and below, by m.U we denote the m-tuple scheme structure on U.)

Lemma 3.2. In a given irreducible component, a general P does not contain a
collinear subscheme of length ≥ 3 in a line.

Proof. Start by noting that P is not contained in U ∪ L for a plane U and a line L .
The space of quadrics containing U ∪ L has dimension 2, whereas c ≤ 7 so there
would be a third quadric containing P. One can see that it would have to contain L ,
so it defines a plane conic Y ⊂U, meeting L , and P ⊂ Y ∪ L . But the dimension of
the space of choices of Y, L is 3 for the plane, 5 for the conic, 1 for the intersection
point with L and then 2 for the direction of L making 11. Given Y, L the choice of
P is discrete (except in some degenerate cases2). The set of such P can therefore
not be dense in an irreducible component.

We now show that P cannot have three points collinear in a line R, assuming to
the contrary that it does. Choose a point p ∈ P not contained in R (possible by the
paragraph above the lemma). Let U be the plane spanned by p and R. Vanishing
on P ∩ R and at p imposes 4 conditions on conics of U.

In the case c= 6, by Lemma 3.1 with n≤ 2 so 4= 10−c≥ n+2, the residual P ′

of P with respect to U is contained in a line L , and we get P ⊂U∪L , contradicting
the first paragraph.

In the case c = 7, by Lemma 3.1 with n ≤ 2, so 3 = 10− c ≥ n + 1, we get
P ⊂U ⊂U ′. Both U and U ′ must contain points not touching R. The residual P ′

of P with respect to U has length ≥ 4, indeed if it were to consist of 3 points they
would have to be collinear by the CB(1) property but that would give P ⊂U ∪ L .

2Since P is not contained in a double plane, Y is not a double line; in the other cases, singularities
of X ∩ (Y ∪ L) are always contained in planar singularities of multiplicity 2 so by [Briançon et al.
1981] the dimension of the space of P increases by 1 at any such point; but existence of the singularity
imposes at least one additional condition decreasing the dimension of the space of Y, L .
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If U ′ doesn’t contain R, the intersection P ∩ (U ′ ∪ R) has length3 at least 7,
but since U ′ ∪ R is cut out by quadrics the CB(2) property of P says that in fact
P ⊂ (U ′ ∪ R) contradicting the first paragraph of the proof.

Suppose R ⊂U ′. Given a residual point lying along R, it cannot correspond to a
subscheme leaving R in a direction different from U ′. For in that case, we could
let U2 be the plane contacting this direction, different from U or U ′, and applying
Lemma 3.1 again would give P ⊂U2 ∪U3 contradicting the fact that both U and
U ′ contain points of P not on R. So, any point of P ′ along R corresponds to a
point of extra contact with U ′. We conclude that the residual subscheme of P ∩U ′

with respect to R ⊂U ′, has length ≥ 2. Therefore, n = 1 conditions suffice to imply
vanishing of quadrics on U ′ so by Lemma 3.1 this time with 3= 10− c≥ n+2 we
find that the residual of P with respect to U ′ is contained in a line. This again gives
P contained in a plane plus a line, contradicting the first paragraph of the proof. �

We may now show that the case c = 6 doesn’t contribute a general point of
an irreducible component. Choose 3 points of P defining a plane U and apply
Lemma 3.1 adding n ≤ 3 extra conditions: we get at least one quadric in our family
that has the form U ∪U ′. Now if U ∩ P has length 5, then the residual would have
length 3 and satisfy CB(1); therefore it would have to be collinear, contradicting
the previous lemma. It follows that U ∩ P and U ′ ∩ P both have length 4. But
then, it actually sufficed to add n ≤ 2 conditions so we get a line containing the
residual, again contradicting Lemma 3.2. This finishes ruling out the possibility of
an irreducible component whose general point imposes c≤ 6 conditions on quadrics.

Therefore assume c = 7. Now {E, P} and {P} have the same dimension which
is ≥ 13. There is a vector space of dimension 10− c = 3 of quadrics passing
through P. Let H1, H2, H3 denote the elements of a basis of this space.

Here the proof divides into an analysis of two distinct cases; these were called (a)
and (b) in [Mestrano and Simpson 2011] referring to the two cases of Proposition
7.1 from there. Case (a) is when H1 ∩ H2 ∩ H3 has dimension 0. It is a subscheme

3An algebraic argument is needed for the piece of P located at R ∩ U ′; letting A denote its
coordinate algebra, u the equation of U ′, f the equation of U and g the equation of another plane
through R, our hypothesis is f u A = 0 and the local piece of P ∩ (U ′ ∪ R) corresponds to A/gu A.
Considering the exact sequence

A/gu A→ A/( f A+ g A)⊕ A/u A→ C→ 0,

we see that if the required inequality `(A/gu A)≥ `(A/( f A+ g A))+ `( f A) didn’t hold we would
have gu A = ( f A+ g A)∩ u A and f A ∼= A/u A, hence also u A ∼= A/ f A. The exact sequence

0→ gu A→ u A→ A/( f A+ g A)

becomes 0→ g(A/ f A)→ A/ f A u
−→ A/( f A+ g A), which would give that multiplication by u on

A/( f A+ g A) is injective, but that isn’t possible since A has finite length.
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of length 8 so we get
P = H1 ∩ H2 ∩ H3.

A general such subscheme satisfies CB(2), and I. Dolgachev pointed out to us
that these are called “Cayley octads”. We shall treat the Cayley octads of case (a)
secondly, since that will use one part of the discussion of case (b).

Case (b): This is when the subscheme Y = H1 ∩ H2 ∩ H3 contains a pure 1-
dimensional subscheme Y1. Notice that Y1 is a union of components of the curve4

H1 ∩ H2. On the other hand, by Lasker’s theorem [Eisenbud et al. 1996, p. 314] if
Y1 were equal to H1 ∩ H2 then there couldn’t be a third quadric vanishing on Y1.
Therefore, Y1 is a curve of degree ≤ 3.

We will now show that Y1 doesn’t contain a line. Suppose to the contrary that
R ⊂ Y1 is a line. Then all quadrics in our family contain R.

Choose a point p of P not on R, let U be the plane through R and p, and apply
Lemma 3.1 with n = 2 to get P ⊂ U ∪U ′. If P ∩U ′ has length ≥ 5, it doesn’t
have four collinear points so it imposes 5 conditions on conics; hence we can
apply Lemma 3.1 with n = 1 and get three residual points in a line, contradicting
Lemma 3.2. Therefore P ∩U has length ≥ 4, however since P ∩ R has length
≤ 2 by Lemma 3.2, the residual of P ∩U with respect to R has length ≥ 2. Now,
vanishing on R and on P ∩U imposes 5 conditions on conics of U. Thus we may
again apply Lemma 3.1 with n= 1 and get a residual consisting of 3 collinear points
contradicting Lemma 3.2. This completes the proof that Y1 does not contain a line.

That rules out almost all of the cases listed in [Mestrano and Simpson 2011,
Lemma 7.4].

A next case is if Y1 is a conic in a plane U. Then, it suffices to impose a single
condition, n = 1 in Lemma 3.1, so 3= 10− c ≥ n+ 2 and the residual subscheme
consists of at least 3 points in a line. This contradicts Lemma 3.2, so Y1 cannot be
a plane conic.

The only remaining possibility for our curve of degree three, is that Y1 could be
a rational cubic curve not contained in a plane. It has to be a rational normal cubic,
in particular smooth. The restriction of OP3(2) to the rational curve has degree
6 so it has seven linearly independent sections; our three-dimensional family of
quadrics is therefore the family of all quadrics passing through Y1. They define Y1

schematically, in particular P ⊂ Y1.
This case will be of interest for our treatment of case (a) below. We have that

P is a length 8 subscheme of the intersection Y1 ∩ X. For given Y1 the space of
choices of P is discrete, and as Y1 moves any P becomes general. The family of
such subschemes may therefore be identified with a covering of the space of choices

4Note that Hi cannot all vanish on some plane, otherwise by CB(1) for the residual P would have
to be contained in the plane as we saw previously.
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of rational normal cubic Y1. The covering is determined, over a general point, by
the choice of 8 out of the 15 points in Y1∩ X , or equivalently by the choice of the 7
complementary points.

The space of choices of Y1 has dimension 12 (see [Mestrano and Simpson 2011,
§6.2]). Therefore, this family cannot constitute an irreducible component of {P}.
This completes the proof that case (b) cannot happen at a general point of an
irreducible component.

Case (a): We start this discussion by continuing to look at the above 12-dimensional
family of subschemes consisting of points in X ∩ Y1 for a smooth rational normal
cubic curve Y1.

We claim that the family of subschemes, and hence of bundles, obtained in
this way is irreducible. This may be seen as follows. Any 6 points from X ∩ Y1

determine the rational normal cubic Y1, so if we move a set of 6 points around
to a different set, we get back to the same rational normal curve and this shows
that the monodromy action includes permutations sending any subset of 6 points to
any other one. On the other hand, there is a rational normal curve with first order
tangency to X, and moving it a little bit induces a permutation of two points keeping
the other points fixed. Therefore, the subgroup of the symmetric group contains a
transposition. Now since it is 6-tuply transitive, it contains all the transpositions.
Thus, the monodromy group is the full symmetric group and any group of 8 points
can be moved to any other one. This shows that the family is irreducible.

As was pointed out at the end of Section 6.2 in [Mestrano and Simpson 2011], the
space of obstructions at a general point in our family has dimension 1. The expected
dimension is 4c2− 20= 12, so the Zariski tangent space to the moduli space has
dimension 13; however, as noted above, any irreducible component has dimension
≥ 13 because of the existence of the extension. Therefore, a general point of our
12-dimensional family lies in a smooth open subset of a unique 13-dimensional irre-
ducible component of the moduli space {E} (notice here that the spaces {E, P} and
{P} are also the same). As our 12-dimensional family is irreducible by the previous
paragraph, this determines a canonical irreducible component of the moduli space.

This discussion corrects an error of notation in the second paragraph of the
proof of Lemma 7.6 of [Mestrano and Simpson 2011], where it was stated that
the irreducible 12-dimensional family of Cayley–Bacharach subschemes on the
rational normal cubic was inside the type (a) subspace of the moduli space; but that
family is clearly of type (b). Those phrases should be replaced by the argument of
the previous paragraph showing that our 12-dimensional family is contained in a
unique 13-dimensional irreducible component of the moduli space, whose general
point is of type (a).
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We now turn to consideration of the full set of irreducible components, whose
general points are of type (a), that is to say bundles determined by Cayley octad
subschemes P (since we showed in the previous part that type (b) cannot lead to a
general point of a component).

The argument given in [Mestrano and Simpson 2011, §7.4], using the incidence
variety suggested by A. Hirschowitz, shows that the existence of a canonically
defined irreducible component implies irreducibility of the moduli space.

Let us recall here briefly how this works. We look at the full incidence scheme
{X, P} parametrizing smooth quintic hypersurfaces X together with l.c.i. sub-
schemes P ⊂ X of length 8 satisfying CB(2) of type (a). For a given P ⊂ P3

the space of quintics X containing it is a projective space and these all have the
same dimension. So the fibration {X, P} → {P} is smooth, over the base that is
an open subset in the Grassmannian Grass(3, 10) of 3-dimensional subspaces of
H 0(OP3(2)). Thus, the full incidence variety {X, P} is irreducible. There is a
dense open subset of the space of quintics {X}, over which the sets of irreducible
components of the fibers don’t change locally. Thus, the fundamental group of this
open set acts on the set of irreducible components of the fiber {P}X over a basepoint
X ∈ {X}. This action is transitive, by irreducibility of the full incidence variety.
On the other hand, we have described above a canonically defined irreducible
component of {P}X , containing the nearby generalizations of our 12-dimensional
family of subschemes of a rational normal cubic curve. Since it is canonically
defined, this component is preserved by the monodromy action. Transitivity now
implies that {P}X has only a single irreducible component.

