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We present an initial-seed-mutation formula for d-vectors of cluster vari-
ables in a cluster algebra. We also give two rephrasings of this recursion:
one as a duality formula for d-vectors in the style of the g-vectors/c-vectors
dualities of Nakanishi and Zelevinsky, and one as a formula expressing the
highest powers in the Laurent expansion of a cluster variable in terms of
the d-vectors of any cluster containing it. We prove that the initial-seed-
mutation recursion holds in a varied collection of cluster algebras, but not
in general. We conjecture further that the formula holds for source-sink
moves on the initial seed in an arbitrary cluster algebra, and we prove this
conjecture in the case of surfaces.
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1. Introduction

This paper concerns the search for an initial-seed recursion for d-vectors: a recursive
formula for how d-vectors change under mutation of initial seeds. We begin this
introduction by providing background on cluster algebras, seeds, and d-vectors.

The origins of cluster algebras lie in the study of totally positive matrices,
generalized by Lusztig [1994] to a notion of totally positive elements in any reductive
group. Indeed, the recursive definition of cluster algebras extends and generalizes
a recursion on minimal sets of minors whose positivity implies total positivity
of matrices. Cluster algebras were introduced by Fomin and Zelevinsky [1999;
2002a], who conjectured that the coordinate ring of any double Bruhat cell (i.e., any
intersection of two Bruhat cells for opposite Borel subgroups) is a cluster algebra.
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(As it turns out, the natural choice of cluster algebra is a subring of the double
Bruhat cell, proper in some cases. In general, the double Bruhat cell coincides with
a related larger algebra called an upper cluster algebra [Berenstein et al. 2005].)

Since their introduction, cluster algebras and/or their underlying combinatorics
and geometry have been found in widely different settings. Some of these settings —
and some early references — are algebraic geometry (Grassmannians [Scott 2006]
and tropical analogues [Speyer and Williams 2005]), discrete dynamical systems
(rational recurrences [Carroll and Speyer 2004; Fomin and Zelevinsky 2002b]),
higher Teichmüller theory [Fock and Goncharov 2006; 2009], PDE (KP solitons
[Kodama and Williams 2011; 2014]), Poisson geometry [Gekhtman et al. 2003;
2005], representation theory of quivers/finite dimensional algebras [Buan et al.
2006; 2007; Caldero et al. 2006; Caldero and Keller 2008; Marsh et al. 2003],
scattering diagrams [Gross et al. 2014; 2015; Kontsevich and Soibelman 2014],
(related to mirror symmetry, Donaldson–Thomas theory, and integrable systems,
and string theory), and Y -systems in thermodynamic Bethe Ansatz [Fomin and
Zelevinsky 2003b].

We begin by reviewing the definition of a (coefficient free) cluster algebra. An
exchange matrix B = (bi j ) is a skew-symmetrizable n× n integer matrix (meaning
that there exist positive integers di such that di bi j = −d j b j i for every i and j).
We write Tn for the n-regular tree with edges properly labeled 1, . . . , n, and we
distinguish one vertex t0 as the “initial” vertex. We will write t k

−−− t ′ to indicate
that t and t ′ are connected by an edge labeled k. We define a function t 7→ Bt that
labels each vertex of Tn with an exchange matrix. Specifically, we set Bt0 equal to
some “initial” exchange matrix B0 and, for each edge t k

−−− t ′ with Bt = (bi j ), we
insist that Bt ′ = (b′i j ) be given by

(1-1) b′i j =

{
−bi j if i = k or j = k,
bi j + sgn(bk j )[bikbk j ]+ otherwise.

Here and elsewhere in the text, the notation [a]+ means max(a, 0) while sgn(a) is
the sign of a.

Taking x1, . . . , xn to be indeterminates, we also label each vertex t of Tn with an
n-tuple (x1;t , . . . , xn;t) of rational functions in x1, . . . , xn called cluster variables.
The label on t0 consists of the indeterminates: xi;t0 = xi for all i . The remaining
cluster variables are prescribed by exchange relations. For each edge t k

−−− t ′, we
have xi;t ′ = xi;t for all i 6= k and

(1-2) xk;t xk;t ′ =

n∏
i=1

x [bik ]+
i;t +

n∏
i=1

x [−bik ]+
i;t ,

where the bik are entries of Bt .
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Each pair (Bt , (x1;t , . . . , xn;t)) is called a seed. When t and t ′ are connected
by an edge t k

−−− t ′, the relationship between the seeds (Bt , (x1;t , . . . , xn;t)) and
(Bt ′, (x1;t ′, . . . , xn;t ′)) is called mutation in direction k. The (coefficient-free) clus-
ter algebra A(B0) associated to the initial exchange matrix B0 is the algebra (a
subalgebra of the field of rational functions in x1, . . . , xn) generated by the set

{xi;t : t ∈ Tn, i = 1, . . . , n}

of all cluster variables. Typically, there are infinitely many cluster variables; when
the set {xi;t : t ∈ Tn, i = 1, . . . , n} is finite, we say that B0 is of finite type.

The first fundamental result on cluster algebras is the Laurent phenomenon
[Fomin and Zelevinsky 2002a, Theorem 3.1]. The exchange relations define the
cluster variables as rational functions in x1, . . . , xn . The Laurent phenomenon is
the assertion that each cluster variable is in fact a Laurent polynomial (a polynomial
divided by a monomial). This implies in particular that each cluster variable has a
denominator vector or d-vector. The d-vector of xi;t is a vector d j;t with n entries,
whose j-th entry is the power of x−1

j that appears as a factor of xi;t . In principle,
the d-vector may have negative entries (when powers of x j appear in the numerator
of xi;t ), but in practice this only happens when xi;t equals some x j .

Denominator vectors are fundamental to the theory of cluster algebras in many
ways, and they are also significant in other settings beginning with Fomin and
Zeleivinsky’s proof [2003b] of Zamolodchikov’s periodicity conjecture on Y -
systems in the theory of thermodynamic Bethe ansatz. They are also important in
representation theory. Each skew-symmetric n× n exchange matrix B defines a
quiver (i.e., a directed graph) Q on the vertices 1, . . . , n. (The signs of entries give
the direction of arrows and the magnitudes of entries give multiplicities of arrows.)
In the case where B is skew-symmetric and acyclic, the d-vectors of cluster variables
are exactly the dimension vectors of rigid indecomposable modules over the path
algebra of Q (modules with no self-extensions). (See [Buan et al. 2007; Caldero
et al. 2006].) In combinatorics, the d-vectors, realized as almost positive roots in
an associated root system, are central to the structure of generalized associahedra
and thus play a role in Coxeter–Catalan combinatorics [Armstrong 2009; Fomin
and Reading 2007] and are interesting in more general settings such as subword
complexes, multiassociahedra, graph associahedra, and so forth.

Once we know the Laurent phenomenon, the exchange relations (1-2) imply a
recursion on d-vectors d j;t , given later as (2-4). This recursion is a “final-seed
recursion” because it describes how d-vectors (computed with respect to a fixed
initial seed) change when we mutate the final seed (Bt , (x1;t , . . . , xn;t)).

We are now prepared to discuss the search for an initial-seed recursion for d-
vectors, describing how d-vectors at a fixed final seed change under mutation of
initial seeds. It is widely expected (see, for example, [Fomin and Zelevinsky 2007,
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Remark 7.7]) that no satisfactory initial-seed-mutation recursion holds in general,
and indeed we do not produce one. However, a very nice initial-seed-mutation recur-
sion holds in a varied collection of cluster algebras (including the case considered in
[Fomin and Zelevinsky 2007, Remark 7.7]). This recursion turns out to be equivalent
to a beautiful duality formula in the style of the g-vectors/c-vectors dualities of
Nakanishi and Zelevinsky [Nakanishi 2011; Nakanishi and Zelevinsky 2012].

