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CODIMENSIONS OF THE SPACES OF CUSP FORMS FOR
SIEGEL CONGRUENCE SUBGROUPS IN DEGREE TWO

ALOK SHUKLA

We give a computational algorithm for describing the one-dimensional cusps
of the Satake compactifications for the Siegel congruence subgroups in the
case of degree two for arbitrary levels. As an application of the results thus
obtained, we calculate the codimensions of the spaces of cusp forms in the
spaces of modular forms of degree two with respect to Siegel congruence
subgroups of levels not divisible by 8. We also construct a linearly indepen-
dent set of Klingen–Eisenstein series with respect to the Siegel congruence
subgroup of an arbitrary level.

1. Introduction

One of the most basic questions about the spaces of modular forms is to ask for the
dimensions and the codimensions of the spaces of cusp forms. For the spaces of
Siegel modular forms of degree two with respect to the full modular group Sp(4,Z)

the answers have been well known for several decades. However, while the answers
for the spaces of modular forms with respect to Siegel congruence subgroups are
not so clear, several special cases have been treated in the literature. Dimensions of
the spaces of cusp forms with respect to 00(p) have been computed by Hashimoto
[1983] for weights k ≥ 5. For 00(2), Ibukiyama [1991] gave the structure of the
ring of Siegel modular forms of degree 2. Poor and Yuen [2007] computed the
dimensions of cusp forms for weights k = 2, 3, 4 with respect to 00(p) in the
case of a small prime p. In [Poor and Yuen 2013] Poor and Yuen described the
one-dimensional and zero-dimensional cusps of the Satake compactifications for
the paramodular subgroups in the degree two case and calculated the codimensions
of cusp forms. More recently Böcherer and Ibukiyama [2012] have given a formula
for calculating the codimensions of the spaces of cusp forms in the spaces of
modular forms of degree two with respect to Siegel congruence subgroups of
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square-free levels. In this paper we generalize their result and give a formula for the
codimensions of the spaces of cusp forms in the spaces of modular forms of degree
two with respect to Siegel congruence subgroups of level N with 8 - N. Another
application of the results presented here will appear in a forthcoming work on
Klingen–Eisenstein series. The method used to find the codimensions of the spaces
of cusp forms makes use of a result from the theory of Satake compactification.
The cusp structure of the Satake compactification encodes information about the
codimensions of cusp forms and works of several authors indicate that it is an
important object worth investigating.

2. Notation

We shall use the following notation throughout this paper unless otherwise stated.
We realize the group GSp(4) as

GSp(4) := {g ∈ GL(4) | t g Jg = λ(g)J for some λ(g) ∈ GL(1)},

with J =
[
−J1

J1
]

and J1=
[

1
1]. We note that this version of GSp(4) is isomorphic

to the classical version of GSp(4) and we denote this isomorphism by the map 
which interchanges the first two rows and the first two columns of any matrix. Sp(4)
is the subgroup of GSp(4) consisting of matrices with multiplier λ= 1. By Q(Q)
and P(Q) we will denote the Klingen and Siegel parabolic subgroups of GSp(4,Q),
respectively, consisting of the matrices of the form

Q(Q)=
{
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗
| ∗ ∈Q

}
and P(Q)=

{
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗
| ∗ ∈Q

}
.

We define

s1 :=


1

1
1

1

 , s2 :=


1

1
−1

1

 .
We define the Siegel congruence subgroup as

00(N )= 04
0(N ) :=



∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

a b ∗ ∗
c d ∗ ∗

 ∈ Sp(4,Z) | a, b, c, d ≡ 0 mod N

 .
We will denote by 0(N ) the usual principal congruence subgroup of Sp(4,Z). Next
we define 1(Z/NZ) := {g mod N | g ∈ 00(N )},0∞(Z) := Q(Q)∩Sp(4,Z).

We will use 02
0(N ) :=

{[0
c

b
d

]
∈ SL(2,Z) | c ≡ 0 mod N

}
to denote the Hecke

congruence subgroup of SL(2,Z) and 02
∞
(Z) :=

{
±
[1 b

1

]
| b ∈ Z

}
. For Z ∈ H2 :=

{z ∈M2(C) |
t z= z, Im z>0}, and for any m=

[
A
C

B
D

]
∈Sp(4,Z)we define m〈Z〉 :=
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(AZ+B)(C Z+D)−1, j (m, Z) :=C Z+D and m〈Z〉∗= τ̃ for m〈Z〉=
[
τ̃
z̃

z̃
τ̃ ′

]
. We

will denote by C0(N ) and C1(N ) the number of zero and one-dimensional cusps
for 00(N ) respectively, i.e.,

C0(N )= #(00(N )\GSp(4,Q)/P(Q)), C1(N )= #(00(N )\GSp(4,Q)/Q(Q)).

Let

ω1(q)=
[

a b
c d

]
for q =


∗ ∗ ∗ ∗

a b ∗
c d ∗
∗

 ∈ Q(Q),

and let ı1 be an embedding map

ı1

([
a b
c d

])
=


1 ∗ ∗ ∗

a b ∗
c d ∗

1


from SL(2,Q) to Q(Q). For g∈GSp(4,Q), we define0g :=ω1(g−100(N)g∩Q(Q)).

3. A brief overview of the main results

We recall cusps in the degree one case. Let 0 be a congruence subgroup of SL(2,Z)

which acts on the complex upper half plane H by the usual action. In order to com-
pactify 0\H we adjoin Q∪{∞} to H to define the extended plane H∗=H∪Q∪{∞}

and take the quotient X (0)= 0\H∗. Then a cusp of X (0) is a 0-equivalence class
of points in Q∪{∞}. As SL(2,Z) acts transitively on Q∪{∞} there is just one cusp
of the modular curve X (1)=SL(2,Z)\H∗. It is well known that cusps of X (02

0 (N ))
correspond to the double coset decompositions of 02

0 (N )\SL(2,Z)/02
∞
(Z), for ex-

ample see [Diamond and Shurman 2005, Proposition 3.8.5] or [Miyake 1989, §4.2].
The theory of Satake compactification is explained in [Satake 1957/58a]. A

quick review can be found in [Poor and Yuen 2013, Section 3]. In fact similar to
the degree one case, the one-dimensional cusps for the Siegel congruence subgroup
00(N ), in the degree two case, correspond to the double coset decompositions
00(N )\Sp(4,Z)/0∞(Z) and also equivalently to 00(N )\GSp(4,Q)/Q(Q). Sim-
ilarly the zero-dimensional cusps correspond to the double coset decompositions
00(N )\GSp(4,Q)/P(Q). It turns out that for even weights k > 4, the codimension
of cusp forms can be obtained by using the Satake’s theorem; see [Satake 1957/58b]
if the structure of zero-dimensional cusps and one-dimensional cusps are known.

We prove the following result concerning one-dimensional cusps in the case
when N = pn for some prime p and n ≥ 1. In fact, the one-dimensional cusps for
00(pn) are inverses of the representatives listed below.
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Theorem 3.1. Assume n ≥ 1. A complete and minimal system of representatives
for the double cosets Q(Q)\GSp(4,Q)/00(pn) is given by

1, s1s2, g1(p, γ, r)=


1

1
1

γ pr 1



g2(p, s)=


1

1
ps 1

ps 1

 , g3(p, δ, r, s)=


1

1
ps 1
δpr ps 1


where 1≤ s, r≤n−1, s<r<2s and where γ , δ run through elements in (Z/p f1Z)×

and (Z/p f2Z)×, respectively, with f1 =min (r, n− r) and f2 =min (2s− r, n− r).
The total number of representatives given above is

(3-1) C1(pn)=

{ pn/2+1
+pn/2

−2
p−1 if n is even,

2(pn+1/2
−1)

p−1 if n is odd.

Some remarks.

(i) We note that alternatively one can get the following system of complete and
minimal representatives for the double cosets Q(Q)\GSp(4,Q)/00(pn).

g1(γ, x)=


1

1
1

xγ 1

 , 1≤ γ ≤ N , γ | N ,

g3(γ, δ, y)=


1

1
δ 1

yγ δ 1

 , 1< δ < γ ≤ N , γ | N , δ | N , δ | γ, γ | δ2
;

where N = pn and for fixed γ and δ we set

M = gcd
(
γ,

N
γ

)
, L = gcd

(
δ2

γ
,

N
γ

)
,

and x and y vary through all the elements of (Z/MZ)× and (Z/LZ)×, respec-
tively. Here we interpret (Z/Z)× as an empty set. Clearly g1(N , x) is equiv-
alent to the representative 1 in Q(Q)\GSp(4,Q)/00(pn) and one can show
that g1(1, x) is equivalent to the representative s1s2 (see Lemma 5.7). One can
also easily show that g3(N , ps, 1) is equivalent to the representative g2(p, s).
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(ii) One can write yet another formulation for a complete and minimal system of
representatives for the double cosets Q(Q)\GSp(4,Q)/00(pn) as follows:

g0(γ, δ, y) :=


1

1
δ 1

yγ δ 1

 , 1≤ δ ≤ γ ≤ N , γ | N , δ | N , δ | γ, γ | δ2,

with y, γ , δ and N as in the first remark. This is clear on observing that the
definition of g0(γ, δ, y) is different from g3(γ, δ, y) only when δ = γ and in
that case the set of representatives g0(γ, γ, y) is equivalent to g1(γ, x).