This completes the proof of irreducibility for c2 = 8. The generic space of
obstructions has dimension 1. That was seen for points on the rational normal cubic
curve, at the end of §6.2 of [Mestrano and Simpson 2011]; however the moduli
space has dimension 13, equal to the expected dimension plus 1, so the space of
obstructions remains 1-dimensional at a general point.

As the dimension of the moduli space is equal to the expected dimension plus the
dimension of the space of obstructions, we get that the moduli space is generically
smooth, and in fact that was already the case at a point of the 12-dimensional family
of subschemes on a rational normal cubic. Since c = 7 at a general point we have
h1(E(1))= 8− 7− 1= 0, to complete the corresponding column of our table.

For c2 = 9. For the column c2 = 9, see [Mestrano and Simpson 2011, Theorem
6.1 and Proposition 7.2], for the dimension 16 and general obstruction space of
dimension 1. The proof of Proposition 7.2 there starts out by ruling out, for a
general point of an irreducible component, all cases of Proposition 7.1 there except
case (d), for which c = 8. Thus h1(E(1))= 9− 8− 1= 0 for a general bundle, as
we shall also see below.
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We give here an alternate argument by dimension count to show that a general
bundle in any irreducible component consists of a collection of 9 out of the 20
points on a degree 4 elliptic curve, intersection of two quadrics, intersected with X.

The expected dimension of {E} is 4c2− 20= 16, and a general E determines a
unique5 extension hence a unique subscheme P of length 9. The dimension of any
irreducible component of {E, P} is ≥ 16 (notice that it coincides with the value of
3c2− 11 too).

We first rule out the possibility that c ≤ 7 for a general point. If there were a
three-dimensional family of quadrics passing through P then they cannot intersect
transversally in a zero-dimensional subscheme, since that would have length only 8
and so be unable to contain P. But if the intersection of the three quadrics has a
component of positive dimension, then arguing much as in the previous section we
can get a contradiction. Indeed, the space of length 9 subschemes contained in the
intersection of X with two planes has dimension ≤ 3+ 3+ 9 = 15 < 16, so any
time Lemma 3.1 applies we immediately obtain a contradiction. The remaining
case of points on a rational normal curve is ruled out by dimension.

We may therefore assume c = 8, from which it follows that any irreducible
component of {P} has dimension ≥ 16. It follows that a general P contains at
least 7 points in general position on X. Let us explain the details of this argument,
since this kind of dimension count has already been used several times above. Let
H ⊂ {P} denote some component of the Hilbert scheme of subschemes we are
interested in, that is to say l.c.i. subschemes P⊂ X of length 9 satisfying CB(2). Let

I ⊂ H × X

be the incidence subscheme, whose fiber over a point h ∈ H is the subscheme Ps

thereby parametrized. Suppose p1, . . . , pk is a collection of distinct points in X,
and let H(p1, . . . , pk)⊂ H be the closed subscheme parametrizing those P that
contain p1, . . . , pk . It may be inductively defined as follows: we have the incidence
subvariety I(p1, . . . , pk)⊂ H(p1, . . . , pk)× X, and for a point pk+1 distinct from
the other ones,

H(p1, . . . , pk, pk+1) := pr−1
2 (pk)⊂ I(p1, . . . , pk).

By induction we show that for general points pi , H(p1, . . . , pk) is nonempty of
dimension≥ 16−2k whenever k≤ 7. Assume it is known for k−1 but not true for k.
That means that the map I(p1, . . . , pk−1)→ X maps onto a closed subvariety; in
other words, there is a curve C⊂ X depending on p1, . . . , pk−1 and containing all of
the subschemes parametrized by points of H(p1, . . . , pk−1). But then the space of

5An easy dimension count rules out the possibility that P be contained in a plane.
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such subschemes has dimension≤ 9−(k−1) (by [Briançon et al. 1981]), contradict-
ing our inductive hypothesis since 9−(k−1)< 16−2(k−1) as (k−1)< 16−9= 7.

After the 7 points in general position there remain two points. We may conclude
that the dimension of a family of subschemes P, once the set theoretical locations
of the points are known, is ≤ 2.

We now claim that if P is general, then for a general element H of our family
of quadrics passing through P, the intersection H ∩ X is smooth. The proof is by
a dimension count of the complementary family. If the H ∩ X is always singular,
then the singular point is a basepoint (of the linear system on X ), of which there
are finitely many, so it is fixed. Thus, all the H are tangent to X at some point.
The space of 2-dimensional linear systems tangent to x ∈ X is a Grassmannian
Grass(2,C7) of dimension 10. As the point moves in X we have a 12-dimensional
space of choices of the linear system; and each one of these fixes the set-theoretical
location of the points of P so by the previous paragraph, the corresponding space
of P has dimension ≤ 2, so altogether we obtain that the family not satisfying our
claimed condition has dimension ≤ 14. Since any component has dimension ≥ 16
it follows that the complementary family cannot constitute a component, which
proves the claim.

Suppose V := H 0(JP/P3(2))⊂ C10
= H 0(OP3(2)) is the two-dimensional space

of quadrics passing through our general point P. Then any deformation of the
subspace V ⊂C10 lifts to a deformation of P. This is because, by the previous claim,
we can choose a general element of V corresponding to a quadric H1 such that H1∩X
is smooth. As the smooth curve deforms, our subscheme P of (H1∩X)∩H2 becomes
general since it is uniquely determined just by its multiplicities at each point.

From the above discussion it follows that a general point P in any irreducible
component is obtained by choosing 9 out of the 20 points of (H1 ∩ H2)∩ X for a
general pair of quadrics H1, H2. But since any 8 points determine the subspace
〈H1, H2〉, the monodromy action on the set of 20 intersection points is 8-tuply
transitive. By going around a curve H1∩H2 with a single simple tangent point to X,
we get a transposition in the monodromy group; hence it contains all transpositions
and it is the full symmetric group. Therefore, the set of choices of 9 points forms a
single orbit under the monodromy group. This completes the proof that there is
only one irreducible component of dimension 16.

The space of obstructions at a general point has dimension 1, see the discussion
above Theorem 6.1 in [Mestrano and Simpson 2011]. This completes our review of
the proof of Proposition 2.2.

For c2 ≥ 10. We will not be further reviewing the partial result of the case c2 = 10
that was treated in [Mestrano and Simpson 2013], giving irreducibility of the open
subset of the moduli space corresponding to seminatural cohomology as was stated
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in Proposition 2.4 above, since the argument is more involved and it is the subject
of a distinct paper.

On the other hand, it will be useful to discuss in more detail the structure of
V (c2).

Lemma 3.3. For c2≥ 11, V (c2) is irreducible of dimension 3c2−11 and its general
point corresponds to a set of points P in general position with respect to quadrics.
The closure of V (c2) meets the boundary.

Proof. See [Mestrano and Simpson 2011, Corollary 7.1], showing that for c2 ≥ 11,
6c2 contains an open dense subset 610

c2
consisting of collections P such that any

colength 1 subscheme of P imposes vanishing of all quadrics. This is an open
subset of the Hilbert scheme of all subschemes P of length c2 so it is smooth, and
it further contains an open dense subscheme where the points of P are distinct. The
latter is an open subset of the symmetric product of X so it is irreducible.

The closure of V (c2) intersects the boundary, as was discussed in the proof of
[Nijsse 1995, Proposition 3.2]. Indeed, choose a collection P0 of distinct points that
impose vanishing of quadrics but that doesn’t satisfy CB(2). Deform this collection
in a family Pt such that the general Pt (for t 6= 0) satisfies CB(2). Since all elements
of the family impose the same number of conditions on quadrics, the space of Ext
groups varies in a bundle with respect to the parameter t and we may choose a
family of extensions such that the general one is locally free. But the special one
is not locally free since P0 didn’t satisfy CB(2). This family gives a curve in 610

c2

with parameter t 6= 0, whose limiting sheaf at t = 0 is not locally free: we have a
deformation to the boundary. �

Lemma 3.4. For c2 = 10, V (10) is irreducible of dimension 3c2 − 11 = 19 and
its general point corresponds to a subscheme P composed of 10 general points on
a smooth intersection with a quadric Y = X ∩ H. A general bundle in V (10) has
h1(E(1))= 0 so any deformation moving away from V (10) will have seminatural
cohomology, and only the irreducible component of M(10) constructed in [Mestrano
and Simpson 2013] contains V (10).

Proof. See [Nijsse 1995, Lemma 3.1]. General elements of any irreducible com-
ponent correspond to subschemes P not contained in a plane, so the irreducible
components of V (10) correspond to those of 610 having the same dimension.

By [Mestrano and Simpson 2011, Corollary 7.1], 610 is pure of dimension 19.
The stratum 68

10 consisting of extensions where P lies in the intersection of two
quadrics, has dimension < 19. Indeed, the subscheme P is determined by the
two-dimensional subspace of quadrics6 and this has dimension 16, to which we
should add 1 for the space of choices of extension: it comes out strictly less than 19.

6Unless they share a common plane but that case may also be dealt with by a dimension count:
3 for the choice of plane, plus 4 for the choice of line, plus at most 7 for the choice of points in the
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Similarly, the dimension of the stratum 67
10 is strictly less than 19, and the strata

6c
10 for c≤ 6 may be ruled out using our previous line of argument with Lemma 3.1.
We conclude that the stratum 69

10 is dense in 610. Here the extension class is
determined (up to scaling) so {E, P} and {P} are the same, and {P} is an open
subset of the space {H, P} parametrizing quadrics H together with P ⊂ H ∩ X.
The open subset is given by the conditions that no other quadrics vanish on P, and
that P satisfies CB(2). But the space {H, P} is irreducible.

Thus, V (10) is irreducible and its general point parametrizes collections of 10
general points on a general smooth quadric section Y = X ∩ H. One may now
calculate with the standard exact sequence that for a general E ∈ V (10), we have
h1(E(1))= 0.

Recall by [Mestrano and Simpson 2013, Corollary 3.5] that the condition of
having seminatural cohomology, for bundles in M(10), is equivalent to the con-
junction of two conditions7 h1(E(1))= 0 and h0(E)= 0. Bundles in V (10) clearly
don’t satisfy the second condition because V (10) is the locus where h0(E) > 0.
However, we have seen that a general point of V (10) satisfies the first condition.
On the other hand V (10) is pure of dimension 19 whereas any component of
M(10) has dimension ≥ 20. Therefore, in any irreducible component of M(10)
containing V (10), the general point has h0(E)=0, but also h1(E(1))=0 since it is a
generization of the general point of V (10) that satisfies this condition. Therefore, any
irreducible component of M(10) containing V parametrizes, generically, bundles
with seminatural cohomology.

It now follows from the main result of [Mestrano and Simpson 2013] (stated as
Proposition 2.4 above) that any irreducible component of M(10) containing V (10)
must be the unique component constructed there. �

4. The double dual stratification

Turn now to the proof of the main theorem on the moduli spaces for c2 ≥ 10. Our
subsequent proofs will make use of O’Grady’s [1993; 1996] techniques, as they
were recalled and used by Nijsse [1995]. The main idea is to look at the boundary
of the moduli spaces. His first main observation is the following:

Lemma 4.1 [O’Grady 1996, Proposition 3.3]. The boundary of any irreducible
component (or indeed, of any closed subset) of M(c2) has pure codimension 1, if it
is nonempty.

plane since they would otherwise all be in the plane and then we could ignore the choice of line, plus
1 for the choice of extension class, comes out to strictly less than 19.

7We use duality and Euler characteristic to rewrite the conditions of [Mestrano and Simpson 2013,
Corollary 3.5].
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The boundary is divided up into Uhlenbeck strata corresponding to the “number
of delta-like singular instantons”, which in the geometric picture corresponds to the
number of points where the torsion-free sheaf is not a bundle, counted with correct
multiplicities. A boundary stratum denoted M(c2, c2−d) parametrizes torsion-free
sheaves F fitting into an exact sequence of the form

0→ F→ E σ
−→ S→ 0

where E ∈ M(c2− d) is a stable locally free sheaf of degree 1 and c2(E)= c2− d ,
and S is a finite coherent sheaf of length d so that c2(F)= c2. In this case E = F∗∗.
We may think of M(c2, c2− d) as the moduli space of pairs (E, σ ). Forgetting the
quotient σ gives a smooth map

M(c2, c2− d)→ M(c2− d),

sending F to its double dual. The fiber over E is the Grothendieck Quot scheme
Quot(E, d) parametrizing quotients σ of E of length d .