The first thing one notices when looking for such a recursion is that, to under-
stand how denominators change when the initial seed is mutated, one must know
something about a related family of integer vectors. Specifically, if (x1, . . . , xn) is
the initial cluster, then the negation of the d-vector of a cluster variable x is the
vector of lowest powers of the xi occurring in the expression for x as a Laurent
polynomial in x1, . . . , xn . We define the m-vector of x to be the vector of highest
powers of the xi occurring in x . Our initial-seed-mutation recursion for d-vectors
is equivalent to a description of the m-vectors in a given cluster in terms of the
d-vectors in the same cluster.

In many cases, one can establish the three formulas (2-1)–(2-3) by reading off
the duality directly from expressions for denominator vectors found in the literature
[Ceballos and Pilaud 2015; Fomin et al. 2008; Lee et al. 2014]. In particular, all of
them hold in finite type, in rank two (i.e., n= 2), and more intriguingly, in nontrivial
examples arising from marked surfaces.

We conjecture that the initial-seed-mutation recursion holds in the case of source-
sink moves in arbitrary cluster algebras. We prove this conjecture for cluster
algebras arising from surfaces. Dylan Rupel and the second author [2017] proved
the conjecture in the case where B is acyclic, using a categorification of quantum
cluster algebras.

Besides their usefulness in understanding denominator vectors, the m-vectors may
be of independent interest. A major goal in the study of cluster algebras is to give
explicit formulas for the cluster variables. Work in this direction includes realizing
cluster variables as “lambda lengths” in the surfaces case [Fomin and Thurston
2012], combinatorial formulas in rank two [Lee and Schiffler 2013], in some finite
types [Musiker 2011; Schiffler 2008], and for some surfaces [Musiker and Schiffler
2010; Musiker et al. 2011; Schiffler and Thomas 2009], interpretations in terms
of the representation theory of quivers, beginning with [Caldero and Chapoton
2006], and formulas in terms of “broken lines” in scattering diagrams [Gross et al.
2014]. Short of a complete description of a cluster variable, one might instead
describe its Newton polytope (the convex hull of the exponent vectors of the Laurent
monomials occurring in its Laurent expansion). However, as far as the authors are
aware, there are no general results describing Newton polytopes. (For a description
in one finite-type case, see [Kalman 2014].)

Together, the d-vectors and m-vectors amount to coarse information about
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Newton polytopes, namely their “bounding boxes.” Given a polytope P in Rn ,
define the tight bounding box of P to be the smallest box [a1, b1]× · · · × [an, bn]

containing P . (Readers who pay attention to bounding boxes of graphics files will
find the notion familiar.) Equivalently, for each i = 1, . . . , n, the values ai and
bi are respectively the minimum and maximum of the i-th coordinates of points
in P . It is convenient to describe the tight bounding box by specifying the vectors
(a1, . . . , an) and (b1, . . . , bn). The tight bounding box of the Newton polytope of
a Laurent polynomial f in x1, . . . , xn is [a1, b1]× · · ·× [an, bn] such that ai is the
lowest power of xi occurring in any Laurent monomial of f , and bi is the highest
power of xi occurring. Thus when x is a cluster variable written as a Laurent
polynomial in the initial cluster (x1, . . . , xn), the tight bounding box of the Newton
polytope of x is given by the negation of the d-vector and by the m-vector.

2. Results

Our notation is in the spirit of [Fomin and Zelevinsky 2007] and [Nakanishi and
Zelevinsky 2012]. As before, the notation [a]+ means max(a, 0). We will apply
the operators max, | · |, and [ · ]+ entry-wise to vectors and matrices. We continue
to write Tn for the n-regular tree with edges properly labeled 1, . . . , n. Symbols
like t , t0, t ′, etc. will stand for vertices of Tn . The notation t k

−−− t ′ indicates an
edge in Tn labeled k. In what follows, the initial seed is allowed to vary, so we
need to be able to indicate the initial seed as part of the notation. Thus, the notation
B B0;t0

t stands for the exchange matrix at t , where B0 is the exchange matrix at t0.
Similarly, x B0;t0

j;t stands for the (coefficient-free) cluster variable indexed by j in the
(labeled) seed at t , and d B0;t0

j;t is the denominator vector of x B0;t0
j;t with respect to the

cluster at t0.
Given a matrix A, let A•k be the matrix obtained from A by replacing all entries

outside the k-th column with zeros. Similarly, Ak• is obtained by replacing entries
outside the k-th row with zeros. Let Jk be the matrix obtained from the identity
matrix by replacing the kk-entry by −1. The superscript T stands for transpose.

We fix (x1, . . . , xn) to be the initial cluster (the cluster at t0). We write DB0;t0
t

for the matrix whose j -th column is d B0;t0
j;t and DB0;t0

i j;t for the i j -entry of that matrix.
Each x B0;t0

j;t is a Laurent polynomial in x1, . . . , xn . (This is the Laurent phenomenon,
[Fomin and Zelevinsky 2002a, Theorem 3.1].) Let M B0;t0

t be the matrix whose
i j-entry M B0;t0

i j;t is the maximum, over all of the (Laurent) monomials in x B0;t0
j;t , of

the power of xi occurring in the monomial. Write mB0;t0
j;t for the j-th column of

M B0;t0
t and call this the j-th m-vector at t .
We now present a duality property for denominator vectors that holds in some

cluster algebras, as well as two equivalent properties: an initial-seed-mutation
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recursion for denominator vectors and a formula for the M-matrix at a given seed
in terms of the D-matrix at the same seed.

Property D (D = matrix duality). For vertices t0, t ∈ Tn , writing Bt as shorthand
for B B0;t0

t ,

(2-1) (DB0;t0
t )T = D(−Bt )

T
;t

t0 .

Property R (initial-seed-mutation recursion for D-matrices). Suppose t0 k
−−− t1 is

an edge in Tn and write B1 for µk(B0). Then

(2-2) DB1;t1
t = Jk DB0;t0

t +max
(
[Bk•

0 ]+DB0;t0
t , [−Bk•

0 ]+DB0;t0
t

)
.

The recursion in Property R is not on individual denominator vectors, but rather
on an entire cluster of denominator vectors. For i 6= k, the i-th entry of each
denominator vector is unchanged, while row k of the D-matrix (the vector of k-
th entries in denominator vectors) transforms by a recursion similar to the usual
recursion (2-4) below for how denominator vectors change under mutation.

Property M (M-matrices in terms of D-matrices). For vertices t0, t ∈ Tn ,

(2-3) M B0;t0
t =−DB0;t0

t +max
(
[B0]+DB0;t0

t , [−B0]+DB0;t0
t

)
.

When Property M holds, in particular, the entire tight bounding box of a cluster
variable x can be determined directly from the denominator vectors of any cluster
containing x .

Our first main result is the following theorem, which we prove in Section 3.

Theorem 2.1. Fix a (coefficient-free) cluster pattern t 7→ (B B0;t0
t , (x1;t , . . . , xn;t)).

The following are equivalent:

(1) Property D holds for all t0 and t.

(2) Property R holds for all t0, t , and k.

(3) Property M holds for all t0 and t.

A natural question is to characterize the cluster algebras in which Properties D,
R, and M hold. As a start towards answering this question, we prove the following
three theorems in Section 4. In every case, the proof is to read off Property D using
a known formula for the denominator vectors.

Theorem 2.2. Properties D, R, and M holds in any cluster pattern whose exchange
matrices are 2× 2.

Theorem 2.3. Properties D, R, and M hold in any cluster pattern of finite type.

Theorem 2.4. Properties D, R, and M hold for a cluster algebra arising from a
marked surface if and only if the marked surface is one of the following:
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(1) A disk with at most one puncture ( finite types A and D).

(2) An annulus with no punctures and one or two marked points on each boundary
component (affine types Ã1,1, Ã2,1, and Ã2,2).

