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LARGE-SCALE RIGIDITY PROPERTIES
OF THE MAPPING CLASS GROUPS

BRIAN H. BOWDITCH

We study the coarse geometry of the mapping class group of a compact
orientable surface. We show that, apart from a few low-complexity cases,
any quasi-isometric embedding of a mapping class group into itself agrees
up to bounded distance with a left multiplication. In particular, such a map
is a quasi-isometry. This is a strengthening of the result of Hamenstädt and
of Behrstock, Kleiner, Minsky and Mosher that the mapping class groups
are quasi-isometrically rigid. In the course of proving this, we also develop
the general theory of coarse median spaces and median metric spaces with
a view to applications to Teichmüller space, and related spaces.

1. Introduction

One of the main aims of this paper is to give an account of the quasi-isometric rigidity
of the mapping class group of a closed orientable surface. Quasi-isometric rigidity
was established in [Hamenstädt 2005; Behrstock, Kleiner, Minsky and Mosher
2012]. Here, we give a strengthening of this result which applies to quasi-isometric
embeddings (see Theorem 1.1 below).

Many of our arguments have parallels with those of [Behrstock, Kleiner, Minsky
and Mosher 2012], though the details are different. Another aim of this paper is to
set these arguments in a broader context. The key observation, made in [Bowditch
2013], is that the mapping class group admits a “coarse median” structure. The
median in this case is the centroid constructed in [Behrstock and Minsky 2011].
Here, in Section 7, we list a set of axioms related to subsurface projection (cf.,
[Masur and Minsky 2000]) which imply the existence of medians (see Theorem 1.4
below). The point is that the same axioms apply in other situations, notably to
Teichmüller space in either the Teichmüller metric or the Weil–Petersson metric.
It then follows that these also admit a coarse median structure. This is explained,
respectively, in [Bowditch 2016a] and [Bowditch 2015], where various consequences
of this observation for the large-scale geometry of these spaces are explored. Again,
many of the arguments follow along similar lines, and several general results of this

MSC2010: 20F65.
Keywords: mapping class group, quasi-isometry, rigidity, median.
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2 BRIAN H. BOWDITCH

paper are used in those papers (see, for example, Propositions 1.2 and 1.3 below, as
well as the structure of cubes discussed in Sections 10–12).

We begin by outlining the main results of this paper.
Let 6 be a compact orientable surface of genus g with p boundary components.

Let ξ(6)= 3g+ p−3 be the complexity of6. Write Map(6) for the mapping class
group. When this is viewed as a geometric object, we will use different notation.
In particular, we will write M(6) for the “marking graph” of 6 as discussed in
Section 8. In fact, any proper geodesic space on which Map(6) acts isometrically,
properly discontinuously and compactly (such the Cayley graph with respect to any
finite generating set) would serve for the present discussion. Any two such spaces
will be Map(6)-equivariantly quasi-isometric, by the Schwarz–Milnor Lemma.

It is shown in [Hamenstädt 2005; Behrstock and Minsky 2008] that M(6) has
coarse rank equal to ξ(6); that is the maximal dimension ν such that M(6) admits
a quasi-isometric embedding of Rν (see also [Eskin, Masur and Rafi 2017, Corollary
C] and [Bowditch 2013, Theorem 2.6]). Note that it follows that if6 and6′ are com-
pact orientable surfaces with M(6) quasi-isometric to M(6′), then ξ(6)= ξ(6′).

We will show:

Theorem 1.1. Suppose that6 and6′ are compact orientable surfaces with ξ(6)=
ξ(6′) ≥ 4, and that φ : M(6)→ M(6′) is a quasi-isometric embedding. Then
6 =6′, and φ is a bounded distance from the isometry of M(6) induced by some
element of Map(6).

It immediately follows that φ is, in fact, a quasi-isometry. One can also deal,
modulo some qualifications, with lower-complexity cases (see the discussion after
Theorem 15.2 here). As observed above, if one assumes that φ is a quasi-isometry
(and that6=6′), then this statement is given in [Hamenstädt 2005] and [Behrstock,
Kleiner, Minsky and Mosher 2012].

We remark that if one assumes quasi-isometric rigidity as given in those papers,
then one recovers (indirectly) that the quasi-isometry type of M(6) determines
the topological type of 6 (modulo a few low-dimensional exceptional cases) since
it determines Map(6) up to isomorphism (see, for example, [Rafi and Schleimer
2011] for a proof that Map(6) determines 6). Given this, Theorem 1.1 would
be equivalent to asserting that any quasi-isometric embedding of M(6) into itself
is necessarily a quasi-isometry (at least when ξ(6) ≥ 4). However, we will give
another proof of the rigidity statement in this paper.

As noted above, we base our account around the notion of a coarse median space,
as defined in [Bowditch 2013]. This is a geodesic metric space equipped with a
ternary operation satisfying certain conditions. Roughly speaking, these say that
when dealing with a finite number of points in the space, the ternary operation
behaves, up to bounded distance, like the standard median operation on the vertex
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set of a (finite) CAT(0) cube complex. Such a space comes with a notion of “rank”
which is the maximal dimension of such a cube complex needed for the hypothesis.

A related, but different, notion is that of a median metric space, which is also
central to our discussion. The definition of a median metric space is quite simple,
and is given in Section 2. For further discussion, see [Verheul 1993; Chatterji,
Druţu and Haglund 2010; Bowditch 2016c]. This has also been studied from a
combinatorial viewpoint; see for example, [Chepoi 2000]. In a median metric space,
any triple of points has a unique “median”, that is, a point lying between any pair
in the triple. This defines a continuous ternary operation, and gives the space the
structure of a topological median algebra. (For expositions of the theory of median
algebras, see [Isbell 1980; Bandelt and Hedlíková 1983; Roller 1998].) Again, one
can associate a “rank” to such a space as the maximal dimension of an embedded
cube. (Any CAT(0) cube gives rise example of such a space, after one replaces the
euclidean metric on each cube with the l1 metric. The vertex set is then also such a
space.) One can show that a complete connected median metric space of finite rank
is canonically bi-Lipschitz equivalent to a CAT(0) metric, [Bowditch 2016c].

The asymptotic cone (see [van den Dries and Wilkie 1984; Gromov 1993]) of a
coarse median space is a topological median algebra. If the space has finite rank ν,
then the asymptotic cone is bi-Lipschitz equivalent to a median metric space of rank
at most ν (see [Behrstock, Druţu and Sapir 2011; Bowditch 2014a] and Theorem
6.9 here). Also, the dimension of any compact subset thereof has dimension at most
ν. (This follows from [Bowditch 2013] as we discuss in Section 2.) From the fact
that Map(6) is a coarse median space one gets a median on its asymptotic cone.
This was previously obtained by other means in [Behrstock, Druţu and Sapir 2011].
Much of this is elaborated upon in [Bowditch 2013; 2014a]. Here we obtain more
information about the flats in such spaces, which we use for the rigidity result of
Theorem 1.1. Similar statements can be found in [Behrstock, Kleiner, Minsky and
Mosher 2012], though more specifically for the mapping class group.

We remark that, in [Rafi and Schleimer 2011], the rigidity of the mapping class
group is used to deduce the rigidity of the curve graph. Again, it would be interesting
to generalise this to quasi-isometric embeddings. As the authors observe, much
of their paper works for such embeddings. However there is a key point (aside
from their references to [Hamenstädt 2005; Behrstock, Kleiner, Minsky and Mosher
2012]) where an inverse quasi-isometry is needed.

We briefly state a few of the key results proven in this paper, which are used in
proving Theorem 1.1, and/or have applications elsewhere.

The first two relate to a median metric space. By a real cube in such a space,
we will mean a median-convex subset isometric to a finite l1-product of compact
real intervals. (See Section 3 for more precise definitions.) A (closed) subset is
cubulated if it is a locally finite union of real cubes. We show:
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Proposition 1.2. Suppose that M is a complete median metric space of rank ν <∞,
and that 8⊆ M is a closed subset homeomorphic to Rν. Then 8 is cubulated.

This is proven in Section 4 (see Proposition 4.3). Under additional topological
assumptions one can show that 8 is median-convex and isometric to Rν with the l1

metric (see Proposition 4.6). Using this, one gets a result about products of R-trees:

Proposition 1.3. Suppose that M is a complete median metric space of rank ν <∞,
with ν ≥ 2. Suppose that D is a direct product of ν R-trees, and that none of the
factors has a point of valence 2 (i.e., a point which separates the R-tree into exactly
2 components). Suppose that f : D→ M is a continuous injective map, with closed
image, f (D)⊆M. Then f is a median homomorphism, and f (D) is median-convex
in M.

This is shown at the end of Section 4 (Proposition 4.8). This result is used in
[Bowditch 2015; 2016a]. A more direct proof in a specific case is given in [Bowditch
2016b] (see Proposition 2.1 thereof). Analogous, but different, statements can be
found in [Kleiner and Leeb 1997] and [Kapovich, Kleiner and Leeb 1998].

We make much use of subsurface projections from the marking graph, M(6),
to curve graphs associated to subsurfaces of 6. In Section 7, we condense the
essential information we need into a set of axioms, (A1)–(A10). This means that
much of the argument can be put in a more general setting. In particular, we have the
following paraphrasing of a result which will be stated more formally in Section 7;
see Theorems 7.1 and 7.2.

Theorem 1.4. Suppose that to each subsurface, X, of 6, we have associated
geodesic metric spaces, M(X) and G(X), together with a collection of projection
maps between them satisfying axioms (A1)–(A10). Then each M(X) has the natural
structure of a coarse median space in such a way that each projection map is a
quasimorphism (i.e., a median homomorphism up to bounded distance).

Note that this includes the case where X = 6. Here, the spaces G(X) are
(assumed to be) uniformly hyperbolic and the median is the usual centroid in such
a space. The various constants involved in the conclusion depend only on those of
the hypotheses (A1)–(A10).

In this paper, we are interested mainly in the case where M(X) and G(X)
are respectively the marking graph, M(X) and G(X) and the curve graph of the
subsurface X. The same axioms can also be applied to Teichmüller space in either
the Teichmüller metric [Bowditch 2016a] or the Weil–Petersson metric [Bowditch
2015].

A simple consequence of Theorem 1.4 is that the asymptotic cone of M(6) is a
topological median algebra. In fact, it is bi-Lipschitz equivalent to a median metric
space, which then allows us to bring the results mentioned above into play.
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In outline this paper is structured as follows. Sections 2 to 4 are devoted to a
general discussion of median metric spaces. In Section 5 we review properties
of asymptotic cones. In Section 6 we discuss general coarse median spaces. In
Section 7 we give a set of hypotheses relating to subsurface projection which imply
that a geodesic metric space admits a coarse median, and give a precise formulation
and proof of Theorem 1.4. This is then applied to the marking graph in Section 8.
In Sections 9 to 13, we explore further properties of the marking graph and its
asymptotic cone, setting as much as possible in a general context (so that it can
be applied elsewhere to Teichmüller space). In Section 14, we explain, in general
terms, how the asymptotic cone can be used to control Hausdorff distance. Finally,
in Section 15, this applied to the marking complex, to give a proof of Theorem 1.1,
together with some discussion of the lower complexity cases.

Notation. Throughout this paper, we will use G(X) and M(X) respectively to
denote the curve graph and marking graph of a subsurface X of 6. (We allow
X =6, and we need to modify the definitions in the case where X is an annulus,
as discussed in Section 8.) We will use the notation G(X) and M(X) when the
statements apply to the more general spaces satisfying the axioms laid out in
Section 7. (This symbol M will generally denote a coarse median space, as in
Section 6.) Note that the curve graph G(X) plays two slightly different roles: it
is one of the family of spaces satisfying these axioms; also its vertex set can be
identified with the set of annular subsurfaces of X , and which in this capacity can
be viewed as an indexing set. (We remark that in [Bowditch 2013], and some
other references, the notation 2(X) and 3(X) was used respectively for G(X) and
M(X).) For the main applications in the present paper, there would be no loss in
interpreting G(X),M(X) as G(X),M(X), respectively.

2. Median metric spaces

We begin with some general discussion of median metric spaces. For elaboration
relevant to this paper, see for example, [Verheul 1993; Chatterji, Druţu and Haglund
2010; Bowditch 2016c].

Let (M, ρ) be a metric space. Given a, b ∈ M, let

[a, b] = [a, b]ρ = {x ∈ M | ρ(a, b)= ρ(a, x)+ ρ(x, b)}.

Thus, [a, b] = [b, a] and [a, a] = {a}.

Definition. We say ρ is a median metric if, for all a, b, c∈M, [a, b]∩[b, c]∩[c, a]
consists of exactly one element of M.

We denote this element by µ(a, b, c)— the median of a, b, c. It follows using
[Sholander 1954] that (M, µ) is a median algebra (see [Verheul 1993; Chatterji,



6 BRIAN H. BOWDITCH

Druţu and Haglund 2010] and Section 2 of [Bowditch 2016c]). Moreover, [a, b]
is exactly the median interval between a and b, i.e., [a, b] = [a, b]µ = {x ∈ M |
µ(a, b, x) = x}. Conversely, note that if (M, µ) is a median algebra, and ρ is
a metric satisfying [a, b]µ = [a, b]ρ for all a, b ∈ M, then ρ is a median metric
inducing µ. Also, the map µ : M3

→ M is continuous (that is, M is a “topological
median algebra”).

The following definitions only require the median structure on M.

Definition. A subset B ⊆ M is a subalgebra if it is closed under µ. It is convex if
[a, b] ⊆ B for all a, b ∈ B. An n-cube is a subset of M median-isomorphic to the
direct product of n two-point median algebras: {−1, 1}n. (Note that any two-point
set admits a unique median structure.) We refer to a 2-cube as a square. The rank
of M is the maximal n such that M contains an n-cube. The rank is deemed to be
infinite if there are cubes of all dimensions.

Given A ⊆ M write 〈A〉 and hull(A) respectively for the subalgebra generated
by A and the convex hull of A, that is, respectively, the smallest subalgebra and
smallest convex set in M containing A. Clearly 〈A〉⊆ hull(A). If A is finite, then so
is 〈A〉. In fact, |〈A〉| ≤ 22|A|. Any finite median algebra can be canonically identified
as the vertex set of a finite CAT(0) complex; see [Chepoi 2000].

Note that any interval in a connected median metric space is connected (since
the map x 7→ µ(a, b, x) is a continuous retraction to [a, b]). It follows that any
connected component of a median metric space is convex.

Definition. We say that a median metric space is proper if it is connected, complete
and has finite rank.

Henceforth we will assume that M is a proper median metric space, though as
we will comment, many of the constructions only require it to be a median metric
space, or indeed just a median algebra.

It was shown in [Bowditch 2014a, Corollary 1.3] that if M is proper, then every
interval [a, b] in M is compact. (One can go on to deduce that the convex hull of
any compact set is compact.)

We say that a topological median algebra is locally convex if every point has a
base of convex neighbourhoods.

Lemma 2.1. Any median metric space M of finite rank is locally convex.

Proof. This follows since M is “weakly locally convex” in the sense of [Bowditch
2013, Section 7]. (Note that if a, b ∈ M, then the diameter of [a, b] is equal to
ρ(a, b).) Since it has finite rank, Lemma 7.1 of [loc. cit.], tells us that it is locally
convex. �

(In the case of interest here, namely the asymptotic cone of a finite rank coarse
median space, the conclusion also follows from Lemma 9.2 of [loc. cit.].)
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It was also shown there (Theorem 2.2) that any locally compact subset of M has
topological dimension at most rank(M). (For more discussion of dimension, see
Section 4 of the present paper.)

Theorem 2.2 [Bowditch 2016c, Theorem 1.1]. If (M, ρ) is a proper median metric
space, then there is a canonically associated bi-Lipschitz equivalent metric, σρ , on
M for which (M, σρ) is CAT(0).

In fact, we can arrange that ρ/
√

rank(M)≤ σρ ≤ ρ.
Note that it immediately follows that M is contractible.
A simple example is Rn with the l1 metric. In this case, σρ recovers the euclidean

metric on Rn. Any convex subset of Rn has the form P =
∏n

i=1 Ii where I ⊆ R is
a real interval (possibly unbounded). If each Ii is either a singleton or all of R, we
refer to P as a coordinate plane. If each Ii = [ai , bi ] with ai < bi , we refer to P
as an l1 cube. We refer to P =

∏n
i=1(ai , bi ) as the relative interior of P, and we

refer to the elements of Q =
∏n

i=1{ai , bi } as the corners of P. Note that these are
determined by the intrinsic geometry of P. Also P = hull(Q). In fact, P = [a, b]
where a, b are any pair of opposite corners of P.

Another class of examples arise from CAT(0) complexes. Suppose that ϒ is (the
topological realisation of) a finite CAT(0) complex. Suppose that each cell is given
the structure of an l1-cube. This induces a path metric, ρ, on ϒ , so that (ϒ, ρ) is
a median metric space. In this case, (ϒ, σρ) is a euclidean CAT(0) cube complex,
where we can allow the cells to be rectilinear parallelepipeds.

Definition. We refer to a space of the form (ϒ, ρ) as an l1-cube complex.

There is a sense in which any proper metric median space can be approximated
by subspaces of this form. The following was shown in [Bowditch 2016c, Lemmas
7.5 and 7.6].

Lemma 2.3. Let (M, ρ) be a complete connected median metric space. Suppose
that 5 ⊆ M is a finite subalgebra. Then there is a closed subset ϒ ⊆ M which
has the structure of a finite l1-cube complex in the induced metric ρ, and such that
5⊆ ϒ is exactly the set of vertices of this complex.

The statement is taken to imply that the metric ρ restricted to ϒ is already a path
metric on ϒ . In general, ϒ will not be unique. (One can make a canonical choice
by taking cells to be totally geodesic in the metric σρ on M, but we will not need
this here.) Note that we do not assume here that the cells of ϒ are convex in M. (If
that were the case, we refer to ϒ as a “straight” cube complex, as we will define
more formally in Section 3.)

We continue with some more general observations. For the moment, M can be
any median metric space.
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Given a, b ∈ M, we define φ = φa,b : M→ [a, b] by φ(x)= µ(a, b, x). This is
a 1-Lipschitz median epimorphism.

Definition. We say that two pairs (a, b), (c, d) in M2 are parallel if [b, c] = [a, d].

It is equivalent to saying that both b, c ∈ [a, d] and a, d ∈ [b, c]. When a, b, c, d
are all distinct, it is also equivalent to saying that a, b, d, c is a square. Note that
parallelism is an equivalence relation on M2. If a, b and c, d are parallel, then
φa,b|[c, d] is an isometry (hence a median isomorphism) from [c, d] to [a, b]. Its
inverse is φc,d |[a, b].

The following is a standard notion for median algebras.

Definition. If C ⊆ M is closed and convex, we say that φ : M→ C is a gate map
of M to C if φ(x) ∈ [x, c] for all x ∈ M and c ∈ C .

A more detailed discussion of gate maps can be found in [Bowditch 2016a,
Section 2.4].

One verifies that φ is a 1-Lipschitz retraction of M to C , and a median homo-
morphism. If φ exists then it is unique. Note that the map φa,b of the previous
paragraph is a gate map to [a, b]. In fact, if M is proper, then gate maps to closed
convex sets always exist. This can be seen using the fact that intervals are compact,
though we will not need this here.

Definition. A wall in M is a partition of M into two nonempty convex subsets.

This is equivalent to a median epimorphism φ :M→{−1, 1}, where the partition
is given by {φ−1(−1), φ−1(1)}. We can speak about an oriented or unoriented
wall according to whether we consider the partition as an ordered or an unordered
pair. Any two disjoint convex subsets, C, D, of M are separated by some wall,
that is, C ⊆ φ−1(−1) and D ⊆ φ−1(1). We say two walls, φ,ψ , cross if the map
(φ, ψ) : M→ {−1, 1}2 is surjective. The rank of M can be equivalently defined
as the maximal cardinality of a set of pairwise crossing walls. We say that M is
n-colourable if we can colour the walls of M with n colours such that no two walls
of the same colour cross. This implies that rank(M) ≤ n. (See [Bowditch 2013,
Section 12] for more discussion of colourability.)

These notions only require the median structure on M. If 5 is a finite median
algebra, then we can identify the set of (unoriented) walls with the set of hyperplanes
in the associated finite CAT(0) complex. In this case, two walls cross if and only if
the corresponding hyperplanes intersect.

If a, b ∈ M, then [a, b] admits a partial order defined by x ≤ y if x ∈ [a, y] (or
equivalently y ∈ [x, b]). If [a, b] has rank 1, this is a total order. If M is connected
and metrisable, then [a, b] is isometric to a compact real interval. In particular, any
connected median metric space of rank 1 is an R-tree. (In this case, the metric σρ ,
described above, agrees with ρ.)
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We also note the following construction of quotient median algebras. Suppose
that M is a median algebra, and that ∼ is an equivalence relation on M such that
whenever a, b, c, d ∈ M with c ∼ d, then µ(a, b, c)∼ µ(a, b, d). Let P = M/∼.
Given x, y, z ∈ P, set µP(x, y, z) to be the equivalence class of µ(a, b, c), where
a, b, c are representatives of x, y, z respectively. This is well defined, the quotient
(P, µP) is a median algebra, and the quotient map is an epimorphism. Indeed any
epimorphism of median algebras arises in this way.

We finish this section with the following proposition which will be applied to
asymptotic cones of finite-rank coarse median spaces (see Lemma 6.6).

Proposition 2.4. Let (M, µ) be a median algebra with rank(M) ≤ ν, and let
ρ be a geodesic metric on M. Suppose that there is some k ≥ 1 such that for
all a, b, c, d ∈ M, we have ρ(µ(a, b, c), µ(a, b, d)) ≤ kρ(c, d). Then there is a
median metric λ on M, bi-Lipschitz equivalent to ρ, and which induces the median µ.
Moreover, the bi-Lipschitz constants depend only on ν and k.

The second hypothesis asserts that the projection to intervals is uniformly Lips-
chitz. (It is precisely axiom (L2) of [Bowditch 2014a, Section 1].) It implies that
the median operation is Lipschitz hence continuous (so M is a topological median
algebra). In fact, we can weaken the geodesic condition to assert that M is Lipschitz
path-connected, in the sense of axiom (L3) there. The proof is the same, but we
won’t need the more general statement here.

In the same work, it was shown that if (M, µ) is also finitely colourable, then
it embeds in a finite product of trees, so the induced metric is median. The proof
below amounts to observing that, under the weaker hypothesis of finite rank, the
same construction gives a median metric directly.

Proof of Proposition 2.4. We write 〈a, b:c〉λ = 1
2(λ(a, c)+ λ(b, c)− λ(a, b)) (i.e.,

the “Gromov product”). Then [a, b]λ = {x ∈ M | 〈a, b:x〉λ = 0}. Thus, λ is a
median metric inducing µ if and only if [a, b]λ = [a, b] for all a, b ∈ M. In this
case, given any a, b, c ∈ M we have ρ(c, d)= 〈a, b:d〉λ, where d =µ(a, b, c) (see,
for example, [Bowditch 2014a, Section 2]).

Now, if 5⊆ M is a finite subalgebra, we put a metric, λ5, on 5 as in [Bowditch
2014a, Section 5]. (To each wall, W, of 5 we associate a “width”, λ(W ), and set
λ5(a, b) =

∑
W λ(W ), as W ranges over the set, W(a, b), of walls separating a

from b.) It is easily seen that [a, b]λ5 = [a, b] ∩5, the latter being the intrinsic
median interval in5. (This holds since W(a, b)⊆W(a, c)∪W(b, c), with equality
if and only if c ∈ [a, b] ∩5.) Therefore λ5 is a median metric on 5.

Moreover, λ5 is uniformly bi-Lipschitz equivalent to ρ restricted to 5. This
follows as in [Bowditch 2014a, Section 5]. Note that if x, y ∈ M, then [x, y] ∩5
has rank at most ν. It follows by Dilworth’s lemma that [x, y] ∩5 is ν-colourable
(Lemma 2.3 of the same work) and so embeddable as a subalgebra of the cube
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[0, 1]ν (Proposition 1.4 there). Lemmas 5.2 and 5.4 there then respectively give us
lower and upper bounds on λ(x, y) in terms of ρ(x, y). (Note that, in the notation
of that work, T ≤ ρ(x, y), if we assume that M is a geodesic space.)

As in Section 6 of [Bowditch 2014a], we note that the set of finite subalgebras
of M, ordered by inclusion, is cofinal in the set of all finite subsets of M. Therefore,
by Tychonoff’s theorem, we find a cofinal set of finite subalgebras, 5, so that
λ5(a, b) → λ(a, b) for all a, b ∈ M, where λ is a metric on M, bi-Lipschitz
equivalent to ρ.

To see that λ is a median metric inducing ρ, we need to check that [a, b]λ=[a, b].
To this end, suppose a, b, c ∈ M and let d = µ(a, b, c). Note that a, b, c, d ∈ 5
for a cofinal subset of those 5 in our cofinal set of subalgebras. If c ∈ [a, b],
then 〈a, b:c〉λ5 = 0 for all such 5, so 〈a, b:c〉λ = 0, so c ∈ [a, b]λ. Conversely, if
c∈[a, b]λ, then λ5(c, d)=〈a, b:c〉λ5→0, so λ(c, d)=0, so c=d , so c∈[a, b]. �

3. Blocks

In this section, we describe top-dimensional cubes in median metric spaces.
Let M be a proper median metric space. Throughout this section, we will use ν

to denote rank(M).

Definition. An n-block in M is a convex subset isometric to an l1
− product of n

nontrivial compact real intervals.

This is equivalent to saying that it is convex and median-isomorphic to [−1, 1]n.
Clearly, n ≤ ν.

We write P ≡
∏n

i=1 Ii , where each Ii is a compact real interval, and can be
identified with a 1-face of P.

Let Q(P) be the set of corners of P, that is, Q(P)=
∏

i {ai , bi }where Ii =[ai , bi ].
It is clear that Q(P) is intrinsically an n-cube in P, hence an n-cube in M. We see
P = hull(Q(P)). In fact, P = [a, b], where a, b are any pair of opposite corners
of Q.

Lemma 3.1. Let M be a proper median metric space of rank ν. The following are
equivalent for a subset P ⊆ M :

(1) P is ν-block.

(2) P is the convex hull of a ν-cube in M.

(3) P is isometric to a ν-dimensional l1-cube.

Proof. The fact that (2) implies (1) was proven in [Bowditch 2016c, Proposition 5.6].
Suppose (3) holds. Let a, b be opposite corners of P (defined intrinsically). Directly
from the definition of intervals in M, we can see that P⊆[a, b], and so P⊆hull(Q),
where Q is the set of corners of P. By the observation preceding the lemma, we
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know that hull(Q) is a ν-block, and it now follows easily that we must have
P = hull(Q). �

In (3) here, we are assuming that P is isometric to an l1-cube in the induced
metric. We suspect that it would be sufficient to assume that this were the case for
the induced path-metric. We will show this to be the case under some regularity
assumptions (see Lemma 3.4 below).

Lemma 3.2. Let M be a proper median metric space of rank ν. Suppose that
P, P ′ ⊆ M are ν-blocks, and that P ∩ P ′ is a common codimension-1 face. Then
P ∪ P ′ is also a ν-block.

Proof. Let R0=Q(P∩P ′)=Q(P)∩Q(P ′). Let R=Q(P)\R0 and R′=Q(P ′)\R0.
Thus R0, R, R′ are parallel (ν − 1)-cubes. In particular, R ∪ R′ is a ν-cube. Let
P ′′= hull(R∪ R′). By Lemma 3.1, this is a ν-block. We claim that R0⊆ P ′′. For if
r0 ∈ R0, let r ∈ R and r ′ ∈ R′ be adjacent vertices of Q(P) and Q(P ′) respectively.
Thus, [r0, r ] and [r0, r ′] are 1-faces of Q(P) and Q(P ′). In particular, [r0, r ] ∩
[r0, r ′]={r0} and so r0∈[r, r ′]⊆ P ′′ as claimed. It now follows that P∪P ′= P ′′. �

More generally, if P, P ′ are any two blocks, then so is P ∩ P ′ provided it is
nonempty. In fact, P ∩ P ′ = hull(Q), where Q is the projection (image of the gate
map) of Q(P ′) to P. In particular, Q(P ∩ P ′)⊆ 〈Q(P)∪ Q(P ′)〉.

We have the following procedure for subdividing blocks. Suppose P ≡
∏n

i=1 Ii .
If Fi ⊆ Ii are finite subsets containing the endpoints, then F =

∏n
i=1 Ii is a finite

subalgebra of P. In fact, any finite subalgebra of P containing Q has this form. We
can represent P as an l1-cube complex whose vertex set is exactly F. We refer to
this as a subdivision of P.

Lemma 3.3. Suppose that P is a finite set of blocks in M. Then we can subdivide
these blocks to find another set of blocks, P ′, with

⋃
P =

⋃
P ′ such that any two

blocks of P ′ meet, if at all, in a common face.

Proof. Let A=
⋃

P∈P Q(P) and let 5= 〈A〉. If P ∈P , then P∩5 is a subalgebra
of P containing Q(P) and so determines a subdivision of P. We subdivide each
element of P in this way to give us our new collection P ′. Now if P, P ′ ∈ P ′, then
Q(P ∩ P ′) ⊆ 〈Q(P) ∪ Q(P ′)〉 ⊆ 5. But by construction, P ∩5 ⊆ Q(P) and
P ′ ∩5 ⊆ Q(P ′), so Q(P ∩ P ′) ⊆ P ∩ P ′ ∩5 ⊆ Q(P)∩ Q(P ′). It now follows
that P ∩ P ′ is a common face of P and P ′ as claimed. �

In other words, we can realise
⋃

P as an l1-cube complex in M all of whose
cells are blocks.

Definition. A straight cube complex in M is an embedding of a locally finite cube
complex in M such that each cell is a block (necessarily of the corresponding
dimension).
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The following is equivalent to the informal definition of “cubulated” given in
Section 1.

Definition. A cubulated set is a subset of M which is a locally finite union of
blocks.

A cubulated set, 8, is clearly closed, and by the above, we see that any point
x ∈8 has a neighbourhood in 8 which is a straight cube complex contained in 8.
In fact, we can assume that x is a vertex of this cube complex. Note also that a
finite union or a finite intersection of cubulated sets is also cubulated.

In fact, if 81, . . . , 8n is a finite set of cubulated sets, with x ∈
⋂

i 8i , then
we can find a straight cube complex, ϒ ⊆

⋃
i 8i as above, with each ϒ ∩8i a

subcomplex of ϒ . (This is a consequence of the construction of Lemma 3.3.)

Lemma 3.4. Suppose that 8⊆ M is cubulated. Suppose that P ⊆8 is isometric
to a ν-dimensional l1-cube in the path-metric induced from ρ. Then P is a ν-block
in M.

Proof. By Lemma 3.3 we can find a straight cube complex ϒ ⊆8, with P ⊆ ϒ .
We can assume that the intrinsic corners of P are all vertices of ϒ . It now follows
that P is a union of ν-blocks of M, which are ν-cells of ϒ . These determine a
subdivision of P in the induced path metric on P. Applying Lemma 3.2 inductively,
we see that P is a block in M. �

Definition. Suppose that 8⊆ M is cubulated. We say that a point x ∈8 is regular
if it has a neighbourhood in 8 which is a ν-block in M. Otherwise, we say that x
is singular. We write 8S for the set of singular points of 8.

Note that 8S is a cubulated set of dimension at most ν− 1.
Suppose now that 8 is cubulated and homeomorphic to Rν. If K ⊆8 is compact,

then K lies inside a straight cube complex, ϒ , in 8. Moreover, we can assume that
any (ν− 1)-cell of ϒ meeting K lies in exactly two ν-cells of ϒ . By Lemma 3.2,
the union of these to cells is also a ν-block in M. From this, we deduce:

Lemma 3.5. Suppose that 8⊆ M is cubulated and homeomorphic to Rν. Then 8S

is a cubulated set of dimension at most ν− 2.

Note that, if P is any block in 8, then the relative interior of P in 8 is exactly
the intrinsic relative interior of P, as defined earlier.

Definition. A leaf segment of 8 is a closed subset, L , of 8 homeomorphic to a
real interval such that if x ∈ L , then there is a block P ⊆ 8 containing x in its
relative interior, with L ∩ P lying in a coordinate line of P. If the real interval is
the whole real line, we refer to L as a leaf.

Clearly this implies that L ∩8S =∅. We note:

Lemma 3.6. Every leaf segment of 8 is convex in M.
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Proof. Let L ⊆8 be a leaf segment, and suppose I ⊆ L is a compact subinterval.
Since I ∩8S = ∅, we can find a subset P ⊆ 8 which is a block in the intrinsic
path metric on P, and with I ⊆ P an intrinsic coordinate line with respect to that
structure. But by Lemma 3.4, P is a block in M, and so I is convex. It now follows
that L is convex. �

Definition. A flat in M is a closed convex subset isometric to Rν with the l1 metric.

(Note that we always take a flat to be of maximal dimension; that is, ν= rank(M).)
In fact (as with blocks), we see that any closed subset of M which is isometric

to Rν in the induced metric is flat. (Indeed, we suspect this remains true if we
substituted “induced path-metric” for “induced metric” in the above.) Also, any
closed convex subset of M median isomorphic to Rν, with the standard product
structure, is a flat. In particular, the notion depends only on the topology and median
structure.

Clearly a flat is a cubulated set with empty singular set. Conversely, we have:

Lemma 3.7. Suppose that8⊆ M is a cubulated set homeomorphic to Rν, and with
8S =∅. Then 8 is a flat.

Proof. First note that, in the intrinsic path metric, 8 is locally isometric to Rν in the
l1 metric. Since it is complete, it must be globally isometric. By Lemma 3.4 any
subset of 8 that is intrinsically a block is indeed a block in M, and so, in particular,
convex. Since any two points of 8 are contained in such a subset, it follows that 8
is convex. The induced path metric is therefore the same as the induced metric. �

Here is a criterion for recognising that a cubulated set is indeed nonsingular:

Lemma 3.8. Suppose that8⊆M is cubulated, and that there is a homeomorphism
f : Rν→8 such that if H ⊆ Rν is any codimension-1 coordinate plane in Rν then
f (H) is cubulated. Then 8 is a flat, and f is a median isomorphism.

Proof. Suppose that L ⊆ Rν is a coordinate line, and that x ∈ L with f (x) /∈8S .
Let H1, H2, . . . , Hn be the codimension-1 coordinate planes through x , with L =⋂n

i=2 Hi , and with H1 orthogonal to L . As noted after Lemma 3.3, we can find a
neighbourhood, ϒ , of f (x) in 8, which is a straight cube complex, with f (x) a
vertex, and each f (Hi )∩ϒ a subcomplex of ϒ . In particular, f (L)=

⋂n
i=2 f (Hi )

is a 1-dimensional subcomplex, and so meets f (x) in a pair of 1-cells of ϒ . Let 1
be the link of f (x) in ϒ . Since f (x) /∈8S , this is a cross polytope. Note that f (L)
determines two vertices, p, q, of 1. Now f (H1) separates the two rays of f (L)
with basepoint f (x) in 8. It therefore determines a subcomplex of 1 separating p
from q in 1. It follows that p and q must be opposite vertices of 1. We see that
the union of the two 1-cells of f (L) meeting x is convex.

In summary, we have shown that, away from 8S , the images of coordinate lines
are locally convex, that is, leaf segments of 8. By a simple compactness argument,
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it now follows that if I ⊆ Rν is a compact interval lying in a coordinate line with
f (I )∩8S =∅, then f (I ) is a leaf segment of8. We can now deduce that if P ⊆8
is any ν-block in 8 \8S , then f −1

|P is a median isomorphism to a block f −1(P)
in Rν. In fact, it is enough that P should not meet 8S in its relative interior.

Suppose now that y ∈ 8. Let ϒ ⊆ 8 be a straight cube complex that is a
neighbourhood of y, and with y as a vertex. To simplify notation, suppose that
f −1(y) is the origin in Rν. Let P be a cube of ϒ with y a corner of P. Then
f −1 P has the form

∏ν
i=1[0,±ti ] for some ti > 0. Since there are only finitely many

such P, after shrinking them, we can assume that the preimages all have the form∏ν
i=1[0,±t] for some t > 0. We see that there are exactly 2ν such cubes, which fit

together into a bigger cube of the form f ([−t, t]ν). In particular, the link of y in
ϒ is a cross polytope, and y is regular.

We have shown that 8S =∅, and so by Lemma 3.7, 8 is a flat. �

For reference elsewhere (see Proposition 4.8 below) we note that there is a
variation on Lemma 3.8, where Rν is replaced by a real cube, [−1, 1]ν, and 8=
f ([−1, 1]ν). In fact, it is enough to assume that the relative interior, f ((−1, 1)n)⊆
8, is cubulated (in the sense that any compact subset of f ((−1, 1)ν) lies inside
another compact subset of 8 which is cubulated). Also, we only need to consider
coordinate planes restricted to the interior of 8. The argument is essentially the
same, this time applied to the relative interior of 8 and then taking the closure.

4. Cubulating planes

In this section, we discuss the regularity of “top-dimensional manifolds” in M. These
play an important role in [Kleiner and Leeb 1997; Kapovich, Kleiner and Leeb
1998; Behrstock, Kleiner, Minsky and Mosher 2012]. Our argument is analogous
to those to be found there, though set in a somewhat different context. Here, we
interpret this in terms of cubulations. We will only use dimension of (locally)
compact sets, so all the standard definitions are equivalent. For definiteness, we can
interpret the dimension of a topological space to be its covering dimension. (Note
that this differs from the notion of “topological rank” used in [Kleiner and Leeb
1997].)

Suppose that (M, ρ) is a complete median metric space. We first note:

Lemma 4.1. Any locally compact subset of M has topological dimension at most
rank(M).

Proof. First note that by Lemma 2.1, M is locally convex. The statement then
follows by Theorem 2.2 and Lemma 7.6 of [Bowditch 2013]. �

From this we see that if M is homeomorphic to Rν, then ν = rank(M). (The
fact that ν ≥ rank(M) is an immediate consequence of Lemma 4.1. For the other



LARGE-SCALE RIGIDITY PROPERTIES OF THE MAPPING CLASS GROUPS 15

direction, note that by Lemma 2.3, any n-cube in M is the vertex set of an embedded
l1-cube in M, and so n ≤ ν, and it follows that rank(M)≤ ν.)

In fact, we can say a lot more about the regularity of such a space:

Lemma 4.2. If M is a complete median metric space homeomorphic to Rν, then M
is cubulated.

In particular, we see that M is locally isometric to Rν with the l1 metric away
from a cubulated singular set of dimension at most ν − 2. (Note that we are not
claiming that the cubulation is combinatorial in the sense of PL manifolds. Certainly
the link of any cell in the cubulation will be a homology sphere. It is not clear
whether it need be a topological sphere in this situation.)

Proof of Lemma 4.2. Let B1 ⊆ B0 be topological ν-balls in M. We suppose
that N (B1; 2u) ⊆ B0, where N ( · ; r) denotes the metric r-neighbourhood with
respect to the metric ρ. Let 0 < s < t < u be sufficiently small depending on
u, as described below. We take a topological triangulation of ∂B0, all of whose
simplices have diameter at most s. Let A ⊆ ∂B0 ⊆ M be the set of vertices of this
triangulation, and let5=〈A〉⊆M. By Lemma 2.3,5 is the vertex set of an l1-cube
complex ϒ embedded in M. We extend the inclusion of A into ϒ to a continuous
map f : ∂B0→ϒ . Provided s is small enough in relation to t , we can arrange that
the ρ-diameter of the image of each simplex is at most t . (For example, take the
corresponding euclidean metric, σϒ , on ϒ . Then (ϒ, σϒ) is CAT(0), and we can
map in simplices, inductively on the 1-skeleta by taking geodesic rulings. In this
way the σϒ -diameter of the image of any simplex is at most s. Now ρ ≤ σϒ

√
ν, so

this works provided s
√
ν ≤ t .) Now ρ(x, f (x))≤ s+ t for all ∂B0. Again, provided

t is small enough in relation to u, we can find a homotopy, F : ∂B0×[0, 1] → M,
between f and the inclusion of B0 into M whose trajectories all have length at
most u. In particular, the image of the homotopy lies in N (∂B0; u) and is therefore
disjoint from B1. For this, it is convenient to take the CAT(0) metric, σ , on M, as
given by Theorem 2.2. We can then use linear isotopy in this metric, that is, the
trajectory from x to f (x) is the σ -geodesic segment. Again we note that ρ ≤ σ

√
ν,

so this works provided (s+ t)
√
ν ≤ u.

Now ϒ is a CAT(0) complex in the euclidean metric, and so in particular is
contractible. We can therefore extend f : ∂B0 → ϒ arbitrarily to a continuous
map f : B0→ ϒ . We combine this with the homotopy constructed above to give a
continuous map g : B0→ M which restricts to inclusion on ∂B0. More formally, if
x ∈ B0 \ {0}, write x = λx̂ , where λ ∈ (0, 1] and x̂ ∈ ∂B0 (via any homeomorphism
of B0 with the unit ball in Rν). If λ ≤ 1

2 , then set g(x) = f (2λx̂). If λ ≥ 1
2 , then

set g(x)= F(x̂, 2λ− 1). We set g(0)= 0. Note that g(B0)= f (B0)∪ image(F),
and we have noted that B1∩ image(F)=∅, and so B1∩ g(B0)⊆ f (B0). But now,
B0⊆ g(B0) (since g|∂B0 is just inclusion). It therefore follows that B1⊆ f (B0)⊆ϒ .
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We do not know a priori that ϒ is a straight complex. However, every ν-cell of
ϒ must be a ν-block. Moreover, B1 must lie in the union of these ν-cells. (For if
x ∈ B1, then any cell of ϒ must lie in a ν-cell, otherwise some neighbourhood of x
in B1 would have dimension at most ν− 1.) Since B1 was an arbitrary ν-ball in M,
we see that every compact subset of M lies in a finite union of ν-blocks of M. It
follows that M is cubulated. �

We can give a more general version of this for subsets of a proper median metric
space as follows (given as Proposition 1.2 in Section 1).

Proposition 4.3. Suppose that M is a complete median metric space of rank at most
ν, and that 8⊆ M is a closed subset homeomorphic to Rν. Then 8 is cubulated.

Clearly, in this case, the rank will be exactly ν. As before, we see that 8 is
locally isometric to Rν in the l1 metric away from a codimension-2 singular set
(see Lemma 3.5).

Note that there is no loss in assuming that M is connected (hence “proper”
in the terminology of Section 3) since we can simply restrict to the component
containing 8. We have already observed in Section 2 that this is convex, hence
intrinsically a complete median metric space.

For the proof, will need the following two topological lemmas:

Lemma 4.4. Suppose that X is a Hausdorff topological space and that B, P ⊆ X
are embedded topological n-balls, with intrinsic boundary spheres S(B) and S(P)
respectively. Suppose that P \ S(P) is open in X , that P ∩ S(B) = ∅ and that
B ∩ P \ S(P) 6=∅. Then P ⊆ B.

Proof. Write I (B)= B \S(B) and I (P)= P \S(P) for the relative interiors. These
are both homeomorphic to Rn. Let U = I (P)∩ B = I (P)∩ I (B). By assumption,
U 6=∅. Now I (P) is open in X , so U is open in I (B). Thus, U is homeomorphic
to an open subset of Rn, hence, by invariance of domain, it is also open in I (P). But
U = I (P)∩ B, so U is also closed in I (P), and so, by connectedness, U = I (P).
In other words, I (P)⊆ I (B), and it follows that P ⊆ B as claimed. �

For the second topological lemma, we need the following definition.

Definition. The (locally) compact dimension of a Hausdorff topological space is
the maximal topological dimension of any (locally) compact subset.

Clearly the compact dimension is at most the locally compact dimension, which in
turn is at most the “separation dimension” as defined in [Bowditch 2013, Section 7].

Lemma 4.5. Suppose that M is a Hausdorff topological space of compact dimen-
sion at most ν. Suppose that B is a topological ν-ball with boundary ∂B. Suppose
that f0, f1 : B→ M are continuous and homotopic relative to ∂B, and that f0 is
injective. Then f0(B)⊆ f1(B).



LARGE-SCALE RIGIDITY PROPERTIES OF THE MAPPING CLASS GROUPS 17

The proof is based on an argument in Section 6.1 of [Kleiner and Leeb 1997]. A
related, but slightly different statement can be found in [Behrstock, Kleiner, Minsky
and Mosher 2012, Section 6]. In what follows, Hr will denote Čech homology
with coefficients in a field (say Z2 to be specific). We will only deal with compact
spaces, so that the usual homology axioms, in particular, homotopy, excision and
exactness, hold. We need compact spaces and field coefficients for exactness; see
[Eilenberg and Steenrod 1952, Chapter IX]. (Note that in [Kleiner and Leeb 1997],
it is implicit from context that singular homology is being used. As a consequence
they use open sets instead of compact sets.) Note that, if K is compact and of
dimension at most ν, then Hn(K , A) is trivial for any compact A ⊆ K and any
n > ν.

Proof. Let C = f0(B), D = f1(B), S = f0(∂B) = f1(∂B) and let E ⊆ M
be the image of a homotopy from f0 to f1. Thus, S ⊆ C ∩ D ⊆ C ∪ D ⊆ E
are all compact. Suppose, for contradiction, that p ∈ C \ D. Let N ⊆ C be
an open neighbourhood of p in C , whose closure is homeomorphic to a closed
ν-ball disjoint from D. Now Hν(C,C \ N ) ∼= Hν−1(S) ∼= Z2, but the image of
Hν(C,C \ N ) in Hν(E,C ∪ D \ N ) is trivial. (Note that this corresponds to the
image of Hν−1(∂B) under that map induced by f1 ' f0.) Now the natural map
Hν(C,C \ N )→ Hν(C ∪ D,C ∪ D \ N ) is an isomorphism, by excision. Also,
since Hν+1(E,C∪D) is trivial, the exact sequence of triples tells us that the natural
map, Hν(C ∪ D,C ∪ D \ N )→ Hν(E,C ∪ D \ N ) is injective. Composing, we
get that the natural map Hν(C,C \ N )→ Hν(E,C ∪ D \ N ) is injective, giving a
contradiction. �

We can now give the proof of Proposition 4.3. We have already observed that we
can assume M to be connected. We recall that M is contractible (see Theorem 2.2),
and has locally compact dimension at most ν (Lemma 4.1).

Proof of Proposition 4.3. This is an extension of the argument for Lemma 4.2. This
time, we take three closed topological balls, B2⊆ B1⊆ B0⊆8⊆M. We assume that
B2 is contained in the relative interior of B1, and that N (B1; 2u)⊆ B0 (in the metric ρ
on M). We start as before, triangulating ∂B0, to give us a complexϒ ⊆M, a continu-
ous map f : B0→ϒ , and a homotopy in M from f |∂B0 to the inclusion of ∂B0. We
can arrange that the homotopy does not meet B1. We combine f with this homotopy
to give a continuous map, g : B0→ M, which restricts to the identity on ∂B0.

Since M is contractible, g is homotopic to the inclusion of B0 in M, relative to
∂B0. Therefore, Lemma 4.5 tells us that B0 ⊆ g(B0). Moreover, as observed above,
the homotopy part of g does not meet B1 and so we see that B1 ⊆ f (B0)⊆ ϒ .

In summary, we have B2 ⊆ B1 ⊆ϒ . After subdividing, we can suppose that any
cell of ϒ meeting B2 is disjoint from the spherical boundary, S(B1), of B1. Let P
be the set of ν-cells of ϒ meeting B2 in their relative interiors. Each of these is a
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ν-block, and by the same dimension argument as in the proof of Lemma 4.2, we
have B2 ⊆

⋃
P . We claim that

⋃
P ⊆8.

In fact suppose that P ∈ P . We apply Lemma 4.4 with X =ϒ , B = B1. Since
ϒ is a complex of dimension ν, we have P \ S(P) open in ϒ . Also, P \ S(B1)=∅,
and by assumption B2 ∩ P \ S(P) ⊆ B1 ∩ P \ S(P) is nonempty. It follows that
P ⊆ B1, so in particular, P ⊆8.

Since B2 can be chosen arbitrarily, we see that any compact subset of 8 is
contained in a finite union of ν-blocks contained in 8, and so 8 is cubulated as
required. �

Remark. In fact, the argument shows that if B ⊆ M is homeomorphic to a closed
ν-ball, and K ⊆ B \ ∂B is a compact subset of the relative interior, then there is a
compact cubulated set, ϒ , with K ⊆ ϒ ⊆ B.

Combining Proposition 4.3 and Lemma 3.8, we get:

Proposition 4.6. Suppose that M is a complete median metric space, and that
8⊆ M is a closed subset and that there is a homeomorphism f : Rν→8 with the
following property. For each codimension-1 coordinate plane, H ⊆ Rν, there is a
closed subset, 9 ⊆ M, homeomorphic to Rν such that f (H)=8∩9. Then 8 is a
flat, and f is a median isomorphism.

Note that the hypotheses on 8 only depend on the topological structure of M.
We conclude, in particular, that 8 is isometric to Rν with the l1 metric.
This is all we will need for our discussion of the marking graph. We also include

the following results which will be relevant to applications elsewhere; see [Bowditch
2015; 2016a].

Definition. We say that an R-tree is furry if every point has valence at least 3.

Proposition 4.7. Suppose that M is a complete median metric space of rank ν,
that D is a direct product of ν furry R-trees, and that f : D→ M is a continuous
injective map with closed image. Then f is a median homomorphism. Moreover,
f (D) is convex.

Proof. By a product flat in D we mean a direct product of bi-infinite geodesics
in each of the factors. If every point in each factor has valence at least 4 (as in
the cases of genuine interest) then we see that every product flat 8 satisfies the
hypotheses of Proposition 4.6, and so f |8 is a median homomorphism. Now any
two points, a, b lie in some such product flat 8 and [a, b] ⊆8. Thus, if c ∈ [a, b],
then f c ∈ [ f a, f b], and it follows that f is a median homomorphism on all of D.

If we allow for vertices of valence 3, then we just note that any codimension-1
coordinate plane in 8 is the intersection of three product flats, hence cubulated. We
can then apply Lemma 3.8 directly, to see that f is a median homomorphism on 8,
hence, as above, everywhere. �
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We remark that Proposition 4.7 applies in particular if M is also a product of ν
R-trees. It follows that f splits as a direct product of embeddings, up to permutation
of the factors. Some further discussion of this, with applications, can be found in
[Bowditch 2016b].

Definition. A tree product, T, in M is a convex subset median isomorphic to a
direct product of ν nontrivial rank-1 median algebras. It is maximal if it is not
contained in any strictly larger tree product.

Note that T is an l1-product of R-trees. It is easily seen that the closure of a tree
product is a tree product, and so any maximal tree product is closed.

Note that in the above terminology, any closed subset of M homeomorphic to a
direct product of ν furry R-trees for ν ≥ 2 is a tree product by Proposition 4.7.

For applications elsewhere, in particular in [Bowditch 2016a], we note that we
can relax the “furriness” condition somewhat.

Definition. An R-tree is almost furry if it is infinite, and no point has valence equal
to 2.

In this case, by removing the extreme (valence-1) points, we obtain the maximal
furry subtree. The following was given as Proposition 1.3 in the introduction.

Proposition 4.8. Suppose that M is a complete median metric space of rank ν, that
D is a direct product of ν almost furry R-trees, and that f : D→ M is a continuous
injective map with closed image. Then f is a median homomorphism. Moreover,
f (D) is convex.

Proof. We can apply the arguments to the maximal subset which is a product of furry
trees, and then take its closure. We have already observed that the key statements,
in particular Lemma 3.8 and Proposition 4.3, have local versions which can be
applied to this case. �

5. Ultraproducts

In this section, we give some general background to the theory of ultraproducts and
asymptotic cones. The notion of an asymptotic cone was introduced in [van den
Dries and Wilkie 1984]; see also [Gromov 1993]. The idea behind this is to keep
rescaling the metric so that points move closer and closer together, and then pass
to an “ultralimit” of the resulting spaces. (Here, the term “ultralimit” is used in
the sense of [Gromov 1993], rather than in the usual sense of model theory.) We
then factor out “infinitesimals” to give what we call here an “extended asymptotic
cone”. If we also throw away the “unlimited” parts (beyond infinity), we get the
usual asymptotic cone. In principle, this may depend on the choice of rescaling
factors and (if the continuum hypothesis fails) on the choice of ultrafilter, but such
ambiguity will not matter to us here.
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Let Z be a countable set equipped with a nonprincipal ultrafilter. We can think
of this as a finitely additive measure on Z, taking values in {0, 1}, such that Z
itself has measure 1, and any finite subset of Z has measure 0. If a predicate, P(ζ ),
depends on ζ ∈ Z, we say that P holds almost always if the set of ζ for which it
holds has measure 1.

We refer to a sequence of objects indexed by Z as a Z-sequence. Typically, we
will use the notation EX = (Xζ )ζ for such a sequence. If these are all sets, we write∏
EX =

∏
ζ Xζ for their product. Given Ex, Ey ∈

∏
EX , we write Ex ≈ Ey to mean that

xζ = yζ almost always. Thus, ≈ is an equivalence relation on
∏
EX , and we write

U EX =
∏
EX/≈ for the quotient.

Definition. We refer to U EX as the ultraproduct of the Z-sequence EX .

Note that we only need to have xζ defined almost always to determine an element
of U EX . We write x = [Ex] for this element.

We write P( EX) for the Z-sequence (P(Xζ ))ζ , where P denotes power set. There
is a natural map UP( EX)→P(U EX), defined by sending EY to the set of x=[Ex] ∈U EX
such that xζ ∈ Yζ almost always. We can identify the image of this map with U EY.
Note that we can define unions and intersections in P( EX) (by taking unions and in-
tersections on each ζ -coordinate). These operations are respected by the above map.

Given two Z-sequences of sets, EX and EY, we can form the direct product EX × EY
as (Xζ × Yζ )ζ , and we see that U( EX × EY ) is naturally identified with U EX ×U EY. A
Z-sequence of relations on Xζ × Yζ give rise to a relation on U EX × U EY via the
map from UP( EX × EY ) to P(U EX ×U EY ). In other words, x is related to y if xζ is
almost always related to yζ . A particular case is when relation on Xζ ×Yζ is almost
always the graph of a function. In fact, the following is a simple exercise:

Lemma 5.1. Given any Z-sequence of functions, fζ : Xζ → Yζ , there is a unique
function U f : U EX → U EY, such that y = U f (x) if and only if yζ = fζ (xζ ) almost
always.

We also note that the discussion of relations also applies to finite products of
sets, and so to n-ary relations and n-ary operations for any finite n. For example, if
E0 is a sequence of groups, then U E0 has the structure of a group. If each 0ζ acts on
a set Xζ , then U E0 acts on U EX .

Suppose that Xζ = X is constant. In this case, we write UX = U EX .

Definition. We refer to UX as the ultrapower of the set X.

There is a natural injection X into UX obtained by taking constant sequences.
We refer to the image of this map as the standard part of UX. We usually identify
X with the standard part of UX. If X is finite, then UX is equal to its standard part.

Note that the ultrapower, UR, of the real numbers is an ordered field. We say
that x ∈ UR is limited if |x| ≤ y for some y ∈ R⊆ UR (where |x| =max{x,−x}).
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Otherwise it is unlimited. We say that x is infinitesimal if |x| ≤ y for all positive
standard y. Note that 0 is the only standard infinitesimal, and that the nonzero
infinitesimals are exactly the reciprocals of unlimited numbers.

There is a well defined map st : UR→ [−∞,∞] = R ∪ {−∞,∞} such that
st(x) = ∞ if x is positive unlimited, st(x) = −∞ if x is negative unlimited,
and x − st(x) is infinitesimal if x is limited. We refer to st(x) as the standard
part of x. We will usually restrict attention to nonnegative numbers, so we get a
map st : U[0,∞)→ [0,∞]. If (xζ )ζ is a Z-sequence of real numbers, we write
xζ → x ∈ R∪ {∞} to mean that x = st(x). (This is the same as taking limits in R

with respect to the ultrafilter.)
In the case of the natural number, there are no infinitesimals, and N is an initial

segment of UN. We get a map st : UN→ N∪ {∞} which is the identity on N.
Given any set M we define an nonstandard metric on M to be a metric with

values in UR. In other words, it is a map M2
→U[0,∞) satisfying the same axioms

as a metric, except with R replaced by UR. Note that, if σ is a nonstandard metric,
the composition σ̂ = st ◦σ : M2

→[0,∞] is an idealised pseudometric on M. Here,
we use the term idealised to mean that we allowing points to be an infinite distance
apart. As with usual pseudometric spaces, we can take the Hausdorffification, M̂ ,
of M. In other words, given x, y ∈ M, we write x ' y to mean that σ̂ (x, y) = 0.
Thus ' is an equivalence relation on M, and we set M̂ = M/'. The induced map,
σ̂ : M̂2

→ [0,∞] is an idealised metric on M̂ . Note that the relation on M̂ given
by deeming x to be equivalent to y if σ̂ (x, y) <∞ is an equivalence relation.

Definition. A component of an idealised metric space, M̂ , is an equivalence class
under the above relation.

Note that components are both open and closed in the topology induced on M̂ .
Also any component is a metric space in the usual sense. Note that we can speak
about an extended metric space as being complete; that is, all its components are
complete metric spaces. (We will see that, in the cases of interest in this paper, this
notion “component” will coincide with the usual notion of a connected component).

Suppose that ((Xζ , σζ ))ζ is a Z-sequence of metric spaces. This gives rise to
a nonstandard metric, Uσ , on U EX, and hence to an idealised pseudometric, σ̂ , on
U EX. Let X̂ be the Hausdorffification, with idealised metric σ̂ : X̂2

→ [0,∞].
If xζ ∈ Xζ , we write xζ → x to mean that x ∈ X̂ is the image of the sequence x

under the natural maps. We think of x as the limit of the xζ . By construction, every
sequence has a unique limit.

For the following lemma, we use the fact that Z is countable to find a Z-sequence
(nζ )ζ in N with nζ →∞. For example let, n : Z→ N be any injective map. (This
is true of a broader class of cardinals than ℵ0, though we won’t pursue that issue
here — we will have no need of any uncountable indexing sets.)
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Lemma 5.2. (X̂ , σ̂ ) is complete.

Proof. Let (x i )i∈N be a Cauchy sequence in X̂ . It is enough to show that (x i )i

has a convergent subsequence. We can suppose that σ̂ (x i , x i+1)≤ 1/2i+1 for all i .
Given i ∈ N, let (x i

ζ )ζ be some representative of x i in EX = (Xζ )ζ . Let Z0( j) =
{ζ ∈ Z | σζ (x

j
ζ , x j+1

ζ ) ≤ 1/2 j
}, let Z(i) =

⋂
j≤i Z0( j) and Z(∞) =

⋂
∞

j=0 Z0( j).
Given ζ ∈ Z \Z(∞), let i(ζ )=max{i | ζ ∈ Z(i)}, and let yζ = x i(ζ )

ζ . Note that if
ζ ∈ Z(i), then σζ (yζ , x i

ζ )≤
∑

j≥i (1/2
i )≤ 2/2i. We distinguish two cases.

If Z(∞) has measure 0, then yζ is defined almost always. Let y be the image of
(yζ )ζ in X̂ . Now σζ (yζ , x i

ζ )≤ 2/2i almost always, and so σ̂ (y, x i )≤ 2/2i, showing
that x i converges to y.

If Z(∞) has measure 1, we set yζ = xnζ
ζ , where nζ→∞, and argue as before. �

Suppose that Aζ ⊆ Xζ (almost always). As discussed earlier, this gives rise
to a subset of U EX which can be identified with U EA. We denote its image in X̂
by Â. In fact, restricting the metrics, ( Â, σ̂ ) is the limit of the subspaces (Aζ , σζ )
constructed intrinsically. Note that x ∈ Â if and only if σζ (xζ , Aζ )→ 0 (where
we are taking limits with respect to the ultrafilter on Z). We also note that Â is
closed in the induced topology on X̂ . This can be seen by a similar argument to
Lemma 5.2, or simply by noting that Â is complete in the induced metric. Note
that R̂ is an ordered abelian group, which we refer to as the extended reals. (In this
paper, this will usually be denoted instead by R∗, for the reasons given below.)

Suppose that fζ : Xζ → Yζ is a Z-sequence of maps between the metric spaces
(Xζ , σζ ) and (Yζ , σ ′ζ ). We have a map, U f :U EX→U EY given by Section 1. Suppose
there is a constant, k∈[0,∞), and a Z-sequence, (hζ )ζ , in [0,∞)with hζ→0, such
that for almost all ζ and all x, y ∈ Xζ we have σ ′ζ ( fζ (x), fζ (y))≤ kσζ (x, y)+ hζ .
Then, U f induces a k-Lipschitz map f̂ : X̂→ Ŷ . (The graph of f̂ is the limit of
the graphs of the fζ , taking the l1 metrics on Xζ × Yζ .) The image f̂ (Ŷ ) is the
limit of the images, fζ (Xζ ), in the sense of the previous paragraph.

Suppose that ((Xζ ,Z))ζ is a Z-sequence of geodesic metric spaces. Then
the components of (X̂ , σ̂ ) are precisely the connected components, and each such
component is a geodesic space. (This can be seen by applying the previous paragraph
to geodesics, thought of as uniformly Lipschitz maps of a compact real interval
into the spaces Xζ .)

Suppose that (Xζ , ρζ ) = (X, ρ) a constant sequence. In this case, we get a
natural injective map of (X, ρ) into the limit (X̂ , ρ̂), which is an isometry onto its
range. The closure of this range in X̂ is just the metric completion of X.

More interestingly, we can take a positive infinitesimal, t ∈ UR, and set σζ = tζρ
to be the rescaled pseudometric. In this case, we write (X∗, ρ∗)= (X̂ , σ̂ ) for the
limiting space. Note that this is the same as taking the rescaled metric space (X̂ , tρ̂)
and passing to its Hausdorffification.
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Definition. We refer to (X∗, ρ∗) as the extended asymptotic cone of X with respect
to t .

Note that X∗ has a preferred basepoint, namely that given by any constant
sequence in EX. This, in turn, determines a preferred component, X∞, of X∗, namely
that containing this basepoint.

Definition. We refer to X∞ as the asymptotic cone of X with respect to t .

By Lemma 5.2, the asymptotic cone is always complete. If X is a geodesic space,
so is X∞.

One can generalise the above to a Z-sequence of metric spaces, (Xζ , ρζ ), rescaled
by an infinitesimal t , to give an extended asymptotic cone, (X∗, ρ∗). In this case,
one needs a sequence of basepoints, eζ ∈ Xζ to determine a basepoint and base
component of X∗.

Definition. We say that a Z-sequence of maps, fζ : Xζ → Yζ between metric
spaces are uniformly coarsely Lipschitz if there are constants, k, h ≥ 0, such that for
almost all ζ ∈Z and all x, y ∈ Xζ , we have σ ′ζ ( fζ x, fζ y)≤ kσζ (x, y)+h. They are
uniform quasi-isometric embeddings if also σζ (x, y) ≤ kσ ′ζ ( fζ x, fζ y)+ h. They
are uniform quasi-isometries if also Yζ = N ( fζ (Xζ ); h).

Lemma 5.3. A Z-sequence of uniformly coarsely Lipschitz maps, fζ : Xζ → Yζ ,
induces a Lipschitz map, f ∗ : X∗→ Y ∗, which restricts to a map f∞ : X∞→ Y∞.
If the maps fζ are uniform quasi-isometric embeddings, then f ∗ and f∞ are
bi-Lipschitz onto their range. If they are quasi-isometries, then f ∗ and f∞ are
bi-Lipschitz homeomorphisms.

Proof. By Lemma 5.1, we have a map U f : UX→ UY. This descends to a map
f ∗ : X∗→ Y ∗ (since tζσζ (xζ , yζ )→ 0 implies tζσ ′ζ ( fζ (xζ ), fζ (yζ ))→ 0). The
fact that f ∗ and its restriction f∞ are (bi-)Lipschitz follows since the htζ → 0, so
the additive constant disappears in the limit. �

In particular, quasi-isometric spaces have bi-Lipschitz equivalent asymptotic
cones (for the same scaling sequence).

An example of the above construction is given by a sequence, EG = (Gζ )ζ of
graphs. Let Vζ = V (Gζ ) be the vertex sets. The adjacency relations on the Vζ
determine an adjacency relation on U EV, so as to give it the structure of the vertex
set V (U EG) of a graph U EG. If each Gζ is connected, the combinatorial distance
functions on Vζ give us a limiting nonstandard metric and hence an idealised metric
on U EV, with values in N∪ {∞}. This is the same as the combinatorial idealised
metric given by UV =V (U EG). In particular, the components are again the connected
components. (Note that we lose some information in the standardisation process,
since different pairs of components might be at different unlimited distances apart.)
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Suppose that E0 = (0ζ )ζ is a Z-sequence of groups. Then U E0 is also a group.
If each 0ζ acts on a set Xζ , then U E0 acts on U EX. If 0ζ acts by isometry in some
metric space, then so does U E0. If 0 and X are fixed, then any two points of X ⊆U EX
in the same U0-orbit also lie in the same 0-orbit (since if y = gx for some g ∈ U0,
then y = gζ x for almost all gζ , and so certainly for some gζ ).

If 0 is a fixed group acting on a metric space, X, we get an induced action
of U0 on the extended asymptotic cone, X∗ (with respect to any infinitesimal t).
Note that we can identify 0 as a normal subgroup of U0. In fact, we have normal
subgroups, 0 GU10, U10 GU00 and U00 G0∞ of 0∞, where U10 is the stabiliser
of the basepoint of X∗, and U00 is the setwise stabiliser of the asymptotic cone,
X∞. Note that U10 and U00 may depend on t .

If the action of 0 on X is cobounded (i.e., X is a bounded neighbourhood of
some, hence any, 0-orbit), then the actions of U0 on X∗ and of U00 on X∞ are
transitive. In particular, X∗ and X∞ are homogeneous (extended) metric spaces.

Note that a special case of this construction is R∗, which is always isomorphic to
the extended reals, R̂. If X is a Gromov hyperbolic space, then X∗ is an R∗-tree, and
X∞ is an R-tree. Of course, this also applies to the asymptotic cone of a sequence
of uniformly hyperbolic spaces.

Terminology. To briefly summarise our terminology, we use “nonstandard” to
refer to ultralimits, “extended” to refer to the standard part of a nonstandard number
(quotienting out by infinitesimals), and “idealised” to mean we are adjoining±∞. In
this way, we have the extended reals R∗ as a subset (or quotient) of the nonstandard
reals UR. We can view the idealised reals, [−∞,∞], as a quotient of R∗.

6. Coarse median spaces

Coarse median spaces were defined in [Bowditch 2013]. The main point here is that
they give a means of talking about (quasi)cubes or (quasi)flats in a geodesic space.
Following the construction of [Behrstock and Minsky 2011], this is applicable to the
mapping class group, as shown in [Bowditch 2013]. It also applies to Teichmüller
space in either the Teichmüller metric, [Bowditch 2016a] or the Weil–Petersson
metric [Bowditch 2015]. We remark that another class of space which encompasses
these cases, and which implies coarse median, is described in [Behrstock, Hagen
and Sisto 2015; 2017].

Before continuing, we introduce the following general conventions.

Conventions. Given two points, x, y, in a metric space, and r ≥ 0, we will write
x ∼r y to mean that the distance between them is at most r . We will often simply
write x ∼ y, and behave as though this relation were transitive. Here is understood
that, at any given stage, the bound r depends only on the constants introduced at
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the beginning of an argument. It can be explicitly determined by following through
the steps of the argument, though we will not usually explicitly estimate it.

Similarly, given two functions f, g, we will write f ∼ g to mean that f (x)∼ g(x)
for all x in the domain.

We are often only interested in maps defined up to bounded distance. For a
graph it would therefore be enough to specify a map on the set of vertices. When
referring to a finite product of metric spaces, we can always take the l1 metric. For
a finite product of graphs, we can always restrict to the 1-skeleton of the product
cube complex. In any case, we will only be interested in the product metric defined
up to bi-Lipschitz equivalence.

We will sometimes adopt a similar convention for linear bounds. Given λ≥ 1
and r ≥ 0, we write x �λ,r y to mean that λ−1(x − r) ≤ y ≤ λx + r . Again, we
usually omit λ, r from the notation, and write x � y.

When we come to discuss marking graphs, the constants implicit in the notation
∼ and � will ultimately depend only on the complexity, ξ(6), of our surface, 6,
as defined in Section 7. We will make this explicit at the relevant points.

Let (M, ρ) be a geodesic metric space.

Definition. We say that a ternary operation, µ :M3
→M, is a “coarse median” if

it satisfies the following:

(C1) There are constants, k, h(0), such that for all a, b, c, a′, b′, c′ ∈M we have
ρ(µ(a, b, c), µ(a′, b′, c′))≤ k(ρ(a, a′)+ ρ(b, b′)+ ρ(c, c′))+ h(0), and

(C2) There is a function, h : N→ [0,∞), with the following property. Suppose
that A⊆M with 1≤ |A| ≤ p<∞. Then there is a median algebra, (5,µ5)
and maps π : A → 5 and λ : 5 →M such that for all x, y, z ∈ 5 we
have ρ(λµ5(x, y, z), µ(λx, λy, λz)) ≤ h(p) and for all a ∈ A, we have
ρ(a, λπa)≤ h(p).

We say that M has rank at most n if we can always take 5 to have rank at most
n (as a median algebra). We say that M is n-colourable if we can always take 5 to
be n-colourable. We refer to (M, ρ, µ) as a coarse median space. We refer to k, h
as the parameters of M.

From (C2) we can deduce that, if a, b, c ∈M, then µ(a, b, c), µ(b, a, c) and
µ(b, c, a) are a bounded distance apart, and that ρ(µ(a, a, b), a) is bounded. Since
we are only really interested in µ up to bounded distance, we can assume that µ is
invariant under permutation of a, b, c and that µ(a, a, b)= a.

Note that in (C2), we can always assume that 5= 〈π A〉 (in particular, that it is
finite). Also, if we are not concerned about rank, we can always take 5 to be the
free median algebra on A, and π to be the inclusion of A in 5.
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Note that a direct of product of coarse median spaces is also a coarse median
space.

For future reference, we note:

Lemma 6.1. Suppose a, b, c ∈M, and r ≥ 0 with ρ(µ(a, b, c), c) ≤ r . Then
ρ(a, c)+ρ(c, b)≤ k1ρ(a, b)+ k2, where k1 and k2 depend only on the parameters
of M.

Proof. Using property (C1), we see that the maps x 7→µ(a, c, x) and x 7→µ(b, c, x)
are coarsely Lipschitz, and so we get linear bounds on ρ(a, c) and ρ(b, c) in terms
of ρ(a, b). �

With the conventions introduced earlier, this shows ρ(a, b)� ρ(a, c)+ ρ(c, b).
(where the implicit constants depend only on the parameters of M).

