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A CAPILLARY SURFACE WITH NO RADIAL LIMITS

COLM PATRIC MITCHELL

In 1996, Kirk Lancaster and David Siegel investigated the existence and be-
havior of radial limits at a corner of the boundary of the domain of solutions
of capillary and other prescribed mean curvature problems with contact
angle boundary data. They provided an example of a capillary surface in
a unit disk D which has no radial limits at .0; 0/ 2 @D. In their example,
the contact angle,  , cannot be bounded away from zero and �. Here we
consider a domain � with a convex corner at .0; 0/ and find a capillary
surface zD f.x;y/ in��R which has no radial limits at .0; 0/ 2 @� such
that  is bounded away from 0 and �.

Let� be a domain in R2 with locally Lipschitz boundary and OD .0; 0/2 @� such
that @� n fOg is a C 4 curve and � � B1.0; 1/, where Bı.N / is the open ball in
R2 of radius ı about N 2 R2. Denote the unit exterior normal to � at .x;y/ 2 @�
by �.x;y/ and let polar coordinates relative to O be denoted by r and � . We shall
assume there exist ı� 2 .0; 2/ and ˛ 2 .0; �

2
/ such that @�\Bı�.O/ consists of

the line segments
@C�� D f.r cos.˛/; r sin.˛// W 0� r � ı�g

and
@��� D f.r cos.�˛/; r sin.�˛// W 0� r � ı�g:

Set �� D � \ Bı�.O/. Let  W @� ! Œ0; �� be given. Let .x˙.s/;y˙.s// be
arclength parametrizations of @˙� with .xC.0/;yC.0//D .x�.0/;y�.0//D .0; 0/
and set ˙.s/D  .x˙.s/;y˙.s//.

Consider the capillary problem of finding a function f 2 C 2.�/\C 1.�n fOg/
satisfying

div.Tf /D 1
2
f in �(1)

Tf � � D cos. / on @� n fOg;(2)

where Tf D rf=
p

1Cjrf j2. We are interested in the existence of the radial
limits Rf . � / of a solution f of (1) and (2), where

Rf .�/D lim
r!0C

f .r cos �; r sin �/; �˛ < � < ˛
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Figure 1. The Concus–Finn rectangle (A and C) with regions
R (yellow), D˙

2
(blue) and D˙

1
(green); the restrictions on  in

[Lancaster and Siegel 1996] (red region in B) and in [Crenshaw
et al. 2017] (red region in D).

and Rf .˙˛/D lim@˙��3x!O f .x/;xD .x;y/, which are the limits of the bound-
ary values of f on the two sides of the corner if these exist.

Proposition 1 [Crenshaw et al. 2017]. Let f be a bounded solution to (1) satisfying
(2) on @˙�� n fOg which is discontinuous at O. If ˛ > �=2 then Rf .�/ exists for
all � 2 .�˛; ˛/. If ˛ � �=2 and there exist constants  ˙;  ˙; 0�  ˙ �  ˙ � � ,
satisfying

� � 2˛ < CC � �  CC  � < � C 2˛

so that ˙ � ˙.s/ �  ˙ for all s, 0 < s < s0, for some s0, then again Rf .�/

exists for all � 2 .�˛; ˛/.

Lancaster and Siegel [1996] proved this theorem with the additional restriction
that  be bounded away from 0 and � ; Figure 1 illustrates these cases.

They also proved the following:

Proposition 2 [Lancaster and Siegel 1996, Theorem 3]. Let � be the disk of
radius 1 centered at .1; 0/. Then there exists a solution to Nf D 1

2
f in �,

jf j � 2; f 2 C 2.�/\ C 1.� nO/; OD .0; 0/ such that no radial limits Rf .�/

exist (� 2 Œ��=2; �=2�).

In this case, ˛ D �
2

; if  is bounded away from 0 and � , then Proposition 1
would imply that Rf .�/ exists for each � 2

�
�
�
2
; �

2

�
and therefore the contact

angle  D cos�1.Tf � �/ in Proposition 2 is not bounded away from 0 and � .
In our case, the domain � has a convex corner of size 2˛ at O and we wish to

investigate the question of whether an example like that in Proposition 2 exists in this
case when  is bounded away from 0 and � . In terms of the Concus–Finn rectangle,
the question is whether, given � > 0, there is a solution f 2C 2.�/\C 1.�nfOg/ of
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E F

Figure 2. The Concus–Finn rectangle. When  remains in the
red region in E, Rf .�/ exists;  in Theorem 1 remains in the red
region in F.