(3) A disk with two punctures and one or two marked points on the boundary
component (affine types D̃3 and D̃4).

(4) A sphere with four punctures and no boundary components.

(5) A torus with exactly one marked point (either one puncture or one boundary
component containing one marked point).

In Section 3, we also prove some easier relations on D-matrices and M-matrices
that hold in general. The first of these shows that, to understand how D-matrices
transform under mutation of the initial seed, one must understand M-matrices.

Proposition 2.5. Suppose t0 k
−−− t1 is an edge in Tn . Then DB1;t1

t is obtained by
replacing the k-th row of DB0;t0

t with the k-th row of M B0;t0
t . That is,

DB1;t1
t = DB0;t0

t − (DB0;t0
t )k•+ (M B0;t0

t )k•.

The final-seed mutation recursion on denominator vectors [Fomin and Zelevinsky
2007, (7.6)–(7.7)] is given in matrix form as follows. The initial D-matrix DB0;t0

t0
is the negative of the identity matrix, and for each edge t k

−−− t ′ in Tn ,

(2-4) DB0;t0
t ′ = DB0;t0

t Jk +max
(
DB0;t0

t [(B B0;t0
t )•k]+, DB0;t0

t [(−B B0;t0
t )•k]+

)
.

Note that neither product of matrices inside the max in (2-4) has any nonzero entry
outside the k-th column. It turns out that m-vectors satisfy the same recursion, but
with different initial conditions.

Proposition 2.6. The initial M-matrix M B0;t0
t0 is the identity matrix. Given an edge

t k
−−− t ′ in Tn ,

M B0;t0
t ′ = M B0;t0

t Jk +max
(
M B0;t0

t [(B B0;t0
t )•k]+,M B0;t0

t [(−B B0;t0
t )•k]+

)
.

Finally, we present some conjectures and results on Property R in the context
of source-sink moves. Suppose that in the exchange matrix B0, all entries in row
k weakly agree in sign. That is, either all entries in row k are nonnegative (and
equivalently all entries in column k are nonpositive) or all entries in row k are
nonpositive (and equivalently all entries in column k are nonnegative). In this case,
mutation of B0 in direction k is often called a source-sink move, referring to the
operation on quivers of reversing all arrows at a source or a sink. We conjecture
that Property R holds when mutation at k is a source-sink move. In this case,
Equation (2-2) has a particularly simple form.
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Conjecture 2.7. Suppose t0 k
−−− t1 is an edge in Tn and B1 is µk(B0). If all entries

in row k of B0 weakly agree in sign, then

(2-5) DB1;t1
t = Jk DB0;t0

t +
[
|Bk•

0 |D
B0;t0
t

]
+

We also make two other closely related conjectures. Let A be the Cartan
companion of B0, defined by setting Ai i = 2 for all i and Ai j =−|(B0)i j | for i 6= j .
Then A is a (generalized) Cartan matrix and thus defines a root system and a root
lattice in the usual way. It also defines a (generalized) Weyl group W , generated
by simple reflections s1, . . . , sn given by sk(α`) = α` − Ak`αk , where the αi are
the simple roots. If β is in the root lattice, then write [β : αi ] for the coefficient
of αi in the simple root coordinates of β. Then [sk(β) : αi ] = [β : αi ] if i 6= k and
[sk(β) : αk] =−[β : αk]+

∑n
`=1 |(B0)k`|[β : α`]. Following [Fomin and Zelevinsky

2003b, Section 2], we define a piecewise linear modification σk of sk by setting
[σk(β) :αi ]=[β :αi ] if i 6=k and [σk(β) :αk]=−[β :αk]+

∑n
`=1 |(B0)k`|

[
[β :α`]

]
+

.
We think of σk as a map on (certain) integer vectors by interpreting them as simple
root coordinates of vectors in the root lattice. We also think of σk as a map on
integer matrices by applying it to each column.

Conjecture 2.8. Suppose t0 k
−−− t1 is an edge in Tn and B1 is µk(B0). If all entries

in row k of B0 weakly agree in sign, then DB1;t1
t = σk DB0;t0

t .

To relate Conjecture 2.8 to Conjecture 2.7, we quote the following conjecture,
which is a significant weakening of [Fomin and Zelevinsky 2007, Conjecture 7.4].
We will say a matrix D has signed columns if every column of D either has all
nonnegative entries or all nonpositive entries. Similarly, D has signed rows if every
row of D either has all nonnegative entries or all nonpositive entries.

Conjecture 2.9. For all t ∈ Tn , the matrix DB0;t0
t has signed columns.

Conjecture 2.9 is not the same as another weakening of [Fomin and Zelevinsky
2007, Conjecture 7.4], namely “sign-coherence of d-vectors,” which asserts that
for all t ∈ Tn , the matrix DB0;t0

t has signed rows.
We prove the following easy proposition in Section 3.

Proposition 2.10. If Conjecture 2.9 holds, then Conjectures 2.7 and 2.8 are equiv-
alent.

Theorems 2.2 and 2.3 imply Conjecture 2.7 in the rank-two and finite-type
cases, and Theorem 2.4 implies it for certain surfaces. Rupel and Stella [2017]
proved Conjectures 2.8 and 2.9 (and thus Conjecture 2.7) for B acyclic. As further
evidence in support of the conjectures in general, we prove the following theorem
in Section 5.

Theorem 2.11. Conjectures 2.7 and 2.8 hold in cluster algebras arising from
marked surfaces.
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3. Proofs of general results

We begin with the proof of Proposition 2.6, followed by the proof of Proposition 2.5.
To make the proof of Proposition 2.6 completely clear, we point out two lemmas
about highest powers in multivariate (Laurent) polynomials. Both are completely
obvious when looked at in the right way, but otherwise one might convince oneself
to worry. Given a Laurent polynomial p, we write mi (p) for the highest power of
xi occurring in a term of p.

Lemma 3.1. Given Laurent polynomials f and g in x1, . . . , xn , we have mi ( f g)=
mi ( f )+mi (g).

Proof. Write f = faxa
i + fa+1xa+1

i +· · ·+ fk xk
i and g=gbxb

i +gb+1xb+1
i +· · ·+g`x`i

such that the f j and g j are polynomials in the variables besides xi and fk and g`
are nonzero. Then the highest power of xi in f g is k+ `. (Otherwise fk and g` are
zero divisors.) �

Lemma 3.2. Suppose p is a Laurent polynomial over C in x1, . . . , xn and f and g
are polynomials in C[x1, . . . , xn] such that f/g= p. Then mi (p)=mi ( f )−mi (g).

Proof. Since p is a Laurent polynomial, we can factor f as a · c and g as b · c
such that b is a monomial. It is immediate that mi (p)= mi (a)−mi (b). Applying
Lemma 3.1, we have mi ( f )−mi (g)=mi (a)+mi (c)−mi (b)−mi (c)=mi (p). �

Proof of Proposition 2.6. Throughout this proof, we omit superscripts B0; t0. The
first assertion of the proposition is trivial. To establish the second assertion, we
compute Mi j;t ′ , the highest power of xi occurring in x j;t ′ , in terms of Mt . If j 6= k,
then x j;t ′ = x j;t , so Mi j;t ′ = Mi j;t as given in the proposition. If j = k, then the
exchange relation [Fomin and Zelevinsky 2007, (2.8)], with trivial coefficients, is

(3-1) xk;t ′ = (xk;t)
−1
(∏

`

(x`,t)[B`k;t ]+ +
∏
`

(x`,t)[−B`k;t ]+

)
.

Write U for the expression
∏
`(x`,t)

[B`k;t ]+ +
∏
`(x`,t)

[−B`k;t ]+ . Each factor x`;t in
U has a subtraction-free expression: an expression as a ratio of two polynomials in
x1, . . . , xn with nonnegative coefficients. Therefore each term in U has a subtraction-
free expression. Write the first term as a/c and the second term as b/d , where a, b,
c, and d are polynomials with nonnegative coefficients. The sum U is then ad

cd +
bc
cd .