The above result can be extended by using the strong approximation theorem
and the Chinese remainder theorem to arbitrary N. We have the following lemma.

Lemma 3.2. Assume N =
∏m

i=1 pni
i . Then, the number of inequivalent repre-

sentatives for the double cosets Q(Q)\GSp(4,Q)/00(N) is given by C1(N ) =∏m
i=1 C1(p

ni
i ).

We have the following corollary of Theorem 3.1 based on Lemma 3.2.

Corollary 3.3. Assume N =
∏m

i=1 pni
i . A complete and minimal system of repre-

sentatives for the double cosets Q(Q)\GSp(4,Q)/00(N ) is given by

g1(γ, x)=


1

1
1

xγ 1

 , 1≤ γ ≤ N , γ | N ,

g3(γ, δ, y)=


1

1
δ 1

yγ δ 1

 , 1< δ < γ ≤ N , γ | N , δ | N , δ | γ, γ | δ2,

where for fixed γ and δ we have

x = M + ζ
∏

pi -M, pi |N

pni
i , y = L + θ

∏
pi -L , pi |N

pni
i ,

with M = gcd(γ, N/γ ), L = gcd(δ2/γ, N/γ ), ζ and θ varies through all the el-
ements of (Z/MZ)× and (Z/LZ)×, respectively. Here we interpret (Z/Z)× as an
empty set.

Essentially the representatives listed above are obtained by appropriately lifting
the representatives of Q(Q)\GSp(4,Q)/00(p

ni
i ) for each prime factor pi of N.

The last statement will be made explicit in the proof of the corollary. We also note
that x and y are defined in such a way that gcd(x, N )= 1 and gcd(y, N )= 1.
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We remark that the one-dimensional cusps for 00(N ) are given by the inverses
of the representatives listed above in Corollary 3.3.

Corollary 3.4. (1) Let f1 be an elliptic cusp form of even weight k with k ≥ 6 and
level N. Let  (g) be a one-dimensional cusp for 00(N ) of the form g1(γ, x)−1.
Then

Eg(Z)=
∑

 (ξ)∈( (g)Q(Q) (g−1)∩00(N ))\00(N )

f1(g−1ξ〈Z〉∗) det( j (g−1ξ, Z))−k

defines a Klingen–Eisenstein series of level N with respect to the Siegel con-
gruence subgroup 00(N ).

(2) Let  (h) be a one-dimensional cusp for 00(N ) of the form g3(γ, δ, y)−1. Let
f2 ∈ Sk(0 (h)) with even weight k such that k ≥ 6. Then

Eh(Z)=
∑

 (ξ)∈( (h)Q(Q) (h−1)∩00(N ))\00(N )

f2(h−1ξ〈Z〉∗) det( j (h−1ξ, Z))−k

defines a Klingen–Eisenstein series of level N with respect to the Siegel con-
gruence subgroup 00(N ).

As  (g) and  (h) run through all one-dimensional cusps of the form g1(γ, x)−1

and g3(γ, δ, y)−1 respectively, and for some fixed g and h, as f1 and f2 run through
a basis of Sk(00(N )) and Sk(0 (h)) respectively, the Klingen–Eisenstein series thus
obtained are linearly independent.

The number of zero-dimensional cusps C0(pn) for odd prime p was calculated
by Markus Klein in his thesis [2004, Korollar 2.28]:

(3-2) C0(pn)= 2n+ 1+ 2
( n−1∑

j=1

φ(pmin( j,n− j))+

n−2∑
j=1

n−1∑
i= j+1

φ(pmin( j,n−i))

)
.

It is the same as

(3-3) C0(pn)=


3 if n = 1,
2p+ 3 if n = 2,

−2n− 1+ 2pn/2
+ 8 pn/2

−1
p−1 if n ≥ 4 is even,

−2n− 1+ 6p(n−1)/2
+ 8 p(n−1)/2

−1
p−1 if n ≥ 3 is odd.

The above formula remains valid if p = 2 and n = 1. The above result also remains
true for p = 2 and n = 2 as calculated by Tsushima (cf. [Tsushima 2003]). Hence,
assume 8 - N and if N =

∏m
i=1 pni

i then following an argument similar to the one
given in the proof of Lemma 3.2 we obtain

(3-4) C0(N )=
m∏

i=1

C0(p
ni
i ).
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Finally, by using Satake’s [1957/58b] theorem and the formula for C0(N ) and
C1(N ) described above we obtain the following result:

Theorem 3.5. Let N ≥ 1, 8 - N and k ≥ 6, even. Then

(3-5) dim Mk(00(N ))− dim Sk(00(N ))

= C0(N )+
(∑
γ |N

φ(gcd(γ, N/γ ))
)

dim Sk(0
2
0 (N ))

+

∑
1<δ<γ, γ |N ,
δ|γ, γ |δ2

∑
′ dim Sk(0g)

where C0(N ) is given by (3-4) if N > 1, C0(1) = 1, φ is Euler’s totient function,
and for a fixed γ and δ, the summation

∑
′ is carried out such that g runs through

every one-dimensional cusp of the form g3(γ, δ, y), with y taking all possible values
as in Corollary 3.3.

Some remarks.

(i) We note that Markus Klein did not consider the case 4 | N for calculating the
number of zero-dimensional cusps in his thesis. Tsushima provided the result
for N = 4. Since we refer to their results for the number of zero-dimensional
cusps we have this restriction in our theorem. We hope to return to this case in
the future.

(ii) The above result in the special case of square-free N reduces to the dimension
formula given in [Böcherer and Ibukiyama 2012] for even k ≥ 6. They also
treat the case k = 4 for square-free N.

In Section 4 we briefly review Satake compactification and cusps. Thereafter
in Section 5 we give proofs of the main results. We remark that the proof of
Theorem 3.1 is entirely algorithmic and essentially uses elementary number theory
to establish the result.

4. Cusps of 00(N)

We recall a few basic facts related to the Satake compactification S(0\H2) of
0\H2 (see [Satake 1957/58a; 1957/58b; Böcherer and Ibukiyama 2012; Poor and
Yuen 2013]). Here 0 is a congruence subgroup of Sp(4,Z). We will be interested
in S(N ) := S(00(N )\H2). By Bd(N ) we denote the boundary of S(N ). The
one-dimensional components of Bd(N ) are modular curves and are called the one-
dimensional cusps. The one-dimensional cusps intersect on the zero-dimensional
cusps.

We define Mk(Bd(N )) to be the space of modular forms on Bd(N )which consists
of modular forms of weight k on the one-dimensional boundary components such
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that they are compatible on each intersection point. In the following we make the
above description more explicit. Let GSp(4,Q)=

⊔l
i=100(N)gi Q(Q).

Then the one-dimensional cusps bijectively correspond to {gi }. Let 0i =

ω1(g−1
i 00(N)gi ∩ Q(Q)). In this situation the one-dimensional cusp gi can be

associated to the modular curve 0i\H1. The zero-dimensional cusps of 0i\H1 corre-
spond to the representatives h j of 0i\SL(2,Z)/02

∞
(Z). In fact, h j can be identified

with the zero-dimensional cusp of S(N ) that corresponds to 00(N )gi ı1(h j )P(Q). If
00(N )gi ı1(h j )P(Q)= 00(N )gr ı1(h j )P(Q) for two inequivalent one-dimensional
cusps gi and gr then it means that these two one-dimensional cusps intersect at a
zero-dimensional cusp. Next we define a map 8 from Mk(00(N )) to Mk(0i ) by
(8(F))(z) = limλ→∞ F

([ z
iλ

])
for z ∈ H1. Then we define 8̃ : Mk(00(N ))→

Mk(Bd(N )) by F→ (8(F |k (gi )))1≤i≤l . Here |k denotes the usual slash operator
defined as F |k (g)= det(C Z+D)−k F( (g)〈Z〉) for  (g)=

[ A
C

B
D

]
and  (g)〈Z〉=

(AZ + B)(C Z + D)−1 with g ∈ Sp(4,R). Any element ( fi )1≤i≤l in the image
of 8̃ satisfies the condition that fi |kh1 = f j |kh2 whenever 00(N )gi ı1(h1)P(Q)=
00(N )g j ı1(h2)P(Q); where h1, h2 ∈SL(2,Q) and 1≤ i, j ≤ l. It essentially means
that fi and f j , which are modular forms on the one-dimensional cusps gi and g j

respectively, are compatible on the intersection points of these cusps.

5. Proofs

Proof of Theorem 3.5.