(1) and (2) such that no radial limits Rf .�/ exist (� 2 Œ�˛; ˛�) and
ˇ̌
 � �

2

ˇ̌
� ˛C�;

this is illustrated in Figure 2.

Theorem 1. For each � > 0, there is a domain� as described above and a solution
f 2 C 2.�/\C 1.� n fOg/ of (1) such that the contact angle

 D cos�1.Tf � �/ W @� n fOg ! Œ0; ��

satisfies
ˇ̌
 � �

2

ˇ̌
�˛C� and there exists a sequence frj g in .0; 1/with limj!1 rjD0

such that
.�1/jf .rj ; 0/ > 1 for each j 2 N:

Assuming � and  are symmetric with respect to the line f.x; 0/ W x 2 Rg, this
implies that no radial limit

(3) Rf .�/
def
D lim

r#0
f .r cos.�/; r sin.�//

exists for any � 2 Œ�˛; ˛�.

We remark that our theorem is an extension of [Lancaster and Siegel 1996,
Theorem 3] to contact angle data in a domain with a convex corner. As in [Lancaster
1989; Lancaster and Siegel 1996], we first state and prove a localization lemma;
this is analogous to [Lancaster 1989, Lemma] and [Lancaster and Siegel 1996,
Lemma 2].

Lemma 1. Let �� R2 be as above, � > 0, � > 0 and 0 W @� n fOg ! Œ0; �� such
that

ˇ̌
0�

�
2

ˇ̌
� ˛C �. For each ı 2 .0; 1/ and h 2 C 2.�/\C 1.� n fOg/ which

satisfies (1) and (2) with  D 0, there exists a solution

g 2 C 2.�/\C 1.� n fOg/

of (1) such that lim�3.x;y/!.0;0/ g.x;y/DC1,

(4) sup
�ı

jg� hj< � and
ˇ̌̌
g �

�

2

ˇ̌̌
� ˛C �;

where �ı D� nBı.O/ and g D cos�1.Tg � �/ W @� n fOg! Œ0; �� is the contact
angle which the graph of g makes with @��R.
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Proof. Let �; �; ı;�; h and 0 be given. For ˇ2.0; ı/, let gˇ 2C 2.�/\C 1.�nfOg/
satisfy (1) and (2) with  D ˇ, where

ˇ D

��
2
�˛� � on Bˇ.O/

0 on � nBˇ.O/:

As in the proof of [Lancaster and Siegel 1996, Theorem 3], gˇ converges to h

pointwise and uniformly in the C 1 norm on �ı as ˇ tends to zero. Fix ˇ > 0 small
enough that sup�ı

jg� hj< �.
Set †D f.r cos.�/; r sin.�// W r > 0;�˛ � � � ˛g. Now define w W†! R by

w.r cos �; r sin �/D
cos � �

p
k2� sin2 �

k�r
;

where k D sin˛ sec
�
�
2
�˛� �

�
D sin˛ csc.˛C �/. As in [Concus and Finn 1970],

there exists a ı1 > 0 such that div.Tw/ � 1
2
w � 0 on † \ Bı1

.O/, Tw � � D

cos.�
2
� ˛ � �/ on @†\Bı1

.O/, and limr!0C w.r cos �; r sin �/ D1 for each
� 2 Œ�˛; ˛�. We may assume ı1 � ı�. Let

M D sup
�\@Bı1

.O/
jw�gˇj and wˇ D w�M:

Since div.Twˇ/� 1
2
wˇ �

M
2
� 0D div.Tgˇ/�

1
2
gˇ in �\Bı1

.O/, wˇ � gˇ on
�\ @Bı1

.O/ and Tgˇ � � � Twˇ � � on @�\Bı1
.O/, we see that gˇ � wˇ on

�\ @Bı1
.O/. �

We may now prove Theorem 1.

Proof. We shall construct a sequence fn of solutions of (1) and a sequence frng of
positive real numbers such that limn!1 rn D 0, fn.x;y/ is even in y and

.�1/jfn.rj ; 0/ > 1 for each j D 1; : : : ; n:

Let 0 D
�
2

and f0 D 0. Set �1 D 1 and ı1 D ı0. From Lemma 1, there exists
f1 2 C 2.�/\ C 1.� n fOg/ which satisfies (1) such that sup�ı1

jf1�f0j< �1,ˇ̌
1�

�
2

ˇ̌
� ˛C � and lim�3.x;y/!O f1.x;y/D�1, where 1 D cos�1.Tf1 � �/.