Since all of these expressions are subtraction-free, there is no cancellation, so
mi (U )=mi

(ad
cd +

bc
cd

)
=max

(
mi
(ad

cd

)
,mi

( bc
cd

))
, which equals max

(
mi
(a

c

)
,mi

( b
d

))
which in turn equals

max
(

mi

(∏
`

(x`,t)[B`k;t ]+
)
,mi

(∏
`

(x`,t)[−B`k;t ]+

))
.
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Returning now to expressions for the x`;t as Laurent polynomials, Lemma 3.1 lets
us conclude that mi (U )=max

(∑
` Mi`;t [B`k;t ]+,

∑
` Mi`;t [−B`k;t ]+

)
.

Now, writing xk;t as a rational function p/q with mi (p)−mi (q)=mi (xk;t) and
writing U as a rational function r/s with mi (r)−mi (s)= mi (U ), Equation (3-1)
lets us write xk;t ′ as qr

ps , so Lemmas 3.1 and 3.2 imply that Mik;t ′ =mi (q)−mi (p)+
mi (r)−mi (s)=−Mik;t +max

(∑
` Mi`;t [B`k;t ]+,

∑
` Mi`;t [−B`k;t ]+

)
as desired.

�

Proof of Proposition 2.5. The cluster at t1 is obtained from (x1, . . . , xn) by removing
xk and replacing it with a new cluster variable x ′k . The two are related by

(3-2) xk = (x ′k)
−1
(∏

`

x [b`k ]+` +

∏
`

x [−b`k ]+
`

)
,

where the b`k are entries of B0.
To show that the k-th row of DB1;t1

t equals the k-th row of M B0;t0
t , we appeal to

the Laurent phenomenon to write the cluster variable x B0;t0
j;t in the form

N (x1, . . . , xn)∏
i x

D
B0;t0
i j;t

i

,

for some polynomial N not divisible by any of the xi . We write N = N0+ N1xk +

· · · + Npx p
k , where the Nq are polynomials not involving xk , with Np 6= 0. Then

(3-2) lets us write x B0;t0
j;t as

(3-3)
N0+ N1

(∏
` x
[b`k ]+
` +

∏
` x
[−b`k ]+
`

)
x ′k

+ · · ·+ Np

(∏
` x
[b`k ]+
` +

∏
` x
[−b`k ]+
`

)p

(x ′k)
p

x
D

B0;t0
1 j;t

1 · · ·

((∏
` x
[b`k ]+
` +

∏
` x
[−b`k ]+
`

)
x ′k

)D
B0;t0
k j;t

· · · x
D

B0;t0
nj;t

n

The numerator of (3-3) can be factored as (x ′k)
−p times a polynomial not divisible

by x ′k . The denominator can be factored as (x ′k)
−D

B0;t0
k j;t times a polynomial not

involving x ′k . We conclude that DB1,t1
k j;t is −DB0;t0

k j;t + p. The latter equals M B0;t0
k j;t .

To show that DB1;t1
t agrees with DB0;t0

t outside of row k, we fix i 6= k and consider
a subtraction-free expression for x B0;t0

j;t . The Laurent phenomenon implies that this
expression can be simplified to a Laurent polynomial. The simplification can, if
one wishes, be done in two stages, by first factoring out all powers of xi from the
rational expression and then canceling the other factors. After the first stage, we
have written x B0;t0

j;t as xi
−D

B0;t0
i j;t ·

f
g where f and g are subtraction-free polynomials

not divisible by xi . Replacing xk in this expression by the right side of (3-2), we
find that no additional powers of xi can be extracted. (Since the right side of (3-2)
is also subtraction-free, we obtain a new subtraction-free expression. In particular,
there can be no cancellation, so a power of xi can be extracted if and only if it is a
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factor in every term of the numerator or a factor in every term of the denominator.
But the right side of (3-2) is not divisible by any nonzero power of xi .) We conclude
that DB1,t1

i j;t = DB0;t0
i j;t . �

We next prove Theorem 2.1. Specifically, the theorem follows from the next three
propositions, which more carefully specify the relations among the three properties.

Proposition 3.3. For a fixed choice of B0, t0, t and k, let t1 be the vertex of Tn such
that t0 k

−−− t1 and write B1 for µk(B0). Suppose (2-1) holds at B0, t0, t and also at
B1, t1, t . Then (2-2) holds for the same B0, t0, t, k.

Proof. We apply (2-1) at B1, t1, t , then (2-4), then (2-1) at B0, t0, t .

DB1;t1
t = (D(−Bt )

T
;t

t1 )T

=
(
D(−Bt )

T
;t

t0 Jk +max
(
D(−Bt )

T
;t

t0 [(BT
0 )
•k
]+, D(−Bt )

T
;t

t0 [(−BT
0 )
•k
]+

))T

= Jk(D
(−Bt )

T
;t

t0 )T +max
(
[Bk•

0 ]+(D
(−Bt )

T
;t

t0 )T , [−Bk•
0 ]+(D

(−Bt )
T
;t

t0 )T
)

= Jk DB0;t0
t +max

(
[Bk•

0 ]+DB0;t0
t , [−Bk•

0 ]+DB0;t0
t

)
In the second line, we use the fact that B(−Bt )

T
;t

t0 =−BT
0 . �

Proposition 3.4. Fix a (coefficient-free) cluster pattern t 7→ (Bt , (x1;t , . . . , xn;t))

and vertices t0 and t of Tn , connected by edges

t0 k1=k
−−− t1 k2−−− · · ·

km−−− tm = t.

Suppose that, for all i = 1, . . . ,m, equation (2-2) holds for the edge ti−1
ki−−− ti .

Then
(D

Bt0 ;t0
t )T = D(−Bt )

T
;t

t0 .

Proof. We argue by induction on m. For m = 0 (i.e., t = t0), (2-1) says that
the negative of the identity matrix is symmetric. Equation (2-2) is symmetric in
switching t0 and t1, because Bk•

0 =−Bk•
1 . Thus for m > 0, we can use (2-2) for the

edge t1 k1−−− t0 to write

(3-4) DB0;t0
t = Jk DB1;t1

t +max
(
[Bk•

1 ]+DB1;t1
t , [−Bk•

1 ]+DB1;t1
t

)
By induction, we rewrite the right side of (3-4) as

Jk(D
(−Bt )

T
;t

t1 )T +max
(
[Bk•

1 ]+(D
(−Bt )

T
;t

t1 )T , [−Bk•
1 ]+(D

(−Bt )
T
;t

t1 )T
)

=
(
D(−Bt )

T
;t

t1 Jk +max
(
D(−Bt )

T
;t

t1 [(BT
1 )
•k
]+, D(−Bt )

T
;t

t1 [(−BT
1 )
•k
]+

))T
.

By (2-4), this is (D(−Bt )
T
;t

t0 )T . �

Proposition 3.5. For a fixed choice of B0, t0, t and k, (2-2) holds if and only if
(2-3) holds in the k-th row.



190 NATHAN READING AND SALVATORE STELLA

Proof. Equation (2-3) holds in the k-th row if and only if

(M B0;t0
t )k• = (−DB0;t0

t )k•+max
(
[Bk•

0 ]+DB0;t0
t , [−Bk•

0 ]+DB0;t0
t

)
.

This equation is equivalent to (2-2) in light of Proposition 2.5. �

This completes the proof of Theorem 2.1.
To conclude this section, we establish Proposition 2.10 by proving a more detailed

statement. Recall that a matrix D has signed columns if every column of D either
has all nonnegative entries or all nonpositive entries.