Given two spaces X, Y, equipped with ternary operations µX and µY , together
with a metric ρ on Y, we say that a map φ : X → Y is an l-quasimorphism if
ρ(φµX (x, y, z), µY (φx, φy, φz)) ≤ l for all x, y, z ∈ X. Typically, Y will be a
coarse median space, and X will be either a median algebra or a coarse median
space. (Note that the map λ featuring in (C2) is an h(p)-quasimorphism.)

Lemma 6.2. Suppose that 5 is a median algebra generated by a finite subset,
B ⊆5. Suppose that λ, λ′ :5→M are l-quasimorphisms with ρ(λb, λ′b)≤ l for
all b ∈ B. Then, for all x ∈5, ρ(λx, λ′x) is bounded above by some linear function
of l, depending only on the parameters of M and the cardinality of B.

Proof. Define Bi ⊆5 inductively by B0= B and Bi+1=µ(B3
i ). We see inductively

that λ|Bi and λ′|Bi are a bounded distance apart, where the bound depends on i
and is linear in l. Now |5| ≤ q = 22p

where p = |B|, and so certainly, 5 = Bq ,
and the result follows. �

In particular, in clause (C2) of the definition, if we assume that 5= 〈π A〉, then
the map λ is unique up to bounded distance depending only on the parameters and p.

The following will allow us to assume that quasimorphisms of cubes are in fact
uniform quasimorphisms:

Lemma 6.3. Given n ∈ N, there are constants k0, h0 and h1 depending only on n
and the parameters of M such that the following holds. Suppose that Q = {−1, 1}n

and that ψ : Q →M is an l-quasimorphism for some l ≥ 0. Then there is an
h0-quasimorphism, φ : Q→M, with ρ(φx, ψx)≤ k0l + h1 for all x ∈ Q.

Proof. Let 5 be the free median algebra on the set Q, and let θ :5→ Q be the
unique median homomorphism extending the identity on Q (thought of as a map
from a set to a median algebra). Now there is a median monomorphism, ω : Q→5

with θ ◦ω the identity on Q. (To see this, we can think of 5 as the vertex set of a
finite CAT(0) cube complex. Every pair of intrinsic faces of Q ⊆5 are separated
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by some hyperplane of 5, and these must all intersect in some n-cell of 5. Each
element, x ∈ Q, determines a unique vertex ω(x) of this n-cell. This gives us a
homomorphism ω : Q→5, with ω(Q) equal to the vertex set of the n-cell. Note
that ω is not canonically determined: it might depend on the choice of cell.)

Now apply (C2) to ψ(Q) ⊆M to give an h(2n)-quasimorphism λ : 5→M
with λ|Q ∼h(2n) ψ . Let φ = λ ◦ω : Q→M. This is an h0-quasimorphism, where
h0 = h(2n).

Let λ′ = λ ◦ θ :5→M. Thus λ′ is a l-quasimorphism, and λ′|Q = ψ = λ|Q.
By Lemma 6.2, we have ρ(λx, λ′x)≤ k0l + h2 for all x ∈5, where k0, h2 depend
only on the parameters of M. But λ′ ◦ω|Q = λ ◦ θ ◦ω|Q = λ|Q ∼h(2n) ψ , and so
we see that ρ(φx, ψx)≤ k0l + h1 for all x ∈ Q, where h1 = h2+ h(2n). �

The following two lemmas will be used to establish that statements that hold in
a median algebra hold up to bounded distance in a coarse median space.

Lemma 6.4. Suppose that (M, ρ, µ) is a coarse median space. Suppose that5 is a
finite median algebra with |5|≤q<∞, and that λ :5→M is an l-quasimorphism.
Given t ≥ 0, there is a finite median algebra 5′, a map λ′ : 5′ →M and an
epimorphism θ :5→5′ such that for all distinct x, y ∈5′, ρ(λ′x, λ′y) > t , and
for all z ∈5, ρ(λz, λ′θ z)≤ s, where s depends only on q, h, t and the parameters
of M.

Proof. Define a relation, ≈, on 5, by setting x ≈ y if ρ(λx, λy)≤ t . Let ' be the
smallest equivalence relation on 5 containing ≈ with the property that whenever
x, y, z, w ∈5 with z 'w, we have µ5(x, y, z)' µ5(x, y, w). Let 5′ =5/' be
the quotient median algebra as defined at the end of Section 2, and let θ :5→5′

be the quotient map. Define λ′ : 5′→M by setting λ′(x) to be the λ-image of
any representative of the '-class of x in 5. Since ' includes ≈, we see that
ρ(λ′x, λ′y) > t for all distinct x, y ∈5′.

We claim that if x, y ∈5, with x ' y, then ρ(θλx, θλy) is bounded above in
terms of q, h, t and the parameters of M. To see this, note that' can be constructed
from ≈ by iterating two operations. We start with ≈. Whenever z ≈ w, then we
set µ5(x, y, z) related to µ5(x, y, w) for all x, y ∈5. Also, if a ≈ b and b ≈ c,
then we set a to be related to c. We continue again with the relation thus defined.
After at most q steps, this process stabilises on the relation '. From the fact that λ
is a quasimorphism, and from property (C1) for M, we see that at each stage the
maximal distance between the λ-images of related elements of 5 can increase by
at most a linear function which depends only on l and the parameters of M. This
now proves the claim.

Suppose that z ∈5. By construction, λ′θ z = λw for some w ' z. By the above,
ρ(λz, λ′θ z)= ρ(λz, λw) is bounded as required. �
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Note that λ′ is itself an l ′-quasimorphism, where l ′ depends only on q, h, t and
the parameters of M. This enables us to give a refinement of (C2) as follows:

Corollary 6.5. Suppose that (M, ρ, µ) is a coarse median space, and t ≥ 0. Then
there is a function, ht : N→ [0,∞) with the following property. Suppose that
A ⊆M with 1 ≤ |A| ≤ p <∞. Then there is a finite median algebra, (5,µ5),
and maps π : A→5 and λ :5→M such that λ is a ht(p)-quasimorphism with
ρ(λx, λy) > t for all distinct x, y ∈ 5, and such that ρ(a, λπa) ≤ ht(p) for all
a ∈ A.

Proof. Start with 5,π, λ as given by (C2) for M (so that λ :5→M is an h(p)-
quasimorphism, with h(p) independent of t). We can assume that |5| ≤ 22p

. We
now apply Lemma 6.4 to give 5′, λ′ and θ :5→5′. Now replace 5 by 5′, π by
θ ◦π , and λ by λ′. �

By an “identity” in a median algebra, we mean an expression equating two terms
featuring only the median operation. We refer to it as a “tautological identity” if it
holds, whatever the arguments in any median algebra, M. (For example, we have
the tautological identity: µ(a, b, µ(a, b, c))= µ(a, b, c), for all a, b, c ∈ M.) We
remark that an identity can easily be verified algorithmically: it is sufficient to check
it for all possible assignments of the arguments in the two-point median algebra
{−1, 1}. We make the following general observation.

General Principle. Any tautological median identity holds up to bounded distance
in any coarse median space, M.

More formally, this says that if P and Q are formulae defining P(a1, . . . , an)

and Q(a1, . . . , an) in terms of µ, and the identity P(a1, . . . , an)= Q(a1, . . . , an)

holds for any a1, . . . , an ∈ M in any median algebra (M, µ) then it follows that
ρ(P(a1, . . . , an), Q(a1, . . . , an)) is bounded for any a1, . . . , an ∈M in any coarse
median space (M, µ, ρ). The bound only depends on (the complexity of) the
formulae P, Q and the parameters of M.

For example, for all a, b, c ∈M, ρ(µ(a, b, µ(a, b, c)), µ(a, b, c)) is bounded
above by a constant depending only on the parameters of M for all a, b, c ∈M.

To prove this principle, let A⊆M be the set of elements occurring as arguments,
and let π : A→5 and λ :5→M be as given by (C2) of the hypotheses. Now
apply either side of the identity to the π -images in 5 to give an element x ∈5 (by
assumption, this will be the same element for either side). We can also apply each
side of the same identity to the elements of A, using the median structure, µ, on
M. In this way, we get two elements of M. Using (C1) and (C2) directly, we see
that these are both a bounded distance from λx , and so, a bounded distance from
each other. The claim follows.

A more general statement holds for conditional identities. Suppose that some
finite set of identities (the “input identities”) imply another identity (the “derived
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identity”) in any median algebra. (For example, d ∈ [a, b] ∩ [b, c] ∩ [c, a] implies
d = µ(a, b, c).) We have the following generalisation.

General Principle. Given a finite set of input identities, and a derived identity, if
we suppose that the input identities hold up to bounded distance for a particular set
of elements in a coarse median space, M, then the derived identity also holds up to
bounded distance for this set of elements.

(So, for example, if a, b, c, d ∈M, with the three distance ρ(µ(a, b, d), d),
ρ(µ(b, c, d), d) and ρ(µ(c, a, d), d) all bounded, then ρ(µ(a, b, c), d) is also
bounded.)

The argument is essentially the same. This time, we apply Corollary 6.5 to
the set A instead of (C2) directly. Suppose that x, y ∈ 5 are respectively the
π -images of the left and right sides of one of the input identities. As in the previous
argument, we see that λx and λy are respectively a bounded distance from the result
of applying the same formulae in M, which by assumption, are a bounded distance
apart in M. It follows that ρ(λx, λy) is bounded. By choosing the constant t in
Corollary 6.5 to be larger than this bound, we see that we must have x = y. In other
words, this input identity holds exactly in 5, for the π -images of the elements of A.
We can assume this is true of all the input identities. Therefore, the derived identity
must hold too. Now, again, as in the previous argument, we see that the derived
identity holds up to bounded distance in M. This proves the claim.

We can apply the these principles in the following discussion.
Given a, b ∈M, we define the coarse interval between a and b as [a, b] =
{µ(a, b, x) | x ∈M}. By the observation above, we see that is a bounded Hausdorff
distance from {x ∈ M | ρ(µ(a, b, x), x)≤ r} for any fixed sufficiently large r ≥ 0.

Definition. We say that a subset, C ⊆M, of a coarse median space, (M, ρ, µ), is
k-(median) quasiconvex if for all a, b ∈ C and x ∈M, ρ(µ(a, b, x),C)≤ k.

From property (C1) we see that any quasiconvex set is quasi-isometrically
embedded in M (or more precisely, some uniform neighbourhood of C is quasi-
isometrically embedded with respect to the induced path-metric). Note also quasi-
convexity of C is equivalent to asserting that for all a, b∈C, the coarse interval [a, b]
lies in a uniform neighbourhood of C. Note that Lemma 6.1 implies that if a, b, c ∈
M and c ∈ [a, b], then ρ(a, b) agrees with ρ(a, c)+ ρ(c, b) up to linear bounds.

We next recall the following standard notion for any median algebra, M. Suppose
that C ⊆ M is (a priori) any subset. We say that a map f : M→ C is a gate map
if f x ∈ [x, c] for all x ∈ M and c ∈ C. Note that if a, b ∈ M and c ∈ [a, b] then
f c ∈ [a, c]∩ [b, c] ∈ {c}, so f c= c. It follows immediately that f |C is the identity

(since c ∈ [c, c]), and that C is convex (since c= f c ∈C). We also claim that f is a
homomorphism. For this, it is enough to show that if c ∈ [a, b], then f c ∈ [ f a, f b].
But now the identities c ∈ [a, b], f c ∈ [c, f b] and f b ∈ [b, f c] together imply
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f c ∈ [a, f b]. Thus (by the same observation, with a, b, c replaced by f b, a, f c)
we get f c= f f c ∈ [ f a, f b] as required. We also note that if a gate map exists for
a given C, then it is unique.

We can now define the corresponding notion in a coarse median space, M.

Definition. A map φ :M→ C to a subset C ⊆M is an r-coarse gate map if for
all x ∈M and c ∈ C, we have ρ(x, µ(x, φx, c))≤ r .

Lemma 6.6. If φ :M→ C is an r-coarse gate map, then C is k-quasiconvex, φ is
an l-quasimorphism, and ρ(c, φc)≤ h for all c ∈ C, where k, l, h depend only on r
and the parameters of M.

Proof. We follow the same argument as for a median algebra described above,
except that now equalities and inclusions are assumed to hold up to bounded
distance, depending only on r , and the parameters of M. By the general principles
described above, any deduction (based on a finite sequence of identities) in a median
algebra holds also in a coarse median algebra, interpreting everything up to bounded
distance. �

Suppose now that ((Mζ , ρζ , µζ ))ζ is a Z-sequence of uniformly coarse median
spaces (i.e., with parameters independent of ζ ). Let t ∈UR be a positive infinitesimal.
We get a limiting space, (M∗, ρ∗, µ∗), where (M∗, ρ∗) is the extended asymp-
totic cone, and where (M∗, µ∗) is a topological median algebra (that is, the map
µ∗ : (M∗)3→M∗ is continuous). If each Mζ has rank at most n (as a coarse median
space), then M∗ has rank at most n (as a median algebra). Note that (M∗, µ∗)

need not be a median metric space, though it satisfies a weaker metric condition
described in [Bowditch 2013; 2014a], namely that the maps x 7→ µ(a, b, x) are
uniformly Lipschitz, for all a, b ∈M∗, (see Proposition 9.1 and Lemma 9.2 of
[Bowditch 2013]). Note that this is the hypothesis of Proposition 2.4 here.

In those papers, we restricted attention to the asymptotic cone, M∞, but that
does not affect the above observations.

Lemma 6.7. Let M∗ be an extended asymptotic cone of a Z-sequence of uniformly
coarse median spaces. Suppose that Q ⊆M∗ is an n-cube. Then we can find a
sequence of l0-quasimorphisms φζ : Q→Mζ such that for all x ∈ Q, φζ x→ x ,
where l0 depends only on n and the uniform parameters of the Mζ .

Proof. To begin, take any sequence of maps, ψζ : Q→Mζ , with ψζ x→ x for all
x ∈ Q. (Such maps exist directly from the definition of the asymptotic cone.) Since
µ∗ is, by definition, the limit of the µζ , it follows that ψζ is a hζ -quasimorphism,
where tζhζ → 0 (since they must converge to a monomorphism in M∗). Let
φζ : Q →Mζ be the l0-quasimorphism given by Lemma 6.3. For all x ∈ Q,
ρζ (φζ x, ψζ x)≤ khζ + h1 so tζρζ (φζ x, ψζ x)≤ ktζhζ + h1tζ → 0. Thus φζ x→ x ,
as required. �
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Note that, if we have a sequence of uniformly quasiconvex sets, Cζ ⊆Mζ ,
we have a limiting bi-Lipschitz embedded closed convex subset C∗ ⊆M∗ in the
extended asymptotic cone M∗. If φζ :Mζ → Cζ are a sequence of uniform coarse
gate maps, the limiting map φ∗ :M∗

→ C∗ is a gate map.
As in [Bowditch 2013, Section 12], we say that a median algebra, 5, is n-

colourable if there is an n-colouring of the walls such that no two walls of the same
colour cross. We say that a coarse median space M is n-colourable if in (C2) we can
always choose5 to be n-colourable as a median algebra. Clearly this implies that M
has rank at most n. The following was shown in [Bowditch 2014a, Proposition 12.5].

Theorem 6.8. Suppose that ((Mζ , ρζ , µζ ))ζ is a sequence of n-colourable uniform
coarse median spaces, for some fixed n. Then M∗ admits a metric ρ ′, bi-Lipschitz
equivalent to ρ∗, such that (M∗, ρ ′) is an (extended) median metric space with
median µ∗. Moreover, M∗ is n-colourable as a median algebra.

In fact, the bi-Lipschitz constant only depends on the parameters of the coarse
median spaces.

The construction however is not canonical. Note that the median metric space
arising is necessarily proper.

In particular, we see that the asymptotic cone of a sequence of finitely colourable
coarse median spaces is bi-Lipschitz equivalent to a proper median metric space,
and hence in turn to a CAT(0) space (by Theorem 2.2). In fact, the same holds for a
sequence of finite-rank coarse median spaces. This relies on the following variation
of Theorem 6.8:

Theorem 6.9. Suppose that ((Mζ , ρζ , µζ ))ζ is a sequence of coarse median spaces
of rank n, for some fixed n. Then M∗ admits an extended metric, ρ ′, bi-Lipschitz
equivalent to ρ∗, such that (M∗, ρ ′) is an (extended) median metric space of rank
n, with median µ∗.

Proof. As already observed, it is easily seen from axiom (C1) that ρ∗ satisfies the
hypotheses of Proposition 2.4, when restricted to any component of M∗. We can
therefore apply Proposition 2.4 to each component separately. �

We finish this section by briefly discussing the special case of a Gromov hyper-
bolic space (M, ρ). See [Bowditch 2013, Section 3] for elaboration.

Given a, b, c ∈M, write

〈a, b:c〉 = 1
2(ρ(a, c)+ ρ(b, c)− ρ(a, b))

for the “Gromov product”. Up to bounded distance, this is the same as the distance
of c to some (or any) geodesic from a to b.

Definition. We say that m ∈M is an r-centroid for a, b, c ∈M if 〈a, b:m〉 ≤ r ,
〈b, c:m〉 ≤ r and 〈c, a:m〉 ≤ r .
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Provided r is a sufficiently large in relation to the hyperbolicity constant, such an
r -centroid will always exist. We will fix such an r and simply refer to m as a centroid.
In fact, m is well defined up to bounded distance, and we write µ(a, b, c)= m for
some choice of m. With this structure, (M, ρ, µ) is a coarse median space of rank
at most 1. Indeed, any rank-1 coarse median space arises in this way. (We note that
rank-0 is trivially equivalent to having finite diameter.)

If (Mζ )ζ is a sequence of uniformly hyperbolic spaces, then (M∗, µ∗) is a rank-
1 median algebra (variously known in the literature as a “tree algebra”, “median
pretree”, etc.). As already observed in Section 5, (M∗, ρ∗) is an R∗-tree, and
(M∞, ρ∞) is an R-tree.

It is shown in [Bowditch 2013] that if M is a coarse median space of rank at
most n, then there is no quasi-isometric embedding of Rn+1 into M (since this
would give rise to an injective map of Rn+1 into M∞, contradicting the fact that
M∞ has locally compact dimension at most n). In fact, the same argument can be
applied to bound the radii of quasi-isometrically embedded balls. To state this more
precisely, write Bn

r for the ball of radius r in the euclidean space Rn.

Lemma 6.10. Let M be a coarse median space of rank at most n. Given parameters
of M and of quasi-isometry, there is some constant r ≥ 0, such that there is no
quasi-isometric embedding of Bn+1

r into M with these parameters.

Proof. Suppose that, for each i ∈ N, the ball, Bi , of radius i admits a uniformly
quasi-isometric embedding, φi : Bi →M. Now pass to the asymptotic cone with
indexing set, Z = N, and with scaling factors 1/ i . We end up with a continuous
injective map, φ∞ : B1→M∞, contradicting the fact that M∞ has locally compact
dimension at most n.

To see that only the parameters of M are relevant to the value of r , we should
allow M also to vary among coarse median spaces with these parameters when
taking the asymptotic cone. More precisely, suppose we have a sequence, φi :

Bi →Mi , of uniformly quasi-isometric maps, where the Mi are uniform coarse
median spaces. This time, we get a limiting map φ∞ : B1 →M∞, where M∞

is the ultralimit of the spaces (Mi )i again scaled by 1/ i . This leads to the same
contradiction. In other words, there must be a bound on the diameter of a euclidean
ball which we can quasi-isometrically embed, for any fixed parameters. �

Note that it follows, for example, that M admits no quasi-isometrically embedded
euclidean half-space of dimension n+ 1.

Remark. The last paragraph of the proof of Lemma 6.10 is a standard trick to obtain
uniform constants and will be used again later. (See the remark after Lemma 14.5.)
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7. A general construction of coarse medians

In this section, we give a general criterion for the existence of coarse medians on
certain types of spaces associated to a surface. In particular, we will apply this to
the marking graph in Section 8, to recover the result of [Behrstock and Minsky
2011]. The argument follows broadly as in that work using [Behrstock, Kleiner,
Minsky and Mosher 2012]. In doing this, under our hypotheses, we give a version
of the compatibility theorem for medians. To this end, we will list a set of axioms
((A1)–(A10) below) which relate to “projection maps” to spaces indexed by a set,
X , namely the collection of “subsurfaces” of a surface 6. The main results of this
section, namely Theorems 7.1 and 7.2, together give a more precise statement of
Theorem 1.1.

In Section 8, we will explain how this applies, in particular, to the marking graph,
and recover the result of [Behrstock and Minsky 2011].

As mentioned in Section 1, the main purpose of keeping the discussion general is
that one can readily check that the hypotheses we give here apply in other situations —
notably to Teichmüller space in either the Teichmüller or Weil–Petersson metrics;
see [Bowditch 2016a; 2015]. This also applies to most of the discussion in Sections
9–12 here.

We remark that in [Behrstock, Hagen and Sisto 2017], the authors define the
notion of a “hierarchically hyperbolic” space, based on a different (though related)
set of axioms. These allow for more general indexing sets. However in the case
where the indexing set is taken to be X , as in the present paper, one can verify that
hierarchically hyperbolic spaces satisfy our axioms, and are hence coarse median.
See [Behrstock, Hagen and Sisto 2015, Section 7] for more discussion of this.

Let 6 be a compact orientable surface. Let ξ(6) be its complexity, that is,
ξ(6) = 3g + p − 3, where g is the genus, and p is the number of boundary
components. If ξ(6)= 0 then 6 is a three-holed sphere. If ξ(6)= 1 then 6 is a
four-holed sphere, or a one-holed torus. We will write Sg,p to denote the topological
type of surface of genus g and p boundary components.

Definition. By an essential curve in 6, we mean a simple closed curve which
homotopically nontrivial and nonperipheral (not homotopic into ∂6). By a curve
we mean a free homotopy class of essential curves.

Definition. By an essential subsurface6 we mean a compact connected subsurface,
X ⊆6, such that each boundary component of X is either a component of ∂6, or
else an essential (and nonperipheral) simple closed curve in 6 \ ∂6, and such that
X is not homeomorphic to a three-holed sphere.

Note that we are allowing 6 itself as a subsurface, as well as nonperipheral
annuli.
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Definition. A subsurface is a free homotopy class of essential subsurfaces.

We refer to an essential surface in the given homotopy class as a realisation of
the subsurface. Note that there is a natural bijective correspondence between curves
and annular subsurfaces.

Given X, Y ∈ X , we distinguish five mutually exclusive possibilities denoted as
follows:

(1) X = Y : X and Y are homotopic.

(2) X ≺ Y : X 6= Y, and X can be homotoped into Y but not into ∂Y.

(3) Y ≺ X : Y 6= X, and Y can be homotoped into X but not into ∂X.

(4) X ∧ Y : X 6= Y, and X, Y can be homotoped to be disjoint.

(5) X t Y : none of the above.

In (2)–(4) one can find realisations of X, Y in 6 such that X ⊆ Y, Y ⊆ X,
X ∩ Y =∅, respectively. (Note that X ∧ Y covers the case where X is an annulus
homotopic to a boundary component of Y, or vice versa.) We can think of (5) as
saying that the surfaces “overlap”. We write X � Y to mean X ≺ Y or X = Y.
(Note that this excludes the case where Y is homotopic to an annular boundary
component of a nonannular subsurface, X.)

We note that

X ∧ Y ⇔ Y ∧ X, X t Y⇔ Y t X,

X ≺ Y ≺ Z ⇒ X ≺ Z , X ∧ Y and Z ≺ Y⇒ X ∧ Z .

Given X ∈ X , write X (X)= {Y ∈ X | Y � X}.
We now introduce the hypotheses of the main result of this section.
We suppose that to each X ∈ X , we have associated geodesic metric spaces

(M(X), ρX ) and (G(X), σX ), as well as a map χX :M(X) → G(X). We will
generally abbreviate ρ = ρX and σ = σX , where there is no confusion. Given
X, Y ∈ X with Y ≺ X, we suppose that we have a map ψY X :M(X)→M(Y ).
We write θY X = χY ◦ψY X :M(X)→ G(Y ). We also assume that if X, Y ∈ X with
Y t X, or Y ≺ X, then we have associated an element θX Y ∈ G(X). If α is a curve,
we will write θXα = θX Y, where Y = X (α) is the annular neighbourhood of α. It
will be seen that the hypotheses laid out below only really require these maps to be
defined up to bounded distance.

(In Section 8, we will be setting M(X) =M(X) and G(X) = G(X), to be the
intrinsic marking graphs and curve graph respectively, when X ∈ XN . The map χX

is the natural projection, and ψY X is the usual subsurface projection. If X ∈ XA,
then G(X)=G(X) is the usual graph that measures twisting around the core curve.
In this case, we set M(X)= G(X) and χX to be the identity map.)

We will assume:
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(A1) “hyperbolic”: There exists k≥0 such that for all X ∈X , G(X) is k-hyperbolic.

(A2) “χ Lipschitz and cobounded”: there exist k1, k2, k3 ≥ 0 such that for all
X ∈ X and for all a, b ∈M(X), σ(χX a, χX b) ≤ ρ(a, b)+ k2 and G(X) =
N (χX (M(X)); k3)

(A3) “ψ Lipschitz”: there exist k1, k2 ≥ 0 such that for all X ∈ X and for all
Y ∈ X (X) and for all a, b ∈M(X), ρ(ψY X a, ψY X b)≤ ρ(a, b)+ k2.

(A4) “composition”: There is some s0≥ 0 such that if X, Y, Z ∈X with Z ≺Y ≺ X
and a ∈M(X), then ρ(ψZ X a, ψZY ◦ψY X a)≤ s0.

(A5) “disjoint projection”: there exists s1 ≥ 0 such that for all X ∈ X if Y, Z ∈ X
with Y ∧ Z or Y ≺ Z , then σ(θX Y, θX Z) ≤ s1 whenever θX Y and θX Z are
defined.

Thus, (A2) and (A3) tell us that our maps are all uniformly coarsely Lipschitz. In
view of (A4) we will abbreviate θY X to θY and ψY X to ψY , whenever the domain of
the map is clear. If X = Y, we set ψX =ψX X to be the identity map on M(X). Note
that, with these conventions, we can also write χX as θX . We will also abbreviate
σY (a, b)= σ(θY a, θY b) and ρY (a, b)= ρ(ψY a, ψY b). To simplify the exposition,
we will view θX as a map from M(X)tX (X) to G(Y ).

Given a, b ∈M(X), write RX (a, b)=max{σY (a, b) | Y ∈ X (X)}. Similarly, if
a ∈M(X) and Z ∈ X (X) \ {X}, write

RX (a, Z)=max{σY (a, Z)}

as Y ranges over those elements of X (X) with either with Y ≺ Z or Y t Z . (In the
context of marking graphs, one can view RX as measuring intersection numbers.)

We assume:

(A6) “finiteness”: there exists r0≥0 such that for all X ∈X and for all a,b∈M(X),
the set of Y ∈ X (X) with σY (a, b)≥ r0 is finite.

(A7) “distance bound”: for all r ≥ 0 there exists r ′ ≥ 0 such that for all X ∈ X
and for all a, b ∈M(X), if RX (a, b)≤ r , then ρ(a, b)≤ r ′.

(A8) “bounded image”: there exists r0 such that for all X ∈X and for all Y ∈X (X)
and for all a, b ∈M(X), if 〈θX a, θX b:θX Y 〉 ≥ r0, then σY (a, b)≤ r0.

(A9) “overlapping subsurfaces”: there exists r0 such that for all X ∈ X and for
all Y, Z ∈ X (X), if Y t Z and x ∈M(X)tX (X), then

min{σY (x, Z), σZ (x, Y )} ≤ r0.

(A10) “realisation”: there exists r0 such that for all X ∈ X , if Y ⊆ X (X) with
Y ∧ Z for all distinct Y, Z ∈ Y , and if to each Y ∈ Y we have associated
some aY ∈M(Y ), then there is some a ∈M(Y ) with ρ(aY , ψY a)≤ r0 and
RX (a, Y )≤ r0 for all Y ∈ X .
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In fact, for (A10) it would be enough to take Y to consist of an annular subsurface
together with any non-S0,3 complementary components — we can then keep cutting
the surface into smaller and smaller pieces, and the general case follows by an
inductive application of (A4) “composition”.

Note that, using by (A2) “χ Lipschitz and cobounded” and (A3) “ψ Lipschitz”
we have a reverse inequality in (A7) “distance bound”, namely that RX (a, b) is
(linearly) bounded above in terms of ρ(a, b).

We note that (A6) “finiteness” and (A7) “distance bound” are both consequences
of the following distance formula.

Given r ≥ 0, we write

AX (a, b; r)= {Y ∈ X (X) | σY (a, b) > r}.

Given a, b ∈M0(6) and r ≥ 0, let DX (a, b; r)=
∑

Y∈AX (a,b;r) σY (a, b).
We suppose:

(B1) “distance formula”: there exists r0 ≥ 0 such that for all r ≥ r0, there exist
k1 > 0, h1, k2, h2 ≥ 0 such that for all X ∈ X and for all a, b ∈M(X),

k1ρ(a, b)− h1 ≤ DX (a, b; r)≤ k2ρ(a, b)+ h2.

We will sometimes abbreviate this statement to DX (a, b; r)� ρ(a, b).

Less formally, this says that distances in M(X) agree to within linear bounds
with the sum of all sufficiently large projected distances in G(Y ) as Y ranges over
subsurfaces of X. Here “sufficiently large” implies a lower threshold below which
we ignore any contributions. The linear bounds will depend on the particular choice
of threshold. For this to work, the threshold must be assumed sufficiently large.

In the case of markings, (B1) is the distance formula of [Masur and Minsky 2000],
who also stated it for the pants complex. (We remark that for the Teichmüller metric,
a similar formula has been proven by Rafi and by Durham, and is used in [Bowditch
2016a]. A more general version, which encompasses these cases is proven in
[Behrstock, Hagen and Sisto 2015].) Again for markings, (A8) “bounded image”
is a consequence of their bounded geodesic image theorem, (A9) “overlapping
subsurfaces” is a consequence of Behrstock’s lemma, and (A10) “realisation” is a
simple explicit construction. We will elaborate on this in Section 8.

Given Y ∈X , we write µY : (G(Y ))3→G(Y ) for the usual median (or “centroid”)
operation on the uniformly hyperbolic space G(Y ). (That is, µ(a, b, c) is a bounded
distance from any geodesic connecting any two distinct points of {a, b, c}.)

We will show:

Theorem 7.1. Under the hypotheses (A1)–(A10) above, there is some t0 ≥ 0
depending only on the parameters of the hypotheses such that if X ∈ X and
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a, b, c ∈M(X), there is some m ∈M(X) such that for all Y ∈ X (X) we have
σ(θY m, µY (θY a, θY b, θY c))≤ t0.

By (A7) “distance bound”, m is well defined up to bounded distance. We set
µX (a, b, c)= m for some such m to give us a ternary operation µX : (M(X))3→
M(X). Using (A4) “composition”, we see that if Y ∈ X (X), then ψY :M(X)→
M(Y ) is a uniform quasimorphism, that is,

ρY (µY (ψY a, ψY b, ψY c), ψYµX (a, b, c))≤ h for all a, b, c ∈M(X),

where h ≥ 0 depends only on the parameters of the hypotheses.

Theorem 7.2. Under the hypotheses (A1)–(A10), there is a ternary operation, µX ,
defined on each space M(X) such that (M(X), ρX , µX ) is a coarse median space,
and such that the maps θY X :M(X)→ G(Y ) for Y � X are all median quasimor-
phisms. The median µX is unique with this property, up to bounded distance. The
maps ψY X :M(X)→M(Y ) for Y � X are also median quasimorphisms. The
coarse median space (M(X), ρX , µX ) is finitely colourable, and has rank at most
ξ(X). Moreover, all constants of the conclusion (coarse median property, and
quasimorphism) depend only on the constants of the hypotheses (A1)–(A10).

Proof. Given Theorem 7.1, this follows directly from the results of [Bowditch
2013], in particular, Propositions 10.1 and 10.2 thereof. We just need to check that
the respective hypotheses (P1)–(P4) and (P3′) are satisfied.

Here, (P1) is (A7) “distance bound” and (P2) is (A1) “hyperbolic”. (P3) is
the statement that one can embed at most ξ subsurfaces disjointly in a surface of
complexity ξ . Finally, (P4) follows exactly as in Lemma 11.7 there, which only uses
properties (A8) “bounded image” and (A9) “overlapping subsurfaces”. Moreover,
property (P3′) also holds here, for the same reason. �

(In some cases, one can improve on the rank bound of Theorem 7.2, as in the
case of the Weil–Petersson metric [Bowditch 2015].)

So far, we have made no reference to the action of Map(6). In applications, the
spaces and maps will be equivariant (up to bounded distance), and it follows that the
medians we construct will necessarily also be equivariant up to bounded distance.

We now set about the proof of Theorem 7.1. To simplify the exposition, we
will construct the median µ = µ6 on 6. The same arguments apply working
intrinsically in any subsurface X ∈ XN .

We begin with some general observations about the treelike (rank-1 median)
nature of hyperbolic spaces.

Definition. A spanning tree for a finite set A consists of a finite simplicial tree, 1,
and a map π = π1 : A→ V (1) to the vertex set.
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Recall that the vertex set of a finite simplicial tree is a rank-1 median algebra (and
every finite rank-1 median algebra has this form). We can assume that every terminal
(i.e., degree-1) vertex of 1 lies in π A. We say that 1 is trivial if it is a singleton.

Suppose that T is another spanning tree with an embedding of 1 in T. There is
a natural retraction, ω, of T onto 1, and hence of V (T ) to V (1). We say that the
spanning tree T is an enlargement of 1 if π1 = ωπT .

Suppose that {1i }i∈J is a finite collection of spanning trees for A, indexed by
some set J . We say that a spanning tree T for A is a common enlargement of
{1i }i∈J if we can embed the 1i simultaneously in T so that their interiors are
disjoint, and such that T is an enlargement of each 1i . Note that (after collapsing
complementary trees), we may as well suppose that T =

⋃
i∈J 1i . We write

T = T ({1i }i∈J ). (There may be some ambiguity, in that we may be able to swap
to trees each consisting of single edge, and meeting at a vertex not in π A. However,
this ambiguity will not matter to us.)

Definition. We say that a collection of spanning trees is coherent if it has a common
enlargement.

We shall assume henceforth that all our spanning trees are nontrivial.

Lemma 7.3. Two spanning trees 10 and 11 are coherent if and only if there are
vertices, v01 ∈ V (10) and v10 ∈ V (11) such that A = π−1

0 v01 ∪π
−1
1 v10.

Proof. If T = T (10,11) is a common spanning tree for A, then T is obtained
by taking 10 t11 and identifying a vertex v01 ∈ V (10) with v10 ∈ V (11), to
give a vertex w ∈ V (T ). Note that π : A→ T is given by π |(A \ π−1

0 v01) = π0,
π |(A \ π−1

1 v10) = π1 and π(π−1
0 v01 ∩ π

−1
1 v10) = {w}. We can clearly invert the

above process. �

Suppose that {10,11,12} are coherent. Let T = T (10,11,12). Up to permu-
tation of indices, there are two possibilities:

(1) 10, 11, 12 meet at a common vertex w = V (T ). In this case, v01 = v02,
v12 = v10 and v20 = v21. Note that these vertices all get identified to w in T.

(2) 11 and12 do not meet in T. In this case, v01 6= v02, v12= v10 and v20= v21.

Note that the conditions on vertices above make sense if we assume only that
10, 11 and 12 are pairwise coherent.

Lemma 7.4. Let {10,11,12} be pairwise coherent. Then it is coherent if an only
if at most one of the three equalities v01 = v02, v12 = v10 and v20 = v21 does not
hold.

Proof. We have explained “only if”, so we prove “if”:
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(1) Suppose all the equalities hold. Let w0 = v01 = v02, w1 = v12 = v10 and
w2 = v20 = v21. Let T be obtained from 10 t11 t12 by identifying w0, w1 and
w2 to a single point w ∈ V (T ). We define π : A→ V (T ) by π |(A \π−1

i wi )= πi

for i = 0, 1, 2 and setting π(π−1
0 w0 ∩π

−1
1 w1 ∩π

−1
2 w2)= {w}.

(2) If not, then, without loss of generality, v01 6= v02. Let w1 = v12 = v10 and
w2 = v20 = v21. We construct T from 10 t11 t12 by identifying v01 with w1 to
give x1 ∈ V (T ) and v02 with w2 to give x2 ∈ V (T ). Note that A can be partitioned
into five disjoint sets:

A1 = π
−1
0 v01 \π

−1
1 w1, A01 = π

−1
0 v01 ∩π

−1
1 w1, A0 = π

−1
1 w1 ∩π

−1
2 w2,

A02 = π
−1
0 v02 ∩π

−1
2 w2, A2 = π

−1
0 v02 \π

−1
2 w2.

We define π : A→V (T ) by setting π |Ai =πi for i =0, 1, 2 and setting π(A01)= x1

and π(A02)= x2. �

In fact, three trees are enough: a finite collection of spanning trees for A is
coherent if and only if every subset of at most three elements is coherent. This is
not hard to verify, but since we won’t be needing it, we omit the proof.

We now move on to consider hyperbolic spaces. Recall that

〈x, y:z〉 = 1
2(σ (x, z)+ σ(y, z)− σ(x, y))

for the Gromov product.

Lemma 7.5. Suppose that (G, σ ) is k-hyperbolic, p ∈ N, and t ≥ 0. Given a set
B ⊆ G with |B| ≤ p, there is a simplicial tree, 1, and maps π : B→ V (1) and
λ :V (1)→G such that for all x, y, z∈V (1), if 〈λx, λy:λz〉≤ t , then z∈[x, y]V (1).
Moreover, λ is an h-quasimorphism and for all x ∈ B we have σ(x, λπx) ≤ h,
where h depends only on k, p and t.

Proof. This is proven in [Bowditch 2013, Lemma 10.3]. It is a simple consequence
of the fact that any finite set of points in a Gromov hyperbolic space can be
approximated up to an additive constant by a finite tree (with vertex set B). The
additive constant depends only on p and k. For the clause about Gromov products
we need to collapse down “short” edges of the tree (hence the dependence of h
on s). This can also be phrased in terms of Corollary 6.5 here. (In [Bowditch 2013]
we had a stronger condition on the “crossratios” of four points of B, which is easily
seen to imply the condition on Gromov products given here.) �

We will apply this to the spaces G(X) featuring in the hypotheses of Theorem 7.1.
By (A1) these are all k-hyperbolic. Recall that we have maps θX :M(X)→ G(X).

We fix some A ⊆M(6) with |A| = p < ∞. (In our applications here we
will have p ≤ 4, but we can keep the discussion general for the moment.) We
will choose universal t ≥ 0 sufficiently large (depending only on p) as described
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below. We apply Lemma 7.5 to B = θX (A) ⊆ G(X) with t as above, to get a
tree 1(X) and maps π : B→ V (1(X)) and λX = λ : V (1(X))→ G(X). We set
πX = π ◦ θX : A→ V (1(X)).

All we require of this until Lemma 7.11, is:

(*) If a, b, c ∈ A with 〈θX a, θX b:θX c〉 ≤ t , then πX c ∈ [πX a, πX b]V (1(X)).

In particular, if σ(θX a, θX b) ≤ t , then πX a = πX b (since 〈θX a, θX a:θX b〉 ≤ t , so
πX b ∈ [πX a, πX a] = {πX a}). It follows that if diam(θX A) ≤ t (p), then 1(X) is
trivial (i.e., a singleton).

For future reference (see Lemma 7.11) we also note that λ is an l-quasimorphism,
and that for all a ∈ A, σ(θX a, λXπX a)≤ l, where l = h(p) depends only on p.

Lemma 7.6. Let X, Y ∈ X with X t Y, then there are points, vXY ∈ V (1(X)) and
vY X ∈ V (1(Y )) such that A = π−1

X vXY ∪π
−1
Y vY X .

Proof. We can assume that neither V (1(X)) nor V (1(Y )) is trivial. Note that if
a ∈ A, with σ(θX a, θX Y ) > r0, then σ(θY a, θY X) ≤ r0. If this were true for all
a ∈ A, we would conclude that diam(θY A)≤ 2r0 < t (p) giving the contradiction
that V (1(Y )) is trivial. We can thus find aXY ∈ A with σ(θX aXY , θX Y )≤ r0. We
set vXY = πX aXY ∈ V (1(X)). We similarly define vY X = πY aY X ∈ V (1(Y )).

Now suppose that b ∈ A \ (π−1
X vXY ∪ π

−1
Y vY X ). Then πX b 6= πX aXY , and

so σ(θX b, θX aXY ) ≥ t (p). Thus, σ(θX b, θX Y ) ≥ t (p) − r0 > r0. Similarly,
σ(θY b, θY X) > r0. This contradicts property (A9) “overlapping subsurfaces”,
proving that no such b exists. �

Note that, by Lemma 7.3, we can naturally combine 1(X) and 1(Y ) into a
larger tree by identifying the vertices vXY and vY X . In other words, {1(X),1(Y )}
is coherent. We write 1(X, Y ) for the common enlargement.

Note that by construction if1(X) and1(Y ) are nontrivial, then σ(θX aXY ,θX Y )≤
r0, where aXY ∈ A is as in the proof of Lemma 7.6. By the same argument, if
Z ∈ X with 1(Z) nontrivial, we have σ(θX aX Z , θX Z) ≤ r0, for some aX Z ∈ A.
If σ(θX Y, θX Z) < t − 2r0, then σ(θX aXY , θX aX Z ) < s(p), so vXY = πX aXY =

πX aX Z = vX Z . For future reference (Lemma 7.11) we also note that

σ(θX aXY , λXvXY )= σ(θX aXY , λXπX aXY )≤ l,

so σ(θX Y, λXvXY )≤ r0+ l).
We write X0 for the set of X ∈ X such that 1(X) is nontrivial. It follows from

property (A6) “finiteness”, that X0 is finite.
Note that if X, Y ∈ X0 and X t Y, then {1(X),1(Y )} is coherent. This is an

immediate consequence of Lemmas 7.4 and 7.6. Note that this determines vertices
vXY ∈1(X) and vY X ∈1(Y ) which get identified in 1(X, Y ).
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Lemma 7.7. Suppose that X, Y, Z ∈X0 and that X t Y and X t Z and vXY 6= vX Z .
Then Y t Z.

Proof. If not, then (since there must be boundary curves of Y and Z which are
disjoint) and by (A5) “disjoint projection” we must have σ(θX Y, θX Z)≤ r , for some
constant r depending only on that of (A5), which in turn depends only (or at most)
on ξ(6). Provided we have chosen t > l + 2r0, this implies that vXY = vX Z . �

Lemma 7.8. Suppose that X, Y, Z ∈ X0 and that X t Y, X t Z and Y t Z. Then
{1(X),1(Y ),1(Z)} is coherent.

Proof. By Lemma 7.7, it’s enough to show that at least two of vXY =vX Z , vY Z =vY X ,
vZ X = vZY must hold.

By property (A9) “overlapping subsurfaces”,

min{σ(θX Y, θX Z), σ (θY X, θY Z)} ≤ r0.

Therefore, if t ≥ 3r0, we see that either vXY = vX Z or vY Z = vY X . Similarly, we have
(vY Z = vY X or vZ X = vZY ) and (vZ X = vZY or vXY = vX Z ), and so the statement
follows. �

We can now start on the proof of Theorem 7.1
Suppose a, b, c ∈ M(6). We want to find a median for a, b, c in M(6).

First choose any d ∈M(6) with σ6(θ6d, µ6(θ6a, θ6b, θ6c)) bounded in G(6).
(Such a d exists, since χ6(M(6)) is cobounded in G(6) by (A2) “χ Lipschitz an
cobounded”.)

Now set A= {a, b, c, d}, and let πX : A→1(X) be as described in Lemma 7.5.
Let h = h(4). Write dX = πX d and eX = µX (πX a, πX b, πX c). Recall that X0 is
the (finite) set of X ∈X such that 1(X) is nontrivial. Let X1 = {X ∈X0 | eX 6= dX }.
By the choice of d, we see that 6 /∈ X1.

Suppose that X, Y ∈ X1 with X t Y. Recall that T = 1(X, Y ) is obtained by
identifying vXY ∈ 1(X) with vY X ∈ 1(Y ), to give w ∈ T. Note that πT d and
µT (πT a, πT b, πT c) must be distinct from w, and must lie in different subtrees
1(X) and 1(Y ). It follows that exactly one of the following must hold:

(1) dY = vY X and eX = vXY , or

(2) dX = vXY and eY = vY X .

We write these cases respectively as X � Y and Y � X (which we take to imply
that X t Y ).

(Intuitively, we think of these relations as follows. We imagine any finite set of
elements of X embedded disjointly as “horizontal” surfaces in6×R; that is, X ∈X
is identified with X ×{x} for some x ∈ R. The relations =, ≺, ∧ and t have their
usual meaning on projecting to6, and X�Y means that X tY and X is “to the left”
of Y in the sense that it has smaller R-coordinate. The relations are well defined up
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to isotopy, and satisfy the same properties as those laid out here. This picture ties
in with the Minsky model for hyperbolic 3-manifolds homeomorphic to 6×R.)

Lemma 7.9. If X, Y, Z ∈ X1 and X � Y and Y � Z , then X � Z.

Proof. Since X�Y, vXY =dY . Since Y� Z , vXY =dY . Since Y ∈X1, dY 6= eY , so
vY X 6= vY Z . By Lemmas 7.7 and 7.8, X t Z , and {1(X),1(Y ),1(Z)} is coherent.
In particular, eX = vXY = vX Z and dZ = vZY = vZ X so X � Z . �

Recall that X ≺ Y implies that X 6= Y and X is homotopic into Y. We therefore
have two strict partial orders� and ≺ on X1. Moreover, by hypothesis, X � Y is
incompatible with any of X ≺ Y, Y ≺ X, or X ∧ Y.

Lemma 7.10. Given X, Y, Z ∈ X1 with X � Y and Y ≺ Z , then either X � Z or
X ≺ Z.

Proof. Recall that X t Z implies X � Z or Z � X. Thus, if the conclusion of
the lemma fails, the only alternatives would be Z = X, Z ≺ X, Z � X or Z ∧ X.
Now Z = X or Z ≺ X both give Y ≺ X contradicting X � Y ; Z � X gives Z � Y
contradicting Y ≺ Z , and finally, Z ∧ X gives Y ∧ X, contradicting X � Y. �

Now write X < Y to mean that either X � Y or X ≺ Y. This relation is
antisymmetric on X1. It is not in general transitive, but in view of Lemma 7.10, any
relation of the form X < Y < Z <W can be reduced to X < V <W for V ∈ {Y, Z}.
In particular, there are no cycles. It follows that X1 contains an element U which
is maximal with respect to this relation. In other words, if X ∈ X1, then we have
neither U � X nor U ≺ X. Note that 6 /∈ X1, so U 6=6.

From this, we can deduce:

Lemma 7.11. There is some universal u0 > 0, such that if a, b, c ∈M(6), there is
some curve α such that if X ∈ X , with α t X or α ≺ X, then

σ(θXα,µX (θX a, θX b, θX c))≤ u0.

Proof. Let U ∈ X1 be maximal with respect to <, as above. Let α be a component
of the relative boundary of U in 6. Suppose that X ∈X with α≺ X or α t X. Then
either U ≺ X or U t X. According to the conventions described in Section 6, we
use the notation ∼ to mean “up to bounded distance”. In all cases, θXα is defined
and θXα ∼ θXU, by (A5) “disjoint projection”. Let λX : V (1X )→ G(X) be the
quasimorphism described above (as given by Lemma 7.5). Now,

λX eX = λXµV (1(X))(πX a, πX b, πX c)

∼ µX (λXπX a, λXπX b, λXπX c)

∼ µX (θX a, θX b, θX c).

We therefore want to show that θXU ∼ λX eX . Note that λX dX = λXπX d ∼ θX d .
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Suppose first that U ≺ X. Thus X /∈ X1, so dX = eX . Now λX eX = λX dX , is
a centroid for θX a, θX b, θX c in G(X), and so θX d is also a centroid. Therefore,
if θXU were far enough away from θX d, (depending only on the hyperbolicity
constant), then we can assume that the Gromov products 〈θX a, θX b:θXU 〉 and
〈θX a, θX d:θXU 〉 are both greater than r0 (after permuting a, b, c as necessary).
By property (A8) “bounded image”, this implies that σU (θU a, θU b) ≤ r0 and
σU (θU a, θU d) ≤ r0. It then follows that πU a = πU b = πU d ∈ V (1(U )), so
eU = µV (1(U ))(πU a, πU b, πU c) = πU d = dU , contradicting the fact that U ∈ X1.
We have shown that if U ≺ X, then θXU ∼ λX eX as required.

Suppose now that U t X. In this case, by Lemma 7.6, the trees 1(X) and
1(U ) are coherent. Moreover, since 1(U ) is nontrivial, we have θXU ∼ λXvXU .
If X ∈ X1, then X �U, so eX = vXU , thus θXU ∼ λXvXU = λX eX as required. So
we can suppose that X /∈ X1 — in other words, dX = eX . If X /∈ X0, then 1(X)
is trivial, so eX = dX = vXU , and we are done, as above. If X ∈ X0, then again
dX = vXU , otherwise we would get eU = dU contradicting U ∈ X1.

In all cases, we have shown that θXU ∼ λX eX , as required. �

We can now prove the main result of this section:

Proof of Theorem 7.1. Uniqueness up to bounded distance is an immediate conse-
quence of property (A7) “distance bound” here, so we prove existence.

Let a, b, c ∈M(6). Let α be a curve as given by Lemma 7.11. Given X ∈ X ,
write δX = µX (θX a, θX b, θX c) ∈ G(X). So θXα ∼ δX for all X with α t X or
α ≺ X. We consider only the case when α separates 6. The nonseparating case is
essentially the same.

Let 6 = Y ∪ Z , where Y ∩ Z = α. Suppose first that neither Y nor Z is a
S0,3, so that Y, Z ∈ X . By induction on the complexity of 6, we can assume that
Theorem 7.1 holds intrinsically to Y and Z . Thus, we can find mY ∈M(Y ), such
that if X = Y or X ≺ Y, then σ(θX mY , δX ) is bounded. We have a similar element,
m Z ∈M(Z). Let � ∈ XA be the annulus with core curve α. We apply property
(A10) “realisation” with Y = {X, Y, �} to give m ∈M(6) such that ρ(ψY m,mY ),
ρ(ψZ m,m Z ) and ρ�(ψ�m, δ�) are bounded. By (A4) “composition” and the
construction of mY and m Z , we have θX m ∼ δX for all X � Y all X � Z .

Suppose that X ∈ X . If X � Y, X � Z or X =�, then σ(θX m, δX ) is bounded
by construction. If not, then either α ≺ X or α t X. But then, by the choice of
α, σ(θXα, δX ) is bounded as already observed. But σ(θX m, θXα) ≤ R6(m, a) is
bounded by (A10) “realisation”, so we are done in this case.

If either Y or Z is an S0,3, we just omit that subsurface from Y , and proceed in
the same way.

If α does not separate, we set Y to consist of X (α) together with complement of
α and proceed similarly. �



44 BRIAN H. BOWDITCH

8. The marking complex

In this section, we apply the results of Theorem 7.1 to the marking complex of 6,
to recover the result of [Behrstock and Minsky 2011], stated as Theorem 8.2 here.
We first describe the curve graph associated to a compact surface, 6.

For ξ(6)≥ 1, let G= G(6) be the curve graph of 6. Its vertex set, G0, is the
set of free homotopy classes of essential nonperipheral simple closed curves in 6.
As before, we refer to elements of G0 simply as curves. Two curves, α, β ∈ G0 are
adjacent if ι(α, β) is equal to 2 if 6 is an S0,4; equal to 1 if 6 is an S1,1; or equal
to 0 if ξ(6)≥ 2. Here ι(α, β) denotes the geometric intersection number.

In all cases, G(6) is connected. A key result in the subject is:

Theorem 8.1. There is a universal constant k such that for any compact surface 6,
G(6) is k-hyperbolic.

The existence of such a k, depending on ξ(6), was proven by Masur and
Minsky [1999]. The fact that it is uniform (independent of ξ(6)) was proven
independently in [Aougab 2013; Bowditch 2014b; Clay, Rafi and Schleimer 2014;
Hensel, Przytycki and Webb 2015]. (The uniformity is not essential to the main
results of this paper: we will only be dealing with finitely many topological types at
any given time, namely subsurfaces of a given surface 6. One can therefore simply
assert dependence of constants on ξ(6) at the relevant points.)

Given nonempty a, b ⊆ G0, let ι(a, b)=max{ι(α, β) | α ∈ a, β ∈ b}. We write
ι(a)= ι(a, a).

Definition. If ι(a)= 0, we refer to a as a multicurve.

Intuitively, we think of a multicurve in terms of its realisation as 1-manifold in M.

Definition. We say that a ⊆ G0 fills 6 if i(a, γ ) 6= 0 for all γ ∈ G0.

If we realise a minimally, then this is the same as saying that all complementary
components of

⋃
a are disc or peripheral annuli.

Given p, q ∈ N, define a graph M=M(6, p, q) by taking the vertex set, M0 to
be the set of a ⊆G0 such that a fills 6 and ι(a)≤ p, and by deeming a, b ∈M0 to
be adjacent if ι(a, b)≤ q. This graph is always locally finite. Provided p is large
enough and q is large enough in relation to p (independently of 6) it will always
be nonempty and connected. For definiteness, we can set M(6) = M(6, 2, 4),
though the actual choice will not matter. (The inclusion of M(6, 2, 4) into any
larger M(6, p, q) is a quasi-isometry.)

Definition. We refer to M(6) as the marking graph of 6.

(This is a slight variation on the marking complex of [Masur and Minsky 2000].)
Note that the mapping class group Map(6) acts on G(6) and on M(6) with

finite quotient. In particular, we see that Map(6) is quasi-isometric to M(6). Note
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also that bounding distance in the marking complex is equivalent to bounding
intersection numbers between markings.

Recall that X = XA tXN is the set of (non-S0,3) subsurfaces of 6, partitioned
into annular and nonannular subsurfaces.

If X ∈XN , we can define G(X) and M(X) intrinsically to X as above. If X ∈XA,
one needs to define G(X) as an arc complex in the annular cover of6 corresponding
to X ; see [Masur and Minsky 2000, Section 2.4]. This is quasi-isometric to the real
line. In this case, we set M(X)= G(X). (One could give a unified description in
terms of covers of 6 corresponding to subsurfaces, though we will omit discussion
of that here.) We will write G(γ )=G(X) and M(γ )=M(X), when γ ∈G0, where
X = X (γ ) is the annular neighbourhood of γ .

We will write σ = σX and ρ = ρX respectively for the combinatorial metrics on
G(X) and M(X).

Given X ∈X we have a map χX :M(X)→G(X). If X ∈XA, this is the identity.
If X ∈ XN , it just chooses some curve from the marking. Up to bounded distance,
the map χX is determined by the fact that ι(a, χX a) is bounded for all a ∈M(X).

Given X,Y ∈X with Y � X, we have a subsurface projectionψY X :M(X)→M(Y ).
This is the same construction as in [Masur and Minsky 2000]. We realise a and Y
in minimal general position (so that a ∩ Y has a minimal number of components).
Now a∩Y consists of a collection of arcs and curves. We say two arcs are “parallel”
if they are homotopic, sliding the endpoints in the boundary components of Y. For
each parallel class of arcs we get a disjoint curve (namely the boundary component
of a regular neighbourhood of the arc union the boundary components it meets). The
collection of such curves, together with the curves of a already lying in Y, give us a
collection of curves of Y of bounded self-intersection, and hence give rise to a mark-
ing of Y. We write this asψY X a. Up to bounded distance, the mapψY X is determined
by the fact that the intersection of ψY X a with every component of a∩ X is bounded.

We set θY = χY ◦ψY X :M(X)→ G(Y ).
One can also define subsurface projection for curves. Suppose γ ∈ G0(6) and

X ∈ X with γ t X or γ ≺ X, then we can define θX (γ ) ∈G(X). This is consistent
with that already defined, in that if γ ∈ a ∈ M0(X), then θX (γ ) ∼ θX (a). In
particular, θX ◦ χX (a) ∼ θX (a) when this is defined. Similarly, if X, Y ∈ X with
Y t X or Y ≺ X we can define θX (Y ) ∈ G(X). This can be defined by setting
θX (Y )= θX (γ ) for some boundary curve, γ , of Y.

We can now deduce the following result [Behrstock and Minsky 2011]:

Theorem 8.2. There is a constant t0, depending only on ξ(6), such that if a, b, c ∈
M(6), then there is some m ∈M(6) such that for all X ∈ X (6),

σ(θX m, µX (θX a, θX b, θX c))≤ t0.
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Moreover, if m′ ∈M(6) is another such element, then ρ(m,m′)≤ t1, where t1 is a
constant depending only on ξ(6).

We can therefore define a median map µ : (M(6))3→M(6) by µ(a, b, c)=m.
Of course, it is enough to define µ(a, b, c) for a, b, c in the vertex set, M0(6), of
M(6).

To prove Theorem 8.2, we set M(X) = M(X) and G(X) = G(X). We verify
(A1)–(A10) of Section 7 for these spaces and the maps χX and ψY X defined above.
In fact, for (A6) “finiteness” and (A7) “distance bound” we will verify (B1) “distance
formula”.

Note that (A1) “hyperbolicity” is an immediate consequence of Theorem 8.1
above. Properties (A2) “χ Lipschitz and cobounded”, (A3) “ψ Lipschitz” and (A4)
“composition” are elementary properties of subsurface projection, and (A5) “disjoint
projection” holds with s1 = 1 in this case.

Property (B1) “distance formula” is an immediate consequence of the following
due to Masur and Minsky [2000] (applied intrinsically to subsurfaces).

Theorem 8.3 [Masur and Minsky 2000]. There is some r0 ≥ 0 depending only on
ξ(6) such that for all r ≥ r0, there are constants, k1 > 0, h1, k2, h2 ≥ 0 depending
only on r and ξ(6) such that if a, b ∈M0(6), then k1ρ(a, b)−h1 ≤ D6(a, b; r)≤
k2ρ(a, b)+ h2.

This implies (A6) and (A7). Property (A8) “bounded image” is an immediate
consequence of the bounded geodesic image theorem; [Masur and Minsky 2000,
Theorem 3.1]. (Note that the Gromov product 〈α, β:γ 〉X is, up to an additive
constant, the same as the distance from γ to any geodesic from α to β.) A simpler
proof of the bounded geodesic image theorem (with uniform constants, independent
of ξ(6)) is given in [Webb 2015].

Property (A9) “overlapping subsurfaces” is an immediate consequence of Behr-
stock’s lemma:

Lemma 8.4. There is some universal r0 such that if X, Y ∈ X and γ ∈ G0(6) with
X t Y, γ t X and γ t Y, then min{σ(θX (γ ), θX (Y )), σ (θY (γ ), θY (X))} ≤ r0.

This is Theorem 4.3 of [Behrstock 2006] (where r0 may depend on ξ(6)). A
simpler proof, which gives explicit universal constants can be found in [Mangahas
2010].

Property (A10) “realisation” is a simple explicit construction. We can assume
that X =6. Let τ be the multicurve consisting of the union of the ∂6Y, as Y ranges
over Y . Each marking mY for Y ∈ Y ∩XN gives us a marking on some component
of 6 \ τ . We now take the union of τ with the union of all these markings. We add
in curves transverse to each of the elements of τ to give us a set of curves which
fill 6 with bounded self-intersection. We can arrange (after applying suitable Dehn
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twists about the elements of τ ) that the marking has the correct projection to the
elements of Y ∩XA. Note that this construction automatically gives us a marking,
m, with ι(m, τ ) bounded. By construction, ψY ∼ mY for all Y ∈ Y . Also if Z ∈ X
and Y ∈ Y with Y ≺ Z or Y t Z , then θZ m ∼ θZτ ∼ θZ Y, so σZ (m, Y )∼ 0, and it
follows that R6(m, Y )∼ 0 as required for (A10).

Finally note that bounding the distance, ρ(a, b) between two markings, a, b ∈
M0(6) is equivalent to bounding their intersection number, ι(a, b), which in turn, is
equivalent to bounding the quantity, R6(a, b) featuring in (A7) “distance bounds”.
One can find explicit estimates in the references cited, though we will not need
them here.

9. Multicurves

Again, in this section, 6 will be a compact surface with ξ(6)≥ 1. We will again
assume the hypotheses of Section 7, as we recall below.

Let τ ⊆ G0(6) be a multicurve in 6. As usual, we will often identify τ with its
realisation as a 1-manifold in 6. Let XA(τ )= {X (γ ) ∈ XA | γ ∈ τ } be the set of
annular surfaces corresponding to the components of τ . Let XN (τ )⊆XN be the set
of components of 6 \ τ which are not the S0,3. We write X (τ )= XA(τ )tXN (τ ).

Given Y ∈ X , we write τ t Y to mean that γ t Y or γ ≺ Y for some γ ∈ τ . Let
XT (τ )= {Y ∈ X | Y t τ }. Let XI (τ )= X \XT (τ ). It is easily seen that Y ∈ XI (τ )

if and only if Y � X for some X ∈ X (τ ). In other words, Y can be homotoped into
some component of 6 \ τ . (This includes the possibility that Y is homotopic to a
component of τ .)

Now suppose we have spaces G(X), M(X) and maps ψY X , χX , θX , etc., satisfy-
ing the hypotheses (A1)–(A10) of Section 7. We refer to the constants featuring in
these axioms as the parameters of M(6).

Given X ∈ XT (τ ), we set θX (τ ) = θX (γ ) for some γ ∈ τ . By (A5) “disjoint
projection”, we have σ(θXτ, θX Y ) ≤ s1 for all Y ∈ XI (τ ). In particular, θX (τ )

is well defined up to bounded distance. As usual, we will abbreviate σX (τ, a) =
σ(θXτ, θX a) for a ∈M(6) etc.

Given a ∈M(6), write

R(a, τ )=max{σX (a, τ ) | X ∈ XT (τ )}.

Thus R(a, τ )=max{R(a, γ ) | γ ∈ τ } (cf., the definition of R6 in Section 7). (In
the case of markings, one can think of this as measuring intersection numbers; see
Lemma 9.7.) Given r ≥ 0, let

T (τ ; r)= {a ∈M(6) | R(a, τ )≤ r}.
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Note that if a∈T (τ ; r) and Y ∈XI (τ ), then σ(a, Y )≤r+s1 (by (A10) “realisation”).
Also, if for each X ∈ X (τ ), we have associated some aX ∈M(X); then by (A10),
there is some a∈T (τ ; r ′0)with ρ(aX , ψX a)≤r0 for all X ∈XT (τ ), where r ′0=r0+s1.
Note that a is well defined up to bounded distance. In fact:

Lemma 9.1. If a, b ∈ T (τ ; r) with ρX (a, b)≤ r ′ for all X ∈ X (τ ), then ρ(a, b) is
bounded above in terms of r and r ′.

Proof. Suppose that Y ∈ X . If Y ∈ XI (τ ), then σY (a, b) is bounded using (A5)
“disjoint projection”. If Y ∈ XT (τ ), the σY (a, τ ) and σY (b, τ ) are both bounded
above by hypothesis, so σY (a, b) is again bounded. The statement now follows by
(A7) “distance bound”. �

We will abbreviate T (τ )= T (τ ; r ′0).
Let T (τ ) =

∏
X∈X (τ )M(X). We give T (τ ) the l1 metric (though any quasi-

isometrically equivalent metric would serve for our purposes). Note that T (τ ) is a
coarse median space, with the median defined coordinatewise. We can combine the
maps ψX :M(6)→M(X) for X ∈ X (τ ), to give a uniformly coarsely Lipschitz
quasimorphism, ψτ :M(6)→ T (τ ).

By Lemma 9.1 and the subsequent remark, we get a map υτ : T (τ )→ T (τ )⊆
M(6), such that ψτ ◦ υτ : T (τ )→ T (τ ) is the identity up to bounded distance.
Note that υτ is also a uniformly coarsely Lipschitz quasimorphism, whose image is
a uniformly bounded Hausdorff distance from T (τ ).

This in turn gives rise to a quasimorphism, ωτ = υτ ◦ψτ :M(6)→ T (τ ). It is
characterised by the property that ψX ◦ωτ ∼ ψX for all X ∈ X (τ ), or equivalently,
that θY ◦ωτ ∼ θY for all Y ∈ XI (τ ). We note:

Lemma 9.2. Given r ≥ 0, there is some r ′ depending only on r and the parameters
of the hypotheses, such that for any multicurve, τ , T (τ ; r)⊆ N (T (τ ); r ′).

Proof. Let b = ωτ (a) ∈ T (τ ). By the above, we have θY a ∼ θY b for all Y ∈ XI (τ ).
Also θY a ∼ θY τ ∼ θY b for all Y ∈ XT (τ ). Since X = XI (τ )∪XT (τ ), we see that
R6(a, b) is bounded. Property (A7) “distance bound” now tells us that a ∼ b. �

This shows that T (τ ; r) is well defined up to bounded Hausdorff distance for all
r ≥ r ′0, and can be described as the set of a ∈M(6) such that θY a ∼ θY τ for all
Y ∈ XT (τ ).

Lemma 9.3. T (τ ) is uniformly quasiconvex in M(6).

Proof. Suppose a, b ∈ T (τ ) and c ∈M(6). If X ∈ XT (τ ), then

θXµ6(a, b, c)∼ µX (θX a, θX b, θX c)∼ µX (θXτ, θXτ, θX c)∼ θXτ,

and so by Lemma 9.2, µ6(a, b, c) is a bounded distance from T (τ ). �

Lemma 9.4. The map ωτ :M(6)→ T (τ ) is a coarse gate map.
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Proof. Let x ∈M(X) and c ∈ T (τ ). If X ∈ XT (τ ), then ωτ x ∈ T (τ ), and

θXµ6(x, ωτ x, c)∼µX (θX x, θXωτ x, θX c)∼µX (θX x, θXτ, θXτ)∼ θXτ ∼ θXωτ x .

If X ∈ XI (τ ), then

θXµ6(x, ωτ x, c)∼µX (θX x, θXωτ x, θX c)∼µX (θX x, θX x, θX c)∼ θX x ∼ θXωτ x .

Since X =XI (τ )∪XT (τ ), property (A7) “distance bound” tells us µ6(x, ωτ x, c)∼
ωτ x , as required. �

Note that, if a, b ∈M(6), then ωτa lies in a coarse interval from a to b, and
ωτb lies on a coarse interval from a to ωτa. By Lemma 6.6, ωτ is a uniform
quasimorphism (depending on ξ(6)). Note that the proof of Lemma 9.4 shows
that µX (θX a, θXωτa, θXωτb) ∼ θXωτa (putting x = a and c = b). Similarly,
µX (θX b, θXωτb, θXωτa)∼ θXωτb. It follows that ρ(ωτa, ωτb) is bounded above
by a linear function of ρ(a, b). We see that σX (ωτa, ωτb) is bounded above by a
linear function of σX (a, b). In particular, if θX a ∼ θX b, then θX (ωτa)∼ θX (ωτb).

Lemma 9.5. If τ and τ ′ are two multicurves which together fill6, then the diameter
of ωτ (T (τ ′)) in M(6) is finite and bounded above in terms of ξ(6).

(Here, we are assuming that we have fixed, once and for all, the constant r ′0 used
in defining T (τ ), in terms of ξ(6).

Proof. Note that if X ∈ X , then either X ∈ XT (τ ) or X ∈ XT (τ
′). Let a, b ∈ T (τ ′).

If X ∈ XT (τ ), then θX (ωτa) ∼ θXτ ∼ θX (ωτb). If X ∈ XT (τ
′) then θX a ∼ θX b,

and by the observation preceding the lemma, θX (ωτa)∼ θX (ωτb). It now follows
by (A7) “distance bound” that a ∼ b as required. �

If τ, τ ′ fill 6, we choose elements ωτ (τ ′) ∈ ωτ (T (τ ′)) and ωτ ′(τ ) ∈ ωτ ′(T (τ )).
These are well defined up to bounded distance.

Now if a ∈ T (τ ) and b ∈ T (τ ′), then ωτ ′(τ ) lies in a coarse interval from
a to b, and ωτ (τ ′) lies in a coarse interval from a to ωτ ′(τ ). It follows that
ρ(a, b)� ρ(a, ωτ (τ ′))+ ρ(ωτ (τ ′), ωτ ′(τ ))+ ρ(ωτ ′(τ ), b).

We can use this observation to prove the following.

Lemma 9.6. Suppose that τ, τ ′ fill6, and that any pair of points of T (τ ′)⊆M(6)

lie a bounded distance from some uniform bi-infinite quasigeodesic in T (τ ′). Then
there are constants k, t ≥ 0, depending only on the constants of the hypotheses, such
that if x ∈ T (τ ′) and r ≥ 0, then there is some y ∈ T (τ ′) with ρ(y, T (τ ))≥ r and
ρ(x, y)≤ kr + t .

Proof. From the hypotheses, there is a uniformly quasigeodesic ray with basepoint
ωτ ′(τ ) and containing x . Now choose y to be a suitable point on this ray beyond x ,
and apply the above observation. �
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For the remainder of this section, we explore these statements further in the
specific case where M(6)=M(6) is the marking graph of 6. (Note that in this
case all the parameters of M(6) depend only on ξ(6).)

Given k ≥ 0, let T̂ (τ ; k)= {a ∈M0(6) | ι(a, τ )≤ k}.

Lemma 9.7. (1) For all k ≥ 0, there is some r ≥ 0, depending on k and ξ(6),
such that T̂ (τ ; k)⊆ N (T (τ ), r).

(2) There is some k0 ≥ 0, depending only on ξ(6), such that T (τ )∩M0(6)⊆

T̂ (τ ; k0).

Proof. (1) It is an elementary property of subsurface projection that if a ∈M0(6),
γ ∈ G0(6) and X ∈ X with γ ≺ X or γ t X, then σX (γ, a) is bounded above in
terms of ι(γ, a). It follows that T̂ (τ ; k)⊆ T (τ ; r ′′) for some r ′′ depending only on
r and k. We now apply Lemma 9.2.

(2) We have observed that, in the case of markings, the verification of (A10)
“realisation” gives us a marking which has bounded intersection with τ (where τ
is the union of all boundary curves of the set of surfaces). This was used in the
construction of υτ and hence of ωτ . In particular, it follows that if a ∈M(6), then
ι(ωτa, τ ) is bounded for any a ∈M(6). Now if a ∈ T (τ )∩M0(6) then (since ωτ
is a coarse gate map) ρ(a, ωτa) is bounded. It follows that ι(a, ωτa) is bounded,
and so ι(a, τ ) is bounded. This bound depends only on ξ(6). �

Definition. A complete multicurve is a multicurve, τ , such that each component of
6 \ τ is an S0,3.