Since we are dealing with sheaves of degree 1, all semistable points are stable
and our objects have no nonscalar automorphisms. Hence the moduli spaces are
fine, with a universal family existing étale-locally and well defined up to a scalar
automorphism. We may view the double-dual map as being the relative Grothendieck
Quot scheme of quotients of the universal object Euniv on M(c2 − d)× X over
M(c2− d). Furthermore, locally on the Quot scheme the quotients are localized
near a finite set of points, and we may trivialize the bundle Euniv near these points,
so M(c2, c2− d) has a covering by, say, analytic open sets which are trivialized as
products of open sets in the base M(c2− d) with open sets in Quot(E, d) for any
single choice of E . This is all to say that the map M(c2, c2−d)→ M(c2−d) may
be viewed as a fibration in a fairly strong sense, with fiber Quot(E, d).

Li [1993, Proposition 6.4] shows that Quot(E, d) is irreducible with a dense open
subset U parametrizing quotients which are given by a collection of d quotients of
length 1 supported at distinct points of X :

Theorem 4.2 [Li 1993]. Suppose E is a locally free sheaf of rank 2 on X. Then
for any d > 0, Quot(E, d) is an irreducible scheme of dimension 3d, containing
a dense open subset parametrizing quotients E→ S such that S ∼=

⊕
Cyi , where

Cyi is a skyscraper sheaf of length 1 supported at yi ∈ X, and the yi are distinct.
This dense open set maps to X (d)

− diag (the space of choices of distinct d-tuple of
points in X ), with fiber over {yi } equal to

∏d
i=1 P(Eyi ).

Proof. See Proposition 6.4 in the appendix of [Li 1993]. Notice right away that
U is an open subset of Quot(F, d), and that U fibers over the set X (d)

− diag of
distinct d-tuples of points (y1, . . . , yd) (up to permutations). The fiber over a d-
tuple (y1, . . . , yd) is the product of projective lines P(Fyi ) of quotients of the vector
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c2 e.d. dim(M) d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

4 −4 2 − − − − − − − −

5 0 3 5 − − − − − − −

6 4 7 6 8 − − − − − −

7 8 9 10 9 11 − − − − −

8 12 13 12 13 12 14 − − − −

9 16 16 16 15 16 15 17 − − −

10 20 20 19 19 18 19 18 20 − −

11 24 24 23 22 22 21 22 21 23 −

12 28 28 27 26 25 25 24 25 24 26
≥13 4c2−20 4c2−20 4c2−21 ≤4c2−22

Table 2. Dimensions of strata.

spaces Fyi . As X (d)
− diag has dimension 2d, and

∏d
i=1 P(Fyi ) has dimension d,

we get that U is a smooth open variety of dimension 3d .
This theorem may also be viewed as a consequence of a more precise bound

established by Ellingsrud and Lehn [1999], which will be stated as Theorem 7.6
below, needed for our arguments in Section 7. �

Corollary 4.3. We have

dim(M(c2; c′2))= dim(M(c′2))+ 3(c2− c′2).

If M(c′2) is irreducible, then M(c2; c′2) and hence M(c2; c′2) are irreducible.

Proof. The fibration M(c2; c′2)→ M(c′2) has fiber the Quot scheme whose dimen-
sion is 3(c2− c′2) by the previous proposition. Furthermore, these Quot schemes
are irreducible so if the base is irreducible, so is the total space. �

Corollary 4.3 allows us to fill in the dimensions of the strata M(c2; c′2) in Table 2,
starting from the dimensions of the moduli spaces given by Propositions 2.2 and
2.3. The entries in the second column are the expected dimension 4c2 − 20; in
the third column the dimension of M := M(c2); and in the following columns,
dim M(c2, c2−d) for d = 1, 2, . . . . The rule is to add 3 as you go diagonally down
and to the right by one.

The first remark useful for interpreting this information is that any irreducible
component of M(c2) must have dimension at least equal to the expected dimension
4c2−20. In particular, a stratum with strictly smaller dimension must be a part of at
least one irreducible component containing a bigger stratum. For c2 ≥ 11, we have

dim(M(c2, c′2)) < dim(M(c2))= 4c2− 20.

Hence, for c2 ≥ 11 the closures M(c2, c′2) cannot themselves form irreducible
components of M(c2), in other words the irreducible components of M(c2) are the
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same as those of M(c2). Notice, on the other hand, that M(10) contains two pieces
of dimension 20, the locally free sheaves in M(10) and the sheaves in M(10, 4)
whose double duals come from M(4).

Recall from Proposition 2.2 that the moduli spaces M(c2) are irreducible for
c2= 4, . . . , 9. It follows from Corollary 4.3 that the strata M(c2, c′2) are irreducible,
for any c′2 ≤ 9. In particular, the piece M(10, 4) is irreducible, and its general point,
representing a not locally free sheaf, is not confused with any point of M(10). Since
the other strata of M(10) all have dimension < 20, it follows that M(10, 4) is an
irreducible component of M(10). One similarly gets from the table that M(c2) has
several irreducible components when 5≤ c2 ≤ 9.

5. Hartshorne’s connectedness theorem

Hartshorne proves a connectedness theorem for locally complete intersections. Here
is the version that we need.

Theorem 5.1 [Hartshorne 1962]. Suppose Z is a locally complete intersection of
dimension d. Then, any nonempty intersection of two irreducible components of Z
has pure dimension d − 1.

Proof. See [Hartshorne 1962; Sawant 2011]. �

Corollary 5.2. If the moduli space M is good and has two different irreducible
components Z1 and Z2 meeting at a point z, then Z1 ∩ Z2 has codimension 1 at z
and the singular locus Sing(M) contains z and has codimension 1 at z.

Proof. If M is good, then by Lemma 2.1 it is a locally complete intersection so
Hartshorne’s theorem applies: Z1∩ Z2 has pure codimension 1. The intersection of
two irreducible components is necessarily contained in the singular locus. �

We draw the following conclusions.

Corollary 5.3. Suppose, for c2 ≥ 10, that two different irreducible components Z1

and Z2 of M meet at a point z. Then z is on the boundary.

Proof. If z is not on the boundary, then by the previous corollary it is in a component
of the singular locus having codimension 1 in M. We have seen in [Mestrano
and Simpson 2011, Theorem 7.1] that for c2 ≥ 10, a piece of Sing(M) having
codimension 1 in M(c2) has to be in V (c2), cf., Proposition 2.3 above. On the
other hand V (c2) is irreducible, see Lemmas 3.3 and 3.4, so any such component
of Sing(M) has to be equal to V (c2).

Recall that dim(V (c2))= 3c2− 11 whereas the dimension of the moduli space
is 4c2− 20, thus for c2 ≥ 11 the singular locus has codimension ≥ 2, so the present
situation could only occur for c2 = 10.
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But now by Lemma 3.4, V (10) is contained in only one irreducible component
of M, the one whose general point parametrizes bundles with seminatural cohomol-
ogy. So, two distinct components cannot meet along V (10). �

Next, recall one of Nijsse’s theorems, connectedness of the moduli space.

Theorem 5.4 [Nijsse 1995]. For c2 ≥ 10, the moduli space M(c2) is connected.

Proof. See [Nijsse 1995], Proposition 3.2. We have reviewed the argument in
[Mestrano and Simpson 2016, Theorem 18.8]. �

Corollary 5.5. Suppose Z is an irreducible component of M(c2) for c2 ≥ 10. Then
Z meets the boundary in a nonempty subset of codimension ≤ 1.

Proof. The codimension 1 property is given by Lemma 4.1, so we just have to show
that Z contains a boundary point.

For c2 ≥ 10, the first boundary stratum M(c2, c2− 1) has codimension 1, so it
must meet at least one irreducible component of M(c2), call it Z0. Of course if
Z = Z0 we are done. Suppose Z ⊂ M(c2) is another irreducible component with
c2 ≥ 10. By the connectedness of M(10), there exist a sequence of irreducible
components Z0, . . . , Zk = Z such that Zi ∩ Zi+1 is nonempty. By Corollary 5.3,
Zk−1 ∩ Zk is contained in the boundary. �

6. Seminaturality along the 19-dimensional boundary strata

To treat the case c2 = 10, we will apply the main result of our previous paper.

Proposition 6.1. Suppose Z is an irreducible component of M(10). Suppose that
Z contains a point corresponding to a torsion-free sheaf F with h1(F(1)) = 0.
Then Z is the unique irreducible component containing the open set of bundles with
seminatural cohomology, constructed in [Mestrano and Simpson 2013].

Proof. The locus V (c2) of bundles with h0(E) 6= 0 has dimension ≤ 19, so a general
point of Z must have h0(E)= 0. The hypothesis implies that a general point has
h1(E(1))= 0. Thus, there is a nonempty dense open subset Z ′ ⊂ Z parametrizing
bundles with h0(E) = 0 and h1(E(1)) = 0. By [Mestrano and Simpson 2013,
Corollary 3.5], these bundles have seminatural cohomology. Thus, our open set is
Z ′=M(10)sn, the moduli space of bundles with seminatural cohomology, shown to
be irreducible in the main Theorem 0.2 of the same work recalled as Proposition 2.4
above. �

Using Proposition 6.1, and since we know by Corollary 5.5 that any irreducible
component Z meets the boundary in a codimension 1 subset, in order to prove irre-
ducibility of M(10), it suffices to show that the torsion-free sheaves F parametrized
by general points on the various irreducible components of the boundary of M(10)
have h1(F(1))= 0.
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The dimension is dim(Z)= 20, so the boundary components will have dimen-
sion 19. Looking at the line c2 = 10 in Table 2, we notice that there are three
19-dimensional boundary pieces, and a 20-dimensional piece which must constitute
a different irreducible component. Consider first the 19-dimensional pieces,

M(10, 9), M(10, 8) and M(10, 6).

Recall that M(10, 10−d) consists generically of torsion-free sheaves F fitting into
an exact sequence

(6-1) 0→ F→ F∗∗→ S→ 0,

where F∗∗ is a general point in the moduli space of stable bundles with c2 = 10−d ,
and S is a general quotient of length d .

Proposition 6.2. For a general point F in either of the three boundary pieces
M(10, 9), M(10, 8) or M(10, 6), we have h1(F(1))= 0.

Proof. Notice that χ(F∗∗(1)) = 15− c2(F∗∗) ≥ 6 and by stability h2(F∗∗(1)) =
h0(F∗∗(−1)) = 0, so F∗∗(1) has at least six linearly independent sections. In
particular, for a general quotient S of length 1, 2 or 4, consisting of the direct
sum S =

⊕
Sx of general length 1 quotients Ex → Sx at 1, 2 or 4 distinct general

points x , the map
H 0(F∗∗(1))→ H 0(S)

will be surjective.
For a general point F∗∗ in either M(9), M(8) or M(6), we have h1(F∗∗(1))= 0.

These results from [Mestrano and Simpson 2011] were recalled in Proposition 2.2,
Table 1, and reviewed in Section 3. The long exact sequence associated to (6-1)
now gives h1(F(1))= 0. �

This treats the 19-dimensional irreducible components of the boundary. There
remains the piece M(10, 4) which has dimension 20. This is a separate irreducible
component. It could meet M(10) along a 19-dimensional divisor, and we would like
to show that h1(F(1))= 0 for the sheaves parametrized by this divisor. In particular,
we are no longer in a completely generic situation so some further discussion is
needed. This will be the topic of the next section.

7. The lowest stratum

The lowest stratum is M(10, 4), which is therefore closed. We would like to
understand the points in M(10)∩M(10, 4). These are singular, so our main tool
will be to look at where the singular locus of M(10)meets M(10, 4). Denote this by

M(10, 4)sing
:= Sing(M(10))∩M(10, 4).
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In what follows, we give a somewhat explicit description of the lowest moduli space
M(4).