Proof. By Satake’s theorem (see [Satake 1957/58b]) it follows that the codimension
of the space of cusp forms is dim Mk(Bd(N )). We recall that by definition f ∈
Mk(Bd(N )) means: f is a modular form of weight k on the boundary components
of S(N ) such that f takes the same value on each intersection point of the boundary
components. If f ∈ Sk(0i ) on a boundary component 0i\H1 corresponding to a
one-dimensional cusp, say gi , then f vanishes at every cusp of gi and in particular
f takes the same value zero at every intersection point of the boundary components.
Hence f ∈Mk(Bd(N )). We note that for any representatives g1 of the form g1(γ, x)
with g1(γ, x) defined as in Corollary 3.3, we have ω1(g−1

1 00(N)g1 ∩ Q(Q)) =
02

0 (N ) and similarly for any representatives g3 of the form g3(γ, δ, y) a simple
calculation shows that 0g3 = ω1(g−1

3 00(N)g3 ∩ Q(Q)) ⊂ 02
0 (δ). It follows that

each one-dimensional cusp of the form g1(γ, x) contributes dim Sk(0
2
0 (N )) linearly

independent cusp forms and this accounts for the second term in the formula (3-5).
For a fixed δ and γ such that 1 < δ < γ , γ | N, δ | γ , γ | δ2 and for a fixed y,
the one-dimensional cusp g of the form g3(γ, δ, y) contributes dim Sk(0g) cusp
forms. These contributions account for the last term in the summation formula
(3-5). We remark that the last two terms in the summation formula (3-5) count the
Klingen–Eisenstein series associated to each one-dimensional cusp as defined in
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Corollary 3.4. Finally, since k > 4 and even there exists a basis of Eisenstein series
that is supported at a single cusp. The total number of zero-dimensional cusps
C0(N ) accounts for all such cases and these are in fact Siegel–Eisenstein series. �

In the following we determine a complete and minimal system of representatives
for the double cosets Q(Q)\GSp(4,Q)/00(pn) and prove Theorem 3.1. For that
we begin with first stating and proving several lemmas. In the following we write
g ∼ h⇐⇒ Q(Q)g00(pn)= Q(Q)h00(pn), for g, h ∈ GSp(4,Q).

Lemma 5.1. Let p be a prime number and let x1, x2 be integers such that x1, x2 and
p are pairwise coprime. Further, assume y1, y2 to be integers such that y1, y2 and p
are pairwise coprime with gcd(x1, y1)= 1. Let x = x1x−1

2 p−r and y = y1 y−1
2 p−s

with r, s ≥ 0, x2 6= 0, y2 6= 0. Let n ≥ 1. Let

g = s1s2


1 y

1 x y
1

1

 .
Then we have the following results.

(1) If s > r , then there exist integers η1 and η2 which are coprime to p such that

Q(Q)g00(pn)= Q(Q)


1

1
η1 ps 1

η2 p−r+2s η1 ps 1

00(pn).

(2) If s ≤ r < n, then there exists a nonzero integer x3 coprime to p such that

Q(Q)g00(pn)= Q(Q)


1

1
1

x3 pr 1

00(pn),

and if s ≤ r and r ≥ n, then Q(Q)g00(pn)= Q(Q)100(pn).

Proof. We have

s1s2


1 y

1 x y
1

1

∼

−x −y −1

−1
1 y2/x y/x

−1/x

 s1s2


1 y

1 x y
1

1

 s1

=


1

−1
−y/x 1

1/x y/x 1

∼


1
1

−y/x 1

1/x −y/x 1

 s2.
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Now we prove the first part of the lemma.

Case 1: s > r Assume s > r . Let gcd(y2, x2)= τ . Let l1, l2 be integers such that

l1x2 y1+ l2 ps−r x1 y2 = τ.

Let

d1 =
l2
1 x2 y2 ps

τ
, d2 =

l1l2x2 y2 ps

τ
.

It follows that

d1x2 y1+ d2x1 y2 ps−r
= l1 ps x2 y2.

Then we have
1

−1
−

pr x2 y1
ps x1 y2

1
pr x2
x1

pr x2 y1
ps x1 y2

1



∼


τ

p−r+s x1 y2
l1

p−r+s x1 y2
τ

−
τ

p−r+s x1 y2
−d1 −l1

p−r+s x1 y2
τ




1
−1

−
pr x2 y1
ps x1 y2

1
pr x2
x1

pr x2 y1
ps x1 y2

1



∼


−

l1 pr x2 y1
ps x1 y2

+
τ

p−r+s x1 y2
−l1

−
x2 y1
τ

−
p−r+s x1 y2

τ

−
l1 pr x2

x1
+

d1 pr x2 y1
ps x1 y2

d1
l1 pr x2 y1

ps x1 y2
−

τ
p−r+s x1 y2

−l1
ps x2 y2
τ

−
x2 y1
τ

p−r+s x1 y2
τ



∼


l2 −l1

−
xy1
τ
−

p−r+s x1 y2
τ

−d2 d1 −l2 −l1
ps x2 y2
τ

−
x2 y1
τ

p−r+s x1 y2
τ



∼


1

1
−

l1 ps x2 y2
τ

1
p−r+2 s x1x2 y2

2
τ 2 −

l1 ps x2 y2
τ

1




l2 −l1

−
x2 y1
τ

−
p−r+s x1 y2

τ

−l2 −l1

−
l1 ps x2

2 y1 y2

τ 2 −
l2 p−r+2s x1x2 y2

2
τ 2 +

ps x2 y2
τ

−
x2 y1
τ

p−r+s x1 y2
τ
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∼


1

1
−

l1 ps x2 y2
τ

1
p−r+2s x1x2 y2

2
τ 2 −

l1 ps x2 y2
τ

1




l2 −l1

−
x2 y1
τ
−

p−r+s x1 y2
τ

−l2 −l1

−
x2 y1
τ

p−r+s x1 y2
τ



∼


1

1
−

l1 ps x2 y2
τ

1
p−r+2s x1x2 y2

2
τ 2 −

l1 ps x2 y2
τ

1

 .
This completes the proof of the first part of the lemma with η1 =−l1x2 y2/τ and
η2 = x1x2 y2

2/τ
2.

Now we prove the second part of the lemma.

Case 2: s ≤ r Assume s ≤ r and gcd(x1, y1)= 1. Let gcd(y2, x2)= τ . Let l1 and
l2 be integers such that

l1x2 y1 pr−s
+ l2x1 y2 = τ.

Let d1 and d2 be integers such that

d1 y1+ d2x1 ps
=−l1 ps .

Let c1 and c2 be integers such that

c1
x1 y2

τ
+ c2 pmax(0,n−s)

=
−d1 y2

ps .

Let

β =
x2

τ
(d2τ − c1 y1).

It is easy to see that β ∈ Z, as τ = gcd(y2, x2). Further, if r < n then we make the
following choices. Let l3 and l4 be integers such that

l3
x2 y2

τ
+ l4 pn−r

= β.

Let x3 and x4 be integers such that

x3

(
l3 pr−s x2 y1

τ

)
− x4 pn−r

=−
x2 y2

τ
.

Otherwise, if r ≥ n then let

l3 = l4 = x3 = x4 = 0.
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With the above choices in place, we obtain
τ

x1 y2
l1

x1 y2
τ

−
τ

x1 y2
d1 y2 −l1

x1 y2
τ




1
−1

−
pr x2 y1
ps x1 y2

1
pr x2
x1

pr x2 y1
ps x1 y2

1



∼


−

l1 pr x2 y1
ps x1 y2

+
τ

x1 y2
−l1

−
pr x2 y1

psτ
−

x1 y2
τ

−
l1 pr x2

x1
−

d1 pr x2 y1
ps x1

−d1 y2
l1 pr x2 y1

ps x1 y2
−

τ
x1 y2
−l1

pr x2 y2
τ

−
pr x2 y1

psτ

x1 y2
τ



∼


l2 −l1

−
pr x2 y1

psτ
−

x1 y2
τ

d2 pr x2 −d1 y2 −l2 −l1
pr x2 y2
τ

−
pr x2 y1

psτ

x1 y2
τ



∼


1 l3

1
c1 ps 1 −l3

1




l2 −l1

−
pr x2 y1

psτ
−

x1 y2
τ

d2 pr x2 −d1 y2 −l2 −l1
pr x2 y2
τ

−
pr x2 y1

psτ

x1 y2
τ



∼


−

l3 pr x2 y1
psτ
+ l2 −

l3x1 y2
τ
− l1

−
pr x2 y1

psτ
−

x1 y2
τ

d2 pr x2−
c1 pr x2 y1

τ
−

l3 pr x2 y2
τ
−

c1 ps x1 y2
τ
− d1 y2

l3 pr x2 y1
psτ
− l2 −

l3x1 y2
τ
− l1

pr x2 y2
τ

−
pr x2 y1

psτ

x1 y2
τ



∼


1

1
1

pr x3 1




−
l3 pr x2 y1

psτ
+ l2 −

l3x1 y2
τ
− l1

−
pr x2 y1

psτ
−

x1 y2
τ

d2 pr x2−
c1 pr x2 y1

τ
−

l3 pr x2 y2
τ

−
c1 ps x1 y2

τ
− d1 y2

l3 pr x2 y1
psτ
− l2 −

l3x1 y2
τ
− l1

l3(pr )2x2x3 y1
psτ

− l2 pr x3+
pr x2 y2
τ

l3 pr x1x3 y2
τ
+ l1 pr x3 −

pr x2 y1
psτ

x1 y2
τ



∼


1

1
1

pr x3 1

 ,
and the second part of the lemma follows. �
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Lemma 5.2. Assume p to be a prime number and n be a positive integer. Let

x =
x1

pr x2
, y =

y1

ps y2
and z =

z1

pt z2
,

where r , s, t are nonnegative integers, x1, x2, y2, z2 are nonzero integers and y1, z1

are integers. Let any two nonzero elements from the set {x1, y1, z1, x2, y2, z2, p} be
mutually coprime except, possibly, when both belong to {x2, y2, z2}. Let

g = s1s2s1


1 x

1
1 −x

1




1 y z
1 y

1
1

 .