In other words, XN (τ ) = ∅, so X (τ ) = XA(τ ). It is equivalent to saying that
τ has exactly ξ(6) components. (It is essentially the same thing as a “pants
decomposition” in other terminology.)

Suppose that τ is a complete multicurve. In this case,

X (τ )= XA(τ )= {X (γ ) | γ ∈ τ }.

If X ∈ X (τ ), then G(X)=M(X) is quasi-isometric to the real line, and so T (τ ) is
quasi-isometric to Rξ. Thus, υτ gives rise to a quasi-isometric embedding of Rξ

into M(6), whose image is a bounded Hausdorff distance from T (τ ).
We can also view this in terms of the action of Map(6). Let G(τ ) ≤Map(6)

be the group generated by Dehn twists about the elements of τ . Thus, G(τ )∼= Zξ.
We put the standard word metric on G(τ ). Now G(τ ) acts coboundedly on T (τ )
hence also on T (τ ).

The following result, proven in [Farb, Lubotzky and Minsky 2001], is an imme-
diate consequence, though it also follows directly from the distance formula [Masur
and Minsky 2000] (given as Theorem 8.3 here).
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Lemma 9.8. Given any multicurve τ there is some a ∈M(6) such that the map
a 7→ ga : G(τ )→M(6) is a uniform quasi-isometric embedding.

In fact, we can take any a ∈ T (τ ), and the orbit, G(τ )a, is a uniformly bounded
Hausdorff distance from T (τ ). (The uniformity is somewhat spurious here, since
there are only finitely many orbits of multicurves under the action of Map(6);
though our arguments give explicit bounds.)

We will refer to a set of the form T (τ ) for a complete multicurve, τ , as a coarse
Dehn twist flat (generally regarded as defined up to a uniformly bounded Hausdorff
distance).

Lemma 9.9. There are uniform constants k, t ≥ 0 such that if τ, τ ′ are complete
multicurves, with τ 6= τ ′, x ∈ T (τ ′) and r ≥ 0, then there is some y ∈ T (τ ′) with
ρ(y, T (τ ))≥ r and ρ(x, y)≤ kr + t .

Proof. If τ ∩ τ ′ = ∅, then τ, τ ′ fill 6, so the result follows immediately from
Lemma 9.6. (Note that any path in a Dehn twist flat lies in a uniform bi-infinite
quasigeodesic.)

For the general case, let τ0 = τ ∩ τ
′. Now T (τ0) is, up to quasi-isometry, a direct

product of a euclidean space (given by Dehn twists about the elements of τ0) and
copies of M(X) as X ranges over the elements of XN (τ0). Applying the above intrin-
sically to the restrictions of τ and τ ′ to any such X we deduce the general case. �

10. Quasicubes

Throughout this section, we again suppose that M(6) satisfies the axioms (A1)–
(A10) of Section 7. We refer the constants involved as the “parameters of M(6)”.

Definition. A quasicube in M(6) is an l-quasimorphism φ : Q→M(6), where
Q is an n-cube.

We refer to it as an l-quasi-n-cube, if we want to specify the parameters.
In this section, we give a description of “nondegenerate” quasicubes of maximal

rank. In Section 11, we will apply this to the (extended) asymptotic cone M∗(6).
We begin by recalling the following fact:

Lemma 10.1. There is some l0 ≥ 0, depending only ξ(6) such that if X, Y ∈X and
there exist a, b, c, d ∈M(6) with (a, b : c, d)X ≥ l0 and (a, c : b, d)Y ≥ l0, then
X ∧ Y.

Here (a, b : c, d)X denotes the “crossratio”

(a,b :c,d)X=
1
2(max{σX (a,c)+σX (b,d),σX (a,d)+σX (b,c)}−(σX (a,b)+σX (c,d)))

in G(X). Similarly for (a, b : c, d)Y in G(Y ).
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Proof. This is property (P4) in [Bowditch 2013], and was verified for the marking
graph by Lemma 11.7 of that paper. As already observed (in Section 7 here) the proof
there only made use of properties (A8) “bounded image” and (A9) “overlapping
subsurfaces”. �

Recall, from Section 7, that AX (a, b; r)= {Y ∈ X (X) | σY (a, b) > r}.

Definition. Given a, b∈M(X) and r≥0, we say that a, b are weakly (X, r)-related
if for all Y ∈A(a, b; r), we have Y � X.

Intuitively, we can think of a, b as being “close outside X”. More specifically, if
Z ∈ X , with Z ∧ X, then A(a, b; r)∩X (Z)=∅, so by (A7) “distance bound”, we
see that ρZ (a, b) is bounded.

Definition. We say that a, b are (X, r)-related if they are weakly (X, r)-related
and ρ(a, T (∂6X))≤ r and ρ(b, T (∂6X))≤ r .

We will often suppress mention of r where a choice (ultimately depending on
the parameters of M(6)) is clear from context, and simply refer to a, b as being
“(weakly) X -related”.

Note that this property is “median convex” in the sense that if c ∈M(6), with
ρ(µ(a, b, c), c)≤ l, then c is (X, r ′)-related to a and to b, where r ′ depends only
on r , l and the parameters of the hypotheses.

Lemma 10.2. If a, b ∈M(6) are (X, r)-related, then ρ(a, b) agrees with ρ(a, b)
up to linear bounds depending only on r and ξ(6).

Proof. The fact that ψX :M(6)→M(X) is uniformly coarsely Lipschitz immedi-
ately gives a linear upper bound for ρX (a, b). For the other direction, set τ = ∂6X.
Then, up to bounded distance,ψτa andψτb differ only in the X -coordinate. Since υτ
is uniformly coarsely Lipschitz, we have that ρ(ωτa, ωτb)= ρ(υτψτa, υτψτb) is
linearly bounded above by ρX x(ψX a, ψX b)=ρX (a, b). By assumption ρ(a, T (τ ))
and ρ(b, T (τ )) are bounded. By Lemma 9.4, since ωτ is a coarse gate map to
T (τ ), it follows that ρ(a, ωτa) and ρ(b, ωτb) are bounded. This bounds ρ(a, b),
as required. �

Note that by median convexity, we see also that ρX (x, y) � ρ(x, y) for any
x, y ∈M(6) with µ(a, b, x)∼ x and µ(a, b, y)∼ y.

Here is a criterion which implies that two elements of M(6) are X -related:

Lemma 10.3. There is a constant r1≥ 0 depending only on ξ(6) with the following
property. Suppose r2 ≥ r1, and that a, b ∈M(6) and X ∈ X . Suppose that for
all Z ∈A(a, b; r2) we have Z � X. Suppose moreover that whenever γ is a curve
with γ t X, there is some Y ∈A6(a, b; r1) with γ t Y and Y � X. Then a, b are
(X, r)-related for some r depending only on r2 and the parameters of M(6).
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Proof. By assumption, a, b are weakly (X, r)-related, so we just need to check that
ρ(a, T (τ )) and ρ(b, T (τ )) are bounded, where τ = ∂6(X).

By Lemma 9.2, it is enough to check that σU (a, τ ) and σU (b, τ ) are bounded
for all U ∈ XT (τ ). Now if U ∈ XT (τ ), then U contains or crosses some boundary
curve of X, and so U t X or X ≺U. Either way, U will contain a curve, γ , with
γ t X. By hypothesis, there is some Y � X, with Y t γ and Y ∈ A6(a, b; r1).
Note that either Y ≺U or Y tU.

Now σY (a, b) > r1. Also, since U is not contained in X, it does not lie in
A6(a, b; r2), i.e., σU (a, b)≤ r2. Suppose first that Y ≺U. If r1 is greater than r0,
the constant of (A8) “bounded image”, then it follows 〈θU a, θU b:θU Y 〉 ≤ r0, and so,
by the definition of Gromov product, σU (a, Y )+ σU (b, Y )≤ 2(r2+ r0). Suppose
instead that Y t U. If r1 is bigger than twice the constant, r0, of (A9) “overlap-
ping subsurfaces”, then without loss of generality (swapping a and b), we have
σY (a,U ) > r0, so by (A9) we must have σU (a, Y ) ≤ r0. Since σU (a, b) ≤ r2, it
follows that σU (b, Y )≤ r2+ r0. Thus, in all cases, we have shown that σU (a, Y )
and σU (b, Y ) are bounded.

But now, Y � X, so Y ∧ τ . Thus, by (A5) “disjoint projection”, we have that
σU (Y, τ ) is bounded. We deduce that σU (a, τ ) and σU (b, τ ) are bounded for all
U ∈ XT (τ ) as claimed. �

We now move on to consider quasicubes.
Suppose that Q = {−1, 1}n is an n-cube. By an i -th side of Q, we mean an

unordered pair, c, d ∈ Q, which differ precisely in their i-th coordinates. Note that
any two i-th sides are parallel in the median sense. If a, b ∈ Q, we can speak of
the sides of Q crossed by a, b, that is those which (up to parallelism) correspond
to the coordinates for which a, b differ. (Note that the walls of Q are in bijective
correspondence with the parallel classes of sides.)

Suppose that φ : Q→M(6) is an l-quasimorphism. If c, d and c′, d ′ are both
i-th sides of Q, then ρ(φc, φd) � ρ(φc′, φd ′). (Since µ(φc, φd, φc′) ∼ φc and
µ(φc, φd, φd ′) ∼ φd, we get a linear upper bound for ρ(φc, φd), and the lower
bound follows symmetrically.) We will write si = min ρ(φc, φd) as c, d ranges
over all i-th sides. Thus ρ(φc′, φd ′) � si for any other i-th sides, c′, d ′. We also
note that for all X ∈ X , we have σX (φc, φd) � σX (φc′, φd ′) and ρX (φc, φd) �
ρX (φc′, φd ′) (similarly, since θX ◦φ and ψX ◦φ are quasimorphisms to G(X) and
M(X) respectively). Here, the linear bounds depend implicitly on l.

If a, b ∈ Q, then a repeated application of Lemma 6.1 shows ρ(φa, φb)�
∑

i si ,
where the sum is taken over all sides of Q crossed by a, b.

Lemma 10.4. Let φ : Q→M be an l-quasicube. There is some k0 ≥ 0, depend-
ing only on h and the parameters of the hypotheses, such that if X, Y ∈ X with
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σX (φc, φd)≥ k0 and σY (φc′, φd ′)≥ k0, where c, d and c′, d ′ are respectively i-th
and j-th sides of Q, then either i = j or X ∧ Y.

Proof. This is an immediate consequence of Lemma 10.1 above. �

It follows from Lemma 10.4 that for each i , there is a (possibly empty, pos-
sibly disconnected) subsurface, Yi , of 6, which contains all X ∈ X , for which
σX (φc, φd)≥ k0 for any i-th side, c, d, of Q. (Here, we are using the term “sub-
surface” to mean a disjoint union of essential subsurfaces as defined in Section 7.)
We can also take Yi to be minimal with this property. To ensure that each Yi must
be nonempty, we will assume that φ is nondegenerate, that is, for each side, c, d,
A6(c, d; r) 6= ∅, for a fixed r ≥ k0. Note that, by (A7) “distance bound”, this is
implied by placing a suitable lower bound on min{si | 1≤ i ≤ n}. We will also take
r to be at least the constant r1 featuring in Lemma 10.3.

Recall that ξ(6) is the maximal number of disjoint and distinct (non-S0,3) sub-
surfaces we can embed in 6. Thus, if n = ξ(6), we see that if φ is nondegenerate,
then each Yi is connected and is either an annulus, or has complexity-1 (that is a
S0,4 or S1,1).

Definition. We say that a multicurve τ is big if each component of 6 \ τ is a S0,3,
S0,4 or S1,1.

In this case, the set of all relative boundary components of all the Yi is a big
multicurve, τ , such that X (τ ) is precisely the set of Yi .

Lemma 10.5. Suppose that Q is a ξ -cube, and that φ : Q→M(6) is a nonde-
generate quasimorphism. Then there is a big multicurve, τ ⊆6, such that we can
write X (τ ) = {Y1, . . . , Yξ }, so that if c, d is any i-th side of Q, then φc, φd are
Yi -related.

(We remark that it follows that φ(Q) lies in a bounded neighbourhood of T (τ ).)

Proof. We construct disjoint surfaces Yi as above, and as already observed, the set
of these Yi is precisely X (τ ) for a big multicurve, τ . Recall that for all X ∈ X ,
if c, d and c′, d ′ are i-th sides of Q, the σX (φc, φd) � σX (φc′, φd ′). Let r1 be
the constant of Lemma 10.3. If the nondegeneracy constant is sufficiently large,
then A(φc, φd; r) 6=∅. So if r ≥max{r1, k0}, the subsurfaces of A(φc, φd; r) fill
Yi , so φc, φd, Yi satisfy the hypotheses of Lemma 10.3. We see that φc, φd are
Yi -related as claimed �

Note that a big multicurve τ satisfying the conclusion of Lemma 10.5 might not
be unique. For example, if γ ∈ τ bounds an S0,3 component of 6 \ τ on both sides
(perhaps the same S0,3), then we can remove it, and the conclusion will still hold.
However, this is essentially the only ambiguity that can arise.

We will also need:
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Lemma 10.6. Suppose that Q is a ξ -cube, and that φ : Q →M(6) is a non-
degenerate quasimorphism, and that c, d is an i-th side of Q. Let Yi be as
given by Lemma 10.5. Suppose that x, y ∈M(6) with µ(φc, φd, x) ∼ x and
µ(φc, φd, y) ∼ y. Then ρ(x, y) � ρYi (x, y), where the additive bounds depend
only on l, n and the parameters of M(6).

Proof. By Lemma 10.4, and φc, φd are Yi -related, and so therefore are x, y (with
suitable constants). The statement then follows by Lemma 10.2 and the subsequent
observation. �

11. The asymptotic cone of M(6)

As in Section 5, let M∗(6) be the extended asymptotic cone of a space M(6)

satisfying the hypotheses (A1)–(A10).
Let Z be a countable set with a nonprincipal ultrafilter, as in Section 5. Let

UG=UG(6) be the ultrapower of G(6). This is a graph with vertex set UG0. Note
that the intersection number, ι, extends to a map U ι : (UG0)2→ UN. We also have
an ultrapower, UX = UX A tUX N. There is a natural bijection between UX A and
UG0. (Here, G0 is playing its role as an indexing set.)

We can extend the notation introduced in Section 5. For example, if X, Y ∈ UX ,
we write X ∧ Y to mean that Xζ ∧ Yζ almost always. We similarly define X ≺ Y
and X t Y. Since there are only finitely many possibilities (in fact, five), we have
the following pentachotomy: if X, Y ∈ X , exactly one of X = Y, X ∧ Y, X ≺ Y,
Y ≺ X or X t Y must hold (exactly as in Section 7).

Note that U Map(6) acts on both UG and UX with finite quotient.

Terminology. In this section, we refer to an element of UG0 as a curve and an
element of G0

⊆ UG0 as standard curve. We similarly refer to “subsurfaces”,
“standard subsurfaces” etc.

As observed in Section 5, two standard objects lie in the same U Map(6)-orbit,
then they lie in the same Map(6)-orbit.

Moreover, any configuration of curves and surfaces of bounded complexity can
be assumed standard up to the action of the mapping class group. One way to
express this is as follows.

Lemma 11.1. Suppose that a ⊆ UG0 and U ι(a) ∈ N, then there is some g ∈
U Map(6) with ga ⊆ G0.

Proof. By hypothesis, ι(aζ ) is almost always constant. Therefore, we can find
gζ ∈Map(6) such that gζaζ ⊆ G0(6) lies is one of only finitely many possible
subsets of G0(6). Therefore, gζaζ is almost always constant, that is, ga is standard,
where g is the limit of (gζ )ζ . �
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Note that this applies, for example, to multicurves, or to collections of pairwise
disjoint subsurfaces of 6. In particular, it makes sense to refer to the topological
type of a subsurface; for example, that it is an S1,1 or an S0,4 (up to the action
of U Map(6)). We can also refer to boundary curves of a surface, or say that a
collection of curves fill a subsurface, etc.

If τ is a multicurve, we can define UX (τ )⊆ UX as in Section 9. (It is the limit
of the sets X (τζ ).)

In what follows we deal mostly with extended asymptotic cones. This seems
more natural in this context than restricting to the asymptotic cone, though most of
the discussion would apply equally well in both situations.

We assume that M(6) and G(6) are spaces satisfying properties (A1)–(A10) of
Section 7.

Let t ∈ UR be a positive infinitesimal. Rescaling as in Section 5 we get ex-
tended asymptotic cones, M∗

=M∗(6) and G∗ = G∗(6) of M(6) and G(6),
respectively. (We topologise them as the disjoint union of their components.) We
write ρ∗, σ ∗, respectively, for the limiting nonstandard metrics. The asymptotic
cones, (M∞(6), ρ∞) and (G∞(6), σ∞) are complete metric spaces. In fact,
since G(6) is hyperbolic, G∗(6) is an R∗-tree, and G∞(6) is an R-tree. The map
χ :M(6)→ G(6) is coarsely Lipschitz, and (after the rescaling) gives rise to a
Lipschitz map χ∗ :M(6)→ G(6).

The coarse median µ on M(6) gives rise to a median µ∗ on M∗, and restricts
to a median, µ∞ on the asymptotic cone, M∞. By Theorems 6.8 and 6.9, ρ∞ is
bi-Lipschitz equivalent to a median metric inducing the same median structure. The
construction is not canonical, but we will write ρ∞M for some choice of such median
metric. We similarly define ρ∗M bi-Lipschitz equivalent to ρ∗ on M∗.

Suppose that X ∈ UX . The spaces G(Xζ ) give rise to an extended asymptotic
cone, denoted G∗(X) which is an R∗-tree. The maps θXζ are uniformly coarsely
Lipschitz, and give rise to a Lipschitz homomorphism, θ∗X :M

∗(X)→ G∗(X).
Similarly, we have a limit M∗(X) of the spaces M(Xζ ). This has a median µ∗

arising from the coarse medians µζ and we again get a topological median algebra.
We similarly have limiting Lipschitz homomorphisms ψ∗X :M

∗(6)→M∗(X).
In fact, as observed above, up to the action of U Map(6), we could take X to be
standard, and so M∗(X) is isomorphic to the space defined intrinsically on a surface
of this topological type.

If X, Y ∈UX , with X �Y, then we have a limiting map, ψ∗Y X :M
∗(X)→M∗(Y ),

with ψ∗Y X ◦ψ
∗

X = ψ
∗

Y . We will generally abbreviate ψ∗XY to ψ∗X , when the domain
is clear from context.

Note that if γ ∈ UG0 and X ∈ UX with γ � X or γ t X, we have a well defined
subsurface projection, θ∗X (γ ) ∈ G∗(X). Similarly, if X, Y ∈ UX , with Y ≺ X or
Y t X, we can define θ∗X (Y ) ∈ G

∗(X).
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We also note that if γ ∈ UG0, then we can write M∗(γ )= G∗(γ )= G∗(X) where
X = X (γ ) is an annular neighbourhood of γ .

Suppose that τ ⊆ UG0 is a multicurve. Let T ∗(τ )⊆M∗(6) be the limit of the
subsets T (τζ )⊆M(6). This is a closed subset of M∗(6). (Note that it is also the
limit of the sets T (τζ ; r) for any sufficiently large r ∈ [0,∞).)

We can describe the structure of T ∗(τ ) as follows.
Let UX (τ ) ⊆ UX be the ultraproduct of the X (τζ ). (By Lemma 11.1, this is

finite, and standard up to the action of U Map(6).) Let T ∗(τ ) be the direct product
of the spaces M∗(X) for X ∈ UX (τ ) in the l1 extended metric. This is the same as
the extended asymptotic cone of the spaces T (τζ ).

Recall that in Section 9, we defined maps ψτζ :M(6)→ T (τζ ), υτζ : T (τζ )→
T (τζ ) and ωτζ = υτζ ◦ ψτζ :M(6)→ T (τζ ). These are all uniformly coarsely
Lipschitz quasimorphisms, and so give rise to maps, ψ∗τ :M∗(6)→ T ∗(τ ), υ∗τ :
T ∗(τ )→ T (τ ) and ω∗τ = υ

∗
τ ◦ψ

∗
τ :M∗(6)→ T ∗(τ ). In fact, from Lemma 9.4, we

see that ω∗τ :M∗(6)→ T ∗(τ ) is a gate map.
It follows that T ∗(τ ) is convex, and that ω∗τ is the unique gate map to T ∗(τ ).

Note also that if γ ∈ UG0(6) with τ t γ and a ∈ T ∗(τ ), then θ∗γ (a)= θ
∗
γ (τ ).

Given a subset, S ⊆M∗(6), write

C(S)= {X ∈ UX | θ∗X |S is injective},

and
D(S)= {X ∈ UX | ψ∗X |S is injective}.

Clearly C(S)⊆ D(S). We write D0(S)= C(S)∩UX A = D(S)∩UX A, which we
can identify as a subset of UG0.

Given a, b ∈ M∗(6), write C(a, b) = C([a, b]), D(a, b) = D([a, b]) and
D0(a, b)= D0([a, b]).

We also write A(a, b)=C({a, b})= {X ∈ UX | θ∗X a 6= θ∗X b}. Clearly C(a, b)⊆
A(a, b).

Lemma 11.2. Suppose that a, b, c, d ∈M∗(6) are all distinct. Suppose X, Y ∈UX
c ∈ [a, d], b ∈ [a, c], X ∈ A(a, b)∩ A(c, d) and Y ∈ A(b, c), then either X = Y
or X ∧ Y.

Proof. Suppose first, for contradiction, that X tY. (This is the case that is actually of
interest to us.) Let aζ , bζ , cζ , dζ ∈M(Xζ ) be sequences converging to a, b, c, d ∈
M∗(6). We can suppose that ρXζ (cζ , µ(aζ , cζ , dζ )) and ρXζ (bζ , µ(aζ , bζ , cζ )) are
bounded (after replacing cζ by µ(aζ , cζ , dζ )) and then bζ by µ(aζ , bζ , cζ ))). Now
σXζ (aζ , bζ )→∞ (since θXζ aζ → θ∗X a and θXζ bζ → θ∗X b, which by hypothesis are
distinct). In particular, σXζ (aζ , bζ ) is almost always greater than 2r0, where r0 is
the constant of property (A9) “overlapping subsurfaces”. Thus, θXζ Yζ must be at
distance greater than r0 from either θXζ aζ or θXζ bζ , and so by (A9), θYζ Xζ is within
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a distance r0 from either θYζ aζ or θYζ bζ . Similarly, θYζ Xζ is also almost always
within distance r0 of either θYζ cζ or θYζ dζ . But G(Yζ ) is uniformly hyperbolic, and
θXζ is a median quasimorphism. Therefore, up to bounded distance, θYζ bζ and
θYζ cζ lie on a geodesic from θYζ aζ to θYζ dζ , and occur in this order. Therefore,
whichever of the above possibilities arises, we see that σYζ (bζ , cζ ) is bounded, and
so σ ∗Y (b, c)= 0. That is, θ∗X b = θ∗X c, so Y /∈ A(b, c).

After swapping the roles of X and Y if necessary, we also need the to rule out the
possibility that X ≺ Y. If that were the case, we could derive a similar contradiction
using property (A8) “bounded image”. Briefly, if σXζ (aζ , bζ ) is large then θYζ Xζ
must lie close to any geodesic in G(Yζ ) from θYζ aζ to θYζ bζ . Similarly, θYζ Xζ lies
close to any geodesic from θYζ cζ to θYζ dζ . We again get that σYζ (bζ , cζ ) is bounded,
and so derive a contradiction. (We omit details, since we will not need this case in
this paper.) �

We say that a subset O of M∗(6) is monotone if it admits a total order < such
that if x < y < z in O then y ∈ [x, z].

Recall that, C(O) is the set of X ∈ UX such that θ∗X |O : O→ G∗(X) is injective.
The following is an immediate corollary of Lemma 11.2.

Corollary 11.3. If O ⊆M∗(6) is monotone, |O| ≥ 4, and X, Y ∈ C(O), then
either X = Y, or X ∧ Y.

(In fact, the only information we really need from Lemma 11.2 and Corollary 11.3
is that X and Y cannot cross.)

Note, in particular, this applies if O⊆M∗(6) is a convex subset order-isomorphic
to a totally ordered set.

In particular, Corollary 11.3 tells us that, if |O| ≥ 4, then C0(O) is a multicurve.
Note, in particular, this applies if O ⊆M∗(6) is a nontrivial convex subset

order-isomorphic to a totally ordered set.

12. Cubes in M∗(6)

Let Q ⊆M∗(6) be an n-cube. If c, d and c′, d ′ are both i-th sides of Q, then
the intervals [c, d] and [c′, d ′] are parallel. That is, the maps x 7→ µ(c′, d ′, x) and
x 7→ µ(c, d, x) are inverse median isomorphisms between [c, d] and [c′, d ′]. Now
if x, y ∈ [c, d], let x ′=µ(c′, d ′, x) and y′=µ(c′, d ′, y). Given X ∈UX , and θ∗X x =
θ∗X y, then θ∗X x ′= θ∗X y′. We see that if θ∗X |[c

′, d ′] is injective, then so is θ∗X |[c, d] and
conversely by symmetry. The same applies to ψ∗X . Thus C([c, d])= C([c′, d ′]), so
we can write this as Ci (Q). We similarly write Di (Q)= D([c, d])= D([c′, d ′]).
We write D0

i (Q)= Di (Q)∩UG0(6)= Ci (Q)∩UG0(6), which we identify with
the set of curves γ ∈ UG0(6) such that θ∗γ |[c, d] is injective.

Suppose now that n = ξ . In this case, if c, d is any side of Q, then [c, d] is a
rank-1 median algebra (a totally ordered set). We refer to [c, d] as a face of the
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convex hull, hull(Q), of Q. In fact, hull(Q) is a median direct product of its faces.
If n = ξ , then each of the faces has rank 1. Such a face is linearly ordered, and so
it is isometric in ρ∗M to an interval in R∗ (via the map x 7→ ρ∗(c, x)).

Applying Corollary 11.3, we immediately get:

Lemma 12.1. If X, Y ∈ Ci (Q) for any i , then either X = Y or X ∧ Y.

Recall that by Lemma 6.3, there are uniform quasimorphisms, φζ : Q→M(6),
such that φζ x → x for all x ∈ Q. Note that, necessarily, we have that φζ is
nondegenerate for almost all ζ .

Lemma 12.2. If X ∈ Ci (Q) and Y ∈ C j (Q), then either i = j or X ∧ Y.

Proof. Let φζ : Q→M(6) be Z-sequence of uniform quasimorphisms as given by
Lemma 6.7, with φζ x→ x for all x ∈ Q. Let c, d and c′, d ′ be i-th and j -th sides of
Q, respectively. Then σXζ (φζ c, φζd)→∞ and σYζ (φζ c′, φζd ′)→∞, and so for
almost all ζ , σXζ (φζ c, φζd)≥ k0 and σYζ (φζ c′, φζd ′)≥ k0, where k0 is the constant
of Lemma 10.4. If i 6= j, then by Lemma 10.4, Xζ ∧Yζ , so it follows that X ∧Y. �

Given that D0
i (Q) ⊆ Ci (Q), we see that if α ∈ D0

i (Q) and β ∈ D0
j (Q), then

either α = β or α∧β, and in the former case, i = j.

Lemma 12.3. Suppose that γ ∈ D0
i (Q) and that X ∈ Dj (Q) is a complexity-1

subsurface (i.e., an S0,4 or S1,1). If γ ≺ X, then i = j .

Proof. Let k0 be the constant of Lemma 10.4. Let φζ , c, d, c′, d ′ be as in the proof
of Lemma 12.2. Now σγζ (φζ c, φζd)→∞, and ρXζ (φζ c′, φζd ′)→∞. Thus we
have the following for almost all ζ . First, σγζ (φζ c, φζd)≥ k0. Second, using (A7)
“distance bound”, there is some Yζ � Xζ with σYζ (φζ c, φζd)≥ k0. Third, γζ ≺ Xζ
and Xζ has complexity 1. It follows that either γζ � Yζ or γζ t Yζ . But then, by
Lemma 10.4, we must have i = j. �

Lemma 12.4. Let Q ⊆M∗(6) be a ξ -cube. Then there is a big multicurve τ
such that we can write UX (τ ) = {Y1, . . . , Yξ } with the Yi all distinct, and with
Yi ∈ Di (Q).

Proof. Let φζ : Q→M∗(6) be uniform quasimorphisms as in the two previous
proofs. Let τζ be the standard big multicurve given by Lemma 10.5, and write
X (τζ ) = {Y1,ζ , . . . , Yξ,ζ }. Let c, d be an i-th side of Q. Then φζ c and φζd are
Yi,ζ -related. Write cζ = φζ c and dζ = φζd. Let τ be the limit of (τζ )ζ , and let Yi

be the limit of (Yi,ζ )ζ . Thus UX (τ )= {Y1, . . . , Yξ }.
It remains to show that Yi ∈ Di (Q). Suppose that x, y ∈ [c, d]. Let xζ , yζ ∈

M(6) with xζ → x and yζ → y. After replacing xζ by µ(cζ , dζ , xζ ) and yζ by
µ(cζ , dζ , yζ ), we can assume that µ(cζ , dζ , xζ ) ∼ xζ and µ(cζ , dζ , yζ ) ∼ yζ . By
Lemmas 10.5, φζ c, φζd are X -related. By Lemma 10.2 and subsequent remarks, it
follows that ρ(xζ , yζ )�ρYi,ζ (xζ , yζ ). But ρ(xζ , yζ )→ρ(x, y) and ρYi,ζ (xζ , yζ )→
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ρYi (x, y), and so ρ(x, y) and ρYi (x, y) are bi-Lipschitz related. In particular, if
ψ∗Yi

x = ψ∗Yi
y, then ρYi (x, y) = 0, so ρ(x, y) = 0, so x = y. In other words, this

shows that ψ∗Yi
|[c, d] is injective, so Yi ∈ Di (Q) as claimed. �

Let I be the set of i such that Yi = X (γi ) is an annulus. Thus, γi ∈ D0
i (Q), and

τ = {γi | i ∈ I }. By Lemmas 12.2 and 12.4, we see that, in fact, D0
i (Q) = {γi }.

Moreover, if D0
j (Q) 6=∅ for some j /∈ I, then using Corollary 11.3 and Lemmas

12.2 and 12.3, we again see that D0
j (Q) consists of a single curve γ j , with γ j ≺ Yj .

Now write I (Q)= {i | D0
i (Q) 6=∅}, and let τ(Q)= {γi | i ∈ I (Q)}. We see that

τ(Q) is a big multicurve containing τ and that it also satisfies the conclusion of
Lemma 12.4 since UX N (τ (Q))⊆ UX N (τ ). (Therefore retrospectively, we could
have taken τ = τ(Q) in Lemma 12.4.)

We have shown that each of the maps θγi or ψYi restricted to the i-th face of
hull(Q) is injective. It follows that the map ψ∗τ : hull(Q)→ T ∗(τ ), and hence
ω∗τ : hull(Q)→ T ∗(τ ), is injective.

Up until now, we have just assumed (A1)–(A10). To proceed, we will need also
to assume the distance formula (B1) given in Section 7. As a consequence, we can
weaken the hypotheses of Lemma 10.2 as follows:

Lemma 12.5. If a, b ∈M(6) are weakly (X, r)-related, then ρ(a, b) agrees with
ρX (a, b) up to linear bounds depending only on r and on ξ(6).

Proof. The only contribution to the distance formula (property (B1)) in M(6)

comes from subsurfaces of X, and so gives the same answer in M(X) up to linear
bounds. �

Lemma 12.6. Let Q ⊆M∗(6) be a ξ -cube. Then Q ⊆ T ∗(τ (Q)).

Proof. Suppose, for contradiction, that a ∈ Q \ T ∗(τ ). We can write hull(Q) as a
direct product of the intervals [a, ai ], where {a, ai } is the i-th side of Q containing a.
By Lemma 2.1, M∗(6) is locally convex (since every component is), so there is a
convex neighbourhood C of a with C ∩ T ∗(τ )=∅. Since M∗(6) has no isolated
points, we can find some bi ∈ ([a, ai ] ∩ C) \ {a}. Now, since ω∗τ is injective,
ω∗τbi 6= ω

∗
τa. Let Wi be a wall of M∗(6) separating ω∗τbi from ω∗τa. Since ω∗τ

is a gate map to T ∗(τ ), this also separates bi from a. Also, since C and T ∗(τ )
are convex, there is another wall W separating C from T ∗(τ ). (Any two disjoint
convex subsets of a median algebra are separated by a wall.) We see that the walls,
W,W1, . . . ,Wξ , all pairwise cross. We deduce that M∗(6) has rank at least ξ + 1,
contradicting Lemma 6.6. �

Lemma 12.7. Suppose that γ ∈ D0
i (Q) and that X ∈ Dj (Q) is a complexity-1

subsurface. If i 6= j, then either γ ∧ X, or there is some (unique) β ∈ D0
j (Q) with

β ≺ X.
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Proof. If γ is not disjoint from X, then we must have γ ≺ X or γ t X, but the first
possibility is ruled out by Lemma 12.3. Since X has complexity 1, either γ t Y for
all Y � X, or else there is a unique β ≺ X such that γ t Y whenever Y ≺ X and
Y 6= X (β). (In the former case, γ ∩ X cuts X into a collection of discs, and in the
later it cuts X into discs together with one annulus, and we take β to be its core
curve.) We claim that the latter case holds, and that β ∈ Dj (Q).

Let φζ , c, d, c, d ′ be as in the proof of Lemma 12.2. In the first case above, we
follow the argument of Lemma 12.3 to derive a contradiction. In the second case,
let βζ→ β. For almost all ζ , we have βζ ≺ Xζ and γζ t Xζ . Given such ζ , suppose
that Yζ � Xζ and Y 6= X (βζ ). Then almost always, σζ (φζ c′, φζd ′) is bounded.
(Otherwise, since γζ t Yζ we derive a contradiction, as in the proof of Lemma 12.2.)
Given any e, f ∈ [φc, φd], we see that σYζ (eζ , fζ ) is (almost always) bounded.
Thus, intrinsically to M(Xζ ), we see that ψXζ eζ and ψXζ fζ are weakly βζ -related.
It follows that σβζ (eζ , fζ ) � ρXζ (eζ , fζ ). Thus, if e 6= f , then since X ∈ Dj (Q),
we have ρX (e, f ) 6= 0, so σβ(e, f ) 6= 0. It follows that θ∗β |[φc′, φd ′] is injective. In
other words, β ∈ D0

j (Q) as claimed. �

We can summarise what we have shown as follows. Recall that Di (Q) is the set
of subsurfaces, X, for which ψ∗X |[c, d] is injective for some (or equivalently any)
i-th side, [c, d], of Q.

Proposition 12.8. For any i , the set D0
i (Q) is either empty or consists of a single

curve γi ∈ UG0. If it is empty, then there is a unique complexity-1 subsurface
Yi ∈ Di (Q). The set of γi are all disjoint, and they form a big multicurve τ(Q). The
Yi are also disjoint, and are precisely the complexity-1 components of τ(Q).

We note, in particular, that γi or Yi is completely determined intrinsically by any
i-th side of Q, without reference to Q itself.

13. Flats in M∗(6)

In this section, we restrict to the case where M(6)=M(6) is the marking graph,
and consider flats in the (extended) asymptotic cone. The parameters now depend
only on ξ(6).

First, we consider a particular case arising from complete multicurves. Suppose
that τ ⊆ UG0 is a (nonstandard) complete multicurve. In other words, τ has ξ
components and cuts 6 into S0,3’s. In this case, each factor is a copy of R∗, so
T ∗(τ ) is isomorphic to (R∗)ξ. We refer to T ∗(τ ) as an extended Dehn twist flat.

More generally, if τ is big (that is each component of the complement is an S0,3,
S0,4, or S1,1), then again UX (τ ) has ξ elements, and T ∗(τ ) is a direct product of ξ
R∗-trees.

If X ∈ UX , then M∗(X) and G∗(X) have preferred basepoints. These are defined
as follows. Fix any a ∈ M(6) and let eX ∈ M∗(X) be the limit of the points
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ψXζ (a) ∈M∗(Xζ ). This limit is independent of a. We similarly define fX ∈G∗(6)

as the limit of θXζ (a) (or equivalently, as fX = χ
∗eX ). Let M∞(X) and G∞(X) be

the components containing eX and fX respectively. Using Lemma 11.1, one sees
that these are isomorphic to the asymptotic cones defined intrinsically on a standard
surface of the topological type of X (unless X is an annulus, in which case, they
are both isometric copies of R). Note that θ∗X (M

∞(6))⊆G∞(6). We will denote
the restriction of θ∗X to M∞(6) by θ∞X .

If τ is a complete multicurve, we write T∞(τ ) = T ∗(τ ) ∩M∞(6). This is
either empty or isomorphic to Rξ. In the latter case, this is naturally identified with
T ∞(τ )— the direct product of M∞(X) for X ∈ UX T (τ ).

Definition. A Dehn twist flat in M∞(6) is a nonempty set of the form T ∗(τ )∩
M∞(6), where τ ⊆ UG0(τ ) is a complete multicurve.

(We will explain the general term “flat” in this context below.)
By Lemma 11.1, up to the action of U Map(6), we can take τ to be standard.

One way to construct T∞(τ ) in this case is as follows. Recall that G(τ ) ∼= Zξ is
the subgroup of Map(6) generated by Dehn twists about the components of τ . Let
a be any element of M(6). The orbit, Ga, is a bounded Hausdorff distance from
T (τ ), and so T∞(τ ) is the limit of Ga in the asymptotic cone M∞(6). The natural
map from Zξ ∼= G to Ga limits on an isomorphism from Rξ to T∞(τ ), where we
view Rξ as the asymptotic cone of Zξ.

More generally, if τ is a big multicurve, then T∞(τ )= T ∗(τ )∩M∞(6) is either
empty or a direct product of ξ R-trees. In the latter case, it will contain many flats.
We aim to show that every (maximal dimensional) flat in M∞(6) has this form.
First, we consider the case of an S1,1 or S0,4.

Suppose that 6 is an S1,1 or S0,4. In this case, G(6) is a Farey graph, and (up
to quasi-isometry) M(6) is the dual 3-valent tree (that is the dual to the Farey
complex obtained by attaching a 2-simplex to every 3-cycle in G(6)). To each
γ ∈G0(6) we can associate a bi-infinite geodesic, or axis, in M(6). Up to bounded
Hausdorff distance, we can identify this axis with the space T (γ )= T ({γ }) defined
in Section 9, which we can, in turn, identify up to quasi-isometry, with M(γ )=G(γ ).
Any two distinct axes meet in at most a single edge of M(6).

As noted before, in this case, M∗(6) and G∗(6) are both R∗-trees. If γ ∈
UG0(6), we get a closed convex subset T ∗(γ )⊆M∗(6), which can be identified
with M∗(γ ) = G∗(γ ) ∼= R∗. If α, β ∈ UG0(6) are distinct, then T ∗(α) ∩ T ∗(β)
consists of at most one point. The gate map ω∗γ :M

∗(6)→ T ∗(γ ) is the limit of
subsurface projection.

We now want to describe flats more generally. In this context, we make the
following definition:

Definition. A flat in M∗(6) is a closed convex subset median isomorphic to Rξ.
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Note that, in the case of a median metric space, this notion is equivalent to the
notion of a flat as defined in Section 3. (In particular, “flats” are always assumed
to have maximal rank.) In fact, we know that M∗(6) is bi-Lipschitz equivalent
to a median metric space, so with respect to this median metric, the two notions
coincide.

Let 8 ⊆M∞(6) be a flat. We identify 8 with Rξ via a median isomorphism.
Given i ∈ {1, . . . , ξ}, let L i ⊆8 be an i-th coordinate line. (Note that two such are
parallel. Moreover, they are determined up to permutation of the indices i .) Let
Di (8)= D(L i ), that is, the set of X ∈ UX (6) such that ψ∞X |L i is injective. (This
is independent of the choice of L i .) We similarly define D0

i (8)⊆ UG0(6), which
we can identify as a subset of Di (8).

We now bring Proposition 12.8 into play. Note that if Q is any ξ -cube in 8, then
Di (Q) ⊇ Di (8). In fact, there is some ξ -cube Q0 ⊆ 8, with Di (Q0) = Di (8)

for all i , and so Di (Q) = Di (8) for any cube in 8 bigger than Q0 (that is, with
Q0⊆hull(Q)). In particular, |D0

i (8)|≤1. Let I (8)={i |D0
i (8) 6=∅}. If i ∈ I (8),

write D0
i (8)= {γi }, and let τ(8)= {γi | i ∈ I (8)}. Thus, τ = τ(8)= τ(Q0) is a

big multicurve. If Q is any bigger cube, then Lemma 12.6 tells us that Q ⊆ T∞(τ ).
Since hull(Q) is exhausted by such hulls, we conclude:

Proposition 13.1. If 8 ⊆ M∞(6) is a flat, then τ(8) is a big multicurve, and
8 ⊆ T∞(τ (8)). Moreover, if Y ∈ UX N (τ (8)), then Y ∈ Di (8) for some i ∈
{1, . . . , ξ} \ I (8).

Note also, as in Proposition 12.8, that each Y ∈ UX (τ ) lies in Di (8) for some
unique i /∈ I (8).

Note that, applying Lemma 12.7 to a large cube in 8, we see that if γ ∈ D0
i (8),

then for all j ∈ {1, . . . , ξ} \ I (8) if X ∈ Dj (8) is an S1,1 or S0,4, and i 6= j, then
γ ∧ X (since the second possibility is ruled out by the fact that D0

j (8)=∅).
Next, we aim to describe when two flats meet in a codimension-1 plane (neces-

sarily a coordinate subspace).

Lemma 13.2. Let 80,81, be two flats with 80 ∩81 a codimension-1 coordinate
plane. Then τ = τ(80) ∩ τ(81) is a big multicurve. Moreover, |τ(8i ) \ τ | ≤ 1.
If β0 ∈ τ(80) \ τ and β1 ∈ τ(81) \ τ then β0 6= β1 and β0 and β1 lie in the same
complementary component of τ .

Proof. Choose coordinates on80 and81 so that80∩81 is a plane orthogonal to the
1st axis, and so that the other coordinates agree on 80 ∩81. Write Ii = I (8i ) and
τi = τ(8i ). Let τ = τ0∩τ1. Now I0 \{1} = I1 \{1} (since these sets are determined
by lines in 80 ∩81). The only case we need to consider is where 1 ∈ I0 ∩ I1

(otherwise, at least one of τ0 or τ1 agrees with τ and the statement follows). We
aim to show that τ0 and τ1 differ only inside a complexity-1 component of 6 \ τ ,
and it will follow that τ is big.
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So suppose that 1∈ I0∩ I1. Then τ0= τ∪{β0} and τ1= τ∪{β1}. Let Yi ∈UX N (τ )

be the component containing βi .
If Y0 6= Y1, then Y0 ∈ UX N (τ1), so Y0 ∈ Di (81) for some i 6= 1 (as observed

after Proposition 13.1). But Di (80)= Di (81). In other words, we have β0 ≺ Y0,
β0 ∈ D1(80), Y0 ∈ Di (80) and Y0 is an S1,1 or S0,4. It now follows that β0 ∧ Y0,
giving a contradiction.

Thus, Y0 = Y1 = Y, say. Since 80 6=81, we must have β0 6= β1. We claim that
Y is an S1,1 or an S0,4. For suppose not. We use the fact that τ0 and τ1 are big.
Either β0 t β1 or β0∧β1. In the former case, we have β0 t Z for some Z ∈ UX (τ1)

and we get a contradiction as before. In the latter case, we have β0 ≺W for some
W ∈ UX (τ1) and we derive a similar contradiction.

Thus, Y is an S1,1 or S0,4. Since τ0 and τ1 are big, and differ only in the curves
β0, β1, it follows that τ is big. �

Elaborating on the above proof, we see that there are essentially three possibilities
(up to swapping 80 and 81). Let us suppose that 80 and 81 differ in the first
coordinate. We have one of the following:

(1) τ(80)= τ(81)= τ . In this case, there is some Y ∈ UX N (τ ) corresponding
to the first factor of both T (τ0) and T (τ1), so that 80 and 81 project to lines
meeting in a single point in the R-tree M∞(Y ).

(2) τ(80) = τ and τ(81) = τ ∪ {β}. Let Y ∈ UX N (τ ) be the component
containing β. In the R-tree M∞(Y ), 81 projects to the axis corresponding
to β, and 80 projects to a line meeting this axis in a single point.

(3) τ(80)= τ ∪ {β0} and τ(81)= τ ∪ {β1}. Let Y ∈ UX (τ ) be the component
containing β0 and β1. Then 80 and 81 respectively project to the axes in
M∞(Y ) corresponding to β0 and β1. These axes intersect in a single point.

We next want to characterise Dehn twist flats.

Lemma 13.3. Suppose that 8⊆M∞(6) is a flat. Suppose that for each i there is
another flat8i ⊆M∞(6) with8∩8i a codimension-1 coordinate plane orthogonal
to the i-th axis. Then 8 is a Dehn twist flat.

In fact, it is enough to assume the hypothesis for those i ∈ I (8).

Proof. Suppose i ∈ I (8). Let γi ∈τ(8) be the corresponding curve. By Lemma 13.2
and subsequent discussion, we see that τ(8i ) is obtained from τ(8) by deleting
γi and possibly replacing it by another curve in the complementary component of
τ(8)\{γi } that contained γi . But τ(8i ) is big, so either way, it follows that γi must
lie in an S1,1 or S0,4 component of the complement of τ(8)\ {γi }. Put another way,
γi bounds an S0,3 component of 6 \ τ(8) (possibly the same S0,3) on each side.
Since this holds for all i ∈ I (8) (that is for all components of τ(8)) it follows that
each component of 6 \ τ(8) is an S0,3. In other words, τ(8) is complete. �
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For the converse, suppose that 8 is a Dehn twist flat. For simplicity, we can
assume that τ = τ(8) is standard. Let G = G(τ ) ⊆ Map(6) be the subgroup
generated by Dehn twists about the components of τ . Thus G ∼= Zξ. Let UG ≤
U Map(6) be its ultraproduct, and let U0G = UG ∩ U0 Map(6). (Recall, from
Section 5, that U0 Map(6) is defined to be the setwise stabiliser of M∞(6).) Then
U0G acts transitively on 8, preserving the coordinate directions.

Lemma 13.4. Suppose that 8 is a Dehn twist flat. Then if 2 is any codimension-1
coordinate subspace in 8, then there is some Dehn twist flat 9 with 2=8∩9.

Proof. For simplicity, we can assume τ =τ(8) to be standard. Let γ ∈τ be the curve
corresponding to the coordinate direction perpendicular to 2. Let Y ∈ UX (τ \ {γ })
be the component containing γ . Let γ ∈G0(6) be any other standard curve in Y.
Now the axes of β and γ in G∞(Y ) meet in a single point. Let τ ′ = (τ \ {γ })∪{β},
and let 9 = T (τ ′). Then 9 is a Dehn twist flat meeting 8 is a codimension-1
plane parallel to 2. By the homogeneity of 8 described before the statement of the
lemma, this is sufficient to prove the result. �

Putting the above together with Proposition 4.6, we get:

Proposition 13.5. Suppose that 8⊆M∞(6) is a closed subset and that there is a
homeomorphism f : Rξ →8 with the following property. For each codimension-1
coordinate plane H ⊆ Rξ there is a closed subset 9 ⊆ M∞(6) homeomorphic
to Rξ such that f (H) = 8∩9. Then 8 is a Dehn twist flat, and f is a median
isomorphism. Moreover, every Dehn twist flat arises in this way.

In particular, we see that the collection of Dehn twist flats is determined by the
topology of M∞(6), as shown in [Behrstock, Kleiner, Minsky and Mosher 2012].
In fact, we only need an injective map. Moreover, we can take two different surfaces
with the same complexity. In summary, we conclude:

Theorem 13.6. Suppose that6 and6′ are compact surfaces with ξ(6)=ξ(6′)≥2.
Suppose that we have a continuous injective map f : M∞(6)→ M∞(6′) with
closed image. If 8 is a Dehn twist flat in M∞(6), then f (8) is a Dehn twist flat in
M∞(6′).

Note that this applies equally well to any components of M∗(6) and M∗(6′),
since they are all respectively isomorphic to M∞(6) and to M∞(6′).

14. Controlling Hausdorff distance

We begin a general statement, which generalises a construction of [Behrstock,
Kleiner, Minsky and Mosher 2012].

Let (M, ρ) be a metric space. Given subsets, A, B, D ⊆ M, we say that A, B
are r-close on D if A∩ D ⊆ N (B; r) and B ∩ D ⊆ N (A; r). (Thus r-close on M
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means that the Hausdorff distance, hd(A, B), from A to B is at most r .) Let t be a
positive infinitesimal, and let M∗ be the extended asymptotic cone determined by t .
Given e ∈ M∗, let M∞e be the component of M∗ containing e. Let r = 1/t .

Let UP(M) be the ultrapower of the power set, P(M), of M. Given A∈UP(M),
let U A and A∗ ⊆ M∗ be the images of A under the natural maps UP(M) →
P(U(M))→ P(M∗) (as discussed in Section 5).

The following is a simple observation (a similar statement is used in [Behrstock,
Kleiner, Minsky and Mosher 2012]).

Lemma 14.1. Suppose that A, B ∈UP(M), and e∈U A (that is eζ ∈ Aζ for almost
all ζ ). Let e ∈ M∗ be the image of e in M∗ (so that e ∈ A∗). Suppose that ε, R > 0
are positive real numbers. Then A∗, B∗ are ε-close on N (e; R) if and only if , for
all R′ > R and all ε′ > ε, the sets Aζ , Bζ are ε′rζ -close on N (eζ ; R′rζ ) for almost
all ζ .

In particular, if A∗∩M∞e = B∗∩M∞e , then for all R>ε > 0, the sets Aζ , Bζ are
almost always εrζ -close on N (eζ ; Rrζ ). (Here “almost” may depend on ε and R.)
Note that, in the above, only the component, M∞e , of M∗ containing e is relevant.

Lemma 14.2. Suppose that for all R > ε > 0 there is some e ∈ A∗ such that
A∗, B∗ are ε-close on N (e; R). Then, there is some component M0 of M∗ such that
A∗ ∩M0

= B∗ ∩M0
6=∅.

Proof. Given any n ∈ N, there is some en such that A∗, B∗ are 1/(2n)-close on
N (en; 2n). Write en = (en,ζ )ζ . Let Zn be the set of ζ ∈ Z such that Aζ , Bζ are
rζ/n-close on N (en,ζ ; nrζ ). Thus, for all n, Zn has measure 1. Given ζ ∈ Z, let
m(ζ )=max({n |ζ ∈Zn}∪{0})∈N∪{∞}. Let p :Z→N be any map with p(ζ )→∞
(for example, any injective map from Z to N). Let n(ζ )= min{m(ζ ), p(ζ )} ∈ N.
Note that n(ζ )→∞ (since for any n ∈N, p(ζ ) > n almost always, and ζ ∈ Zn so
that m(ζ )> n almost always). Let eζ = en(ζ ),ζ , and let e be the image of (eζ )ζ in A∗.
Now, for all n, Aζ , Bζ are almost always rζ/n-close on N (eζ ; nrζ ), so A∗, B∗ are
1/n-close on N (e; n). Since this holds for all n, we have A∗∩M∞e = B∗∩M∞e 6=∅,
as required. �

Suppose now that E and F are collections of subsets of M. We write UE and
UF for their respective ultrapowers.

We suppose:

(S1) E is (coarsely) connected for all E ∈ E .

(S2) If F, F′ ∈ UF and there is some component M0 of M∗ such that F∗ ∩M0
=

(F ′)∗ ∩M0
6=∅, then F = F′.

(S3) For all E ∈ UE , and for all components M0 of M∗, there is some F ∈ UF
such that E∗ ∩M0

= F∗ ∩M0.
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In fact, we only really require (S3) if E∗ ∩M0
6=∅.

(In (S1), “coarsely connected” can be taken to mean that N (E; s) is connected
for some fixed s ∈ [0,∞)⊆ R.)

Lemma 14.3. If E,F satisfy (S1)–(S3) above, then there is some k > 0 such that
for all E ∈ E , there is some F ∈ F , such that hd(E, F)≤ k.

Proof. Suppose not. Let ε > 0. Given any ζ ∈Z , there is some Eζ ∈ E such that for
all F ∈ F , hd(Eζ , F) > εrζ . Let E = (Eζ )ζ ∈ UE . Let eζ be any element of Eζ
(so that e ∈ E∗). By (S3), there is some F ∈ UF such that E∗ ∩M∞e = F∗ ∩M∞e .
In particular, for all R > 4ε, we have that Eζ , Fζ are almost always εrζ/2-close on
N (eζ ; 2Rrζ ). But hd(Eζ , Fζ ) > εrζ , so there is some e′ζ ∈ Eζ such that Eζ , Fζ are
not εrζ/2-close on N (e′ζ ; 2Rrζ ). By (S1), we can find qζ , q ′ζ ∈ Eζ with ρ(qζ , q ′ζ )
bounded such that Eζ , Fζ are εrζ/2-close on N (qζ ; 2Rrζ ) but not on N (q ′ζ ; 2Rrζ ).
But by (S3) again, there is almost always some F ′ζ ∈ F such that Eζ , F ′ζ are εrζ/2-
close on N (q ′ζ ; 2Rrζ ). Clearly F ′ζ 6= Fζ . It follows that Fζ , F ′ζ are εrζ -close on
N (qζ ; Rrζ )⊆ N (qζ ; 2Rrζ )∩N (q ′ζ ; 2Rrζ ). (Almost always, ρ(qζ , q ′ζ ) < Rrζ .) Let
F′ = (F ′ζ )ζ . We see that F∗, (F ′)∗ are ε-close on N (q; R). Since R > 4ε > 0 were
arbitrary, it follows from Lemma 14.2 that there is some component, M0, of M∗

such that F∗ ∩ M0
= (F ′)∗ ∩ M0

6= ∅. By (S2), we have F = F′. But F ′ζ 6= Fζ
almost always, giving a contradiction. �

We have the following criterion to verify (S2).
Given A, B ⊆ M, we say that B linearly diverges from A if there are constants

k, t ≥ 0 such that for all r ≥ 0 and all x ∈ B, there is some y ∈ B with ρ(y, A)≥ r
and ρ(x, y)≤ kr+ t . We say that a collection F of subsets of M linearly diverges if
given any distinct A, B ∈ F , B linearly diverges from A, with k, t uniform over F .

Lemma 14.4. If a family F of subsets linearly diverges, then it satisfies (S2) above.

Proof. Suppose that A, B ∈UF and A∗∩M0
= B∗∩M0

6=∅, for some component
M0 of M∗. If e ∈ B∗ ∩M0, then we have eζ ∈ Bζ with eζ → e. Setting ε = 1 and
R > 3k, we have that Aζ and Bζ are almost always rζ -close on N (e; Rrζ ). If Aζ 6=
Bζ , then there is some y ∈ Bζ , with ρ(y, Aζ )≥ 2rζ and ρ(eζ , y)≤ 2krζ + t < 3krζ
almost always. Thus, y ∈ N (e; Rrζ ), so we get the contradiction that ρ(y, Aζ )≤ rζ .
Thus Aζ = Bζ almost always, that is, A= B. �

Finally, we apply this to the marking complexes to show that coarse Dehn twist
flats get sent (close) to coarse Dehn twist flats under a quasi-isometric embedding.

Suppose that 6 and 6′ are compact surfaces with ξ = ξ(6)= ξ(6′). Suppose
that φ :M(6)→M(6′). This gives rise to a continuous map φ∗ :M∗(6)→M∗(6′)

with closed image. In fact, each component M∗e(6) of M∗(6) gets sent into the
component M∗φ∗(e)(6

′) of M∗(6′). Moreover, distinct components get sent into
distinct components.
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Let F(6) be the set of coarse twist flats, T (τ ), as τ ranges over all complete
multicurves, τ . This satisfies (S1). Also, it is linearly divergent, by Lemma 9.9,
and so therefore satisfies (S2) by Lemma 14.4. Note that a Dehn twist flat in a
component M0 of M∗(6) is by definition a nonempty set of the form F∗ ∩M0 for
some F ∈ UF(6). The same discussion applies to F(6′).

Let E = {φ(F) | F ∈ F(6)}. We claim that E,F(6′) satisfies (S3) with
M =M(6′).

Suppose E∈UE . Then E= (φWζ )ζ , where Wζ ∈F(6). Thus E∗=φ∗W ∗, where
W = (Wζ )ζ . Suppose that M0 is a component of M∗(6′)with E∗∩M0

6=∅. Choose
any e ∈ W ∗ with φ∗e ∈ M0. Thus, M0

=M∗φ∗(e)(6
′). We see that φ∗(M∗e(6)) =

M0
∩φ∗(M∗(6)). Now W ∗∩M∗e(6) is a Dehn twist flat in M0, so by Theorem 13.6,

S∗ ∩ M0
= φ(W ∗)∩ M0

= φ(W ∗)∩M∗e(6) is a Dehn twist flat in M0. In other
words, there is some F ∈ UF(6′) with F∗∩M0

= E∗∩M0. This verifies property
(S3) for E,F(6′).

Lemma 14.5. Suppose that6 and6′ are compact orientable surfaces with ξ(6)=
ξ(6′)≥ 2, and that φ :M(6)→M(6′) is a quasi-isometric embedding. Then there
is some k ≥ 0 such that if τ is a complete multicurve in 6, then there is a complete
multicurve τ ′ in 6′ such that hd(T (τ ′), φT (τ ))≤ k.

Proof. We apply Lemma 14.3 to the sets E = {φ(F) | F ∈ F(6)} and F = F(6′).
We have verified that E and F satisfy (S1)–(S3). �

As we have stated it (to keep the logic of the argument simpler) the bound k might
depend on the particular map φ. In fact, it can be seen to depend only on ξ and the
parameters of φ. For this, fix some parameters of quasi-isometry, and now take E
to the set of all images φ(F), both as F ranges of the set of coarse Dehn twist flats,
F(6), and as φ ranges over all quasi-isometric embeddings from M(6) to M(6′)

with these parameters. To verify (S3) we take E= (φζWζ )ζ and apply Theorem 13.6,
to the limiting map φ∗ of (φζ )ζ . The same argument now gives us a uniform constant
k independent of any particular φ. (See the remark at the end of Section 6.)

15. Rigidity of the marking graph

In this section, we show that, modulo a few exceptional cases, a quasi-isometric
embedding between mapping class groups is a bounded distance from a left mul-
tiplication (hence a quasi-isometry). This strengthens the result of [Hamenstädt
2005; Behrstock, Kleiner, Minsky and Mosher 2012].

Let (X, ρ) be a geodesic space. Given A, B ⊆ X , write A ∼ B to mean that
hd(A, B) <∞. Clearly, this is an equivalence relation, and we write B(X) for
the set of ∼-classes. Let Q(X) ⊆ B(X) denote the set of ∼-classes of images of
bi-infinite quasigeodesics.
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If A, B ∈ B(X), we write A ≤ B to mean that some representative of A is
contained in some representative of B. This “coarse inclusion” defines a partial
order on B(X).

We say that two sets A, B ⊆ X have coarse intersection if there is some r ≥ 0
such that for all s ≥ r , N (A; r)∩ N (B; r)∼ N (A; s)∩ N (B; s) (cf., [Behrstock,
Kleiner, Minsky and Mosher 2012]). Clearly, this depends only on the ∼-classes of
A and B, and determines an element of B(X), denoted A∧ B.

Note that if φ : X→Y is a quasi-isometric embedding of X into another geodesic
space, Y, then φ induces an injective map from B(X) to B(Y ). Note that this respects
inclusion and coarse intersection.

Suppose now that 0 is a group acting by isometry on X. We say that 0
acts discretely if for some (or equivalently any) a ∈ X and any r ≥ 0, the set
{g ∈ 0 | ρ(a, ga)≤ r} is finite. (In other words, a has finite stabiliser and locally
finite orbit.) We will assume the action to be discrete here.

Any subgroup, G ≤0 determines an element B(G) of B(X), namely the ∼-class
of any G-orbit. If G ≤ H ≤ 0, then B(G) ≤ B(H), with equality if and only if
G has finite index in H. In fact, if G, H ≤ 0, then B(G) = B(H) if and only
if G, H are commensurable in 0 (i.e., G ∩ H has finite index in both G and H ).
More generally, for any G, H ≤ 0, B(G) and B(H) have coarse intersection, and
B(G∩H)= B(G)∩ B(H). Note that B(G) is the class of bounded sets if and only
if G is finite. Also, the class B(G) contains a bi-infinite quasigeodesic if and only
if G is two-ended (virtually Z) and undistorted in X.

Now, let 6 be a compact surface. Note that Map(6) acts discretely on M(6). If
τ ⊆6 is a multicurve, let G(τ )⊆Map(6) be the group generated by twists about
the elements of τ . Thus, G(τ ) ∼= Z|τ |. Write B(τ ) = B(G(τ )). Note that B(τ )
determines τ uniquely. If τ, τ ′ are multicurves, then G(τ ∩τ ′)=G(τ )∩G(τ ′), and
so B(τ ∩ τ ′)= B(τ )∧ B(τ ′). Note that if τ is a complete multicurve, then B(τ ) is
the class of the coarse Dehn twist flat, T (τ ).

Now if γ ∈ G0(6), then we can always find complete multicurves τ, τ ′ with
τ ∩ τ ′ = {γ }. (In fact, we can choose τ, τ ′ with ι(τ, τ ′) uniformly bounded.) If
γ, δ ∈ G0(6), then γ, δ are equal or adjacent in G(6) if and only if there is a
complete multicurve, τ containing both γ and δ. Thus, B(γ ), B(δ)≤ B(τ ).

Suppose now that 6,6′ are compact surfaces with ξ(6)= ξ(6′)≥ 2. Suppose
that φ :M(6)→M(6′) is a quasi-isometric embedding.

Suppose that τ ⊆ 6 is a complete multicurve. Now Lemma 14.5 gives us a
complete multicurve τ ′ ⊆ 6′ with hd(T (τ ′), φT (τ )) bounded and, in particular,
finite. Thus, φ(B(τ )) = B(τ ′). Moreover, this determines τ ′ uniquely, and we
denote it by θτ . Note that, from the remark following Lemma 14.5, we see that
the bound depends only on the complexity of the surfaces and the parameters of
quasi-isometry.
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Suppose that γ ∈ G0(6). Choose complete multicurves τ, τ ′ with τ ∩ τ ′ = {γ }.
Thus B(τ )∧ B(τ ′) = B(γ ) ∈ Q(M(6)), and so B(θτ )∧ B(θτ ′) ∈ Q(M(6′)). It
follows that θτ ∩ θτ ′ consists of a single curve, δ ∈ G0(6′). Note that B(δ) =
φ(B(γ )), and we see that δ is determined by γ . We write it as θγ . We have shown
that there is a unique map, θ :G0(6)→G0(6′) such that B(θγ )=φB(γ ) for all γ ∈
G0(6). Since φ : B(M(6))→ B(M(6′)) is injective, it follows that θ is injective.

Moreover, if γ, δ are equal or adjacent in G(6), then γ, δ ∈ τ for some complete
multicurve τ . So B(γ ), B(δ) ≤ B(τ ), so B(θγ ), B(θδ) ≤ B(θτ ), and so θγ, θδ
are equal or adjacent in G(6′). In other words, θ gives an injective embedding of
G(6) into G(6′).

We now use the following fact from [Shackleton 2007]:

Theorem 15.1. Suppose that6 and6′ are compact surfaces with ξ(6)=ξ(6′)≥4.
If θ : G(6)→ G(6′) is an injective embedding, then 6 = 6′ and there is some
g ∈Map(6) such that θγ = gγ for all γ ∈ G0(6). The same conclusion holds if
6,6′ are both an S2,0; if both an S0,6; if both an S0,5; or if at least one is an S1,3,
and the other has complexity ξ = 3.

Applying this to our situation, we see that 6 = 6′, and that there is some
g∈Map(6)with θγ =gγ for all g∈G0(6). After postcomposing with g−1, we may
as well assume that g is the identity. In particular, it follows that B(τ )= φ(B(τ ))
for all complete multicurves τ in 6. Now Lemma 14.5 gives us a uniform k such
that hd(T (τ ′), φT (τ )) ≤ k for some multicurve τ ′ in 6. But we now know that
τ ′ = τ , and so we deduce that hd(T (τ ), φT (τ ))≤ k for all multicurves, τ .

Now if x ∈M(6), we can always find τ, τ ′ with τ ∩ τ ′ =∅, and with ι(τ, τ ′),
ρ(x, T (τ )) and ρ(x, T (τ ′)) all uniformly bounded. It follows that φx is a bounded
distance from both φT (τ ) and φT (τ ′) and so ρ(φx, T (τ )) and ρ(φx, T (τ ′)) are
also uniformly bounded. But T (τ ) and T (τ ′) coarsely intersect in the class of
bounded sets. Since there are only finitely many possibilities for the pair τ, τ ′ up to
the action of Map(6) we can take the various constants to be uniform. This shows
that ρ(x, φx) is bounded.

We have shown:

Theorem 15.2. Suppose that6 and6′ are compact surfaces with ξ(6)=ξ(6′)≥4,
and that φ :M(6)→M(6′) is a quasi-isometric embedding. Then 6 = 6′ and
there is some g ∈ Map(6) such that for all a ∈ M(6), we have ρ(φa, ga) ≤ k,
where k depends only on ξ(6)= ξ(6′) and the parameters of quasi-isometry of φ.

(Note that if6,6′ are compact surfaces and there is a quasi-isometric embedding
of M(6) into M(6′), then certainly ξ(6)≤ ξ(6′), since the complexity, ξ = ξ(6),
is the maximal dimension of a quasi-isometrically embedded copy of Rξ in M(6).
It is not clear when a quasi-isometric embedding exists if ξ(6) < ξ(6′).)
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One can also describe the lower complexity cases. Note that complexity ξ = 3
corresponds to one of S2,0, S1,3 and S0,6. Suppose that ξ(6)= ξ(6′)= 3. Then the
result of [Shackleton 2007], quoted as Theorem 15.1 here, tells us if S1,3 ∈ {6,6

′
},

then again 6 =6′ in which case, the conclusion of the theorem holds. Otherwise,
it is necessary to assume that 6 =6′, and then the conclusion holds. Note that, in
fact, the centre of Map(S2,0) is Z2, generated by the hyperelliptic involution. The
quotient Map(S2,0)/Z2 is isomorphic to Map(S0,6). Thus, M(S2,0) and M(S0,6) are
quasi-isometric. Of course, the above allows us to describe the quasi-isometric
embeddings between them up to bounded distance, as compositions of maps of the
above type.

Suppose that ξ(6)= ξ(6)=2. In this case6∈{S1,2, S0,5}. If6=6′= S0,5 then
the result again holds (using Theorem 15.1). However, if 6 =6′ = S1,2, then the
conclusion of Theorem 15.1 fails without further hypotheses; see [Shackleton 2007].
Note however, that the centre of Map(S1,2) is Z2, and the quotient is isomorphic to
the index-5 subgroup of Map(S0,5)which fixes a boundary curve. Therefore M(S1,2)

is quasi-isometric to M(S0,5), and this fact allows us again to describe all quasi-
isometric embeddings between the marking complexes of surfaces of complexity 2
up to bounded distance. In particular, they are again all quasi-isometries.

The complexity-1 case corresponds to S1,1 or S0,4. In these cases the mark-
ing complexes are quasitrees, and there are uncountably many classes of quasi-
isometries between them up to bounded distance. Finally, the mapping class groups
of S0,3, S0,2, S0,1 and S0,0 are all finite.

Note that this gives a complete quasi-isometry classification of the groups
Map(6)— they are all different apart from the classes {S2,0, S0,6}, {S1,2, S0,5},
{S1,1, S1,0, S0,4} and {S0,3, S0,2, S0,1, S0,0}.
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BACH-FLAT ISOTROPIC GRADIENT RICCI SOLITONS

ESTEBAN CALVIÑO-LOUZAO, EDUARDO GARCÍA-RÍO,
IXCHEL GUTIÉRREZ-RODRÍGUEZ AND RAMÓN VÁZQUEZ-LORENZO

We construct examples of Bach-flat gradient Ricci solitons in neutral signa-
ture which are neither half conformally flat nor conformally Einstein.

1. Introduction

Let (M, g) be a pseudo-Riemannian manifold. Let f ∈ C∞(M). We say that
(M, g, f ) is a gradient Ricci soliton if the equation

(1) Hes f +ρ = λ g,

is satisfied for some λ ∈ R, where ρ is the Ricci tensor, and Hes f = ∇d f is the
Hessian tensor acting on f . A gradient Ricci soliton is said to be trivial if the
potential function f is constant, since (1) reduces to the Einstein equation ρ = λg.
Gradient Ricci solitons have been extensively investigated and their classification
under geometric conditions is a problem of current interest. We refer to [Cao 2010]
for more information.

The gradient Ricci soliton equation codifies geometric information of (M, g)
in terms of the Ricci curvature and the second fundamental form of the level sets
of the potential function f . The fact that the Ricci tensor completely determines
the curvature tensor in the locally conformally flat case has yielded some results
in this situation [Cao and Chen 2012; Munteanu and Sesum 2013; Petersen and
Wylie 2010]. Any locally conformally flat gradient Ricci soliton is locally a warped
product in the Riemannian setting [Fernández-López and García-Río 2014]. The
higher signature case, however, allows other possibilities when the level sets of
the potential function are degenerate hypersurfaces [Brozos-Vázquez et al. 2013].
Four-dimensional half conformally flat (i.e., self-dual or anti-self-dual) gradient
Ricci solitons have been investigated in the Riemannian and neutral signature cases
[Brozos-Vázquez and García-Río 2016; Chen and Wang 2015]. While they are
locally conformally flat in the Riemannian situation, neutral signature allows other
examples given by Riemannian extensions of affine gradient Ricci solitons.
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Keywords: gradient Ricci soliton, Bach tensor, Riemannian extension, affine surface.
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Let W be the Weyl conformal curvature tensor of (M, g). The Bach tensor,
Bi j =∇

k
∇
`Wki j`+

1
2ρ

k`Wki j` , is conformally invariant in dimension 4. Bach-flat
metrics contain half conformally flat and conformally Einstein metrics as special
cases [Besse 1987]. Hence, a natural problem is to classify Bach-flat gradient Ricci
solitons. The Riemannian case was investigated in [Cao et al. 2014; Cao and Chen
2013] both in the shrinking and steady cases. In all situations the Bach-flat condition
reduces to the locally conformally flat one under some natural assumptions.

