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NONEXISTENCE RESULTS FOR SYSTEMS
OF ELLIPTIC AND PARABOLIC
DIFFERENTIAL INEQUALITIES
IN EXTERIOR DOMAINS OF Rn

YUHUA SUN

We present a unified approach for the investigation of nonexistence results of
systems of elliptic and parabolic differential inequalities. Our results accord
with those on elliptic differential inequalities given by Bidaut-Véron and Po-
hozaev. The results on systems of parabolic differential inequalities are new.

1. Introduction

In this paper, we study the nonexistence of nonnegative solutions to systems of the
following elliptic and parabolic differential inequalities

(1-1)


1u+ |x |av p

≤ 0 in Dc,

1v+ |x |buq
≤ 0 in Dc,

u(x)≥ f (x), v(x)≥ g(x) on ∂D,

and

(1-2)


1u− ∂t u+ |x |av p

≤ 0 in Dc
× (0,∞),

1v− ∂tv+ |y|buq
≤ 0 in Dc

× (0,∞),
u(x, t)≥ f (x), v(x, t)≥ g(x) on ∂D× (0,∞),
u(x, 0)= u0(x), v(x, 0)= v0(x) in Dc,

where D is a bounded Lipschitz domain in Rn with n ≥ 3 containing the origin,
and Dc

= Rn
\ D. The exponents satisfy a, b >−2 and p, q > 1, and f (x), g(x)

are L1(∂D) nonnegative and positive somewhere functions, and u0(x), v0(x) are
nonnegative functions.

It is well known that the nonexistence theorems for elliptic equations started from
the seminal work by Gidas and Spruck [1981], where they proved the following
results for the semilinear problem

(1-3) 1u+ u p
= 0, in Rn.
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If

(1-4) 1< p < n+2
n−2

,

then the only nonnegative solution of (1-3) is identically zero.
In 1986, Ni and Serrin showed that the exponent (n + 2)/(n − 2) in (1-4) is

critical; namely, if p≥ (n+2)/(n−2), then there exist nontrivial positive solutions
to (1-3). We refer to the papers [Ni and Serrin 1986a; 1986b] for more information.

In the study of equation (1-3) in the exterior domain Rn
\B1(0) instead of the entire

Euclidean space Rn, some incredible phenomena arise. Here Br (0) is the ball of ra-
dius r centered at the origin. This marvelous result is due to Bidaut-Véron [1989]: if

(1-5) 1< p ≤ n
n−2

,

then the only nonnegative solution of (1-3) in the exterior domain is identically zero.
Actually Bidaut-Véron [1989] obtained more generalized results on the problem
1mu+u p

= 0 in the exterior domain under additional restrictions on m and p. Here
to compare with Gidas and Spruck’s result profitably, we only list the nonexistence
result for m = 2. However, if p > n/(n− 2), the nonexistence result does not hold
any more. A simple counterexample is given by the function

u(x)= λ|x |−2/(p−1),

which is a well-defined solution to (1-3) in Rn
\ B1(0), where

λ= (p− 1)−2/(p−1)
[
2(n− 2)

(
p− n

n−2

)]1/(p−1)
.

Let us turn our attention to the elliptic differential inequality case; namely,
consider the problem

(1-6) 1u+ u p
≤ 0, in Rn,

with n > 2. Ni and Serrin [1986a] proved that if

(1-7) 1< p ≤ n
n−2

,

then the only nonnegative solution of (1-6) is identically zero. For more elliptic
differential inequality cases, we refer to the papers [Caristi et al. 2008; 2009;
Mitidieri and Pohozaev 1998; 2001].

Bidaut-Véron and Pohozaev [2001] showed that in the exterior domain Rn
\B1(0),

if under the same condition (1-7) as in the entire Euclidean space, then the only
nonnegative solution of (1-6) in the exterior domain Rn

\ B1(0) is identically zero.
It is easy to see that in the inequality case, the critical exponents arising from the
entire Euclidean space and exterior domain settings are the same. The difference
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between the entire Euclidean space and exterior domain vanishes when we move
our focus from equation to differential inequality problems.