Proposition 3.6. Suppose t0 k
−−− t1 is an edge in Tn and B1 is µk(B0). If DB0;t0

t
has signed columns, then the right side of (2-5) equals σk DB0;t0

t .

Proof. Let β be the vector in the root lattice with simple root coordinates d B0;t0
j;t .

For i 6= k, the i j-entry of the right side of (2-5) is [β : αi ]. The k j-entry of the
right side of (2-5) is −[β : αk] +

[∑n
`=1|(B0)k`|[β : α`]

]
+

. By hypothesis, all of
the simple root coordinates of β weakly agree in sign, so

[∑n
`=1|(B0)k`|[β : α`]

]
+

is
∑n

`=1|(B0)k`|
[
[β : α`]

]
+

. Thus the right side of (2-5) is σkβ. �

4. Duality and recursion in certain cluster algebras

We now prove Theorems 2.2, 2.3, and 2.4.

4A. Rank two. The proof of Theorem 2.2 uses a formula for rank-two denominator
vectors due to Lee, Li, and Zelevinsky [2014, (1.13)].

Proof of Theorem 2.2. The 2-regular tree Tn is an infinite path. We label its vertices
tk for k ∈ Z, and abbreviate Btk by Bk . As the situation is very symmetric, it
is enough to take B0 =

[ 0
−c

b
0

]
with b and c nonnegative and establish (2-1) for

t = tk with k ≥ 0. When bc < 4, the cluster pattern is of finite type and (2-1) can
be checked easily (if a bit tediously) by hand. Alternatively, one can appeal to
Theorem 2.3, which we prove below. For bc≥ 4, the denominator vectors are given
by [Lee et al. 2014, (1.13)]. Equation (2-1) is easy when k = 1, so we assume
k ≥ 2. The labeled cluster associated to the vertex tk is {xk+1, xk+2} if k is even and
{xk+2, xk+1} if k is odd.

If k is even, we use [Lee et al. 2014, (1.13)] to write

(4-1) DB0;t0
tk =

[
S k−2

2
(u)+ S k−4

2
(u) bS k−2

2
(u)

cS k−4
2
(u) S k−2

2
(u)+ S k−4

2
(u)

]
where u = bc− 2 and the Sp are Chebyshev polynomials of the second kind. (In
fact, here we do not need to know anything about the Sp except that they are
functions of u.) We can similarly use [Lee et al. 2014, (1.13)] to write an expression
for D

−BT
k ;tk

t0 . Since k is even Bk = B0, and thus −BT
k =−BT

0 =
[ 0
−b

c
0

]
. To apply



INITIAL-SEED RECURSIONS AND DUALITIES FOR d-VECTORS 191

[loc. cit., (1.13)] in this case, we must switch the role of b and c. When we do so,
keeping in mind that we move now in the negative direction, we obtain exactly the
transpose of the right side of (4-1).

If k is odd, we obtain

(4-2) DB0;t0
tk =

[
S k−1

2
(u)+ S k−3

2
(u) bS k−3

2
(u)

cS k−3
2
(u) S k−3

2
(u)+ S k−5

2
(u)

]
In this case, Bk = −B0, so −BT

k = BT
0 =

[ 0
b
−c
0

]
. Noticing that −BT

k is obtained
from B0 by simultaneously swapping the rows and the columns, when we use
[loc. cit., (1.13)] to write an expression for D

−BT
k ;tk

t0 , we also swap the rows and
columns. The result is exactly the transpose of the right side of (4-2). �

4B. Finite type. The proof of Theorem 2.3 uses a result of Ceballos and Pilaud
[2015] giving denominator vectors in finite type, with respect to any initial seed,
in terms of the compatibility degrees defined at any acyclic seed. In [Fomin and
Zelevinsky 2003a], it is shown that in every cluster pattern of finite type, there exists
an exchange matrix B0 that is bipartite and whose Cartan companion A is of finite
type. The cluster variables appearing in the cluster pattern are in bijection with the
almost positive roots in the root system for A. Given an almost positive root β,
we will write x(β) for the corresponding cluster variable. There is a compatibility
degree (α, β) 7→ (α ‖ β) ∈ Z≥0 defined on almost positive roots encoding some
of the combinatorial properties of the cluster algebra. In particular two cluster
variables x(α) and x(β) belong to the same cluster if and only if the roots α and
β are compatible (i.e., if their compatibility degree is zero). Maximal sets of
compatible roots are called (combinatorial) clusters and they correspond to the
(algebraic) clusters in the cluster algebra. In the same paper Fomin and Zelevinsky
also showed that compatibility degrees encode denominator vectors with respect to
the bipartite initial seed.

Ceballos and Pilaud extended this dramatically in the following result. (We follow
them in modifying the definition of compatibility degree in an inconsequential way
in order to make it easier to state the theorem. Specifically, we take (α ‖ α)=−1
rather than (α ‖ α)= 0.)

Theorem 4.1 [Ceballos and Pilaud 2015, Corollary 3.2]. Let {β1, . . . , βn} be a
cluster and let γ be an almost positive root. Then the d-vector of x(γ ) with respect
to the cluster {x(β1), . . . , x(βn)} is given by [(β1 ‖ γ ), . . . , (βn ‖ γ )].

Since B0 is skew-symmetrizable, passing from B0 to −BT
0 has the effect of

preserving the signs of entries while transposing the Cartan companion A. The
almost positive roots for AT are the almost positive coroots associated to A. The
following is [Fomin and Zelevinsky 2003b, Proposition 3.3(1)].
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Proposition 4.2. If α and β are almost positive roots and α∨ and β∨ are the
corresponding coroots, then (α ‖ β)= (β∨‖ α∨).

Proof of Theorem 2.3. The cluster pattern assigns some algebraic cluster to t0 and
some algebraic cluster to t , and each of the algebraic clusters is encoded by some
combinatorial cluster. Let {β1, . . . , βn} be the combinatorial cluster at t0 and let
{γ1, . . . , γn} be the combinatorial cluster at t . Now Theorem 4.1 and Proposition 4.2
are exactly Property D at t0 and t . �

4C. Marked surfaces. The proof of Theorem 2.4 relies on a result of Fomin,
Shapiro, and Thurston [2008, Theorem 8.6] giving denominator vectors in terms
of tagged arcs. We will assume familiarity with the basic definitions of cluster
algebras arising from marked surfaces.

Recall that tagged arcs are in bijection with cluster variables and tagged triangu-
lations are in bijection with clusters, except in the case of once-punctured surfaces
with no boundary components, where plain-tagged arcs are in bijection with cluster
variables and plain-tagged triangulations are in bijection with clusters. We write
α 7→ x(α) for this bijection. Given tagged arcs α and β, there is an intersection num-
ber (α|β) such that the following theorem [Fomin et al. 2008, Theorem 8.6] holds.

Theorem 4.3. Given tagged arcs α and β and a cluster (x1, . . . , xn) with xi = x(α),
the i-th component of the denominator vector of x(β) with respect to the cluster
(x1, . . . , xn) is (α|β).

In an exchange pattern arising from a marked surface, every exchange matrix
Bt is skew-symmetric, so (−Bt)

T
= Bt . Thus we have the following corollary to

Theorem 4.3.

Corollary 4.4. In an exchange pattern arising from a marked surface, Property D
holds if and only if the intersection number is symmetric (i.e., (α|β)= (β|α) on all
tagged arcs α and β that correspond to cluster variables).