Our main purpose in this paper is to construct new examples of Bach-flat gradient
Ricci solitons in neutral signature. The corresponding potential functions have
degenerate level set hypersurfaces and their underlying structure is never locally
conformally flat, in sharp contrast with the Riemannian situation. These metrics are
realized on the cotangent bundle T ∗6 of an affine surface (6, D), and they may
be viewed as perturbations of the classical Riemannian extensions introduced by
Patterson and Walker [1952].

Here is a brief guide to some of the most important results of this paper. In
Theorem 3.1 we show that, for any affine surface (6, D) admitting a parallel
nilpotent (1, 1)-tensor field T, the modified Riemannian extension (T ∗6, gD,T,8) is
Bach-flat. Moreover we show that Bach-flatness is independent of the deformation
tensor field 8, thus providing an infinite family of Bach-flat metrics for any initial
data (6, D, T ). Affine surfaces admitting a parallel nilpotent (1, 1)-tensor field
T are characterized in Proposition 3.3 by the recurrence of the symmetric part of
the Ricci tensor, being ker T a parallel one-dimensional distribution whose integral
curves are geodesics.

The previous construction is used in Theorem 4.3 to show that, for any smooth
function h ∈ C∞(6), there exist appropriate deformation tensor fields 8 such
that (T ∗6, gD,T,8, f = h ◦ π) is a steady gradient Ricci soliton if and only if
dh(ker T )= 0. This provides infinitely many examples of Bach-flat gradient Ricci
solitons in neutral signature.

Theorems 5.1 and 6.1 show that (T ∗6, gD,T,8) is generically strictly Bach-flat,
i.e., neither half conformally flat nor conformally Einstein. Moreover, Theorem 5.1
is used in Proposition 5.2 to construct new examples of anti-self-dual metrics.
Turning to gradient Ricci solitons, we show in Theorem 5.4 the existence of anti-
self-dual steady gradient Ricci solitons which are not locally conformally flat.

The paper is organized as follows. Some basic results on the Bach tensor and
gradient Ricci solitons are introduced in Section 2, as well as a sketch of the
construction of modified Riemannian extensions gD,8,T . We use these metrics in
Section 3 to show that, for any parallel tensor field T on (6, D), gD,8,T is Bach-flat
if and only if T is either a multiple of the identity or nilpotent (see Theorem 3.1).
In Section 4 we show that for each initial data (6, D, T ) there are an infinite
number of Bach-flat steady gradient Ricci solitons (see Theorem 4.3). Nontriviality
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of the examples is obtained after an examination of the half conformally flat
condition (see Section 5) and the conformally Einstein property (see Section 6) of
the modified Riemannian extensions introduced in Section 2. Finally, we specialize
this construction in Section 7 to provide some illustrative examples.

2. Preliminaries

Let (Mn, g) be a pseudo-Riemannian manifold with Ricci curvature ρ and scalar
curvature τ . Let W denote the Weyl conformal curvature tensor and define

W [ρ](X, Y )=
∑

i j

εiε j W (Ei , X, Y, E j )ρ(Ei , E j ),

where {Ei } is a local orthonormal frame and εi = g(Ei , Ei ). Then the Bach tensor
is defined (see [Bach 1921]) by

(2) B= div1 div4 W + n−3
n−2

W [ρ],

where div is the divergence operator.
Let S = ρ − τ/(2(n − 1)) g denote the Schouten tensor of (M, g). Let C be

the Cotton tensor, Ci jk = (∇iS) jk − (∇ jS)ik ; it provides a measure of the lack
of symmetry on the covariant derivative of the Schouten tensor. Since div4 W =
−(n − 3)/(n − 2)C, the Bach and the Cotton tensors of any four-dimensional
manifold are related by B = 1

2(− div1 C+W [ρ]).
The Bach tensor, which is trace-free and conformally invariant in dimension

n = 4, has been broadly investigated in the literature, both from the geometrical
and physical viewpoints (see, for example, [Chen and He 2013; Derdzinski 1983;
Dunajski and Tod 2014]). It is the gradient of the L2 functional of the Weyl curvature
on compact manifolds. The field equations of conformal gravity are equivalent to
setting the Bach tensor equal to zero and it is also central in the study of the Bach
flow, a geometric flow which is quadratic on the curvature and whose fixed points
are the vacuum solutions of conformal Weyl gravity [Bakas et al. 2010].

Besides the half conformally flat metrics and the conformally Einstein ones, there
are few known examples of strictly Bach-flat manifolds, meaning the ones which are
neither half conformally flat nor conformally Einstein (see, for example, [Abbena
et al. 2013; Hill and Nurowski 2009; Leistner and Nurowski 2010]). Motivated by
this lack of examples, we first construct new explicit four-dimensional Bach-flat
manifolds of neutral signature.

Riemannian extensions. In order to introduce the family of metrics under consid-
eration, we recall that a pseudo-Riemannian manifold (M, g) is a Walker manifold
if there exists a parallel null distribution D on M. Walker metrics, also called
Brinkmann waves in the literature, have been widely investigated in the Lorentzian
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setting (pp-waves being a special class among them). They appear in many geomet-
rical situations showing a specific behavior without Riemannian counterpart (see
[Brozos-Vázquez et al. 2009]).

Let (M, g,D) be a four-dimensional Walker manifold of neutral signature and
D of maximal rank. Then there are local coordinates (x1, x2, x1′, x2′) so that the
metric g is given (see [Walker 1950]) by

(3) g = 2 dx i
◦ dxi ′ + gi j dx i

◦ dx j ,

where “◦” denotes the symmetric product ω1 ◦ω2 :=
1
2(ω1⊗ω2+ω2⊗ω1) and

(gi j ) is a 2× 2 symmetric matrix whose entries are functions of all the variables.
Moreover, the parallel degenerate distribution is given by D = span{∂x1′

, ∂x2′
}.

A special family of four-dimensional Walker metrics is provided by the Riemann-
ian extensions of affine connections to the cotangent bundle of an affine surface.
Next we briefly sketch their construction. Let T ∗6 be the cotangent bundle of
a surface 6 and let π : T ∗6 → 6 be the projection. Let p̃ = (p, ω) denote a
point of T ∗6, where p ∈6 and ω ∈ T ∗p6. Local coordinates (x i ) in an open set U
of 6 induce local coordinates (x i , xi ′) in π−1(U ), where one sets ω =

∑
xi ′ dx i.

The evaluation functions on T ∗6 play a central role in the construction. They are
defined as follows. For each vector field X on 6, the evaluation of X is the real
valued function ιX : T ∗6→ R given by ιX (p, ω)= ω(X p). Vector fields on T ∗6
are characterized by their action on evaluations ιX and one defines the complete lift
to T ∗6 of a vector field X on 6 by XC(ιZ)= ι[X, Z ], for all vector fields Z on 6.
Moreover, a (0, s)-tensor field on T ∗6 is characterized by its action on complete
lifts of vector fields on 6.

Next, let D be a torsion-free affine connection on 6. The Riemannian exten-
sion gD is the neutral signature metric gD on T ∗6 characterized by the identity
gD(XC , Y C) = −ι(DX Y + DY X) (see [Patterson and Walker 1952]). They are
expressed in the induced local coordinates (x i , xi ′) as follows:

(4) gD = 2 dx i
◦ dxi ′ − 2xk′

D0i j
kdx i
◦ dx j ,

where D0i j
k denote the Christoffel symbols of D. The geometry of (T ∗6, gD) is

strongly related to that of (6, D). Recall that the curvature of any affine surface is
completely determined by its Ricci tensor ρD . Moreover, the symmetric and skew-
symmetric parts given by ρD

sym(X, Y )= 1
2{ρ

D(X, Y )+ ρD(Y, X)} and ρD
sk(X, Y )=

1
2{ρ

D(X, Y )− ρD(Y, X)} play a distinguished role.
Let 8 be a symmetric (0, 2)-tensor field on 6. Then the deformed Riemannian

extension, gD,8 = gD +π
∗8, is a first perturbation of the Riemannian extension.

A second one is obtained as follows. Let T = T k
i dx i

⊗ ∂xk be a (1, 1)-tensor field
on 6. Its evaluation ιT defines a one-form on T ∗6 characterized by ιT (XC) =

ι(T X). The modified Riemannian extension gD,8,T is the neutral signature metric
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on T ∗6 defined (see [Calviño-Louzao et al. 2009]) by

(5) gD,8,T = ιT ◦ ιT + gD +π
∗8,

where 8 is a symmetric (0, 2)-tensor field on 6. In local coordinates one has

gD,8,T = 2 dx i
◦ dxi ′ +

{1
2 xr ′xs′(T r

i T s
j + T r

j T s
i )− 2xk′

D0i j
k
+8i j

}
dx i
◦ dx j .

The case when T is a multiple of the identity (T = c Id, c 6= 0) is of special interest.
It was shown in [Calviño-Louzao et al. 2009] that for any affine surface (6, D), the
modified Riemannian extension gD,8,c Id is an Einstein metric on T ∗6 if and only
if the deformation tensor 8 is the symmetric part of the Ricci tensor of (6, D).
Moreover, a slight generalization of the modified Riemannian extension allows a
complete description of self-dual Walker metrics as follows.

Theorem 2.1 [Calviño-Louzao et al. 2009; Díaz-Ramos et al. 2006]. A four-
dimensional Walker metric is self-dual if and only if it is locally isometric to
the cotangent bundle T ∗6 of an affine surface (6, D), with metric tensor

g = ιX (ι id ◦ι id)+ ι id ◦ιT + gD +π
∗8,

where X, T, D and 8 are a vector field, a (1, 1)-tensor field, a torsion-free affine
connection and a symmetric (0, 2)-tensor field on 6, respectively.

As a matter of notation, we will write ∂k = ∂/∂xk and ∂k′ = ∂/∂xk′ , unless we
want to emphasize some special coordinates. We will let

φk = (∂/∂xk)φ and φk′ = (∂/∂xk′)φ

denote the corresponding first derivatives of a smooth function φ.

Gradient Ricci solitons and affine gradient Ricci solitons. Let (M, g, f ) be a
gradient Ricci soliton. The level set hypersurfaces of the potential function play a
distinguished role in analyzing the geometry of gradient Ricci solitons. Hence we
say that the soliton is nonisotropic if ∇ f is nowhere lightlike (i.e., ‖∇ f ‖2 6= 0),
and that the soliton is isotropic if ‖∇ f ‖2 = 0, but ∇ f 6= 0.

Nonisotropic gradient Ricci solitons lead to local warped product decompositions
in the locally conformally flat and half conformally flat cases, and their geometry
resembles the Riemannian situation [Brozos-Vázquez and García-Río 2016; Brozos-
Vázquez et al. 2013]. The isotropic case is, however, in sharp contrast with the
positive definite setting since ∇ f gives rise to a Walker structure. Self-dual gradient
Ricci solitons which are not locally conformally flat are isotropic and steady (λ= 0
in (1)). Moreover, they are described in terms of Riemannian extensions as follows.

Theorem 2.2 [Brozos-Vázquez and García-Río 2016]. Let (M, g, f ) be a four-
dimensional self-dual gradient Ricci soliton of neutral signature which is not locally
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conformally flat. Then (M, g) is locally isometric to the cotangent bundle T ∗6 of
an affine surface (6, D) equipped with a modified Riemannian extension gD,8,0.

Moreover any such gradient Ricci soliton is steady and the potential function is
given by f = h ◦π for some h ∈ C∞(6) satisfying the affine gradient Ricci soliton
equation

(6) HesD
h +2ρD

sym = 0,

for any symmetric (0, 2)-tensor field 8 on 6.

The previous result relates the affine geometry of (6, D) and the pseudo-
Riemannian geometry of (T ∗6, gD,8,0), allowing the construction of an infinite
family of steady gradient Ricci solitons on T ∗6 for any initial data (6, D, h)
satisfying (6). It is important to remark here that the existence of affine gradient
Ricci solitons imposes some restrictions on (6, D), as shown in [Brozos-Vázquez
et al. 2018] in the locally homogeneous case.

3. Bach-flat modified Riemannian extensions

The use of modified Riemannian extensions with T = c Id allowed the construction
of many examples of self-dual Einstein metrics [Calviño-Louzao et al. 2009]. One
of the crucial facts in understanding the metrics gD,8,c Id is that the (1, 1)-tensor field
T = c Id is parallel with respect to the connection D. Hence, a natural generalization
arises by considering arbitrary tensor fields T which are parallel with respect to the
affine connection D.

Let (6, D, T ) be a torsion-free affine surface equipped with a parallel (1, 1)-
tensor field T. Parallelizability of T guarantees the existence of local coordinates
(x1, x2) on 6 so that

T ∂1 = T 1
1 ∂1+ T 2

1 ∂2,

and
T ∂2 = T 1

2 ∂1+ T 2
2 ∂2,

for some real constants T j
i . Let (T ∗6, gD,8,T ) be the modified Riemannian exten-

sion given by (5). Further note that D and 8 are taken with full generality. Thus,
the corresponding Christoffel symbols D0k

i j and the coefficient functions 8i j are
arbitrary smooth functions of the coordinates (x1, x2).

Our first main result concerns the construction of Bach-flat metrics:

Theorem 3.1. Let (6, D, T ) be a torsion-free affine surface equipped with a par-
allel (1, 1)-tensor field T. Let 8 be an arbitrary symmetric (0, 2)-tensor field on
6. Then the Bach tensor of (T ∗6, gD,8,T ) vanishes if and only if T is either a
multiple of the identity or nilpotent.
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Proof. In order to compute the Bach tensor of (T ∗6, gD,8,T ), first of all observe
that being T -parallel imposes some restrictions on the components T j

i as well as
on the Christoffel symbols of the connection D:

(7) DT = 0⇒



T 1
2

D02
11− T 2

1
D01

12 = 0,

T 1
2

D02
12− T 2

1
D01

22 = 0,

T 2
1

D01
11+ (T

2
2 − T 1

1 )
D02

11− T 2
1

D02
12 = 0,

T 1
2

D01
11+ (T

2
2 − T 1

1 )
D01

12− T 1
2

D02
12 = 0,

T 2
1

D01
12+ (T

2
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1 )
D02

12− T 2
1

D02
22 = 0,

T 1
2

D01
12+ (T

2
2 − T 1

1 )
D01

22− T 1
2

D02
22 = 0.

Then, expressing the Bach tensor Bi j =B(∂i , ∂ j ) in induced coordinates (x i , xi ′),
a long but straightforward calculation shows that

(8) (Bi j )=

 B11 B12

B12 B22
B̃

B̃ 0

,
where

B̃= 1
6

(
(T 1

1 − T 2
2 )

2
+ 4T 1

2 T 2
1
)
· (T 1

1 + T 2
2 ) ·

(
T 1

1 − T 2
2

2T 1
2

2T 2
1

T 2
2 − T 1

1

)
and where the coefficients B11, B12 and B22 can be written in terms of d= det(T )
and t= tr(T ) as follows:

B11=−
1
6

{
10d3
−2
(
t2+13T 2

2 t−15(T 2
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2)d2
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2 )t
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1
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+
(
3t2− 22T 2

2 t+ 14(T 2
2 )

2)d− (t2− 4T 2
2 t+ 2(T 2

2 )
2)t2}811

−
1
3

{
(11t− 14T 2

2 )d− 2(t− T 2
2 )t

2}T 2
1 812

+
1
3
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2822

−
2
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(
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12
)
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B12 =−
1
6
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Suppose first that the Bach tensor of (T ∗6, gD,8,T ) vanishes. We start analyzing
the case T 1

2 = 0. In this case, the expression of B̃ in (8) reduces to

(9) B̃= 1
6(T

1
1 − T 2

2 )
2
· (T 1

1 + T 2
2 ) ·

(
T 1

1 − T 2
2

0
2T 2

1

T 2
2 − T 1

1

)
.

If T 2
2 = T 1

1 , we differentiate the component B11 in (8) twice with respect to x2′

to obtain T 2
1 T 1

1 = 0. Thus, either T 2
1 = 0 and T is a multiple of the identity, or

T 1
1 = 0 and, in such a case, T is determined by T ∂1 = T 2

1 ∂2 and therefore it is
nilpotent. If T 2

2 6= T 1
1 , then (9) implies that T 2

2 =−T 1
1 . In this case, we differentiate
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the component B22 in (8) twice with respect to x2′ and obtain T 1
1 = 0. Thus, as

before, T is nilpotent.
Next we analyze the case T 1

2 6= 0. We use (7) to express

D01
11 =

T 1
1 −T 2

2
T 1

2

D01
12+

T 2
1

T 1
2

D01
22,

D02
11 =

T 2
1

T 1
2

D01
12,

D02
12 =

T 2
1

T 1
2

D01
22,

D02
22 =

D01
12−

T 1
1 −T 2

2
T 1

2

D01
22.

Considering the component B̃11 in (8),

B̃11 =
1
6(T

1
1 − T 2

2 ) · (T
1

1 + T 2
2 ) ·

(
(T 1

1 − T 2
2 )

2
+ 4T 1

2 T 2
1
)
,

we analyze separately the vanishing of each one of the three factors in B̃11.
Assume that T 2

2 = T 1
1 . In this case, component B̃12 in (8) reduces to B̃12 =

8
3 T 1

2 (T
2

1 )
2T 1

1 ; since we are assuming that T 1
2 6= 0, then either T 2

1 = 0 or T 2
1 6= 0

and T 1
1 = 0. If T 2

1 = 0, the only nonzero component of the Bach tensor is given by

B22 =−(T 1
2 )

2(T 1
1 )

2(3(T 1
1 )

2x2
1′ +811),

from where it follows that T 1
1 = 0 and hence T is determined by T ∂2 = T 1

2 ∂1 and
is nilpotent. If T 2

1 6= 0 and T 1
1 = 0, then we differentiate the component B12 in (8)

with respect to x1′ and x2′ to get T 1
2 T 2

1 = 0, which is not possible since both T 1
2 and

T 2
1 are non-null.

Suppose now that T 2
2 =−T 1

1 . In this case, we differentiate the component B22 in
(8) twice with respect to x1′ and as a consequence we obtain T 1

2 (T
1

2 T 2
1 +(T

1
1 )

2)= 0;
since we are assuming T 1

2 6= 0, it follows that T 2
1 =−(T

1
1 )

2/T 1
2 . Thus, the (1, 1)-

tensor field T is given by T ∂1 = T 1
1 ∂1− (T 1

1 )
2/T 1

2 ∂2 and T ∂2 = T 1
2 ∂1− T 1

1 ∂2, and
therefore it is nilpotent as well.

Finally, suppose that (T 1
1 −T 2

2 )
2
+4T 1

2 T 2
1 = 0; since T 1

2 6= 0, this is equivalent to
T 2

1 =−(T
1

1 − T 2
2 )

2/(4T 1
2 ). Now, we differentiate the component B22 in (8) twice

with respect to x1′ to obtain T 1
2 (T

1
1 + T 2

2 )= 0. Thus, we have T 2
2 =−T 1

1 and T is
given by T ∂1 = T 1

1 ∂1− (T 1
1 )

2/T 1
2 ∂2 and T ∂2 = T 1

2 ∂1− T 1
1 ∂2, which again implies

that T is nilpotent.
To conclude the proof we show the “only if” part. If T is a multiple of the identity,

then (T ∗6, gD,8,T ) is self-dual by Theorem 2.1 and therefore it has vanishing Bach
tensor. Thus, we suppose T is parallel and nilpotent and, in this case, we can
choose a system of coordinates (x1, x2) such that T is determined by T ∂1 = ∂2 and
T ∂2 = 0. Hence, examining (8), clearly B̃ = 0 and, since d = t = 0, one easily
checks that B11 =B12 =B22 = 0, showing that the Bach tensor of (T ∗6, gD,8,T )

vanishes. �
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Remark 3.2. We emphasize that even though the Bach tensor of the metrics gD,8,T

depends on the choice of 8 (as shown in the proof of Theorem 3.1), the existence
of Bach-flat metrics in Theorem 3.1 is independent of the symmetric (0, 2)-tensor
field8, thus providing an infinite family of examples for each initial data (6, D, T ).
Moreover, note that the metrics gD,8,T are generically nonisometric for different
deformation tensor fields 8.

The Bach-flat modified Riemannian extensions in Theorem 3.1 obtained from a
(1, 1)-tensor field of the form T = c Id are not of interest for our purposes since they
all are half conformally flat (see Theorem 2.1). Hence, in what follows we focus
on the case when T is a parallel nilpotent (1, 1)-tensor field and refer to gD,8,T as
a nilpotent Riemannian extension.

Affine connections supporting parallel nilpotent tensors. It is shown in the proof
of Theorem 3.1 that the existence of a parallel nilpotent tensor field T on a torsion-
free affine surface (6, D) imposes some restrictions on D.

Proposition 3.3. Let (6, D, T ) be a torsion-free affine surface equipped with a
nilpotent (1, 1)-tensor field T. If T is parallel, then:

(i) ker T is a parallel one-dimensional distribution whose integral curves are
geodesics of (6, D).

(ii) The symmetric part of the Ricci tensor, ρD
sym, is zero or of rank one and

recurrent, i.e.,
DρD

sym = η⊗ ρ
D
sym,

for some one-form η.

Proof. Let (6, D) be a torsion-free affine surface admitting a parallel nilpotent
(1, 1)-tensor field T. Then there exist suitable coordinates (x1, x2) where T ∂1 = ∂2,
T ∂2 = 0 and it follows from (7) that the Christoffel symbols of D satisfy

(10) D01
12 = 0, D02

12 =
D01

11,
D01

22 = 0, D02
22 = 0.

In such a case the one-dimensional distribution ker T (= span{∂2}) is parallel and
∂2 is a geodesic vector field, thus showing (i). Moreover, the Ricci tensor of any
affine connection given by (10) satisfies

ρD
=

(
∂2

D02
11− ∂1

D01
11

−∂2 D01
11

∂2
D01

11
0

)
,

from where it follows that the symmetric and the skew-symmetric parts of the Ricci
tensor are given by

ρD
sym =

(
∂2

D02
11− ∂1

D01
11
)

dx1
◦ dx1, ρD

sk = ∂2
D01

11 dx1
∧ dx2.
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Hence ρD
sym is either zero or of rank one. Moreover, a straightforward calculation

of the covariant derivative of the symmetric part of the Ricci tensor gives

(D∂1ρ
D
sym)(∂1, ∂1)= ∂12

D02
11− ∂11

D01
11− 2 D01

11(∂2
D02

11− ∂1
D01

11),

(D∂2ρ
D
sym)(∂1, ∂1)= ∂22

D02
11− ∂12

D01
11,

with the other components being zero. This shows that ρD
sym is recurrent, i.e.,

DρD
sym = η⊗ ρ

D
sym, with recurrence one-form

(11) η =
{
∂1 ln ρD

sym(∂1, ∂1)− 2 D01
11
}

dx1
+ ∂2 ln ρD

sym(∂1, ∂1) dx2,

which proves (ii). �

Remark 3.4. It follows from the expression of ρD
sk in the proof of Proposition 3.3

that any connection given by (10) has symmetric Ricci tensor if and only if
∂2

D01
11 = 0, in which case ρD is recurrent. Now, it follows from the work of

Wong [1964] that any such connection can be described in suitable coordinates
(u1, u2) by

D∂u1∂u1 =
u02

11(u
1, u2)∂u2,

where u02
11(u

1, u2) is an arbitrary function satisfying ∂u2
u02

11(u
1, u2) 6= 0. Further,

the only nonzero component of the Ricci tensor is ρD(∂u1, ∂u1)= ∂u2
u02

11, and the
recurrence one-form ω is given by

(12) ω = ∂u1(ln ∂u2
u02

11)du1
+ ∂u2(ln ∂u2

u02
11)du2.

Further assume that T is a parallel nilpotent (1, 1)-tensor field on (6, D). Then
a straightforward calculation shows that its expression in the coordinates (u1, u2)

is given by T ∂u1 = T 2
1 ∂u2 and T ∂u2 = 0, for some T 2

1 ∈ R, T 2
1 6= 0. Hence, consid-

ering the modified coordinates (u1, u2)= (u1, (T 2
1 )
−1u2) one has that T ∂u1 = ∂u2

and T ∂u2 = 0, and the connection is determined by the only nonzero Christoffel
symbol u02

11. Moreover, it follows from the expression of the recurrence one-form
ω that ω(ker T )= 0 if and only if ∂22

u02
11 = 0.

4. Bach-flat gradient Ricci solitons

Let 8 be a symmetric (0, 2)-tensor field on (6, D, T ). One uses the nilpotent
structure T to construct an associated symmetric (0, 2)-tensor field 8̂ given by
8̂(X, Y ) = 8(T X, T Y ), for all vector fields X, Y on 6. Further, let (x1, x2) be
local coordinates where T ∂1 = ∂2, T ∂2 = 0 and let 8 = 8i j dx i

⊗ dx j. Then 8̂
expresses as 8̂= 8̂i j dx i

⊗ dx j
=822dx1

⊗ dx1.
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Einstein nilpotent Riemannian extensions.
Theorem 4.1. Let (6, D, T ) be an affine surface equipped with a parallel nilpotent
(1, 1)-tensor field T and let 8 be a symmetric (0, 2)-tensor field on 6. Then
(T ∗6, gD,8,T ) is Einstein (indeed, Ricci-flat) if and only if 8̂=−2ρD

sym.

Proof. Let (x1, x2) be local coordinates on 6 so that T ∂1 = ∂2, T ∂2 = 0, and
consider the induced coordinates (x1, x2, x1′, x2′) on T ∗6. A straightforward
calculation shows that the Ricci tensor of any nilpotent Riemannian extension
gD,8,T is determined by

ρ(∂1, ∂1)=8(∂2, ∂2)+ 2ρD
sym(∂1, ∂1),

the other components being zero. Hence the Ricci operator is nilpotent and gD,8,T

has zero scalar curvature. Moreover, the Ricci tensor vanishes if and only if
8(∂2, ∂2)+ 2ρD

sym(∂1, ∂1)= 0. The result now follows. �

Remark 4.2. The Weyl tensor of a pseudo-Riemannian manifold is harmonic if
and only if the Cotton tensor vanishes. Let (6, D, T ) be an affine surface equipped
with a parallel nilpotent (1, 1)-tensor field T and let 8 be a symmetric (0, 2)-tensor
field on 6. Let (x1, x2) be local coordinates on 6 so that T ∂1 = ∂2, T ∂2 = 0,
and consider the induced coordinates (x1, x2, x1′, x2′) on T ∗6. A straightforward
calculation shows that the Cotton tensor of (T ∗6, gD,8,T ) is given by

C(∂1, ∂2, ∂1)=−{∂28(∂2, ∂2)+ 2∂2 ρ
D
sym(∂1, ∂1)},

the other components being zero. Hence (T ∗6, gD,8,T ) has harmonic Weyl tensor if
and only if D̂8=−2 η̂⊗ ρD

sym, where η̂(X)= η(T X), η being the recurrence one-
form given in (11), and D̂8(X, Y ; Z)= D8(T X, T Y ; T Z).

Gradient Ricci solitons on nilpotent Riemannian extensions. From Theorem 2.2,
recall that the affine gradient Ricci soliton equation HesD

h +2ρD
sym=0 determines the

potential function of any self-dual gradient Ricci soliton which is not locally confor-
mally flat, independently of the deformation tensor8. The next theorem shows that,
in contrast with the previous situation, for any h ∈ C∞(6) with dh(ker T )= 0, one
may use the symmetric (0, 2)-tensor field HesD

h +2ρD
sym to determine a deformation

tensor field 8 so that the resulting nilpotent Riemannian extension is a Bach-flat
steady gradient Ricci soliton with potential function f = h ◦π .

Theorem 4.3. Let (6, D, T ) be an affine surface equipped with a parallel nilpotent
(1, 1)-tensor field T and let 8 be a symmetric (0, 2)-tensor field on 6. Let h ∈
C∞(6) be a smooth function. Then (T ∗6, gD,8,T , f =h◦π) is a Bach-flat gradient
Ricci soliton if and only if dh(ker T )= 0 and

(13) 8̂=−HesD
h −2ρD

sym.

Moreover the soliton is steady and isotropic.
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Proof. Let (x1, x2) be local coordinates on 6 so that T ∂1 = ∂2, T ∂2 = 0, and
consider the induced coordinates (x1, x2, x1′, x2′) on T ∗6. Setting f = h ◦π , one
has that Hes f (∂1, ∂1′)+ρ(∂1, ∂1′)= λg(∂1, ∂1′) leads to λ= 0, which shows that the
soliton is steady. A straightforward calculation shows that the remaining nonzero
terms in the gradient Ricci soliton equation are given by

Hes f (∂2, ∂2)+ ρ(∂2, ∂2)= ∂22h,

Hes f (∂1, ∂2)+ ρ(∂1, ∂2)= ∂12h− D01
11∂2h,

Hes f (∂1, ∂1)+ ρ(∂1, ∂1)= x2′ ∂2h− D02
11 ∂2h+ ∂11h− D01

11∂1h

+822+ 2∂2
D02

11− 2∂1
D01

11.

It immediately follows from the equation (Hes f +ρ)(∂1, ∂1)= 0 that ∂2h= 0, which
shows that dh(ker T )= 0. The only remaining equation now becomes

Hes f (∂1, ∂1)+ ρ(∂1, ∂1)= ∂11h− D01
11∂1h+822+ 2∂2

D02
11− 2∂1

D01
11

=8(∂2, ∂2)+HesD
h (∂1, ∂1)+ 2ρD

sym(∂1, ∂1),

from which (13) follows. Moreover, it also follows from the form of the potential
function that ∇ f = h′(x1)∂1′ , and thus ‖∇ f ‖2 = 0 (equivalently the level hypersur-
faces of the potential function are degenerate submanifolds of T ∗6), which shows
that the soliton is isotropic. �

Remark 4.4. The potential functions of the gradient Ricci solitons in Theorem 4.3
are of the form f = h ◦π for some h ∈ C∞(6). Next we show that this is indeed
the case if the Ricci tensor of (6, D) is nonsymmetric.

Let (T ∗6, gD,8,T , f ) be a gradient Ricci soliton with potential function f ∈
C∞(T ∗6). Take local coordinates (x1, x2, x1′, x2′) on T ∗6 as in the proof of
Theorem 4.3. Since Hes f (∂i ′, ∂ j ′) = ∂i ′ j ′ f (x1, x2, x1′, x2′), it follows from the
expression of the Ricci tensor in Theorem 4.1 and the metric tensor (5), that the
potential function is determined by f = ιX +h ◦π , for some h ∈ C∞(6) and some
vector field X on 6, where ιX is the evaluation map acting on X.

Further set X= A(x1, x2)∂1+B(x1, x2)∂2 in the local coordinates (x1, x2) above,
for some A, B ∈ C∞(6). Then Hes f (∂2, ∂1′)= ∂2 A(x1, x2), from where it follows
that X = A(x1)∂1 + B(x1, x2)∂2. Considering the component Hes f (∂2, ∂2′) =

−A′′(x1)+ ∂2 B(x1, x2), one has that X = A(x1)∂1 + (P(x1)+ x2 A′(x1))∂2 for
some smooth function P(x1). Next the component

Hes f (∂1, ∂2′)= A(x1) D02
11− x2′ A(x1)

+
D01

11
(
P(x1)+ x2 A′(x1)

)
+ P ′(x1)+ x2 A′′(x1)

shows that A= 0 and it reduces to Hes f (∂1, ∂2′)= P ′(x1)+P(x1) D01
11. A solution

P(x1) of the equation P ′(x1)+ P(x1) D01
11 = 0 either vanishes identically (and
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hence X = 0) or it is nowhere zero, in which case ∂2
D01

11 = 0 (see the proof
of Theorem 6.1). In the latter case Proposition 3.3 shows that the Ricci tensor
of (6, D) is symmetric and thus recurrent of rank one. Therefore Theorem 4.3
describes all possible gradient Ricci solitons on (T ∗6, gD,8,T ) whenever ρD

sk is
nonzero.

Remark 4.5. The tensor field Di jk =Ci jk+Wi jk`∇` f introduced in [Cao and Chen
2013] plays an essential role in analyzing the geometry of Bach-flat gradient Ricci
solitons. Local conformal flatness in [Cao et al. 2014; Cao and Chen 2013] follows
from D= 0, which is obtained under some natural assumptions.

Gradient Ricci solitons in Theorem 4.3 satisfy ∇ f = h′(x1)∂1′ . Then, a straight-
forward calculation shows that D is completely determined by

D121 =−2h′(x1)∂2
D01

11(x
1, x2),

the other components being zero. Hence it follows from the proof of Proposition 3.3
that the tensor field D vanishes if and only if the Ricci tensor ρD is symmetric.
However Theorem 5.1 shows that (T ∗6, gD,8,T ) is never locally conformally flat.

5. Half conformally flat nilpotent Riemannian extensions

The existence of a null distribution D on a four-dimensional manifold (M, g) of
neutral signature defines a natural orientation on M : the one which, for any basis
u, v of D, makes the bivector u ∧ v self-dual (see [Derdzinski 2008]). We consider
on T ∗6 the orientation which agrees with D = kerπ∗, and thus self-duality and
anti-self-duality are not interchangeable. The following result shows that they are
essentially different for nilpotent Riemannian extensions.

Theorem 5.1. Let (6, D, T ) be an affine surface equipped with a parallel nilpotent
(1, 1)-tensor field T. Then

(i) (T ∗6, gD,8,T ) is never self-dual for any deformation tensor field 8.

(ii) If (T ∗6, gD,8,T ) is anti-self-dual, then D is either a flat connection or (6, D)
is recurrent with symmetric Ricci tensor of rank one.

In the later case there exist local coordinates (u1, u2)where the only nonzero
Christoffel symbol is u02

11 and the tensor field T is given by T ∂u1 = ∂u2 ,
T ∂u2 = 0. Moreover, (T ∗6, gD,8,T ) is anti-self-dual if and only if the sym-
metric (0, 2)-tensor field 8 satisfies the equations

(14)

D̂8=−2ω̂⊗ ρD,

0= 1
28̂⊗ 8̂(∂1, ∂1, ∂1, ∂1)+ 2(8̂⊗ ρD)(∂1, ∂1, ∂1, ∂1)

+ D28(∂1, ∂1; T ∂1, T ∂1)+ D28(T ∂1, T ∂1; ∂1, ∂1)

− 2 D28(∂1, T ∂1; T ∂1, ∂1),
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where
D̂8(X, Y, Z)= D8(T X, T Y ; T Z),

ω is the recurrence one-form given by DρD
= ω⊗ ρD, and ω̂(X) = ω(T X).

Proof. A direct computation using the expression of the anti-self-dual curvature
operator of any four-dimensional Walker metric obtained in [Díaz-Ramos et al. 2006]
shows that, for any nilpotent Riemannian extension gD,8,T , W− takes the form

(15) W− =
1
2

−1 0 1
0 0 0
−1 0 1

,
thus showing that the anti-self-dual Weyl curvature operator W− is nilpotent and
hence (T ∗6, gD,8,T ) is never self-dual, which proves (i).

Next we show (ii). Let (M, g) be a four-dimensional Walker metric (3) and set
the metric components g11 = a, g12 = c and g22 = b, where gi j are functions of the
Walker coordinates (x1, x2, x1′, x2′). Then the self-dual Weyl curvature operator
takes the form (see [Díaz-Ramos et al. 2006])

(16) W+ =


W+11 W+12 W+11+

τ
12

−W+12
τ
6 −W+12

−W+11−
τ
12 −W+12 −W+11−

τ
6

,
where

(17) W+11 =
1

12

(
6ca1b2− 6a1b1′ − 6ba1c2+ 12a1c2′ − 6ca2b1+ 6a2b2′

+ 6ba2c1+ 6a1′b1− 6a2′b2− 12a2′c1+ 6ab1c2− 6ab2c1

+ 12b2c1′ − 12b1′c2− a11− 12c2a11− 12bca12+ 24ca12′

− 3b2a22+ 12ba22′ − 12a2′2′ − 3a2b11+ 12ab11′ − b22

− 12b1′1′ + 12acc11− 2c12+ 6abc12− 24cc11′ − 12ac12′

− 12bc21′ + 24c1′2′
)
,

and

(18) W+12 =
1
4

(
−2ca11− ba12+ 2a12′ + ab12− 2b21′ + ac11− 2cc12

−2c11′ − bc22+ 2c22′
)
.

Since any anti-self-dual metric is Bach-flat, we proceed as in the proof of
Theorem 3.1 considering local coordinates (x1, x2) on the surface 6 such that
T is determined by T ∂1 = ∂2 and T ∂2 = 0. Since T is parallel, the Christoffel
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symbols must satisfy (10), i.e.,

D01
12 = 0, D02

12 =
D01

11,
D01

22 = 0, D02
22 = 0.

Next, we analyze the self-dual Weyl curvature operator, which is completely deter-
mined by the scalar curvature and its components W+11 and W+12 already described
in equations (17) and (18). The scalar curvature is zero by Theorem 4.1, and
W+12 = −2∂2

D01
11, from where it follows that the Ricci tensor ρD is symmetric

of rank one and recurrent (see Remark 3.4). Take local coordinates (u1, u2) as in
Remark 3.4 so that the only nonzero Christoffel symbol is u02

11 and T ∂u1 = ∂u2 ,
T ∂u2 = 0. Finally, we compute the component W+11 given by (17) in the coordinates
(u1, u2, u1′, u2′) of T ∗6, obtaining

W+11 = (∂2822+ 2∂22
u02

11) u2′ −
1
2(822)

2
− 2822∂2

u02
11− ∂2822

u02
11

+2∂12812− ∂22811− ∂11822.

Thus (T ∗6, gD,8,T ) is anti-self-dual if and only if

∂2822+ 2∂22
u02

11 = 0,
1
2(822)

2
+ 2822∂2

u02
11+ ∂2822

u02
11 = 2∂12812− ∂22811− ∂11822,

from where (14) follows. �

Anti-self-dual gradient Ricci solitons. Self-dual gradient Ricci solitons which are
not locally conformally flat are described in Theorem 2.2. In contrast, no explicit
examples of strictly anti-self-dual gradient Ricci solitons were previously reported.
In this section we use nilpotent Riemannian extensions to construct anti-self-dual
isotropic gradient Ricci solitons. In this case, Theorem 5.1 shows that (6, D) must
have symmetric Ricci tensor.

Proposition 5.2. Let (6, D, T,8) be an affine surface with symmetric Ricci tensor
equipped with a parallel nilpotent (1, 1)-tensor field T and a parallel symmetric
(0, 2)-tensor field 8. Then (T ∗6, gD,8,T ) is anti-self-dual if and only if ω̂= 0 and
8̂= 0, where ω is the recurrence one-form given by (12).

Proof. If the Ricci tensor ρD is symmetric of rank one and 8 is parallel, then the
equations in Theorem 5.1 reduce to ω̂ = 0 and 8̂ = 0, which proves the result.
If (6, D) is a flat surface then a straightforward calculation shows that anti-self-
duality is equivalent to 8̂= 0, being 8 a parallel tensor. �

Since the deformation tensor 8 of any gradient Ricci soliton in Theorem 4.3
must satisfy 8̂=−HesD

h −2ρD
sym, the condition 8̂= 0 in the previous proposition

restricts the consideration of Ricci solitons on (T ∗6, gD,8,T ) to those originated
by affine gradient Ricci solitons on (6, D).
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Proposition 5.3. Let (6, D, T ) be an affine surface equipped with a parallel nilpo-
tent (1, 1)-tensor field T and let h ∈ C∞(6). Then:

(i) (6, D, T, h) is an affine gradient Ricci soliton with dh(ker T )= 0 if and only
if (T ∗6, gD,8̂,T , f = h ◦ π) is a Bach-flat steady gradient Ricci soliton for
any symmetric (0, 2)-tensor field 8.

(ii) (6, D, T, h) is a nonflat affine gradient Ricci soliton with dh(ker T ) = 0 if
and only if the recurrence one-form η in (11) satisfies η̂ = 0.

Proof. Since T is nilpotent, 8̂(T X, T Y )= 0 for any (0, 2)-tensor field 8. Hence
(13) shows that (T ∗6, gD,8̂,T , f = h ◦π) is a gradient Ricci soliton if and only if
(6, D, T, h) is an affine gradient Ricci soliton with dh(ker T )= 0, which shows (i).

Next take local coordinates (x1, x2) on 6 so that T ∂1 = ∂2, T ∂2 = 0. Since
the Christoffel symbols D0k

i j are given by (10), using the expression of ρD
sym

in Proposition 3.3, one has (HesD
h +2ρD

sym)(∂2, ∂2)= ∂22h. Thus h(x1, x2) =

x2 P(x1)+Q(x1) for some P, Q ∈ C∞(6). Hence dh(ker T )= 0 holds if and only
if P = 0. Since h(x1, x2)= Q(x1), one has that (HesD

h +2ρD
sym)(∂1, ∂2)= 0, and

the only remaining equation is

0= (HesD
h +2ρD

sym)(∂1, ∂1)= Q′′+ 2
(
∂2

D02
11− ∂1

D01
11
)
= Q′′+ 2ρD(∂1, ∂1).

Therefore, the integrability condition becomes ∂2ρ
D(∂1, ∂1)= 0. Hence, it follows

from (11) that (6, D, T, h) is an affine gradient Ricci soliton with dh(ker T )= 0 if
and only if the symmetric part of the Ricci tensor ρD

sym is recurrent with recurrence
one-form η satisfying η(ker T )= 0. Assertion (ii) now follows. �

A direct application of the previous propositions gives the desired examples.

Theorem 5.4. Let (6, D, T,8) be an affine surface with symmetric Ricci tensor
equipped with a parallel nilpotent (1, 1)-tensor field T and a parallel symmetric
(0, 2)-tensor field 8.

(i) (6, D, h) is an affine gradient Ricci soliton with dh(ker T ) = 0 if and only
if (T ∗6, gD,8̂,T , f = h ◦π) is an anti-self-dual steady gradient Ricci soliton
which is not locally conformally flat.

(ii) (6, D, h) is an affine gradient Ricci soliton with dh(ker T )= 0 if and only if
there exist local coordinates (u1, u2) on 6 so that the only nonzero Christoffel
symbol is given by u02

11 = P(u1)+ u2 Q(u1) and the potential function h(u1)

is determined by h′′(u1)=−2Q(u1), for any P, Q ∈ C∞(6).

Proof. (T ∗6, gD,8̂,T , f = h ◦π) is a gradient Ricci soliton by Proposition 5.3(i).
Anti-self-duality now follows from Proposition 5.2 and Proposition 5.3(ii), showing
assertion (i).

Assertion (ii) follows from Proposition 5.3(ii) and the expression of the recur-
rence form ω in (12). Take local coordinates (u1, u2) on 6 as in the proof of
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Proposition 5.3(ii). Then it follows from (12) that ω̂ = 0 if and only if ∂22
u02

11 = 0.
Thus,

u02
11(u

1, u2)= P(u1)+ u2 Q(u1),

for some P, Q ∈ C∞(6) and h′′(u1)=−2Q(u1). �

6. Conformally Einstein nilpotent Riemannian extensions

A pseudo-Riemannian manifold (Mn, g) is said to be (locally) conformally Einstein
if every point p ∈ M has an open neighborhood U and a positive smooth function ϕ
defined on U such that (U, g = ϕ−2g) is Einstein. Brinkmann [1924] showed that a
manifold is conformally Einstein if and only if the equation

(19) (n− 2)Hesϕ +ϕ ρ− 1
n {(n− 2)1ϕ+ϕ τ }g = 0

has a positive solution. Despite its apparent simplicity, the integration of the
conformally Einstein equation is surprisingly difficult (see [Kühnel and Rademacher
2008] for more information). It was shown in [Gover and Nagy 2007; Kozameh
et al. 1985] that any four-dimensional conformally Einstein manifold satisfies

(20) (i) C+W ( · , · , · ,∇σ)= 0, (ii) B= 0,

where the conformal metric is given by g = e2σ g.
Conditions (i) and (ii) above are also sufficient to be conformally Einstein if

(M, g) is weakly-generic (i.e., the Weyl tensor viewed as a map T M→
⊗3 T M

is injective). Since nilpotent Riemannian extensions are not weakly generic (see
the expression of W− in the proof of Theorem 5.1), we will analyze the confor-
mally Einstein equation (19), seeking solutions on nilpotent Riemannian extensions
(T ∗6, gD,8,T ).

Theorem 6.1. Let (6, D, T ) be a torsion-free affine surface equipped with a par-
allel nilpotent (1, 1)-tensor field T. Then any solution of (19) is of the form
ϕ = ιX +φ ◦π for some vector field X on 6 such that X ∈ ker T and tr(DX)= 0.

Moreover (T ∗6, gD,8,T ) is conformally Einstein if and only if one of the fol-
lowing holds:

(i) The conformally Einstein equation (19) admits a solution ϕ = φ ◦π for some
φ ∈C∞(6) with dφ(ker T )= 0, and the deformation tensor8 is determined by

φ 8̂+ 2(HesD
φ +φ ρ

D
sym)= 0.

(ii) The conformally Einstein equation (19) admits a solution ϕ = ιX +φ ◦π for
some φ ∈ C∞(6) and some nonzero vector field X on 6 such that X ∈ ker T
and tr(DX)= 0.
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In this case, the Ricci tensor ρD is symmetric of rank one and recurrent.
Moreover, there are local coordinates (u1, u2) on 6 so that

ϕ(u1, u2, u1′, u2′)= κu2′ +φ(u1, u2)

is a solution of (19) if and only if

dφ(T ∂1)=
κ
28(T ∂1, T ∂1),

HesD
φ (∂1, ∂1)+φ ρ

D(∂1, ∂1)=−
1
2

(
φ+ 2κ u02

11
)
8(T ∂1, T ∂1)

+
κ
2

{
2(D∂18)(T ∂1, ∂1)− (DT ∂18)(∂1, ∂1)

}
.

Proof. Let (x1, x2) be local coordinates on 6 so that T ∂1 = ∂2, T ∂2 = 0, and
consider the induced coordinates (x1, x2, x1′, x2′) on T ∗6. Since T is parallel, we
obtain directly from (7) that

D01
12 = 0, D02

12 =
D01

11,
D01

22 = 0, D02
22 = 0.

In order to analyze the conformally Einstein equation (19), consider the symmetric
(0, 2)-tensor field

E = 2 Hesϕ +ϕ ρ− 1
4{21ϕ+ϕ τ }g

and set E = 0. Let Ei j = E(∂i , ∂ j ) and let ϕ ∈ C∞(T ∗6) be a solution of (19). Then
one computes

E33 = 2∂1′1′ϕ, E34 = 2∂1′2′ϕ, E44 = 2∂2′2′ϕ,

to show that any solution of (19) must be of the form

(21) ϕ(x1, x2, x1′, x2′)= A(x1, x2)x1′ + B(x1, x2)x2′ +ψ(x1, x2),

for some smooth functions A, B and ψ depending only on the coordinates (x1, x2).
This shows that any solution of the conformally Einstein equation on (T ∗6, gD,8,T )

is of the form
ϕ = ιX +ψ ◦π,

where ιX is the evaluation of a vector field X = A∂1+ B∂2 on 6, ψ ∈ C∞(6) and
π : T ∗6→6 is the projection.

Now, the conformally Einstein condition given in (19) can be expressed in matrix
form as follows:

(22) (Ei j )=


E11 E12 ∂1 A− ∂2 B 2

(
D02

11 A+ D01
11 B+ ∂1 B− Ax2′

)
∗ E22 2∂2 A −∂1 A+ ∂2 B
∗ ∗ 0 0
∗ ∗ ∗ 0


where positions with ∗ are not written since the matrix is symmetric, and where
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E11 =−
(
∂1 A− ∂2 B− 4 D01

11 A
)
x2

2′

+
{

A822+ 2
(
∂11 A− D02

11∂2 A+ D01
11∂2 B+ A∂2

D02
11− B∂2

D01
11
)}

x1′

−
{

B822+ 2A812− 2
(
∂11 B+ D02

11∂1 A− D01
11∂1 B

+
(
∂1

D02
11− 2 D01

11
D02

11
)

A+
(
∂1

D01
11− 2

(D01
11
)2)B+ ∂2ψ

)}
x2′

+ 2∂2 Ax1′x2′

− (∂1 A+ ∂2 B)811+ 2
(D02

11 A+ D01
11 B

)
812+

(
2 D02

11 B+ψ
)
822

− A∂1811+ B∂2811− 2B∂1812

+ 2∂11ψ − 2 D01
11∂1ψ − 2 D02

11∂2ψ − 2(∂1
D01

11− ∂2
D02

11)ψ,

E12 = 2
(
∂12 A− D01

11∂2 A+ A∂2
D01

11
)
x1′

+ 2
(
∂12 B+ D01

11∂1 A+ A∂2
D02

11
)
x2′

− (∂1 A+ ∂2 B)812+ 2 D01
11 B822− A∂2811− B∂1822

+ 2∂12ψ − 2 D01
11∂2ψ,

E22 = 2∂22 Ax1′ + 2
(
∂22 B+ 2A∂2

D01
11
)
x2′

−
(
∂1 A+ ∂2 B+ 2 D01

11 A
)
822− 2A∂2812+ A∂1822− B∂2822+ 2∂22ψ.

First, we use component

E14 = 2
(D02

11 A+ D01
11 B+ ∂1 B− Ax2′

)
in (22); note that ∂2′E14 =−2A, and so A(x1, x2)= 0, which shows that X ∈ ker T.
Now component E13 in (22) gives ∂2 B = 0, which implies B(x1, x2)= P(x1) for
some smooth function P depending only on the coordinate x1, i.e., the vector field
X = B∂2 satisfies tr(DX)= 0.

At this point, the conformal function ϕ has the coordinate expression

ϕ(x1, x2, x1′, x2′)= P(x1)x2′ +ψ(x1, x2)

and the possible nonzero components in (22) are E11, E12, E22 and E14. Considering
the component E14 = 2(P ′(x1)+ D01

11(x
1, x2)P(x1)), we distinguish two cases

depending on whether the function P vanishes identically or not. Indeed, if P(x1)

is a solution of the equation E14 = 0, then

∂1
(
P(x1)e

∫ D01
11(x

1,x2) dx1)
= e

∫ D01
11(x

1,x2) dx1{
P ′(x1)+ P(x1)D01

11(x
1, x2)

}
= 0,

which shows that P(x1)e
∫ D01

11(x
1,x2) dx1

=Q(x2) for some smooth function Q(x2).
Now, if the function Q(x2) vanishes at some point, then P(x1)= 0 at each point.
Otherwise, if Q(x2) is not equal to 0 at each point, neither is P(x1).
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First, suppose that P(x1) ≡ 0, and hence ϕ = ψ ◦ π . In this case, component
E22 in (22) yields ∂22ψ = 0, which implies ψ(x1, x2)= Q(x1)x2

+φ(x1) for some
smooth functions Q and φ depending only on the coordinate x1. Now, the only
components in (22) which could be non-null are

E11 = 2Qx2′ +
(
Q822+ 2Q′′− 2 D01

11 Q′− 2
(
∂1

D01
11− ∂2

D02
11
)
Q
)
x2

+φ822+ 2φ′′− 2 D01
11φ
′
− 2

(
∂1

D01
11− ∂2

D02
11
)
φ− 2 D02

11 Q,

E12 = 2
(
Q′− D01

11 Q
)
.

Now, ∂2′E11 = 2Q implies Q = 0, thus showing that dϕ(ker T )= 0. Then E12 = 0
and the component E11 reduces to

E11 = φ822+ 2φ′′− 2 D01
11φ
′
− 2

(
∂1

D01
11− ∂2

D02
11
)
φ.

Since ϕ(x1, x2, x1′, x2′)= φ(x1), φ must be non-null and we obtain that E11 = 0
is equivalent to

822 =−
2
φ

{
φ′′− D01

11φ
′
−
(
∂1

D01
11− ∂2

D02
11
)
φ
}
,

=−
2
φ

{
HesD

φ (∂1, ∂1)+φ ρ
D
sym(∂1, ∂1)

}
,

from where (i) is obtained.
Finally, we analyze the case in which the function P(x1) does not vanish identi-

cally. Since E14 = 2(P ′(x1)+ D01
11(x

1, x2)P(x1)), we have ∂2
D01

11 = 0. Now it
follows from Remark 3.4 that the Ricci tensor ρD is symmetric of rank one and
recurrent. Specialize the local coordinates (u1, u2) on 6 so that the only nonzero
Christoffel symbol of D is u02

11(u
1, u2) and T ∂u1 = ∂u2 , T ∂u2 = 0. Then any

solution of the conformally Einstein equation takes the form

ϕ(u1, u2, u1′, u2′)=A(u1)u2′ +φ(u1, u2).

Now, considering the component E41 of the conformally Einstein equation in the new
coordinates (u1, u2), one has E41= 2A′(u1), which shows that ϕ(u1, u2, u1′, u2′)=

κu2′ +φ(u1, u2) for some κ 6= 0. Considering now the component

E11 = (2∂2φ− κ822)u2′ + 2∂11φ− 2∂2φ
u02

11

+2φ∂2
u02

11+φ822+ 2κ822
u02

11+ κ∂2811− 2κ∂1812

it follows that the conformally Einstein equation reduces to

κ822 = 2∂2φ,

(φ+ 2κ u02
11)822 =−2

(
HesD

φ (∂u1, ∂u1)+φρD(∂u1, ∂u1)
)
+ κ(2∂1812− ∂2811),

from where (ii) is obtained. �
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7. Examples

Nilpotent Riemannian extensions with flat base. Let (6, D) be a flat torsion-free
affine surface. Take local coordinates on 6 so that all Christoffel symbols vanish.
Let T be a parallel nilpotent (1, 1)-tensor field. Since T is parallel, its components
T j

i are necessarily constant on the given coordinates. Hence one may further
specialize the local coordinates (x1, x2), by using a linear transformation, so that
T ∂1=∂2, T ∂2=0 and all the Christoffel symbols D0k

i j remain identically zero. Now
Theorem 3.1 shows that (T ∗6, gD,8,T ) is Bach-flat for any symmetric (0, 2)-tensor
field8 on6. Moreover it follows from Theorem 4.3 that (T ∗6, gD,8,T , f = h ◦π)
is a steady gradient Ricci soliton for any h ∈ C∞(6) with dh ◦ T = 0 and any
symmetric (0, 2)-tensor field 8 such that 822(x1, x2)=−h′′(x1).

Further note from Remark 4.5 that the steady gradient Ricci soliton

(T ∗6, gD,8,T , f = h ◦π)

satisfies D= 0. Moreover, since 822 =−h′′(x1), one has that (T ∗6, gD,8,T ) is in
the conformal class of an Einstein metric (just considering the conformal metric
g = φ−2gD,8,T determined by the equation φ′′(x1)− 1

2φ(x
1)h′′(x1)= 0).

Remark 7.1. Set 6 = R2 with usual coordinates (x1, x2) and put T ∂1 = ∂2,
T ∂2 = 0. For any smooth function h(x1) consider the deformation tensor 8 given
by 822(x1, x2)=−h′′(x1) (the other components being zero). Then, the nonzero
Christoffel symbols of gD,8,T are given by

02
11 =−x2′ =−0

1′
12′, 02′

11 =−h′′(x1)x2′, 02′
12 =−

1
2 h(3)(x1)=−01′

22.

Hence a curve γ (t)= (x1(t), x2(t), x1′(t), x2′(t)) is a geodesic if and only if

ẍ1(t)= 0, ẍ2(t)− x2′(t) ẋ1(t)2 = 0,

ẍ1′(t)+ 2 x2′(t) ẋ1(t)ẋ2′(t)+ 1
2 h(3)(x1(t)) ẋ2(t)2 = 0,

ẍ2′(t)− h′′(x1(t)) x2′(t) ẋ1(t)2− h(3)(x1(t)) ẋ1(t) ẋ2(t)= 0.

Thus x1(t)= at + b for some a, b ∈ R and

ẍ2(t)− a2 x2′(t)= 0,

ẍ2′(t)− h′′(at + b) a2 x2′(t)− h(3)(at + b) a ẋ2(t)= 0,

ẍ1′(t)+ 2a x2′(t) ẋ2′(t)+ 1
2 h(3)(at + b) ẋ2(t)2 = 0.

Now the first two equations above are linear and thus x2(t) and x2′(t) are globally
defined. Finally, since ẍ1′(t)+ 2a x2′(t) ẋ2′(t)+ 1

2 h(3)(at + b) ẋ2(t)2 = 0 is also
linear on x1′(t), one has that geodesics are globally defined.



BACH-FLAT ISOTROPIC GRADIENT RICCI SOLITONS 97

Then it follows from Theorem 4.3 that (T ∗R2, gD,8,T , f = h ◦π) is a geodesi-
cally complete steady gradient Ricci soliton, which is conformally Einstein by
Theorem 6.1.

Nilpotent Riemannian extensions with nonrecurrent base. Let (T ∗6, gD,8,T ,

f = h ◦π) be a nontrivial Bach-flat steady gradient Ricci soliton as in Theorem 4.3.
Further assume that the Ricci tensor ρD is nonsymmetric, i.e., ρD

sk 6= 0 (equivalently
∂2

D01
11 6= 0 as shown in the proof of Proposition 3.3). Then it follows from

Theorem 5.1 that (T ∗6, gD,8,T ) is not half conformally flat.
Theorem 6.1 shows that (T ∗6, gD,8,T ) is conformally Einstein if and only if

there exists a positive φ ∈ C∞(6) with dφ ◦ T = 0 such that

φ 8̂+ 2(HesD
φ +φ ρ

D
sym)= 0.

Hence it follows from Theorem 4.3 that HesD
h =

2
φ

HesD
φ , which means(

2φ
′

φ
− h′

)
D01

11 = 2φ
′′

φ
− h′′.

Taking derivatives with respect to x2 and, since ∂2
D01

11 6= 0, the equation above
splits into

2
φ′

φ
− h′ = 0, and 2

φ′′

φ
− h′′ = 0,

which only admits constant solutions. Summarizing the above one has the following:
Let (6, D, T ) be an affine surface with nonsymmetric Ricci tensor (i.e., ρD

sk 6= 0).
Then any Bach-flat gradient Ricci soliton (T ∗6, gD,8,T , f = h ◦π) is neither half
conformally flat nor conformally Einstein.

Acknowledgements. It is a pleasure to acknowledge useful conversations on this
subject with Professor P. Gilkey.

This research was partially supported by projects MTM2013-41335-P, MTM2016-
75897-P and EM2014/009 (AEI/FEDER, UE).

References

[Abbena et al. 2013] E. Abbena, S. Garbiero, and S. Salamon, “Bach-flat Lie groups in dimension 4”,
C. R. Math. Acad. Sci. Paris 351:7-8 (2013), 303–306. MR Zbl

[Bach 1921] R. Bach, “Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des
Krümmungstensorbegriffs”, Math. Z. 9:1-2 (1921), 110–135. MR Zbl

[Bakas et al. 2010] I. Bakas, F. Bourliot, D. Lüst, and M. Petropoulos, “Geometric flows in Hořava–
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CONTACT STATIONARY LEGENDRIAN SURFACES IN S5

YONG LUO

Let (M5, α, gα, J) be a 5-dimensional Sasakian Einstein manifold with con-
tact 1-form α, associated metric gα and almost complex structure J , and let
L be a contact stationary Legendrian surface in M5. We will prove that L
satisfies the equation

−1νH + (K − 1)H = 0,

where1ν is the normal Laplacian with respect to the metric g on L induced
from gα and K is the Gauss curvature of (L, g).

Using this equation and a new Simons’ type inequality for Legendrian
surfaces in the standard unit sphere S5, we prove an integral inequality for
contact stationary Legendrian surfaces in S5. In particular, we prove that
if L is a contact stationary Legendrian surface in S5 and B is the second
fundamental form of L, with S= |B|2, ρ2 = S− 2H2 and

0≤ S ≤ 2,

then we have either ρ2 = 0 and L is totally umbilic or ρ2 6= 0, S = 2, H = 0
and L is a flat minimal Legendrian torus.

1. Introduction

Let (M2n+1, α, gα, J ) be a 2n+1 dimensional contact metric manifold with contact
structure α, associated metric gα and almost complex structure J . Assume that
(L , g) is an n-dimensional compact Legendrian submanifold of M2n+1 with metric
g induced from gα. The volume of L is defined by

(1-1) V (L)=
∫

L
dµ,

where dµ is the volume form of g. A contact stationary Legendrian submanifold
of M2n+1 is a Legendrian submanifold of M2n+1 which is a stationary point of V
with respect to Legendrian deformations. That is we call a Legendrian submanifold

MSC2010: 53B25, 53C42.
Keywords: volume functional, Simons inequality, gap theorem.
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L ⊆ M2n+1 a contact stationary Legendrian submanifold, if for any Legendrian
deformations L t ⊆ M2n+1 with L0 = L we have

dV (L t)

dt

∣∣∣∣
t=0
= 0.

Remark 1.1. L t is a Legendrian deformation of L := L0, if L t is a Legendrian
submanifold for every t .

The E–L equation for a contact stationary Legendrian submanifold L is [Iriyeh
2005; Castro et al. 2006]

(1-2) divg(JH)= 0,

where divg is the divergence with respect to g and H is the mean curvature vector
of L in M2n+1.

Remark 1.2. The notion of a contact stationary Legendrian submanifold was first
defined by Iriyeh [2005] and Castro et al. [2006] independently, where they used
the name of Legendrian minimal Legendrian submanifold and contact minimal
Legendrian submanifold, respectively. In this paper we prefer to use the name of
contact stationary Legendrian submanifold.

The study of contact stationary Legendrian submanifolds is motivated by the
study of Hamiltonian minimal Lagrangian (briefly, HSL) submanifolds, which was
first studied by Oh [1990; 1993]. An HSL submanifold in a Kähler manifold is a
Lagrangian submanifold which is a stationary point of the Volume functional under
Hamiltonian deformations. By [Reckziegel 1988], Legendrian submanifolds in a
Sasakian manifold M2n+1 can be seem as links of Lagrangian submanifolds in the
cone CM2n+1, which is a Kähler manifold with proper metric and complex structure
(see Section 2). In fact, a close relation between contact stationary Legendrian
submanifolds and HSL submanifolds was found by Iriyeh [2005] and Castro et al.
[2006]. Precisely, they independently proved that C(L) is an HSL submanifold in
Cn(n ≥ 2) if and only if L is a contact stationary Legendrian submanifold in S2n−1

and L is a contact stationary Legendrian submanifold in S2n+1(n ≥ 1) if and only if
5(L) is an HSL submanifold in CPn , where5 :S2n+1

→CPn is the Hopf fibration.
From the definition we see that minimal Legendrian submanifolds are a special

kind of contact stationary Legendrian submanifold. Another special kind of contact
stationary Legendrian submanifold are Legendrian submanifolds with parallel mean
curvature vector fields in the normal bundle. The study of (nonminimal) contact
stationary Legendrian submanifolds of S2n+1 is relatively recent endeavor. For
n = 1, by [Iriyeh 2005], contact stationary Legendrian curves in S3 are the so
called (p, q) curves discovered by Schoen and Wolfson [2001], where p and q are
relatively prime integers. For n = 2, since a harmonic 1-forms on a 2-sphere must
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be trivial, contact stationary Legendrian 2-spheres in S5 must be minimal and so
must be the equatorial 2-spheres by Yau’s result [1974]. There are a lot of contact
stationary doubly periodic surfaces form R2 to S5 by lifting Hélein and Romon’s
examples [2002] and more contact stationary Legendrian surfaces (mainly tori) are
constructed in [Mironov 2003; 2008; Iriyeh 2005; Hélein and Romon 2005; Ma
2005; Ma and Schmies 2006; Butscher and Corvino 2012]. And general dimension
examples are constructed in [Oh 1993; Mironov 2004; Dong and Han 2007; Dong
2007; Butscher 2009; Joyce et al. 2011; Lee 2012; Chen et al. 2012]. See also
[Ono 2005; Hunter and McIntosh 2011; Kajigaya 2013] for other studies of contact
stationary Legendrian submanifolds.

In this paper we will study pinching properties of contact stationary Legendrian
surfaces in S5. To do this we first prove an equation satisfied by contact stationary
Legendrian surfaces in a Sasakian Einstein manifold, which we hope will be useful
in analyzing analytic properties of contact stationary Legendrian surfaces.

Theorem 1.3. Let L be a contact stationary Legendrian surface in a 5-dimensional
Sasakian Einstein manifold (M5, α, gα, J ), then L satisfies the following equation:

(1-3) −1νH + (K − 1)H = 0,

where 1ν is the normal Laplacian with respect to the metric g on L induced from
gα and K is the Gauss curvature of (L , g).

We recall that the well-known Clifford torus is

(1-4) TClif = S1
( 1
√

2

)
×S1

( 1
√

2

)
⊆ S5.

In the theory of minimal surfaces, the following Simons’ integral inequality and
pinching theorem due to Simons [1968], Lawson [1969] and Chern et al. [1970]
are well known.

Theorem 1.4. Let M be a compact minimal surface in a unit sphere S3 and B be
the second fundamental form of M in S3. Set S = |B|2, then we have∫

M
S(2− S) dµ≤ 0.

In particular, if
0≤ S ≤ 2,

then either S = 0 and M is totally geodesic, or S = 2 and M is the Clifford torus
TClif, which is defined by (1-4).

The above integral inequality was proved by Simons [1968] in his celebrated
paper and the classification result was given by Chern et al. [1970] and Lawson
[1969], independently.
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For minimal surfaces in a sphere with higher codimension, a corresponding
integral inequality was proved by Benko et al. [1979] and Kozlowski and Simon
[1984]. In order to state their result, we first record an example.

Example. The Veronese surface is a minimal surface in S4
⊆ R5 defined by

u : S2(
√

3)⊆ R3
→ S4(1)⊆ R5

(x, y, z) 7→ (u1, u2, u3, u4, u5)

where

u1 =
yz
√

3
, u2 =

xz
√

3
, u3 =

xy
√

3
, u4 =

x2
− y2

2
√

3
, u5 =

x2
+ y2
− 2z2

6
.

Here, u defines an isometric immersion of S2(
√

3) into S4(1), and it maps two
points (x, y, z) and (−x,−y,−z) of S2(

√
3) into the same point of S4(1), and so

it imbeds the real projective plane into S4(1).

We have

Theorem 1.5 [Benko et al. 1979]. Let M be a minimal surface in an n-dimensional
sphere Sn , then

(1-5)
∫

M
S
(
2− 3

2 S
)

dµ≤ 0.

In particular, if
0≤ S ≤ 4

3 ,

then either S = 0 and M is totally geodesic, or S = 4
3 , n = 4 and M is the Veronese

surface.

The above classification for minimal surfaces in a sphere with S = 4
3 was also

shown by Chern et al. [1970].
We see that the (first) pinching constant for minimal surfaces in S3 is 2, but it

is 4
3 for minimal surfaces of higher codimension. This is an interesting phenomenon

and we think it is due to the complexity of the normal bundle, because for minimal
Legendrian surfaces in S5, the (first) pinching constant is also 2.

Theorem 1.6 [Yamaguchi et al. 1976]. If M is a minimal Legendrian surface of the
unit sphere S5 and 0≤ S ≤ 2, then S is identically 0 or 2.

Remark 1.7. For higher dimensional case of this theorem we refer to [Dillen and
Vrancken 1990].

All of these results are based on calculating the Laplacian of S and then getting
Simons’ type equalities or inequalities, a powerful method which was originated by
Simons [1968]. The minimal condition is used to cancel some terms in the resulting
calculation and to some extent it is important. In this note we prove a Simons’ type
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inequality (Lemma 3.8) for Legendrian surfaces in S5, without minimal condition.
By using (1-3) and this Simons’ type inequality we get

Theorem 1.8. Let L :6→ S5 be a contact stationary Legendrian surface, where
S5 is the unit sphere with standard contact structure and metric (as given at the end
of Section 2). Then we have∫

L
ρ2(3− 3

2 S+ 2H 2) dµ≤ 0,

where ρ2
:= S− 2H 2. In particular, if

0≤ S ≤ 2,

then either ρ2
= 0 and L is totally umbilic, or ρ2

6= 0, S = 2, H = 0 and L is a flat
minimal Legendrian torus.

Remark 1.9. Because minimal Legendrian surfaces are contact stationary Legen-
drian surfaces and satisfy ρ2

= S, and because totally umbilic minimal surfaces are
totally geodesic, we see that Theorem 1.6 is a corollary of Theorem 1.8.

Integral inequality and gap phenomenon for submanifolds satisfying a fourth
order quasielliptic nonlinear equation was first studied by Li [2001; 2002a; 2002b]
who proved several gap theorems for Willmore submanifolds in a sphere. These
results are partial motivations of our paper.

We end this introduction by recalling a classification theorem of flat minimal
Legendrian tori in S5. For a constant θ let Tθ be the 2-torus in S5 defined by

Tθ =
{
(z1, z2, z3) ∈ C3

: |zi | =
1
3 , i = 1, 2, 3 and

∑
i

arg zi = θ
}
.

Tθ is called the generalized Clifford torus and it is a flat minimal Legendrian torus
in S5. Its projection under the Hopf map π :S5

→CP2 is a flat minimal Lagrangian
torus, which is also called a generalized Clifford torus. It is proved in [Ludden et al.
1975] that a flat minimal Lagrangian torus in CP2 must be S1

×S1. By the correspon-
dence of minimal Lagrangian surfaces in CP2 and minimal Legendrian surfaces in
S5 (see [Reckziegel 1988]), we see that a flat minimal Legendrian torus in S5 must
be a generalized Clifford torus. For more details we refer to [Haskins 2004, p. 853].

The rest of this paper is organized as follows: In Section 2 we collect some
basic material from Sasakian geometry, which will be used in the next section. In
Section 3 we prove our main results, Theorems 1.3 and 1.8.

2. Preliminaries on contact geometry

In this section we recall some basic material from contact geometry. For more
information we refer to [Blair 2002].
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Contact manifolds.

Definition 2.1. A contact manifold M is an odd dimensional manifold with a one
form α such that α∧ (dα)n 6= 0, where dim M = 2n+ 1.

Assume now that (M, α) is a given contact manifold of dimension 2n+ 1. Then
α defines a 2n-dimensional vector bundle over M , where the fiber at each point
p ∈ M is given by

ξp = Kerαp.

Since α∧ (dα)n defines a volume form on M , we see that

ω := dα

is a closed nondegenerate 2-form on ξ⊕ξ and hence it defines a symplectic product
on ξ such that (ξ, ω|ξ⊕ξ ) becomes a symplectic vector bundle. A consequence of
this fact is that there exists an almost complex bundle structure

J̃ : ξ → ξ

compatible with dα, i.e., a bundle endomorphism satisfying

(1) J̃ 2
=− idξ ,

(2) dα( J̃ X, J̃ Y )= dα(X, Y ) for all X, Y ∈ ξ ,

(3) dα(X, J̃ X) > 0 for X ∈ ξ \ 0.