Now, let us provide some motivations from the point of view of parabolic equa-
tions. The study of critical exponents of the parabolic equation also has a long story.
When D is empty, in a celebrated paper, Fujita [1966] proved that for the problem

(1-8)
{
∂t u−1u = u p in Rn

× (0,∞),
u(x, 0)= u0(x) in Rn .

(1) If 1< p< 1+2/n and u0 > 0, then (1-8) possesses no global positive solution.

(2) If p > 1+ 2/n and u0 is smaller than a small Gaussian, then (1-8) has global
solutions.

Usually, we call 1+ 2/n the Fujita exponent. The sharpness of p = 1+ 2/n is
more difficult. Several authors independently showed that p = 1+ 2/n belongs to
the blowup case; we refer to the papers [Aronson and Weinberger 1978; Hayakawa
1973; Kobayashi et al. 1977]. Let us replace Rn by Dc in (1-8) (here D is a bounded
nonempty domain), and we have an additional boundary condition u|∂D ≡ f (x)≥ 0.
If the boundary condition f (x)≡ 0, Bandle and Levine [1989] proved the Fujita
exponent is still p = 1+ 2/n for (1-8). But, if the boundary condition f (x) is not
identically zero, Zhang found that the Fujita exponent for (1-8) will jump from
1+ 2/n to a much bigger value 1+ 2/(n− 2); see [Zhang 2001].

Laptev [2003] considered the scalar case of (1-2) with the nonzero boundary
condition

(1-9) ∂t u−1u ≥ |x |au p, Dc
× (0,∞),

and obtained that if 1 < p < (n + 1+ a)/(n − 1), then (1-9) has no nontrivial
nonnegative global solutions.

Motivated by the above literature, we investigate systems of elliptic and parabolic
differential inequalities. First, let us explain in which sense solutions of (1-2) are
defined.

Definition 1.1. A nonnegative pair (u, v) is called a weak nonnegative global
solution of the inequality system (1-2), if

(i) ∇x u,∇xv ∈ L2
loc(D

c);

(ii) For all compactly supportedψ ∈C2(Dc
×[0,∞))∩C1(Dc

×[0,∞)) vanishing
on ∂D×[0,∞), and for all τ ∈ [0,∞), we have

(1-10)



∫ τ
0

∫
Dc [u1ψ + u∂tψ + |y|av p(y, s)ψ] dy ds
−
∫ τ

0

∫
∂D f (∂ψ/∂n+) d Sy ds−

∫
Dc u(x, · )ψ(x, · )|τ0 dx ≤ 0,∫ τ

0

∫
Dc [v1ψ + v∂tψ + |y|buq(y, s)ψ] dy ds
−
∫ τ

0

∫
∂D g(∂ψ/∂n+) d Sy ds−

∫
Dc v(x, · )ψ(x, · )|τ0 dx ≤ 0.
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Here, n+ means the outward unit normal of ∂D, relative to Dc, which is defined
almost everywhere.

Throughout, when we say that (u, v) is a global positive solution of (1-2), we
mean that u, v ≥ 0 and u(x, t), v(x, t) are not identically zero for each t > 0.

Here are our main results:

Theorem 1.2. Assume p ≥ q > 1. If

(1-11) max
{

2p(1+ q)+ bp+ a
pq − 1

,
2q(1+ p)+ aq + b

pq − 1

}
> n,

then there exist no global positive solutions to (1-2).

Corollary 1.3. Assume p ≥ q > 1. If

(1-12) max
{

2p(1+ q)+ bp+ a
pq − 1

,
2q(1+ p)+ aq + b

pq − 1

}
> n,

then there exist no positive solutions to (1-1).