Then there exist x ′, y′ ∈Q such that

Q(Q)g00(pn)= Q(Q)s1s2


1 y′

1 x ′ y′

1
1

00(pn).

Proof. We have

(5-1)

g ∼ s1s2s1


1 x

1
1 −x

1




1 y z
1 y

1
1

 s1

=


1

1
−x 1
−x 1

 s1s2


1 y

1 z y
1

1



∼


x 1

x 1
1
x

1
x




1
1

−x 1
−x 1

 s1s2


1 y

1 z y
1

1

 (s1)
−1

= s2s1s2s1s2


1 x−1

1
1 −x−1

1




1 y
1 z y

1
1

 .
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Case 1: y 6= 0, z 6= 0 Let us first consider the case when y 6= 0 and z 6= 0. Let
α = gcd(x2 y2, z2). Further, if s > t − r , then let

(5-2)



−d1 pn+t
+ d2x1 = 1 with d1, d2 ∈ Z,

d3 = d1x2 y2z2 pn+s+r+t ,

c1 = (x2 y2z1 pr+s−t
+ x1 y1z2)α

−1,

τ = gcd(d3, c1),

y4 = ατ x−1
1 z−1

2 p−s,

−d4τpn
+ d5x1 = 1 with d4, d5 ∈ Z,

d = d4x2 y2z2α
−1 pn+s+r .

Otherwise, if s ≤ t − r then let

(5-3)



−d1 pn+s+r
+ d2x1 = 1 with d1, d2 ∈ Z,

d3 = d1x2 y2z2 pn+s+r+t ,

c1 = (x2 y2z1+ x1 y1z2 p−r−s+t)α−1,

τ = gcd(d3, c1),

y4 = ατ x−1
1 z−1

2 pr−t ,

−d4τpn
+ d5x1 = 1 with d4, d5 ∈ Z,

d = d4x2 y2z2α
−1 pn+t .

Now, if τ > 1 then we replace c1 by c1τ
−1. Then, if needed on appropriately

adjusting d4 and d5, we pick integers a1 and b such that

a1d − bc1 = 1.

Next, we set

a = a1+ bz1z−1
2 p−t ,

c = c1+ dz1z−1
2 p−t ,

x4 =
cpr x2 y4

x1
+

pr x2 y1

ps x1
+

dy1 y4

ps y2
.
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Then

g ∼ s2s1s2s1s2


1 x−1

1
1 −x−1

1




1 y
1 z y

1
1

 (from (5-1))

∼


1

1 −
pr x2
x1

−1 −
z1

pt z2
−

y1
ps y2

−1 − pr x2
x1
−

pr x2z1
pt x1z2

−
y1

ps y2
−

pr x2 y1
ps x1 y2



∼


1

a b
c d

1




1
1 −

pr x2
x1

−1 −
z1

pt z2
−

y1
ps y2

−1 − pr x2
x1
−

pr x2z1
pt x1z2

−
y1

ps y2
−

pr x2 y1
ps x1 y2



∼


1

−b a− bz1
pt z2

−
apr x2

x1
−

by1
ps y2

−d c− dz1
pt z2

−
cpr x2

x1
−

dy1
ps y2

−1 − pr x2
x1
−

pr x2z1
pt x1z2

−
y1

ps y2
−

pr x2 y1
ps x1 y2



∼


1

1 y4
y2

1
−1 −x4 −

y4
y2




−b a− bz1
pt z2

−
apr x2

x1
−

by1
ps y2
−

y4
y2

1 pr x2
x1
+

dy4
y2
−

cy4
y2
+

pr x2z1
pt x1z2

+
dy4z1
pt y2z2

+
y1

ps y2

cpr x2 y4
x1 y2
− x4+

pr x2 y1
ps x1 y2

+
dy1 y4
ps y2

2

1
−d c− dz1

pt z2
−

cpr x2
x1
−

dy1
ps y2



∼


1

1 y4
y2

1
−1 − x4

y2
−

y4
y2




−b a1 −a1d5x2 pr

1 d5x2 pr

1
−d c1 −c1d5x2 pr

∼ s1s2


1 y′

1 x ′ y′

1
1

 ,
with

x ′ =
x4

y2
and y′ =

y4

y2
.

This completes the proof in the case when both y and z are nonzero.

Case 2: y = 0, z 6= 0. If y = 0, z 6= 0, then we set y1 = 0, y2 = 1 and s = 0. It is
easy to see that the previous proof remains valid for this case as well.
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Case 3: y 6= 0, z = 0. If z = 0, y 6= 0 then we set z1 = 0, z2 = 1 and t = 0; and
it is easy to see that the proof given in the first case remains valid for this case as
well.

Case 4: y = 0, z = 0. Finally, we consider the case when both y and z are zero. In
this case we make the following choices. Let

c = x1, d =−pn

and select integers a and b such that ad − bc = 1. If r ≥ n, then set

y4 =
x2 pr−n

x1
, x4 = x2 y4 pr , e = bx2 pr−n, f = 0.

Otherwise if r < n then set

y4 =
−ax2 pr

x1
, x4 = x2 y4 pr , e = 0, f =−bx2 pr .

Now we have

g ∼ s2s1s2s1s2


1 x−1

1
1 −x−1

1

 (from (5-1))

∼


1

a b
c d

1




1
1 − pr x2

x1

−1
−1 − pr x2

x1



=


1

1 y4

1
−1 −x4 −y4




−b a −
apr x2

x1
− y4

1 dy4+
pr x2
x1
−cy4

cpr x2 y4
x1
− x4

1
−d c −

cpr x2
x1



=


1

1 y4

1
−1 −x4 −y4



−b a e

1 f −p−n+r x2

1
pn x1 −pr x2



∼


1

1 y4

1
−1 −x4 −y4

∼ s1s2


1 y′

1 x ′ y′

1
1


with x ′ = x4 and y′ = y4. This completes the proof of the lemma. �
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Lemma 5.3. Assume n and s to be positive integers. Also let p be a prime number
and η be an integer such that gcd(η, p)= 1. Then

Q(Q)


1

1
ps 1

ps 1

00(pn)= Q(Q)


1

1
ηps 1

ηps 1

00(pn).

Proof.
If s ≥ n, then of course both sides equal Q(Q)100(pn). Therefore, in the

following we assume that s < n. Next we consider the case when n ≥ 2s and make
the following choices. Since gcd(η, p)= 1, there exist integers α1 and β1 such that
α1η+β1 pn−s

= 1. Further, we also have gcd(α1, pn−s)= 1, so there exist β ′2 and
β ′3 such that α1β

′

2+β
′

3 pn−s
= 1. Let β2 = β1β

′

2 and β3 =−β1β
′

3. Now set

a =
1−β1 pn−s

η
= α1, b = pn−2sβ3, c = pn, d = η+β2 pn−s .

We also check that

ad − bc = α1(η+β2 pn−s)−β3 p2n−2s

= 1−β1 pn−s
+α1β2 pn−s

−β3 p2n−2s

= 1−β1 pn−s(1−α1β
′

2−β
′

3 pn−s)

= 1.

On the other hand if 2s> n, then we make the following choices. Since gcd(η, p)=
1, there exist integers α1 and β1 such that α1η+β1 pn−s

= 1. Further, we also have
gcd(α1, ps)= 1, so there exist β ′2 and β ′3 such that α1β

′

2+β
′

3 ps
= 1. Let β2= β1β

′

2
and β3 =−β1β

′

3. Now set

a =
1−β1 pn−s

η
= α1, b = β3, c = pn d = η+β2 pn−s .

Next we note

ad − bc = α1(η+β2 pn−s)−β3 pn
= 1−β1 pn−s

+α1β2 pn−s
−β3 pn

= 1−β1 pn−s
+α1β1β

′

2 pn−s
+β1β

′

3 pn

= 1−β1 pn−s(1−α1β
′

2−β
′

3 pn−s)

= 1.
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Now the lemma follows from the following calculations:

Q(Q)


1

1
ps 1

ps 1

00(pn)

= Q(Q)


1

a b
c d

1




1
1

ps 1
ps 1

00(pn)

= Q(Q)


1

1
ηps 1

ηps 1




1
bps a b

dps
− ηps c d

−bη(ps)2 −aηps
+ ps

−bηps 1

00(pn)

= Q(Q)


1

1
ηps 1

ηps 1

00(pn). �

Lemma 5.4. Assume s, r and n to be positive integers with 0< s ≤ n. Also let p be
a prime number and η1, η2 be integers such that gcd(η1, p)= gcd(η2, p)= 1. Then

Q(Q)


1

1
ps 1
η2 pr ps 1

00(pn)= Q(Q)


1

1
η1 ps 1
η2 pr η1 ps 1

00(pn).