The intersection number (α|β) is defined in [Fomin et al. 2008, Definition 8.4] to
be the sum of four quantities A, B, C , and D. To define these, we choose α0 and β0

to be non-self-intersecting curves homotopic (relative to the set of marked points)
to α and β, and intersecting with each other the minimum possible number of times,
transversally each time. The quantity A is the number of intersection points of α0

and β0 (excluding intersections at their endpoints). The quantity B is zero unless
α0 is a loop (i.e., unless the two endpoints of α0 coincide). If α0 is a loop, let a
be its endpoint. We number the intersections as b1, . . . , bk in the order they are
encountered when following β0 in some direction. For each i = 1, . . . , k− 1, there
is a unique segment [a, bi ] of α0 having endpoints a and bi and not containing
bi+1. There is also a unique segment [a, bi+1] of α0 having endpoints a and bi+1

and not containing bi . Let [bi , bi+1] be the segment of β0 connecting bi to bi+1.
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The quantity B is
∑k−1

i=1 Bi , where Bi is −1 if the segments [a, bi ], [a, bi+1], and
[bi , bi+1] define a triangle that is contractible and Bi = 0 otherwise. The quantity
C is zero unless α0 and β0 are equal up to isotopy relative to the set of marked
points, in which case C =−1. The quantity D is the number of ends of β that are
incident to an endpoint of α and carry, at that endpoint, a different tag from the tag
of α at that endpoint.

The quantities A and C are patently symmetric in α and β, so we need not
consider them in this section. It is pointed out in [Fomin et al. 2008, Example 8.5]
that D can fail to be symmetric. The quantity B can also fail to be symmetric.
Examples will occur below.

Some immediate observations will be helpful.

Observation 1. In a surface having no tagged arcs that are loops, B is always 0
and D is also always symmetric.

Observation 2. In a surface having no punctures, D is always zero.

Observation 3. In a surface having exactly one puncture and no boundary compo-
nents, D is always zero on tagged arcs corresponding to cluster variables.

For the second observation, recall that notched tagging may occur only at punc-
tures. For the third observation, recall that in a surface with exactly one puncture
and no boundary components, tagged arcs correspond to cluster variables if and
only if they are tagged plain.

To prove one direction of Theorem 2.4, we show that B + D is symmetric in
the cases listed in the theorem. First, recall that a tagged arc may not bound a
once-punctured monogon and may not be homotopic to a segment of the boundary
between two adjacent marked points. In particular, there are no loops in a disc
with at most one puncture, in the unpunctured annulus with 2 marked points, in the
twice-punctured disk with one marked point on its boundary, or in the four-times-
punctured sphere. Thus Observation 1 shows that B+ D is symmetric in the cases
described in (1) and (4), and in the simplest cases described in (2) and (3).

In the remaining cases described in (2), Observation 2 shows that D is always
zero. We are interested in pairs of arcs containing at least one loop (otherwise B
is zero in both directions). Because an arc may not be homotopic to a boundary
segment, there are no loops at a marked point if it is the only marked point on
its boundary component. A marked point that is not the only marked point on its
boundary component supports exactly one loop. If there are two marked points
on one component and one marked point on the other, we are in the situation of
Figure 1, left. In this case, numbering the points as in the figure, the only two
loops in the surface are based one at 1 and one at 2. The remaining arcs start at
3, spiral around some number of times and then reach either 1 or 2. The only
arc that intersects one of the loops more than once is the other loop. These have
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B =−1 in both directions, so B is symmetric in this case. If there are two marked
points on each boundary component, the argument is similar and only slightly more
complicated. There are four loops, as illustrated in Figure 1, center. Each of the
remaining arcs connects a point of one boundary to a point of the other boundary,
with some number of spirals. Again, for any of the four loops there is only one
other arc intersecting it more than once; it is the loop based at the other marked
point on the same boundary component. For each pair of intersecting loops we
calculate B =−1 in both directions. We have finished case (2).

The remaining case (a disk with two punctures and two boundary points) in (3)
is similar to the cases in (2). There is a loop at each marked point on the boundary
but no other loop, as illustrated in Figure 1, right. In particular, the tagging at these
loops is plain, and we see that D is symmetric. There is exactly one arc connecting
the two boundary points and four tagged arcs (all with the same underlying arc)
connecting the two punctures. The remaining arcs have a boundary point at one
endpoint and spiral around the punctures some number of times before ending
at one of the punctures, with either tagging there. Once again, the only arc that
intersects more than once one of the loops is the other loop, and we again have
B =−1 in both directions.

The remaining two cases are described in (5). We first consider the once-
punctured torus. In this cases, D = 0 by Observation 3, so it remains to show
that B is symmetric. We will show that in fact B is zero on all pairs of arcs. Arcs
in the once-punctured torus are well-known to be in bijection with rational slopes,
including the infinite slope. (See, for example, [Reading 2014, Section 4].) Each
such slope can be written uniquely as a reduced fraction b

a such that a ≥ 0 and that
b = 1 whenever a = 0. If we take the universal cover (the plane R2) of the torus
mapping each integer point to the puncture, the arc indexed by a slope b

a lifts to a
straight line segment connecting the origin to the point (a, b). (The same arc also
lifts to all integer translates of that line segment.)

It is now easy to see that B = 0 for arcs in the once-punctured torus. For any
two arcs α and β, let α0 and β0 be the curves on the torus obtained by projecting
the associated straight line segments in the plane. This choice of representatives
minimizes the number of intersections as can be seen by looking at the universal
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Figure 2

cover. Let a and b1, . . . , bk be the points as in the definition of B. Given some i
between 1 and k− 1, concatenate the curves [a, bi ], [bi , bi+1], and [bi+1, a], and
consider the lift of the concatenated curve to the plane. This lifted curve consists of
two parallel line segments and one line segment not parallel to the other two. In
particular, it is impossible for the lifted curve to start and end at the same point. The
situation is illustrated in Figure 2, left, where a lift of β0 is shown as a solid line,
several lifts of α0 are shown as dotted lines and a lift of the three concatenated curves
is highlighted. By the standard argument on fundamental groups and universal
covers, we see that the concatenation of [a, bi ], [bi , bi+1], and [bi+1, a] is not a
contractible triangle, and we conclude that B = 0 on α and β.

The final case for this direction of the proof is the torus with one boundary
component and one marked point. In this case, D is again zero, this time by
Observation 2, so we will show that B is symmetric. We think of the boundary
component as a “fat point” on the torus. With this trick, we can again consider
lifts of arcs to the plane. Each arc lifts to a curve connecting the origin to an
integer point (a, b) with a and b satisfying the same conditions as above for the
once-punctured torus. However, for each such (a, b), there is a countable collection
of arcs connecting the origin to (a, b). Specifically, for each integer k, the arc may
wind k times clockwise about the fat origin point before going to (a, b). (Negative
values of k specify counterclockwise spirals.) Since (a, b) and the origin both
project to the same fat point on the torus, the number and direction of spirals at
(a, b) is determined almost uniquely by k. There are two possibilities for each k,
illustrated in Figure 2, right, for the case where (a, b)= (1, 0).

For each arc α, choosing the right change of basis of the integer lattice, we may
as well assume that the lift of α connects the origin to the point (1, 0). Furthermore,
there is a homeomorphism from the torus to itself that rotates the fat point and
changes the number of spirals of α at the origin and at (1, 0). Rotating a half-integer
number of full turns, we can assume α lifts to a straight horizontal line segment from
(0, 0) to (1, 0). Possibly reflecting the plane through the horizontal line containing
the origin (to offset the effect of a half-turn), we can assume that α looks like the solid
arc shown in Figure 3, with the boundary component above the origin in the picture.

Now take another arc β and consider a lift of β connecting the origin to (a, b).
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Figure 3

Since another lift connects (−a,−b) to the origin, we may as well take b ≥ 0. Up
to a reflection in a vertical line, we can assume that the lift of β spirals clockwise
(if it spirals at all) as it leaves the origin. Fixing one possible number of spirals of
β at (0, 0) and fixing some (a, b) with b > 0, the two possibilities for the lift of β
are shown as dashed arcs in Figure 3. Nonzero contributions to B can arise only
from segments that remain close to the fat point: by the same argument as for the
once-punctured torus, the segments that do not stay near the fat point contribute
nothing. Therefore it is enough to analyze the intersections of α and β near the
origin. In each of the two possibilities we highlight in Figure 3 the segments
[ai , ai+1] of α and [b j , b j+1] of β giving nonzero contributions. In the pictured
examples, B is symmetric in α and β. It is easy to see that the symmetry survives
when the number of spirals changes. The case b = 0 looks slightly different, but
B is still symmetric for essentially the same reasons. (Look back, for example at
Figure 2, right.)