Since M is an odd dimensional manifold, ω must be degenerate on TM , and so
we obtains a line bundle η over M with fibers

ηp := {V ∈ Tp M |ω(V,W )= 0,∀W ∈ ξp}.

Definition 2.2. The Reeb vector field R is the section of η such that α(R)= 1.

Thus α defines a splitting of TM into a line bundle η with the canonical section
R and a symplectic vector bundle (ξ, ω|ξ ⊕ ξ). We denote the projection along η
by π , i.e.,

π : TM→ ξ, π(V ) := V −α(V )R.

Using this projection we extend the almost complex structure J̃ to a section J ∈
0(T ∗M ⊗ TM) by setting

J (V )= J̃ (π(V )),

for V ∈ TM .
We call J an almost complex structure of the contact manifold M .

Definition 2.3. Let (M, α) be a contact manifold, a submanifold L of (M, α) is
called an isotropic submanifold if Tx L ⊆ ξx for all x ∈ L .
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For algebraic reasons the dimension of an isotropic submanifold of a 2n + 1
dimensional contact manifold can not be bigger than n.

Definition 2.4. An isotropic submanifold L ⊆ (M, α) of maximal possible dimen-
sion n is called a Legendrian submanifold.

Sasakian manifolds. Let (M, α) be a contact manifold, with the almost complex
structure J and Reeb field R. A Riemannian metric gα defined on M is said to be
associated, if it satisfies the following three conditions:

(1) gα(R, R)= 1.

(2) gα(V, R)= 0, ∀V ∈ ξ .

(3) ω(V, J W )= gα(V,W ), ∀V,W ∈ ξ .

We should mention here that on any contact manifold there exists an associated
metric on it, because we can construct one in the following way. We introduce a
bilinear form b by

b(V,W ) := ω(V, J W ),

then the tensor
g := b+α⊗α

defines an associated metric on M .
Sasakian manifolds are the odd dimensional analogue of Kähler manifolds. They

are defined as follows.

Definition 2.5. A contact manifold (M, α) with an associated metric gα is called
Sasakian, if the cone CM equipped with the following extended metric g

(2-1) (CM, g)= (R+×M, dr2
+ r2gα)

is Kähler with respect to the following canonical almost complex structure J on
TCM = R⊕〈R〉⊕ ξ :

J (r∂r)= R, J (R)=−r∂r.

Furthermore if gα is Einstein, M is called a Sasakian Einstein manifold.

We record several lemmas which are well known in Sasakian geometry. These
lemmas will be used in the next section.

Lemma 2.6. Let (M, α, gα, J ) be a Sasakian manifold. Then

(2-2) ∇X R =−J X,
and

(2-3) (∇X J )(Y )= g(X, Y )R−α(Y )X,

for X, Y ∈ TM , where ∇ is the Levi–Civita connection on (M, gα).
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Lemma 2.7. Let L be a Legendrian submanifold in a Sasakian Einstein manifold
(M, α, gα, J ), then the mean curvature form ω(H, ·)|L defines a closed one form
on L.

For a proof of this lemma we refer to [Lê 2004, Proposition A.2] or [Smoczyk
2003, Lemma 2.8]. In fact they proved this result under the weaker assumption
that (M, α, gα, J ) is a weakly Sasakian Einstein manifold, where weakly Einstein
means that gα is Einstein only when restricted to the contact hyperplane Kerα.

Lemma 2.8. Let L be a Legendrian submanifold in a Sasakian manifold(M,α,gα,J )
and B be the second fundamental form of L in M. Then we have

(2-4) gα(B(X, Y ), R)= 0,

for any X, Y ∈ TL.

Proof. For any X, Y ∈ TL ,

〈B(X, Y ), R〉 = 〈∇X Y, R〉

= −〈Y,∇X R〉

= 〈Y, J X〉

= ω(X, Y )

= dα(X, Y )

= 0,

where in the third equality we used (2-2). �

In particular this lemma implies that the mean curvature H of L is orthogonal to
the Reeb field R.

Lemma 2.9. For any Y, Z ∈ Kerα, we have

(2-5) gα(∇X (JY ), Z)= gα(J∇X Y, Z).

Proof. Note that
(∇X J )Y = ∇X (JY )− J∇X Y.

Therefore by using (2-3) we have

〈∇X (JY ), Z〉 = 〈(∇X J )Y, Z〉+ 〈J∇X Y, Z〉

= 〈J∇X Y, Z〉,

for any Y, Z ∈ Kerα. �

A canonical example of Sasakian Einstein manifolds is the standard odd dimen-
sional sphere S2n+1.
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The standard sphere S2n+1. Let Cn
= R2n+2 be the Euclidean space with

coordinates (x1, . . . , xn+1, y1, . . . , yn+1) and S2n+1 be the standard unit sphere in
R2n+2. Define

α0 =
1
2

n+1∑
j+1

(x j dy j − y j dx j ),

then
α := α0|S2n+1

defines a contact one form on S2n+1. Assume that g0 is the standard metric on
R2n+2 and J0 is the standard complex structure of Cn . We define

gα = g0|S2n+1 and J = J0|S2n+1,

then (S2n+1, α, gα, J ) is a Sasakian Einstein manifold with associated metric gα.
Its contact hyperplane is characterized by

Kerαx = {Y ∈ Tx S2n+1
|〈Y, J x〉 = 0}.

3. Proof of the theorems

Several lemmas. In this part we assume that (M, α, gα, J ) is a Sasakian manifold.
We show several lemmas which are analogous to results in Kähler geometry.

The first lemma shows ω = dα when restricted to the contact hyperplane Kerα
behaves as the Kähler form on a Kähler manifold.

Lemma 3.1. Let X, Y, Z ∈ Kerα, then

(3-1) ∇Xω(Y, Z)= 0,

where ∇ is the derivative with respect to gα.

Proof.

∇Xω(Y, Z)= X (ω(Y, Z))−ω(∇X Y, Z)−ω(Y,∇X Z)

=−Xgα(Y, J Z)−ω(∇X Y, Z)−ω(Y,∇X Z)

=−gα(∇X Y, J Z)− gα(Y,∇X J Z)+ gα(∇X Y, J Z)+ gα(Y, J∇X Z)

= 0,

where in the third equality we used gα(Y,∇X J Z)= gα(Y, J∇X Z), which is a direct
corollary of (2-3). �

Now let L be a Legendrian submanifold of M . We have a natural identification
of NL ∩Kerα with T ∗L , where NL is the normal bundle of L and T ∗L is the
cotangent bundle.
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Definition 3.2. ω̃ : NL ∩Kerα→ T ∗L is the bundle isomorphism defined by

ω̃p(vp)= (vpcωp)|Tp L ,

where p ∈ L and vp ∈ (NL ∩Kerα)p.

Recall that ω(R) = 0 and gα(V,W ) = ω(V, J W ) for any V,W ∈ ξ , hence ω̃
defines an isomorphism.

We have

Lemma 3.3. Let V ∈ 0(NL ∩Kerα). Then

(3-2)

ω̃(1νV −〈1νV, R〉R+ V )=1(ω̃(V )), i.e.,

(1νV + V )cω =1(V cω),

where 1 is the Laplace–Beltrami operator on (L , g).

Remark 3.4. This kind of lemma in the context of symplectic geometry was
proved by Oh [1990, Lemma 3.3]. Our proof follows his argument with only slight
modifications.

Proof. We first show that

(3-3) ∇X (ω̃(V ))= ω̃
(
∇
ν
X V −〈∇νX V, R〉R

)
for any X ∈ TL . Equality (3-3) is equivalent to

(3-4) ∇X (ω̃(V ))(Y )= ω̃
(
∇
ν
X V −〈∇νX V, R〉R

)
(Y )

for any Y ∈ TL .

∇X (ω̃(V ))(Y )=∇X (ω̃(V )(Y ))− ω̃(V )(∇X Y )

= ∇X (ω(V, Y ))− ω̃(V )(∇X Y )

= ω(∇νX V, Y )+ω(V,∇X Y )−ω(V,∇X Y )

= ω(∇νX V, Y )

= ω̃
(
∇
ν
X V −〈∇νX V, R〉R

)
(Y ),

where in the third equality we used ∇Xω = 0, when restricted to Kerα, which is
proved in Lemma 3.1.

Let p ∈ L and choose an orthonormal frame {E1, . . . , En} on TL such that
∇Ei E j (p)= 0, then the general Laplacian 1 can be written as

1ψ(p)=
n∑

i=1

∇Ei∇Eiψ(p),



CONTACT STATIONARY LEGENDRIAN SURFACES IN S5 111

where ψ is a tensor on L . Therefore

(ω̃−1
◦1 · ω̃(V ))(p)

=

(
ω̃−1
◦

n∑
i=1

∇Ei∇Ei ω̃(V )
)
(p)

=

n∑
i=1

(ω̃−1
∇Ei ω̃ · ω̃

−1
∇Ei ω̃(V ))(p)

=

n∑
i=1

(
ω̃−1
∇Ei ω̃

(
∇
ν
Ei

V −〈∇νEi
V, R〉R

))
(p)

=

n∑
i=1

∇
ν
Ei

(
∇
ν
Ei

V −〈∇νEi
V, R〉R

)
−
〈
∇
ν
Ei

(
∇
ν
Ei

V −〈∇νEi
V, R〉R

)
, R
〉
R

=1νV −〈1νV, R〉R+ V,

where in the third and fourth equalities we used (3-3) and in the last equality we
used equality (2-2). �

Proof of Theorem 1.3. We see that for any function s defined on L ,

0=
∫

L
s div JH dµ =

∫
L

g(JH,∇s) dµ

=

∫
L
ω(H,∇s) dµ=

∫
L
〈ωcH, ωc∇s〉 dµ

=

∫
L
〈ωcH, ds〉 =

∫
L
δ(ωcH)s dµ.

Therefore the E–L equation for L is equivalent to

(3-5) δ(ωcH)= 0,

where δ is the adjoint operator of d on L .
By Lemma 2.7 we see that L satisfies

(3-6) 1h(ωcH)= 0,

where 1h := δd + dδ is the Hodge–Laplace operator. That is the mean curvature
form of L is a harmonic one form.

To proceed on, we need the following Weitzenböck formula

Lemma 3.5. Let M be an n dimensional oriented Riemannian manifold. If {Vi } is
a local orthonormal frame field and {ωi

} is its dual coframe field, then

1h =−
∑

i

D2
Vi Vi
+

∑
i j

ωi
∧ i(V j )RVi V j ,
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where D2
XY ≡ DX DY −DDX Y represents the covariant derivatives,1d = dδ+δd is

the Hodge–Laplace and RXY =−DX DY + DY DX + D[X,Y ] is the curvature tensor.

Remark 3.6. For a detailed discussion on the Weitzenböck formula we refer to
Wu [1988].

Using the Weitzenböck formula we have

(3-7) −1(ωcH)+
∑

i j

ωi
∧ i(V j )RVi V j (ωcH)= 0,

where {Vi } is a local orthogonal frame field and {ωi
} is its dual coframe field on L .

Denote ωcH by θH =
∑

k θkω
k , we have∑

i j

ωi
∧ i(V j )RVi V j θH =

∑
i j

RVi V j θH (V j )ω
i

=

∑
i jk

RVi V jω
k(V j )θkω

i

=−

∑
i jk

ωk(RVi V j V j )θkω
i

=−

∑
i jk

〈RVi V j V j , Vk〉θkω
i

=−

∑
i j

〈RVi V j V j , Vi 〉θiω
i

= K θH .

That is

(3-8)
∑

i j

ωi
∧ i(V j )RVi V j (ωcH)= KωcH.

Recall that H ∈ NL ∩Kerα, using (3-2) on H we get

(3-9) 1(ωcH)= (1νH + H)cω.

Combining (3-7)–(3-9), we have

0=−1νHcω− H + KωcH = (−1νH + (K − 1)H)cω,

which implies that

(3-10) −1νH + (K − 1)H = f R

for some function f on L .
The next lemma is one of our key observations which states that a Legendrian

submanifold in a Sasakian manifold is contact stationary if and only if 〈1νH, R〉=0.
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Lemma 3.7. Let L ⊆ (M2n+1, α, gα, J ) be a contact stationary Legendrian sub-
manifold. Then 1νH is orthogonal to R.

Proof. For any point p ∈ L , we choose a local orthonormal frame {Ei : i = 1, . . . , n}
of L such that ∇Ei E j (p)= 0. We have at p (in the following computation we adopt
the Einstein summation convention)

〈1νH, R〉 = 〈∇νEi
∇
ν
Ei

H, R〉

= Ei 〈∇
ν
Ei

H, R〉− 〈∇νEi
H,∇Ei R〉

= Ei 〈∇
ν
Ei

H, R〉+ 〈∇νEi
H, JEi 〉

= Ei (Ei 〈H, R〉− 〈H,∇Ei R〉)+〈∇νEi
H, JEi 〉

= Ei 〈H, JEi 〉+ 〈∇
ν
Ei

H, JEi 〉

= 2〈∇νEi
H, JEi 〉+ 〈H,∇Ei JEi 〉

= 2〈∇νEi
H, JEi 〉+ 〈H, J∇Ei Ei 〉

= 2〈∇νEi
H, JEi 〉

= 2〈∇Ei H, JEi 〉

= −2〈J∇Ei H, Ei 〉

= −2〈∇Ei JH, Ei 〉

= −2〈∇Ei JH, Ei 〉

= −2 divg(JH)

= 0.

Note that in this computation we used Equation (2-3) and Lemmas 2.8 and 2.9
several times and the last equality holds because L is contact stationary. �

Therefore we have
(−1νH + (K − 1)H)⊥R

by this lemma and Lemma 2.8, which shows f ≡ 0, i.e.,

−1νH + (K − 1)H = 0,

and we are done with the proof of Theorem 1.3.

Proof of Theorem 1.8. Let L be a Legendrian surface in S5 with the induced
metric g. Let {e1, e2} be an orthogonal frame on L such that {e1, e2, Je1, Je2, R}
is an orthonormal frame on S5.

In the following we use indices i, j, k, l, s, t,m and β and γ such that

1≤ i, j, k, l, s, t,m ≤ 2, 1≤ β, γ ≤ 3, γ ∗ = γ + 2 and β∗ = β + 2.
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Let B be the second fundamental form of L in S5 and define

hk
i j = gα(B(ei , e j ), Jek),(3-11)

h3
i j = gα(B(ei , e j ), R).(3-12)

Then

hk
i j = h j

ik = hi
k j ,(3-13)

h3
i j = 0.(3-14)

The Gauss equations and Ricci equations are

Ri jkl = (δikδ jl − δilδ jk)+
∑

s

(hs
ikhs

jl − hs
ilh

s
jk)(3-15)

Rik = δik + 2
∑

s

H shs
ik −

∑
s, j

hs
i j h

s
jk,(3-16)

2K = 2+ 4H 2
− S,(3-17)

R3412 =
∑

i

(h1
i1h2

i2− h1
i2h2

i1)

= det h1
+ det h2,(3-18)

where h1 and h2 are the second fundamental forms with respect to the directions
Je1 and Je2.

In addition we have the following Codazzi equations and Ricci identities

hβi jk = hβik j ,(3-19)

hβi jkl − hβi jlk =
∑

m

hβmj Rmikl +
∑

m

hβmi Rmjkl +
∑
γ

hγi j Rγ ∗β∗kl .(3-20)

Using these equations, we can get the following Simons’ type inequality:

Lemma 3.8. Let L be a Legendrian surface in S5. Then we have

(3-21) 1
2
1
∑
i, j,β

(hβi j )
2
≥ |∇

T h|2− 2|∇T H |2− 2|∇νH |2+
∑

i, j,k,β

(hβi j h
β

kki ) j

+ S− 2H 2
+ 2(1+ H 2)ρ2

− ρ4
−

1
2

S2,

where |∇T h|2 =
∑

i, j,k,s(h
s
i jk)

2 and |∇T H |2 =
∑

i,s(H
s
i )

2.
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Proof. Using equations (3-15)–(3-20), we have

(3-22) 1
2
1
∑
i, j,β

(hβi j )
2

=

∑
i, j,k,β

(hβi jk)
2
+

∑
i, j,k,β

hβi j h
β

ki jk

=|∇h|2−4|∇νH |2+
∑

i, j,k,β

(hβi j h
β

kki ) j+
∑

i, j,l,k,β

hβi j (h
β

lk Rli jk+hβil Rl j )

+

∑
i, j,k,β,γ

hβi j h
γ

ki Rγ ∗β∗ jk

= |∇h|2−4|∇νH |2+
∑

i, j,k,s

(hs
i j h

s
kki ) j +2Kρ2

−2(det h1
+det h2)2

≥ |∇h|2− 4|∇νH |2+
∑

i, j,k,β

(hβi j h
β

kki ) j + 2(1+ H 2)ρ2
− ρ4
−

1
2 S2,

where ρ2
:= S− 2H 2 and in the above calculations we used the identities∑

i, j,k,l,β

hβi j (h
β

lk Rli jk + hβil Rl j )= 2Kρ2,

∑
i, j,k,β,γ

hβi j h
γ

ki Rγ ∗β∗ jk =−2(det h1
+ det h2)2,

where in the first equality we used Rli jk = K (δl jδik − δlkδi j ) and Rl j = K δl j in a
proper coordinate, because L is a surface.

Note that

(3-23) |∇h|2 =
∑

i, j,k,β

(hβi jk)
2
= |∇

T h|2+
∑
i, j,k

(h3
i jk)

2

= |∇
T h|2+

∑
i, j,k

(hk
i j )

2
= |∇

T h|2+ S,

where in the third equality we used

h3
i jk = 〈∇ek B(ei , e j ), R〉 = −〈B(ei , e j ),∇ek R〉

= 〈B(ei , e j ), Jek〉 = hk
i j .

Similarly we have

(3-24) |∇
νH |2 = |∇T H |2+ H 2.

Combing (3-22), (3-23) and (3-24) we get (3-21). �

Now we prove an integral equality for L , by using (1-3).
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Lemma 3.9. Let L : 6→ S5 be a contact stationary Legendrian surface, where
S5 is the unit sphere with standard contact structure and metric. Then

(3-25)
∫

L
|∇

νH |2 dµ=−
∫

L
(K − 1)H 2 dµ,

where |∇νH |2 =
∑

β,i (H
β

i )
2.

Proof. By using (1-3) we have

(3-26) |∇
νH |2 =

∑
β,i

(Hβ

i )
2

=

∑
β,i

(Hβ

i Hβ)i −
∑
β

Hβ1νHβ

=

∑
β,i

(Hβ

i Hβ)i − (K − 1)H 2.

We get (3-25) by integrating over (3-26). �

Integrating over (3-21) and using |∇T h|2 ≥ 3|∇T H |2 (see Lemma A.1) we get

0≥
∫

L

[
(|∇T h|2−2|∇T H |2)−2|∇νH |2+S−2H 2

+2(1+H 2)ρ2
−ρ4
−

1
2 S2] dµ

≥

∫
L

[
−2|∇νH |2+S−2H 2

+2(1+H 2)ρ2
−ρ4
−

1
2 S2] dµ

=

∫
L
(2−ρ2)ρ2dµ+

∫
L

2H 2ρ2
+2(K−1)H 2

−2H 2
+S− 1

2 S2 dµ

=

∫
L
(2−ρ2)ρ2dµ+

∫
L

2H 2ρ2
+(4H 2

−S)H 2
−2H 2

+S− 1
2 S2 dµ

=

∫
L
(2−ρ2)ρ2dµ+

∫
L

H 2S−2H 2
+S− 1

2 S2 dµ

=

∫
L
(2−ρ2)ρ2dµ+

∫
L

H 2(S−2)+ 1
2 S(2−S) dµ

=

∫
L
(2−ρ2)ρ2

+(2−S)
( 1

2 S−H 2) dµ

=

∫
L
ρ2(2−ρ2)+ 1

2ρ
2(2−S) dµ

=

∫
L

3
2ρ

2(2−S)+2H 2ρ2 dµ,

where in the second equality we used the Gauss equation 2K = 2+ 4H 2
− S.
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Therefore we obtain the desired integral inequality∫
L
ρ2(3− 3

2 S+ 2H 2) dµ≤ 0.

Particularly if 0≤ S ≤ 2, we must have ρ2
= 0 and L is totally umbilic or ρ2

6= 0,
which implies S = 2, H = 0 and L is a flat minimal Legendrian torus. Thus we
have proved Theorem 1.8.

Appendix

In this section we prove the following lemma.

Lemma A.1. Let L be a Legendrian surface in S5, and assume that |∇T h|2 and
|∇

T H |2 are defined as in Lemma 3.8. Then we have

|∇
T h|2 ≥ 3|∇T H |2.

Proof. We construct the flowing symmetric tracefree tensor:

(A-27) F s
i jk = hs

i jk −
1
2
(H s

i δ jk + H s
j δik + H s

k δ j i ).

Then it is easy to see that

|F |2 = |∇T h|2− 3|∇T H |2,

and we get |∇T h|2 ≥ 3|∇T H |2. �

Final discussions. To end this paper we propose several questions which we will
study in the future.

Problem 1. Is any umbilical contact stationary Legendrian surface in S5 with
0≤ S ≤ 2 totally geodesic?

Problem 2. Assume that L is a closed csL submanifold in S2n+1, satisfying 0≤
S ≤ n, then is L totally geodesic or S = n?

Problem 3. Is any contact stationary Legendrian surface in S5 with second funda-
mental form of constant length minimal?

Problem 4. What is the second gap for minimal Legendrian submanifolds in a
sphere?

Acknowledgement

I would like to thank professor Guofang Wang for a lot of discussions on Sasakian
geometry and useful suggestions during the preparation of this paper and thank
professor Ildefonso Castro for his comments and interests in this paper. Many



118 YONG LUO

thanks to professor Toru Sasahara for pointing out an error in Lemma 3.3. The
author is partially supported by the NSF of China (No.11501421).

References

[Benko et al. 1979] K. Benko, M. Kothe, K.-D. Semmler, and U. Simon, “Eigenvalues of the Laplacian
and curvature”, Colloq. Math. 42:1 (1979), 19–31. MR Zbl

[Blair 2002] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in
Mathematics 203, Birkhäuser, Boston, 2002. MR Zbl

[Butscher 2009] A. Butscher, “Equivariant gluing constructions of contact stationary Legendrian
submanifolds in S2n+1”, Calc. Var. Partial Differential Equations 35:1 (2009), 57–102. MR Zbl

[Butscher and Corvino 2012] A. Butscher and J. Corvino, “Hamiltonian stationary tori in Kähler
manifolds”, Calc. Var. Partial Differential Equations 45:1-2 (2012), 63–100. MR Zbl

[Castro et al. 2006] I. Castro, H. Li, and F. Urbano, “Hamiltonian-minimal Lagrangian submanifolds
in complex space forms”, Pacific J. Math. 227:1 (2006), 43–63. MR Zbl

[Chen et al. 2012] Q. Chen, S. Hu, and X. Xu, “Construction of Lagrangian submanifolds in CPn”,
Pacific J. Math. 258:1 (2012), 31–49. MR Zbl

[Chern et al. 1970] S. S. Chern, M. do Carmo, and S. Kobayashi, “Minimal submanifolds of a sphere
with second fundamental form of constant length”, pp. 59–75 in Functional analysis and related
fields (Chicago, 1968), edited by F. E. Browder, Springer, 1970. MR Zbl

[Dillen and Vrancken 1990] F. Dillen and L. Vrancken, “C-totally real submanifolds of Sasakian
space forms”, J. Math. Pures Appl. (9) 69:1 (1990), 85–93. MR Zbl

[Dong 2007] Y. Dong, “Hamiltonian-minimal Lagrangian submanifolds in Kaehler manifolds with
symmetries”, Nonlinear Anal. 67:3 (2007), 865–882. MR Zbl

[Dong and Han 2007] Y. Dong and Y. Han, “Some explicit examples of Hamiltonian minimal
Lagrangian submanifolds in complex space forms”, Nonlinear Anal. 66:5 (2007), 1091–1099. MR
Zbl

[Haskins 2004] M. Haskins, “Special Lagrangian cones”, Amer. J. Math. 126:4 (2004), 845–871.
MR Zbl

[Hélein and Romon 2002] F. Hélein and P. Romon, “Hamiltonian stationary Lagrangian surfaces in
Hermitian symmetric spaces”, pp. 161–178 in Differential geometry and integrable systems (Tokyo,
2000), edited by M. Guest et al., Contemp. Math. 308, American Mathematical Society, Providence,
RI, 2002. MR Zbl

[Hélein and Romon 2005] F. Hélein and P. Romon, “Hamiltonian stationary tori in the complex
projective plane”, Proc. London Math. Soc. (3) 90:2 (2005), 472–496. MR Zbl

[Hunter and McIntosh 2011] R. Hunter and I. McIntosh, “The classification of Hamiltonian stationary
Lagrangian tori in CP2 by their spectral data”, Manuscripta Math. 135:3-4 (2011), 437–468. MR
Zbl

[Iriyeh 2005] H. Iriyeh, “Hamiltonian minimal Lagrangian cones in Cm”, Tokyo J. Math. 28:1 (2005),
91–107. MR Zbl

[Joyce et al. 2011] D. Joyce, Y.-I. Lee, and R. Schoen, “On the existence of Hamiltonian stationary
Lagrangian submanifolds in symplectic manifolds”, Amer. J. Math. 133:4 (2011), 1067–1092. MR
Zbl

[Kajigaya 2013] T. Kajigaya, “Second variation formula and the stability of Legendrian minimal
submanifolds in Sasakian manifolds”, Tohoku Math. J. (2) 65:4 (2013), 523–543. MR Zbl

http://eudml.org/doc/265094
http://eudml.org/doc/265094
http://msp.org/idx/mr/567541
http://msp.org/idx/zbl/0437.53032
http://dx.doi.org/10.1007/978-1-4757-3604-5
http://msp.org/idx/mr/1874240
http://msp.org/idx/zbl/1011.53001
http://dx.doi.org/10.1007/s00526-008-0197-y
http://dx.doi.org/10.1007/s00526-008-0197-y
http://msp.org/idx/mr/2476426
http://msp.org/idx/zbl/1178.53085
http://dx.doi.org/10.1007/s00526-011-0451-6
http://dx.doi.org/10.1007/s00526-011-0451-6
http://msp.org/idx/mr/2957651
http://msp.org/idx/zbl/1251.53048
http://dx.doi.org/10.2140/pjm.2006.227.43
http://dx.doi.org/10.2140/pjm.2006.227.43
http://msp.org/idx/mr/2247872
http://msp.org/idx/zbl/1129.53039
http://dx.doi.org/10.2140/pjm.2012.258.31
http://msp.org/idx/mr/2972478
http://msp.org/idx/zbl/1256.53051
http://dx.doi.org/10.1007/978-3-642-48272-4_2
http://dx.doi.org/10.1007/978-3-642-48272-4_2
http://msp.org/idx/mr/0273546
http://msp.org/idx/zbl/0216.44001
http://msp.org/idx/mr/1054125
http://msp.org/idx/zbl/0654.53062
http://dx.doi.org/10.1016/j.na.2006.06.045
http://dx.doi.org/10.1016/j.na.2006.06.045
http://msp.org/idx/mr/2319215
http://msp.org/idx/zbl/1126.53035
http://dx.doi.org/10.1016/j.na.2006.01.007
http://dx.doi.org/10.1016/j.na.2006.01.007
http://msp.org/idx/mr/2286621
http://msp.org/idx/zbl/1107.53052
http://dx.doi.org/10.1353/ajm.2004.0029
http://msp.org/idx/mr/2075484
http://msp.org/idx/zbl/1074.53067
http://dx.doi.org/10.1090/conm/308/05316
http://dx.doi.org/10.1090/conm/308/05316
http://msp.org/idx/mr/1955633
http://msp.org/idx/zbl/1036.53058
http://dx.doi.org/10.1112/S002461150401500X
http://dx.doi.org/10.1112/S002461150401500X
http://msp.org/idx/mr/2142135
http://msp.org/idx/zbl/1063.53077
http://dx.doi.org/10.1007/s00229-010-0425-6
http://dx.doi.org/10.1007/s00229-010-0425-6
http://msp.org/idx/mr/2813444
http://msp.org/idx/zbl/1230.53072
http://dx.doi.org/10.3836/tjm/1244208282
http://msp.org/idx/mr/2149626
http://msp.org/idx/zbl/1087.53057
http://dx.doi.org/10.1353/ajm.2011.0030
http://dx.doi.org/10.1353/ajm.2011.0030
http://msp.org/idx/mr/2823871
http://msp.org/idx/zbl/1230.53073
http://dx.doi.org/10.2748/tmj/1386354294
http://dx.doi.org/10.2748/tmj/1386354294
http://msp.org/idx/mr/3161432
http://msp.org/idx/zbl/1287.53054


CONTACT STATIONARY LEGENDRIAN SURFACES IN S5 119

[Kozlowski and Simon 1984] M. Kozlowski and U. Simon, “Minimal immersions of 2-manifolds
into spheres”, Math. Z. 186:3 (1984), 377–382. MR Zbl

[Lawson 1969] H. B. Lawson, Jr., “Local rigidity theorems for minimal hypersurfaces”, Ann. of Math.
(2) 89:1 (1969), 187–197. MR Zbl

[Lê 2004] H.-V. Lê, “A minimizing deformation of Legendrian submanifolds in the standard sphere”,
Differential Geom. Appl. 21:3 (2004), 297–316. MR Zbl

[Lee 2012] Y.-I. Lee, “The existence of Hamiltonian stationary Lagrangian tori in Kähler manifolds
of any dimension”, Calc. Var. Partial Differential Equations 45:1-2 (2012), 231–251. MR Zbl

[Li 2001] H. Li, “Willmore hypersurfaces in a sphere”, Asian J. Math. 5:2 (2001), 365–377. MR Zbl

[Li 2002a] H. Li, “Willmore submanifolds in a sphere”, Math. Res. Lett. 9:5-6 (2002), 771–790. MR
Zbl

[Li 2002b] H. Li, “Willmore surfaces in Sn”, Ann. Global Anal. Geom. 21:2 (2002), 203–213. MR
Zbl

[Ludden et al. 1975] G. D. Ludden, M. Okumura, and K. Yano, “A totally real surface in CP2 that is
not totally geodesic”, Proc. Amer. Math. Soc. 53:1 (1975), 186–190. MR Zbl

[Ma 2005] H. Ma, “Hamiltonian stationary Lagrangian surfaces in CP2”, Ann. Global Anal. Geom.
27:1 (2005), 1–16. MR Zbl

[Ma and Schmies 2006] H. Ma and M. Schmies, “Examples of Hamiltonian stationary Lagrangian
tori in CP2”, Geom. Dedicata 118 (2006), 173–183. MR Zbl

[Mironov 2003] A. E. Mironov, “On the Hamiltonian-minimal Lagrangian tori in CP2”, Sibirsk. Mat.
Zh. 44:6 (2003), 1324–1328. In Russian; translated in Siberian Math. J. 44:6 (2003), 1039–1042.
MR Zbl

[Mironov 2004] A. E. Mironov, “New examples of Hamilton-minimal and minimal Lagrangian
submanifolds in Cn and CPn”, Mat. Sb. 195:1 (2004), 89–102. In Russian; translated in Sb. Math.
195:1-2 (2004), 85–96. MR Zbl

[Mironov 2008] A. E. Mironov, “Spectral data for Hamiltonian-minimal Lagrangian tori in CP2”, Tr.
Mat. Inst. Steklova 263:Geometriya, Topologiya i Matematicheskaya Fizika. I (2008), 120–134. In
Russian; translated in Proc. Steklov Inst. Math. 263:1 (2008), 112–126. MR Zbl

[Oh 1990] Y.-G. Oh, “Second variation and stabilities of minimal Lagrangian submanifolds in Kähler
manifolds”, Invent. Math. 101:2 (1990), 501–519. MR Zbl

[Oh 1993] Y.-G. Oh, “Volume minimization of Lagrangian submanifolds under Hamiltonian defor-
mations”, Math. Z. 212:2 (1993), 175–192. MR Zbl

[Ono 2005] H. Ono, “Second variation and Legendrian stabilities of minimal Legendrian submani-
folds in Sasakian manifolds”, Differential Geom. Appl. 22:3 (2005), 327–340. MR Zbl

[Reckziegel 1988] H. Reckziegel, “A correspondence between horizontal submanifolds of Sasakian
manifolds and totally real submanifolds of Kählerian manifolds”, pp. 1063–1081 in Topics in
differential geometry, II (Debrecen, 1984), edited by J. Szenthe and L. Tamássy, Colloq. Math. Soc.
János Bolyai 46, North-Holland, Amsterdam, 1988. MR Zbl

[Schoen and Wolfson 2001] R. Schoen and J. Wolfson, “Minimizing area among Lagrangian surfaces:
the mapping problem”, J. Differential Geom. 58:1 (2001), 1–86. MR Zbl

[Simons 1968] J. Simons, “Minimal varieties in Riemannian manifolds”, Ann. of Math. (2) 88 (1968),
62–105. MR Zbl

[Smoczyk 2003] K. Smoczyk, “Closed Legendre geodesics in Sasaki manifolds”, New York J. Math.
9 (2003), 23–47. MR Zbl

http://dx.doi.org/10.1007/BF01174890
http://dx.doi.org/10.1007/BF01174890
http://msp.org/idx/mr/744827
http://msp.org/idx/zbl/0543.53045
http://dx.doi.org/10.2307/1970816
http://msp.org/idx/mr/0238229
http://msp.org/idx/zbl/0174.24901
http://dx.doi.org/10.1016/j.difgeo.2004.05.004
http://msp.org/idx/mr/2091366
http://msp.org/idx/zbl/1077.53073
http://dx.doi.org/10.1007/s00526-011-0457-0
http://dx.doi.org/10.1007/s00526-011-0457-0
http://msp.org/idx/mr/2957657
http://msp.org/idx/zbl/1251.53050
http://dx.doi.org/10.4310/AJM.2001.v5.n2.a4
http://msp.org/idx/mr/1868938
http://msp.org/idx/zbl/1025.53031
http://dx.doi.org/10.4310/MRL.2002.v9.n6.a6
http://msp.org/idx/mr/1906077
http://msp.org/idx/zbl/1056.53040
http://dx.doi.org/10.1023/A:1014759309675
http://msp.org/idx/mr/1894947
http://msp.org/idx/zbl/1008.53051
http://dx.doi.org/10.2307/2040395
http://dx.doi.org/10.2307/2040395
http://msp.org/idx/mr/0380683
http://msp.org/idx/zbl/0312.53043
http://dx.doi.org/10.1007/s10455-005-5214-1
http://msp.org/idx/mr/2130529
http://msp.org/idx/zbl/1079.53082
http://dx.doi.org/10.1007/s10711-005-9034-z
http://dx.doi.org/10.1007/s10711-005-9034-z
http://msp.org/idx/mr/2239455
http://msp.org/idx/zbl/1096.53048
http://www.math.nsc.ru/smz/2003/06/1324.htm
http://dx.doi.org/10.1023/B:SIMJ.0000007479.89102.3a
http://msp.org/idx/mr/2034938
http://msp.org/idx/zbl/1054.53092
http://dx.doi.org/10.4213/sm794
http://dx.doi.org/10.4213/sm794
http://dx.doi.org/10.1070/SM2004v195n01ABEH000794
http://dx.doi.org/10.1070/SM2004v195n01ABEH000794
http://msp.org/idx/mr/2058378
http://msp.org/idx/zbl/1078.53079
http://mi.mathnet.ru/eng/tm787
http://dx.doi.org/10.1134/S0081543808040093
http://msp.org/idx/mr/2599375
http://msp.org/idx/zbl/1176.53079
http://dx.doi.org/10.1007/BF01231513
http://dx.doi.org/10.1007/BF01231513
http://msp.org/idx/mr/1062973
http://msp.org/idx/zbl/0721.53060
http://dx.doi.org/10.1007/BF02571651
http://dx.doi.org/10.1007/BF02571651
http://msp.org/idx/mr/1202805
http://msp.org/idx/zbl/0791.53050
http://dx.doi.org/10.1016/j.difgeo.2005.01.007
http://dx.doi.org/10.1016/j.difgeo.2005.01.007
http://msp.org/idx/mr/2166126
http://msp.org/idx/zbl/1127.53051
http://msp.org/idx/mr/933886
http://msp.org/idx/zbl/0638.53046
http://dx.doi.org/10.4310/jdg/1090348282
http://dx.doi.org/10.4310/jdg/1090348282
http://msp.org/idx/mr/1895348
http://msp.org/idx/zbl/1052.53056
http://dx.doi.org/10.2307/1970556
http://msp.org/idx/mr/0233295
http://msp.org/idx/zbl/0181.49702
http://nyjm.albany.edu:8000/j/2003/9_23.html
http://msp.org/idx/mr/2016178
http://msp.org/idx/zbl/1019.53034


120 YONG LUO

[Wu 1988] H. H. Wu, “The Bochner technique in differential geometry”, Math. Rep. 3:2 (1988), i–xii
and 289–538. MR Zbl

[Yamaguchi et al. 1976] S. Yamaguchi, M. Kon, and Y. Miyahara, “A theorem on C-totally real
minimal surface”, Proc. Amer. Math. Soc. 54 (1976), 276–280. MR Zbl

[Yau 1974] S. T. Yau, “Submanifolds with constant mean curvature, I”, Amer. J. Math. 96:2 (1974),
346–366. MR Zbl

Received November 17, 2016.

YONG LUO

SCHOOL OF MATHEMATICS AND STATISTICS

WUHAN UNIVERSITY

WUHAN

CHINA

yongluo@whu.edu.cn

http://msp.org/idx/mr/1079031
http://msp.org/idx/zbl/0875.58014
http://dx.doi.org/10.2307/2040800
http://dx.doi.org/10.2307/2040800
http://msp.org/idx/mr/0402654
http://msp.org/idx/zbl/0283.53044
http://dx.doi.org/10.2307/2373638
http://msp.org/idx/mr/0370443
http://msp.org/idx/zbl/0304.53041
mailto:yongluo@whu.edu.cn


PACIFIC JOURNAL OF MATHEMATICS
Vol. 293, No. 1, 2018

dx.doi.org/10.2140/pjm.2018.293.121

IRREDUCIBILITY OF THE MODULI SPACE
OF STABLE VECTOR BUNDLES OF RANK TWO AND

ODD DEGREE ON A VERY GENERAL QUINTIC SURFACE

NICOLE MESTRANO AND CARLOS SIMPSON

The moduli space M(c2) of stable rank-two vector bundles of degree one on
a very general quintic surface X ⊂P3 is irreducible for all c2 ≥ 4 and empty
otherwise. On the other hand, for a very general sextic surface, the moduli
space at c2 = 11 has at least two irreducible components.

1. Introduction

Let X ⊂ P3
C

be a very general quintic hypersurface. Let M(c2) := MX (2, 1, c2)

denote the moduli space [Huybrechts and Lehn 1997] of stable rank 2 vector bundles
on X of degree 1 with c2(E)= c2. Let M(c2) := M X (2, 1, c2) denote the moduli
space of stable rank 2 torsion-free sheaves on X of degree 1 with c2(E)= c2. Recall
that M(c2) is projective, and M(c2)⊂ M(c2) is an open set, whose complement is
called the boundary. Let M(c2) denote the closure of M(c2) inside M(c2). This
might be a strict inclusion, as will in fact be the case for c2 ≤ 10.

In [Mestrano and Simpson 2011] we showed that M(c2) is irreducible for 4≤
c2 ≤ 9, and empty for c2 ≤ 3. In [Mestrano and Simpson 2013] we showed that
the open subset M(10)sn

⊂ M(10) of bundles with seminatural cohomology is
irreducible. Nijsse [1995] showed that M(c2) is irreducible for c2 ≥ 16.

In the present paper, we complete the proof of irreducibility for the remaining
intermediate values of c2.

Theorem 1.1. For any c2 ≥ 4, the moduli space of bundles M(c2) is irreducible.
For c2 ≥ 11, the moduli space of torsion-free sheaves M(c2) is irreducible. On

the other hand, M(10) has two irreducible components: the closure M(10) of the
irreducible open set M(10); and the smallest stratum M(10, 4) of the double dual
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stratification corresponding to torsion-free sheaves whose double dual has c′2 = 4.
Similarly M(c2) has several irreducible components when 5≤ c2 ≤ 9, too.

The moduli space M(c2) is good for c2 ≥ 10, generically smooth of the expected
dimension 4c2− 20, whereas for 4≤ c2 ≤ 9, the moduli space M(c2) is not good.
For c2 ≤ 3 it is empty.

Yoshioka [1997; 1999; 2001], Gómez [1997] and others have shown that the
moduli space of stable torsion-free sheaves with irreducible Mukai vector (which
contains, in particular, the case of bundles of rank 2 and degree 1) is irreducible,
over an abelian or K3 surface. Those results use the triviality of the canonical
bundle, leading to a symplectic structure and implying among other things that
the moduli spaces are smooth [Mukai 1984]. Notice that the case of K3 surfaces
includes degree 4 hypersurfaces in P3.

We were motivated to look at a next case, of bundles on a quintic or degree
5 hypersurface in P3 where K X = OX (1) is ample but not by very much. This
paper is the third in a series starting with [Mestrano and Simpson 2011; 2013]
dedicated to Professor Maruyama who, along with Gieseker, pioneered the study of
moduli of bundles on higher dimensional varieties [Gieseker 1977; 1988; Maruyama
1973; 1975; 1982]. Recall that the moduli space of stable bundles is irreducible
for c2 � 0 on any smooth projective surface [Gieseker and Li 1994; Li 1993;
O’Grady 1993; 1996], but there exist surfaces, such as smooth hypersurfaces in
P3 of sufficiently high degree [Mestrano 1997], where the moduli space is not
irreducible for intermediate values of c2.

Our theorem shows that the irreducibility of the moduli space of bundles M(c2),
for all values of c2, can persist into the range where K X is ample. On the other hand,
the fact that M(10) has two irreducible components, means that if we consider
all torsion-free sheaves, then the property of irreducibility in the good range has
already started to fail in the case of a quintic hypersurface.

We furthermore show in Section 11 below that irreducibility fails for stable vector
bundles on surfaces of degree d = 6. This improves the result of [Mestrano 1997]
where nonirreducibility had been obtained on surfaces of degree d ≥ 27.

A possible application of the irreducibility theorem to the case of Calabi–Yau
varieties could be envisioned by noting that a general hyperplane section of a quintic
threefold in P4 will be a quintic surface X ⊂ P3.

Outline of the proof. The starting point is O’Grady’s [1993; 1996] method of
deformation to the boundary, as exploited by Nijsse [1995] in the case of a very
general quintic hypersurface. We use in particular some of the intermediate results
of Nijsse who showed, for example, that M(c2) is connected for c2 ≥ 10.
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Application of these techniques is made possible by the explicit description of
the moduli spaces M(c2) for 4≤ c2 ≤ 9 and the partial result for M(10) obtained
in [Mestrano and Simpson 2011; 2013].

Our approach therefore has a botanical flavor. The information gleaned from the
descriptions in [Mestrano and Simpson 2011] allows us to understand the boundary
components. It turns out that the bigger components growing out of these will
correspond to bundles with seminatural cohomology, so that the result of [Mestrano
and Simpson 2013] applies. We should stress that it is not a priori clear something
like this should happen — the possibility of getting to the proof in this way becomes
accessible only through an understanding of the components at lower levels. This
will present a challenge for generalization to other surfaces.

The boundary ∂M(c2) := M(c2) − M(c2) is the set of points corresponding
to torsion-free sheaves which are not locally free. We just endow ∂M(c2) with
its reduced scheme structure. There might in some cases be a better nonreduced
structure which one could put on the boundary or onto some strata, but that won’t
be necessary for our argument and we don’t worry about it here.

We can further refine the decomposition

M(c2)= M(c2)t ∂M(c2)

by the double dual stratification [O’Grady 1996]. Let M(c2; c′2) denote the locally
closed subset, again with its reduced scheme structure, parametrizing sheaves F
which fit into an exact sequence

0→ F→ F∗∗→ S→ 0

such that F ∈ M(c2) and S is a coherent sheaf of finite length d = c2− c′2 hence
c2(F∗∗) = c′2. Notice that E = F∗∗ is also stable so it is a point in M(c′2). The
stratum can be nonempty only when c′2 ≥ 4, which shows by the way that M(c2) is
empty for c2 ≤ 3. The boundary now decomposes into locally closed subsets

∂M(c2)=
∐

4≤c′2<c2

M(c2; c′2).

Let M(c2, c′2) denote the closure of M(c2, c′2) in M(c2). Notice that we don’t know
anything about the position of this closure with respect to the stratification; its
boundary will not in general be a union of strata. We can similarly denote by M(c2)

the closure of M(c2) inside M(c2), a subset which might well be strictly smaller
than M(c2).

The construction F 7→ F∗∗ provides, by the definition of the stratification, a
well-defined map

M(c2; c′2)→ M(c′2).
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The fiber over E ∈M(c′2) is the Grothendieck Quot-scheme Quot(E; d) of quotients
of E of length d := c2− c′2.

It follows from Li’s theorem [Li 1993, Proposition 6.4] that if M(c′2) is irre-
ducible, then M(c2; c′2) and hence M(c2; c′2) are irreducible, with dim(M(c2; c′2))=
dim(M(c′2)) + 3(c2 − c′2). See Corollary 4.3 below. From the previous papers
[Mestrano and Simpson 2011; 2013], we know the dimensions of M(c′2), so we can
fill in the dimensions of the strata, as will be summarized in Table 2. Furthermore, by
[Mestrano and Simpson 2011] and Li’s theorem, the strata M(c2; c′2) are irreducible
whenever c′2 ≤ 9.

Nijsse [1995] proves that M(c2) is connected whenever c2≥ 10, using O’Grady’s
[1993; 1996] techniques. This is discussed and we review the proof in [Mestrano
and Simpson 2016]. By [Mestrano and Simpson 2011], the moduli space M(c2) is
good, that is to say it is generically reduced of the expected dimension 4c2− 20,
whenever c2 ≥ 10. In particular, the dimension of the Zariski tangent space, minus
the dimension of the space of obstructions, is equal to the dimension of the moduli
space. The Kuranishi theory of deformation spaces implies that M(c2) is locally a
complete intersection. Hartshorne’s [1962] connectedness theorem now says that
if two different irreducible components of M(c2) meet at some point, then they
intersect in a codimension 1 subvariety. This intersection has to be contained in the
singular locus.

The singular locus in M(c2) contains a subvariety denoted V (c2), which is the
set of bundles E with h0(E) > 0. It is the image of the space 6c2 of extensions

0→OX → E→ JP(1)→ 0,

where P satisfies Cayley–Bacharach for quadrics. For c2 ≥ 10, V (c2) is irreducible
of dimension 3c2− 11. For c2 ≥ 11 one can see directly that the closure of V (c2)

meets the boundary. For c2 = 10, bundles in V (10) almost have seminatural
cohomology, in the sense that any deformation moving away from V (10) will have
seminatural cohomology, so V (10) is contained only in the irreducible component
constructed in [Mestrano and Simpson 2013], and that component meets the bound-
ary. On the other hand, any other irreducible components of the singular locus have
strictly smaller dimension [Mestrano and Simpson 2011, Corollary 7.1].

These properties of the singular locus, together with the connectedness statement
of [Nijsse 1995], allow us to show that any irreducible component of M(c2) meets
the boundary. O’Grady proves furthermore an important lemma, that the intersection
with the boundary must have pure codimension 1.

We explain the strategy for proving irreducibility of M(10) and M(11) below,
but it will perhaps be easiest to explain first why this implies irreducibility of M(c2)

for c2 ≥ 12. Based on O’Grady’s method, this is the same strategy as was used by
Nijsse who treated the cases c2 ≥ 16.
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Suppose c2≥12 and Z⊂M(c2) is an irreducible component. Suppose inductively
we know that M(c2 − 1) is irreducible. Then ∂Z := Z ∩ ∂M(c2) is a nonempty
subset in Z of codimension 1, thus of dimension 4c2− 21. However, by looking at
Table 2, the boundary ∂M(c2) is a union of the stratum M(c2, c2−1) of dimension
4c2 − 21, plus other strata of strictly smaller dimension. Therefore, ∂Z must
contain M(c2, c2− 1). But, the general torsion-free sheaf parametrized by a point
of M(c2, c2−1) is the kernel F of a general surjection E→ S from a stable bundle
E general in M(c2−1), to a sheaf S of length 1. We claim that F is a smooth point
of the moduli space M(c2). Indeed, if F were a singular point then there would
exist a nontrivial coobstruction φ : F → F(1); see [Langer 2008; Mestrano and
Simpson 2011; Zuo 1991]. This would have to come from a nontrivial coobstruction
E→ E(1) for E , but that cannot exist because a general E is a smooth point since
M(c2 − 1) is good. Thus, F is a smooth point of the moduli space. It follows
that a given irreducible component of M(c2, c2 − 1) is contained in at most one
irreducible component of M(c2). On the other hand, by the induction hypothesis
M(c2− 1) is irreducible, so M(c2, c2− 1) is irreducible. This gives the induction
step, that M(c2) is irreducible.

The strategy for M(10) is similar. However, due to the fact that the moduli
spaces M(c′2) are not good for c′2 ≤ 9, in particular they tend to have dimensions
bigger than the expected dimensions, there are several boundary strata which can
come into play. Luckily, we know that the M(c′2), hence all of the strata M(10, c′2),
are irreducible for c′2 ≤ 9.

The dimension of M(10), equal to the expected one, is 20. Looking at the row
c2= 10 in Table 2 below, one may see that there are three strata M(10, 9), M(10, 8)
and M(10, 6) with dimension 19. These can be irreducible components of the
boundary ∂Z if we follow the previous argument. More difficult is the case of
the stratum M(10, 4) which has dimension 20. A general point of M(10, 4) is
not in the closure of M(10), in other words M(10, 4), which is closed since it is
the lowest stratum, constitutes a separate irreducible component of M(10). Now,
if Z ⊂ M(10) is an irreducible component, ∂Z could contain a codimension 1
subvariety of M(10, 4).

The next idea is to use the main result of [Mestrano and Simpson 2013], that the
moduli space M(10)sn of bundles with seminatural cohomology, is irreducible. To
prove that M(10) is irreducible, it therefore suffices to show that a general point of
any irreducible component Z , has seminatural cohomology. From [Mestrano and
Simpson 2013] there are two conditions that need to be checked: h0(E)= 0 and
h1(E(1))= 0. The first condition is automatic for a general point, since the locus
V (10) of bundles with h0(E) > 0 has dimension 3 ·10−11= 19 so cannot contain
a general point of Z . For the second condition, it suffices to note that a general
sheaf F in any of the strata M(10, 9), M(10, 8) and M(10, 6) has h1(F(1))= 0;
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and to show that the subspace of sheaves F in M(10, 4) with h1(F(1)) > 0 has
codimension ≥ 2. This latter result is treated in Section 7, using the dimension
results of Ellingsrud and Lehn for the scheme of quotients of a locally free sheaf,
generalizing Li’s theorem. This is how we will show irreducibility of M(10).

The full moduli space of torsion-free sheaves M(10) has two different irreducible
components, the closure M(10) and the lowest stratum M(10, 4). This distinguishes
the case of the quintic surface from the cases of abelian and K3 surfaces, where the
full moduli spaces of stable torsion-free sheaves were irreducible [Yoshioka 1999;
2001; Gómez 1997].

For M(11), the argument is almost the same as for c2 ≥ 12. However, there
are now two different strata of codimension 1 in the boundary: M(11, 10) coming
from the irreducible variety M(10), and M(11, 4) which comes from the other
20-dimensional component M(10, 4) of M(10). To show that these two can give
rise to at most a single irreducible component in M(11), completing the proof, we
will note that they do indeed intersect, and furthermore that the intersection contains
smooth points.

After the end of the proof of Theorem 1.1, the last two sections of the paper treat
some related considerations.

In Section 10 we provide a correction and improvement to [Mestrano and Simpson
2011, Lemma 5.1] and answer that paper’s Question 5.1. Recall from there that a
coobstruction may be interpreted as a sort of Higgs field with values in the canonical
bundle K X ; it has a spectral surface Z ⊂ Tot(K X ). The question was to bound the
irregularity of a resolution of singularities of the spectral surface Z . We show in
Lemma 10.1 that the irregularity vanishes.

Example on a sextic. At the end of the paper in Section 11, we show Theorem 1.1
is sharp as far as the degree 5 of the very general hypersurface is concerned. In
the case of bundles on very general hypersurfaces X6 of degree 6, we show in
Theorem 11.4 that the moduli space MX6(2, 1, 11) of stable rank two bundles of
degree 1 and c2 = 11 has at least two irreducible components. This improves the
result of [Mestrano 1997], bringing from 27 down to 6 the degree of a very general
hypersurface on which there exist two irreducible components. We expect that there
will be several irreducible components in any degree ≥ 6 but that isn’t shown here.

2. Preliminary facts

The moduli space M(c2) is locally a fine moduli space. The obstruction to existence
of a Poincaré universal sheaf on M(c2) × X is an interesting question but not
considered in the present paper. A universal family exists étale-locally over M(c2)

so for local questions we may consider M(c2) as a fine moduli space.
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c2 4 5 6 7 8 9
dim(M) 2 3 7 9 13 16

dim(obs) 6 3 3 3 1 1
h1(E(1)) 0 1 0 0 0 0

generically sm sm sm nr sm nr

Table 1. Moduli spaces for c2 ≤ 9.

The Zariski tangent space to M(c2) at a point E is Ext1(E, E). If E is locally
free, this is the same as H 1(End(E)). The space of obstructions obs(E) is by
definition the kernel of the surjective map

Tr : Ext2(E, E)→ H 2(OX ).

The space of coobstructions is the dual obs(E)∗ which is, by Serre duality with
K X =OX (1), equal to Hom0(E, E(1)), the space of maps φ : E→ E(1) such that
Tr(φ)= 0 in H 0(OX (1))∼= C4. Such a map is called a coobstruction.

Since a torsion-free sheaf E of rank two and odd degree can have no rank-one
subsheaves of the same slope, all semistable sheaves are stable, and Gieseker and
slope stability are equivalent. If E is a stable sheaf then Hom(E, E)=C so the space
of trace-free endomorphisms is zero. Notice that H 1(OX )= 0 so we may disregard
the trace-free condition for Ext1(E, E). An Euler characteristic calculation gives

dim(Ext1(E, E))− dim(obs(E))= 4c2− 20,

and this is called the expected dimension of the moduli space. The moduli space is
said to be good if the dimension is equal to the expected dimension.

Lemma 2.1. If the moduli space is good, then it is locally a complete intersection.

Proof. Kuranishi theory expresses the local analytic germ of the moduli space
M(c2) at E , as 8−1(0) for a holomorphic map of germs 8 : (Ca, 0)→ (Cb, 0)
where a = dim(Ext1(E, E)) (resp. b = dim(obs(E))). Hence, if the moduli space
has dimension a− b, it is a locally complete intersection. �

We investigated closely the structure of the moduli space for c2 ≤ 9 in [Mestrano
and Simpson 2011].

Proposition 2.2. The moduli space M(c2) is empty for c2 ≤ 3. For 4 ≤ c2 ≤ 9,
the moduli space M(c2) is irreducible. It has dimension strictly bigger than the
expected one, for 4≤ c2 ≤ 8, and for c2 = 9 it is generically nonreduced but with
dimension equal to the expected one; it is also generically nonreduced for c2 = 7.
The dimensions of the moduli spaces, the dimensions of the spaces of obstructions
at a general point, and the dimensions h1(E(1)) for a general bundle E in M(c2),
are given in Table 1 above.
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The proof of Proposition 2.2 will be given in the next section, with a review of
the cases c2 ≤ 9 from the paper [Mestrano and Simpson 2011].

We also proved that the moduli space is good for c2 ≥ 10, known by Nijsse
[1995] for c2 ≥ 13.

Proposition 2.3. For c2 ≥ 10, the moduli space M(c2) is good. The singular locus
M(c2)

sing is the union of the locus V (c2) consisting of bundles with h0(E) > 0,
which has dimension 3c2 − 11, plus other pieces of dimension ≤ 13 which in
particular have codimension ≥ 6.

Proof. Following O’Grady’s and Nijsse’s terminology V (c2) denotes the locus
which is the image of the moduli space of bundles together with a section, called
6c2 or sometimes {E, P}. See [Mestrano and Simpson 2011, Theorem 7.1]. Any
pieces of the singular locus corresponding to bundles which are not in V (c2), have
dimension ≤ 13 by [Mestrano and Simpson 2011, Corollary 5.1] (see Lemma 10.1
below for a correction and improvement of this statement). �

The case c2 = 10 is an important central point in the classification, where the
case-by-case treatment gives way to a general picture. In [Mestrano and Simpson
2013], we proved the following partial result that will be used in the present paper
to complete the proof of irreducibility.

Proposition 2.4. Let M(10)sn
⊂ M(10) denote the open subset of bundles E ∈

M(10) which have seminatural cohomology, that is, where for any m at most one
of hi (E(m)) is nonzero for i = 0, 1, 2. Then E ∈ M(10)sn if and only if h0(E)= 0
and h1(E(1))= 0. The moduli space M(10)sn is irreducible.

Proof. See [Mestrano and Simpson 2013], Theorem 0.2 and Corollary 3.5. �

3. Review of c2 ≤ 9

Our strategy of proof uses in a fundamental way an understanding of the irreducible
components for c2 ≤ 9 that were studied in [Mestrano and Simpson 2011]. The
discussion of these moduli spaces went by a sometimes exhaustive classification
of cases Lemmas 7.3, 7.4 there. In retrospect we can give more uniform proofs of
some parts. For this reason, and for the reader’s convenience, it is worthwhile to
review here some of the arguments leading to the proof of Proposition 2.2. This
section may, however, be skipped or perused lightly on the first reading.

There is a change of notation with respect to that work. There we considered
bundles of degree −1. The bundle of degree 1 denoted here by E is the same as
the bundle denoted by E(1) there. Thus Lemma 5.2 there speaks of h1(E) in our
notation. The present notation was already in effect in [Mestrano and Simpson 2013].
Fortunately, the indexing by second Chern class remains the same in both cases.
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Following O’Grady, we denote by V (c2)⊂M(c2) the subvariety of bundles such
that h0(E)> 0. For c2≤ 9 the Euler characteristic argument of [Mestrano and Simp-
son 2011, §6.1] tells us that h0(E) > 0 for any E , so V (c2) is the full moduli space.

It will be useful to consider the moduli space 6c2 consisting of pairs (E, η)
where E ∈ M(c2) and η ∈ H 0(E) is a nonzero section. The pairs are taken up to
isomorphism, i.e., up to scaling of the section, so the fiber of the map 6c2→ V (c2)

over a bundle E is the projective space PH 0(E).
Each irreducible component of 6c2 has dimension ≥ 3c2 − 11, see [O’Grady

1996; Nijsse 1995] or [Mestrano and Simpson 2011, Corollary 3.1].
A point of 6c2 may also be considered as an extension of the form

0→OX → E→ JP/X (1)→ 0,

again up to isomorphism. We therefore employ the notation {E, P} :=6c2 , too.
Such an extension exists, with E a bundle, if and only if P ⊂ X is locally a

complete intersection of length c2 and satisfies the Cayley–Bacharach condition for
quadrics denoted CB(2). See [Barth 1977; Griffiths and Harris 1978; Reider 1988]
and the references for the Hartshorne–Serre correspondence discussed in [Arrondo
2007] for the origins of this principle.

Denote by {P} the Hilbert scheme of l.c.i. subschemes P that satisfy CB(2).
The map {E, P}→ {P} has fibers described as follows: the fiber over P is a dense
open subset1 of the projective space of all extensions P Ext1(JP/X (1),OX ); its
dimension by duality is h1(JP/X (1))− 1.

Consider c the number of conditions imposed by P on quadrics. This is related
to h1(E(1)) by the exact sequences

H 0(OX (2))→ H 0(OP(2))→ H 1(JP/X (2))→ 0

and

0→ H 1(E(1))→ H 1(JP/X (2))→ H 2(OX (1))→ 0,

where H 2(E(1)) = H 0(E(1))∗ = 0 by stability, and H 2(OX (1)) = H 2(K X ) =

C. The number c is the rank of the evaluation map of H 0(OX (2)) on P, so
h1(JP/X (2)) = c2 − c, and by the second exact sequence we have h1(E(1)) =
c2− c− 1.

The number c2 − c− 1 is also equal to the dimension of the fiber of the map
from the space of extensions {E, P} to the Hilbert scheme of subschemes {P}. As
stated previously, the space of extensions {E, P} fibers over the moduli space of
bundles {E} with fiber PH 0(E) of dimension h1(JP/X (1)).

1It is the open subset of extensions such that E is locally free, nonempty because of the conditions
on P.
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The locus V (c2), image of 6c2 , is the main piece of the set of potentially ob-
structed bundles, that is to say bundles for which the space of obstructions is nonzero.

The other pieces are of smaller dimension. There was an error in the proof of
this dimension estimate, Lemma 5.1 and hence Corollary 5.1 in [Mestrano and
Simpson 2011]. These will be corrected and improved in a separate section at the
end of the present paper, see Lemma 10.1 below.

Using the Cayley–Bacharach condition. Recall that a 0-dimensional subscheme
P ⊂ P3 satisfies the Cayley–Bacharach condition CB(n) if, for any subscheme
P ′ ⊂ P with length `(P ′)= `(P)− 1, a section f ∈ H 0(OP3(n)) vanishing on P ′

must also vanish on P. When P ⊂ X this is the condition governing the existence
of an extension of JP/X (n− 1) by OX that is locally free. For the study of 6c2 we
are therefore interested in subschemes satisfying CB(2).

See [Mestrano and Simpson 2011; 2013] and the survey [Mestrano and Simpson
2016] for details on the basic techniques we use to analyze the Cayley–Bacharach
condition.

If U ⊂ P3 is a divisor, usually for us a plane, and P a subscheme, there is a
residual subscheme P ′ for P with respect to U. In the case of distinct points it
is just the complement of P ∩U, but more generally it has a schematic meaning
with `(P ′)+ `(P ∩U )= `(P). If P satisfies CB(n) and U has degree m then the
residual P ′ satisfies CB(n−m).

The following fact will be used often: if P ′ is the residual of P with respect to U,
and if Z ⊂ P3 is a subvariety, then the length of Z ∩ P at any point is at least equal
to the length of Z ∩ P ′. So for example if P ′ has 3 points in a line (schematically),
then P does too.

It is easy to see that the Cayley–Bacharach condition CB(2) cannot be satisfied
by ≤ 3 points, so the moduli space is empty for c2 ≤ 3. Here is a case-by-case
review of the cases 4≤ c2 ≤ 9.

For c2=4, 5. Here the subscheme P is either 4 or 5 points contained in a line. Both
of these configurations impose c = 3 conditions on quadrics, since h0(OP1(2))= 3.
This gives values of 4− 3− 1 = 0 and 5− 3− 1 = 1 for h1(E(1)) respectively.
The moduli space is generically smooth and its dimension is equal to c2 − 2 by
[Mestrano and Simpson 2011, Lemma 7.7]. This may be seen directly from the
more explicit descriptions we shall give in Section 7 below. We get the dimension of
the space of coobstructions by subtracting the expected dimension. This completes
the proof of Proposition 2.2 for the columns c2 = 4, 5.

For c2 = 6, 7. In both cases, the Euler characteristic argument of [Mestrano and
Simpson 2011, Section 6.1] gives h0(E) = 2, hence h0(JP/X (1)) = 1 and P is
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contained in a unique plane U. By Lemma 5.5 there, the space of obstructions has
dimension 3.

For c2 = `(P)= 6, see Proposition 7.4 there that we now review. The number c
of conditions imposed on quadrics has to be ≤ 5, in particular P is contained in
a planar conic Y ⊂U. However, c ≤ 4 may be ruled out by the size of P and the
Cayley–Bacharach condition; see the second paragraph of §7.5 there. It follows
that the dimension of {E, P} equals the dimension of {P}, and as noted above this
dimension is ≥ 3c2− 11= 7.

Look at the family of length 6 subschemes P ⊂ X ∩ Y such that all points of
P are located either at smooth points of Y, or at smooth points of X ∩U. Such a
subscheme is uniquely determined by its multiplicities at each point, so given Y the
set of choices of P is discrete and if we generalize Y, the subscheme P generalizes.
Therefore, this defines a set of irreducible components of dimension equal to the
dimension of the space of choices of Y, that is 8. For U fixed and Y general, the
choice of P is equivalent to the choice of complementary set of 4 points in Y ∩ X ;
but since any 4 points in the plane lie on a conic, the monodromy action as we
move Y can take any choice of 4 points to any other one. Therefore, this family is
a single irreducible component of dimension 8.

The remaining locus of P containing a point where Y is singular and U is tangent
to X, has dimension ≤ 5. For example if there is one such point, then the space of
choices of U has dimension 2; the space of choices of Y has dimension 2; and by
the precise estimate of [Briançon et al. 1981, Proposition 4.3], noting that Y has
multiplicity 2 at the singular point, the space of choices of P has dimension ≤ 1.
For more points, we get one further dimension of the space of choices of P for each
other point but more than 1 new condition imposed by the tangencies. Therefore,
the locus of subschemes not fitting into the situation of the previous paragraph has
dimension < 7, and it cannot produce a new irreducible component.

This completes the discussion for c2 = 6: we have an irreducible component of
{E, P} of dimension 8 whose general point consists of a choice of 6 out of the 10
intersection points in X ∩Y for a plane conic Y. Since h0(E)= 2 the dimension of
{E} is 7. For the table, notice that h1(E(1))= 6−5−1= 0. Comparing dimension,
expected dimension 4 · 6− 20= 4 and the dimension 3 of the space of obstructions,
we find that the moduli space is generically smooth with vanishing obstruction maps.

Consider now the case c2 = 7. See [Mestrano and Simpson 2011, Proposition
7.3] to be reviewed as follows. As previously from the second paragraph of §7.5 the
same work, the case c ≤ 4 may be ruled out. If c = 5, then P would be contained
in a plane conic Y ⊂ U, but using the same arguments as before the dimension
of the space of choices of P would be ≤ 8; however any irreducible component
of {E, P} has dimension ≥ 3 · 7− 11 = 10 and the fiber of the map to {P} has
dimension 1, so a family of subschemes P of dimension ≤ 8 cannot contribute an
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irreducible component. Therefore we may suppose c= 6, the dimensions of {E, P}
and {P} are the same and are ≥ 10. For a given plane U the space of choices of
subscheme P ⊂ X ∩U of length 7 has dimension 7 by [Briançon et al. 1981]. The
space of choices of P such that U ∩ X is singular (i.e., U tangent to X ), therefore
has dimension ≤ 9 and cannot contribute. If U is a plane such that X ∩U is smooth,
the Hilbert scheme of P ⊂ X ∩U is irreducible and a general point corresponds to
choosing 7 distinct points. We conclude that {E, P} is irreducible of dimension 10
with general point consisting of a general subscheme P ⊂U ∩ X of length 7 that
indeed satisfies CB(2) imposing c = 6 conditions on quadrics.

Notice that since h0(E)= 2 the map {E, P} → {E} is a fibration with fibers P1

so the corresponding irreducible component of the moduli space has dimension
9 as filled into the table. At a general point where P imposes c = 6 conditions
on quadrics, we get h1(E(1)) = 7− 6− 1 = 0. From [Mestrano and Simpson
2011, Proposition 7.3], by comparing dimensions the moduli space is generically
nonreduced. This treats the column c2 = 7.

For c2 = 8. See the discussion in [Mestrano and Simpson 2011, Section 6.2] and
Theorem 7.2 there which will now be reviewed with some improvement in the
arguments allowing us to bypass certain case-by-case considerations.

Any component of {E, P} has dimension ≥ 3 · 8− 11= 13.
The following technique, involving the residual subscheme recalled above, will

be useful.

Lemma 3.1. Suppose U ⊂ P3 is a plane, and let P ′ denote the residual subscheme
for P with respect to U. If nonempty, P ′ satisfies CB(1), so `(P ′)≥ 3 and in case
of equality P ′ is collinear.

Let c be the number of conditions imposed on quadrics in P3 passing through
P, and let n be the number of additional conditions on these quadrics needed to
insure their vanishing on U. Suppose 10− c ≥ n+ 1. Then there exists a quadric
containing P of the form U ∪ U ′ where U ′ is another plane, containing P. In
particular, P ′ ⊂ U ′. If 10 − c ≥ n + 2 then P ′ is contained in a line, and if
10− c ≥ n+ 3 then P ⊂U.

Proof. The first paragraph is a restatement of the basic property of the residual
subscheme. Note that one or two points, or three noncollinear points, cannot be
CB(1).

In the second paragraph, we could define n as the dimension of the image of

H 0(JP/P3(2))→ H 0(OU (2)).

If 10− c ≥ n+ 1, then it means that we can impose n additional conditions (say,
vanishing at general points of U ) on the (10 − c)-dimensional space quadrics
H 0(JP/P3(2)), to get one that vanishes on U. This quadric has the form U ∪U ′ of
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the union of U with another plane U ′. By definition the residual is contained in U ′.
If 10− c ≥ n+ 2, then the U ′ move in a 2-dimensional family so they cut out a
line containing P ′. If 10− c ≥ n+ 3, the family of U ′ cuts out a point; however P ′

satisfying CB(1) cannot be a single point, so in this case it is empty and P ⊂U. �

Look at the value of c at a general point of an irreducible component. The case
c ≤ 5 may be ruled out (using a simpler version of the subsequent arguments), so
we may assume either c = 6 or c = 7. If c = 6 then the fiber of {E, P} → {P} has
dimension 1 and {P} has dimension ≥ 12, whereas if c = 7 then the irreducible
component of {E, P} is the same as that of {P}, and {P} has dimension ≥ 13.

It follows that a general P is not contained in any multiple of a plane. Indeed,
the space of the m.U has dimension 3 whereas for any one, the dimension of the
space of length 8 subschemes P ⊂ X ∩m.U is ≤ 8 by [Briançon et al. 1981]. (Here
and below, by m.U we denote the m-tuple scheme structure on U.)

Lemma 3.2. In a given irreducible component, a general P does not contain a
collinear subscheme of length ≥ 3 in a line.

Proof. Start by noting that P is not contained in U ∪ L for a plane U and a line L .
The space of quadrics containing U ∪ L has dimension 2, whereas c ≤ 7 so there
would be a third quadric containing P. One can see that it would have to contain L ,
so it defines a plane conic Y ⊂U, meeting L , and P ⊂ Y ∪ L . But the dimension of
the space of choices of Y, L is 3 for the plane, 5 for the conic, 1 for the intersection
point with L and then 2 for the direction of L making 11. Given Y, L the choice of
P is discrete (except in some degenerate cases2). The set of such P can therefore
not be dense in an irreducible component.