Proof.
Let

z1 =


1

1
ps 1
η2 pr ps 1

 and z2 =


1

1
η1 ps 1
η2 pr η1 ps 1

 .
Then we note that

z−1
2


1

a b
c d

1

 z1 =


1

bps a b
dps
− psη1 c d

−b(ps)2η1 −apsη1+ ps
−bpsη1 1

 .
Now, the result follows by proceeding as in the proof of Lemma 5.3. �
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Lemma 5.5. Assume n to be a positive integer and s to be a nonnegative integer.
Also let p be a prime number. Let y1, y2 ∈ Z such that p, y1, y2 are pairwise
coprime. Then we have the following results.

(1) If s < n then there exists an integer b1 with gcd(b1, p)= 1, such that

Q(Q)


1

1
y1
y2

ps 1
y1
y2

ps 1

00(pn)= Q(Q)


1

1
b1 ps 1

b1 ps 1

00(pn).

(2) If s ≥ n then

Q(Q)


1

1
y1
y2

ps 1
y1
y2

ps 1

00(pn)= Q(Q)100(pn).

Proof. Let α1 and β1 be integers such that

α1 ps y1+β1 y2 = 1.

If 0< s < n then set:

α = α1, β = β1, b1, b2 ∈ Z such that b1β + b2 pn−s
= y1, b = b1 ps .

Otherwise, if s ≥ n then set:

α = α1, β = β1, b2 = y1 ps−n, b1 = 0, b = 0.

If s = 0 then set:

α =

{
α1− y2 if p |β1,

α1 if p - β1,
β =

{
β1+ y1 if p |β1,

β1 if p - β1,

b1, b2 ∈ Z such that b1β + b2 pn
= y1, b = b1. We note that, for each of the cases

considered above, i.e., whenever s ≥ 0, the following holds:

−bβ + ps y1 = (−b1β + y1)ps
= b2 pn.



226 ALOK SHUKLA

Then,
1

1
y1
y2

ps 1
y1
y2

ps 1

∼


y−1
2 −α

y−1
2 −α

y2

y2




1
1

y1
y2

ps 1
y1
y2

ps 1



=


β −α

β −α

ps y1 y2

ps y1 y2



=


1

1
b 1

b 1




β −α

β −α

−bβ + ps y1 αb+ y2

−bβ + ps y1 αb+ y2



∼


1

1
b1 ps 1

b1 ps 1

 .
This completes the proof of the lemma. �

Lemma 5.6. Assume n to be a positive integer, r to be a nonnegative integer and p
to be a prime number. Let x1, x2 ∈ Z such that p, x1, x2 are pairwise coprime. Then
we have the following results.

(1) If r < n, then there exists an integer c1 with gcd(c1, p)= 1 such that

Q(Q)


1

1
1

x1
x2

pr 1

00(pn)= Q(Q)


1

1
1

c1 pr 1

00(pn).

(2) If r ≥ n, then

Q(Q)


1

1
1

x1
x2

pr 1

00(pn)= Q(Q)100(pn).

Proof. Let α1 and β1 be integers such that α1 pr x1+β1x2 = 1. If 0< r < n then set:

α = α1, β = β1, c1, c2 ∈ Z such that c1β + c2 pn−r
= x1, c = c1 pr .

Otherwise, if r ≥ n, then set:

α = α1, β = β1, c2 = x1 pr−n, c1 = 0, c = 0.
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If r = 0 then set:

α =

{
α1− x2 if p |β1,

α1 if p - β1,
β =

{
β1+ x1 if p |β1,

β1 if p - β1,

c1, c2 ∈ Z such that c1β + c2 pn
= x1, c = c1. We note that for r ≥ 0,

−cβ + pr x1 = (−c1β + x1)pr
= c2 pn.

Then
1

1
1

x1
x2

pr 1

∼


x−1
2 −α

1
1

x2




1
1

1
x1
x2

pr 1



=


β −α

1
1

pr x1 x2



=


1

1
1

c 1




β −α

1
1

−βc+ pr x1 αc+ x2

∼


1
1

1
c1 pr 1

 .
This completes the proof of the lemma. �

Lemma 5.7. Assume n to be a positive integer and p to be a prime number. Let x ,
y be nonzero integers coprime to p. Then we have the following results.

(1)

Q(Q)


1

1
1

x 1

00(pn)= Q(Q)s1s200(pn).

(2)

Q(Q)


1

1
y 1

y 1

00(pn)= Q(Q)s1s200(pn).

(3)

Q(Q)


1

1
y 1
x y 1

00(pn)= Q(Q)s1s200(pn).
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Proof. Let k1 and k2 be integers such that k1x + k2 pn
= 1. Then we have

1
1

1
x 1

∼


1
1

1
x 1




−k1 1
1

1
k1x − 1 −x

=


1 k1

1
1

1

 s1s2 ∼ s1s2.

This completes the proof of the first part of lemma.
Now, let l1 and l2 be integers such that l1 y+ l2 pn

=−1. Then,
1

1
y 1

y 1

∼


1
1

y 1
y 1




l1 1
l1 1

−l1 y− 1 −y
−l1 y− 1 −y



= s2


1 l1

1
1 −l1

1

 s1s2 ∼ s1s2.

This completes the proof of the second part of lemma. Finally we have
1

1
y 1
x y 1

∼


1
1

y 1
x y 1




l1 1
l2
1 x l1 1

−l1 y− 1 −y
−l2

1 xy− l1x −l1 y− 1 −x −y



=


1

l2
1 x 1
−1

1




1 l1

1
1 −l1

1

 s1s2 ∼ s1s2.

This completes the proof of the last part of lemma. �

Lemma 5.8. Assume n and r to be integers such that 0< r < n. Let p be a prime
number and x , y ∈ Z such that gcd(x, p)= gcd(y, p)= 1. Let

g1(x, p, r)=


1

1
1

pr x 1

 and g1(y, p, r)=


1

1
1

pr y 1

 .
Then

Q(Q)g1(x, p, r)00(pn)= Q(Q)g1(y, p, r)00(pn),

if and only if
x ≡ y mod p f

where f =min(r, n− r).
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Proof. It is clear that g1(x, p, r)00(pn) ∼ g1(y, p, r)00(pn) if and only if there
exists an element

q =


t

a b
c d

1
t




1 l µ k
1 µ

1 −l
1

 ∈ Q(Q),

such that g1(y, p, r)−1qg1(x, p, r) ∈ 00(pn). We have

g1(y, p, r)−1qg1(x, p, r)

=


kpr t x + t lt µt kt

−(bl − aµ)pr x a b −bl + aµ
−(dl − cµ)pr x c d −dl + cµ

−(kpr t y− 1
t )p

r x − pr t y −lpr t y −µpr t y −kpr t y+ 1
t

 .
Suppose g1(y, p, r)−1qg1(x, p, r) ∈ 00(pn). Then we must have t =±1. We also
need the condition that

−

(
kpr t y− 1

t

)
pr x − pr t y ≡ 0 mod pn

=⇒ t2 y− x ≡ 0 mod p f

=⇒ y− x ≡ 0 mod p f .

Conversely, we show that if y− x ≡ 0 mod p f , then g1(x, p, r) and g1(y, p, r) lie
in the same double coset. Suppose x − y = k2 p f . As gcd(pn−r− f , xypr− f ) = 1,
there exist integers k and k2 such that kxypr− f

+ k1 pn−r− f
= k2. So we obtain

−(kpr y− 1)pr x − pr y = k1 pn.

Therefore

g1(y, p, r)−1


1 k

1
1

1

 g1(x, p, r)

=


kpr x + 1 k

1
1

−(kpr y− 1)pr x − pr y −kpr y+ 1

 ∈ 00(pn).

This means that g1(x, p, r) and g1(y, p, r) lie in the same double coset. This
completes the proof of the lemma. �
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Lemma 5.9. Assume s, r and n to be integers such that n ≥ 1, 0< s < n. Let p be
a prime number and x , y ∈ Z such that gcd(x, p)= gcd(y, p)= 1. Let

g3(p, x, r, s)=


1

1
ps 1

xpr ps 1

 , g2(p, s)=


1

1
ps 1

ps 1



g3(p, y, r, s)=


1

1
ps 1

ypr ps 1

 .
(1) If r < n and 0< s < r < 2s and f =min(2s− r, n− r), then

Q(Q)g3(p, x, r, s)00(pn)= Q(Q)g3(p, y, r, s)00(pn)⇐⇒ x ≡ y mod p f .

(2) If 2s ≤ r , then

Q(Q)g3(p, x, r, s)00(pn)= Q(Q)g2(p, s)00(pn).

(3) If r ≥ n, then

Q(Q)g3(p, x, r, s)00(pn)= Q(Q)g2(p, s)00(pn).

Proof. It is clear that Q(Q)g3(p, x, r, s)00(pn)= Q(Q)g3(p, y, r, s)00(pn) if and
only if there exists an element

q =


t

a b
c d

1/t




1 l µ k
1 µ

1 −l
1

 ∈ Q(Q)

such that g3(p, y, r, s)−1qg3(p, x, r, s) ∈ 00(pn). Suppose

g3(p, y, r, s)−1qg3(p, x, r, s) ∈ 00(pn).