We have proved one direction of Theorem 2.4. To prove the other direction,
we need to show that B+ D fails to be symmetric in certain cases. In each case,
the failure of symmetry can be illustrated in a figure. Here, we list the cases and
indicate, for each case, the corresponding figure. In some cases, we also include
some comments in italics. In each case, α is the solid arc and β is the dashed arc;
they intersect in at most two points. We omit the labeling a, a1, a2, b, b1, b2 not to
clutter the pictures. This will complete the proof of Theorem 2.4.

(a) A surface with genus greater than 1 (Figure 4, left). We show the genus-2
case. Pairs of edges in the octahedron are identified as indicated by the numbering
and the arrows. Since all taggings are plain, D = 0. However, B is asymmetric
(−1 in one direction and 0 in the other). The marked point shown in the figure
is a puncture, but the same example works with the marked point on a boundary
component. For higher genus or to have additional punctures, one can start with
the surface shown and perform a connected sum, cutting a disk from the interior of
the octagon shown.
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(b) A torus with 2 or more marked points (Figure 4, right). Opposite pairs of edges
in the square are identified. If the marked point at the corners of the square is on
a boundary component, then the arcs shown in the left picture of the figure have
D = 0 but B is asymmetric (taking values 0 and −1). Additional punctures and/or
boundary components may exist, but the arcs α and β can always be chosen so that
the triangle [b, a1],[a1, a2], [a2, b] is contractible while the triangle [a, b1], [b1, b2],
[b2, a] is not. If the marked point at the corners is a puncture, then the right picture
applies. In this case, B = 0 but D is asymmetric because one of the arcs is a loop
and the other is not.

(c) A sphere with 3 or more boundary components and possibly some punctures
(Figure 5, left). We show a disk with 2 additional boundary components. For the arcs
shown, D = 0 but B is asymmetric. Again, additional punctures and/or boundary
components may exist, but the triangle [a, b1], [b1, b2], [b2, a] is contractible.

(d) An annulus with one or more punctures (Figure 5, center). B = 0 and D is
asymmetric on the arcs shown.

(e) An unpunctured annulus with 3 or more marked points on one of its boundary
components (Figure 5, right). B is asymmetric and D = 0.

(f) A disk with 3 or more punctures (Figure 6, left). B = 0 and D is asymmetric.

(g) A disk with 2 punctures and 3 or more marked points on the boundary (Figure 6,
center). B is asymmetric and D = 0.

Figure 5
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Figure 6

(h) A sphere with 5 or more punctures (Figure 6, right). We show a local patch of
the sphere containing all of the punctures. B = 0 and D is asymmetric.

5. Source-sink moves on triangulated surfaces

In this section, we prove Theorem 2.11, the assertion that Conjectures 2.7 and 2.8
hold for marked surfaces. Conjecture 2.9 holds for surfaces because the stronger
conjecture [Fomin and Zelevinsky 2007, Conjecture 7.4] for surfaces is an easy
consequence of [Fomin et al. 2008, Theorem 8.6]. Thus by Proposition 2.10, we
need only to prove the assertion about Conjecture 2.7. In light of Theorem 4.3, the
task is to prove a certain identity on intersection numbers. This identity is already
known (as a special case of Property R) for the surfaces listed in Theorem 2.4, and
it will be convenient in what follows that we need not consider those surfaces.

Suppose α is a tagged arc in a tagged triangulation T and suppose α′ is the arc
obtained by flipping α in T . We may as well take T to be obtained from an ideal
triangulation T ◦ by applying the map τ of [Fomin et al. 2008, Definition 7.2] to each
arc. (Any other tagged triangulation could be obtained from such a triangulation
by changing tags, which by definition [loc. cit., Definition 9.6] does not affect the
associated B-matrix.) In particular, B(T ) = B(T ◦). We will abuse notation and
denote by the same Greek letters both ideal arcs and their corresponding tagged
arcs. Suppose all of the entries in the row of B(T ) indexed by α weakly agree in
sign. Because of the symmetry between DB0;t0

t and DB1;t1
t in (2-5), we may as well

assume that all entries in the row of B(T ) indexed by α are nonnegative; in this case
we will say that “α is a source” alluding to the usual encoding of skew-symmetric
exchange matrices by quivers.

Let β be any other arc. Keeping in mind that (2-5), like (2-2) before it, is true
outside of row k by Proposition 2.5, the task is to prove the following identity:

(5-1) (α′|β)=−(α|β)+
∑
γ∈T

bαγ (γ |β)

where bαγ is the entry of B(T ) in the row indexed by α and column indexed by γ .
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Figure 7. Tagged puzzle pieces.

The key observation in our proof is that the entries bαγ depends only on how
T looks locally near α. Therefore we begin our analysis by constructing a short
list of possible local configurations. To do this we build the surface and the ideal
triangulation T simultaneously by adjoining puzzle pieces as in [Fomin et al. 2008,
Section 4]. There the ideal triangulation T ◦ is built from puzzle pieces, but to save
a step, we apply the map τ to the puzzle pieces before assembling, rather than after.
The resulting tagged puzzle pieces are shown in Figure 7. We will refer to them
(from left to right in the Figure) as triangle pieces, digon pieces, and monogon
pieces. The external edges of digon pieces are distinguishable (up to reversing the
orientation of the surface) and we will call them the left edge and the right edge
according to how they are pictured in Figure 7. Similarly, the two pairs of internal
arcs in a monogon piece are distinguishable, and we will call them the left pair and
right pair according to Figure 7.

Puzzle pieces are joined by gluing along their outer edges. Unjoined outer edges
become part of the boundary of the surface. In [loc. cit.], one specific triangulation is
mentioned that cannot be obtained from these puzzle pieces, but it is a triangulation
of the 4-times punctured sphere, so by Theorem 2.4, we need not consider it.

The list of possible local configurations around α, given α is a source, appears
in Figure 8. (We leave out the cases where Theorem 2.4 applies.) In the figure,
areas just outside the boundary are marked in gray. The curve α is labeled, or if
two curves might be a source, both of them are labeled α.

To obtain this list, recall that the entries in the row indexed by α are determined
by the triangles of T ◦ containing α or, if α is the folded side of a self-folded triangle,
by the triangles containing the other side of that self-folded triangle. (See [Fomin
et al. 2008, Definition 4.1].) In particular, if α is an internal arc in a digon or

αα

α α α

Figure 8. Possible local configurations surrounding a source.
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monogon piece, the entries in the row indexed by α are determined completely
within the piece. Both internal arcs in the digon piece are sources if and only if
the right external edge of the digon is on the boundary, as shown in the first (i.e.,
leftmost) picture of Figure 8. We need not consider the case where both external
edges of the digon piece are on the boundary, because Theorem 2.4 applies to a
once-punctured digon.

In the monogon piece, both the arcs in the left pair are never sources, and the
arcs of the right pair are sources if and only if the external edge of the monogon is
on the boundary. However, we don’t need to consider that case because the surface
is a twice-punctured monogon, and Theorem 2.4 applies.

If α is the external edge of a monogon piece, then each of the two left internal
arcs γ has bαγ =−1, so α is not a source. It remains, then, to consider how external
edges of triangle and digon pieces can be sources. We need to consider two cases.