Lemma 7.1. For E ∈M(4) we have h1(E)=0, h0(E)=h2(E)=3, h0(E(1))=11
and h1(E(1))= h2(E(1))= 0.

Proof. Choosing an element s ∈ H 0(E) gives an exact sequence

(7-1) 0→OX → E→ JP/X (1)→ 0.

In [Mestrano and Simpson 2011] we have seen that P ⊂ X ∩ L is a subscheme
of length 4 in the intersection of X with a line L ⊂ P3. As P spans L , the space
of linear forms vanishing on P is the same as the space of linear forms vanishing
on L , so H 0(JP/X (1))∼= C2. In the long exact sequence associated to (7-1), note
that H 1(OX )= 0, giving

0→ H 0(OX )→ H 0(E)→ H 0(JP/X (1))→ 0,

hence H 0(E)∼=C3. By duality, H 2(E)∼=C3, and the Euler characteristic of E is 6,
so H 1(E)= 0.

For E(1), note that H 2(E(1)) = 0 by stability and duality, and (7-1) gives an
exact sequence

0→ H 1(E(1))→ H 1(JP/X (2))→ H 2(OX (1))→ 0.

On the other hand, H 1(JP/X (2)) ∼= C corresponding to the length 4 of P, minus
the dimension 3 of the space of sections of OP(2) coming from global quadrics
(since the space of quadrics on L has dimension 3). This gives H 1(E(1))= 0. The
Euler characteristic then gives h0(E(1))= 11. This is also seen in the first part of
the exact sequence, where H 0(OX (1))= C4 and H 0(JP/X (2))∼= C7. �

If p ∈P3, let G ∼=C3 be the space of linear generators of the ideal of p, that is to
say G := H 0(Jp/P3(1)), and consider the natural exact sequence of sheaves on P3

0→OP3(−1)→OP3 ⊗G∗→Rp→ 0.

Here the cokernel sheaf Rp is a reflexive sheaf of degree 1, and c2(Rp) is the class
of a line. The restriction Rp|X therefore has c2 = 5. If p ∈ X, it is torsion-free but
not locally free, giving a point in M(5, 4). It turns out that these sheaves account
for all of M(4) and M(5).

Theorem 7.2. Suppose E ∈ M(4). Then there is a unique point p ∈ X such that E
is generated by global sections outside of p, and Rp|X is isomorphic to the subsheaf
of E generated by global sections. This fits into an exact sequence

0→Rp|X → E→ S→ 0,
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where S has length 1, in particular E ∼= (Rp|X )
∗∗. The correspondence E ↔ p

establishes an isomorphism M(4)∼= X.
For E ′ ∈M(5), there exists a unique point p ∈P3

−X such that E ′∼=Rp|X . This
correspondence establishes an isomorphism M(5) ∼= P3 such that the boundary
component M(5, 4)∩M(5) is exactly X ⊂P3. Note however that M(5, 4) itself has
dimension strictly bigger than 3 and constitutes another irreducible component of
M(5).

Proof. Consider the exact sequence (7-1). The space H 0(JP/X (1)) consists of linear
forms on X (or equivalently, on P3), which vanish along P. However, a linear form
which vanishes on P also vanishes on L . In particular, elements of H 0(JP/X (1))
generate JX∩L/X (1), which has colength 1 in JP/X (1).

Let R⊂ E be the subsheaf generated by global sections, and let S be the cokernel
in the exact sequence

0→ R→ E→ S→ 0.

We also have the exact sequence

0→ JX∩L/X (1)→ JP/X (1)→ S→ 0

so S has length 1. It is supported on a point p. The sheaf R is generated by three
global sections so we have an exact sequence

0→ ker→O3
X → R→ 0.

The kernel is a saturated subsheaf, hence locally free, and by looking at its degree
we have ker=OX (−1). Thus, R is the cokernel of a map OX (−1)→O3

X given by
three linear forms; these linear forms are a basis for the space of forms vanishing
at the point p. We see that R is the restriction to X of the sheaf Rp described
above, hence E ∼= (Rp|X )

∗∗. The map E 7→ p gives a map M(4)→ X, with inverse
p 7→ (Rp|X )

∗∗.
The second paragraph, about M(5), is not actually needed later and we leave it

to the reader. �

Even though the moduli space M(4) is smooth, it has much more than the
expected dimension, and the space of coobstructions is nontrivial. It will be useful
to understand the coobstructions, because if F ∈ M(10, 4) is a torsion-free sheaf
with F∗∗ = E then coobstructions for F come from coobstructions for E which
preserve the subsheaf F ⊂ E .

Lemma 7.3. Suppose E ∈ M(4). A general coobstruction φ : E → E(1) has
generically distinct eigenvalues with an irreducible spectral variety in Tot(K X ).

Proof. It suffices to write down a map φ : E → E(1) with generically distinct
eigenvalues and irreducible spectral variety. To do this, we construct a map φR :
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R→ R(1) using the expression R=Rp|X . The exact sequence defining Rp extends
to the Koszul resolution, a long exact sequence

0→OP3(−1)→O3
P3 →OP3(1)3→ Jp/P3(2)→ 0.

Thus Rp may be viewed as the image of the middle map. Without loss of generality,
p is the origin in an affine system of coordinates (x, y, z) for A3

⊂ P3, and the
coordinate functions are the three coefficients of the maps on the left and right in
the Koszul sequence. The 3× 3 matrix in the middle is

K :=

 0 z −y
−z 0 x

y −x 0

 .
Any 3× 3 matrix of constants 8 gives a composed map

φR :Rp ↪→OP3(1)3 8
−→OP3(1)3→Rp(1).

Use the first two columns of K to give a map k :O2
P3→Rp which is an isomorphism

over an open set. On the other hand, the projection onto the first two coordinates
gives a map q :Rp→OP3(1)2 which is, again, an isomorphism over an open set.
The composition of these two is the map given by the upper 2× 2 square of K,

qk = K2,2 :=

(
0 z
−z 0

)
.

We can now analyze the map φR by noting that qφRk = K2,38K3,2 where K2,3

and K3,2 are respectively the upper 2× 3 and left 3× 2 blocks of K. Over the open
set where q and k are isomorphisms,

qφRq−1
= qφRk(qk)−1

= K2,38K3,2K−1
2,2 .

Now

K3,2K−1
2,2 =

 0 z
−z 0

y −x

 ·( 0 −1/z
1/z 0

)
=

 1 0
0 1

−x/z −y/z

 .
Suppose

8=

α β γ

δ ε ψ

χ θ ρ

 .
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Then

qφRq−1
= K2,38K3,2K−1

2,2

=

(
0 z −y
−z 0 x

)
·

α β γ

δ ε ψ

χ θ ρ

 ·
 1 0

0 1
−x/z −y/z


=

(
0 z −y
−z 0 x

)
·

α− γ x/z β − γ y/z
δ−ψx/z ε−ψy/z
χ − ρx/z θ − ρy/z


=

(
zδ−ψx − yχ + ρxy/z zε−ψy+ yθ − ρy2/z
−zα+ γ x − xχ + ρx2/z −zβ + γ y+ xθ − ρxy/z

)
.

Notice that the trace of this matrix is

Tr(φ)= x(θ −ψ)+ y(γ −χ)+ z(δ−β),

which is a section of H 0(OP3(1)) vanishing at p. A coobstruction should have trace
zero, so we should impose three linear conditions

θ = ψ, χ = γ, δ = β,

which together just say that 8 is a symmetric matrix. Our expression simplifies to

qφRq−1
=

(
βz−ψx − γ y+ ρxy/z εz− ρy2/z
−αz+ ρx2/z −βz+ψx + γ y− ρxy/z

)
.

Now, restrict Rp to X to get the sheaf R, take its double dual to get E = R∗∗, and
consider the induced map φ : E→ E(1). Over the intersection of our open set with
X, this will have the same formula. We can furthermore restrict to the curve Y ⊂ X
given by the intersection with the plane y = 0. Note that X is in general position
subject to the condition that it contains the point p. Setting y = 0 the above matrix
becomes

(qφq−1)|y=0 =

(
βz−ψx εz
−αz+ ρx2/z −βz+ψx

)
.

Choose for example β = ψ = 0 and α = ρ = ε = 1, giving the matrix whose
determinant is

det
(

0 z
x2/z− z 0

)
= z2
− x2
= (z+ x)(z− x).

The eigenvalues of φ|Y are therefore ±
√
(z+ x)(z− x), generically distinct. For a

general choice of the surface X, our curve Y = X ∩ (y = 0) will intersect the planes
x = z and x =−z transversally, so the two eigenvalues of φ|Y are permuted when
going around points in the ramification locus different from p. This provides an
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explicit example of φ for which the spectral variety is irreducible, completing the
proof of the lemma. We included the detailed calculations because they look to be
useful if one wants to write down explicitly the spectral varieties. �

Turn now to the study of the boundary component M(10, 4) consisting of torsion-
free sheaves in M(10) which come from bundles in M(4). A point in M(10, 4)
consists of a torsion-free sheaf F in an exact sequence of the form (6-1)

0→ F→ E σ
−→ S→ 0,

where E = F∗∗ is a point in M(4), and S is a length 6 quotient.
The basic description of the space of obstructions as dual to the space of K X -

twisted endomorphisms still holds for torsion-free sheaves. Thus, the obstruction
space for F is Homo(F, F(1))∗. A coobstruction is a map φ : F→ F(1)= F⊗K X

with Tr(φ)= 0, which is a kind of Higgs field. Since the moduli space is good, a
point F is in Sing(M(10)) if and only if the obstruction space is nonzero, that is to
say, if and only if there exists a nonzero trace-free φ : F→ F(1).

To give a map φ is the same thing as to give a map ϕ : E→ E(1) compatible
with the quotient map E → S, in other words fitting into a commutative square
with σ , for an induced map ϕS : S→ S. The maps ϕ, coobstructions for E , were
studied in Lemma 7.3 above.

Let P(E)→ X denote the Grothendieck projective space bundle. A point in
P(E) is a pair (x, s), where x ∈ X and s : Ex → Sx is a length one quotient of the
fiber. Suppose we are given a map ϕ : E → E(1). We can consider the internal
spectral variety

SpE(ϕ)⊂ P(E),

defined as the set of points (x, s) ∈ P(E) such that there is a commutative diagram

Ex
ϕ(x)
−→ Ex

↓ ↓

Sx −→ Sx .

The term “internal” signifies that it is a subvariety of P(E) as opposed to the
classical spectral variety which is a subvariety of the total space of K X . Here, we
have only given SpE(ϕ) a structure of closed subset of P(E), hence of reduced
subvariety. It would be interesting to give it an appropriate scheme structure which
could be nonreduced in case ϕ is nilpotent, but that will not be needed here.

Corollary 7.4. Suppose E ∈ M(4) and ϕ : E→ E(1) is a general coobstruction.
Then the internal spectral variety SpE(ϕ) has a single irreducible component of
dimension 2. A quotient E→ S consisting of a disjoint sum of length one quotients
si : Exi → Si with S =

⊕
Si and the points xi disjoint, is compatible with ϕ if and

only if the points (xi , si ) ∈ P(E) lie on the internal spectral variety SpE(ϕ).
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Proof. Notice if z ∈ X is a point such that ϕ(z)= 0, then the whole fiber P(E)z ∼=P1

is in SpE(ϕ). In particular, if such a point exists then the map SpE(ϕ)→ X will
not be finite.

A first remark is that the zero-set of ϕ is 0-dimensional. Indeed, if ϕ vanished
along a divisor D, then D ∈ |OX (n)| for n ≥ 1 and ϕ : F → F(1− n). This is
possible only if n = 1 and ϕ : F→ F is a scalar endomorphism (since F is stable).
However, the trace of the coobstruction vanishes, so the scalar ϕ would have to be
zero, which we are assuming is not the case.