Then, comparing the multiplier of the matrices on both sides, we see that ad−bc=1.
Then by writing the matrix on the left explicitly it also follows that t = ±1. We
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can assume that t = 1. Now,

g3(p, y, r, s)−1qg3(p, x, r, s)

=


kpr x +µps

+ 1
−(bl − aµ)pr x + bps

−(dl − cµ+ kps)pr x − (µps
− d)ps

− ps

(blps
− aµps

− kpr y+ 1)pr x − (µpr y+ bps)ps
− pr y

kps
+ l

−(bl − aµ)ps
+ a

−(dl − cµ+ kps)ps
− lps

+ c
−lpr y+ (blps

− aµps
− kpr y+ 1)ps

− aps

µ k
b −bl + aµ

−µps
+ d −dl + cµ− kps

−µpr y− bps blps
− aµps

− kpr y+ 1

 ,

and then looking at the lowest left entry we get

(blps
− aµps

− kpr y+ 1)pr x − (µpr y+ bps)ps
− pr y ≡ 0 mod pn

=⇒ pr (x − y)+ (bl − aµ)xpr+s
− kxyp2r

−µypr+s
+ bp2s

≡ 0 mod pn

=⇒ x − y+ (bl − aµ)xps
− kxypr

−µyps
+ bp2s−r

≡ 0 mod pn−r

=⇒ x − y ≡ 0 mod p f .

Conversely, we show that if y−x ≡ 0 mod p f then g3(p, x, r, s) and g3(p, y, r, s)
lie in the same double-coset. If f = n− r , then let x − y = k1 pn−r .

Q(Q)g3(p, x, r, s)00(pn)= Q(Q)g3(p, y, r, s)


1

1
1

pr x − pr y 1

00(pn)

= Q(Q)g3(p, y, r, s)


1

1
1

pnk1 1

00(pn)

= Q(Q)g3(p, y, r, s)00(pn).
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On the other hand if f = 2s− r or equivalently 2s ≤ n, then let x − y = k2 p2s−r .

Q(Q)g3(p, x, r, s)00(pn)= Q(Q)


1

1 k2

1
1

 g3(p, x, r, s)00(pn)

= Q(Q)g3(p, y, r, s)


1

k2 ps 1 k2

1
−k2 ps 1

00(pn)

= Q(Q)g3(p, y, r, s)00(pn).

This means that g3(p, x, r, s) and g3(p, y, r, s) lie in the same double coset and
the first part of lemma follows. Next,

Q(Q)g3(p, x, r, s)00(pn)= Q(Q)


1

1 pr−2s x
1

1

 g3(p, x, r, s)00(pn)

= Q(Q)g2(p, s)


1

pr−2s ps x 1 pr−2s x
1

−pr−2s ps x 1

00(pn)

= Q(Q)g2(p, s)00(pn).

This completes the proof of the second part of lemma. Finally, the last part of
the lemma follows from the calculation

g2(p, s)−1g3(p, x, r, s)=


1

1
1

pr x 1

 ∈ 00(pn). �

Proof of Theorem 3.1.
Proof. First we prove completeness. We begin by writing

(5-4) GSp(4,Q)= Q(Q)t Q(Q)s1


1 ∗

1
1 ∗

1



tQ(Q)s1s2


1 ∗

1 ∗ ∗
1

1

t Q(Q)s1s2s1


1 ∗ ∗ ∗

1 ∗

1 ∗
1

 ,
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by using the Bruhat decomposition. We consider all the different possibilities.

First Cell: If g ∈ Q(Q), then, of course, Q(Q)g00(pn) is represented by 1.

Second Cell: Assume that g is in the second cell. Then we may assume that

g = s1


1 x1

x2

1
1 − x1

x2

1

 , x1, x2 ∈ Z and gcd(x1, x2)= 1.

As gcd(x1, x2)= 1, there exist integers l1 and l2 such that −l1x1+ l2x2 = 1.

Q(Q)g00(pn)= Q(Q)


1
x2

l1

x2
1
x2
−l1

x2

 g00(pn)

= Q(Q)


l1

l1x1
x2
+

1
x2

x2 x1

−l1
l1x1
x2
+

1
x2

x2 −x1

00(pn)= Q(Q)100(pn).

Third Cell: Next let g be an element in the third cell. We may assume that

g = s1s2


1 y

1 x y
1

1

 , x, y ∈ Q(Q).

The following calculation shows that we can replace x, y by x + 1 and y + 1
respectively.

s1s2


1 y

1 x y
1

1

∼ s1s2


1 y

1 x y
1

1




1 1
1 1 1

1
1

∼ s1s2


1 y+ 1

1 x + 1 y+ 1
1

1

 .
Let x1, x2, x3 and p be pairwise coprime. Also assume y1, y2, y3, p to be pairwise
coprime. Let x = x3 pr1/x2 with r1 > 0. Then the above calculation shows that we
can change x to x + 1 = (x3 pr1 + x2)/x2. So we can always assume x to be of
the form x1/(x2 pr ) for some r ≥ 0. Similarly, we can also assume y to be of the
form y1/(y2 ps) with s ≥ 0. Next, suppose τ = gcd(x1, y1) > 1. Then replacing
x = x1/(x2 pr ) by x + τ1, with τ1 being the largest factor of y1 that is coprime to τ ,
we can also assume that gcd(x1, y1)= 1.

Now we consider all the different possibilities that may arise. First of all, it
is clear that, if both x and y are in Z, i.e., x2 = y2 = 1, r = 0, s = 0, then
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Q(Q)g00(pn)= Q(Q)s1s200(pn). Next, if x ∈ Z but y /∈ Z, then

Q(Q)g00(pn)= Q(Q)s1s2


1 y

1 y
1

1

00(pn)

= Q(Q)


1
y 1

1
−y 1

s1s200(pn)

= Q(Q)s1


1 y−1

1
1 −y−1

1

s1s200(pn)

= Q(Q)


1

1
y−1 1

y−1 1

00(pn)= Q(Q)


1

1
y2 ps

y1
1

y2 ps

y1
1

00(pn).

We note that the third equality follows from the following matrix identity:
1
y 1

1
−y 1

=

−y−1 1

y
y−1 1
−y

 s1


1 y−1

1
1 −y−1

1

 .
But, now from Lemmas 5.5 and 5.3 it follows that if 0< s < n, then

Q(Q)g00(pn)= Q(Q)


1

1
ps 1

ps 1

00(pn),

and if s ≥ n then

Q(Q)g00(pn)= Q(Q)100(pn).

Further, If s = 0 then from the Lemma 5.5 and 5.7 it follows that

Q(Q)g00(pn)= Q(Q)s1s200(pn),

which is one of the listed representatives in the statement of the theorem. Therefore
we are done in this case.
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Now consider the case when x 6∈ Z and y ∈ Z. Then we have

Q(Q)g00(pn)= Q(Q)s1s2


1

1 x
1

1

00(pn)

= Q(Q)


x 1

1
1

1/x

 s1s2


1

1 x
1

1

00(pn)

= Q(Q)


1

1
1

x−1 1



−1

1
1

−1

00(pn)

= Q(Q)


1

1
1

x−1 1

00(pn).

Now it follows from Lemmas 5.6 and 5.7 that if r = 0, then

Q(Q)g00(pn)= Q(Q)s1s200(pn),

and if r ≥ n, then
Q(Q)g00(pn)= Q(Q)100(pn).

Further, if 0< r < n, then Lemma 5.6 yields that

Q(Q)g00(pn)= Q(Q)


1

1
1

c1 pr 1

00(pn)

for some integer c1 such that gcd(c1, p)= 1. Then it follows from Lemma 5.8 that
g lies in the same double coset as one of the elements listed in the statement of the
theorem.

Next, suppose x /∈ Z and y /∈ Z. If s = r = 0 then from Lemmas 5.1 and 5.7 it
follows that

Q(Q)g00(pn)= Q(Q)s1s200(pn).

Further it follows from Lemma 5.1 that if s ≤ r and r ≥ n, then

Q(Q)g00(pn)= Q(Q)100(pn);
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otherwise, if s ≤ r < n, then

Q(Q)g00(pn)= Q(Q)g1(x3, p, r)00(pn)

for some nonzero integer x3 coprime to p. But then these cases have already been
considered. Hence, we are left with the case when s > r , and then if s ≥ n from
Lemma 5.1 we get

Q(Q)g00(pn)= Q(Q)100(pn),

and we are done. Otherwise, still assuming s > r but s < n, we get

Q(Q)g00(pn)= Q(Q)


1

1
η1 ps 1

η2 p−r+2s η1 ps 1

00(pn),

where η1, η2 ∈ Z and gcd(ηi , p)= 1 for i = 1, 2. In view of Lemma 5.4 it further
reduces to

Q(Q)g00(pn)= Q(Q)


1

1
ps 1

η2 p−r+2s ps 1

00(pn).

Now, the result follows from Lemma 5.9 and we are done in this case as well.