We now show that P cannot have three points collinear in a line R, assuming to
the contrary that it does. Choose a point p ∈ P not contained in R (possible by the
paragraph above the lemma). Let U be the plane spanned by p and R. Vanishing
on P ∩ R and at p imposes 4 conditions on conics of U.

In the case c= 6, by Lemma 3.1 with n≤ 2 so 4= 10−c≥ n+2, the residual P ′

of P with respect to U is contained in a line L , and we get P ⊂U∪L , contradicting
the first paragraph.

In the case c = 7, by Lemma 3.1 with n ≤ 2, so 3 = 10− c ≥ n + 1, we get
P ⊂U ⊂U ′. Both U and U ′ must contain points not touching R. The residual P ′

of P with respect to U has length ≥ 4, indeed if it were to consist of 3 points they
would have to be collinear by the CB(1) property but that would give P ⊂U ∪ L .

2Since P is not contained in a double plane, Y is not a double line; in the other cases, singularities
of X ∩ (Y ∪ L) are always contained in planar singularities of multiplicity 2 so by [Briançon et al.
1981] the dimension of the space of P increases by 1 at any such point; but existence of the singularity
imposes at least one additional condition decreasing the dimension of the space of Y, L .
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If U ′ doesn’t contain R, the intersection P ∩ (U ′ ∪ R) has length3 at least 7,
but since U ′ ∪ R is cut out by quadrics the CB(2) property of P says that in fact
P ⊂ (U ′ ∪ R) contradicting the first paragraph of the proof.

Suppose R ⊂U ′. Given a residual point lying along R, it cannot correspond to a
subscheme leaving R in a direction different from U ′. For in that case, we could
let U2 be the plane contacting this direction, different from U or U ′, and applying
Lemma 3.1 again would give P ⊂U2 ∪U3 contradicting the fact that both U and
U ′ contain points of P not on R. So, any point of P ′ along R corresponds to a
point of extra contact with U ′. We conclude that the residual subscheme of P ∩U ′

with respect to R ⊂U ′, has length ≥ 2. Therefore, n = 1 conditions suffice to imply
vanishing of quadrics on U ′ so by Lemma 3.1 this time with 3= 10− c≥ n+2 we
find that the residual of P with respect to U ′ is contained in a line. This again gives
P contained in a plane plus a line, contradicting the first paragraph of the proof. �

We may now show that the case c = 6 doesn’t contribute a general point of
an irreducible component. Choose 3 points of P defining a plane U and apply
Lemma 3.1 adding n ≤ 3 extra conditions: we get at least one quadric in our family
that has the form U ∪U ′. Now if U ∩ P has length 5, then the residual would have
length 3 and satisfy CB(1); therefore it would have to be collinear, contradicting
the previous lemma. It follows that U ∩ P and U ′ ∩ P both have length 4. But
then, it actually sufficed to add n ≤ 2 conditions so we get a line containing the
residual, again contradicting Lemma 3.2. This finishes ruling out the possibility of
an irreducible component whose general point imposes c≤ 6 conditions on quadrics.

Therefore assume c = 7. Now {E, P} and {P} have the same dimension which
is ≥ 13. There is a vector space of dimension 10− c = 3 of quadrics passing
through P. Let H1, H2, H3 denote the elements of a basis of this space.

Here the proof divides into an analysis of two distinct cases; these were called (a)
and (b) in [Mestrano and Simpson 2011] referring to the two cases of Proposition
7.1 from there. Case (a) is when H1 ∩ H2 ∩ H3 has dimension 0. It is a subscheme

3An algebraic argument is needed for the piece of P located at R ∩ U ′; letting A denote its
coordinate algebra, u the equation of U ′, f the equation of U and g the equation of another plane
through R, our hypothesis is f u A = 0 and the local piece of P ∩ (U ′ ∪ R) corresponds to A/gu A.
Considering the exact sequence

A/gu A→ A/( f A+ g A)⊕ A/u A→ C→ 0,

we see that if the required inequality `(A/gu A)≥ `(A/( f A+ g A))+ `( f A) didn’t hold we would
have gu A = ( f A+ g A)∩ u A and f A ∼= A/u A, hence also u A ∼= A/ f A. The exact sequence

0→ gu A→ u A→ A/( f A+ g A)

becomes 0→ g(A/ f A)→ A/ f A u
−→ A/( f A+ g A), which would give that multiplication by u on

A/( f A+ g A) is injective, but that isn’t possible since A has finite length.
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of length 8 so we get
P = H1 ∩ H2 ∩ H3.

A general such subscheme satisfies CB(2), and I. Dolgachev pointed out to us
that these are called “Cayley octads”. We shall treat the Cayley octads of case (a)
secondly, since that will use one part of the discussion of case (b).

Case (b): This is when the subscheme Y = H1 ∩ H2 ∩ H3 contains a pure 1-
dimensional subscheme Y1. Notice that Y1 is a union of components of the curve4

H1 ∩ H2. On the other hand, by Lasker’s theorem [Eisenbud et al. 1996, p. 314] if
Y1 were equal to H1 ∩ H2 then there couldn’t be a third quadric vanishing on Y1.
Therefore, Y1 is a curve of degree ≤ 3.

We will now show that Y1 doesn’t contain a line. Suppose to the contrary that
R ⊂ Y1 is a line. Then all quadrics in our family contain R.

Choose a point p of P not on R, let U be the plane through R and p, and apply
Lemma 3.1 with n = 2 to get P ⊂ U ∪U ′. If P ∩U ′ has length ≥ 5, it doesn’t
have four collinear points so it imposes 5 conditions on conics; hence we can
apply Lemma 3.1 with n = 1 and get three residual points in a line, contradicting
Lemma 3.2. Therefore P ∩U has length ≥ 4, however since P ∩ R has length
≤ 2 by Lemma 3.2, the residual of P ∩U with respect to R has length ≥ 2. Now,
vanishing on R and on P ∩U imposes 5 conditions on conics of U. Thus we may
again apply Lemma 3.1 with n= 1 and get a residual consisting of 3 collinear points
contradicting Lemma 3.2. This completes the proof that Y1 does not contain a line.

That rules out almost all of the cases listed in [Mestrano and Simpson 2011,
Lemma 7.4].

A next case is if Y1 is a conic in a plane U. Then, it suffices to impose a single
condition, n = 1 in Lemma 3.1, so 3= 10− c ≥ n+ 2 and the residual subscheme
consists of at least 3 points in a line. This contradicts Lemma 3.2, so Y1 cannot be
a plane conic.

The only remaining possibility for our curve of degree three, is that Y1 could be
a rational cubic curve not contained in a plane. It has to be a rational normal cubic,
in particular smooth. The restriction of OP3(2) to the rational curve has degree
6 so it has seven linearly independent sections; our three-dimensional family of
quadrics is therefore the family of all quadrics passing through Y1. They define Y1

schematically, in particular P ⊂ Y1.
This case will be of interest for our treatment of case (a) below. We have that

P is a length 8 subscheme of the intersection Y1 ∩ X. For given Y1 the space of
choices of P is discrete, and as Y1 moves any P becomes general. The family of
such subschemes may therefore be identified with a covering of the space of choices

4Note that Hi cannot all vanish on some plane, otherwise by CB(1) for the residual P would have
to be contained in the plane as we saw previously.
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of rational normal cubic Y1. The covering is determined, over a general point, by
the choice of 8 out of the 15 points in Y1∩ X , or equivalently by the choice of the 7
complementary points.

The space of choices of Y1 has dimension 12 (see [Mestrano and Simpson 2011,
§6.2]). Therefore, this family cannot constitute an irreducible component of {P}.
This completes the proof that case (b) cannot happen at a general point of an
irreducible component.

Case (a): We start this discussion by continuing to look at the above 12-dimensional
family of subschemes consisting of points in X ∩ Y1 for a smooth rational normal
cubic curve Y1.

We claim that the family of subschemes, and hence of bundles, obtained in
this way is irreducible. This may be seen as follows. Any 6 points from X ∩ Y1

determine the rational normal cubic Y1, so if we move a set of 6 points around
to a different set, we get back to the same rational normal curve and this shows
that the monodromy action includes permutations sending any subset of 6 points to
any other one. On the other hand, there is a rational normal curve with first order
tangency to X, and moving it a little bit induces a permutation of two points keeping
the other points fixed. Therefore, the subgroup of the symmetric group contains a
transposition. Now since it is 6-tuply transitive, it contains all the transpositions.
Thus, the monodromy group is the full symmetric group and any group of 8 points
can be moved to any other one. This shows that the family is irreducible.

As was pointed out at the end of Section 6.2 in [Mestrano and Simpson 2011], the
space of obstructions at a general point in our family has dimension 1. The expected
dimension is 4c2− 20= 12, so the Zariski tangent space to the moduli space has
dimension 13; however, as noted above, any irreducible component has dimension
≥ 13 because of the existence of the extension. Therefore, a general point of our
12-dimensional family lies in a smooth open subset of a unique 13-dimensional irre-
ducible component of the moduli space {E} (notice here that the spaces {E, P} and
{P} are also the same). As our 12-dimensional family is irreducible by the previous
paragraph, this determines a canonical irreducible component of the moduli space.

This discussion corrects an error of notation in the second paragraph of the
proof of Lemma 7.6 of [Mestrano and Simpson 2011], where it was stated that
the irreducible 12-dimensional family of Cayley–Bacharach subschemes on the
rational normal cubic was inside the type (a) subspace of the moduli space; but that
family is clearly of type (b). Those phrases should be replaced by the argument of
the previous paragraph showing that our 12-dimensional family is contained in a
unique 13-dimensional irreducible component of the moduli space, whose general
point is of type (a).
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We now turn to consideration of the full set of irreducible components, whose
general points are of type (a), that is to say bundles determined by Cayley octad
subschemes P (since we showed in the previous part that type (b) cannot lead to a
general point of a component).

The argument given in [Mestrano and Simpson 2011, §7.4], using the incidence
variety suggested by A. Hirschowitz, shows that the existence of a canonically
defined irreducible component implies irreducibility of the moduli space.

Let us recall here briefly how this works. We look at the full incidence scheme
{X, P} parametrizing smooth quintic hypersurfaces X together with l.c.i. sub-
schemes P ⊂ X of length 8 satisfying CB(2) of type (a). For a given P ⊂ P3

the space of quintics X containing it is a projective space and these all have the
same dimension. So the fibration {X, P} → {P} is smooth, over the base that is
an open subset in the Grassmannian Grass(3, 10) of 3-dimensional subspaces of
H 0(OP3(2)). Thus, the full incidence variety {X, P} is irreducible. There is a
dense open subset of the space of quintics {X}, over which the sets of irreducible
components of the fibers don’t change locally. Thus, the fundamental group of this
open set acts on the set of irreducible components of the fiber {P}X over a basepoint
X ∈ {X}. This action is transitive, by irreducibility of the full incidence variety.
On the other hand, we have described above a canonically defined irreducible
component of {P}X , containing the nearby generalizations of our 12-dimensional
family of subschemes of a rational normal cubic curve. Since it is canonically
defined, this component is preserved by the monodromy action. Transitivity now
implies that {P}X has only a single irreducible component.

This completes the proof of irreducibility for c2 = 8. The generic space of
obstructions has dimension 1. That was seen for points on the rational normal cubic
curve, at the end of §6.2 of [Mestrano and Simpson 2011]; however the moduli
space has dimension 13, equal to the expected dimension plus 1, so the space of
obstructions remains 1-dimensional at a general point.

As the dimension of the moduli space is equal to the expected dimension plus the
dimension of the space of obstructions, we get that the moduli space is generically
smooth, and in fact that was already the case at a point of the 12-dimensional family
of subschemes on a rational normal cubic. Since c = 7 at a general point we have
h1(E(1))= 8− 7− 1= 0, to complete the corresponding column of our table.

For c2 = 9. For the column c2 = 9, see [Mestrano and Simpson 2011, Theorem
6.1 and Proposition 7.2], for the dimension 16 and general obstruction space of
dimension 1. The proof of Proposition 7.2 there starts out by ruling out, for a
general point of an irreducible component, all cases of Proposition 7.1 there except
case (d), for which c = 8. Thus h1(E(1))= 9− 8− 1= 0 for a general bundle, as
we shall also see below.
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We give here an alternate argument by dimension count to show that a general
bundle in any irreducible component consists of a collection of 9 out of the 20
points on a degree 4 elliptic curve, intersection of two quadrics, intersected with X.

The expected dimension of {E} is 4c2− 20= 16, and a general E determines a
unique5 extension hence a unique subscheme P of length 9. The dimension of any
irreducible component of {E, P} is ≥ 16 (notice that it coincides with the value of
3c2− 11 too).

We first rule out the possibility that c ≤ 7 for a general point. If there were a
three-dimensional family of quadrics passing through P then they cannot intersect
transversally in a zero-dimensional subscheme, since that would have length only 8
and so be unable to contain P. But if the intersection of the three quadrics has a
component of positive dimension, then arguing much as in the previous section we
can get a contradiction. Indeed, the space of length 9 subschemes contained in the
intersection of X with two planes has dimension ≤ 3+ 3+ 9 = 15 < 16, so any
time Lemma 3.1 applies we immediately obtain a contradiction. The remaining
case of points on a rational normal curve is ruled out by dimension.

We may therefore assume c = 8, from which it follows that any irreducible
component of {P} has dimension ≥ 16. It follows that a general P contains at
least 7 points in general position on X. Let us explain the details of this argument,
since this kind of dimension count has already been used several times above. Let
H ⊂ {P} denote some component of the Hilbert scheme of subschemes we are
interested in, that is to say l.c.i. subschemes P⊂ X of length 9 satisfying CB(2). Let

I ⊂ H × X

be the incidence subscheme, whose fiber over a point h ∈ H is the subscheme Ps

thereby parametrized. Suppose p1, . . . , pk is a collection of distinct points in X,
and let H(p1, . . . , pk)⊂ H be the closed subscheme parametrizing those P that
contain p1, . . . , pk . It may be inductively defined as follows: we have the incidence
subvariety I(p1, . . . , pk)⊂ H(p1, . . . , pk)× X, and for a point pk+1 distinct from
the other ones,

H(p1, . . . , pk, pk+1) := pr−1
2 (pk)⊂ I(p1, . . . , pk).

By induction we show that for general points pi , H(p1, . . . , pk) is nonempty of
dimension≥ 16−2k whenever k≤ 7. Assume it is known for k−1 but not true for k.
That means that the map I(p1, . . . , pk−1)→ X maps onto a closed subvariety; in
other words, there is a curve C⊂ X depending on p1, . . . , pk−1 and containing all of
the subschemes parametrized by points of H(p1, . . . , pk−1). But then the space of

5An easy dimension count rules out the possibility that P be contained in a plane.
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such subschemes has dimension≤ 9−(k−1) (by [Briançon et al. 1981]), contradict-
ing our inductive hypothesis since 9−(k−1)< 16−2(k−1) as (k−1)< 16−9= 7.

After the 7 points in general position there remain two points. We may conclude
that the dimension of a family of subschemes P, once the set theoretical locations
of the points are known, is ≤ 2.

We now claim that if P is general, then for a general element H of our family
of quadrics passing through P, the intersection H ∩ X is smooth. The proof is by
a dimension count of the complementary family. If the H ∩ X is always singular,
then the singular point is a basepoint (of the linear system on X ), of which there
are finitely many, so it is fixed. Thus, all the H are tangent to X at some point.
The space of 2-dimensional linear systems tangent to x ∈ X is a Grassmannian
Grass(2,C7) of dimension 10. As the point moves in X we have a 12-dimensional
space of choices of the linear system; and each one of these fixes the set-theoretical
location of the points of P so by the previous paragraph, the corresponding space
of P has dimension ≤ 2, so altogether we obtain that the family not satisfying our
claimed condition has dimension ≤ 14. Since any component has dimension ≥ 16
it follows that the complementary family cannot constitute a component, which
proves the claim.

Suppose V := H 0(JP/P3(2))⊂ C10
= H 0(OP3(2)) is the two-dimensional space

of quadrics passing through our general point P. Then any deformation of the
subspace V ⊂C10 lifts to a deformation of P. This is because, by the previous claim,
we can choose a general element of V corresponding to a quadric H1 such that H1∩X
is smooth. As the smooth curve deforms, our subscheme P of (H1∩X)∩H2 becomes
general since it is uniquely determined just by its multiplicities at each point.

From the above discussion it follows that a general point P in any irreducible
component is obtained by choosing 9 out of the 20 points of (H1 ∩ H2)∩ X for a
general pair of quadrics H1, H2. But since any 8 points determine the subspace
〈H1, H2〉, the monodromy action on the set of 20 intersection points is 8-tuply
transitive. By going around a curve H1∩H2 with a single simple tangent point to X,
we get a transposition in the monodromy group; hence it contains all transpositions
and it is the full symmetric group. Therefore, the set of choices of 9 points forms a
single orbit under the monodromy group. This completes the proof that there is
only one irreducible component of dimension 16.

The space of obstructions at a general point has dimension 1, see the discussion
above Theorem 6.1 in [Mestrano and Simpson 2011]. This completes our review of
the proof of Proposition 2.2.

For c2 ≥ 10. We will not be further reviewing the partial result of the case c2 = 10
that was treated in [Mestrano and Simpson 2013], giving irreducibility of the open
subset of the moduli space corresponding to seminatural cohomology as was stated
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in Proposition 2.4 above, since the argument is more involved and it is the subject
of a distinct paper.

On the other hand, it will be useful to discuss in more detail the structure of
V (c2).

Lemma 3.3. For c2≥ 11, V (c2) is irreducible of dimension 3c2−11 and its general
point corresponds to a set of points P in general position with respect to quadrics.
The closure of V (c2) meets the boundary.

Proof. See [Mestrano and Simpson 2011, Corollary 7.1], showing that for c2 ≥ 11,
6c2 contains an open dense subset 610

c2
consisting of collections P such that any

colength 1 subscheme of P imposes vanishing of all quadrics. This is an open
subset of the Hilbert scheme of all subschemes P of length c2 so it is smooth, and
it further contains an open dense subscheme where the points of P are distinct. The
latter is an open subset of the symmetric product of X so it is irreducible.

The closure of V (c2) intersects the boundary, as was discussed in the proof of
[Nijsse 1995, Proposition 3.2]. Indeed, choose a collection P0 of distinct points that
impose vanishing of quadrics but that doesn’t satisfy CB(2). Deform this collection
in a family Pt such that the general Pt (for t 6= 0) satisfies CB(2). Since all elements
of the family impose the same number of conditions on quadrics, the space of Ext
groups varies in a bundle with respect to the parameter t and we may choose a
family of extensions such that the general one is locally free. But the special one
is not locally free since P0 didn’t satisfy CB(2). This family gives a curve in 610

c2

with parameter t 6= 0, whose limiting sheaf at t = 0 is not locally free: we have a
deformation to the boundary. �

Lemma 3.4. For c2 = 10, V (10) is irreducible of dimension 3c2 − 11 = 19 and
its general point corresponds to a subscheme P composed of 10 general points on
a smooth intersection with a quadric Y = X ∩ H. A general bundle in V (10) has
h1(E(1))= 0 so any deformation moving away from V (10) will have seminatural
cohomology, and only the irreducible component of M(10) constructed in [Mestrano
and Simpson 2013] contains V (10).

Proof. See [Nijsse 1995, Lemma 3.1]. General elements of any irreducible com-
ponent correspond to subschemes P not contained in a plane, so the irreducible
components of V (10) correspond to those of 610 having the same dimension.

By [Mestrano and Simpson 2011, Corollary 7.1], 610 is pure of dimension 19.
The stratum 68

10 consisting of extensions where P lies in the intersection of two
quadrics, has dimension < 19. Indeed, the subscheme P is determined by the
two-dimensional subspace of quadrics6 and this has dimension 16, to which we
should add 1 for the space of choices of extension: it comes out strictly less than 19.

6Unless they share a common plane but that case may also be dealt with by a dimension count:
3 for the choice of plane, plus 4 for the choice of line, plus at most 7 for the choice of points in the
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Similarly, the dimension of the stratum 67
10 is strictly less than 19, and the strata

6c
10 for c≤ 6 may be ruled out using our previous line of argument with Lemma 3.1.
We conclude that the stratum 69

10 is dense in 610. Here the extension class is
determined (up to scaling) so {E, P} and {P} are the same, and {P} is an open
subset of the space {H, P} parametrizing quadrics H together with P ⊂ H ∩ X.
The open subset is given by the conditions that no other quadrics vanish on P, and
that P satisfies CB(2). But the space {H, P} is irreducible.

Thus, V (10) is irreducible and its general point parametrizes collections of 10
general points on a general smooth quadric section Y = X ∩ H. One may now
calculate with the standard exact sequence that for a general E ∈ V (10), we have
h1(E(1))= 0.

Recall by [Mestrano and Simpson 2013, Corollary 3.5] that the condition of
having seminatural cohomology, for bundles in M(10), is equivalent to the con-
junction of two conditions7 h1(E(1))= 0 and h0(E)= 0. Bundles in V (10) clearly
don’t satisfy the second condition because V (10) is the locus where h0(E) > 0.
However, we have seen that a general point of V (10) satisfies the first condition.
On the other hand V (10) is pure of dimension 19 whereas any component of
M(10) has dimension ≥ 20. Therefore, in any irreducible component of M(10)
containing V (10), the general point has h0(E)=0, but also h1(E(1))=0 since it is a
generization of the general point of V (10) that satisfies this condition. Therefore, any
irreducible component of M(10) containing V parametrizes, generically, bundles
with seminatural cohomology.

It now follows from the main result of [Mestrano and Simpson 2013] (stated as
Proposition 2.4 above) that any irreducible component of M(10) containing V (10)
must be the unique component constructed there. �

4. The double dual stratification

Turn now to the proof of the main theorem on the moduli spaces for c2 ≥ 10. Our
subsequent proofs will make use of O’Grady’s [1993; 1996] techniques, as they
were recalled and used by Nijsse [1995]. The main idea is to look at the boundary
of the moduli spaces. His first main observation is the following:

Lemma 4.1 [O’Grady 1996, Proposition 3.3]. The boundary of any irreducible
component (or indeed, of any closed subset) of M(c2) has pure codimension 1, if it
is nonempty.

plane since they would otherwise all be in the plane and then we could ignore the choice of line, plus
1 for the choice of extension class, comes out to strictly less than 19.

7We use duality and Euler characteristic to rewrite the conditions of [Mestrano and Simpson 2013,
Corollary 3.5].
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The boundary is divided up into Uhlenbeck strata corresponding to the “number
of delta-like singular instantons”, which in the geometric picture corresponds to the
number of points where the torsion-free sheaf is not a bundle, counted with correct
multiplicities. A boundary stratum denoted M(c2, c2−d) parametrizes torsion-free
sheaves F fitting into an exact sequence of the form

0→ F→ E σ
−→ S→ 0

where E ∈ M(c2− d) is a stable locally free sheaf of degree 1 and c2(E)= c2− d ,
and S is a finite coherent sheaf of length d so that c2(F)= c2. In this case E = F∗∗.
We may think of M(c2, c2− d) as the moduli space of pairs (E, σ ). Forgetting the
quotient σ gives a smooth map

M(c2, c2− d)→ M(c2− d),

sending F to its double dual. The fiber over E is the Grothendieck Quot scheme
Quot(E, d) parametrizing quotients σ of E of length d .

Since we are dealing with sheaves of degree 1, all semistable points are stable
and our objects have no nonscalar automorphisms. Hence the moduli spaces are
fine, with a universal family existing étale-locally and well defined up to a scalar
automorphism. We may view the double-dual map as being the relative Grothendieck
Quot scheme of quotients of the universal object Euniv on M(c2 − d)× X over
M(c2− d). Furthermore, locally on the Quot scheme the quotients are localized
near a finite set of points, and we may trivialize the bundle Euniv near these points,
so M(c2, c2− d) has a covering by, say, analytic open sets which are trivialized as
products of open sets in the base M(c2− d) with open sets in Quot(E, d) for any
single choice of E . This is all to say that the map M(c2, c2−d)→ M(c2−d) may
be viewed as a fibration in a fairly strong sense, with fiber Quot(E, d).

Li [1993, Proposition 6.4] shows that Quot(E, d) is irreducible with a dense open
subset U parametrizing quotients which are given by a collection of d quotients of
length 1 supported at distinct points of X :

Theorem 4.2 [Li 1993]. Suppose E is a locally free sheaf of rank 2 on X. Then
for any d > 0, Quot(E, d) is an irreducible scheme of dimension 3d, containing
a dense open subset parametrizing quotients E→ S such that S ∼=

⊕
Cyi , where

Cyi is a skyscraper sheaf of length 1 supported at yi ∈ X, and the yi are distinct.
This dense open set maps to X (d)

− diag (the space of choices of distinct d-tuple of
points in X ), with fiber over {yi } equal to

∏d
i=1 P(Eyi ).

Proof. See Proposition 6.4 in the appendix of [Li 1993]. Notice right away that
U is an open subset of Quot(F, d), and that U fibers over the set X (d)

− diag of
distinct d-tuples of points (y1, . . . , yd) (up to permutations). The fiber over a d-
tuple (y1, . . . , yd) is the product of projective lines P(Fyi ) of quotients of the vector
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c2 e.d. dim(M) d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8

4 −4 2 − − − − − − − −

5 0 3 5 − − − − − − −

6 4 7 6 8 − − − − − −

7 8 9 10 9 11 − − − − −

8 12 13 12 13 12 14 − − − −

9 16 16 16 15 16 15 17 − − −

10 20 20 19 19 18 19 18 20 − −

11 24 24 23 22 22 21 22 21 23 −

12 28 28 27 26 25 25 24 25 24 26
≥13 4c2−20 4c2−20 4c2−21 ≤4c2−22

Table 2. Dimensions of strata.

spaces Fyi . As X (d)
− diag has dimension 2d, and

∏d
i=1 P(Fyi ) has dimension d,

we get that U is a smooth open variety of dimension 3d .
This theorem may also be viewed as a consequence of a more precise bound

established by Ellingsrud and Lehn [1999], which will be stated as Theorem 7.6
below, needed for our arguments in Section 7. �

Corollary 4.3. We have

dim(M(c2; c′2))= dim(M(c′2))+ 3(c2− c′2).

If M(c′2) is irreducible, then M(c2; c′2) and hence M(c2; c′2) are irreducible.

Proof. The fibration M(c2; c′2)→ M(c′2) has fiber the Quot scheme whose dimen-
sion is 3(c2− c′2) by the previous proposition. Furthermore, these Quot schemes
are irreducible so if the base is irreducible, so is the total space. �

Corollary 4.3 allows us to fill in the dimensions of the strata M(c2; c′2) in Table 2,
starting from the dimensions of the moduli spaces given by Propositions 2.2 and
2.3. The entries in the second column are the expected dimension 4c2 − 20; in
the third column the dimension of M := M(c2); and in the following columns,
dim M(c2, c2−d) for d = 1, 2, . . . . The rule is to add 3 as you go diagonally down
and to the right by one.

The first remark useful for interpreting this information is that any irreducible
component of M(c2) must have dimension at least equal to the expected dimension
4c2−20. In particular, a stratum with strictly smaller dimension must be a part of at
least one irreducible component containing a bigger stratum. For c2 ≥ 11, we have

dim(M(c2, c′2)) < dim(M(c2))= 4c2− 20.

Hence, for c2 ≥ 11 the closures M(c2, c′2) cannot themselves form irreducible
components of M(c2), in other words the irreducible components of M(c2) are the
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same as those of M(c2). Notice, on the other hand, that M(10) contains two pieces
of dimension 20, the locally free sheaves in M(10) and the sheaves in M(10, 4)
whose double duals come from M(4).

Recall from Proposition 2.2 that the moduli spaces M(c2) are irreducible for
c2= 4, . . . , 9. It follows from Corollary 4.3 that the strata M(c2, c′2) are irreducible,
for any c′2 ≤ 9. In particular, the piece M(10, 4) is irreducible, and its general point,
representing a not locally free sheaf, is not confused with any point of M(10). Since
the other strata of M(10) all have dimension < 20, it follows that M(10, 4) is an
irreducible component of M(10). One similarly gets from the table that M(c2) has
several irreducible components when 5≤ c2 ≤ 9.

5. Hartshorne’s connectedness theorem

Hartshorne proves a connectedness theorem for locally complete intersections. Here
is the version that we need.

Theorem 5.1 [Hartshorne 1962]. Suppose Z is a locally complete intersection of
dimension d. Then, any nonempty intersection of two irreducible components of Z
has pure dimension d − 1.

Proof. See [Hartshorne 1962; Sawant 2011]. �

Corollary 5.2. If the moduli space M is good and has two different irreducible
components Z1 and Z2 meeting at a point z, then Z1 ∩ Z2 has codimension 1 at z
and the singular locus Sing(M) contains z and has codimension 1 at z.

Proof. If M is good, then by Lemma 2.1 it is a locally complete intersection so
Hartshorne’s theorem applies: Z1∩ Z2 has pure codimension 1. The intersection of
two irreducible components is necessarily contained in the singular locus. �

We draw the following conclusions.

Corollary 5.3. Suppose, for c2 ≥ 10, that two different irreducible components Z1

and Z2 of M meet at a point z. Then z is on the boundary.

Proof. If z is not on the boundary, then by the previous corollary it is in a component
of the singular locus having codimension 1 in M. We have seen in [Mestrano
and Simpson 2011, Theorem 7.1] that for c2 ≥ 10, a piece of Sing(M) having
codimension 1 in M(c2) has to be in V (c2), cf., Proposition 2.3 above. On the
other hand V (c2) is irreducible, see Lemmas 3.3 and 3.4, so any such component
of Sing(M) has to be equal to V (c2).

Recall that dim(V (c2))= 3c2− 11 whereas the dimension of the moduli space
is 4c2− 20, thus for c2 ≥ 11 the singular locus has codimension ≥ 2, so the present
situation could only occur for c2 = 10.
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But now by Lemma 3.4, V (10) is contained in only one irreducible component
of M, the one whose general point parametrizes bundles with seminatural cohomol-
ogy. So, two distinct components cannot meet along V (10). �

Next, recall one of Nijsse’s theorems, connectedness of the moduli space.

Theorem 5.4 [Nijsse 1995]. For c2 ≥ 10, the moduli space M(c2) is connected.

Proof. See [Nijsse 1995], Proposition 3.2. We have reviewed the argument in
[Mestrano and Simpson 2016, Theorem 18.8]. �

Corollary 5.5. Suppose Z is an irreducible component of M(c2) for c2 ≥ 10. Then
Z meets the boundary in a nonempty subset of codimension ≤ 1.

Proof. The codimension 1 property is given by Lemma 4.1, so we just have to show
that Z contains a boundary point.

For c2 ≥ 10, the first boundary stratum M(c2, c2− 1) has codimension 1, so it
must meet at least one irreducible component of M(c2), call it Z0. Of course if
Z = Z0 we are done. Suppose Z ⊂ M(c2) is another irreducible component with
c2 ≥ 10. By the connectedness of M(10), there exist a sequence of irreducible
components Z0, . . . , Zk = Z such that Zi ∩ Zi+1 is nonempty. By Corollary 5.3,
Zk−1 ∩ Zk is contained in the boundary. �

6. Seminaturality along the 19-dimensional boundary strata

To treat the case c2 = 10, we will apply the main result of our previous paper.

Proposition 6.1. Suppose Z is an irreducible component of M(10). Suppose that
Z contains a point corresponding to a torsion-free sheaf F with h1(F(1)) = 0.
Then Z is the unique irreducible component containing the open set of bundles with
seminatural cohomology, constructed in [Mestrano and Simpson 2013].

Proof. The locus V (c2) of bundles with h0(E) 6= 0 has dimension ≤ 19, so a general
point of Z must have h0(E)= 0. The hypothesis implies that a general point has
h1(E(1))= 0. Thus, there is a nonempty dense open subset Z ′ ⊂ Z parametrizing
bundles with h0(E) = 0 and h1(E(1)) = 0. By [Mestrano and Simpson 2013,
Corollary 3.5], these bundles have seminatural cohomology. Thus, our open set is
Z ′=M(10)sn, the moduli space of bundles with seminatural cohomology, shown to
be irreducible in the main Theorem 0.2 of the same work recalled as Proposition 2.4
above. �

Using Proposition 6.1, and since we know by Corollary 5.5 that any irreducible
component Z meets the boundary in a codimension 1 subset, in order to prove irre-
ducibility of M(10), it suffices to show that the torsion-free sheaves F parametrized
by general points on the various irreducible components of the boundary of M(10)
have h1(F(1))= 0.
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The dimension is dim(Z)= 20, so the boundary components will have dimen-
sion 19. Looking at the line c2 = 10 in Table 2, we notice that there are three
19-dimensional boundary pieces, and a 20-dimensional piece which must constitute
a different irreducible component. Consider first the 19-dimensional pieces,

M(10, 9), M(10, 8) and M(10, 6).

Recall that M(10, 10−d) consists generically of torsion-free sheaves F fitting into
an exact sequence

(6-1) 0→ F→ F∗∗→ S→ 0,

where F∗∗ is a general point in the moduli space of stable bundles with c2 = 10−d ,
and S is a general quotient of length d .

Proposition 6.2. For a general point F in either of the three boundary pieces
M(10, 9), M(10, 8) or M(10, 6), we have h1(F(1))= 0.

Proof. Notice that χ(F∗∗(1)) = 15− c2(F∗∗) ≥ 6 and by stability h2(F∗∗(1)) =
h0(F∗∗(−1)) = 0, so F∗∗(1) has at least six linearly independent sections. In
particular, for a general quotient S of length 1, 2 or 4, consisting of the direct
sum S =

⊕
Sx of general length 1 quotients Ex → Sx at 1, 2 or 4 distinct general

points x , the map
H 0(F∗∗(1))→ H 0(S)

will be surjective.
For a general point F∗∗ in either M(9), M(8) or M(6), we have h1(F∗∗(1))= 0.

These results from [Mestrano and Simpson 2011] were recalled in Proposition 2.2,
Table 1, and reviewed in Section 3. The long exact sequence associated to (6-1)
now gives h1(F(1))= 0. �

This treats the 19-dimensional irreducible components of the boundary. There
remains the piece M(10, 4) which has dimension 20. This is a separate irreducible
component. It could meet M(10) along a 19-dimensional divisor, and we would like
to show that h1(F(1))= 0 for the sheaves parametrized by this divisor. In particular,
we are no longer in a completely generic situation so some further discussion is
needed. This will be the topic of the next section.

7. The lowest stratum

The lowest stratum is M(10, 4), which is therefore closed. We would like to
understand the points in M(10)∩M(10, 4). These are singular, so our main tool
will be to look at where the singular locus of M(10)meets M(10, 4). Denote this by

M(10, 4)sing
:= Sing(M(10))∩M(10, 4).
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In what follows, we give a somewhat explicit description of the lowest moduli space
M(4).

Lemma 7.1. For E ∈M(4) we have h1(E)=0, h0(E)=h2(E)=3, h0(E(1))=11
and h1(E(1))= h2(E(1))= 0.

Proof. Choosing an element s ∈ H 0(E) gives an exact sequence

(7-1) 0→OX → E→ JP/X (1)→ 0.

In [Mestrano and Simpson 2011] we have seen that P ⊂ X ∩ L is a subscheme
of length 4 in the intersection of X with a line L ⊂ P3. As P spans L , the space
of linear forms vanishing on P is the same as the space of linear forms vanishing
on L , so H 0(JP/X (1))∼= C2. In the long exact sequence associated to (7-1), note
that H 1(OX )= 0, giving

0→ H 0(OX )→ H 0(E)→ H 0(JP/X (1))→ 0,

hence H 0(E)∼=C3. By duality, H 2(E)∼=C3, and the Euler characteristic of E is 6,
so H 1(E)= 0.

For E(1), note that H 2(E(1)) = 0 by stability and duality, and (7-1) gives an
exact sequence

0→ H 1(E(1))→ H 1(JP/X (2))→ H 2(OX (1))→ 0.

On the other hand, H 1(JP/X (2)) ∼= C corresponding to the length 4 of P, minus
the dimension 3 of the space of sections of OP(2) coming from global quadrics
(since the space of quadrics on L has dimension 3). This gives H 1(E(1))= 0. The
Euler characteristic then gives h0(E(1))= 11. This is also seen in the first part of
the exact sequence, where H 0(OX (1))= C4 and H 0(JP/X (2))∼= C7. �

If p ∈P3, let G ∼=C3 be the space of linear generators of the ideal of p, that is to
say G := H 0(Jp/P3(1)), and consider the natural exact sequence of sheaves on P3

0→OP3(−1)→OP3 ⊗G∗→Rp→ 0.

Here the cokernel sheaf Rp is a reflexive sheaf of degree 1, and c2(Rp) is the class
of a line. The restriction Rp|X therefore has c2 = 5. If p ∈ X, it is torsion-free but
not locally free, giving a point in M(5, 4). It turns out that these sheaves account
for all of M(4) and M(5).

Theorem 7.2. Suppose E ∈ M(4). Then there is a unique point p ∈ X such that E
is generated by global sections outside of p, and Rp|X is isomorphic to the subsheaf
of E generated by global sections. This fits into an exact sequence

0→Rp|X → E→ S→ 0,
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where S has length 1, in particular E ∼= (Rp|X )
∗∗. The correspondence E ↔ p

establishes an isomorphism M(4)∼= X.
For E ′ ∈M(5), there exists a unique point p ∈P3

−X such that E ′∼=Rp|X . This
correspondence establishes an isomorphism M(5) ∼= P3 such that the boundary
component M(5, 4)∩M(5) is exactly X ⊂P3. Note however that M(5, 4) itself has
dimension strictly bigger than 3 and constitutes another irreducible component of
M(5).

Proof. Consider the exact sequence (7-1). The space H 0(JP/X (1)) consists of linear
forms on X (or equivalently, on P3), which vanish along P. However, a linear form
which vanishes on P also vanishes on L . In particular, elements of H 0(JP/X (1))
generate JX∩L/X (1), which has colength 1 in JP/X (1).

Let R⊂ E be the subsheaf generated by global sections, and let S be the cokernel
in the exact sequence

0→ R→ E→ S→ 0.

We also have the exact sequence

0→ JX∩L/X (1)→ JP/X (1)→ S→ 0

so S has length 1. It is supported on a point p. The sheaf R is generated by three
global sections so we have an exact sequence

0→ ker→O3
X → R→ 0.

The kernel is a saturated subsheaf, hence locally free, and by looking at its degree
we have ker=OX (−1). Thus, R is the cokernel of a map OX (−1)→O3

X given by
three linear forms; these linear forms are a basis for the space of forms vanishing
at the point p. We see that R is the restriction to X of the sheaf Rp described
above, hence E ∼= (Rp|X )

∗∗. The map E 7→ p gives a map M(4)→ X, with inverse
p 7→ (Rp|X )

∗∗.
The second paragraph, about M(5), is not actually needed later and we leave it

to the reader. �

Even though the moduli space M(4) is smooth, it has much more than the
expected dimension, and the space of coobstructions is nontrivial. It will be useful
to understand the coobstructions, because if F ∈ M(10, 4) is a torsion-free sheaf
with F∗∗ = E then coobstructions for F come from coobstructions for E which
preserve the subsheaf F ⊂ E .

Lemma 7.3. Suppose E ∈ M(4). A general coobstruction φ : E → E(1) has
generically distinct eigenvalues with an irreducible spectral variety in Tot(K X ).

Proof. It suffices to write down a map φ : E → E(1) with generically distinct
eigenvalues and irreducible spectral variety. To do this, we construct a map φR :
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R→ R(1) using the expression R=Rp|X . The exact sequence defining Rp extends
to the Koszul resolution, a long exact sequence

0→OP3(−1)→O3
P3 →OP3(1)3→ Jp/P3(2)→ 0.

Thus Rp may be viewed as the image of the middle map. Without loss of generality,
p is the origin in an affine system of coordinates (x, y, z) for A3

⊂ P3, and the
coordinate functions are the three coefficients of the maps on the left and right in
the Koszul sequence. The 3× 3 matrix in the middle is

K :=

 0 z −y
−z 0 x

y −x 0

 .
Any 3× 3 matrix of constants 8 gives a composed map

φR :Rp ↪→OP3(1)3 8
−→OP3(1)3→Rp(1).

Use the first two columns of K to give a map k :O2
P3→Rp which is an isomorphism

over an open set. On the other hand, the projection onto the first two coordinates
gives a map q :Rp→OP3(1)2 which is, again, an isomorphism over an open set.
The composition of these two is the map given by the upper 2× 2 square of K,

qk = K2,2 :=

(
0 z
−z 0

)
.

We can now analyze the map φR by noting that qφRk = K2,38K3,2 where K2,3

and K3,2 are respectively the upper 2× 3 and left 3× 2 blocks of K. Over the open
set where q and k are isomorphisms,

qφRq−1
= qφRk(qk)−1

= K2,38K3,2K−1
2,2 .

Now

K3,2K−1
2,2 =

 0 z
−z 0

y −x

 ·( 0 −1/z
1/z 0

)
=

 1 0
0 1

−x/z −y/z

 .
Suppose

8=

α β γ

δ ε ψ

χ θ ρ

 .
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Then

qφRq−1
= K2,38K3,2K−1

2,2

=

(
0 z −y
−z 0 x

)
·

α β γ

δ ε ψ

χ θ ρ

 ·
 1 0

0 1
−x/z −y/z


=

(
0 z −y
−z 0 x

)
·

α− γ x/z β − γ y/z
δ−ψx/z ε−ψy/z
χ − ρx/z θ − ρy/z


=

(
zδ−ψx − yχ + ρxy/z zε−ψy+ yθ − ρy2/z
−zα+ γ x − xχ + ρx2/z −zβ + γ y+ xθ − ρxy/z

)
.

Notice that the trace of this matrix is

Tr(φ)= x(θ −ψ)+ y(γ −χ)+ z(δ−β),

which is a section of H 0(OP3(1)) vanishing at p. A coobstruction should have trace
zero, so we should impose three linear conditions

θ = ψ, χ = γ, δ = β,

which together just say that 8 is a symmetric matrix. Our expression simplifies to

qφRq−1
=

(
βz−ψx − γ y+ ρxy/z εz− ρy2/z
−αz+ ρx2/z −βz+ψx + γ y− ρxy/z

)
.

Now, restrict Rp to X to get the sheaf R, take its double dual to get E = R∗∗, and
consider the induced map φ : E→ E(1). Over the intersection of our open set with
X, this will have the same formula. We can furthermore restrict to the curve Y ⊂ X
given by the intersection with the plane y = 0. Note that X is in general position
subject to the condition that it contains the point p. Setting y = 0 the above matrix
becomes

(qφq−1)|y=0 =

(
βz−ψx εz
−αz+ ρx2/z −βz+ψx

)
.

Choose for example β = ψ = 0 and α = ρ = ε = 1, giving the matrix whose
determinant is

det
(

0 z
x2/z− z 0

)
= z2
− x2
= (z+ x)(z− x).

The eigenvalues of φ|Y are therefore ±
√
(z+ x)(z− x), generically distinct. For a

general choice of the surface X, our curve Y = X ∩ (y = 0) will intersect the planes
x = z and x =−z transversally, so the two eigenvalues of φ|Y are permuted when
going around points in the ramification locus different from p. This provides an
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explicit example of φ for which the spectral variety is irreducible, completing the
proof of the lemma. We included the detailed calculations because they look to be
useful if one wants to write down explicitly the spectral varieties. �

Turn now to the study of the boundary component M(10, 4) consisting of torsion-
free sheaves in M(10) which come from bundles in M(4). A point in M(10, 4)
consists of a torsion-free sheaf F in an exact sequence of the form (6-1)

0→ F→ E σ
−→ S→ 0,

where E = F∗∗ is a point in M(4), and S is a length 6 quotient.
The basic description of the space of obstructions as dual to the space of K X -

twisted endomorphisms still holds for torsion-free sheaves. Thus, the obstruction
space for F is Homo(F, F(1))∗. A coobstruction is a map φ : F→ F(1)= F⊗K X

with Tr(φ)= 0, which is a kind of Higgs field. Since the moduli space is good, a
point F is in Sing(M(10)) if and only if the obstruction space is nonzero, that is to
say, if and only if there exists a nonzero trace-free φ : F→ F(1).

To give a map φ is the same thing as to give a map ϕ : E→ E(1) compatible
with the quotient map E → S, in other words fitting into a commutative square
with σ , for an induced map ϕS : S→ S. The maps ϕ, coobstructions for E , were
studied in Lemma 7.3 above.

Let P(E)→ X denote the Grothendieck projective space bundle. A point in
P(E) is a pair (x, s), where x ∈ X and s : Ex → Sx is a length one quotient of the
fiber. Suppose we are given a map ϕ : E → E(1). We can consider the internal
spectral variety

SpE(ϕ)⊂ P(E),

defined as the set of points (x, s) ∈ P(E) such that there is a commutative diagram

Ex
ϕ(x)
−→ Ex

↓ ↓

Sx −→ Sx .

The term “internal” signifies that it is a subvariety of P(E) as opposed to the
classical spectral variety which is a subvariety of the total space of K X . Here, we
have only given SpE(ϕ) a structure of closed subset of P(E), hence of reduced
subvariety. It would be interesting to give it an appropriate scheme structure which
could be nonreduced in case ϕ is nilpotent, but that will not be needed here.

Corollary 7.4. Suppose E ∈ M(4) and ϕ : E→ E(1) is a general coobstruction.
Then the internal spectral variety SpE(ϕ) has a single irreducible component of
dimension 2. A quotient E→ S consisting of a disjoint sum of length one quotients
si : Exi → Si with S =

⊕
Si and the points xi disjoint, is compatible with ϕ if and

only if the points (xi , si ) ∈ P(E) lie on the internal spectral variety SpE(ϕ).
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Proof. Notice if z ∈ X is a point such that ϕ(z)= 0, then the whole fiber P(E)z ∼=P1

is in SpE(ϕ). In particular, if such a point exists then the map SpE(ϕ)→ X will
not be finite.

A first remark is that the zero-set of ϕ is 0-dimensional. Indeed, if ϕ vanished
along a divisor D, then D ∈ |OX (n)| for n ≥ 1 and ϕ : F → F(1− n). This is
possible only if n = 1 and ϕ : F→ F is a scalar endomorphism (since F is stable).
However, the trace of the coobstruction vanishes, so the scalar ϕ would have to be
zero, which we are assuming is not the case.

At an isolated point z with ϕ(z)= 0, the fiber of the projection SpE(ϕ)→ X con-
tains the whole P(Ez)=P1. However, these can contribute at most irreducible com-
ponents of dimension ≤ 1 (although we conjecture that in fact these fibers are con-
tained in the closure of the 2-dimensional component so that SpE(ϕ) is irreducible).

Away from such fibers, the internal spectral variety is isomorphic to the external
one, a two-sheeted covering of X, and by Lemma 7.3, for a general ϕ the monodromy
of this covering interchanges the sheets, so it is irreducible. Thus, SpE(ϕ) has a
single irreducible component of dimension 2, and it maps to X by a generically
finite (2 to 1) map.

The second statement, that a quotient consisting of a direct sum of length one
quotients, is compatible with ϕ if and only if the corresponding points lie on SpE(ϕ),
is immediate from the definition. �

Definition 7.5. A triple (E, ϕ, σ ) where E ∈M(4), ϕ : E→ E(1) is a nonnilpotent
map, and σ =

⊕
sx is a quotient composed of six length 1 quotients over distinct

points, compatible with ϕ as in the previous Corollary 7.4, leads to an obstructed
point F = F(E,ϕ,σ ) ∈ M(10, 4)sing obtained by setting F := ker(σ ). Such a point
will be called usual.

Ellingsrud and Lehn have given a very nice description of the Grothendieck
quotient scheme of a bundle of rank r on a smooth surface. It extends the basic
idea of Li’s theorem which we already stated as Theorem 4.2 above, and will allow
us to count dimensions of strata in M(10, 4).

Theorem 7.6 [Ellingsrud and Lehn 1999]. The quotient scheme parametrizing
quotients of a locally free sheaf Or

X of rank r on a smooth surface X, located at a
given point x ∈ X, and of length `, is irreducible of dimension r`− 1.

Proof. See [Ellingsrud and Lehn 1999]. We have given the local version of the
statement here. �

In our case, r = 2 so the dimension of the local quotient scheme is 2`− 1.
A given quotient E→ S decomposes as a direct sum of quotients E→ Si located

at distinct points xi ∈ X. Order these by decreasing length, and define the length
vector of S to be the sequence (`1, . . . , `k) of lengths `i = `(Si ) with `i ≥ `i+1.
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This leads to a stratification of the Quot scheme into strata labeled by length vectors.
By [Ellingsrud and Lehn 1999], the dimension of the space of quotients supported at
a single (but not fixed) point xi and having length `i , is 2`i+1, giving the following
dimension count.

Corollary 7.7. For a fixed bundle E of rank 2, the dimension of the stratum associ-
ated to length vector (`1, . . . , `k) in the Quot-scheme of quotients E→ S with total
length `=

∑k
i=1 `i , is ∑

(2`i + 1)= 2`+ k.

Recall that the moduli space M(4) has dimension 2, so the dimension of the
stratum of M(10, 4) corresponding to a vector (`1, . . . , `k) is 14+ k. In particular,
M(10, 4) has a single stratum (1, 1, 1, 1, 1, 1) of dimension 20, corresponding to
quotients which are direct sums of length one quotients supported at distinct points,
and a single stratum (2, 1, 1, 1, 1) of length 19. This yields the following corollary.

Corollary 7.8. If Z ′⊂ M(10, 4) is any 19-dimensional irreducible subvariety, then
either Z ′ is equal to the stratum (2,1,1,1,1), or else the general point on Z ′ consists
of a direct sum of six length 1 quotients supported over six distinct points of X.

Proposition 7.9. The singular locus M(10, 4)sing has only one irreducible compo-
nent of dimension 19. This irreducible component has a nonempty dense open subset
consisting of the usual points (Definition 7.5). For a usual point, the coobstruction
ϕ is unique up to a scalar, so this open set may be viewed as the moduli space of
usual triples (E, ϕ, σ ), which is irreducible.

Proof. Suppose Z ′ ⊂ M(10, 4)sing is an irreducible component. Consider the two
cases given by Corollary 7.8.

(i) If Z ′ contains an open set consisting of points which are direct sums of six
length 1 quotients supported on distinct points of X, then this open set parametrizes
usual triples. Furthermore, a point in this open set corresponds to a choice of
(E, ϕ) together with six points on the internal spectral variety SpE(ϕ). We count
the dimension of this piece as follows.

Let M ′(4) denote the moduli space of pairs (E, ϕ)with E ∈M(4) and ϕ a nonzero
coobstruction for E . The space of coobstructions for any E ∈ M(4), has dimension
6 and the family of these spaces forms a vector bundle over M(4) (more precisely, a
twisted vector bundle twisted by the obstruction class for existence of a universal fam-
ily over M(4)). Thus, the moduli space of pairs has a fibration M ′(4)→M(4)whose
fibers are P5. In particular, M ′(4) is a smooth irreducible variety of dimension 7.

For a general such (E, ϕ) the moduli space of usual triples has dimension ≤ 12,
with a unique 12-dimensional piece corresponding to a general choice of 6 points
on the unique 2-dimensional irreducible component of SpE(ϕ). This gives the
19-dimensional component of M(10, 4)sing mentioned in the proposition.
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Suppose (E, ϕ) is not general, that is to say, contained in some subvariety of
M ′(4) of dimension ≤ 6. Then, as ϕ is nonzero, even though we no longer can say
that it is irreducible, in any case the internal spectral variety SpE(ϕ) has dimension
2 so the space of choices of 6 general points on it has dimension ≤ 12, and this
contributes at most subvarieties of dimension ≤ 18 in M(10, 4)sing. This shows that
in the first case (i) of Corollary 7.8, we obtain the conclusion of the proposition.

(ii) Suppose Z ′ is equal to the stratum of M(10, 4) corresponding to length vector
(2, 1, 1, 1, 1). In this case, we show that a general point of Z ′ has no nonzero
coobstructions, contradicting the hypothesis that Z ′ ⊂ M(10, 4)sing and showing
that this case cannot occur.

Fix E ∈ M(4). The space of coobstructions of E has dimension 6. Suppose
E → S1 is a quotient of length 2. If it is just the whole fiber of E over x1, then
it is automatically compatible with any coobstruction. However, these quotients
contribute only a 2-dimensional subspace of the space of such quotients which has
dimension 5 by [Ellingsrud and Lehn 1999]. Thus, these points don’t contribute
general points. On the other hand, a general quotient of length 2 corresponds to an
infinitesimal tangent vector in P(E), and the condition that this vector be contained
in SpE(ϕ) imposes two conditions on ϕ. Therefore, the space of coobstructions
compatible with S1 has dimension ≤ 4. Next, given a nonzero coobstruction in that
subspace, a general quotient E→ S2 of length 1 will not be compatible, so imposing
compatibility with S1 and S2 leads to a space of coobstructions of dimension ≤ 3.
Continuing in this way, we see that imposing the condition of compatibility of ϕ
with a general quotient S= S1⊕· · ·⊕ S5 in the stratum (2, 1, 1, 1, 1) leads to ϕ= 0.
Thus, a general point of this stratum has no nonzero coobstructions as we have
claimed, and this case (ii) cannot occur.

Hence, the only case from Corollary 7.8 which can contribute a 19-dimensional
stratum, contributes the single irreducible component described in the statement
of the proposition. One may note that ϕ is uniquely determined for a general set
of six points on its internal spectral variety, since the first 5 points are general in
P(E) and impose linearly independent conditions. �

Corollary 7.10. Suppose M(10, 4) ∩ M(10) is nonempty. Then it is the unique
19-dimensional irreducible component of usual triples in M(10, 4)sing identified by
Proposition 7.9.

Proof. By Hartshorne’s theorem, the intersection M(10, 4)∩M(10) has pure dimen-
sion 19 if it is nonempty. This could also be seen from O’Grady’s lemma that the
boundary of M(10) has pure dimension 19. However, any point in this intersection is
singular. By Proposition 7.9, the singular locus M(10, 4)sing has only one irreducible
component of dimension 19, and it is the closure of the space of usual triples. �
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If the intersection M(10, 4)∩ M(10) is nonempty, the torsion-free sheaves F
parametrized by general points satisfy h1(F(1))= 0. We show this by a dimension
estimate using [Ellingsrud and Lehn 1999]. The more precise information about
M(10, 4)sing given in Proposition 7.9, while not really needed for the proof at
c2 = 10, will be useful in treating the case of c2 = 11 in Section 9.

Proposition 7.11. The subspace of M(10, 4) consisting of points F such that
h1(F(1))≥ 1 has codimension ≥ 2.

Proof. Use the exact sequence 0→ F → E → S→ 0, where E ∈ M(4). One
has h1(E(1)) = 0 for all E ∈ M(4), see Lemma 7.1. Therefore, h1(F(1)) = 0 is
equivalent to saying that the map

(7-2) H 0(E(1))→ H 0(S(1))∼= C6

is surjective.
Considering the theorem of Ellingsrud and Lehn [1999], there are two strata to be

looked at: the case of a direct sum of six quotients of length 1 over distinct points,
to be treated below; and the case of a direct sum of four quotients of length 1 and
one quotient of length 2. However, this latter stratum already has codimension 1,
and it is irreducible. So, for this stratum it suffices to note that a general quotient
E → S in it leads to a surjective map (7-2), which may be seen by a classical
general position argument, placing first the quotient of length 2.

Consider now the stratum of quotients which are the direct sum of six length 1
quotients si at distinct points xi ∈ X. Fix the bundle E . The space of choices of the
six quotients (xi , si ) has dimension 18. We claim that the space of choices such
that (7-2) is not surjective, has codimension ≥ 2.

Note that h0(E(1)) = 11. Given six quotients (xi , si ), if the map (7-2) (with
S =

⊕
Si ) is not surjective, then its kernel has dimension ≥ 6, so if we choose five

additional points (y j , t j ) ∈ P(E) with t j : Ey j → Tj for Ti of length 1, the total
evaluation map

(7-3) H 0(E(1))→
6⊕

i=1

Si (1)⊕
5⊕

j=1

Tj (1)

has a nontrivial kernel. Consider the variety

W := {(u,...,(xi ,si ),...,...,(y j ,t j ),...) | 0 6= u ∈ H 0(E(1)),si (u)= 0,t j (u)= 0}

with the nonzero section u taken up to multiplication by a scalar.
Let Q′6(E) and Q′5(E) denote the open subsets of the quotient schemes of length

6 and length 5 quotients of E respectively, open subsets consisting of quotients
which are direct sums of length one quotients over distinct points. Let K ⊂ Q′6(E)
denote the locus of quotients E→ S such that the kernel sheaf F has h1(F(1))≥ 1.
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It is a proper closed subset, since it is easy to see that a general quotient E→ S leads
to a surjection (7-2). The above argument with (7-3) shows that K×Q′5(E)⊂ p(W ),
where p : W → Q′6(E)× Q′5(E) is the projection forgetting the first variable u.
Our goal is to show that K has dimension ≤ 16.

We claim that W has dimension ≤ 32 and has a single irreducible component of
dimension 32. To see this, start by noting that the choice of u lies in the projective
space P10 associated to H 0(E(1))∼= C11.

For a section u which is special in the sense that its scheme of zeros has positive
dimension, the locus of choices of (xi , si ) and (y j , t j ) has dimension ≤ 22, but
might have several irreducible components depending on whether the points are
on the zero-set of u or not. However, the space of sections u which are special in
this sense is equal to the space of pairs u′ ∈ H 0(E), u′′ ∈ H 0(OX (1)) up to scalars
for both pieces, and this has dimension 2+ 3= 5, which is much smaller than the
dimension of the space of all sections u. Therefore, these pieces don’t contribute
anything of dimension higher than 27.

For a section u which is not special in the sense of the previous paragraph, the
space of choices of a single length 1 quotient (x, s) which vanishes on the section,
has a single irreducible component of dimension 2. It might possibly have some
pieces of dimension 1 corresponding to quotients located at the zeros of u (although
we don’t think so). Hence, the space of choices of point in W lying over the section u
has dimension ≤ 22 and has a single irreducible component of dimension 22.

Putting these together over P10, the dimension of W is ≤ 32 and it has a single
irreducible component of dimension 32, as claimed. Its image p(W ) therefore also
has dimension ≤ 32, and has at most one irreducible component of dimension 32.
Denote this component, if it exists, by p(W )′.

Suppose now that K had an irreducible component K ′ of dimension 17. Then
K ′× Q′5(E)⊂ p(W ), but dim(Q′5(E))= 15 so p(W )′ would exist and would be
equal to K ′ × Q′5(E). However, p(W )′ is symmetric under permutation of the
11 different variables (x, s) and (y, t), but that would then imply that P(W )′ was
the whole of Q′6(E) × Q′5(E) which is not the case. Therefore, K must have
codimension ≥ 2. This completes the proof of the proposition. �

Corollary 7.12. Suppose M(10, 4)∩M(10) is nonempty. Then a general point of
this intersection corresponds to a torsion-free sheaf with h1(F(1))= 0.

Proof. By Hartshorne’s or O’Grady’s theorem, if the intersection is nonempty then
it has pure dimension 19. However, the space of torsion-free sheaves F ∈ M(10, 4)
with h1(F(1)) > 0 has dimension ≤ 18 by Proposition 7.11. Thus, a general point
in any irreducible component of M(10, 4)∩ M(10) must have h1(F(1)) = 0. In
fact there can be at most one irreducible component, by Corollary 7.10. �
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8. Irreducibility for c2 = 10

Corollary 8.1. Suppose Z is an irreducible component of M(10). Then, for a
general point F in any irreducible component of the intersection of Z with the
boundary, we have h1(F(1))= 0.

Proof. By O’Grady’s lemma, the intersection of Z with the boundary has pure dimen-
sion 19. By considering the line c2 = 10 in the Table 2, this subset must be a union
of some of the irreducible subsets M(10, 9), M(10, 8), M(10, 6), and the unique
19-dimensional irreducible component of M(10, 4)sing given by Proposition 7.9.
Combining Proposition 6.2 and Corollary 7.12, we conclude that any one of these
irreducible components of the intersection of Z with the boundary contains a point
F such that h1(F(1))= 0. �

Corollary 8.2. Suppose Z is an irreducible component of M(10). Then the bundle
E parametrized by a general point of Z has seminatural cohomology, and Z is the
closure of the irreducible open set M(10)sn.

Proof. The closure Z of Z meets the boundary in a nonempty subset, by Corollary 5.5.
By the previous Corollary 8.1, there exists a point F in Z with h1(F(1))= 0; thus
the general bundle E in Z also satisfies h1(E(1)) = 0. By Proposition 6.1, the
irreducible moduli space M(10)sn of bundles with seminatural cohomology is an
open set of Z . �

Theorem 8.3. The moduli space M(10) of stable bundles of degree 1 and c2 = 10,
is irreducible.

Proof. By Corollary 8.2, any irreducible component of M(10) contains a dense
open set parametrizing bundles with seminatural cohomology. By the main theorem
of [Mestrano and Simpson 2013], there is only one such irreducible component. �

Theorem 8.4. The full moduli space of stable torsion-free sheaves M(10) of degree
1 and c2= 10, has two irreducible components, M(10) and M(10, 4) meeting along
the irreducible component of usual triples in M(10, 4)sing. These two components
have the expected dimension, 20, hence the moduli space is good and connected.

Proof. Recall that we know M(10, 4) is irreducible by the results of [Mestrano
and Simpson 2011]. Also M(10) is irreducible. Any component has dimension
≥ 20, and by looking at the dimensions in Table 2, these are the only two possible
irreducible components. Since they have dimension 20 which is the expected
dimension, it follows that the moduli space is good.

It remains to be proven that these two components do indeed intersect in a
nonempty subset, which then by Corollary 7.10 has to be the irreducible component
of usual triples in M(10, 4)sing. Notice that Corollary 7.10 did not say that the
intersection was necessarily nonempty, since it started from the hypothesis that
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there was a meeting point. It is a consequence of Nijsse’s connectedness theorem
that the intersection is nonempty, but this may be seen more concretely as follows.

Consider the stratum M(10, 5). Recall from [Mestrano and Simpson 2011] that
the moduli space M(5) consists of bundles which fit into an exact sequence of the
form

0→OX → E→ JP/X (1)→ 0,

such that P = L ∩ X for L ⊂ P3 a line. In what follows, choose L general so that
P consists of 5 distinct points.

The space of extensions Ext1(JP/X (1),OX ) is dual to Ext1(OX , JP/X (2)) =
H 1(JP/X (2)). We have the exact sequence

H 0(OX (2))→ H 0(OP(2))→ H 1(JP/X (2))→ 0.

However, H 0(OX (2))= H 0(OP3(2)) and the map to H 0(OP(2)) factors through
H 0(OL(2)), the space of degree two forms on L ∼= P1, which has dimension 3.
Hence, the cokernel H 1(JP/X (2)) has dimension 2. The extension classes which
correspond to bundles, are the linear forms on H 1(JP/X (2)) which don’t vanish on
any of the images of the lines in H 0(OP(2)) corresponding to the 5 different points.
Since X is general, the collection of 5 points X ∩L is not in a special position in P1,
so the images of the lines are distinct in the two-dimensional space H 1(JP/X (2)).
So we can find a family of extension classes whose limiting point is an extension
which vanishes on one of the lines corresponding to a point in P. This gives a
degeneration towards a torsion-free sheaf with a single not locally free point, still
sitting in a nontrivial extension of the above form. We conclude that the limiting
bundle is still stable, so we have constructed a degeneration from a point of M(5),
to the single boundary stratum M(5, 4).

Notice that the dimension of M(5, 4) is bigger than that of M(5), so the set of
limiting points is a strict subvariety of M(5, 4). We have M(5)= M(5)∪M(5, 4),
and we have shown that the closures of these two strata have nonempty intersection.
This fact is also a consequence of the more explicit description of M(5) stated in
Theorem 7.2 above (but where the proof was left to the reader).

Moving up to c2 = 10, it follows that the closure of the stratum M(10, 5)
intersects M(10, 4). However, M(10, 4) is closed, and the remaining strata of
the boundary have dimension ≤ 19, so all of the other strata in the boundary, in
particular M(10, 5), are contained in the closure of the locus of bundles M(10).
Thus, M(10, 5)⊂M(10), but M(10, 4)∩M(10, 5) 6=∅, proving that the intersection
M(10, 4)∩M(10) is nonempty. �

Physics discussion. From this fact, we see that there are degenerations of stable
bundles in M(10), near to boundary points in M(10, 4). Donaldson’s Yang–Mills
connections then degenerate towards Uhlenbeck boundary points, connections
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where 6 delta-like singular instantons appear. However, these degenerations go not
to all points in M(10, 4) but only to ones which are in the irreducible subvariety
M(10, 4)sing

⊂ M(10, 4) consisting of points on the internal spectral variety of a
nonzero Higgs field ϕ : E→ E ⊗ K X . It gives a constraint of a global nature on
the 6-tuples of singular instantons which can appear in Yang–Mills connections on
a stable bundle F ∈ M(10). It would be interesting to understand the geometry of
the Higgs field which shows up, somewhat virtually, in the limit.

9. Irreducibility for c2 ≥ 11

Consider next the moduli space M(11) of stable torsion-free sheaves of degree
one and c2 = 11. The moduli space is good, of dimension 24. From Table 2, the
dimensions of the boundary strata are all ≤ 23, so the set of irreducible components
of M(11) is the same as the set of irreducible components of M(11). Suppose Z is
an irreducible component. By Corollary 5.5, Z meets the boundary in a nonempty
subset of codimension 1, i.e., dimension 23. From Table 2, the only two possibilities
are M(11, 10) and M(11, 4). Note that M(11, 4) is closed since it is the lowest
stratum; it is irreducible by Li’s theorem and irreducibility of M(4). The stratum
M(11, 10) is irreducible because of Theorem 8.3.

Lemma 9.1. The intersection M(11, 4)∩M(11, 10) is a nonempty subset contain-
ing, in particular, points which are torsion-free sheaves F ′ entering into an exact
sequence of the form

0→ F ′→ F→ Sx → 0,

where F is a usual point of M(10, 4)sing, x ∈ X is a general point, and F→ Sx is a
general length one quotient.

Proof. Theorem 8.4 shows that the intersection M(10, 4)∩M(10) is nonempty. It
is the unique 19-dimensional irreducible component of M(10, 4)sing, containing
the usual points. Starting with a general point F ∈ M(10, 4) ∩ M(10) and tak-
ing an additional general length 1 quotient Sx , the subsheaf F ′ gives a point in
M(11, 4)∩M(11, 10). �

Let Y ⊂ M(10, 4) be the unique 19-dimensional irreducible component of the
singular locus M(10, 4)sing. It contains a dense open set where the quotient S is
a direct sum of six quotients (xi , si ) of length 1. Choose a quasifinite surjection
Y ′→ Y such that (xi , si ) are well defined as functions Y ′→ P(E).

Forgetting the quotients and considering only the bundle E gives a map Y ′→M(4).
Fix a bundle E in the image of Y ′→ M(4). Let Y ′E denote the fiber of Y ′ over E ,
which has dimension ≥ 17.

We claim that for any 0≤ k ≤ 5, there exists a choice of k out of the 6 points such
that the map Y ′E → P(E)k is surjective. For k = 0 this is automatic, so assume that
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k ≤ 4 and it is known for k; we need to show that it is true for k+1 points. Reorder
so that the k points to be chosen, are the first ones. For a general point q ∈ P(E)k,
let Y ′E,q denote the fiber of Y ′E → P(E)k over q. We have dim(Y ′E,q) ≥ 17− 3k.
We get an injection

Y ′E,q → P(E)6−k .

Suppose that the image mapped into a proper subvariety of each factor; then it would
map into a subvariety of dimension ≤ 2(6− k), which would give dim(Y ′E,q) ≤
12−2k. However, for k ≤ 4 we have 12−2k < 17−3k, a contradiction. Therefore,
at least one of the projections must be a surjection Y ′E,q→P(E). Adding this point
to our list, gives a list of k+1 points such that the map Y ′E→P(E)k+1 is surjective.
This completes the induction, yielding the following lemma.

Lemma 9.2. Suppose Y ⊂ M(10, 4) is as above. Then for a fixed bundle E ∈ M(4)
corresponding to some points in Y, and for a general point in the fiber YE over E ,
some 5 out of the 6 quotients correspond to a general point of P(E)5.

Lemma 9.3. Suppose F is the torsion-free sheaf parametrized by a general point
of Y, and let F ′ be defined by an exact sequence

0→ F ′→ F
(x7,s7)
−→ S7→ 0,

where S7 has length 1 and (x7, s7) is general (with respect to the choice of F) in
P(E). Then F ′ has no nontrivial coobstructions: Hom(F ′, F ′(1))= 0.

Proof. The space of coobstructions for the bundle E has dimension 6. Imposing a
condition of compatibility with a general length-1 quotient (xi , si ) cuts down the
dimension of the space of coobstructions by at least 1.

By Lemma 9.2 above, we may assume after reordering that the first five points
(x1, s1), . . . , (x5, s5) constitute a general vector in P(E)5. Adding the 7-th gen-
eral point given by the statement of the proposition, we obtain a general point
(x1, s1), . . . , (x5, s5), (x7, s7) in P(E)6. As this 6-tuple of points is general with
respect to E , it imposes vanishing on the 6-dimensional space of coobstructions,
giving Hom(F ′, F ′(1))= 0. �

Corollary 9.4. There exists a point

F ′ ∈ M(11, 10)∩M(11, 4)

in the boundary of M(11), such that F ′ is a smooth point of M(11).

Proof. By Lemma 9.3, choosing a general quotient (x7, s7) gives a torsion-free
sheaf F ′ with no coobstructions, hence corresponding to a smooth point of M(11).
By construction we have F ′ ∈ M(11, 10)∩M(11, 4). �

Theorem 9.5. The moduli space M(11) is irreducible.



IRREDUCIBILITY OF THE MODULI SPACE OF STABLE VECTOR BUNDLES 161

Proof. Suppose Z is an irreducible component. Then Z meets the boundary in a
codimension 1 subset; but by looking at Table 2, there are only two possibilities:
M(11, 10) and M(11, 4). The coobstructions vanish for general points of M(10, 4)
since those correspond to 6 general quotients of length 1, and the coobstructions
vanish for general points of M(10) by goodness. It follows that there are no
coobstructions at general points of M(11, 10) or M(11, 4), so each of these is
contained in at most a single irreducible component of M(11). However, in the
previous corollary, there is a unique irreducible component containing F ′, which
shows that the irreducible components containing M(11, 10) and M(11, 4) must
be the same. Hence, M(11) has only one irreducible component. �

Remark. Sarbeswar Pal has pointed out to us a simplified proof for c2 ≥ 11,
avoiding the use of Lemma 9.1. He observes from the connectedness property
and goodness of the moduli of torsion-free sheaves, that any change of irreducible
component must occur along a codimension 1 piece of the singular locus. However,
general points of the boundary components are smooth points of the full moduli
space, by an easier version of the previous discussion, so we can conclude that the
singular locus has codimension ≥ 2. We have nonetheless presented our original
proof since it gives some additional geometrical information on the intersection of
the two boundary strata.