At an isolated point z with ϕ(z)= 0, the fiber of the projection SpE(ϕ)→ X con-
tains the whole P(Ez)=P1. However, these can contribute at most irreducible com-
ponents of dimension ≤ 1 (although we conjecture that in fact these fibers are con-
tained in the closure of the 2-dimensional component so that SpE(ϕ) is irreducible).

Away from such fibers, the internal spectral variety is isomorphic to the external
one, a two-sheeted covering of X, and by Lemma 7.3, for a general ϕ the monodromy
of this covering interchanges the sheets, so it is irreducible. Thus, SpE(ϕ) has a
single irreducible component of dimension 2, and it maps to X by a generically
finite (2 to 1) map.

The second statement, that a quotient consisting of a direct sum of length one
quotients, is compatible with ϕ if and only if the corresponding points lie on SpE(ϕ),
is immediate from the definition. �

Definition 7.5. A triple (E, ϕ, σ ) where E ∈M(4), ϕ : E→ E(1) is a nonnilpotent
map, and σ =

⊕
sx is a quotient composed of six length 1 quotients over distinct

points, compatible with ϕ as in the previous Corollary 7.4, leads to an obstructed
point F = F(E,ϕ,σ ) ∈ M(10, 4)sing obtained by setting F := ker(σ ). Such a point
will be called usual.

Ellingsrud and Lehn have given a very nice description of the Grothendieck
quotient scheme of a bundle of rank r on a smooth surface. It extends the basic
idea of Li’s theorem which we already stated as Theorem 4.2 above, and will allow
us to count dimensions of strata in M(10, 4).

Theorem 7.6 [Ellingsrud and Lehn 1999]. The quotient scheme parametrizing
quotients of a locally free sheaf Or

X of rank r on a smooth surface X, located at a
given point x ∈ X, and of length `, is irreducible of dimension r`− 1.

Proof. See [Ellingsrud and Lehn 1999]. We have given the local version of the
statement here. �

In our case, r = 2 so the dimension of the local quotient scheme is 2`− 1.
A given quotient E→ S decomposes as a direct sum of quotients E→ Si located

at distinct points xi ∈ X. Order these by decreasing length, and define the length
vector of S to be the sequence (`1, . . . , `k) of lengths `i = `(Si ) with `i ≥ `i+1.
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This leads to a stratification of the Quot scheme into strata labeled by length vectors.
By [Ellingsrud and Lehn 1999], the dimension of the space of quotients supported at
a single (but not fixed) point xi and having length `i , is 2`i+1, giving the following
dimension count.

Corollary 7.7. For a fixed bundle E of rank 2, the dimension of the stratum associ-
ated to length vector (`1, . . . , `k) in the Quot-scheme of quotients E→ S with total
length `=

∑k
i=1 `i , is ∑

(2`i + 1)= 2`+ k.

Recall that the moduli space M(4) has dimension 2, so the dimension of the
stratum of M(10, 4) corresponding to a vector (`1, . . . , `k) is 14+ k. In particular,
M(10, 4) has a single stratum (1, 1, 1, 1, 1, 1) of dimension 20, corresponding to
quotients which are direct sums of length one quotients supported at distinct points,
and a single stratum (2, 1, 1, 1, 1) of length 19. This yields the following corollary.

Corollary 7.8. If Z ′⊂ M(10, 4) is any 19-dimensional irreducible subvariety, then
either Z ′ is equal to the stratum (2,1,1,1,1), or else the general point on Z ′ consists
of a direct sum of six length 1 quotients supported over six distinct points of X.

Proposition 7.9. The singular locus M(10, 4)sing has only one irreducible compo-
nent of dimension 19. This irreducible component has a nonempty dense open subset
consisting of the usual points (Definition 7.5). For a usual point, the coobstruction
ϕ is unique up to a scalar, so this open set may be viewed as the moduli space of
usual triples (E, ϕ, σ ), which is irreducible.

Proof. Suppose Z ′ ⊂ M(10, 4)sing is an irreducible component. Consider the two
cases given by Corollary 7.8.

(i) If Z ′ contains an open set consisting of points which are direct sums of six
length 1 quotients supported on distinct points of X, then this open set parametrizes
usual triples. Furthermore, a point in this open set corresponds to a choice of
(E, ϕ) together with six points on the internal spectral variety SpE(ϕ). We count
the dimension of this piece as follows.

Let M ′(4) denote the moduli space of pairs (E, ϕ)with E ∈M(4) and ϕ a nonzero
coobstruction for E . The space of coobstructions for any E ∈ M(4), has dimension
6 and the family of these spaces forms a vector bundle over M(4) (more precisely, a
twisted vector bundle twisted by the obstruction class for existence of a universal fam-
ily over M(4)). Thus, the moduli space of pairs has a fibration M ′(4)→M(4)whose
fibers are P5. In particular, M ′(4) is a smooth irreducible variety of dimension 7.

For a general such (E, ϕ) the moduli space of usual triples has dimension ≤ 12,
with a unique 12-dimensional piece corresponding to a general choice of 6 points
on the unique 2-dimensional irreducible component of SpE(ϕ). This gives the
19-dimensional component of M(10, 4)sing mentioned in the proposition.
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Suppose (E, ϕ) is not general, that is to say, contained in some subvariety of
M ′(4) of dimension ≤ 6. Then, as ϕ is nonzero, even though we no longer can say
that it is irreducible, in any case the internal spectral variety SpE(ϕ) has dimension
2 so the space of choices of 6 general points on it has dimension ≤ 12, and this
contributes at most subvarieties of dimension ≤ 18 in M(10, 4)sing. This shows that
in the first case (i) of Corollary 7.8, we obtain the conclusion of the proposition.

(ii) Suppose Z ′ is equal to the stratum of M(10, 4) corresponding to length vector
(2, 1, 1, 1, 1). In this case, we show that a general point of Z ′ has no nonzero
coobstructions, contradicting the hypothesis that Z ′ ⊂ M(10, 4)sing and showing
that this case cannot occur.

Fix E ∈ M(4). The space of coobstructions of E has dimension 6. Suppose
E → S1 is a quotient of length 2. If it is just the whole fiber of E over x1, then
it is automatically compatible with any coobstruction. However, these quotients
contribute only a 2-dimensional subspace of the space of such quotients which has
dimension 5 by [Ellingsrud and Lehn 1999]. Thus, these points don’t contribute
general points. On the other hand, a general quotient of length 2 corresponds to an
infinitesimal tangent vector in P(E), and the condition that this vector be contained
in SpE(ϕ) imposes two conditions on ϕ. Therefore, the space of coobstructions
compatible with S1 has dimension ≤ 4. Next, given a nonzero coobstruction in that
subspace, a general quotient E→ S2 of length 1 will not be compatible, so imposing
compatibility with S1 and S2 leads to a space of coobstructions of dimension ≤ 3.
Continuing in this way, we see that imposing the condition of compatibility of ϕ
with a general quotient S= S1⊕· · ·⊕ S5 in the stratum (2, 1, 1, 1, 1) leads to ϕ= 0.
Thus, a general point of this stratum has no nonzero coobstructions as we have
claimed, and this case (ii) cannot occur.

Hence, the only case from Corollary 7.8 which can contribute a 19-dimensional
stratum, contributes the single irreducible component described in the statement
of the proposition. One may note that ϕ is uniquely determined for a general set
of six points on its internal spectral variety, since the first 5 points are general in
P(E) and impose linearly independent conditions. �

Corollary 7.10. Suppose M(10, 4) ∩ M(10) is nonempty. Then it is the unique
19-dimensional irreducible component of usual triples in M(10, 4)sing identified by
Proposition 7.9.

Proof. By Hartshorne’s theorem, the intersection M(10, 4)∩M(10) has pure dimen-
sion 19 if it is nonempty. This could also be seen from O’Grady’s lemma that the
boundary of M(10) has pure dimension 19. However, any point in this intersection is
singular. By Proposition 7.9, the singular locus M(10, 4)sing has only one irreducible
component of dimension 19, and it is the closure of the space of usual triples. �
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If the intersection M(10, 4)∩ M(10) is nonempty, the torsion-free sheaves F
parametrized by general points satisfy h1(F(1))= 0. We show this by a dimension
estimate using [Ellingsrud and Lehn 1999]. The more precise information about
M(10, 4)sing given in Proposition 7.9, while not really needed for the proof at
c2 = 10, will be useful in treating the case of c2 = 11 in Section 9.

Proposition 7.11. The subspace of M(10, 4) consisting of points F such that
h1(F(1))≥ 1 has codimension ≥ 2.

Proof. Use the exact sequence 0→ F → E → S→ 0, where E ∈ M(4). One
has h1(E(1)) = 0 for all E ∈ M(4), see Lemma 7.1. Therefore, h1(F(1)) = 0 is
equivalent to saying that the map

(7-2) H 0(E(1))→ H 0(S(1))∼= C6

is surjective.
Considering the theorem of Ellingsrud and Lehn [1999], there are two strata to be

looked at: the case of a direct sum of six quotients of length 1 over distinct points,
to be treated below; and the case of a direct sum of four quotients of length 1 and
one quotient of length 2. However, this latter stratum already has codimension 1,
and it is irreducible. So, for this stratum it suffices to note that a general quotient
E → S in it leads to a surjective map (7-2), which may be seen by a classical
general position argument, placing first the quotient of length 2.

Consider now the stratum of quotients which are the direct sum of six length 1
quotients si at distinct points xi ∈ X. Fix the bundle E . The space of choices of the
six quotients (xi , si ) has dimension 18. We claim that the space of choices such
that (7-2) is not surjective, has codimension ≥ 2.

Note that h0(E(1)) = 11. Given six quotients (xi , si ), if the map (7-2) (with
S =

⊕
Si ) is not surjective, then its kernel has dimension ≥ 6, so if we choose five

additional points (y j , t j ) ∈ P(E) with t j : Ey j → Tj for Ti of length 1, the total
evaluation map

(7-3) H 0(E(1))→
6⊕

i=1

Si (1)⊕
5⊕

j=1

Tj (1)

has a nontrivial kernel. Consider the variety

W := {(u,...,(xi ,si ),...,...,(y j ,t j ),...) | 0 6= u ∈ H 0(E(1)),si (u)= 0,t j (u)= 0}

with the nonzero section u taken up to multiplication by a scalar.
Let Q′6(E) and Q′5(E) denote the open subsets of the quotient schemes of length

6 and length 5 quotients of E respectively, open subsets consisting of quotients
which are direct sums of length one quotients over distinct points. Let K ⊂ Q′6(E)
denote the locus of quotients E→ S such that the kernel sheaf F has h1(F(1))≥ 1.
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It is a proper closed subset, since it is easy to see that a general quotient E→ S leads
to a surjection (7-2). The above argument with (7-3) shows that K×Q′5(E)⊂ p(W ),
where p : W → Q′6(E)× Q′5(E) is the projection forgetting the first variable u.
Our goal is to show that K has dimension ≤ 16.

We claim that W has dimension ≤ 32 and has a single irreducible component of
dimension 32. To see this, start by noting that the choice of u lies in the projective
space P10 associated to H 0(E(1))∼= C11.

For a section u which is special in the sense that its scheme of zeros has positive
dimension, the locus of choices of (xi , si ) and (y j , t j ) has dimension ≤ 22, but
might have several irreducible components depending on whether the points are
on the zero-set of u or not. However, the space of sections u which are special in
this sense is equal to the space of pairs u′ ∈ H 0(E), u′′ ∈ H 0(OX (1)) up to scalars
for both pieces, and this has dimension 2+ 3= 5, which is much smaller than the
dimension of the space of all sections u. Therefore, these pieces don’t contribute
anything of dimension higher than 27.

For a section u which is not special in the sense of the previous paragraph, the
space of choices of a single length 1 quotient (x, s) which vanishes on the section,
has a single irreducible component of dimension 2. It might possibly have some
pieces of dimension 1 corresponding to quotients located at the zeros of u (although
we don’t think so). Hence, the space of choices of point in W lying over the section u
has dimension ≤ 22 and has a single irreducible component of dimension 22.