Theorem 1.2 and Corollary 1.3 require that D is not empty, since we technically
depend on Proposition 2.1. Corollary 1.3 was also obtained by Bidaut-Véron and
Pohozaev [2001]. We claim that our technique is quite different from the one in
that work, where they investigated various elliptic inequalities, and their technique
is to multiply the elliptic inequalities (1-1) by functions uαϕ, vβϕ and to obtain the
integral estimates with respect to the polynomials of u, v near infinity, where ϕ has
compact support in Dc, and α, β < 0. However, we mainly investigate the parabolic
differential inequalities. As a byproduct, we obtain the same result for the elliptic
problem. Our method, motivated by [Zhang 1998; 1999; 2001], is to show that the
integrals of IR, JR in (2-9) and (2-10) will blow up in some selected fixed domain.

We also improve the result obtained by Laptev [2003]. When u= v, p= q, a= b,
the system (1-2) is reduced to the scalar case (1-9). From Theorem 1.2, it is
easy to obtain that if 1 < p < (n + a)/(n − 2), then (1-9) admits no nontrivial
nonnegative global solutions. Our exponent (n+ a)/(n− 2) here is strictly bigger
than (n+ 1+a)/(n− 1) which is obtained by Laptev. We claim that our method is
also different from Laptev’s, since his method is based on the test function approach,
which was developed by Mitidieri and Pohozaev [1998; 2001].

Notation. The letters C,C ′,C0,C1, . . . denote positive constants whose values
are unimportant and may vary at different occurrences.

2. Proof of Theorem 1.2

In this section, we show the proof of Theorem 1.2. Since every positive solution
(u, v) of the elliptic problem (1-1) can also be considered as a global nontrivial
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positive solution of the parabolic inequality system (1-2), it suffices to show that
the parabolic system (1-2) has no global positive solution, provided that

max
{

2p(1+ q)+ bp+ a
pq − 1

,
2q(1+ p)+ aq + b

pq − 1

}
> n.

Before presenting the proof, let us cite a result which is proved in [Zhang 2001].

Proposition 2.1. Let ζi = ζi (x, t), i = 1, 2 be the solution of the linear problem

(2-1)


1ζ − ∂tζ = 0 in Dc

× (0,∞),
ζ(x, t)= f (x) (respectively g(x)) on ∂D× (0,∞),
ζ(x, 0)= 0 in Dc.

If f (x), g(x) are nonnegative and positive somewhere, then there exist positive
constants C and R0 such that

(2-2) ζ1(x, t), ζ2(x, t)≥ C
Rn−2 , if R0 ≤ R ≤ |x | ≤ 2R, R4n

≤ t.

Now we step into the proof of Theorem 1.2.

Proof of Theorem 1.2. Let

(2-3) ω1(x, t) := u(x, t)− ζ1(x, t), ω2(x, t) := v(x, t)− ζ2(x, t),

From (1-2) and (2-1), we derive that ω1, ω2 satisfy the following problems:

(2-4)


1ω1− ∂tω1+ |x |a(ω2+ ζ2)

p
≤ 0, in Dc

× (0,∞)
ω1(x, t)≥ 0, on ∂D× (0,∞),
ω1(x, 0)= u0(x), in Dc,

and

(2-5)


1ω2− ∂tω2+ |x |b(ω1+ ζ1)

q
≤ 0, in Dc

× (0,∞)
ω2(x, t)≥ 0, on ∂D× (0,∞),
ω2(x, 0)= v0(x), in Dc.

Moreover, applying the maximum principle, we know that ω1, ω2 are nonnegative
functions.

Since

|x |a(ω1+ ζ1)
q
≥ |x |aωq

1 + |x |
aζ

q
1 , |x |

b(ω2+ ζ2)
p
≥ |x |bωp

2 + |x |
bζ

p
2 ,

we obtain that

(2-6) 1ω1− ∂tω1+ |x |aω
p
2 + |x |

aζ
p

2 ≤ 0,

and

(2-7) 1ω2− ∂tω2+ |x |bω
q
1 + |x |

bζ
q
1 ≤ 0.
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Introduce two functions ϕ, η ∈C∞[0,∞) which satisfy the following conditions:

(i) 0≤ ϕ ≤ 1; ϕ(r)= 1, r ∈ [2, 3]; ϕ(r)= 0, r ∈ [0, 1)∪ (4,∞);

(ii) |ϕ′(r)| ≤ C; ϕ′(1)= ϕ′(4)= 0; |ϕ′′(r)| ≤ C ;

(iii) 0≤ η ≤ 1; η(t)= 1, t ∈
[
0, 1

4

]
; η(t)= 0, t ∈ [1,∞); −C ≤ η′(t)≤ 0.