Fourth Cell: Next we consider an element g from the fourth cell and let

g = s1s2s1


1 x

1
1 −x

1




1 y z
1 y

1
1

 .
If x ∈ Z then

Q(Q)g00(pn)= Q(Q)s1s2


1 y

1 z+ 2xy y
1

1

00(pn),

and we are reduced to the case of the third cell. Therefore let us assume that x 6∈ Z.
If necessary on multiplication by a suitable matrix from right, we can assume that
x = x1/(pr x2), y = y1/(ps y2) and z= z1/(pr1 z2) where xi , yi , zi ∈Z, for i = 1, 2;
r , s, r1 are nonnegative integers, x1, x2, p are mutually coprime integers; y1, y2, p
are mutually coprime integers and z1, z2, p are also mutually coprime integers. We
can further adjust x1, y1 and z1 by multiplication by a proper matrix from the right,
such that any two nonzero elements selected from the set {x1, y1, z1, x2, y2, z2, p}
are mutually coprime except, possibly, when both the chosen elements belong to
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{x2, y2, z2}. Then by the virtue of Lemma 5.2 once again we are reduced to the
case of the third cell. This proves that the representatives listed in the theorem
constitute a complete set of double coset representatives.

Disjointness. Now we prove that the double cosets represented by the represen-
tatives listed in the theorem are disjoint. It is clear that two elements w1 and w2

represent the same double coset if and only if there exists an element

q =


t

a b
c d

(ad − bc)t−1




1 l µ k
1 µ

1 −l
1

 ∈ Q(Q)

such thatw−1
2 qw1∈00(pn). On comparing the multiplier on both sides we conclude

that ad − bc = 1. Then it is also clear that we can assume t = 1. Also clearly
q must be a matrix with integral entries. Now we consider all pairs of different
representatives for checking disjointness.

w1 = g3( p, α, r, s), w2 = g3( p, β, v,w): Let

w1= g3(p,α,r,s)=


1

1
ps 1
αpr ps 1

 and w2= g3(p,β,v,w)=


1

1
pw 1
βpv pw 1

,
with α, β integers coprime to p and r, s, v, w ∈ Z such that 0 < s < r < 2s,
0< v < w < 2v, 0< s, r < n, 0<w, v < n. We see that

w−1
2 qw1 =


∗

∗

−(dl − cµ+ kpw)αpr
− (µpw − d)ps

− pw

−(βkpv − blpw + aµpw − 1)αpr
− (βµpv + bpw)ps

−βpv

∗ ∗ ∗

∗ ∗ ∗

−(dl − cµ+ kpw)ps
− lpw + c ∗ ∗

−βlpv − (βkpv − blpw + aµpw − 1)ps
− apw ∗ ∗


Suppose s >w. If w−1

2 qw1 ∈ 00(pn), then looking at the bottom two entries of the
second column we conclude that p must divide both a and c. But this contradicts
that ad − bc = 1. Similarly, if s < w, by looking at first two entries of the third
row we get that p | d and p | c contradicting ad − bc = 1. Therefore, we assume
s =w. Now looking at the bottommost entry of the first column we conclude that if
r 6= v, then the valuation of this element can not be n. Therefore, if r 6= v or s 6=w,
then g3(p, α, r, s) and g3(p, β, v,w) lie in different double cosets. If r = v and
s =w, then Lemma 5.9 describes the condition for g3(p, α, r, s) and g3(p, β, v,w)
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to lie in the same double coset. We conclude that such representatives listed in the
theorem represent disjoint double cosets.

w1 = g3( p, α, r, s), w2 = g2( p,w): Let w1 = g3(p, α, r, s) and w2 = g2(p, w).
Assume w−1

2 qw1 ∈ 00(pn). Then we see that

w−1
2 qw1

=


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

−(dl−cµ+kpw)αpr
−(µpw−d)ps

− pw −(dl−cµ+kpw)ps
−lpw+c ∗ ∗

(blpw−aµpw+1)αpr
−bps pw (blpw−aµpw+1)ps

−apw ∗ ∗


and it is clear that p | c and if s > w then and p | a or else if s < w then p | d.
In any case p | ad − bc = 1 which is a contradiction. Hence, we further assume
s = w. Now, as s < r < 2s, looking at the last entry of the first column we see that
the valuation of the element (blps

− aµps
+ 1)αpr

− b(ps)2 is r . Since r < n, we
conclude that g3(p, α, r, s) and g2(p, w) lie in different double cosets.

w1 = g3( p,α,r,s),w2 = g1( p,β,v): Let w1= g3(p,α,r,s) and w2= g1(p,β,v).
Assume w−1

2 qw1 ∈ 00(pn). Then we see that

w−1
2 qw1 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

−(dl − cµ)αpr
+ dps

−(dl − cµ)ps
+ c ∗ ∗

−βµps pv − (βkpv − 1)αpr
−βpv −βlpv − (βkpv − 1)ps

∗ ∗

 .
Clearly, p | c. Since r > s, p also divides d and it contradicts the condition
ad − bc = 1. Therefore g3(p, α, r, s) and w2 = g1(p, β, v) lie in different double
cosets.

w1 = g2( p, s), w2 = g1( p, β, v): Let w1 = g2(p, s) and w2 = g1(p, β, v). As-
sume w−1

2 qw1 ∈ 00(pn). Then we see that

w−1
2 qw1 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

dps
−(dl − cµ)ps

+ c ∗ ∗

−βµps pv −βpv −βlpv − (βkpv − 1)ps
∗ ∗

 .
Once again we see that p divides both c and d which is a contradiction to the
condition ad − bc = 1. Therefore g2(p, s) and w2 = g1(p, β, v) lie in different
double cosets.
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w1 = g2( p, s), w2 = g2( p,w): Let w1 = g2(p, s) and w2 = g1(p, w). Let us
assume that w−1

2 qw1 ∈ 00(pn). Then we see that

w−1
2 qw1 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

dps
−(dl − cµ)ps

+ c ∗ ∗

−βµps pw −βpw −βlpw − (βkpw − 1)ps
∗ ∗

 .
Once again we see that p | c and if s >w, then p | a or else if s <w, then p | d . In
any case p |ad−bc= 1, which is a contradiction. Therefore g2(p, s) and g2(p, w)
lie in different double cosets.

w1 = g1( p, α, r), w2 = g1( p, β, v): Let w1 = g1(p, α, r) and w2 = g1(p, β, v).
Let us assume that w−1

2 qw1 ∈ 00(pn). Then we see that

w−1
2 qw1 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

−(dl − cµ)αpr c ∗ ∗

−(βkpv − 1)αpr
−βpv −βlpv ∗ ∗

 .
Since r, v < n, we see that if r 6= v, then valuation of −(βkpv − 1)αpr

−βpv is less
than n. Therefore g1(p, α, r) and g1(p, β, v) lie in different double cosets. This
completes the proof of disjointness.

The number of representatives. Finally, we calculate the total number of inequiv-
alent representatives. First let n be even, say n = 2m for some positive integer m.
Then

#(Q(Q)\GSp(4,Q)/00(p2m))

= 2+ 2m− 1+
2m−1∑
r=1

φ(pmin(r,2m−r))+

2m−1∑
s=1

min(2s−1,2m−1)∑
r=s+1

φ(pmin(2s−r,2m−r))

=
pm+1

+ pm
− 2

p− 1
.

Similarly, if n is odd, say n = 2m+ 1, then

#(Q(Q)\GSp(4,Q)/00(p2m+1))

= 2+ 2m+
2m∑

r=1

φ(pmin(r,2m+1−r))+

2m∑
s=1

min(2s−1,2m)∑
r=s+1

φ(pmin(2s−r,2m+1−r))

=
2(pm+1

− 1)
p− 1

.

Thus on combining these we obtain the formula (3-1) for the number of one-
dimensional cusps. �
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Proof of Lemma 3.2.

Proof. We note that the representatives for Q(Q)\GSp(4,Q)/00(N ) may be
obtained from the representatives of Q(Q)\GSp(4,Q)/00(p

ni
i ) for i = 1 to m.

This observation is essentially based on the following two well known facts.

(1) The natural projection map from Sp(4,Z) to Sp(4,Z/NZ) is surjective.

(2) Sp(4,Z/
∏

p peZ)−→∼
∏

p Sp(4,Z/peZ).

In fact, we have
Sp(4,Z)/00(N)−→∼ (Sp(4,Z)/0(N ))/(00(N)/0(N ))

−→∼ Sp(4,Z/NZ)/1(Z/NZ).

Clearly, 1(Z/NZ)=
∏m

i=11(Z/pni
i Z), and the following diagram is commutative.

Sp(4,Z/NZ)
∏m

i=1 Sp(4,Z/pni
i Z)

g (g1, . . . , gm)

g1(Z/NZ) (g11(Z/pn1
1 Z), . . . , gm1(Z/pnm

m Z))

A = Sp(4,Z/NZ)/1(Z/NZ)
∏m

i=1 Sp(4,Z/pni
i Z)/1(Z/pni

i Z)= B

∈

∼

ψ

∈

∈ ∈

∼

φ

Next we show that the left action by 0∞(Z) is compatible with the isomorphisms
described in the commutative diagram above. In fact, 0∞(Z) acts on both sides as
follows:

• on A: via
0∞(Z)→ 0∞(Z/NZ), γ → γ

• on B: via

0∞(Z)→ 0∞(Z/NZ)−→∼
m∏

i=1

0∞(Z/pni
i Z)

γ → γ −→∼ (γ1, γ2, . . . , γm−1, γm).