Then there exists r1 2 .0; ı1/ such that f1.r1; 0/ < �1.
Now set �2 D �.f1.r1; 0/C 1/ > 0 and ı2 D r1. From Lemma 1, there exists

f2 2 C 2.�/\ C 1.� n fOg/ which satisfies (1) such that sup�ı2
jf2�f1j < �2,ˇ̌

2�
�
2

ˇ̌
� ˛C � and lim�3.x;y/!O f2.x;y/ D1, where 2 D cos�1.Tf2 � �/.

Then there exists r2 2 .0; ı2/ such that f2.r2; 0/ > 1. Since .r1; 0/ 2�ı2
,

f1.r1; 0/C 1< f2.r1; 0/�f1.r1; 0/ < �.f1.r1; 0/C 1/

and so f2.r1; 0/ < �1.
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Next set �3 D minf�.f2.r1; 0/C 1/; f2.r2; 0/ � 1g > 0 and ı3 D r2. From
Lemma 1, there exists f3 2 C 2.�/\C 1.� n fOg/ which satisfies (1) such that
sup�ı3

jf3�f2j<�3,
ˇ̌
3�

�
2

ˇ̌
�˛C� and lim�3.x;y/!O f3.x;y/D�1, where

3 D cos�1.Tf3 ��/. Then there exists r3 2 .0; ı3/ such that f3.r3; 0/ <�1. Since
.r1; 0/; .r2; 0/ 2�ı2

, we have

f2.r1; 0/C 1< f3.r1; 0/�f2.r1; 0/ < �.f2.r1; 0/C 1/

and
�.f2.r2; 0/� 1/ < f3.r2; 0/�f2.r2; 0/ < f2.r2; 0/� 1I

hence f3.r1; 0/ < �1 and 1< f3.r2; 0/.
Continuing to define fn and rn inductively, we set

�nC1 D min
1�j�n

jfn.rj ; 0/� .�1/j j and ınC1 Dmin
˚
rn;

1
n

	
:

From Lemma 1, there exists fnC1 2 C 2.�/\C 1.�n fOg/ satisfying (1) such that
sup�ınC1

jfnC1�fnj<�nC1,
ˇ̌
nC1�

�
2

ˇ̌
�˛C� and lim�3.x;y/!O fnC1.x;y/D

.�1/nC11, where nC1 D cos�1.TfnC1 � �/. Then there exists rnC1 2 .0; ınC1/

such that .�1/nC1fnC1.rnC1; 0/ > 1. For each j 2 f1; : : : ; ng which is an even
number, we have

�.fn.rj ; 0/� 1/ < fnC1.rj ; 0/�fn.rj ; 0/ < fn.rj ; 0/� 1

and so 1< fnC1.rj ; 0/. For each j 2 f1; : : : ; ng which is an odd number, we have

fn.rj ; 0/C 1< fnC1.rj ; 0/�fn.rj ; 0/ < �.fn.rj ; 0/C 1/

and so fnC1.rj ; 0/ < �1.
As in [Lancaster and Siegel 1996; Siegel 1980], there is a subsequence of ffng,

still denoted ffng, which converges pointwise and uniformly in the C 1 norm on �ı
for each ı > 0 as n!1 to a solution f 2 C 2.�/\C 1.� nO/ of (1). For each
j 2 N which is even, fn.rj ; 0/ > 1 for each n 2 N and so f .rj ; 0/ � 1. For each
j 2N which is odd, fn.rj ; 0/ <�1 for each n2N and so f .rj ; 0/��1. Therefore

lim
r!0C

f .r; 0/ does not exist, even as an infinite limit;

and so Rf .0/ does not exist.
Since � is symmetric with respect to the x-axis and n.x;y/ is an even function

of y, f .x;y/ is an even function of y. Now suppose that there exists �0 2 Œ�˛; ˛�

such that Rf .�0/ exists; then �0 ¤ 0. From the symmetry of f , Rf .��0/ must
also exist and Rf .��0/DRf .�0/. Set

�0 D f.r cos �; r sin �/ W 0< r < ı0;��0 < � < �0g ��:

Since f has continuous boundary values on @�0, f 2 C 0.�0/ and so Rf .0/ does
exist, which is a contradiction. Thus Rf .�/ does not exist for any � 2 Œ�˛; ˛�. �
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