Since D is bounded, we can choose R> 0 large enough so that D⊂ BR(0). Denote

ϕR(x) := ϕ
(
|x |
R

)
, ηR(t) := η

( t−R4n

R2

)
.

It is obvious that

(2-8)
∣∣∣∣∂ϕR

∂r

∣∣∣∣≤ C
R
,

∣∣∣∣∂2ϕR

∂r2

∣∣∣∣≤ C
R2 , −

C
R2 ≤ η

′

R(t)≤ 0,

and also
∂ϕR(x)
∂r

= 0 for |x | = R or |x | = 4R.

Denote

Q R := [B4R(0) \ BR(0)]× [R4n, R4n
+ R2
],

and also

ψR(x, t) := ϕR(x)ηR(t).

Let us estimate the following two integrals:

(2-9) IR :=

∫
Q R

|x |aωp
2 (x, t)ψq ′

R (x, t) dx dt,

and

(2-10) JR :=

∫
Q R

|x |bωq
1 (x, t)ψq ′

R (x, t) dx dt,

where q ′ is Hölder conjugate to q , satisfying 1/q + 1/q ′ = 1.
Since ω1(x, t) is a nonnegative solution of (2-6), we obtain

IR +

∫
Q R

|x |aζ p
2 ψ

q ′
R (x, t) dx dt ≤

∫
Q R

[∂tω1−1ω1]ψ
q ′
R (x, t) dx dt,
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Integration by parts yields

IR +

∫
Q R

|x |aζ p
2 ψ

q ′
R (x, t) dx dt ≤

∫
B4R(0)\BR (0)

ω1(x, · )ψ
q ′
R (x, · )

∣∣∣R4n
+R2

R4n
dx

− q ′
∫

Q R

ω1(x, t)ϕq ′
R (x)η

q ′−1
R (t)η′R(t) dx dt

+

∫ R4n
+R2

R4n

∫
∂B4R(0)

ω1(x, t)
∂ϕ

q ′
R (x)
∂n

η
q ′
R (t) d Sx dt

−

∫ R4n
+R2

R4n

∫
∂B4R(0)

ψ
q ′
R
∂ω1

∂n
(x, t) d Sx dt

−

∫ R4n
+R2

R4n

∫
∂BR(0)

ω1(x, t)
∂ϕ

q ′
R (x)
∂n

η
q ′
R (t) d Sx dt

+

∫ R4n
+R2

R4n

∫
∂BR(0)

ψ
q ′
R
∂ω1

∂n
(x, t) d Sx dt

−

∫
Q R

ω1(x, t)1ϕq ′
R (x)η

q ′
R (t) dx dt.

Noting here that −∂/∂n = ∂/∂n+, ω1(x, R4n)≥ 0,

∂ϕ
q ′
R

∂n
= q ′ϕq ′−1

R
∂ϕR

∂n
= 0 on ∂BR(0)∪ ∂B4R(0)

and ψR(x, t)= 0 on the lateral boundary of Q R , we obtain

(2-11) IR+

∫
Q R

|x |aζ p
2 ψ

q ′
R (x,t)dx dt ≤−q ′

∫
Q R

ω1(x,t)ϕ
q ′
R (x)η

q ′−1
R (t)η′R(t)dx dt

−

∫
Q R

ω1(x,t)1ϕ
q ′
R (x)η

q ′
R (t)dx dt.