Let g ∈ Sp(4,Z/NZ), a = g1(Z/NZ) ∈ A and γ ∈ 0∞(Z). Then it is easy to
check that φ(γ a)= γ (φ(a)). Therefore we obtain,

Q(Q)\GSp(4,Q)/00(N )−→∼ (Q(Q)∩Sp(4,Z))\Sp(4,Z)/00(N)

−→∼ 0∞(Z/NZ)\Sp(4,Z/NZ)/1(Z/NZ)

−→∼

m∏
i=1

0∞(Z/pni
i Z)\Sp(4,Z/pni

i Z)/1(Z/pni
i Z).

Now the result follows from Theorem 3.1. �
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Proof of Corollary 3.3.

Proof. It is easy to check that the double cosets represented by the listed representa-
tives are disjoint. Let α(N ) denote the total number of representatives listed in the
statement of the corollary. We note that for N = pn, with p a prime and n ≥ 1, the
number of listed representatives are the same as given by Theorem 3.1 (moreover,
the set of representatives in this case will be seen to be equivalent to the set of
representatives given by Theorem 3.1 if one applies Lemma 5.8 and Lemma 5.9
and works out the details). We will show that for any pair of coprime positive
integers R and S we have α(RS)= α(R)α(S). Then it will follow that the listed
representatives form a complete set because for any N their number will agree with
the number given in Lemma 3.2. We have

α(RS)= 1+
∑
γ |RS

1<γ≤RS

φ
(
gcd

(
γ,

RS
γ

))
+

∑
γ |RS

1<γ≤RS

∑
δ|γ,γ |δ2

γ>δ

φ
(
gcd

(δ2

γ
,

RS
γ

))

= 1+
∑
γ |RS

1<γ≤RS

∑
δ|γ,γ |δ2

γ≥δ

φ
(
gcd

(δ2

γ
,

RS
γ

))

= 1+
∑

γ1|R,γ2|S
1<γ1γ2≤RS

∑
δ|γ1γ2,γ1γ2|δ

2

γ1γ2≥δ

φ
(
gcd

( δ2

γ1γ2
,

RS
γ1γ2

))

+

∑
γ1|R

1<γ1≤R

∑
δ|γ1,γ1|δ

2

γ1≥δ

φ
(
gcd

(δ2

γ1
,

RS
γ1

))

+

∑
γ2|S

1<γ1≤S

∑
δ|γ2,γ2|δ

2

γ2≥δ

φ
(
gcd

(δ2

γ2
,

RS
γ2

))

=

(
1+

∑
γ1|R

1<γ1≤R

∑
δ1|γ1,γ1|δ

2
1

γ1≥δ1

φ
(
gcd

(δ2
1

γ1
,

R
γ1

)))(
1+

∑
γ2|S

1<γ2≤S

∑
δ2|γ2,γ2|δ

2
2

γ2≥δ2

φ
(
gcd

(δ2
2

γ2
,

S
γ2

)))

= α(R)α(S).

This completes the proof.
Alternatively, instead of the above counting argument the corollary could also

be proved by giving an explicit bijection between sets of representatives for∏m
i=1 Q(Q)\GSp(4,Q)/00(p

ni
i ) and Q(Q)\GSp(4,Q)/00(N ). For this we re-

call the remark (ii) after Theorem 3.1 and note that for m = 1, i.e., for N = pn1
1 , a
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complete set of representatives for Q(Q)\GSp(4,Q)/00(N ) is also given by

g0(γ, δ, y) :=


1

1
δ 1

yγ δ 1

 , 1≤ δ ≤ γ ≤ N , γ | N , δ | N , δ | γ, γ | δ2,

with y being the same as in the statement of the corollary.
Now suppose N =

∏m
i=1 Ni with Ni = pni

i and m > 1. We define the map

φ :

m∏
j=1

Q(Q)\GSp(4,Q)/00(p
n j
j )→ Q(Q)\GSp(4,Q)/00(N )

(g0(γ j , δj , yj )) j=1,...,m→ g0(γ, δ, y),

where γ j and δj are factors of Nj such that 1 ≤ δj ≤ γ j ≤ Nj , δj | γ j , γ j | δ
2
j and

γ =
∏m

j=1 γ j , δ =
∏m

j=1 δj . Also, yj = L j + θj with L j = gcd(δ2
j /γ j , Nj/γ j ) and

θj = 0 if L j = 1 otherwise θj ∈ (Z/L j Z)
×. Also, y = L + θβ with L =

∏m
j=1 L j ,

β =
∏

pi -L , pi |N pni
i , θ =

∑m
j=1 α j (L/L j )θj and α j is such that α jβ(L/L j ) ≡ 1

mod L j .
It is clear that L = gcd(δ2/γ, N/γ ). If a prime p divides L then it must divide

some Lk with 1≤ k ≤m. Assume this to be the case. Then from the definition of θ
it follows that βθ ≡ θk mod Lk . As p | Lk and θk ∈ (Z/LkZ)×, it is clear that p - θ .
Therefore θ ∈ (Z/LZ)× as desired.

Next we show that φ is injective. For this let us assume that

φ((g0(γ j , δj , yj )) j=1,...,m)= φ((g0(γ
′

j , δ
′

j , y′j )) j=1,...,m)= g0(γ, δ, y).

Then γ =
∏m

j=1 γ j =
∏m

j=1 γ
′

j implies γ j = γ
′

j for all j. Similarly δj = δ
′

j for
all j . Hence L j = L ′j for all j. Moreover, we have y ≡ βθ ≡ θj ≡ yj mod L j .
Similarly y ≡ βθ ≡ θ ′j ≡ y′j mod L ′j . This gives yj ≡ y′j mod L j for all j. Now
Lemmas 5.8 and 5.9 imply that g0(γ j , δj , yj ) is equivalent to g0(γ

′

j , δ
′

j , y′j ) in
Q(Q)\GSp(4,Q)/00(p

n j
j ). This shows that φ is injective.

Finally we prove that φ is surjective. Assume that g0(γ, δ, y) is a given repre-
sentative of Q(Q)\GSp(4,Q)/00(N ). We define γ j and δj as the highest power
of pj that divides γ and δ respectively. Then we define L j = gcd(δ2

j /γ j , Nj/γ j ).
Also let θj be defined as βθ mod L j and let yj = L j + θj . It is enough to define
θj modulo L j because Lemmas 5.8 and 5.9 imply that if yj ≡ y′j mod L j then
g0(γ j , δj , yj ) is equivalent to g0(γ j , δj , y′j ) in Q(Q)\GSp(4,Q)/00(p

n j
j ). Hence

we have uniquely defined the representative g0(γ j , δj , yj ) up to equivalence in
Q(Q)\GSp(4,Q)/00(p

n j
j ). It can be checked that φ((g0(γ j , δj , yj )) j=1,...,m) =

g0(γ, δ, y) up to equivalence in Q(Q)\GSp(4,Q)/00(N ). Therefore φ is surjec-
tive and we are done. �
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Proof of Corollary 3.4. Since k≥ 6 and even the Klingen–Eisenstein series defined
in the statement of the Corollary have nice convergence properties. Let  (α) and
 (β) be two one-dimensional cusps for 00(N ). Let

Eα(z)=
∑

 (ξ)∈( (α)Q(Q) (α−1)∩00(N ))\00(N )

fα(α−1ξ〈Z〉∗) det( j (α−1ξ, Z))−k,

be a Klingen–Eisenstein series associated to α. We have

(Eα|kβ)(Z)=
∑

fα(α−1ξ〈β〈Z〉〉∗) det( j (α−1ξ, β〈Z〉))−k det( j (β, Z))−k

=

∑
fα(α−1ξβ〈Z〉∗) det( j (α−1ξβ, Z))−k,

where the sums are taken over  (ξ) ∈ ( (α)Q(Q) (α−1)∩00(N ))\00(N ). Next
consider 8(Eα|kβ)(z)= limλ→∞(Eα|kβ)

([ z
iλ

])
where 8 is the Siegel 8 operator

defined earlier. The limit can be evaluated term by term because of nice convergence
properties of the Eisenstein series. It follows from the proof of [Klingen 1990,
Proposition 5, Chapter 5], that on taking the limit the only surviving terms are
those with  (α−1) (ξ) (β) ∈ Q(Q) with  (ξ) ∈ 00(N ). If  (α) and  (β) are
inequivalent cusps, then clearly no term survives and 8(Eα|kβ)(z)= 0, whereas
we see that 8(Eα|kα)(z) = fα(z). We have shown that each Eisenstein series is
supported on a unique one-dimensional cusp. Further for a fixed one-dimensional
cusp all the associated Klingen–Eisenstein series are clearly linearly independent.
The corollary is now evident. �
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