The cases c2 ≥ 12 are now easy to treat.

Theorem 9.6. For any c2 ≥ 12, the moduli space M(c2) of stable torsion-free
sheaves of degree 1 and second Chern class c2, is irreducible.

Proof. By Corollary 5.5, any irreducible component of M(c2)meets the boundary in
a subset of codimension 1. However, for c2 ≥ 12, the only stratum of codimension
1 is M(c2, c2− 1). By induction on c2, starting at c2 = 11, we may assume that
M(c2, c2 − 1) is irreducible. Furthermore, if E is a general point of M(c2 − 1),
then E admits no coobstructions, since M(c2 − 1) is good. Hence, a general
point F in M(c2, c2−1), which is the kernel of a general length-1 quotient E→ S,
doesn’t admit any coobstructions either. Therefore, M(c2) is smooth at a general
point of M(c2, c2− 1). Thus, there is a unique irreducible component containing
M(c2, c2− 1), which completes the proof that M(c2) is irreducible. �

We have finished proving our main statement, Theorem 1.1 of the introduction:
for any c2 ≥ 4, the moduli space M(c2) of stable vector bundles of degree 1 and
second Chern class c2 on a very general quintic hypersurface X ⊂ P3 is nonempty
and irreducible.

For 4≤ c2 ≤ 9, this is shown in [Mestrano and Simpson 2011]. For c2 = 10 it is
Theorem 8.3, for c2 = 11 it is Theorem 9.5, and c2 ≥ 12 it is Theorem 9.6. Note
that for c2 ≥ 16 it is Nijsse’s [1995] theorem.
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It was shown in [Mestrano and Simpson 2011] that the moduli space is good for
c2 ≥ 10 (shown by Nijsse for c2 ≥ 13), and from Table 1 we see that it isn’t good
for 4≤ c2 ≤ 9. The moduli space of torsion-free sheaves M(c2) is irreducible for
c2 ≥ 11, as may be seen by looking at the dimensions of boundary strata in Table 2.
Whereas M(4)= M(4) is irreducible, the dimensions of the strata in Table 2 imply
that M(c2) has several irreducible components for 5≤ c2 ≤ 9, although we haven’t
answered the question as to their precise number. By Theorem 8.4, M(10) has two
irreducible components M(10) and M(10, 4).

10. An irregularity estimate

In this section we provide a correction and improvement to [Mestrano and Simpson
2011, Lemma 5.1] and hence Corollary 5.1 there. There was an error in the proof
given in there.

Lemma 10.1. Suppose X is a very general quintic hypersurface in P3. Suppose
s ∈ H 0(OX (2)) is a section which is not the square of a section of OX (1). It defines
an irreducible spectral covering Z ⊂ Tot(K X ) consisting of square roots of s. Let
Z̃ be a resolution of singularities of Z. Then the irregularity of Z̃ is zero, that is to
say, H 0(Z̃ , �1

Z̃
)= 0. Hence the dimension of Pic0(Z̃) is zero.

Proof. The divisor D of zeros of s is reduced since s isn’t a square and in view of
the fact that OX (1) generates Pic(X). Therefore the map Z→ X is ramified with
simple ramification along the smooth points of D. The involution of multiplication
by −1 acts in the fibers. Choose an equivariant resolution of singularities Z̃→ Z
with an involution σ : Z̃→ Z̃ covering the given involution of Z . The irregularity
of Z̃ is independent of the choice of resolution, so we would like to show that
H 0(Z̃ , �1

Z̃
)= 0.

The map p : Z̃→ X induces an exact sequence

0→OX → p∗(OZ̃ )→ Q→ 0,

with Q a rank 1 torsion-free sheaf on X. The double dual Q∗∗ is a line bundle L .
Using the involution σ , the above exact sequence splits: Q is the anti-invariant part.
Multiplying together sections of Q gives a map

Q⊗ Q→OX ,

which extends by Hartogs to a map

L ⊗ L→OX .

Look locally near a smooth point of D where X has coordinates (x, y) such that D
is given by y = 0, and Z̃ has coordinates (x, z) with y = z2. As a C{x, y}-module,
Q or equivalently L is generated by z. The image of the multiplication map is
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therefore the submodule generated by z2
= y. It is an isomorphism outside of D,

and to get an isomorphism it suffices to look off of codimension 2. This shows that

L ⊗ L −→∼ OX (−D)∼=OX (−2),

hence L ∼=OX (−1). It means that L is generated by the linear functions along the
fibers of K X → X, restricted back to Z̃ .

Consider similarly the decomposition into invariant and anti-invariant pieces

p∗(�1
Z̃
)= F+⊕F−.

These sheaves are torsion-free, and we have a map �1
X→F+. Again with the local

coordinates x, y for X and x, z for Z̃ near a smooth point of D as above, we have
that �1

Z̃
is generated by dx and dz. As a module over C{x, y}, F+ is generated by

dx and zdz or equivalently dx and dy. This shows that the map �1
X → F+ is an

isomorphism on smooth points of D. Since F+ is torsion-free and �1
X is locally

free, it follows that this map is an isomorphism. We may therefore write

p∗(�1
Z̃
)=�1

X ⊕F−.

Consider now the map �1
X ⊗ Q→ F−. Let G := (F−)∗∗ be the double dual, and

the previous map induces a map

�1
X ⊗ L→ G.

Consider again the situation at a smooth point of D using local coordinates. Note
that G is generated by zdx and dz, whereas �1

X ⊗ L is generated by zdx and
zdy = z2dz = ydz. Recalling that L =OX (−1), we get an exact sequence

0→�1
X (−1)→ G→ B→ 0,

where B is a sheaf supported on D, locally near the smooth points being isomorphic
to OD . This says that G and �1

X (−1) are related by an elementary transformation.
In particular, we get

0→ G→�1
X (−1)(D)=�1

X (1).

The irregularity of X vanishes so H 0(�1
X )= 0. Hence,

H 0(Z̃ , �1
Z̃
)∼= H 0(X, p∗�1

Z̃
)−→∼ H 0(X,F−) ↪→ H 0(X,G) ↪→ H 0(X, �1

X (1)).

We have finally shown that there is an injection

H 0(Z̃ , �1
Z̃
) ↪→ H 0(X, �1

X (1)).

One may show8 the right-hand space of sections vanishes, completing the proof. �

8For convenience, here is the argument. The canonical exact sequence

0→�1
P3 →OP3(−1)4→OP3 → 0
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Therefore Corollary 5.1 of [Mestrano and Simpson 2011] holds, with the im-
proved bound that the dimension is≤9. Along the way we have answered [Mestrano
and Simpson 2011, Question 5.1]: in the notation from there, A = 0.

11. Example on a degree 6 hypersurface

In this section we shall start in the direction of considering hypersurfaces of higher
degree, and consider briefly the case of hypersurfaces of degree 6. In particular, the
notation differs from that in effect previously.

Here, X ⊂ P3 is a very general hypersurface of degree 6, which will be denoted
X = X6 in the statements of the main corollaries, for precision. We have K X =

OX (2). We consider stable rank 2 vector bundles E of degree 1 and more precisely
with det(E)=OX (1), and some specified value of c2.

Assume h0(E) > 0. Then there is a section, corresponding to a morphism
s : OX → E . The zeros of s are in codimension 2; otherwise it would extend to
OX (1)→ E , contradicting stability. Therefore, s fits into an exact sequence of the
usual form

(11-1) 0→OX → E→ JP/X (1)→ 0,

where P ⊂ X is a locally complete intersection subscheme of dimension 0. By the
general theory, P satisfies the condition CB(L−1

⊗M ⊗ K X ), where L =OX and
M =OX (1). In other words, P is a CB(3) subscheme.

Notice that c2(OX ⊕OX (1))= 0 by the product formula for Chern polynomials;
therefore in the above extension, we have c2(E)= |P|.

In our examples, we will consider the case c2 = 11, and give two different kinds
of 11-point CB(3) subschemes.

Before getting to these, let us note some general things about the deformation
theory. Our bundle satisfies E∗ = E(−1), so

End(E)= E∗⊗ E ∼= E ⊗ E(−1).

gives rise to
0→ H0(�1

P3(1))→ H0(O4
P3)→ H0(OP3(1)),

in which the right map is an isomorphism, so H0(�1
P3(1))= 0. We also get H1(P3, �1

P3(−4))= 0;
thus the exact sequence

0→�1
P3(−4)→�1

P3(1)→�1
P3(1)|X → 0

implies H0(�1
P3(1)|X )= 0. Now using H1(OX (n))= 0, the exact sequence

0→ N∗X/P3(1)=OX (−4)→�1
P3(1)|X →�1

X (1)→ 0

gives H0(�1
X (1))= 0.
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The decomposition End(E) = End0(E)⊕OX into the trace-free plus the central
part, corresponds to the decomposition

E ⊗ E(−1)= Sym2(E)(−1)⊕
2∧
(E)(−1).

Let us denote for short V := Sym2(E)(−1). The deformation theory of E as a
bundle with fixed determinant is governed by H∗(V ). Notice that if E is stable,
it has no endomorphisms except the scalars, so H 0(V ) = 0. We may also apply
Serre duality, noting that V is self-dual and recalling K X =OX (2). The space of
infinitesimal deformations of E is

Def(E)= H 1(V )∼= H 1(V (2))∗,

and the space of obstructions is

Obs(E)= H 2(V )∼= H 0(V (2))∗.

Let 2P denote the subscheme defined by the square of the ideal of P, so J2P/X =

(JP/X )
2. We have an exact sequence

(11-2) 0→ E(−1)→ V → J2P/X (1)→ 0,

and hence

(11-3) 0→ E(1)→ V (2)→ J2P/X (3)→ 0.

Points on the rational normal cubic. The first case is when C ⊂ P3 is a general
rational normal cubic, and P ⊂ X ∩C is a collection of 11 points. This exists since
C ∩ X consists of 18 distinct points and we may choose 11 of them.

Notice that C ∼= P1 and OP3(1)|C =OC(3p) for any point p ∈ C, that is to say
it is a line bundle of degree 3. Thus, OP3(3)|C =OC(9p) has degree 9. If P ′ ⊂ P
is any collection of 10 points, a section of OP3(3) vanishing on P ′ must vanish on
C, hence it must vanish on P. The sections of OX (3) are all restrictions of sections
of OP3(3), so this proves that P satisfies the property CB(3).

The space of extensions of JP/X (1) by OX is dual to H 1(JP/X (3)), which in
turn is the cokernel of

(11-4) H 0(OX (3))→ H0(P,OP(3))∼= C11.

As we have seen above, a section of H 0(OX (3)) vanishing on P corresponds to a
section of H 0(OP3(3)) vanishing on C. One may calculate by hand that the map

C20
= H 0(OP3(3))→ H 0(OC(9p))= C10
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is surjective. Indeed, the image of H 0(OP3(1)) consists of the sections which may
be written as 1, t, t2, t3 for an affine coordinate t on C ∼=P1 with pole at the point p.
Then, monomials of degree 3 in these sections give all of the monomials 1, t, . . . , t9.

From this surjectivity we get that the kernel is C10. Thus, the kernel of the map
(11-4) is C10 so the image of the map also has dimension 10. Finally, we get that
the cokernel of (11-4) has dimension 1. We have shown that Ext1(JP/X ,OX ) has
dimension 1. Therefore, a given subscheme P gives rise to only one bundle since
scaling of the extension class doesn’t change the isomorphism class of the bundle.

For the other direction, we claim that h0(E)= 1. Consider the exact sequence

0→ H 0(OX )→ H 0(E)→ H 0(JP/X (1))→ H 1(OX )= 0.

Given a section of H 0(OX (1)) vanishing on P, it comes from a section of H 0(OP3(1))
which, by the same argument as previously, vanishes on C. If the section is nonzero,
that would say that C is contained in a plane, which however is not the case.
Therefore, H 0(JP/X (1))= 0 and C∼= H 0(OX )−→

∼ H 0(E). We get h0(E)= 1 as
claimed.

In particular, for a given bundle E , the choice of section s is unique up to a
scalar, so the subscheme P is uniquely determined.

By these arguments, we conclude that the space of bundles E in this case is
isomorphic to the space of choices of subscheme P ⊂ C ∩ X.

Now, given P ⊂ C ∩ X of length 11, we claim that C is the only rational normal
curve passing through P. Indeed, suppose C ′ were another one. Note that C ′ is cut
out by conics. If Q ⊂ P3 is a conic containing C ′ then Q ∩C is either equal to C,
or has length 6; the latter case can’t happen so C ⊂ Q. Thus, any conic containing
C ′ also contains C, which shows that C = C ′.

The dimension of the space of subschemes P in this case is therefore equal to the
dimension of the space PGL(4)/PGL(2) of rational normal cubic curves, which is
15− 3= 12. This completes the proof of the following proposition:

Proposition 11.1. The space of bundles E fitting into an exact sequence of the form
(11-1), where P is a length 11 subscheme of C ∩ X for C a rational normal cubic
in P3, has dimension 12.

Lemma 11.2. Suppose E is a bundle fitting into an exact sequence of the form
(11-1), where P is a length 11 subscheme of C ∩ X for C a general rational normal
cubic in P3. Then h1(End0(E))= h1(V )= 12.

Proof. Use the exact sequence (11-2). The first step is to calculate h1(E(−1)).
Note that (11-1) gives the following sequence, using that h1(OX (n))= 0 for any n
as well as H 2(JP/X (n))= H 2(OX (n)):

0→ H 1(E(−1))→ H 1(JP/X )→ H 2(OX (−1))→ H 2(E(−1))→ H 2(OX )→ 0.
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Now H 2(E(−1)) is dual to H 0(E(2)) which itself fits into the sequence

0→ H 0(OX (2))→ H 0(E(2))→ H 0(JP/X (3))→ 0.

We have H 0(JP/X (3))∼= H 0(JC/P3(3))= ker(H 0(OP3(3))→ H 0(OC(9p))). The
latter map is surjective from C20 to C10 so its kernel has dimension 10. This gives
h0(JP/X (3))= 10. Also h0(OX (2))= 10 so h2(E(−1))= h0(E(2))= 20. We have
h2(OX )= h0(OX (2))= 10 and h2(OX (−1))= h0(OX (3))= 20. Finally, H 1(JP/X )

is just C11 modulo H 0(OX )= C so h1(JP/X )= 10. The alternating sum from the
above sequence vanishes, saying now that

h1(E(−1))− 10+ 20− 20+ 10= 0,

so h1(E(−1))= 0.
The long exact sequence associated to (11-2) starting with H 1(E(−1))= 0 now

gives

0→ H 1(V )→ H 1(J2P/X (1))→ H 2(E(−1))→ H 2(V )→ H 2(OX (1))→ 0.

As we have seen above, h2(E(−1))=20. It is also easy to see that h0(J2P/X (1))=0
(we will in fact see this for J2P/X (3) below), so noting that the length of 2P is
33 we get h1(J2P/X (1))= 33− h0(OX (1))= 29. Putting these together and using
h2(OX (1))= h0(OX (1))= 4 we get

h1(V )− 29+ 20− h2(V )+ 4= 0,

so h1(V )− h2(V )= 5. This is the expected dimension of the moduli space.
Next, by duality h2(V )= h0(V (2)) which we can calculate using the sequence

(11-3). We have

0→ H 0(E(1))→ H 0(V (2))→ H 0(J2P/X (3)).

We claim that H 0(J2P/X (3))= 0. To see this, consider a smooth quadric surface
Q ⊂ P3 containing C. We have Q ∼= P1

×P1 and C is a divisor of bidegree (1, 2)
on Q. On the other hand, OQ(1) has bidegree (1, 1). Suppose we have a section u
of H 0(OX (3))= H 0(OP3(3)) vanishing on the 2P (recall that 2P is the subscheme
of X defined by the square of the ideal of P). We have seen already above that
vanishing on P implies that it vanishes on C. Therefore u|Q is a section of the
bundle of bidegree (3, 3)−(1, 2)= (2, 1). The intersection of 2P with Q consists of
a collection of double points transverse to C at the points of P, so it imposes again a
single condition on the section u considered as a section of OQ(2, 1). The restriction
of OQ(2, 1) to C is a line bundle on C ∼= P1 of degree equal to the intersection
number (2, 1).(1, 2)= 5. Therefore, a section of OQ(2, 1) which vanishes on 11
points has to vanish. This says that our section of bidegree (2, 1) again vanishes
on C, so it is a section of a bundle of bidegree (1,−1); but that is not effective so
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this section has to vanish. This proves that our section u|Q vanishes. Therefore, u
may be viewed as a section of OP3(3)(−Q)=OP3(1). The remaining pieces of the
double points composing 2P give conditions of vanishing again at all the points of
P for this section of OP3(1), but as C is not contained in a plane, it implies that the
section vanishes. This completes the proof that H 0(J2P/X (3))= 0. We conclude
from the previous exact sequence that

h2(V )= h0(V (2))= h0(E(1)).

Now use the sequence

0→ H 0(OX (1))→ H 0(E(1))→ H 0(JP/X (2))→ 0.

As usual, H 0(JP/X (2)) is isomorphic to the kernel of the restriction map

C10
= H 0(OX (2))→ H 0(OC(6p))= C7

and this restriction map is surjective, so its kernel has dimension 3. We get

h0(E(1))= 4+ 3= 7.

Thus, h2(V ) = 7, and putting this together with the formula that the expected
dimension is 5, we have finally shown h1(V )= 12. This proves the lemma. �

Even though there is a 7-dimensional obstruction space, we have constructed a
12-dimensional family; it follows that all of the obstructions vanish and a general
point lies in a generically smooth irreducible component of dimension 12.

Corollary 11.3. The space of bundles E fitting into an exact sequence of the form
(11-1), where P is a length 11 subscheme of C ∩ X for C a rational normal cubic in
P3, consists of a single 12-dimensional generically smooth irreducible component
of the moduli space MX6(2, 1, 11) of stable bundles of rank 2, degree 1 and c2 = 11
on our degree 6 hypersurface X = X6.

Proof. In order to understand how many irreducible components are produced by
this construction, we should investigate the monodromy of the set of choices of
11 out of the 18 points of C ∩ X, as C moves. A choice of 6 points determines
the rational normal cubic C, so any 6 points can be moved to any 6 other ones.
Therefore, the monodromy action is 6-tuply transitive. On the other hand, it contains
a transposition, since we can move C around a choice of curve that is simply tangent
to X at one point. Therefore, the monodromy group contains all transpositions,
hence it is the full symmetric group on 18 elements. It acts transitively on the set
of choices of 11 out of the 18 intersection points, so our construction produces a
single irreducible component. �
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Points on a plane. The other construction we have found for CB(3) subschemes
is to take 11 points in a plane. Let H be a plane in general position with respect to
X, and let Y = X ∩ H. Let P consist of a general collection of 11 points in Y.

Suppose P ′ ⊂ P is a subset of 10 points. The map H 0(OH (3))→ H 0(OY (3))
is injective (since Y is a curve of degree 6 in the plane H ), so a general collection
of 10 points imposes independent conditions on H 0(OH (3)). As h0(OH (3))= 10,
it means that H 0(JP ′/H (3))= 0, hence a section of H 0(OP3(3)) vanishing on P ′,
has to vanish on H. In particular it vanishes on P, proving the CB(3) property for
P. This also gives the formula

H 0(JP/X (3))∼= H 0(OX (2))= C10.

Consider next the space of choices of extension (11-1). As

dim(Ext1(JP/X (1),OX ))= h1(JP/X (3))= 11− 20+ h0(JP/X (3))= 1,

whereas scalar multiples of an extension class give the same bundle, it means
that for a given P there is a single corresponding bundle. On the other hand,
we have h0(JP/X (1)) = 1 since P is contained in a plane, so h0(E) = 2. This
means that for a given bundle E , the space of choices of section s (modulo scaling)
leading to the subscheme P, has dimension 1. Hence the dimension of the space of
bundles obtained by this construction is one less than the dimension of the space of
subschemes:

dim{E} = dim{P}− 1.

Count now the dimension of the space of choices of P : there is a three-dimensional
space of choices of the plane H, and for each one we have an 11-dimensional space
of choices of the subscheme P of 11 points in Y. This gives dim{P} = 3+11= 14,
so dim{E} = 13. Altogether, we have constructed a 13-dimensional family of stable
bundles. It follows that this family must be in at least one irreducible component
distinct from the 12-dimensional component constructed above. This proves the
following theorem:

Theorem 11.4. For a very general degree 6 hypersurface X6
⊂ P3, the moduli

space MX6(2, 1, 11) contains a generically smooth 12-dimensional component from
Corollary 11.3, and contains at least one irreducible component of dimension ≥ 13.
In particular, it is not irreducible.

The general bundle in our 13-dimensional family may be viewed as an elementary
transformation [Maruyama 1973; 1982]. A general line bundle L of degree 11 on Y
has a 2-dimensional space of sections and the two sections generate L . If j :Y ↪→ X
denotes the inclusion then we get a bundle E , elementary transformation of O2

X ,
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fitting into exact sequences

0→ E(−1)→O2
X → j∗(L) → 0,

0→ O2
X → E → j∗(L∗)(1)→ 0.

This shows that E determines Y and L . Since Y has genus 10, the space of choices
of hyperplane plus choice of L has dimension 3+ 10= 13. One may see that these
bundles are the same as the previous ones, indeed the zeros of a section of our
elementary transformation E are the same as those of the corresponding section
of L . This gives an alternate canonical viewpoint on our second construction of
bundles that should be useful for understanding the obstruction map.

We conjecture that the rational normal case and the planar case cover all of
MX6(2, 1, 11). More precisely:

Conjecture 11.5. The 13-dimensional family constructed in the present subsec-
tion constitutes a full irreducible component of MX6(2, 1, 11); this component is
nonreduced and obstructed. Together with the 12-dimensional generically smooth
component constructed in the previous subsection, these are the only irreducible
components of MX6(2, 1, 11). In particular, h0(E) > 0 for any stable bundle with
c2 = 11.

There doesn’t seem to be an easy direct proof of the property h0(E) > 0. The
Euler characteristic consideration does give h0(E(1)) > 0 so any E has to be in
an extension of O(−1) by JP/X (2) with P satisfying CB(5). If this conjecture is
true, it would imply that any CB(5) subscheme of length 21 contained in X6, would
have to be contained in a quadric hypersurface. We didn’t find a proof of that, but
we couldn’t find any length-21 subschemes of X6 satisfying CB(5) that weren’t
contained in quadric hypersurfaces either, leading to the conjecture.
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A CAPILLARY SURFACE WITH NO RADIAL LIMITS

COLM PATRIC MITCHELL

In 1996, Kirk Lancaster and David Siegel investigated the existence and be-
havior of radial limits at a corner of the boundary of the domain of solutions
of capillary and other prescribed mean curvature problems with contact
angle boundary data. They provided an example of a capillary surface in
a unit disk D which has no radial limits at .0; 0/ 2 @D. In their example,
the contact angle,  , cannot be bounded away from zero and �. Here we
consider a domain � with a convex corner at .0; 0/ and find a capillary
surface zD f.x;y/ in��R which has no radial limits at .0; 0/ 2 @� such
that  is bounded away from 0 and �.

Let� be a domain in R2 with locally Lipschitz boundary and OD .0; 0/2 @� such
that @� n fOg is a C 4 curve and � � B1.0; 1/, where Bı.N / is the open ball in
R2 of radius ı about N 2 R2. Denote the unit exterior normal to � at .x;y/ 2 @�
by �.x;y/ and let polar coordinates relative to O be denoted by r and � . We shall
assume there exist ı� 2 .0; 2/ and ˛ 2 .0; �

2
/ such that @�\Bı�.O/ consists of

the line segments
@C�� D f.r cos.˛/; r sin.˛// W 0� r � ı�g

and
@��� D f.r cos.�˛/; r sin.�˛// W 0� r � ı�g:

Set �� D � \ Bı�.O/. Let  W @� ! Œ0; �� be given. Let .x˙.s/;y˙.s// be
arclength parametrizations of @˙� with .xC.0/;yC.0//D .x�.0/;y�.0//D .0; 0/
and set ˙.s/D  .x˙.s/;y˙.s//.

Consider the capillary problem of finding a function f 2 C 2.�/\C 1.�n fOg/
satisfying

div.Tf /D 1
2
f in �(1)

Tf � � D cos. / on @� n fOg;(2)

where Tf D rf=
p

1Cjrf j2. We are interested in the existence of the radial
limits Rf . � / of a solution f of (1) and (2), where

Rf .�/D lim
r!0C

f .r cos �; r sin �/; �˛ < � < ˛

MSC2010: 35B40, 35J93, 53A10.
Keywords: capillary surfaces, PDE, Concus–Finn conjecture.
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A C

B D

Figure 1. The Concus–Finn rectangle (A and C) with regions
R (yellow), D˙

2
(blue) and D˙

1
(green); the restrictions on  in

[Lancaster and Siegel 1996] (red region in B) and in [Crenshaw
et al. 2017] (red region in D).

and Rf .˙˛/D lim@˙��3x!O f .x/;xD .x;y/, which are the limits of the bound-
ary values of f on the two sides of the corner if these exist.

Proposition 1 [Crenshaw et al. 2017]. Let f be a bounded solution to (1) satisfying
(2) on @˙�� n fOg which is discontinuous at O. If ˛ > �=2 then Rf .�/ exists for
all � 2 .�˛; ˛/. If ˛ � �=2 and there exist constants  ˙;  ˙; 0�  ˙ �  ˙ � � ,
satisfying

� � 2˛ < CC � �  CC  � < � C 2˛

so that ˙ � ˙.s/ �  ˙ for all s, 0 < s < s0, for some s0, then again Rf .�/

exists for all � 2 .�˛; ˛/.

Lancaster and Siegel [1996] proved this theorem with the additional restriction
that  be bounded away from 0 and � ; Figure 1 illustrates these cases.

They also proved the following:

Proposition 2 [Lancaster and Siegel 1996, Theorem 3]. Let � be the disk of
radius 1 centered at .1; 0/. Then there exists a solution to Nf D 1

2
f in �,

jf j � 2; f 2 C 2.�/\ C 1.� nO/; OD .0; 0/ such that no radial limits Rf .�/

exist (� 2 Œ��=2; �=2�).

In this case, ˛ D �
2

; if  is bounded away from 0 and � , then Proposition 1
would imply that Rf .�/ exists for each � 2

�
�
�
2
; �

2

�
and therefore the contact

angle  D cos�1.Tf � �/ in Proposition 2 is not bounded away from 0 and � .
In our case, the domain � has a convex corner of size 2˛ at O and we wish to

investigate the question of whether an example like that in Proposition 2 exists in this
case when  is bounded away from 0 and � . In terms of the Concus–Finn rectangle,
the question is whether, given � > 0, there is a solution f 2C 2.�/\C 1.�nfOg/ of



A CAPILLARY SURFACE WITH NO RADIAL LIMITS 175

E F

Figure 2. The Concus–Finn rectangle. When  remains in the
red region in E, Rf .�/ exists;  in Theorem 1 remains in the red
region in F.

(1) and (2) such that no radial limits Rf .�/ exist (� 2 Œ�˛; ˛�) and
ˇ̌
 � �

2

ˇ̌
� ˛C�;

this is illustrated in Figure 2.

Theorem 1. For each � > 0, there is a domain� as described above and a solution
f 2 C 2.�/\C 1.� n fOg/ of (1) such that the contact angle

 D cos�1.Tf � �/ W @� n fOg ! Œ0; ��

satisfies
ˇ̌
 � �

2

ˇ̌
�˛C� and there exists a sequence frj g in .0; 1/with limj!1 rjD0

such that
.�1/jf .rj ; 0/ > 1 for each j 2 N:

Assuming � and  are symmetric with respect to the line f.x; 0/ W x 2 Rg, this
implies that no radial limit

(3) Rf .�/
def
D lim

r#0
f .r cos.�/; r sin.�//

exists for any � 2 Œ�˛; ˛�.

We remark that our theorem is an extension of [Lancaster and Siegel 1996,
Theorem 3] to contact angle data in a domain with a convex corner. As in [Lancaster
1989; Lancaster and Siegel 1996], we first state and prove a localization lemma;
this is analogous to [Lancaster 1989, Lemma] and [Lancaster and Siegel 1996,
Lemma 2].

Lemma 1. Let �� R2 be as above, � > 0, � > 0 and 0 W @� n fOg ! Œ0; �� such
that

ˇ̌
0�

�
2

ˇ̌
� ˛C �. For each ı 2 .0; 1/ and h 2 C 2.�/\C 1.� n fOg/ which

satisfies (1) and (2) with  D 0, there exists a solution

g 2 C 2.�/\C 1.� n fOg/

of (1) such that lim�3.x;y/!.0;0/ g.x;y/DC1,

(4) sup
�ı

jg� hj< � and
ˇ̌̌
g �

�

2

ˇ̌̌
� ˛C �;

where �ı D� nBı.O/ and g D cos�1.Tg � �/ W @� n fOg! Œ0; �� is the contact
angle which the graph of g makes with @��R.
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Proof. Let �; �; ı;�; h and 0 be given. For ˇ2.0; ı/, let gˇ 2C 2.�/\C 1.�nfOg/
satisfy (1) and (2) with  D ˇ, where

ˇ D

��
2
�˛� � on Bˇ.O/

0 on � nBˇ.O/:

As in the proof of [Lancaster and Siegel 1996, Theorem 3], gˇ converges to h

pointwise and uniformly in the C 1 norm on �ı as ˇ tends to zero. Fix ˇ > 0 small
enough that sup�ı

jg� hj< �.
Set †D f.r cos.�/; r sin.�// W r > 0;�˛ � � � ˛g. Now define w W†! R by

w.r cos �; r sin �/D
cos � �

p
k2� sin2 �

k�r
;

where k D sin˛ sec
�
�
2
�˛� �

�
D sin˛ csc.˛C �/. As in [Concus and Finn 1970],

there exists a ı1 > 0 such that div.Tw/ � 1
2
w � 0 on † \ Bı1

.O/, Tw � � D

cos.�
2
� ˛ � �/ on @†\Bı1

.O/, and limr!0C w.r cos �; r sin �/ D1 for each
� 2 Œ�˛; ˛�. We may assume ı1 � ı�. Let

M D sup
�\@Bı1

.O/
jw�gˇj and wˇ D w�M:

Since div.Twˇ/� 1
2
wˇ �

M
2
� 0D div.Tgˇ/�

1
2
gˇ in �\Bı1

.O/, wˇ � gˇ on
�\ @Bı1

.O/ and Tgˇ � � � Twˇ � � on @�\Bı1
.O/, we see that gˇ � wˇ on

�\ @Bı1
.O/. �

We may now prove Theorem 1.

Proof. We shall construct a sequence fn of solutions of (1) and a sequence frng of
positive real numbers such that limn!1 rn D 0, fn.x;y/ is even in y and

.�1/jfn.rj ; 0/ > 1 for each j D 1; : : : ; n:

Let 0 D
�
2

and f0 D 0. Set �1 D 1 and ı1 D ı0. From Lemma 1, there exists
f1 2 C 2.�/\ C 1.� n fOg/ which satisfies (1) such that sup�ı1

jf1�f0j< �1,ˇ̌
1�

�
2

ˇ̌
� ˛C � and lim�3.x;y/!O f1.x;y/D�1, where 1 D cos�1.Tf1 � �/.

Then there exists r1 2 .0; ı1/ such that f1.r1; 0/ < �1.
Now set �2 D �.f1.r1; 0/C 1/ > 0 and ı2 D r1. From Lemma 1, there exists

f2 2 C 2.�/\ C 1.� n fOg/ which satisfies (1) such that sup�ı2
jf2�f1j < �2,ˇ̌

2�
�
2

ˇ̌
� ˛C � and lim�3.x;y/!O f2.x;y/ D1, where 2 D cos�1.Tf2 � �/.

Then there exists r2 2 .0; ı2/ such that f2.r2; 0/ > 1. Since .r1; 0/ 2�ı2
,

f1.r1; 0/C 1< f2.r1; 0/�f1.r1; 0/ < �.f1.r1; 0/C 1/

and so f2.r1; 0/ < �1.
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Next set �3 D minf�.f2.r1; 0/C 1/; f2.r2; 0/ � 1g > 0 and ı3 D r2. From
Lemma 1, there exists f3 2 C 2.�/\C 1.� n fOg/ which satisfies (1) such that
sup�ı3

jf3�f2j<�3,
ˇ̌
3�

�
2

ˇ̌
�˛C� and lim�3.x;y/!O f3.x;y/D�1, where

3 D cos�1.Tf3 ��/. Then there exists r3 2 .0; ı3/ such that f3.r3; 0/ <�1. Since
.r1; 0/; .r2; 0/ 2�ı2

, we have

f2.r1; 0/C 1< f3.r1; 0/�f2.r1; 0/ < �.f2.r1; 0/C 1/

and
�.f2.r2; 0/� 1/ < f3.r2; 0/�f2.r2; 0/ < f2.r2; 0/� 1I

hence f3.r1; 0/ < �1 and 1< f3.r2; 0/.
Continuing to define fn and rn inductively, we set

�nC1 D min
1�j�n

jfn.rj ; 0/� .�1/j j and ınC1 Dmin
˚
rn;

1
n

	
:

From Lemma 1, there exists fnC1 2 C 2.�/\C 1.�n fOg/ satisfying (1) such that
sup�ınC1

jfnC1�fnj<�nC1,
ˇ̌
nC1�

�
2

ˇ̌
�˛C� and lim�3.x;y/!O fnC1.x;y/D

.�1/nC11, where nC1 D cos�1.TfnC1 � �/. Then there exists rnC1 2 .0; ınC1/

such that .�1/nC1fnC1.rnC1; 0/ > 1. For each j 2 f1; : : : ; ng which is an even
number, we have

�.fn.rj ; 0/� 1/ < fnC1.rj ; 0/�fn.rj ; 0/ < fn.rj ; 0/� 1

and so 1< fnC1.rj ; 0/. For each j 2 f1; : : : ; ng which is an odd number, we have

fn.rj ; 0/C 1< fnC1.rj ; 0/�fn.rj ; 0/ < �.fn.rj ; 0/C 1/

and so fnC1.rj ; 0/ < �1.
As in [Lancaster and Siegel 1996; Siegel 1980], there is a subsequence of ffng,

still denoted ffng, which converges pointwise and uniformly in the C 1 norm on �ı
for each ı > 0 as n!1 to a solution f 2 C 2.�/\C 1.� nO/ of (1). For each
j 2 N which is even, fn.rj ; 0/ > 1 for each n 2 N and so f .rj ; 0/ � 1. For each
j 2N which is odd, fn.rj ; 0/ <�1 for each n2N and so f .rj ; 0/��1. Therefore

lim
r!0C

f .r; 0/ does not exist, even as an infinite limit;

and so Rf .0/ does not exist.
Since � is symmetric with respect to the x-axis and n.x;y/ is an even function

of y, f .x;y/ is an even function of y. Now suppose that there exists �0 2 Œ�˛; ˛�

such that Rf .�0/ exists; then �0 ¤ 0. From the symmetry of f , Rf .��0/ must
also exist and Rf .��0/DRf .�0/. Set

�0 D f.r cos �; r sin �/ W 0< r < ı0;��0 < � < �0g ��:

Since f has continuous boundary values on @�0, f 2 C 0.�0/ and so Rf .0/ does
exist, which is a contradiction. Thus Rf .�/ does not exist for any � 2 Œ�˛; ˛�. �
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INITIAL-SEED RECURSIONS AND DUALITIES
FOR d-VECTORS

NATHAN READING AND SALVATORE STELLA

We present an initial-seed-mutation formula for d-vectors of cluster vari-
ables in a cluster algebra. We also give two rephrasings of this recursion:
one as a duality formula for d-vectors in the style of the g-vectors/c-vectors
dualities of Nakanishi and Zelevinsky, and one as a formula expressing the
highest powers in the Laurent expansion of a cluster variable in terms of
the d-vectors of any cluster containing it. We prove that the initial-seed-
mutation recursion holds in a varied collection of cluster algebras, but not
in general. We conjecture further that the formula holds for source-sink
moves on the initial seed in an arbitrary cluster algebra, and we prove this
conjecture in the case of surfaces.
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1. Introduction

This paper concerns the search for an initial-seed recursion for d-vectors: a recursive
formula for how d-vectors change under mutation of initial seeds. We begin this
introduction by providing background on cluster algebras, seeds, and d-vectors.

The origins of cluster algebras lie in the study of totally positive matrices,
generalized by Lusztig [1994] to a notion of totally positive elements in any reductive
group. Indeed, the recursive definition of cluster algebras extends and generalizes
a recursion on minimal sets of minors whose positivity implies total positivity
of matrices. Cluster algebras were introduced by Fomin and Zelevinsky [1999;
2002a], who conjectured that the coordinate ring of any double Bruhat cell (i.e., any
intersection of two Bruhat cells for opposite Borel subgroups) is a cluster algebra.

Nathan Reading was partially supported by NSF grant DMS-1101568.
MSC2010: 13F60.
Keywords: cluster algebra, denominator vector, initial-seed recursion, marked surface.
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(As it turns out, the natural choice of cluster algebra is a subring of the double
Bruhat cell, proper in some cases. In general, the double Bruhat cell coincides with
a related larger algebra called an upper cluster algebra [Berenstein et al. 2005].)

Since their introduction, cluster algebras and/or their underlying combinatorics
and geometry have been found in widely different settings. Some of these settings —
and some early references — are algebraic geometry (Grassmannians [Scott 2006]
and tropical analogues [Speyer and Williams 2005]), discrete dynamical systems
(rational recurrences [Carroll and Speyer 2004; Fomin and Zelevinsky 2002b]),
higher Teichmüller theory [Fock and Goncharov 2006; 2009], PDE (KP solitons
[Kodama and Williams 2011; 2014]), Poisson geometry [Gekhtman et al. 2003;
2005], representation theory of quivers/finite dimensional algebras [Buan et al.
2006; 2007; Caldero et al. 2006; Caldero and Keller 2008; Marsh et al. 2003],
scattering diagrams [Gross et al. 2014; 2015; Kontsevich and Soibelman 2014],
(related to mirror symmetry, Donaldson–Thomas theory, and integrable systems,
and string theory), and Y -systems in thermodynamic Bethe Ansatz [Fomin and
Zelevinsky 2003b].

We begin by reviewing the definition of a (coefficient free) cluster algebra. An
exchange matrix B = (bi j ) is a skew-symmetrizable n× n integer matrix (meaning
that there exist positive integers di such that di bi j = −d j b j i for every i and j).
We write Tn for the n-regular tree with edges properly labeled 1, . . . , n, and we
distinguish one vertex t0 as the “initial” vertex. We will write t k

−−− t ′ to indicate
that t and t ′ are connected by an edge labeled k. We define a function t 7→ Bt that
labels each vertex of Tn with an exchange matrix. Specifically, we set Bt0 equal to
some “initial” exchange matrix B0 and, for each edge t k

−−− t ′ with Bt = (bi j ), we
insist that Bt ′ = (b′i j ) be given by

(1-1) b′i j =

{
−bi j if i = k or j = k,
bi j + sgn(bk j )[bikbk j ]+ otherwise.

Here and elsewhere in the text, the notation [a]+ means max(a, 0) while sgn(a) is
the sign of a.

Taking x1, . . . , xn to be indeterminates, we also label each vertex t of Tn with an
n-tuple (x1;t , . . . , xn;t) of rational functions in x1, . . . , xn called cluster variables.
The label on t0 consists of the indeterminates: xi;t0 = xi for all i . The remaining
cluster variables are prescribed by exchange relations. For each edge t k

−−− t ′, we
have xi;t ′ = xi;t for all i 6= k and

(1-2) xk;t xk;t ′ =

n∏
i=1

x [bik ]+
i;t +

n∏
i=1

x [−bik ]+
i;t ,

where the bik are entries of Bt .
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Each pair (Bt , (x1;t , . . . , xn;t)) is called a seed. When t and t ′ are connected
by an edge t k

−−− t ′, the relationship between the seeds (Bt , (x1;t , . . . , xn;t)) and
(Bt ′, (x1;t ′, . . . , xn;t ′)) is called mutation in direction k. The (coefficient-free) clus-
ter algebra A(B0) associated to the initial exchange matrix B0 is the algebra (a
subalgebra of the field of rational functions in x1, . . . , xn) generated by the set

{xi;t : t ∈ Tn, i = 1, . . . , n}

of all cluster variables. Typically, there are infinitely many cluster variables; when
the set {xi;t : t ∈ Tn, i = 1, . . . , n} is finite, we say that B0 is of finite type.

The first fundamental result on cluster algebras is the Laurent phenomenon
[Fomin and Zelevinsky 2002a, Theorem 3.1]. The exchange relations define the
cluster variables as rational functions in x1, . . . , xn . The Laurent phenomenon is
the assertion that each cluster variable is in fact a Laurent polynomial (a polynomial
divided by a monomial). This implies in particular that each cluster variable has a
denominator vector or d-vector. The d-vector of xi;t is a vector d j;t with n entries,
whose j-th entry is the power of x−1

j that appears as a factor of xi;t . In principle,
the d-vector may have negative entries (when powers of x j appear in the numerator
of xi;t ), but in practice this only happens when xi;t equals some x j .

Denominator vectors are fundamental to the theory of cluster algebras in many
ways, and they are also significant in other settings beginning with Fomin and
Zeleivinsky’s proof [2003b] of Zamolodchikov’s periodicity conjecture on Y -
systems in the theory of thermodynamic Bethe ansatz. They are also important in
representation theory. Each skew-symmetric n× n exchange matrix B defines a
quiver (i.e., a directed graph) Q on the vertices 1, . . . , n. (The signs of entries give
the direction of arrows and the magnitudes of entries give multiplicities of arrows.)
In the case where B is skew-symmetric and acyclic, the d-vectors of cluster variables
are exactly the dimension vectors of rigid indecomposable modules over the path
algebra of Q (modules with no self-extensions). (See [Buan et al. 2007; Caldero
et al. 2006].) In combinatorics, the d-vectors, realized as almost positive roots in
an associated root system, are central to the structure of generalized associahedra
and thus play a role in Coxeter–Catalan combinatorics [Armstrong 2009; Fomin
and Reading 2007] and are interesting in more general settings such as subword
complexes, multiassociahedra, graph associahedra, and so forth.

Once we know the Laurent phenomenon, the exchange relations (1-2) imply a
recursion on d-vectors d j;t , given later as (2-4). This recursion is a “final-seed
recursion” because it describes how d-vectors (computed with respect to a fixed
initial seed) change when we mutate the final seed (Bt , (x1;t , . . . , xn;t)).

We are now prepared to discuss the search for an initial-seed recursion for d-
vectors, describing how d-vectors at a fixed final seed change under mutation of
initial seeds. It is widely expected (see, for example, [Fomin and Zelevinsky 2007,
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Remark 7.7]) that no satisfactory initial-seed-mutation recursion holds in general,
and indeed we do not produce one. However, a very nice initial-seed-mutation recur-
sion holds in a varied collection of cluster algebras (including the case considered in
[Fomin and Zelevinsky 2007, Remark 7.7]). This recursion turns out to be equivalent
to a beautiful duality formula in the style of the g-vectors/c-vectors dualities of
Nakanishi and Zelevinsky [Nakanishi 2011; Nakanishi and Zelevinsky 2012].

The first thing one notices when looking for such a recursion is that, to under-
stand how denominators change when the initial seed is mutated, one must know
something about a related family of integer vectors. Specifically, if (x1, . . . , xn) is
the initial cluster, then the negation of the d-vector of a cluster variable x is the
vector of lowest powers of the xi occurring in the expression for x as a Laurent
polynomial in x1, . . . , xn . We define the m-vector of x to be the vector of highest
powers of the xi occurring in x . Our initial-seed-mutation recursion for d-vectors
is equivalent to a description of the m-vectors in a given cluster in terms of the
d-vectors in the same cluster.

In many cases, one can establish the three formulas (2-1)–(2-3) by reading off
the duality directly from expressions for denominator vectors found in the literature
[Ceballos and Pilaud 2015; Fomin et al. 2008; Lee et al. 2014]. In particular, all of
them hold in finite type, in rank two (i.e., n= 2), and more intriguingly, in nontrivial
examples arising from marked surfaces.

We conjecture that the initial-seed-mutation recursion holds in the case of source-
sink moves in arbitrary cluster algebras. We prove this conjecture for cluster
algebras arising from surfaces. Dylan Rupel and the second author [2017] proved
the conjecture in the case where B is acyclic, using a categorification of quantum
cluster algebras.

Besides their usefulness in understanding denominator vectors, the m-vectors may
be of independent interest. A major goal in the study of cluster algebras is to give
explicit formulas for the cluster variables. Work in this direction includes realizing
cluster variables as “lambda lengths” in the surfaces case [Fomin and Thurston
2012], combinatorial formulas in rank two [Lee and Schiffler 2013], in some finite
types [Musiker 2011; Schiffler 2008], and for some surfaces [Musiker and Schiffler
2010; Musiker et al. 2011; Schiffler and Thomas 2009], interpretations in terms
of the representation theory of quivers, beginning with [Caldero and Chapoton
2006], and formulas in terms of “broken lines” in scattering diagrams [Gross et al.
2014]. Short of a complete description of a cluster variable, one might instead
describe its Newton polytope (the convex hull of the exponent vectors of the Laurent
monomials occurring in its Laurent expansion). However, as far as the authors are
aware, there are no general results describing Newton polytopes. (For a description
in one finite-type case, see [Kalman 2014].)

Together, the d-vectors and m-vectors amount to coarse information about
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Newton polytopes, namely their “bounding boxes.” Given a polytope P in Rn ,
define the tight bounding box of P to be the smallest box [a1, b1]× · · · × [an, bn]

containing P . (Readers who pay attention to bounding boxes of graphics files will
find the notion familiar.) Equivalently, for each i = 1, . . . , n, the values ai and
bi are respectively the minimum and maximum of the i-th coordinates of points
in P . It is convenient to describe the tight bounding box by specifying the vectors
(a1, . . . , an) and (b1, . . . , bn). The tight bounding box of the Newton polytope of
a Laurent polynomial f in x1, . . . , xn is [a1, b1]× · · ·× [an, bn] such that ai is the
lowest power of xi occurring in any Laurent monomial of f , and bi is the highest
power of xi occurring. Thus when x is a cluster variable written as a Laurent
polynomial in the initial cluster (x1, . . . , xn), the tight bounding box of the Newton
polytope of x is given by the negation of the d-vector and by the m-vector.

2. Results

Our notation is in the spirit of [Fomin and Zelevinsky 2007] and [Nakanishi and
Zelevinsky 2012]. As before, the notation [a]+ means max(a, 0). We will apply
the operators max, | · |, and [ · ]+ entry-wise to vectors and matrices. We continue
to write Tn for the n-regular tree with edges properly labeled 1, . . . , n. Symbols
like t , t0, t ′, etc. will stand for vertices of Tn . The notation t k

−−− t ′ indicates an
edge in Tn labeled k. In what follows, the initial seed is allowed to vary, so we
need to be able to indicate the initial seed as part of the notation. Thus, the notation
B B0;t0

t stands for the exchange matrix at t , where B0 is the exchange matrix at t0.
Similarly, x B0;t0

j;t stands for the (coefficient-free) cluster variable indexed by j in the
(labeled) seed at t , and d B0;t0

j;t is the denominator vector of x B0;t0
j;t with respect to the

cluster at t0.
Given a matrix A, let A•k be the matrix obtained from A by replacing all entries

outside the k-th column with zeros. Similarly, Ak• is obtained by replacing entries
outside the k-th row with zeros. Let Jk be the matrix obtained from the identity
matrix by replacing the kk-entry by −1. The superscript T stands for transpose.

We fix (x1, . . . , xn) to be the initial cluster (the cluster at t0). We write DB0;t0
t

for the matrix whose j -th column is d B0;t0
j;t and DB0;t0

i j;t for the i j -entry of that matrix.
Each x B0;t0

j;t is a Laurent polynomial in x1, . . . , xn . (This is the Laurent phenomenon,
[Fomin and Zelevinsky 2002a, Theorem 3.1].) Let M B0;t0

t be the matrix whose
i j-entry M B0;t0

i j;t is the maximum, over all of the (Laurent) monomials in x B0;t0
j;t , of

the power of xi occurring in the monomial. Write mB0;t0
j;t for the j-th column of

M B0;t0
t and call this the j-th m-vector at t .
We now present a duality property for denominator vectors that holds in some

cluster algebras, as well as two equivalent properties: an initial-seed-mutation
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recursion for denominator vectors and a formula for the M-matrix at a given seed
in terms of the D-matrix at the same seed.

Property D (D = matrix duality). For vertices t0, t ∈ Tn , writing Bt as shorthand
for B B0;t0

t ,

(2-1) (DB0;t0
t )T = D(−Bt )

T
;t

t0 .

Property R (initial-seed-mutation recursion for D-matrices). Suppose t0 k
−−− t1 is

an edge in Tn and write B1 for µk(B0). Then

(2-2) DB1;t1
t = Jk DB0;t0

t +max
(
[Bk•

0 ]+DB0;t0
t , [−Bk•

0 ]+DB0;t0
t

)
.

The recursion in Property R is not on individual denominator vectors, but rather
on an entire cluster of denominator vectors. For i 6= k, the i-th entry of each
denominator vector is unchanged, while row k of the D-matrix (the vector of k-
th entries in denominator vectors) transforms by a recursion similar to the usual
recursion (2-4) below for how denominator vectors change under mutation.

Property M (M-matrices in terms of D-matrices). For vertices t0, t ∈ Tn ,

(2-3) M B0;t0
t =−DB0;t0

t +max
(
[B0]+DB0;t0

t , [−B0]+DB0;t0
t

)
.

When Property M holds, in particular, the entire tight bounding box of a cluster
variable x can be determined directly from the denominator vectors of any cluster
containing x .

Our first main result is the following theorem, which we prove in Section 3.

Theorem 2.1. Fix a (coefficient-free) cluster pattern t 7→ (B B0;t0
t , (x1;t , . . . , xn;t)).

The following are equivalent:

(1) Property D holds for all t0 and t.

(2) Property R holds for all t0, t , and k.

(3) Property M holds for all t0 and t.

A natural question is to characterize the cluster algebras in which Properties D,
R, and M hold. As a start towards answering this question, we prove the following
three theorems in Section 4. In every case, the proof is to read off Property D using
a known formula for the denominator vectors.

Theorem 2.2. Properties D, R, and M holds in any cluster pattern whose exchange
matrices are 2× 2.

Theorem 2.3. Properties D, R, and M hold in any cluster pattern of finite type.

Theorem 2.4. Properties D, R, and M hold for a cluster algebra arising from a
marked surface if and only if the marked surface is one of the following:
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(1) A disk with at most one puncture ( finite types A and D).

(2) An annulus with no punctures and one or two marked points on each boundary
component (affine types Ã1,1, Ã2,1, and Ã2,2).

(3) A disk with two punctures and one or two marked points on the boundary
component (affine types D̃3 and D̃4).

(4) A sphere with four punctures and no boundary components.

(5) A torus with exactly one marked point (either one puncture or one boundary
component containing one marked point).

In Section 3, we also prove some easier relations on D-matrices and M-matrices
that hold in general. The first of these shows that, to understand how D-matrices
transform under mutation of the initial seed, one must understand M-matrices.

Proposition 2.5. Suppose t0 k
−−− t1 is an edge in Tn . Then DB1;t1

t is obtained by
replacing the k-th row of DB0;t0

t with the k-th row of M B0;t0
t . That is,

DB1;t1
t = DB0;t0

t − (DB0;t0
t )k•+ (M B0;t0

t )k•.

The final-seed mutation recursion on denominator vectors [Fomin and Zelevinsky
2007, (7.6)–(7.7)] is given in matrix form as follows. The initial D-matrix DB0;t0

t0
is the negative of the identity matrix, and for each edge t k

−−− t ′ in Tn ,

(2-4) DB0;t0
t ′ = DB0;t0

t Jk +max
(
DB0;t0

t [(B B0;t0
t )•k]+, DB0;t0

t [(−B B0;t0
t )•k]+

)
.

Note that neither product of matrices inside the max in (2-4) has any nonzero entry
outside the k-th column. It turns out that m-vectors satisfy the same recursion, but
with different initial conditions.

Proposition 2.6. The initial M-matrix M B0;t0
t0 is the identity matrix. Given an edge

t k
−−− t ′ in Tn ,

M B0;t0
t ′ = M B0;t0

t Jk +max
(
M B0;t0

t [(B B0;t0
t )•k]+,M B0;t0

t [(−B B0;t0
t )•k]+

)
.

Finally, we present some conjectures and results on Property R in the context
of source-sink moves. Suppose that in the exchange matrix B0, all entries in row
k weakly agree in sign. That is, either all entries in row k are nonnegative (and
equivalently all entries in column k are nonpositive) or all entries in row k are
nonpositive (and equivalently all entries in column k are nonnegative). In this case,
mutation of B0 in direction k is often called a source-sink move, referring to the
operation on quivers of reversing all arrows at a source or a sink. We conjecture
that Property R holds when mutation at k is a source-sink move. In this case,
Equation (2-2) has a particularly simple form.
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Conjecture 2.7. Suppose t0 k
−−− t1 is an edge in Tn and B1 is µk(B0). If all entries

in row k of B0 weakly agree in sign, then

(2-5) DB1;t1
t = Jk DB0;t0

t +
[
|Bk•

0 |D
B0;t0
t

]
+

We also make two other closely related conjectures. Let A be the Cartan
companion of B0, defined by setting Ai i = 2 for all i and Ai j =−|(B0)i j | for i 6= j .
Then A is a (generalized) Cartan matrix and thus defines a root system and a root
lattice in the usual way. It also defines a (generalized) Weyl group W , generated
by simple reflections s1, . . . , sn given by sk(α`) = α` − Ak`αk , where the αi are
the simple roots. If β is in the root lattice, then write [β : αi ] for the coefficient
of αi in the simple root coordinates of β. Then [sk(β) : αi ] = [β : αi ] if i 6= k and
[sk(β) : αk] =−[β : αk]+

∑n
`=1 |(B0)k`|[β : α`]. Following [Fomin and Zelevinsky

2003b, Section 2], we define a piecewise linear modification σk of sk by setting
[σk(β) :αi ]=[β :αi ] if i 6=k and [σk(β) :αk]=−[β :αk]+

∑n
`=1 |(B0)k`|

[
[β :α`]

]
+

.
We think of σk as a map on (certain) integer vectors by interpreting them as simple
root coordinates of vectors in the root lattice. We also think of σk as a map on
integer matrices by applying it to each column.

Conjecture 2.8. Suppose t0 k
−−− t1 is an edge in Tn and B1 is µk(B0). If all entries

in row k of B0 weakly agree in sign, then DB1;t1
t = σk DB0;t0

t .

To relate Conjecture 2.8 to Conjecture 2.7, we quote the following conjecture,
which is a significant weakening of [Fomin and Zelevinsky 2007, Conjecture 7.4].
We will say a matrix D has signed columns if every column of D either has all
nonnegative entries or all nonpositive entries. Similarly, D has signed rows if every
row of D either has all nonnegative entries or all nonpositive entries.

Conjecture 2.9. For all t ∈ Tn , the matrix DB0;t0
t has signed columns.

Conjecture 2.9 is not the same as another weakening of [Fomin and Zelevinsky
2007, Conjecture 7.4], namely “sign-coherence of d-vectors,” which asserts that
for all t ∈ Tn , the matrix DB0;t0

t has signed rows.
We prove the following easy proposition in Section 3.

Proposition 2.10. If Conjecture 2.9 holds, then Conjectures 2.7 and 2.8 are equiv-
alent.

Theorems 2.2 and 2.3 imply Conjecture 2.7 in the rank-two and finite-type
cases, and Theorem 2.4 implies it for certain surfaces. Rupel and Stella [2017]
proved Conjectures 2.8 and 2.9 (and thus Conjecture 2.7) for B acyclic. As further
evidence in support of the conjectures in general, we prove the following theorem
in Section 5.

Theorem 2.11. Conjectures 2.7 and 2.8 hold in cluster algebras arising from
marked surfaces.
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3. Proofs of general results

We begin with the proof of Proposition 2.6, followed by the proof of Proposition 2.5.
To make the proof of Proposition 2.6 completely clear, we point out two lemmas
about highest powers in multivariate (Laurent) polynomials. Both are completely
obvious when looked at in the right way, but otherwise one might convince oneself
to worry. Given a Laurent polynomial p, we write mi (p) for the highest power of
xi occurring in a term of p.

Lemma 3.1. Given Laurent polynomials f and g in x1, . . . , xn , we have mi ( f g)=
mi ( f )+mi (g).

Proof. Write f = faxa
i + fa+1xa+1

i +· · ·+ fk xk
i and g=gbxb

i +gb+1xb+1
i +· · ·+g`x`i

such that the f j and g j are polynomials in the variables besides xi and fk and g`
are nonzero. Then the highest power of xi in f g is k+ `. (Otherwise fk and g` are
zero divisors.) �

Lemma 3.2. Suppose p is a Laurent polynomial over C in x1, . . . , xn and f and g
are polynomials in C[x1, . . . , xn] such that f/g= p. Then mi (p)=mi ( f )−mi (g).

Proof. Since p is a Laurent polynomial, we can factor f as a · c and g as b · c
such that b is a monomial. It is immediate that mi (p)= mi (a)−mi (b). Applying
Lemma 3.1, we have mi ( f )−mi (g)=mi (a)+mi (c)−mi (b)−mi (c)=mi (p). �

Proof of Proposition 2.6. Throughout this proof, we omit superscripts B0; t0. The
first assertion of the proposition is trivial. To establish the second assertion, we
compute Mi j;t ′ , the highest power of xi occurring in x j;t ′ , in terms of Mt . If j 6= k,
then x j;t ′ = x j;t , so Mi j;t ′ = Mi j;t as given in the proposition. If j = k, then the
exchange relation [Fomin and Zelevinsky 2007, (2.8)], with trivial coefficients, is

(3-1) xk;t ′ = (xk;t)
−1
(∏

`

(x`,t)[B`k;t ]+ +
∏
`

(x`,t)[−B`k;t ]+

)
.

Write U for the expression
∏
`(x`,t)

[B`k;t ]+ +
∏
`(x`,t)

[−B`k;t ]+ . Each factor x`;t in
U has a subtraction-free expression: an expression as a ratio of two polynomials in
x1, . . . , xn with nonnegative coefficients. Therefore each term in U has a subtraction-
free expression. Write the first term as a/c and the second term as b/d , where a, b,
c, and d are polynomials with nonnegative coefficients. The sum U is then ad

cd +
bc
cd .

Since all of these expressions are subtraction-free, there is no cancellation, so
mi (U )=mi

(ad
cd +

bc
cd

)
=max

(
mi
(ad

cd

)
,mi

( bc
cd

))
, which equals max

(
mi
(a

c

)
,mi

( b
d

))
which in turn equals

max
(

mi

(∏
`

(x`,t)[B`k;t ]+
)
,mi

(∏
`

(x`,t)[−B`k;t ]+

))
.
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Returning now to expressions for the x`;t as Laurent polynomials, Lemma 3.1 lets
us conclude that mi (U )=max

(∑
` Mi`;t [B`k;t ]+,

∑
` Mi`;t [−B`k;t ]+

)
.

Now, writing xk;t as a rational function p/q with mi (p)−mi (q)=mi (xk;t) and
writing U as a rational function r/s with mi (r)−mi (s)= mi (U ), Equation (3-1)
lets us write xk;t ′ as qr

ps , so Lemmas 3.1 and 3.2 imply that Mik;t ′ =mi (q)−mi (p)+
mi (r)−mi (s)=−Mik;t +max

(∑
` Mi`;t [B`k;t ]+,

∑
` Mi`;t [−B`k;t ]+

)
as desired.

�

Proof of Proposition 2.5. The cluster at t1 is obtained from (x1, . . . , xn) by removing
xk and replacing it with a new cluster variable x ′k . The two are related by

(3-2) xk = (x ′k)
−1
(∏

`

x [b`k ]+` +

∏
`

x [−b`k ]+
`

)
,

where the b`k are entries of B0.
To show that the k-th row of DB1;t1

t equals the k-th row of M B0;t0
t , we appeal to

the Laurent phenomenon to write the cluster variable x B0;t0
j;t in the form

N (x1, . . . , xn)∏
i x

D
B0;t0
i j;t

i

,

for some polynomial N not divisible by any of the xi . We write N = N0+ N1xk +

· · · + Npx p
k , where the Nq are polynomials not involving xk , with Np 6= 0. Then

(3-2) lets us write x B0;t0
j;t as

(3-3)
N0+ N1

(∏
` x
[b`k ]+
` +

∏
` x
[−b`k ]+
`

)
x ′k

+ · · ·+ Np

(∏
` x
[b`k ]+
` +

∏
` x
[−b`k ]+
`

)p

(x ′k)
p

x
D

B0;t0
1 j;t

1 · · ·

((∏
` x
[b`k ]+
` +

∏
` x
[−b`k ]+
`

)
x ′k

)D
B0;t0
k j;t

· · · x
D

B0;t0
nj;t

n

The numerator of (3-3) can be factored as (x ′k)
−p times a polynomial not divisible

by x ′k . The denominator can be factored as (x ′k)
−D

B0;t0
k j;t times a polynomial not

involving x ′k . We conclude that DB1,t1
k j;t is −DB0;t0

k j;t + p. The latter equals M B0;t0
k j;t .

To show that DB1;t1
t agrees with DB0;t0

t outside of row k, we fix i 6= k and consider
a subtraction-free expression for x B0;t0

j;t . The Laurent phenomenon implies that this
expression can be simplified to a Laurent polynomial. The simplification can, if
one wishes, be done in two stages, by first factoring out all powers of xi from the
rational expression and then canceling the other factors. After the first stage, we
have written x B0;t0

j;t as xi
−D

B0;t0
i j;t ·

f
g where f and g are subtraction-free polynomials

not divisible by xi . Replacing xk in this expression by the right side of (3-2), we
find that no additional powers of xi can be extracted. (Since the right side of (3-2)
is also subtraction-free, we obtain a new subtraction-free expression. In particular,
there can be no cancellation, so a power of xi can be extracted if and only if it is a
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factor in every term of the numerator or a factor in every term of the denominator.
But the right side of (3-2) is not divisible by any nonzero power of xi .) We conclude
that DB1,t1

i j;t = DB0;t0
i j;t . �

We next prove Theorem 2.1. Specifically, the theorem follows from the next three
propositions, which more carefully specify the relations among the three properties.

Proposition 3.3. For a fixed choice of B0, t0, t and k, let t1 be the vertex of Tn such
that t0 k

−−− t1 and write B1 for µk(B0). Suppose (2-1) holds at B0, t0, t and also at
B1, t1, t . Then (2-2) holds for the same B0, t0, t, k.

Proof. We apply (2-1) at B1, t1, t , then (2-4), then (2-1) at B0, t0, t .

DB1;t1
t = (D(−Bt )

T
;t

t1 )T

=
(
D(−Bt )

T
;t

t0 Jk +max
(
D(−Bt )

T
;t

t0 [(BT
0 )
•k
]+, D(−Bt )

T
;t

t0 [(−BT
0 )
•k
]+

))T

= Jk(D
(−Bt )

T
;t

t0 )T +max
(
[Bk•

0 ]+(D
(−Bt )

T
;t

t0 )T , [−Bk•
0 ]+(D

(−Bt )
T
;t

t0 )T
)

= Jk DB0;t0
t +max

(
[Bk•

0 ]+DB0;t0
t , [−Bk•

0 ]+DB0;t0
t

)
In the second line, we use the fact that B(−Bt )

T
;t

t0 =−BT
0 . �

Proposition 3.4. Fix a (coefficient-free) cluster pattern t 7→ (Bt , (x1;t , . . . , xn;t))

and vertices t0 and t of Tn , connected by edges

t0 k1=k
−−− t1 k2−−− · · ·

km−−− tm = t.

Suppose that, for all i = 1, . . . ,m, equation (2-2) holds for the edge ti−1
ki−−− ti .

Then
(D

Bt0 ;t0
t )T = D(−Bt )

T
;t

t0 .

Proof. We argue by induction on m. For m = 0 (i.e., t = t0), (2-1) says that
the negative of the identity matrix is symmetric. Equation (2-2) is symmetric in
switching t0 and t1, because Bk•

0 =−Bk•
1 . Thus for m > 0, we can use (2-2) for the

edge t1 k1−−− t0 to write

(3-4) DB0;t0
t = Jk DB1;t1

t +max
(
[Bk•

1 ]+DB1;t1
t , [−Bk•

1 ]+DB1;t1
t

)
By induction, we rewrite the right side of (3-4) as

Jk(D
(−Bt )

T
;t

t1 )T +max
(
[Bk•

1 ]+(D
(−Bt )

T
;t

t1 )T , [−Bk•
1 ]+(D

(−Bt )
T
;t

t1 )T
)

=
(
D(−Bt )

T
;t

t1 Jk +max
(
D(−Bt )

T
;t

t1 [(BT
1 )
•k
]+, D(−Bt )

T
;t

t1 [(−BT
1 )
•k
]+

))T
.

By (2-4), this is (D(−Bt )
T
;t

t0 )T . �

Proposition 3.5. For a fixed choice of B0, t0, t and k, (2-2) holds if and only if
(2-3) holds in the k-th row.
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Proof. Equation (2-3) holds in the k-th row if and only if

(M B0;t0
t )k• = (−DB0;t0

t )k•+max
(
[Bk•

0 ]+DB0;t0
t , [−Bk•

0 ]+DB0;t0
t

)
.

This equation is equivalent to (2-2) in light of Proposition 2.5. �

This completes the proof of Theorem 2.1.
To conclude this section, we establish Proposition 2.10 by proving a more detailed

statement. Recall that a matrix D has signed columns if every column of D either
has all nonnegative entries or all nonpositive entries.

Proposition 3.6. Suppose t0 k
−−− t1 is an edge in Tn and B1 is µk(B0). If DB0;t0

t
has signed columns, then the right side of (2-5) equals σk DB0;t0

t .

Proof. Let β be the vector in the root lattice with simple root coordinates d B0;t0
j;t .

For i 6= k, the i j-entry of the right side of (2-5) is [β : αi ]. The k j-entry of the
right side of (2-5) is −[β : αk] +

[∑n
`=1|(B0)k`|[β : α`]

]
+

. By hypothesis, all of
the simple root coordinates of β weakly agree in sign, so

[∑n
`=1|(B0)k`|[β : α`]

]
+

is
∑n

`=1|(B0)k`|
[
[β : α`]

]
+

. Thus the right side of (2-5) is σkβ. �

4. Duality and recursion in certain cluster algebras

We now prove Theorems 2.2, 2.3, and 2.4.

4A. Rank two. The proof of Theorem 2.2 uses a formula for rank-two denominator
vectors due to Lee, Li, and Zelevinsky [2014, (1.13)].

Proof of Theorem 2.2. The 2-regular tree Tn is an infinite path. We label its vertices
tk for k ∈ Z, and abbreviate Btk by Bk . As the situation is very symmetric, it
is enough to take B0 =

[ 0
−c

b
0

]
with b and c nonnegative and establish (2-1) for

t = tk with k ≥ 0. When bc < 4, the cluster pattern is of finite type and (2-1) can
be checked easily (if a bit tediously) by hand. Alternatively, one can appeal to
Theorem 2.3, which we prove below. For bc≥ 4, the denominator vectors are given
by [Lee et al. 2014, (1.13)]. Equation (2-1) is easy when k = 1, so we assume
k ≥ 2. The labeled cluster associated to the vertex tk is {xk+1, xk+2} if k is even and
{xk+2, xk+1} if k is odd.

If k is even, we use [Lee et al. 2014, (1.13)] to write

(4-1) DB0;t0
tk =

[
S k−2

2
(u)+ S k−4

2
(u) bS k−2

2
(u)

cS k−4
2
(u) S k−2

2
(u)+ S k−4

2
(u)

]
where u = bc− 2 and the Sp are Chebyshev polynomials of the second kind. (In
fact, here we do not need to know anything about the Sp except that they are
functions of u.) We can similarly use [Lee et al. 2014, (1.13)] to write an expression
for D

−BT
k ;tk

t0 . Since k is even Bk = B0, and thus −BT
k =−BT

0 =
[ 0
−b

c
0

]
. To apply
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[loc. cit., (1.13)] in this case, we must switch the role of b and c. When we do so,
keeping in mind that we move now in the negative direction, we obtain exactly the
transpose of the right side of (4-1).

If k is odd, we obtain

(4-2) DB0;t0
tk =

[
S k−1

2
(u)+ S k−3

2
(u) bS k−3

2
(u)

cS k−3
2
(u) S k−3

2
(u)+ S k−5

2
(u)

]
In this case, Bk = −B0, so −BT

k = BT
0 =

[ 0
b
−c
0

]
. Noticing that −BT

k is obtained
from B0 by simultaneously swapping the rows and the columns, when we use
[loc. cit., (1.13)] to write an expression for D

−BT
k ;tk

t0 , we also swap the rows and
columns. The result is exactly the transpose of the right side of (4-2). �

4B. Finite type. The proof of Theorem 2.3 uses a result of Ceballos and Pilaud
[2015] giving denominator vectors in finite type, with respect to any initial seed,
in terms of the compatibility degrees defined at any acyclic seed. In [Fomin and
Zelevinsky 2003a], it is shown that in every cluster pattern of finite type, there exists
an exchange matrix B0 that is bipartite and whose Cartan companion A is of finite
type. The cluster variables appearing in the cluster pattern are in bijection with the
almost positive roots in the root system for A. Given an almost positive root β,
we will write x(β) for the corresponding cluster variable. There is a compatibility
degree (α, β) 7→ (α ‖ β) ∈ Z≥0 defined on almost positive roots encoding some
of the combinatorial properties of the cluster algebra. In particular two cluster
variables x(α) and x(β) belong to the same cluster if and only if the roots α and
β are compatible (i.e., if their compatibility degree is zero). Maximal sets of
compatible roots are called (combinatorial) clusters and they correspond to the
(algebraic) clusters in the cluster algebra. In the same paper Fomin and Zelevinsky
also showed that compatibility degrees encode denominator vectors with respect to
the bipartite initial seed.

Ceballos and Pilaud extended this dramatically in the following result. (We follow
them in modifying the definition of compatibility degree in an inconsequential way
in order to make it easier to state the theorem. Specifically, we take (α ‖ α)=−1
rather than (α ‖ α)= 0.)