Since 1ϕq ′
R = q ′ϕq ′−1

R 1ϕR+q ′(q ′−1)ϕq ′−2
R |∇ϕR|

2, combining with (2-11), we get

(2-12) IR+

∫
Q R

|x |aζ p
2 ψ

q ′
R dx dt ≤−q ′

∫
Q R

ω1(x, t)ϕq ′
R (x)η

q ′−1
R (t)η′R(t) dx dt

−q ′
∫

Q R

ω1(x, t)ϕq ′−1
R (x)1ϕR(x)η

q ′
R (t) dx dt.

By the definition of ϕR and ηR , and applying Proposition 2.1, for large R, we obtain∫
Q R

|x |aζ p
2 ψ

q ′
R (x, t) dx dt ≥

∫ R4n
+R2/4

R4n

∫
B3R(0)\B2R(0)

|x |aζ p
2 dx dt

≥ CRn+2+a−p(n−2).
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It follows from (2-12) that

(2-13) IR +CRn+2+a−p(n−2)
≤− q ′

∫
Q R

ω1(x, t)ϕq ′
R (x)η

q ′−1
R (t)η′R(t) dx dt

− q ′
∫

Q R

ω1(x, t)ϕq ′−1
R (x)1ϕR(x)η

q ′
R (t) dx dt.

Noting that ϕR is radial, we obtain 1ϕR = ϕ
′′

R+ (n−1)/rϕ′R . For large enough R,

(2-14) |1ϕR| ≤
C
R2 , for x ∈ B4R(0) \ BR(0).

Combining (2-13) and (2-14), we obtain

IR +CRn+2+a−p(n−2)

≤
C
R2

∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

ω1(x, t)ϕq ′
R (x)η

q ′−1
R (t) dx dt

+
C
R2

∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

ω1(x, t)ϕq ′−1
R (x)ηq ′

R (t) dx dt.

According to the assumptions that ϕR(x), ηR(t) ≤ 1 and ψR(x, t) = ϕR(x)ηR(t),
we have ϕq ′

R (x)η
q ′−1
R (t)≤ψq ′−1

R (x, t), and ϕq ′−1
R (x)ηq ′

R (t)≤ψ
q ′−1
R (x, t). Applying

the Hölder inequality to the above, we obtain

IR +CRn+2+a−p(n−2)

≤
C
R2

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |bωq
1ψ

q(q ′−1)
R (x, t) dx dt

]1/q

×

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |−bq ′/q dx dt
]1/q ′

+
C
R2

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |bωq
1ψ

q(q ′−1)
R (x, t) dx dt

]1/q

×

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |−bq ′/q dx dt
]1/q ′

.

Hence

IR +CRn+2+a−p(n−2)

≤ C
[∫ R4n

+R2

R4n

∫
B4R(0)\BR(0)

|x |bωq
1ψ

q ′
R (x, t) dx dt

] 1
q
R
(n+2)(q−1)−b

q −2

+C
[∫ R4n

+R2

R4n

∫
B4R(0)\BR(0)

|x |bωq
1ψ

q ′
R (x, t) dx dt

] 1
q
R
(n+2)(q−1)−b

q −2
,
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which yields

(2-15) IR +CRn+2+a−p(n−2)
≤ C J

1
q

R R
(n+2)(q−1)−b

q −2
,

where we have used the definition of JR in (2-10).
Using the same arguments with JR , we obtain an analogous inequality for JR .

Since ω2(x, t) is a solution of (2-7), we have

JR +

∫
Q R

|x |bζ q
1 ψ

q ′
R (x, t) dx dt ≤

∫
Q R

[∂tω2−1ω2]ψ
q ′
R (x, t) dx dt.

It follows that

JR +CRn+2+b−q(n−2)
≤

C
R2

∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

ω2(x, t)ϕq ′
R η

q ′−1
R (t) dx dt

+
C
R2

∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

ω2(x, t)ϕq ′−1
R (x)ηq ′

R (t) dx dt.