Suppose α is an edge in a triangle piece and suppose γ is the edge reached from
α by traversing the boundary of the triangle in a counterclockwise direction. If γ
is not on the boundary, then the triangle contributes −1 to bαγ , so α cannot be a
source unless either γ is on the boundary or α and γ are also in a second triangle
that contributes 1 to bαγ .

Next suppose α is an external edge in a digon piece. If α is the left edge, then
each of the two internal arcs γ has bαγ = −1, so α is not a source. If α is the
right edge, let γ be the left edge. As in the triangle case, α cannot be a source
unless either γ is on the boundary or α and γ are also in a second triangle that
contributes 1 to bαγ .

Putting all these observations together, we see that we must consider three more
possibilities obtained by gluing a triangle or digon piece to another triangle or digon
piece. We can glue two triangle pieces together along one edge with opposite edges
of the resulting quadrilateral on the boundary as shown in the second picture in
Figure 8. Conceivably the top and bottom arcs shown in the picture are identified,
but we need not consider this case because then the surface is an annulus with two
marked points on each boundary component, and Theorem 2.4 applies. We can
glue two triangle pieces together along two edges, with one of the remaining edges
on the boundary as shown in the third picture in Figure 8. We can glue a triangle
piece along one of its edges to the right edge of a digon piece, with both the left
digon edge and the triangle edge counterclockwise from the glued edge on the
boundary, as shown in the fourth and last picture in Figure 8. We can glue a triangle
piece along two of its edges to the two edges of a digon piece, with the remaining
edge of the triangle on the boundary, but we need not consider this case, because
the surface is a twice-punctured monogon, and Theorem 2.4 applies. We can glue
two digon pieces, right edge to right edge, with the remaining two edges on the
boundary. However, we need not consider this case either, because the surface is a
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α

α′

γ1

γ2

α

α′

γ1
α

α′

γ1

αα′

γ1

γ2 γ3

Figure 9. Possible local configurations, with more information.

twice-punctured digon and Theorem 2.4 applies. Finally, we can glue both edges
of a digon piece to both edges of another digon piece, but in this case, we obtain a
3-times punctured sphere, which is explicitly disallowed in the definition of marked
surfaces [Fomin et al. 2008, Definition 2.1]. Thus the four configurations in Figure 8
are the only local configurations near arcs that are sources, except in surfaces to
which Theorem 2.4 applies. We will see that the first and third configurations shown
are essentially equivalent for our purposes.

We observe that (α|β) is invariant under changing all taggings of α and of β at
some puncture. Thus for the first (leftmost) picture in Figure 8, we may as well take
α to be the arc tagged notched at the puncture. Figure 9 shows the configurations
of Figure 8 with some additional information. First, the arc α′, obtained by flipping
α, is shown and labeled. Also, the arcs γ such that bαγ > 0 are labeled. There is
either one arc γ1, two arcs γ1 and γ2, or three arcs γ1, γ2 and γ3. The pictures in
Figure 9 are reordered in the order we will consider them. We have also redrawn
the last configuration more symmetrically.

Recall from Section 4C that (α|β) is the sum of four quantities A, B, C , and D.
As before, α0 and β0 are non-self-intersecting curves homotopic (relative to the set
of marked points) to α and β respectively, intersecting with each other the minimum
possible number of times, transversally each time. Recall that B = 0 unless α0

is a loop. In the configurations of Figure 8, α0 is never a loop. Furthermore, the
quantity bαγ is nonzero only if γ is in a triangle with α, and none of the arcs making
triangles with α is a loop in the configurations of Figure 8. Therefore, we can
ignore B in all the calculations of intersection numbers in this section. Recall also
that A is the number of intersection points of α0 and β0 (excluding intersections at
their endpoints), that C = 0 unless α0 and β0 coincide, in which case C =−1, and
that D is the number of ends of β that are incident to an endpoint of α and carry, at
that endpoint, a different tag from the tag of α at that endpoint.

Our task is simplified by several symmetries. We have already used the symmetry
of changing taggings at a puncture. Also, any symmetry of a configuration that
fixed α and α′ or switches α and α′ preserves (2-5). If the symmetry is orientation-
reversing, the absolute value operation in (2-5) is crucial to the symmetry. (This
absolute value has been omitted in (5-1) because we took α to be a source, not a sink.)
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(α|β) (α′|β) (γ1|β) (γ2|β)

1+ 0+ 0 1+ 0+ 0 1+ 0+ 0 1+ 0+ 0

1+ 0+ 0 0+ 0+ 0 1+ 0+ 0 0+ 0+ 0

1+ 0+ 0 0+ (−1)+ 0 0+ 0+ 0 0+ 0+ 0

Table 1

We first consider the left picture in Figure 9. Since each marked point is on the
boundary, there are no relevant taggings. Contributions to (α|β), (α′|β), (γ1|β),
and (γ2|β) occur only when β intersects the interior of the quadrilateral. While β
may intersect the interior of the quadrilateral a number of times, each intersection
can be treated separately. In such an intersection, β may either pass through the
quadrilateral, terminate at a vertex of the quadrilateral, or connect two vertices
of the quadrilateral. Up to symmetry, as discussed above, there are only three
possibilities. (The relevant symmetry group is the order-4 dihedral symmetry group
of the rectangle shown.) Table 1 shows the possible intersections of β (shown as
a dotted line) with the quadrilateral, along with the contributions to (α|β), (α′|β),
(γ1|β), and (γ2|β). Each of these is given in the form A+C+D. The quantities bαγ1

and bαγ2 are both 1. In every case, we see that (α|β)=−(α′|β)+ (γ1|β)+ (γ2|β),
and therefore (5-1) holds.

Notice that the second and third pictures of Figure 9 are related by a reflection

(α|β) (α′|β) (γ1|β)

1+ 0+ 0 1+ 0+ 0 2+ 0+ 0

1+ 0+ 0 0+ 0+ 0 1+ 0+ 0

0+ 0+ 0 1+ 0+ 0 1+ 0+ 0

0+ 0+ 0 0+ 0+ 1 1+ 0+ 0

0+ 0+ 1 0+ 0+ 0 1+ 0+ 0

Table 2
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that switches α with α′. By the symmetry discussed above, we need only consider
one of these configurations; we will work with the third picture. Contributions to
(α|β), (α′|β), and (γ1|β) only occur when β intersects the digon, and again, we
can treat each intersection separately. Table 2 shows all but four of the possible
intersections of β with the configuration, and shows (α|β), (α′|β), and (γ1|β),
again in the form A+C + D.

Since bαγ1 = 1, the desired relation is (α|β)=−(α′|β)+ (γ1|β), and we see that
this relation holds in every case. Not pictured in Table 2 are the four cases where
β0 coincides with α0 or α′0, with two possible taggings at the point in the center of
the digon. In each of these cases, (γ1|β)= 0 and the A terms of (α|β) and (α′|β)
are both zero. The other terms are also zero, except that one of (α|β) and (α′|β)
has C =−1 and one of (α|β) and (α′|β) has D = 1.

Finally, we consider the last picture in Figure 9. The two cases where β0 coincides
with α0 or α′0 are handled analogously to the last case of the quadrilateral condition.
Up to symmetry, there are six remaining cases, pictured in Table 3. Once again,
bαγi = 1 for i ∈ {1, 2, 3}, and the desired relation holds in every case:

(α|β)=−(α′|β)+ (γ1|β)+ (γ2|β)+ (γ3|β).

(α|β) (α′|β) (γ1|β) (γ2|β) (γ3|β)

2+0+0 2+0+0 2+0+0 1+0+0 1+0+0

2+0+0 1+0+0 1+0+0 1+0+0 1+0+0

1+0+0 0+0+0 1+0+0 0+0+0 0+0+0

1+0+0 1+0+0 1+0+0 0+0+0 0+0+1

1+0+0 0+0+0 0+0+0 0+0+0 0+0+1

1+0+0 1+0+0 0+0+0 1+0+0 1+0+0

Table 3
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