Putting these together over P10, the dimension of W is ≤ 32 and it has a single
irreducible component of dimension 32, as claimed. Its image p(W ) therefore also
has dimension ≤ 32, and has at most one irreducible component of dimension 32.
Denote this component, if it exists, by p(W )′.

Suppose now that K had an irreducible component K ′ of dimension 17. Then
K ′× Q′5(E)⊂ p(W ), but dim(Q′5(E))= 15 so p(W )′ would exist and would be
equal to K ′ × Q′5(E). However, p(W )′ is symmetric under permutation of the
11 different variables (x, s) and (y, t), but that would then imply that P(W )′ was
the whole of Q′6(E) × Q′5(E) which is not the case. Therefore, K must have
codimension ≥ 2. This completes the proof of the proposition. �

Corollary 7.12. Suppose M(10, 4)∩M(10) is nonempty. Then a general point of
this intersection corresponds to a torsion-free sheaf with h1(F(1))= 0.

Proof. By Hartshorne’s or O’Grady’s theorem, if the intersection is nonempty then
it has pure dimension 19. However, the space of torsion-free sheaves F ∈ M(10, 4)
with h1(F(1)) > 0 has dimension ≤ 18 by Proposition 7.11. Thus, a general point
in any irreducible component of M(10, 4)∩ M(10) must have h1(F(1)) = 0. In
fact there can be at most one irreducible component, by Corollary 7.10. �
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8. Irreducibility for c2 = 10

Corollary 8.1. Suppose Z is an irreducible component of M(10). Then, for a
general point F in any irreducible component of the intersection of Z with the
boundary, we have h1(F(1))= 0.

Proof. By O’Grady’s lemma, the intersection of Z with the boundary has pure dimen-
sion 19. By considering the line c2 = 10 in the Table 2, this subset must be a union
of some of the irreducible subsets M(10, 9), M(10, 8), M(10, 6), and the unique
19-dimensional irreducible component of M(10, 4)sing given by Proposition 7.9.
Combining Proposition 6.2 and Corollary 7.12, we conclude that any one of these
irreducible components of the intersection of Z with the boundary contains a point
F such that h1(F(1))= 0. �

Corollary 8.2. Suppose Z is an irreducible component of M(10). Then the bundle
E parametrized by a general point of Z has seminatural cohomology, and Z is the
closure of the irreducible open set M(10)sn.

Proof. The closure Z of Z meets the boundary in a nonempty subset, by Corollary 5.5.
By the previous Corollary 8.1, there exists a point F in Z with h1(F(1))= 0; thus
the general bundle E in Z also satisfies h1(E(1)) = 0. By Proposition 6.1, the
irreducible moduli space M(10)sn of bundles with seminatural cohomology is an
open set of Z . �

Theorem 8.3. The moduli space M(10) of stable bundles of degree 1 and c2 = 10,
is irreducible.

Proof. By Corollary 8.2, any irreducible component of M(10) contains a dense
open set parametrizing bundles with seminatural cohomology. By the main theorem
of [Mestrano and Simpson 2013], there is only one such irreducible component. �

Theorem 8.4. The full moduli space of stable torsion-free sheaves M(10) of degree
1 and c2= 10, has two irreducible components, M(10) and M(10, 4) meeting along
the irreducible component of usual triples in M(10, 4)sing. These two components
have the expected dimension, 20, hence the moduli space is good and connected.

Proof. Recall that we know M(10, 4) is irreducible by the results of [Mestrano
and Simpson 2011]. Also M(10) is irreducible. Any component has dimension
≥ 20, and by looking at the dimensions in Table 2, these are the only two possible
irreducible components. Since they have dimension 20 which is the expected
dimension, it follows that the moduli space is good.

It remains to be proven that these two components do indeed intersect in a
nonempty subset, which then by Corollary 7.10 has to be the irreducible component
of usual triples in M(10, 4)sing. Notice that Corollary 7.10 did not say that the
intersection was necessarily nonempty, since it started from the hypothesis that
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there was a meeting point. It is a consequence of Nijsse’s connectedness theorem
that the intersection is nonempty, but this may be seen more concretely as follows.

Consider the stratum M(10, 5). Recall from [Mestrano and Simpson 2011] that
the moduli space M(5) consists of bundles which fit into an exact sequence of the
form

0→OX → E→ JP/X (1)→ 0,

such that P = L ∩ X for L ⊂ P3 a line. In what follows, choose L general so that
P consists of 5 distinct points.

The space of extensions Ext1(JP/X (1),OX ) is dual to Ext1(OX , JP/X (2)) =
H 1(JP/X (2)). We have the exact sequence

H 0(OX (2))→ H 0(OP(2))→ H 1(JP/X (2))→ 0.

However, H 0(OX (2))= H 0(OP3(2)) and the map to H 0(OP(2)) factors through
H 0(OL(2)), the space of degree two forms on L ∼= P1, which has dimension 3.
Hence, the cokernel H 1(JP/X (2)) has dimension 2. The extension classes which
correspond to bundles, are the linear forms on H 1(JP/X (2)) which don’t vanish on
any of the images of the lines in H 0(OP(2)) corresponding to the 5 different points.
Since X is general, the collection of 5 points X ∩L is not in a special position in P1,
so the images of the lines are distinct in the two-dimensional space H 1(JP/X (2)).
So we can find a family of extension classes whose limiting point is an extension
which vanishes on one of the lines corresponding to a point in P. This gives a
degeneration towards a torsion-free sheaf with a single not locally free point, still
sitting in a nontrivial extension of the above form. We conclude that the limiting
bundle is still stable, so we have constructed a degeneration from a point of M(5),
to the single boundary stratum M(5, 4).

Notice that the dimension of M(5, 4) is bigger than that of M(5), so the set of
limiting points is a strict subvariety of M(5, 4). We have M(5)= M(5)∪M(5, 4),
and we have shown that the closures of these two strata have nonempty intersection.
This fact is also a consequence of the more explicit description of M(5) stated in
Theorem 7.2 above (but where the proof was left to the reader).

Moving up to c2 = 10, it follows that the closure of the stratum M(10, 5)
intersects M(10, 4). However, M(10, 4) is closed, and the remaining strata of
the boundary have dimension ≤ 19, so all of the other strata in the boundary, in
particular M(10, 5), are contained in the closure of the locus of bundles M(10).
Thus, M(10, 5)⊂M(10), but M(10, 4)∩M(10, 5) 6=∅, proving that the intersection
M(10, 4)∩M(10) is nonempty. �

Physics discussion. From this fact, we see that there are degenerations of stable
bundles in M(10), near to boundary points in M(10, 4). Donaldson’s Yang–Mills
connections then degenerate towards Uhlenbeck boundary points, connections
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where 6 delta-like singular instantons appear. However, these degenerations go not
to all points in M(10, 4) but only to ones which are in the irreducible subvariety
M(10, 4)sing

⊂ M(10, 4) consisting of points on the internal spectral variety of a
nonzero Higgs field ϕ : E→ E ⊗ K X . It gives a constraint of a global nature on
the 6-tuples of singular instantons which can appear in Yang–Mills connections on
a stable bundle F ∈ M(10). It would be interesting to understand the geometry of
the Higgs field which shows up, somewhat virtually, in the limit.

9. Irreducibility for c2 ≥ 11

Consider next the moduli space M(11) of stable torsion-free sheaves of degree
one and c2 = 11. The moduli space is good, of dimension 24. From Table 2, the
dimensions of the boundary strata are all ≤ 23, so the set of irreducible components
of M(11) is the same as the set of irreducible components of M(11). Suppose Z is
an irreducible component. By Corollary 5.5, Z meets the boundary in a nonempty
subset of codimension 1, i.e., dimension 23. From Table 2, the only two possibilities
are M(11, 10) and M(11, 4). Note that M(11, 4) is closed since it is the lowest
stratum; it is irreducible by Li’s theorem and irreducibility of M(4). The stratum
M(11, 10) is irreducible because of Theorem 8.3.

Lemma 9.1. The intersection M(11, 4)∩M(11, 10) is a nonempty subset contain-
ing, in particular, points which are torsion-free sheaves F ′ entering into an exact
sequence of the form

0→ F ′→ F→ Sx → 0,

where F is a usual point of M(10, 4)sing, x ∈ X is a general point, and F→ Sx is a
general length one quotient.

Proof. Theorem 8.4 shows that the intersection M(10, 4)∩M(10) is nonempty. It
is the unique 19-dimensional irreducible component of M(10, 4)sing, containing
the usual points. Starting with a general point F ∈ M(10, 4) ∩ M(10) and tak-
ing an additional general length 1 quotient Sx , the subsheaf F ′ gives a point in
M(11, 4)∩M(11, 10). �

Let Y ⊂ M(10, 4) be the unique 19-dimensional irreducible component of the
singular locus M(10, 4)sing. It contains a dense open set where the quotient S is
a direct sum of six quotients (xi , si ) of length 1. Choose a quasifinite surjection
Y ′→ Y such that (xi , si ) are well defined as functions Y ′→ P(E).

Forgetting the quotients and considering only the bundle E gives a map Y ′→M(4).
Fix a bundle E in the image of Y ′→ M(4). Let Y ′E denote the fiber of Y ′ over E ,
which has dimension ≥ 17.

We claim that for any 0≤ k ≤ 5, there exists a choice of k out of the 6 points such
that the map Y ′E → P(E)k is surjective. For k = 0 this is automatic, so assume that
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k ≤ 4 and it is known for k; we need to show that it is true for k+1 points. Reorder
so that the k points to be chosen, are the first ones. For a general point q ∈ P(E)k,
let Y ′E,q denote the fiber of Y ′E → P(E)k over q. We have dim(Y ′E,q) ≥ 17− 3k.
We get an injection

Y ′E,q → P(E)6−k .

Suppose that the image mapped into a proper subvariety of each factor; then it would
map into a subvariety of dimension ≤ 2(6− k), which would give dim(Y ′E,q) ≤
12−2k. However, for k ≤ 4 we have 12−2k < 17−3k, a contradiction. Therefore,
at least one of the projections must be a surjection Y ′E,q→P(E). Adding this point
to our list, gives a list of k+1 points such that the map Y ′E→P(E)k+1 is surjective.
This completes the induction, yielding the following lemma.

Lemma 9.2. Suppose Y ⊂ M(10, 4) is as above. Then for a fixed bundle E ∈ M(4)
corresponding to some points in Y, and for a general point in the fiber YE over E ,
some 5 out of the 6 quotients correspond to a general point of P(E)5.

Lemma 9.3. Suppose F is the torsion-free sheaf parametrized by a general point
of Y, and let F ′ be defined by an exact sequence

0→ F ′→ F
(x7,s7)
−→ S7→ 0,

where S7 has length 1 and (x7, s7) is general (with respect to the choice of F) in
P(E). Then F ′ has no nontrivial coobstructions: Hom(F ′, F ′(1))= 0.

Proof. The space of coobstructions for the bundle E has dimension 6. Imposing a
condition of compatibility with a general length-1 quotient (xi , si ) cuts down the
dimension of the space of coobstructions by at least 1.

By Lemma 9.2 above, we may assume after reordering that the first five points
(x1, s1), . . . , (x5, s5) constitute a general vector in P(E)5. Adding the 7-th gen-
eral point given by the statement of the proposition, we obtain a general point
(x1, s1), . . . , (x5, s5), (x7, s7) in P(E)6. As this 6-tuple of points is general with
respect to E , it imposes vanishing on the 6-dimensional space of coobstructions,
giving Hom(F ′, F ′(1))= 0. �

Corollary 9.4. There exists a point

F ′ ∈ M(11, 10)∩M(11, 4)

in the boundary of M(11), such that F ′ is a smooth point of M(11).