Applying the Hölder inequality, we obtain

JR +CRn+2+b−q(n−2)

≤
C
R2

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |aωp
2 (x, t)ψ p(q ′−1)

R (x, t) dx dt
]1/p

×

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |−ap′/p dx dt
]1/p′

+
C
R2

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |aωp
2 (x, t)ψ p(q ′−1)

R (x, t) dx dt
]1/p

×

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |−ap′/p dx dt
]1/p′

,

where 1/p+1/p′=1. Using thatψR(x, t)≤1, p≥q andψ p(q ′−1)
R ≤ψ

q(q ′−1)
R =ψ

q ′
R ,

we obtain

JR +CRn+2+b−q(n−2)
≤

C
R2

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |aωp
2 (x, t)ψq ′

R (x, t) dx dt
]1/p

×

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |−ap′/p dx dt
]1/p′

+
C
R2

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |aωp
2 (x, t)ψq ′

R (x, t) dx dt
]1/p

×

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |−ap′/p dx dt
]1/p′

.
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which is

(2-16) JR +CRn+2+b−q(n−2)
≤ C I

1
p

R R
(n+2)(p−1)−a

p −2
.

Case 1: If

2p(q + 1)+ bp+ a
pq − 1

=max
{

2p(q + 1)+ bp+ a
pq − 1

,
2q(1+ p)+ aq + b

pq − 1

}
> n.

Combining (2-15) and (2-16), we obtain

(2-17) JR +C0 Rn+2+b−q(n−2)
≤ C1 J

1
pq

R R
(n+2)(pq−1)−b−aq

pq −
2(1+p)

p .

Denote

(2-18)
k0 := n+ 2+ b− q(n− 2),

k1 :=
(n+ 2)(pq − 1)− b− aq

pq
−

2(1+ p)
p

.

From (2-17), we obtain

(2-19) JR ≥

(C0
C1

)pq
Rk0(pq)−k1(pq).

Substituting (2-19) into the left-hand side of (2-17), we obtain

JR ≥
C (pq)q

0

C pq+(pq)2
1

Rk0(pq)2−k1(pq)2−k1(pq).

Repeating the above procedure, we obtain for any integer j > 1

(2-20) JR ≥
C (pq) j

0

C pq+···+(pq) j

1

Rk0(pq) j
−k1[pq+···+(pq) j

].

The exponent of R in the right-hand side of (2-20) gives

k0(pq) j
− k1[pq + · · ·+ (pq) j

] = k0(pq) j
− k1 pq

(pq) j
− 1

pq − 1

= (pq) j
[

k0−
k1 pq

pq − 1

]
+

k1 pq
pq − 1

.

From (2-20), we obtain

(2-21) JR ≥ C (pq) j

2 R(pq) j
[k0−k1 pq/(pq−1)]Rk1 pq/(pq−1)

= (C2 Rk0−k1 pq/(pq−1))(pq) j
Rk1 pq/(pq−1).
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Combining with (2-18), we obtain

k0−
k1 pq
pq−1

= n+2+b−q(n−2)−
[
(n+2)(pq−1)−b−aq

pq
−

2(1+ p)
p

]
pq

pq−1

=
2pq(1+q)+bpq+aq−nq(pq−1)

pq−1
.

Obviously, if
2p(1+ q)+ bp+ a

pq − 1
> n,

then k0 − k1 pq/(pq − 1) > 0. Whence, if R is chosen large enough, we have
C2 Rk0−k1 pq/(pq−1) > 1.

From (2-21), for fixed R, letting j→∞, we obtain

(2-22) JR =

∫
Q R

|x |bωq
1 (x, t)ψq ′

R (x, t) dx dt =∞.

However, the above contradicts (2-17), since (2-17) implies that JR ≤CRk1 pq/(pq−1).
Moreover, by the definition of JR , (2-22) means that u(x, t) has to blow up when
t ≤ R4n

+ R2.

Case 2: If
2q(1+ p)+ aq + b

pq − 1
=max

{
2p(q + 1)+ bp+ a

pq − 1
,

2q(1+ p)+ aq + b
pq − 1

}
> n,

one can argue in the same way as with IR and obtain the same contradiction. Hence,
we finish the proof. �
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