Proof. By Lemma 9.3, choosing a general quotient (x7, s7) gives a torsion-free
sheaf F ′ with no coobstructions, hence corresponding to a smooth point of M(11).
By construction we have F ′ ∈ M(11, 10)∩M(11, 4). �

Theorem 9.5. The moduli space M(11) is irreducible.
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Proof. Suppose Z is an irreducible component. Then Z meets the boundary in a
codimension 1 subset; but by looking at Table 2, there are only two possibilities:
M(11, 10) and M(11, 4). The coobstructions vanish for general points of M(10, 4)
since those correspond to 6 general quotients of length 1, and the coobstructions
vanish for general points of M(10) by goodness. It follows that there are no
coobstructions at general points of M(11, 10) or M(11, 4), so each of these is
contained in at most a single irreducible component of M(11). However, in the
previous corollary, there is a unique irreducible component containing F ′, which
shows that the irreducible components containing M(11, 10) and M(11, 4) must
be the same. Hence, M(11) has only one irreducible component. �

Remark. Sarbeswar Pal has pointed out to us a simplified proof for c2 ≥ 11,
avoiding the use of Lemma 9.1. He observes from the connectedness property
and goodness of the moduli of torsion-free sheaves, that any change of irreducible
component must occur along a codimension 1 piece of the singular locus. However,
general points of the boundary components are smooth points of the full moduli
space, by an easier version of the previous discussion, so we can conclude that the
singular locus has codimension ≥ 2. We have nonetheless presented our original
proof since it gives some additional geometrical information on the intersection of
the two boundary strata.

The cases c2 ≥ 12 are now easy to treat.

Theorem 9.6. For any c2 ≥ 12, the moduli space M(c2) of stable torsion-free
sheaves of degree 1 and second Chern class c2, is irreducible.

Proof. By Corollary 5.5, any irreducible component of M(c2)meets the boundary in
a subset of codimension 1. However, for c2 ≥ 12, the only stratum of codimension
1 is M(c2, c2− 1). By induction on c2, starting at c2 = 11, we may assume that
M(c2, c2 − 1) is irreducible. Furthermore, if E is a general point of M(c2 − 1),
then E admits no coobstructions, since M(c2 − 1) is good. Hence, a general
point F in M(c2, c2−1), which is the kernel of a general length-1 quotient E→ S,
doesn’t admit any coobstructions either. Therefore, M(c2) is smooth at a general
point of M(c2, c2− 1). Thus, there is a unique irreducible component containing
M(c2, c2− 1), which completes the proof that M(c2) is irreducible. �

We have finished proving our main statement, Theorem 1.1 of the introduction:
for any c2 ≥ 4, the moduli space M(c2) of stable vector bundles of degree 1 and
second Chern class c2 on a very general quintic hypersurface X ⊂ P3 is nonempty
and irreducible.

For 4≤ c2 ≤ 9, this is shown in [Mestrano and Simpson 2011]. For c2 = 10 it is
Theorem 8.3, for c2 = 11 it is Theorem 9.5, and c2 ≥ 12 it is Theorem 9.6. Note
that for c2 ≥ 16 it is Nijsse’s [1995] theorem.
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It was shown in [Mestrano and Simpson 2011] that the moduli space is good for
c2 ≥ 10 (shown by Nijsse for c2 ≥ 13), and from Table 1 we see that it isn’t good
for 4≤ c2 ≤ 9. The moduli space of torsion-free sheaves M(c2) is irreducible for
c2 ≥ 11, as may be seen by looking at the dimensions of boundary strata in Table 2.
Whereas M(4)= M(4) is irreducible, the dimensions of the strata in Table 2 imply
that M(c2) has several irreducible components for 5≤ c2 ≤ 9, although we haven’t
answered the question as to their precise number. By Theorem 8.4, M(10) has two
irreducible components M(10) and M(10, 4).

10. An irregularity estimate

In this section we provide a correction and improvement to [Mestrano and Simpson
2011, Lemma 5.1] and hence Corollary 5.1 there. There was an error in the proof
given in there.

Lemma 10.1. Suppose X is a very general quintic hypersurface in P3. Suppose
s ∈ H 0(OX (2)) is a section which is not the square of a section of OX (1). It defines
an irreducible spectral covering Z ⊂ Tot(K X ) consisting of square roots of s. Let
Z̃ be a resolution of singularities of Z. Then the irregularity of Z̃ is zero, that is to
say, H 0(Z̃ , �1

Z̃
)= 0. Hence the dimension of Pic0(Z̃) is zero.

Proof. The divisor D of zeros of s is reduced since s isn’t a square and in view of
the fact that OX (1) generates Pic(X). Therefore the map Z→ X is ramified with
simple ramification along the smooth points of D. The involution of multiplication
by −1 acts in the fibers. Choose an equivariant resolution of singularities Z̃→ Z
with an involution σ : Z̃→ Z̃ covering the given involution of Z . The irregularity
of Z̃ is independent of the choice of resolution, so we would like to show that
H 0(Z̃ , �1

Z̃
)= 0.

The map p : Z̃→ X induces an exact sequence

0→OX → p∗(OZ̃ )→ Q→ 0,

with Q a rank 1 torsion-free sheaf on X. The double dual Q∗∗ is a line bundle L .
Using the involution σ , the above exact sequence splits: Q is the anti-invariant part.
Multiplying together sections of Q gives a map

Q⊗ Q→OX ,

which extends by Hartogs to a map

L ⊗ L→OX .

Look locally near a smooth point of D where X has coordinates (x, y) such that D
is given by y = 0, and Z̃ has coordinates (x, z) with y = z2. As a C{x, y}-module,
Q or equivalently L is generated by z. The image of the multiplication map is
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therefore the submodule generated by z2
= y. It is an isomorphism outside of D,

and to get an isomorphism it suffices to look off of codimension 2. This shows that

L ⊗ L −→∼ OX (−D)∼=OX (−2),

hence L ∼=OX (−1). It means that L is generated by the linear functions along the
fibers of K X → X, restricted back to Z̃ .

Consider similarly the decomposition into invariant and anti-invariant pieces

p∗(�1
Z̃
)= F+⊕F−.

These sheaves are torsion-free, and we have a map �1
X→F+. Again with the local

coordinates x, y for X and x, z for Z̃ near a smooth point of D as above, we have
that �1

Z̃
is generated by dx and dz. As a module over C{x, y}, F+ is generated by

dx and zdz or equivalently dx and dy. This shows that the map �1
X → F+ is an

isomorphism on smooth points of D. Since F+ is torsion-free and �1
X is locally

free, it follows that this map is an isomorphism. We may therefore write

p∗(�1
Z̃
)=�1

X ⊕F−.

Consider now the map �1
X ⊗ Q→ F−. Let G := (F−)∗∗ be the double dual, and

the previous map induces a map

�1
X ⊗ L→ G.

Consider again the situation at a smooth point of D using local coordinates. Note
that G is generated by zdx and dz, whereas �1

X ⊗ L is generated by zdx and
zdy = z2dz = ydz. Recalling that L =OX (−1), we get an exact sequence

0→�1
X (−1)→ G→ B→ 0,

where B is a sheaf supported on D, locally near the smooth points being isomorphic
to OD . This says that G and �1

X (−1) are related by an elementary transformation.
In particular, we get

0→ G→�1
X (−1)(D)=�1

X (1).

The irregularity of X vanishes so H 0(�1
X )= 0. Hence,

H 0(Z̃ , �1
Z̃
)∼= H 0(X, p∗�1

Z̃
)−→∼ H 0(X,F−) ↪→ H 0(X,G) ↪→ H 0(X, �1

X (1)).

We have finally shown that there is an injection

H 0(Z̃ , �1
Z̃
) ↪→ H 0(X, �1

X (1)).

One may show8 the right-hand space of sections vanishes, completing the proof. �

8For convenience, here is the argument. The canonical exact sequence

0→�1
P3 →OP3(−1)4→OP3 → 0
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Therefore Corollary 5.1 of [Mestrano and Simpson 2011] holds, with the im-
proved bound that the dimension is≤9. Along the way we have answered [Mestrano
and Simpson 2011, Question 5.1]: in the notation from there, A = 0.

11. Example on a degree 6 hypersurface

In this section we shall start in the direction of considering hypersurfaces of higher
degree, and consider briefly the case of hypersurfaces of degree 6. In particular, the
notation differs from that in effect previously.

Here, X ⊂ P3 is a very general hypersurface of degree 6, which will be denoted
X = X6 in the statements of the main corollaries, for precision. We have K X =

OX (2). We consider stable rank 2 vector bundles E of degree 1 and more precisely
with det(E)=OX (1), and some specified value of c2.

Assume h0(E) > 0. Then there is a section, corresponding to a morphism
s : OX → E . The zeros of s are in codimension 2; otherwise it would extend to
OX (1)→ E , contradicting stability. Therefore, s fits into an exact sequence of the
usual form

(11-1) 0→OX → E→ JP/X (1)→ 0,

where P ⊂ X is a locally complete intersection subscheme of dimension 0. By the
general theory, P satisfies the condition CB(L−1

⊗M ⊗ K X ), where L =OX and
M =OX (1). In other words, P is a CB(3) subscheme.

Notice that c2(OX ⊕OX (1))= 0 by the product formula for Chern polynomials;
therefore in the above extension, we have c2(E)= |P|.

In our examples, we will consider the case c2 = 11, and give two different kinds
of 11-point CB(3) subschemes.

Before getting to these, let us note some general things about the deformation
theory. Our bundle satisfies E∗ = E(−1), so

End(E)= E∗⊗ E ∼= E ⊗ E(−1).

gives rise to
0→ H0(�1

P3(1))→ H0(O4
P3)→ H0(OP3(1)),

in which the right map is an isomorphism, so H0(�1
P3(1))= 0. We also get H1(P3, �1

P3(−4))= 0;
thus the exact sequence

0→�1
P3(−4)→�1

P3(1)→�1
P3(1)|X → 0

implies H0(�1
P3(1)|X )= 0. Now using H1(OX (n))= 0, the exact sequence

0→ N∗X/P3(1)=OX (−4)→�1
P3(1)|X →�1

X (1)→ 0

gives H0(�1
X (1))= 0.
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The decomposition End(E) = End0(E)⊕OX into the trace-free plus the central
part, corresponds to the decomposition

E ⊗ E(−1)= Sym2(E)(−1)⊕
2∧
(E)(−1).

Let us denote for short V := Sym2(E)(−1). The deformation theory of E as a
bundle with fixed determinant is governed by H∗(V ). Notice that if E is stable,
it has no endomorphisms except the scalars, so H 0(V ) = 0. We may also apply
Serre duality, noting that V is self-dual and recalling K X =OX (2). The space of
infinitesimal deformations of E is

Def(E)= H 1(V )∼= H 1(V (2))∗,

and the space of obstructions is

Obs(E)= H 2(V )∼= H 0(V (2))∗.

Let 2P denote the subscheme defined by the square of the ideal of P, so J2P/X =

(JP/X )
2. We have an exact sequence

(11-2) 0→ E(−1)→ V → J2P/X (1)→ 0,

and hence

(11-3) 0→ E(1)→ V (2)→ J2P/X (3)→ 0.

Points on the rational normal cubic. The first case is when C ⊂ P3 is a general
rational normal cubic, and P ⊂ X ∩C is a collection of 11 points. This exists since
C ∩ X consists of 18 distinct points and we may choose 11 of them.

Notice that C ∼= P1 and OP3(1)|C =OC(3p) for any point p ∈ C, that is to say
it is a line bundle of degree 3. Thus, OP3(3)|C =OC(9p) has degree 9. If P ′ ⊂ P
is any collection of 10 points, a section of OP3(3) vanishing on P ′ must vanish on
C, hence it must vanish on P. The sections of OX (3) are all restrictions of sections
of OP3(3), so this proves that P satisfies the property CB(3).

The space of extensions of JP/X (1) by OX is dual to H 1(JP/X (3)), which in
turn is the cokernel of

(11-4) H 0(OX (3))→ H0(P,OP(3))∼= C11.

As we have seen above, a section of H 0(OX (3)) vanishing on P corresponds to a
section of H 0(OP3(3)) vanishing on C. One may calculate by hand that the map

C20
= H 0(OP3(3))→ H 0(OC(9p))= C10
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is surjective. Indeed, the image of H 0(OP3(1)) consists of the sections which may
be written as 1, t, t2, t3 for an affine coordinate t on C ∼=P1 with pole at the point p.
Then, monomials of degree 3 in these sections give all of the monomials 1, t, . . . , t9.

From this surjectivity we get that the kernel is C10. Thus, the kernel of the map
(11-4) is C10 so the image of the map also has dimension 10. Finally, we get that
the cokernel of (11-4) has dimension 1. We have shown that Ext1(JP/X ,OX ) has
dimension 1. Therefore, a given subscheme P gives rise to only one bundle since
scaling of the extension class doesn’t change the isomorphism class of the bundle.

For the other direction, we claim that h0(E)= 1. Consider the exact sequence

0→ H 0(OX )→ H 0(E)→ H 0(JP/X (1))→ H 1(OX )= 0.

Given a section of H 0(OX (1)) vanishing on P, it comes from a section of H 0(OP3(1))
which, by the same argument as previously, vanishes on C. If the section is nonzero,
that would say that C is contained in a plane, which however is not the case.
Therefore, H 0(JP/X (1))= 0 and C∼= H 0(OX )−→

∼ H 0(E). We get h0(E)= 1 as
claimed.

In particular, for a given bundle E , the choice of section s is unique up to a
scalar, so the subscheme P is uniquely determined.

By these arguments, we conclude that the space of bundles E in this case is
isomorphic to the space of choices of subscheme P ⊂ C ∩ X.

Now, given P ⊂ C ∩ X of length 11, we claim that C is the only rational normal
curve passing through P. Indeed, suppose C ′ were another one. Note that C ′ is cut
out by conics. If Q ⊂ P3 is a conic containing C ′ then Q ∩C is either equal to C,
or has length 6; the latter case can’t happen so C ⊂ Q. Thus, any conic containing
C ′ also contains C, which shows that C = C ′.

The dimension of the space of subschemes P in this case is therefore equal to the
dimension of the space PGL(4)/PGL(2) of rational normal cubic curves, which is
15− 3= 12. This completes the proof of the following proposition:

Proposition 11.1. The space of bundles E fitting into an exact sequence of the form
(11-1), where P is a length 11 subscheme of C ∩ X for C a rational normal cubic
in P3, has dimension 12.

Lemma 11.2. Suppose E is a bundle fitting into an exact sequence of the form
(11-1), where P is a length 11 subscheme of C ∩ X for C a general rational normal
cubic in P3. Then h1(End0(E))= h1(V )= 12.

Proof. Use the exact sequence (11-2). The first step is to calculate h1(E(−1)).
Note that (11-1) gives the following sequence, using that h1(OX (n))= 0 for any n
as well as H 2(JP/X (n))= H 2(OX (n)):

0→ H 1(E(−1))→ H 1(JP/X )→ H 2(OX (−1))→ H 2(E(−1))→ H 2(OX )→ 0.
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Now H 2(E(−1)) is dual to H 0(E(2)) which itself fits into the sequence

0→ H 0(OX (2))→ H 0(E(2))→ H 0(JP/X (3))→ 0.

We have H 0(JP/X (3))∼= H 0(JC/P3(3))= ker(H 0(OP3(3))→ H 0(OC(9p))). The
latter map is surjective from C20 to C10 so its kernel has dimension 10. This gives
h0(JP/X (3))= 10. Also h0(OX (2))= 10 so h2(E(−1))= h0(E(2))= 20. We have
h2(OX )= h0(OX (2))= 10 and h2(OX (−1))= h0(OX (3))= 20. Finally, H 1(JP/X )

is just C11 modulo H 0(OX )= C so h1(JP/X )= 10. The alternating sum from the
above sequence vanishes, saying now that

h1(E(−1))− 10+ 20− 20+ 10= 0,

so h1(E(−1))= 0.
The long exact sequence associated to (11-2) starting with H 1(E(−1))= 0 now

gives

0→ H 1(V )→ H 1(J2P/X (1))→ H 2(E(−1))→ H 2(V )→ H 2(OX (1))→ 0.

As we have seen above, h2(E(−1))=20. It is also easy to see that h0(J2P/X (1))=0
(we will in fact see this for J2P/X (3) below), so noting that the length of 2P is
33 we get h1(J2P/X (1))= 33− h0(OX (1))= 29. Putting these together and using
h2(OX (1))= h0(OX (1))= 4 we get

h1(V )− 29+ 20− h2(V )+ 4= 0,

so h1(V )− h2(V )= 5. This is the expected dimension of the moduli space.
Next, by duality h2(V )= h0(V (2)) which we can calculate using the sequence

(11-3). We have

0→ H 0(E(1))→ H 0(V (2))→ H 0(J2P/X (3)).

We claim that H 0(J2P/X (3))= 0. To see this, consider a smooth quadric surface
Q ⊂ P3 containing C. We have Q ∼= P1

×P1 and C is a divisor of bidegree (1, 2)
on Q. On the other hand, OQ(1) has bidegree (1, 1). Suppose we have a section u
of H 0(OX (3))= H 0(OP3(3)) vanishing on the 2P (recall that 2P is the subscheme
of X defined by the square of the ideal of P). We have seen already above that
vanishing on P implies that it vanishes on C. Therefore u|Q is a section of the
bundle of bidegree (3, 3)−(1, 2)= (2, 1). The intersection of 2P with Q consists of
a collection of double points transverse to C at the points of P, so it imposes again a
single condition on the section u considered as a section of OQ(2, 1). The restriction
of OQ(2, 1) to C is a line bundle on C ∼= P1 of degree equal to the intersection
number (2, 1).(1, 2)= 5. Therefore, a section of OQ(2, 1) which vanishes on 11
points has to vanish. This says that our section of bidegree (2, 1) again vanishes
on C, so it is a section of a bundle of bidegree (1,−1); but that is not effective so
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this section has to vanish. This proves that our section u|Q vanishes. Therefore, u
may be viewed as a section of OP3(3)(−Q)=OP3(1). The remaining pieces of the
double points composing 2P give conditions of vanishing again at all the points of
P for this section of OP3(1), but as C is not contained in a plane, it implies that the
section vanishes. This completes the proof that H 0(J2P/X (3))= 0. We conclude
from the previous exact sequence that

h2(V )= h0(V (2))= h0(E(1)).

Now use the sequence

0→ H 0(OX (1))→ H 0(E(1))→ H 0(JP/X (2))→ 0.

As usual, H 0(JP/X (2)) is isomorphic to the kernel of the restriction map

C10
= H 0(OX (2))→ H 0(OC(6p))= C7

and this restriction map is surjective, so its kernel has dimension 3. We get

h0(E(1))= 4+ 3= 7.

Thus, h2(V ) = 7, and putting this together with the formula that the expected
dimension is 5, we have finally shown h1(V )= 12. This proves the lemma. �

Even though there is a 7-dimensional obstruction space, we have constructed a
12-dimensional family; it follows that all of the obstructions vanish and a general
point lies in a generically smooth irreducible component of dimension 12.

Corollary 11.3. The space of bundles E fitting into an exact sequence of the form
(11-1), where P is a length 11 subscheme of C ∩ X for C a rational normal cubic in
P3, consists of a single 12-dimensional generically smooth irreducible component
of the moduli space MX6(2, 1, 11) of stable bundles of rank 2, degree 1 and c2 = 11
on our degree 6 hypersurface X = X6.

Proof. In order to understand how many irreducible components are produced by
this construction, we should investigate the monodromy of the set of choices of
11 out of the 18 points of C ∩ X, as C moves. A choice of 6 points determines
the rational normal cubic C, so any 6 points can be moved to any 6 other ones.
Therefore, the monodromy action is 6-tuply transitive. On the other hand, it contains
a transposition, since we can move C around a choice of curve that is simply tangent
to X at one point. Therefore, the monodromy group contains all transpositions,
hence it is the full symmetric group on 18 elements. It acts transitively on the set
of choices of 11 out of the 18 intersection points, so our construction produces a
single irreducible component. �
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Points on a plane. The other construction we have found for CB(3) subschemes
is to take 11 points in a plane. Let H be a plane in general position with respect to
X, and let Y = X ∩ H. Let P consist of a general collection of 11 points in Y.

Suppose P ′ ⊂ P is a subset of 10 points. The map H 0(OH (3))→ H 0(OY (3))
is injective (since Y is a curve of degree 6 in the plane H ), so a general collection
of 10 points imposes independent conditions on H 0(OH (3)). As h0(OH (3))= 10,
it means that H 0(JP ′/H (3))= 0, hence a section of H 0(OP3(3)) vanishing on P ′,
has to vanish on H. In particular it vanishes on P, proving the CB(3) property for
P. This also gives the formula

H 0(JP/X (3))∼= H 0(OX (2))= C10.

Consider next the space of choices of extension (11-1). As

dim(Ext1(JP/X (1),OX ))= h1(JP/X (3))= 11− 20+ h0(JP/X (3))= 1,

whereas scalar multiples of an extension class give the same bundle, it means
that for a given P there is a single corresponding bundle. On the other hand,
we have h0(JP/X (1)) = 1 since P is contained in a plane, so h0(E) = 2. This
means that for a given bundle E , the space of choices of section s (modulo scaling)
leading to the subscheme P, has dimension 1. Hence the dimension of the space of
bundles obtained by this construction is one less than the dimension of the space of
subschemes:

dim{E} = dim{P}− 1.

Count now the dimension of the space of choices of P : there is a three-dimensional
space of choices of the plane H, and for each one we have an 11-dimensional space
of choices of the subscheme P of 11 points in Y. This gives dim{P} = 3+11= 14,
so dim{E} = 13. Altogether, we have constructed a 13-dimensional family of stable
bundles. It follows that this family must be in at least one irreducible component
distinct from the 12-dimensional component constructed above. This proves the
following theorem:

Theorem 11.4. For a very general degree 6 hypersurface X6
⊂ P3, the moduli

space MX6(2, 1, 11) contains a generically smooth 12-dimensional component from
Corollary 11.3, and contains at least one irreducible component of dimension ≥ 13.
In particular, it is not irreducible.

The general bundle in our 13-dimensional family may be viewed as an elementary
transformation [Maruyama 1973; 1982]. A general line bundle L of degree 11 on Y
has a 2-dimensional space of sections and the two sections generate L . If j :Y ↪→ X
denotes the inclusion then we get a bundle E , elementary transformation of O2

X ,
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fitting into exact sequences

0→ E(−1)→O2
X → j∗(L) → 0,

0→ O2
X → E → j∗(L∗)(1)→ 0.

This shows that E determines Y and L . Since Y has genus 10, the space of choices
of hyperplane plus choice of L has dimension 3+ 10= 13. One may see that these
bundles are the same as the previous ones, indeed the zeros of a section of our
elementary transformation E are the same as those of the corresponding section
of L . This gives an alternate canonical viewpoint on our second construction of
bundles that should be useful for understanding the obstruction map.

We conjecture that the rational normal case and the planar case cover all of
MX6(2, 1, 11). More precisely:

Conjecture 11.5. The 13-dimensional family constructed in the present subsec-
tion constitutes a full irreducible component of MX6(2, 1, 11); this component is
nonreduced and obstructed. Together with the 12-dimensional generically smooth
component constructed in the previous subsection, these are the only irreducible
components of MX6(2, 1, 11). In particular, h0(E) > 0 for any stable bundle with
c2 = 11.

There doesn’t seem to be an easy direct proof of the property h0(E) > 0. The
Euler characteristic consideration does give h0(E(1)) > 0 so any E has to be in
an extension of O(−1) by JP/X (2) with P satisfying CB(5). If this conjecture is
true, it would imply that any CB(5) subscheme of length 21 contained in X6, would
have to be contained in a quadric hypersurface. We didn’t find a proof of that, but
we couldn’t find any length-21 subschemes of X6 satisfying CB(5) that weren’t
contained in quadric hypersurfaces either, leading to the conjecture.
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