Theorem 4.1 [Ceballos and Pilaud 2015, Corollary 3.2]. Let {β1, . . . , βn} be a
cluster and let γ be an almost positive root. Then the d-vector of x(γ ) with respect
to the cluster {x(β1), . . . , x(βn)} is given by [(β1 ‖ γ ), . . . , (βn ‖ γ )].

Since B0 is skew-symmetrizable, passing from B0 to −BT
0 has the effect of

preserving the signs of entries while transposing the Cartan companion A. The
almost positive roots for AT are the almost positive coroots associated to A. The
following is [Fomin and Zelevinsky 2003b, Proposition 3.3(1)].
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Proposition 4.2. If α and β are almost positive roots and α∨ and β∨ are the
corresponding coroots, then (α ‖ β)= (β∨‖ α∨).

Proof of Theorem 2.3. The cluster pattern assigns some algebraic cluster to t0 and
some algebraic cluster to t , and each of the algebraic clusters is encoded by some
combinatorial cluster. Let {β1, . . . , βn} be the combinatorial cluster at t0 and let
{γ1, . . . , γn} be the combinatorial cluster at t . Now Theorem 4.1 and Proposition 4.2
are exactly Property D at t0 and t . �

4C. Marked surfaces. The proof of Theorem 2.4 relies on a result of Fomin,
Shapiro, and Thurston [2008, Theorem 8.6] giving denominator vectors in terms
of tagged arcs. We will assume familiarity with the basic definitions of cluster
algebras arising from marked surfaces.

Recall that tagged arcs are in bijection with cluster variables and tagged triangu-
lations are in bijection with clusters, except in the case of once-punctured surfaces
with no boundary components, where plain-tagged arcs are in bijection with cluster
variables and plain-tagged triangulations are in bijection with clusters. We write
α 7→ x(α) for this bijection. Given tagged arcs α and β, there is an intersection num-
ber (α|β) such that the following theorem [Fomin et al. 2008, Theorem 8.6] holds.

Theorem 4.3. Given tagged arcs α and β and a cluster (x1, . . . , xn) with xi = x(α),
the i-th component of the denominator vector of x(β) with respect to the cluster
(x1, . . . , xn) is (α|β).

In an exchange pattern arising from a marked surface, every exchange matrix
Bt is skew-symmetric, so (−Bt)

T
= Bt . Thus we have the following corollary to

Theorem 4.3.

Corollary 4.4. In an exchange pattern arising from a marked surface, Property D
holds if and only if the intersection number is symmetric (i.e., (α|β)= (β|α) on all
tagged arcs α and β that correspond to cluster variables).

The intersection number (α|β) is defined in [Fomin et al. 2008, Definition 8.4] to
be the sum of four quantities A, B, C , and D. To define these, we choose α0 and β0

to be non-self-intersecting curves homotopic (relative to the set of marked points)
to α and β, and intersecting with each other the minimum possible number of times,
transversally each time. The quantity A is the number of intersection points of α0

and β0 (excluding intersections at their endpoints). The quantity B is zero unless
α0 is a loop (i.e., unless the two endpoints of α0 coincide). If α0 is a loop, let a
be its endpoint. We number the intersections as b1, . . . , bk in the order they are
encountered when following β0 in some direction. For each i = 1, . . . , k− 1, there
is a unique segment [a, bi ] of α0 having endpoints a and bi and not containing
bi+1. There is also a unique segment [a, bi+1] of α0 having endpoints a and bi+1

and not containing bi . Let [bi , bi+1] be the segment of β0 connecting bi to bi+1.
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The quantity B is
∑k−1

i=1 Bi , where Bi is −1 if the segments [a, bi ], [a, bi+1], and
[bi , bi+1] define a triangle that is contractible and Bi = 0 otherwise. The quantity
C is zero unless α0 and β0 are equal up to isotopy relative to the set of marked
points, in which case C =−1. The quantity D is the number of ends of β that are
incident to an endpoint of α and carry, at that endpoint, a different tag from the tag
of α at that endpoint.

The quantities A and C are patently symmetric in α and β, so we need not
consider them in this section. It is pointed out in [Fomin et al. 2008, Example 8.5]
that D can fail to be symmetric. The quantity B can also fail to be symmetric.
Examples will occur below.

Some immediate observations will be helpful.

Observation 1. In a surface having no tagged arcs that are loops, B is always 0
and D is also always symmetric.

Observation 2. In a surface having no punctures, D is always zero.

Observation 3. In a surface having exactly one puncture and no boundary compo-
nents, D is always zero on tagged arcs corresponding to cluster variables.

For the second observation, recall that notched tagging may occur only at punc-
tures. For the third observation, recall that in a surface with exactly one puncture
and no boundary components, tagged arcs correspond to cluster variables if and
only if they are tagged plain.

To prove one direction of Theorem 2.4, we show that B + D is symmetric in
the cases listed in the theorem. First, recall that a tagged arc may not bound a
once-punctured monogon and may not be homotopic to a segment of the boundary
between two adjacent marked points. In particular, there are no loops in a disc
with at most one puncture, in the unpunctured annulus with 2 marked points, in the
twice-punctured disk with one marked point on its boundary, or in the four-times-
punctured sphere. Thus Observation 1 shows that B+ D is symmetric in the cases
described in (1) and (4), and in the simplest cases described in (2) and (3).

In the remaining cases described in (2), Observation 2 shows that D is always
zero. We are interested in pairs of arcs containing at least one loop (otherwise B
is zero in both directions). Because an arc may not be homotopic to a boundary
segment, there are no loops at a marked point if it is the only marked point on
its boundary component. A marked point that is not the only marked point on its
boundary component supports exactly one loop. If there are two marked points
on one component and one marked point on the other, we are in the situation of
Figure 1, left. In this case, numbering the points as in the figure, the only two
loops in the surface are based one at 1 and one at 2. The remaining arcs start at
3, spiral around some number of times and then reach either 1 or 2. The only
arc that intersects one of the loops more than once is the other loop. These have
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B =−1 in both directions, so B is symmetric in this case. If there are two marked
points on each boundary component, the argument is similar and only slightly more
complicated. There are four loops, as illustrated in Figure 1, center. Each of the
remaining arcs connects a point of one boundary to a point of the other boundary,
with some number of spirals. Again, for any of the four loops there is only one
other arc intersecting it more than once; it is the loop based at the other marked
point on the same boundary component. For each pair of intersecting loops we
calculate B =−1 in both directions. We have finished case (2).

The remaining case (a disk with two punctures and two boundary points) in (3)
is similar to the cases in (2). There is a loop at each marked point on the boundary
but no other loop, as illustrated in Figure 1, right. In particular, the tagging at these
loops is plain, and we see that D is symmetric. There is exactly one arc connecting
the two boundary points and four tagged arcs (all with the same underlying arc)
connecting the two punctures. The remaining arcs have a boundary point at one
endpoint and spiral around the punctures some number of times before ending
at one of the punctures, with either tagging there. Once again, the only arc that
intersects more than once one of the loops is the other loop, and we again have
B =−1 in both directions.

The remaining two cases are described in (5). We first consider the once-
punctured torus. In this cases, D = 0 by Observation 3, so it remains to show
that B is symmetric. We will show that in fact B is zero on all pairs of arcs. Arcs
in the once-punctured torus are well-known to be in bijection with rational slopes,
including the infinite slope. (See, for example, [Reading 2014, Section 4].) Each
such slope can be written uniquely as a reduced fraction b

a such that a ≥ 0 and that
b = 1 whenever a = 0. If we take the universal cover (the plane R2) of the torus
mapping each integer point to the puncture, the arc indexed by a slope b

a lifts to a
straight line segment connecting the origin to the point (a, b). (The same arc also
lifts to all integer translates of that line segment.)

It is now easy to see that B = 0 for arcs in the once-punctured torus. For any
two arcs α and β, let α0 and β0 be the curves on the torus obtained by projecting
the associated straight line segments in the plane. This choice of representatives
minimizes the number of intersections as can be seen by looking at the universal
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Figure 2

cover. Let a and b1, . . . , bk be the points as in the definition of B. Given some i
between 1 and k− 1, concatenate the curves [a, bi ], [bi , bi+1], and [bi+1, a], and
consider the lift of the concatenated curve to the plane. This lifted curve consists of
two parallel line segments and one line segment not parallel to the other two. In
particular, it is impossible for the lifted curve to start and end at the same point. The
situation is illustrated in Figure 2, left, where a lift of β0 is shown as a solid line,
several lifts of α0 are shown as dotted lines and a lift of the three concatenated curves
is highlighted. By the standard argument on fundamental groups and universal
covers, we see that the concatenation of [a, bi ], [bi , bi+1], and [bi+1, a] is not a
contractible triangle, and we conclude that B = 0 on α and β.

The final case for this direction of the proof is the torus with one boundary
component and one marked point. In this case, D is again zero, this time by
Observation 2, so we will show that B is symmetric. We think of the boundary
component as a “fat point” on the torus. With this trick, we can again consider
lifts of arcs to the plane. Each arc lifts to a curve connecting the origin to an
integer point (a, b) with a and b satisfying the same conditions as above for the
once-punctured torus. However, for each such (a, b), there is a countable collection
of arcs connecting the origin to (a, b). Specifically, for each integer k, the arc may
wind k times clockwise about the fat origin point before going to (a, b). (Negative
values of k specify counterclockwise spirals.) Since (a, b) and the origin both
project to the same fat point on the torus, the number and direction of spirals at
(a, b) is determined almost uniquely by k. There are two possibilities for each k,
illustrated in Figure 2, right, for the case where (a, b)= (1, 0).

For each arc α, choosing the right change of basis of the integer lattice, we may
as well assume that the lift of α connects the origin to the point (1, 0). Furthermore,
there is a homeomorphism from the torus to itself that rotates the fat point and
changes the number of spirals of α at the origin and at (1, 0). Rotating a half-integer
number of full turns, we can assume α lifts to a straight horizontal line segment from
(0, 0) to (1, 0). Possibly reflecting the plane through the horizontal line containing
the origin (to offset the effect of a half-turn), we can assume that α looks like the solid
arc shown in Figure 3, with the boundary component above the origin in the picture.

Now take another arc β and consider a lift of β connecting the origin to (a, b).
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Figure 3

Since another lift connects (−a,−b) to the origin, we may as well take b ≥ 0. Up
to a reflection in a vertical line, we can assume that the lift of β spirals clockwise
(if it spirals at all) as it leaves the origin. Fixing one possible number of spirals of
β at (0, 0) and fixing some (a, b) with b > 0, the two possibilities for the lift of β
are shown as dashed arcs in Figure 3. Nonzero contributions to B can arise only
from segments that remain close to the fat point: by the same argument as for the
once-punctured torus, the segments that do not stay near the fat point contribute
nothing. Therefore it is enough to analyze the intersections of α and β near the
origin. In each of the two possibilities we highlight in Figure 3 the segments
[ai , ai+1] of α and [b j , b j+1] of β giving nonzero contributions. In the pictured
examples, B is symmetric in α and β. It is easy to see that the symmetry survives
when the number of spirals changes. The case b = 0 looks slightly different, but
B is still symmetric for essentially the same reasons. (Look back, for example at
Figure 2, right.)

We have proved one direction of Theorem 2.4. To prove the other direction,
we need to show that B+ D fails to be symmetric in certain cases. In each case,
the failure of symmetry can be illustrated in a figure. Here, we list the cases and
indicate, for each case, the corresponding figure. In some cases, we also include
some comments in italics. In each case, α is the solid arc and β is the dashed arc;
they intersect in at most two points. We omit the labeling a, a1, a2, b, b1, b2 not to
clutter the pictures. This will complete the proof of Theorem 2.4.

(a) A surface with genus greater than 1 (Figure 4, left). We show the genus-2
case. Pairs of edges in the octahedron are identified as indicated by the numbering
and the arrows. Since all taggings are plain, D = 0. However, B is asymmetric
(−1 in one direction and 0 in the other). The marked point shown in the figure
is a puncture, but the same example works with the marked point on a boundary
component. For higher genus or to have additional punctures, one can start with
the surface shown and perform a connected sum, cutting a disk from the interior of
the octagon shown.
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(b) A torus with 2 or more marked points (Figure 4, right). Opposite pairs of edges
in the square are identified. If the marked point at the corners of the square is on
a boundary component, then the arcs shown in the left picture of the figure have
D = 0 but B is asymmetric (taking values 0 and −1). Additional punctures and/or
boundary components may exist, but the arcs α and β can always be chosen so that
the triangle [b, a1],[a1, a2], [a2, b] is contractible while the triangle [a, b1], [b1, b2],
[b2, a] is not. If the marked point at the corners is a puncture, then the right picture
applies. In this case, B = 0 but D is asymmetric because one of the arcs is a loop
and the other is not.

(c) A sphere with 3 or more boundary components and possibly some punctures
(Figure 5, left). We show a disk with 2 additional boundary components. For the arcs
shown, D = 0 but B is asymmetric. Again, additional punctures and/or boundary
components may exist, but the triangle [a, b1], [b1, b2], [b2, a] is contractible.

(d) An annulus with one or more punctures (Figure 5, center). B = 0 and D is
asymmetric on the arcs shown.

(e) An unpunctured annulus with 3 or more marked points on one of its boundary
components (Figure 5, right). B is asymmetric and D = 0.

(f) A disk with 3 or more punctures (Figure 6, left). B = 0 and D is asymmetric.

(g) A disk with 2 punctures and 3 or more marked points on the boundary (Figure 6,
center). B is asymmetric and D = 0.

Figure 5
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Figure 6

(h) A sphere with 5 or more punctures (Figure 6, right). We show a local patch of
the sphere containing all of the punctures. B = 0 and D is asymmetric.

5. Source-sink moves on triangulated surfaces

In this section, we prove Theorem 2.11, the assertion that Conjectures 2.7 and 2.8
hold for marked surfaces. Conjecture 2.9 holds for surfaces because the stronger
conjecture [Fomin and Zelevinsky 2007, Conjecture 7.4] for surfaces is an easy
consequence of [Fomin et al. 2008, Theorem 8.6]. Thus by Proposition 2.10, we
need only to prove the assertion about Conjecture 2.7. In light of Theorem 4.3, the
task is to prove a certain identity on intersection numbers. This identity is already
known (as a special case of Property R) for the surfaces listed in Theorem 2.4, and
it will be convenient in what follows that we need not consider those surfaces.

Suppose α is a tagged arc in a tagged triangulation T and suppose α′ is the arc
obtained by flipping α in T . We may as well take T to be obtained from an ideal
triangulation T ◦ by applying the map τ of [Fomin et al. 2008, Definition 7.2] to each
arc. (Any other tagged triangulation could be obtained from such a triangulation
by changing tags, which by definition [loc. cit., Definition 9.6] does not affect the
associated B-matrix.) In particular, B(T ) = B(T ◦). We will abuse notation and
denote by the same Greek letters both ideal arcs and their corresponding tagged
arcs. Suppose all of the entries in the row of B(T ) indexed by α weakly agree in
sign. Because of the symmetry between DB0;t0

t and DB1;t1
t in (2-5), we may as well

assume that all entries in the row of B(T ) indexed by α are nonnegative; in this case
we will say that “α is a source” alluding to the usual encoding of skew-symmetric
exchange matrices by quivers.

Let β be any other arc. Keeping in mind that (2-5), like (2-2) before it, is true
outside of row k by Proposition 2.5, the task is to prove the following identity:

(5-1) (α′|β)=−(α|β)+
∑
γ∈T

bαγ (γ |β)

where bαγ is the entry of B(T ) in the row indexed by α and column indexed by γ .
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Figure 7. Tagged puzzle pieces.

The key observation in our proof is that the entries bαγ depends only on how
T looks locally near α. Therefore we begin our analysis by constructing a short
list of possible local configurations. To do this we build the surface and the ideal
triangulation T simultaneously by adjoining puzzle pieces as in [Fomin et al. 2008,
Section 4]. There the ideal triangulation T ◦ is built from puzzle pieces, but to save
a step, we apply the map τ to the puzzle pieces before assembling, rather than after.
The resulting tagged puzzle pieces are shown in Figure 7. We will refer to them
(from left to right in the Figure) as triangle pieces, digon pieces, and monogon
pieces. The external edges of digon pieces are distinguishable (up to reversing the
orientation of the surface) and we will call them the left edge and the right edge
according to how they are pictured in Figure 7. Similarly, the two pairs of internal
arcs in a monogon piece are distinguishable, and we will call them the left pair and
right pair according to Figure 7.

Puzzle pieces are joined by gluing along their outer edges. Unjoined outer edges
become part of the boundary of the surface. In [loc. cit.], one specific triangulation is
mentioned that cannot be obtained from these puzzle pieces, but it is a triangulation
of the 4-times punctured sphere, so by Theorem 2.4, we need not consider it.

The list of possible local configurations around α, given α is a source, appears
in Figure 8. (We leave out the cases where Theorem 2.4 applies.) In the figure,
areas just outside the boundary are marked in gray. The curve α is labeled, or if
two curves might be a source, both of them are labeled α.

To obtain this list, recall that the entries in the row indexed by α are determined
by the triangles of T ◦ containing α or, if α is the folded side of a self-folded triangle,
by the triangles containing the other side of that self-folded triangle. (See [Fomin
et al. 2008, Definition 4.1].) In particular, if α is an internal arc in a digon or

αα

α α α

Figure 8. Possible local configurations surrounding a source.



200 NATHAN READING AND SALVATORE STELLA

monogon piece, the entries in the row indexed by α are determined completely
within the piece. Both internal arcs in the digon piece are sources if and only if
the right external edge of the digon is on the boundary, as shown in the first (i.e.,
leftmost) picture of Figure 8. We need not consider the case where both external
edges of the digon piece are on the boundary, because Theorem 2.4 applies to a
once-punctured digon.

In the monogon piece, both the arcs in the left pair are never sources, and the
arcs of the right pair are sources if and only if the external edge of the monogon is
on the boundary. However, we don’t need to consider that case because the surface
is a twice-punctured monogon, and Theorem 2.4 applies.

If α is the external edge of a monogon piece, then each of the two left internal
arcs γ has bαγ =−1, so α is not a source. It remains, then, to consider how external
edges of triangle and digon pieces can be sources. We need to consider two cases.

Suppose α is an edge in a triangle piece and suppose γ is the edge reached from
α by traversing the boundary of the triangle in a counterclockwise direction. If γ
is not on the boundary, then the triangle contributes −1 to bαγ , so α cannot be a
source unless either γ is on the boundary or α and γ are also in a second triangle
that contributes 1 to bαγ .

Next suppose α is an external edge in a digon piece. If α is the left edge, then
each of the two internal arcs γ has bαγ = −1, so α is not a source. If α is the
right edge, let γ be the left edge. As in the triangle case, α cannot be a source
unless either γ is on the boundary or α and γ are also in a second triangle that
contributes 1 to bαγ .

Putting all these observations together, we see that we must consider three more
possibilities obtained by gluing a triangle or digon piece to another triangle or digon
piece. We can glue two triangle pieces together along one edge with opposite edges
of the resulting quadrilateral on the boundary as shown in the second picture in
Figure 8. Conceivably the top and bottom arcs shown in the picture are identified,
but we need not consider this case because then the surface is an annulus with two
marked points on each boundary component, and Theorem 2.4 applies. We can
glue two triangle pieces together along two edges, with one of the remaining edges
on the boundary as shown in the third picture in Figure 8. We can glue a triangle
piece along one of its edges to the right edge of a digon piece, with both the left
digon edge and the triangle edge counterclockwise from the glued edge on the
boundary, as shown in the fourth and last picture in Figure 8. We can glue a triangle
piece along two of its edges to the two edges of a digon piece, with the remaining
edge of the triangle on the boundary, but we need not consider this case, because
the surface is a twice-punctured monogon, and Theorem 2.4 applies. We can glue
two digon pieces, right edge to right edge, with the remaining two edges on the
boundary. However, we need not consider this case either, because the surface is a
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Figure 9. Possible local configurations, with more information.

twice-punctured digon and Theorem 2.4 applies. Finally, we can glue both edges
of a digon piece to both edges of another digon piece, but in this case, we obtain a
3-times punctured sphere, which is explicitly disallowed in the definition of marked
surfaces [Fomin et al. 2008, Definition 2.1]. Thus the four configurations in Figure 8
are the only local configurations near arcs that are sources, except in surfaces to
which Theorem 2.4 applies. We will see that the first and third configurations shown
are essentially equivalent for our purposes.

We observe that (α|β) is invariant under changing all taggings of α and of β at
some puncture. Thus for the first (leftmost) picture in Figure 8, we may as well take
α to be the arc tagged notched at the puncture. Figure 9 shows the configurations
of Figure 8 with some additional information. First, the arc α′, obtained by flipping
α, is shown and labeled. Also, the arcs γ such that bαγ > 0 are labeled. There is
either one arc γ1, two arcs γ1 and γ2, or three arcs γ1, γ2 and γ3. The pictures in
Figure 9 are reordered in the order we will consider them. We have also redrawn
the last configuration more symmetrically.

Recall from Section 4C that (α|β) is the sum of four quantities A, B, C , and D.
As before, α0 and β0 are non-self-intersecting curves homotopic (relative to the set
of marked points) to α and β respectively, intersecting with each other the minimum
possible number of times, transversally each time. Recall that B = 0 unless α0

is a loop. In the configurations of Figure 8, α0 is never a loop. Furthermore, the
quantity bαγ is nonzero only if γ is in a triangle with α, and none of the arcs making
triangles with α is a loop in the configurations of Figure 8. Therefore, we can
ignore B in all the calculations of intersection numbers in this section. Recall also
that A is the number of intersection points of α0 and β0 (excluding intersections at
their endpoints), that C = 0 unless α0 and β0 coincide, in which case C =−1, and
that D is the number of ends of β that are incident to an endpoint of α and carry, at
that endpoint, a different tag from the tag of α at that endpoint.

Our task is simplified by several symmetries. We have already used the symmetry
of changing taggings at a puncture. Also, any symmetry of a configuration that
fixed α and α′ or switches α and α′ preserves (2-5). If the symmetry is orientation-
reversing, the absolute value operation in (2-5) is crucial to the symmetry. (This
absolute value has been omitted in (5-1) because we took α to be a source, not a sink.)
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(α|β) (α′|β) (γ1|β) (γ2|β)

1+ 0+ 0 1+ 0+ 0 1+ 0+ 0 1+ 0+ 0

1+ 0+ 0 0+ 0+ 0 1+ 0+ 0 0+ 0+ 0

1+ 0+ 0 0+ (−1)+ 0 0+ 0+ 0 0+ 0+ 0

Table 1

We first consider the left picture in Figure 9. Since each marked point is on the
boundary, there are no relevant taggings. Contributions to (α|β), (α′|β), (γ1|β),
and (γ2|β) occur only when β intersects the interior of the quadrilateral. While β
may intersect the interior of the quadrilateral a number of times, each intersection
can be treated separately. In such an intersection, β may either pass through the
quadrilateral, terminate at a vertex of the quadrilateral, or connect two vertices
of the quadrilateral. Up to symmetry, as discussed above, there are only three
possibilities. (The relevant symmetry group is the order-4 dihedral symmetry group
of the rectangle shown.) Table 1 shows the possible intersections of β (shown as
a dotted line) with the quadrilateral, along with the contributions to (α|β), (α′|β),
(γ1|β), and (γ2|β). Each of these is given in the form A+C+D. The quantities bαγ1

and bαγ2 are both 1. In every case, we see that (α|β)=−(α′|β)+ (γ1|β)+ (γ2|β),
and therefore (5-1) holds.

Notice that the second and third pictures of Figure 9 are related by a reflection

(α|β) (α′|β) (γ1|β)

1+ 0+ 0 1+ 0+ 0 2+ 0+ 0

1+ 0+ 0 0+ 0+ 0 1+ 0+ 0

0+ 0+ 0 1+ 0+ 0 1+ 0+ 0

0+ 0+ 0 0+ 0+ 1 1+ 0+ 0

0+ 0+ 1 0+ 0+ 0 1+ 0+ 0

Table 2
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that switches α with α′. By the symmetry discussed above, we need only consider
one of these configurations; we will work with the third picture. Contributions to
(α|β), (α′|β), and (γ1|β) only occur when β intersects the digon, and again, we
can treat each intersection separately. Table 2 shows all but four of the possible
intersections of β with the configuration, and shows (α|β), (α′|β), and (γ1|β),
again in the form A+C + D.

Since bαγ1 = 1, the desired relation is (α|β)=−(α′|β)+ (γ1|β), and we see that
this relation holds in every case. Not pictured in Table 2 are the four cases where
β0 coincides with α0 or α′0, with two possible taggings at the point in the center of
the digon. In each of these cases, (γ1|β)= 0 and the A terms of (α|β) and (α′|β)
are both zero. The other terms are also zero, except that one of (α|β) and (α′|β)
has C =−1 and one of (α|β) and (α′|β) has D = 1.

Finally, we consider the last picture in Figure 9. The two cases where β0 coincides
with α0 or α′0 are handled analogously to the last case of the quadrilateral condition.
Up to symmetry, there are six remaining cases, pictured in Table 3. Once again,
bαγi = 1 for i ∈ {1, 2, 3}, and the desired relation holds in every case:

(α|β)=−(α′|β)+ (γ1|β)+ (γ2|β)+ (γ3|β).

(α|β) (α′|β) (γ1|β) (γ2|β) (γ3|β)

2+0+0 2+0+0 2+0+0 1+0+0 1+0+0

2+0+0 1+0+0 1+0+0 1+0+0 1+0+0

1+0+0 0+0+0 1+0+0 0+0+0 0+0+0

1+0+0 1+0+0 1+0+0 0+0+0 0+0+1

1+0+0 0+0+0 0+0+0 0+0+0 0+0+1

1+0+0 1+0+0 0+0+0 1+0+0 1+0+0

Table 3
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CODIMENSIONS OF THE SPACES OF CUSP FORMS FOR
SIEGEL CONGRUENCE SUBGROUPS IN DEGREE TWO

ALOK SHUKLA

We give a computational algorithm for describing the one-dimensional cusps
of the Satake compactifications for the Siegel congruence subgroups in the
case of degree two for arbitrary levels. As an application of the results thus
obtained, we calculate the codimensions of the spaces of cusp forms in the
spaces of modular forms of degree two with respect to Siegel congruence
subgroups of levels not divisible by 8. We also construct a linearly indepen-
dent set of Klingen–Eisenstein series with respect to the Siegel congruence
subgroup of an arbitrary level.

1. Introduction

One of the most basic questions about the spaces of modular forms is to ask for the
dimensions and the codimensions of the spaces of cusp forms. For the spaces of
Siegel modular forms of degree two with respect to the full modular group Sp(4,Z)

the answers have been well known for several decades. However, while the answers
for the spaces of modular forms with respect to Siegel congruence subgroups are
not so clear, several special cases have been treated in the literature. Dimensions of
the spaces of cusp forms with respect to 00(p) have been computed by Hashimoto
[1983] for weights k ≥ 5. For 00(2), Ibukiyama [1991] gave the structure of the
ring of Siegel modular forms of degree 2. Poor and Yuen [2007] computed the
dimensions of cusp forms for weights k = 2, 3, 4 with respect to 00(p) in the
case of a small prime p. In [Poor and Yuen 2013] Poor and Yuen described the
one-dimensional and zero-dimensional cusps of the Satake compactifications for
the paramodular subgroups in the degree two case and calculated the codimensions
of cusp forms. More recently Böcherer and Ibukiyama [2012] have given a formula
for calculating the codimensions of the spaces of cusp forms in the spaces of
modular forms of degree two with respect to Siegel congruence subgroups of

The author wishes to acknowledge his immense gratitude to Ralf Schmidt for his great help during
the research and preparation of the manuscript. The author also thanks Cris Poor, R. Schulze-Pillot
and Tomoyoshi Ibukiyama for their helpful comments communicated to Ralf Schmidt.
MSC2010: 11F46.
Keywords: dimension formula, Siegel modular forms, Klingen–Eisenstein series with level, cusp

structure, double coset decompositions.
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square-free levels. In this paper we generalize their result and give a formula for the
codimensions of the spaces of cusp forms in the spaces of modular forms of degree
two with respect to Siegel congruence subgroups of level N with 8 - N. Another
application of the results presented here will appear in a forthcoming work on
Klingen–Eisenstein series. The method used to find the codimensions of the spaces
of cusp forms makes use of a result from the theory of Satake compactification.
The cusp structure of the Satake compactification encodes information about the
codimensions of cusp forms and works of several authors indicate that it is an
important object worth investigating.

2. Notation

We shall use the following notation throughout this paper unless otherwise stated.
We realize the group GSp(4) as

GSp(4) := {g ∈ GL(4) | t g Jg = λ(g)J for some λ(g) ∈ GL(1)},

with J =
[
−J1

J1
]

and J1=
[

1
1]. We note that this version of GSp(4) is isomorphic

to the classical version of GSp(4) and we denote this isomorphism by the map 
which interchanges the first two rows and the first two columns of any matrix. Sp(4)
is the subgroup of GSp(4) consisting of matrices with multiplier λ= 1. By Q(Q)
and P(Q) we will denote the Klingen and Siegel parabolic subgroups of GSp(4,Q),
respectively, consisting of the matrices of the form

Q(Q)=
{
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗
| ∗ ∈Q

}
and P(Q)=

{
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗
| ∗ ∈Q

}
.

We define

s1 :=


1

1
1

1

 , s2 :=


1

1
−1

1

 .
We define the Siegel congruence subgroup as

00(N )= 04
0(N ) :=



∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

a b ∗ ∗
c d ∗ ∗

 ∈ Sp(4,Z) | a, b, c, d ≡ 0 mod N

 .
We will denote by 0(N ) the usual principal congruence subgroup of Sp(4,Z). Next
we define 1(Z/NZ) := {g mod N | g ∈ 00(N )},0∞(Z) := Q(Q)∩Sp(4,Z).

We will use 02
0(N ) :=

{[0
c

b
d

]
∈ SL(2,Z) | c ≡ 0 mod N

}
to denote the Hecke

congruence subgroup of SL(2,Z) and 02
∞
(Z) :=

{
±
[1 b

1

]
| b ∈ Z

}
. For Z ∈ H2 :=

{z ∈M2(C) |
t z= z, Im z>0}, and for any m=

[
A
C

B
D

]
∈Sp(4,Z)we define m〈Z〉 :=
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(AZ+B)(C Z+D)−1, j (m, Z) :=C Z+D and m〈Z〉∗= τ̃ for m〈Z〉=
[
τ̃
z̃

z̃
τ̃ ′

]
. We

will denote by C0(N ) and C1(N ) the number of zero and one-dimensional cusps
for 00(N ) respectively, i.e.,

C0(N )= #(00(N )\GSp(4,Q)/P(Q)), C1(N )= #(00(N )\GSp(4,Q)/Q(Q)).

Let

ω1(q)=
[

a b
c d

]
for q =


∗ ∗ ∗ ∗

a b ∗
c d ∗
∗

 ∈ Q(Q),

and let ı1 be an embedding map

ı1

([
a b
c d

])
=


1 ∗ ∗ ∗

a b ∗
c d ∗

1


from SL(2,Q) to Q(Q). For g∈GSp(4,Q), we define0g :=ω1(g−100(N)g∩Q(Q)).

3. A brief overview of the main results

We recall cusps in the degree one case. Let 0 be a congruence subgroup of SL(2,Z)

which acts on the complex upper half plane H by the usual action. In order to com-
pactify 0\H we adjoin Q∪{∞} to H to define the extended plane H∗=H∪Q∪{∞}

and take the quotient X (0)= 0\H∗. Then a cusp of X (0) is a 0-equivalence class
of points in Q∪{∞}. As SL(2,Z) acts transitively on Q∪{∞} there is just one cusp
of the modular curve X (1)=SL(2,Z)\H∗. It is well known that cusps of X (02

0 (N ))
correspond to the double coset decompositions of 02

0 (N )\SL(2,Z)/02
∞
(Z), for ex-

ample see [Diamond and Shurman 2005, Proposition 3.8.5] or [Miyake 1989, §4.2].
The theory of Satake compactification is explained in [Satake 1957/58a]. A

quick review can be found in [Poor and Yuen 2013, Section 3]. In fact similar to
the degree one case, the one-dimensional cusps for the Siegel congruence subgroup
00(N ), in the degree two case, correspond to the double coset decompositions
00(N )\Sp(4,Z)/0∞(Z) and also equivalently to 00(N )\GSp(4,Q)/Q(Q). Sim-
ilarly the zero-dimensional cusps correspond to the double coset decompositions
00(N )\GSp(4,Q)/P(Q). It turns out that for even weights k > 4, the codimension
of cusp forms can be obtained by using the Satake’s theorem; see [Satake 1957/58b]
if the structure of zero-dimensional cusps and one-dimensional cusps are known.

We prove the following result concerning one-dimensional cusps in the case
when N = pn for some prime p and n ≥ 1. In fact, the one-dimensional cusps for
00(pn) are inverses of the representatives listed below.



210 ALOK SHUKLA

Theorem 3.1. Assume n ≥ 1. A complete and minimal system of representatives
for the double cosets Q(Q)\GSp(4,Q)/00(pn) is given by

1, s1s2, g1(p, γ, r)=


1

1
1

γ pr 1



g2(p, s)=


1

1
ps 1

ps 1

 , g3(p, δ, r, s)=


1

1
ps 1
δpr ps 1


where 1≤ s, r≤n−1, s<r<2s and where γ , δ run through elements in (Z/p f1Z)×

and (Z/p f2Z)×, respectively, with f1 =min (r, n− r) and f2 =min (2s− r, n− r).
The total number of representatives given above is

(3-1) C1(pn)=

{ pn/2+1
+pn/2

−2
p−1 if n is even,

2(pn+1/2
−1)

p−1 if n is odd.

Some remarks.

(i) We note that alternatively one can get the following system of complete and
minimal representatives for the double cosets Q(Q)\GSp(4,Q)/00(pn).

g1(γ, x)=


1

1
1

xγ 1

 , 1≤ γ ≤ N , γ | N ,

g3(γ, δ, y)=


1

1
δ 1

yγ δ 1

 , 1< δ < γ ≤ N , γ | N , δ | N , δ | γ, γ | δ2
;

where N = pn and for fixed γ and δ we set

M = gcd
(
γ,

N
γ

)
, L = gcd

(
δ2

γ
,

N
γ

)
,

and x and y vary through all the elements of (Z/MZ)× and (Z/LZ)×, respec-
tively. Here we interpret (Z/Z)× as an empty set. Clearly g1(N , x) is equiv-
alent to the representative 1 in Q(Q)\GSp(4,Q)/00(pn) and one can show
that g1(1, x) is equivalent to the representative s1s2 (see Lemma 5.7). One can
also easily show that g3(N , ps, 1) is equivalent to the representative g2(p, s).
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(ii) One can write yet another formulation for a complete and minimal system of
representatives for the double cosets Q(Q)\GSp(4,Q)/00(pn) as follows:

g0(γ, δ, y) :=


1

1
δ 1

yγ δ 1

 , 1≤ δ ≤ γ ≤ N , γ | N , δ | N , δ | γ, γ | δ2,

with y, γ , δ and N as in the first remark. This is clear on observing that the
definition of g0(γ, δ, y) is different from g3(γ, δ, y) only when δ = γ and in
that case the set of representatives g0(γ, γ, y) is equivalent to g1(γ, x).

The above result can be extended by using the strong approximation theorem
and the Chinese remainder theorem to arbitrary N. We have the following lemma.

Lemma 3.2. Assume N =
∏m

i=1 pni
i . Then, the number of inequivalent repre-

sentatives for the double cosets Q(Q)\GSp(4,Q)/00(N) is given by C1(N ) =∏m
i=1 C1(p

ni
i ).

We have the following corollary of Theorem 3.1 based on Lemma 3.2.

Corollary 3.3. Assume N =
∏m

i=1 pni
i . A complete and minimal system of repre-

sentatives for the double cosets Q(Q)\GSp(4,Q)/00(N ) is given by

g1(γ, x)=


1

1
1

xγ 1

 , 1≤ γ ≤ N , γ | N ,

g3(γ, δ, y)=


1

1
δ 1

yγ δ 1

 , 1< δ < γ ≤ N , γ | N , δ | N , δ | γ, γ | δ2,

where for fixed γ and δ we have

x = M + ζ
∏

pi -M, pi |N

pni
i , y = L + θ

∏
pi -L , pi |N

pni
i ,

with M = gcd(γ, N/γ ), L = gcd(δ2/γ, N/γ ), ζ and θ varies through all the el-
ements of (Z/MZ)× and (Z/LZ)×, respectively. Here we interpret (Z/Z)× as an
empty set.

Essentially the representatives listed above are obtained by appropriately lifting
the representatives of Q(Q)\GSp(4,Q)/00(p

ni
i ) for each prime factor pi of N.

The last statement will be made explicit in the proof of the corollary. We also note
that x and y are defined in such a way that gcd(x, N )= 1 and gcd(y, N )= 1.
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We remark that the one-dimensional cusps for 00(N ) are given by the inverses
of the representatives listed above in Corollary 3.3.

Corollary 3.4. (1) Let f1 be an elliptic cusp form of even weight k with k ≥ 6 and
level N. Let  (g) be a one-dimensional cusp for 00(N ) of the form g1(γ, x)−1.
Then

Eg(Z)=
∑

 (ξ)∈( (g)Q(Q) (g−1)∩00(N ))\00(N )

f1(g−1ξ〈Z〉∗) det( j (g−1ξ, Z))−k

defines a Klingen–Eisenstein series of level N with respect to the Siegel con-
gruence subgroup 00(N ).

(2) Let  (h) be a one-dimensional cusp for 00(N ) of the form g3(γ, δ, y)−1. Let
f2 ∈ Sk(0 (h)) with even weight k such that k ≥ 6. Then

Eh(Z)=
∑

 (ξ)∈( (h)Q(Q) (h−1)∩00(N ))\00(N )

f2(h−1ξ〈Z〉∗) det( j (h−1ξ, Z))−k

defines a Klingen–Eisenstein series of level N with respect to the Siegel con-
gruence subgroup 00(N ).

As  (g) and  (h) run through all one-dimensional cusps of the form g1(γ, x)−1

and g3(γ, δ, y)−1 respectively, and for some fixed g and h, as f1 and f2 run through
a basis of Sk(00(N )) and Sk(0 (h)) respectively, the Klingen–Eisenstein series thus
obtained are linearly independent.

The number of zero-dimensional cusps C0(pn) for odd prime p was calculated
by Markus Klein in his thesis [2004, Korollar 2.28]:

(3-2) C0(pn)= 2n+ 1+ 2
( n−1∑

j=1

φ(pmin( j,n− j))+

n−2∑
j=1

n−1∑
i= j+1

φ(pmin( j,n−i))

)
.

It is the same as

(3-3) C0(pn)=


3 if n = 1,
2p+ 3 if n = 2,

−2n− 1+ 2pn/2
+ 8 pn/2

−1
p−1 if n ≥ 4 is even,

−2n− 1+ 6p(n−1)/2
+ 8 p(n−1)/2

−1
p−1 if n ≥ 3 is odd.

The above formula remains valid if p = 2 and n = 1. The above result also remains
true for p = 2 and n = 2 as calculated by Tsushima (cf. [Tsushima 2003]). Hence,
assume 8 - N and if N =

∏m
i=1 pni

i then following an argument similar to the one
given in the proof of Lemma 3.2 we obtain

(3-4) C0(N )=
m∏

i=1

C0(p
ni
i ).
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Finally, by using Satake’s [1957/58b] theorem and the formula for C0(N ) and
C1(N ) described above we obtain the following result:

Theorem 3.5. Let N ≥ 1, 8 - N and k ≥ 6, even. Then

(3-5) dim Mk(00(N ))− dim Sk(00(N ))

= C0(N )+
(∑
γ |N

φ(gcd(γ, N/γ ))
)

dim Sk(0
2
0 (N ))

+

∑
1<δ<γ, γ |N ,
δ|γ, γ |δ2

∑
′ dim Sk(0g)

where C0(N ) is given by (3-4) if N > 1, C0(1) = 1, φ is Euler’s totient function,
and for a fixed γ and δ, the summation

∑
′ is carried out such that g runs through

every one-dimensional cusp of the form g3(γ, δ, y), with y taking all possible values
as in Corollary 3.3.

Some remarks.

(i) We note that Markus Klein did not consider the case 4 | N for calculating the
number of zero-dimensional cusps in his thesis. Tsushima provided the result
for N = 4. Since we refer to their results for the number of zero-dimensional
cusps we have this restriction in our theorem. We hope to return to this case in
the future.

(ii) The above result in the special case of square-free N reduces to the dimension
formula given in [Böcherer and Ibukiyama 2012] for even k ≥ 6. They also
treat the case k = 4 for square-free N.

In Section 4 we briefly review Satake compactification and cusps. Thereafter
in Section 5 we give proofs of the main results. We remark that the proof of
Theorem 3.1 is entirely algorithmic and essentially uses elementary number theory
to establish the result.

4. Cusps of 00(N)

We recall a few basic facts related to the Satake compactification S(0\H2) of
0\H2 (see [Satake 1957/58a; 1957/58b; Böcherer and Ibukiyama 2012; Poor and
Yuen 2013]). Here 0 is a congruence subgroup of Sp(4,Z). We will be interested
in S(N ) := S(00(N )\H2). By Bd(N ) we denote the boundary of S(N ). The
one-dimensional components of Bd(N ) are modular curves and are called the one-
dimensional cusps. The one-dimensional cusps intersect on the zero-dimensional
cusps.

We define Mk(Bd(N )) to be the space of modular forms on Bd(N )which consists
of modular forms of weight k on the one-dimensional boundary components such



214 ALOK SHUKLA

that they are compatible on each intersection point. In the following we make the
above description more explicit. Let GSp(4,Q)=

⊔l
i=100(N)gi Q(Q).

Then the one-dimensional cusps bijectively correspond to {gi }. Let 0i =

ω1(g−1
i 00(N)gi ∩ Q(Q)). In this situation the one-dimensional cusp gi can be

associated to the modular curve 0i\H1. The zero-dimensional cusps of 0i\H1 corre-
spond to the representatives h j of 0i\SL(2,Z)/02

∞
(Z). In fact, h j can be identified

with the zero-dimensional cusp of S(N ) that corresponds to 00(N )gi ı1(h j )P(Q). If
00(N )gi ı1(h j )P(Q)= 00(N )gr ı1(h j )P(Q) for two inequivalent one-dimensional
cusps gi and gr then it means that these two one-dimensional cusps intersect at a
zero-dimensional cusp. Next we define a map 8 from Mk(00(N )) to Mk(0i ) by
(8(F))(z) = limλ→∞ F

([ z
iλ

])
for z ∈ H1. Then we define 8̃ : Mk(00(N ))→

Mk(Bd(N )) by F→ (8(F |k (gi )))1≤i≤l . Here |k denotes the usual slash operator
defined as F |k (g)= det(C Z+D)−k F( (g)〈Z〉) for  (g)=

[ A
C

B
D

]
and  (g)〈Z〉=

(AZ + B)(C Z + D)−1 with g ∈ Sp(4,R). Any element ( fi )1≤i≤l in the image
of 8̃ satisfies the condition that fi |kh1 = f j |kh2 whenever 00(N )gi ı1(h1)P(Q)=
00(N )g j ı1(h2)P(Q); where h1, h2 ∈SL(2,Q) and 1≤ i, j ≤ l. It essentially means
that fi and f j , which are modular forms on the one-dimensional cusps gi and g j

respectively, are compatible on the intersection points of these cusps.

5. Proofs

Proof of Theorem 3.5.

Proof. By Satake’s theorem (see [Satake 1957/58b]) it follows that the codimension
of the space of cusp forms is dim Mk(Bd(N )). We recall that by definition f ∈
Mk(Bd(N )) means: f is a modular form of weight k on the boundary components
of S(N ) such that f takes the same value on each intersection point of the boundary
components. If f ∈ Sk(0i ) on a boundary component 0i\H1 corresponding to a
one-dimensional cusp, say gi , then f vanishes at every cusp of gi and in particular
f takes the same value zero at every intersection point of the boundary components.
Hence f ∈Mk(Bd(N )). We note that for any representatives g1 of the form g1(γ, x)
with g1(γ, x) defined as in Corollary 3.3, we have ω1(g−1

1 00(N)g1 ∩ Q(Q)) =
02

0 (N ) and similarly for any representatives g3 of the form g3(γ, δ, y) a simple
calculation shows that 0g3 = ω1(g−1

3 00(N)g3 ∩ Q(Q)) ⊂ 02
0 (δ). It follows that

each one-dimensional cusp of the form g1(γ, x) contributes dim Sk(0
2
0 (N )) linearly

independent cusp forms and this accounts for the second term in the formula (3-5).
For a fixed δ and γ such that 1 < δ < γ , γ | N, δ | γ , γ | δ2 and for a fixed y,
the one-dimensional cusp g of the form g3(γ, δ, y) contributes dim Sk(0g) cusp
forms. These contributions account for the last term in the summation formula
(3-5). We remark that the last two terms in the summation formula (3-5) count the
Klingen–Eisenstein series associated to each one-dimensional cusp as defined in
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Corollary 3.4. Finally, since k > 4 and even there exists a basis of Eisenstein series
that is supported at a single cusp. The total number of zero-dimensional cusps
C0(N ) accounts for all such cases and these are in fact Siegel–Eisenstein series. �

In the following we determine a complete and minimal system of representatives
for the double cosets Q(Q)\GSp(4,Q)/00(pn) and prove Theorem 3.1. For that
we begin with first stating and proving several lemmas. In the following we write
g ∼ h⇐⇒ Q(Q)g00(pn)= Q(Q)h00(pn), for g, h ∈ GSp(4,Q).

Lemma 5.1. Let p be a prime number and let x1, x2 be integers such that x1, x2 and
p are pairwise coprime. Further, assume y1, y2 to be integers such that y1, y2 and p
are pairwise coprime with gcd(x1, y1)= 1. Let x = x1x−1

2 p−r and y = y1 y−1
2 p−s

with r, s ≥ 0, x2 6= 0, y2 6= 0. Let n ≥ 1. Let

g = s1s2


1 y

1 x y
1

1

 .
Then we have the following results.

(1) If s > r , then there exist integers η1 and η2 which are coprime to p such that

Q(Q)g00(pn)= Q(Q)


1

1
η1 ps 1

η2 p−r+2s η1 ps 1

00(pn).

(2) If s ≤ r < n, then there exists a nonzero integer x3 coprime to p such that

Q(Q)g00(pn)= Q(Q)


1

1
1

x3 pr 1

00(pn),

and if s ≤ r and r ≥ n, then Q(Q)g00(pn)= Q(Q)100(pn).

Proof. We have

s1s2


1 y

1 x y
1

1

∼

−x −y −1

−1
1 y2/x y/x

−1/x

 s1s2


1 y

1 x y
1

1

 s1

=


1

−1
−y/x 1

1/x y/x 1

∼


1
1

−y/x 1

1/x −y/x 1

 s2.
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Now we prove the first part of the lemma.

Case 1: s > r Assume s > r . Let gcd(y2, x2)= τ . Let l1, l2 be integers such that

l1x2 y1+ l2 ps−r x1 y2 = τ.

Let

d1 =
l2
1 x2 y2 ps

τ
, d2 =

l1l2x2 y2 ps

τ
.

It follows that

d1x2 y1+ d2x1 y2 ps−r
= l1 ps x2 y2.

Then we have
1

−1
−

pr x2 y1
ps x1 y2

1
pr x2
x1

pr x2 y1
ps x1 y2

1



∼


τ

p−r+s x1 y2
l1

p−r+s x1 y2
τ

−
τ

p−r+s x1 y2
−d1 −l1

p−r+s x1 y2
τ




1
−1

−
pr x2 y1
ps x1 y2

1
pr x2
x1

pr x2 y1
ps x1 y2

1



∼


−

l1 pr x2 y1
ps x1 y2

+
τ

p−r+s x1 y2
−l1

−
x2 y1
τ

−
p−r+s x1 y2

τ

−
l1 pr x2

x1
+

d1 pr x2 y1
ps x1 y2

d1
l1 pr x2 y1

ps x1 y2
−

τ
p−r+s x1 y2

−l1
ps x2 y2
τ

−
x2 y1
τ

p−r+s x1 y2
τ



∼


l2 −l1

−
xy1
τ
−

p−r+s x1 y2
τ

−d2 d1 −l2 −l1
ps x2 y2
τ

−
x2 y1
τ

p−r+s x1 y2
τ



∼


1

1
−

l1 ps x2 y2
τ

1
p−r+2 s x1x2 y2

2
τ 2 −

l1 ps x2 y2
τ

1




l2 −l1

−
x2 y1
τ

−
p−r+s x1 y2

τ

−l2 −l1

−
l1 ps x2

2 y1 y2

τ 2 −
l2 p−r+2s x1x2 y2

2
τ 2 +

ps x2 y2
τ

−
x2 y1
τ

p−r+s x1 y2
τ
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∼


1

1
−

l1 ps x2 y2
τ

1
p−r+2s x1x2 y2

2
τ 2 −

l1 ps x2 y2
τ

1




l2 −l1

−
x2 y1
τ
−

p−r+s x1 y2
τ

−l2 −l1

−
x2 y1
τ

p−r+s x1 y2
τ



∼


1

1
−

l1 ps x2 y2
τ

1
p−r+2s x1x2 y2

2
τ 2 −

l1 ps x2 y2
τ

1

 .
This completes the proof of the first part of the lemma with η1 =−l1x2 y2/τ and
η2 = x1x2 y2

2/τ
2.

Now we prove the second part of the lemma.

Case 2: s ≤ r Assume s ≤ r and gcd(x1, y1)= 1. Let gcd(y2, x2)= τ . Let l1 and
l2 be integers such that

l1x2 y1 pr−s
+ l2x1 y2 = τ.

Let d1 and d2 be integers such that

d1 y1+ d2x1 ps
=−l1 ps .

Let c1 and c2 be integers such that

c1
x1 y2

τ
+ c2 pmax(0,n−s)

=
−d1 y2

ps .

Let

β =
x2

τ
(d2τ − c1 y1).

It is easy to see that β ∈ Z, as τ = gcd(y2, x2). Further, if r < n then we make the
following choices. Let l3 and l4 be integers such that

l3
x2 y2

τ
+ l4 pn−r

= β.

Let x3 and x4 be integers such that

x3

(
l3 pr−s x2 y1

τ

)
− x4 pn−r

=−
x2 y2

τ
.

Otherwise, if r ≥ n then let

l3 = l4 = x3 = x4 = 0.
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With the above choices in place, we obtain
τ

x1 y2
l1

x1 y2
τ

−
τ

x1 y2
d1 y2 −l1

x1 y2
τ




1
−1

−
pr x2 y1
ps x1 y2

1
pr x2
x1

pr x2 y1
ps x1 y2

1



∼


−

l1 pr x2 y1
ps x1 y2

+
τ

x1 y2
−l1

−
pr x2 y1

psτ
−

x1 y2
τ

−
l1 pr x2

x1
−

d1 pr x2 y1
ps x1

−d1 y2
l1 pr x2 y1

ps x1 y2
−

τ
x1 y2
−l1

pr x2 y2
τ

−
pr x2 y1

psτ

x1 y2
τ



∼


l2 −l1

−
pr x2 y1

psτ
−

x1 y2
τ

d2 pr x2 −d1 y2 −l2 −l1
pr x2 y2
τ

−
pr x2 y1

psτ

x1 y2
τ



∼


1 l3

1
c1 ps 1 −l3

1




l2 −l1

−
pr x2 y1

psτ
−

x1 y2
τ

d2 pr x2 −d1 y2 −l2 −l1
pr x2 y2
τ

−
pr x2 y1

psτ

x1 y2
τ



∼


−

l3 pr x2 y1
psτ
+ l2 −

l3x1 y2
τ
− l1

−
pr x2 y1

psτ
−

x1 y2
τ

d2 pr x2−
c1 pr x2 y1

τ
−

l3 pr x2 y2
τ
−

c1 ps x1 y2
τ
− d1 y2

l3 pr x2 y1
psτ
− l2 −

l3x1 y2
τ
− l1

pr x2 y2
τ

−
pr x2 y1

psτ

x1 y2
τ



∼


1

1
1

pr x3 1




−
l3 pr x2 y1

psτ
+ l2 −

l3x1 y2
τ
− l1

−
pr x2 y1

psτ
−

x1 y2
τ

d2 pr x2−
c1 pr x2 y1

τ
−

l3 pr x2 y2
τ

−
c1 ps x1 y2

τ
− d1 y2

l3 pr x2 y1
psτ
− l2 −

l3x1 y2
τ
− l1

l3(pr )2x2x3 y1
psτ

− l2 pr x3+
pr x2 y2
τ

l3 pr x1x3 y2
τ
+ l1 pr x3 −

pr x2 y1
psτ

x1 y2
τ



∼


1

1
1

pr x3 1

 ,
and the second part of the lemma follows. �
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Lemma 5.2. Assume p to be a prime number and n be a positive integer. Let

x =
x1

pr x2
, y =

y1

ps y2
and z =

z1

pt z2
,

where r , s, t are nonnegative integers, x1, x2, y2, z2 are nonzero integers and y1, z1

are integers. Let any two nonzero elements from the set {x1, y1, z1, x2, y2, z2, p} be
mutually coprime except, possibly, when both belong to {x2, y2, z2}. Let

g = s1s2s1


1 x

1
1 −x

1




1 y z
1 y

1
1

 .

Then there exist x ′, y′ ∈Q such that

Q(Q)g00(pn)= Q(Q)s1s2


1 y′

1 x ′ y′

1
1

00(pn).

Proof. We have

(5-1)

g ∼ s1s2s1


1 x

1
1 −x

1




1 y z
1 y

1
1

 s1

=


1

1
−x 1
−x 1

 s1s2


1 y

1 z y
1

1



∼


x 1

x 1
1
x

1
x




1
1

−x 1
−x 1

 s1s2


1 y

1 z y
1

1

 (s1)
−1

= s2s1s2s1s2


1 x−1

1
1 −x−1

1




1 y
1 z y

1
1

 .
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Case 1: y 6= 0, z 6= 0 Let us first consider the case when y 6= 0 and z 6= 0. Let
α = gcd(x2 y2, z2). Further, if s > t − r , then let

(5-2)



−d1 pn+t
+ d2x1 = 1 with d1, d2 ∈ Z,

d3 = d1x2 y2z2 pn+s+r+t ,

c1 = (x2 y2z1 pr+s−t
+ x1 y1z2)α

−1,

τ = gcd(d3, c1),

y4 = ατ x−1
1 z−1

2 p−s,

−d4τpn
+ d5x1 = 1 with d4, d5 ∈ Z,

d = d4x2 y2z2α
−1 pn+s+r .

Otherwise, if s ≤ t − r then let

(5-3)



−d1 pn+s+r
+ d2x1 = 1 with d1, d2 ∈ Z,

d3 = d1x2 y2z2 pn+s+r+t ,

c1 = (x2 y2z1+ x1 y1z2 p−r−s+t)α−1,

τ = gcd(d3, c1),

y4 = ατ x−1
1 z−1

2 pr−t ,

−d4τpn
+ d5x1 = 1 with d4, d5 ∈ Z,

d = d4x2 y2z2α
−1 pn+t .

Now, if τ > 1 then we replace c1 by c1τ
−1. Then, if needed on appropriately

adjusting d4 and d5, we pick integers a1 and b such that

a1d − bc1 = 1.

Next, we set

a = a1+ bz1z−1
2 p−t ,

c = c1+ dz1z−1
2 p−t ,

x4 =
cpr x2 y4

x1
+

pr x2 y1

ps x1
+

dy1 y4

ps y2
.
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Then

g ∼ s2s1s2s1s2


1 x−1

1
1 −x−1

1




1 y
1 z y

1
1

 (from (5-1))

∼


1

1 −
pr x2
x1

−1 −
z1

pt z2
−

y1
ps y2

−1 − pr x2
x1
−

pr x2z1
pt x1z2

−
y1

ps y2
−

pr x2 y1
ps x1 y2



∼


1

a b
c d

1




1
1 −

pr x2
x1

−1 −
z1

pt z2
−

y1
ps y2

−1 − pr x2
x1
−

pr x2z1
pt x1z2

−
y1

ps y2
−

pr x2 y1
ps x1 y2



∼


1

−b a− bz1
pt z2

−
apr x2

x1
−

by1
ps y2

−d c− dz1
pt z2

−
cpr x2

x1
−

dy1
ps y2

−1 − pr x2
x1
−

pr x2z1
pt x1z2

−
y1

ps y2
−

pr x2 y1
ps x1 y2



∼


1

1 y4
y2

1
−1 −x4 −

y4
y2




−b a− bz1
pt z2

−
apr x2

x1
−

by1
ps y2
−

y4
y2

1 pr x2
x1
+

dy4
y2
−

cy4
y2
+

pr x2z1
pt x1z2

+
dy4z1
pt y2z2

+
y1

ps y2

cpr x2 y4
x1 y2
− x4+

pr x2 y1
ps x1 y2

+
dy1 y4
ps y2

2

1
−d c− dz1

pt z2
−

cpr x2
x1
−

dy1
ps y2



∼


1

1 y4
y2

1
−1 − x4

y2
−

y4
y2




−b a1 −a1d5x2 pr

1 d5x2 pr

1
−d c1 −c1d5x2 pr

∼ s1s2


1 y′

1 x ′ y′

1
1

 ,
with

x ′ =
x4

y2
and y′ =

y4

y2
.

This completes the proof in the case when both y and z are nonzero.

Case 2: y = 0, z 6= 0. If y = 0, z 6= 0, then we set y1 = 0, y2 = 1 and s = 0. It is
easy to see that the previous proof remains valid for this case as well.
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Case 3: y 6= 0, z = 0. If z = 0, y 6= 0 then we set z1 = 0, z2 = 1 and t = 0; and
it is easy to see that the proof given in the first case remains valid for this case as
well.

Case 4: y = 0, z = 0. Finally, we consider the case when both y and z are zero. In
this case we make the following choices. Let

c = x1, d =−pn

and select integers a and b such that ad − bc = 1. If r ≥ n, then set

y4 =
x2 pr−n

x1
, x4 = x2 y4 pr , e = bx2 pr−n, f = 0.

Otherwise if r < n then set

y4 =
−ax2 pr

x1
, x4 = x2 y4 pr , e = 0, f =−bx2 pr .

Now we have

g ∼ s2s1s2s1s2


1 x−1

1
1 −x−1

1

 (from (5-1))

∼


1

a b
c d

1




1
1 − pr x2

x1

−1
−1 − pr x2

x1



=


1

1 y4

1
−1 −x4 −y4




−b a −
apr x2

x1
− y4

1 dy4+
pr x2
x1
−cy4

cpr x2 y4
x1
− x4

1
−d c −

cpr x2
x1



=


1

1 y4

1
−1 −x4 −y4



−b a e

1 f −p−n+r x2

1
pn x1 −pr x2



∼


1

1 y4

1
−1 −x4 −y4

∼ s1s2


1 y′

1 x ′ y′

1
1


with x ′ = x4 and y′ = y4. This completes the proof of the lemma. �
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Lemma 5.3. Assume n and s to be positive integers. Also let p be a prime number
and η be an integer such that gcd(η, p)= 1. Then

Q(Q)


1

1
ps 1

ps 1

00(pn)= Q(Q)


1

1
ηps 1

ηps 1

00(pn).

Proof.
If s ≥ n, then of course both sides equal Q(Q)100(pn). Therefore, in the

following we assume that s < n. Next we consider the case when n ≥ 2s and make
the following choices. Since gcd(η, p)= 1, there exist integers α1 and β1 such that
α1η+β1 pn−s

= 1. Further, we also have gcd(α1, pn−s)= 1, so there exist β ′2 and
β ′3 such that α1β

′

2+β
′

3 pn−s
= 1. Let β2 = β1β

′

2 and β3 =−β1β
′

3. Now set

a =
1−β1 pn−s

η
= α1, b = pn−2sβ3, c = pn, d = η+β2 pn−s .

We also check that

ad − bc = α1(η+β2 pn−s)−β3 p2n−2s

= 1−β1 pn−s
+α1β2 pn−s

−β3 p2n−2s

= 1−β1 pn−s(1−α1β
′

2−β
′

3 pn−s)

= 1.

On the other hand if 2s> n, then we make the following choices. Since gcd(η, p)=
1, there exist integers α1 and β1 such that α1η+β1 pn−s

= 1. Further, we also have
gcd(α1, ps)= 1, so there exist β ′2 and β ′3 such that α1β

′

2+β
′

3 ps
= 1. Let β2= β1β

′

2
and β3 =−β1β

′

3. Now set

a =
1−β1 pn−s

η
= α1, b = β3, c = pn d = η+β2 pn−s .

Next we note

ad − bc = α1(η+β2 pn−s)−β3 pn
= 1−β1 pn−s

+α1β2 pn−s
−β3 pn

= 1−β1 pn−s
+α1β1β

′

2 pn−s
+β1β

′

3 pn

= 1−β1 pn−s(1−α1β
′

2−β
′

3 pn−s)

= 1.
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Now the lemma follows from the following calculations:

Q(Q)


1

1
ps 1

ps 1

00(pn)

= Q(Q)


1

a b
c d

1




1
1

ps 1
ps 1

00(pn)

= Q(Q)


1

1
ηps 1

ηps 1




1
bps a b

dps
− ηps c d

−bη(ps)2 −aηps
+ ps

−bηps 1

00(pn)

= Q(Q)


1

1
ηps 1

ηps 1

00(pn). �

Lemma 5.4. Assume s, r and n to be positive integers with 0< s ≤ n. Also let p be
a prime number and η1, η2 be integers such that gcd(η1, p)= gcd(η2, p)= 1. Then

Q(Q)


1

1
ps 1
η2 pr ps 1

00(pn)= Q(Q)


1

1
η1 ps 1
η2 pr η1 ps 1

00(pn).

Proof.
Let

z1 =


1

1
ps 1
η2 pr ps 1

 and z2 =


1

1
η1 ps 1
η2 pr η1 ps 1

 .
Then we note that

z−1
2


1

a b
c d

1

 z1 =


1

bps a b
dps
− psη1 c d

−b(ps)2η1 −apsη1+ ps
−bpsη1 1

 .
Now, the result follows by proceeding as in the proof of Lemma 5.3. �
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Lemma 5.5. Assume n to be a positive integer and s to be a nonnegative integer.
Also let p be a prime number. Let y1, y2 ∈ Z such that p, y1, y2 are pairwise
coprime. Then we have the following results.

(1) If s < n then there exists an integer b1 with gcd(b1, p)= 1, such that

Q(Q)


1

1
y1
y2

ps 1
y1
y2

ps 1

00(pn)= Q(Q)


1

1
b1 ps 1

b1 ps 1

00(pn).

(2) If s ≥ n then

Q(Q)


1

1
y1
y2

ps 1
y1
y2

ps 1

00(pn)= Q(Q)100(pn).

Proof. Let α1 and β1 be integers such that

α1 ps y1+β1 y2 = 1.

If 0< s < n then set:

α = α1, β = β1, b1, b2 ∈ Z such that b1β + b2 pn−s
= y1, b = b1 ps .

Otherwise, if s ≥ n then set:

α = α1, β = β1, b2 = y1 ps−n, b1 = 0, b = 0.

If s = 0 then set:

α =

{
α1− y2 if p |β1,

α1 if p - β1,
β =

{
β1+ y1 if p |β1,

β1 if p - β1,

b1, b2 ∈ Z such that b1β + b2 pn
= y1, b = b1. We note that, for each of the cases

considered above, i.e., whenever s ≥ 0, the following holds:

−bβ + ps y1 = (−b1β + y1)ps
= b2 pn.
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Then,
1

1
y1
y2

ps 1
y1
y2

ps 1

∼


y−1
2 −α

y−1
2 −α

y2

y2




1
1

y1
y2

ps 1
y1
y2

ps 1



=


β −α

β −α

ps y1 y2

ps y1 y2



=


1

1
b 1

b 1




β −α

β −α

−bβ + ps y1 αb+ y2

−bβ + ps y1 αb+ y2



∼


1

1
b1 ps 1

b1 ps 1

 .
This completes the proof of the lemma. �

Lemma 5.6. Assume n to be a positive integer, r to be a nonnegative integer and p
to be a prime number. Let x1, x2 ∈ Z such that p, x1, x2 are pairwise coprime. Then
we have the following results.

(1) If r < n, then there exists an integer c1 with gcd(c1, p)= 1 such that

Q(Q)


1

1
1

x1
x2

pr 1

00(pn)= Q(Q)


1

1
1

c1 pr 1

00(pn).

(2) If r ≥ n, then

Q(Q)


1

1
1

x1
x2

pr 1

00(pn)= Q(Q)100(pn).

Proof. Let α1 and β1 be integers such that α1 pr x1+β1x2 = 1. If 0< r < n then set:

α = α1, β = β1, c1, c2 ∈ Z such that c1β + c2 pn−r
= x1, c = c1 pr .

Otherwise, if r ≥ n, then set:

α = α1, β = β1, c2 = x1 pr−n, c1 = 0, c = 0.
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If r = 0 then set:

α =

{
α1− x2 if p |β1,

α1 if p - β1,
β =

{
β1+ x1 if p |β1,

β1 if p - β1,

c1, c2 ∈ Z such that c1β + c2 pn
= x1, c = c1. We note that for r ≥ 0,

−cβ + pr x1 = (−c1β + x1)pr
= c2 pn.

Then
1

1
1

x1
x2

pr 1

∼


x−1
2 −α

1
1

x2




1
1

1
x1
x2

pr 1



=


β −α

1
1

pr x1 x2



=


1

1
1

c 1




β −α

1
1

−βc+ pr x1 αc+ x2

∼


1
1

1
c1 pr 1

 .
This completes the proof of the lemma. �

Lemma 5.7. Assume n to be a positive integer and p to be a prime number. Let x ,
y be nonzero integers coprime to p. Then we have the following results.

(1)

Q(Q)


1

1
1

x 1

00(pn)= Q(Q)s1s200(pn).

(2)

Q(Q)


1

1
y 1

y 1

00(pn)= Q(Q)s1s200(pn).

(3)

Q(Q)


1

1
y 1
x y 1

00(pn)= Q(Q)s1s200(pn).
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Proof. Let k1 and k2 be integers such that k1x + k2 pn
= 1. Then we have

1
1

1
x 1

∼


1
1

1
x 1




−k1 1
1

1
k1x − 1 −x

=


1 k1

1
1

1

 s1s2 ∼ s1s2.

This completes the proof of the first part of lemma.
Now, let l1 and l2 be integers such that l1 y+ l2 pn

=−1. Then,
1

1
y 1

y 1

∼


1
1

y 1
y 1




l1 1
l1 1

−l1 y− 1 −y
−l1 y− 1 −y



= s2


1 l1

1
1 −l1

1

 s1s2 ∼ s1s2.

This completes the proof of the second part of lemma. Finally we have
1

1
y 1
x y 1

∼


1
1

y 1
x y 1




l1 1
l2
1 x l1 1

−l1 y− 1 −y
−l2

1 xy− l1x −l1 y− 1 −x −y



=


1

l2
1 x 1
−1

1




1 l1

1
1 −l1

1

 s1s2 ∼ s1s2.

This completes the proof of the last part of lemma. �

Lemma 5.8. Assume n and r to be integers such that 0< r < n. Let p be a prime
number and x , y ∈ Z such that gcd(x, p)= gcd(y, p)= 1. Let

g1(x, p, r)=


1

1
1

pr x 1

 and g1(y, p, r)=


1

1
1

pr y 1

 .
Then

Q(Q)g1(x, p, r)00(pn)= Q(Q)g1(y, p, r)00(pn),

if and only if
x ≡ y mod p f

where f =min(r, n− r).
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Proof. It is clear that g1(x, p, r)00(pn) ∼ g1(y, p, r)00(pn) if and only if there
exists an element

q =


t

a b
c d

1
t




1 l µ k
1 µ

1 −l
1

 ∈ Q(Q),

such that g1(y, p, r)−1qg1(x, p, r) ∈ 00(pn). We have

g1(y, p, r)−1qg1(x, p, r)

=


kpr t x + t lt µt kt

−(bl − aµ)pr x a b −bl + aµ
−(dl − cµ)pr x c d −dl + cµ

−(kpr t y− 1
t )p

r x − pr t y −lpr t y −µpr t y −kpr t y+ 1
t

 .
Suppose g1(y, p, r)−1qg1(x, p, r) ∈ 00(pn). Then we must have t =±1. We also
need the condition that

−

(
kpr t y− 1

t

)
pr x − pr t y ≡ 0 mod pn

=⇒ t2 y− x ≡ 0 mod p f

=⇒ y− x ≡ 0 mod p f .

Conversely, we show that if y− x ≡ 0 mod p f , then g1(x, p, r) and g1(y, p, r) lie
in the same double coset. Suppose x − y = k2 p f . As gcd(pn−r− f , xypr− f ) = 1,
there exist integers k and k2 such that kxypr− f

+ k1 pn−r− f
= k2. So we obtain

−(kpr y− 1)pr x − pr y = k1 pn.

Therefore

g1(y, p, r)−1


1 k

1
1

1

 g1(x, p, r)

=


kpr x + 1 k

1
1

−(kpr y− 1)pr x − pr y −kpr y+ 1

 ∈ 00(pn).

This means that g1(x, p, r) and g1(y, p, r) lie in the same double coset. This
completes the proof of the lemma. �
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Lemma 5.9. Assume s, r and n to be integers such that n ≥ 1, 0< s < n. Let p be
a prime number and x , y ∈ Z such that gcd(x, p)= gcd(y, p)= 1. Let

g3(p, x, r, s)=


1

1
ps 1

xpr ps 1

 , g2(p, s)=


1

1
ps 1

ps 1



g3(p, y, r, s)=


1

1
ps 1

ypr ps 1

 .
(1) If r < n and 0< s < r < 2s and f =min(2s− r, n− r), then

Q(Q)g3(p, x, r, s)00(pn)= Q(Q)g3(p, y, r, s)00(pn)⇐⇒ x ≡ y mod p f .

(2) If 2s ≤ r , then

Q(Q)g3(p, x, r, s)00(pn)= Q(Q)g2(p, s)00(pn).

(3) If r ≥ n, then

Q(Q)g3(p, x, r, s)00(pn)= Q(Q)g2(p, s)00(pn).

Proof. It is clear that Q(Q)g3(p, x, r, s)00(pn)= Q(Q)g3(p, y, r, s)00(pn) if and
only if there exists an element

q =


t

a b
c d

1/t




1 l µ k
1 µ

1 −l
1

 ∈ Q(Q)

such that g3(p, y, r, s)−1qg3(p, x, r, s) ∈ 00(pn). Suppose

g3(p, y, r, s)−1qg3(p, x, r, s) ∈ 00(pn).

Then, comparing the multiplier of the matrices on both sides, we see that ad−bc=1.
Then by writing the matrix on the left explicitly it also follows that t = ±1. We
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can assume that t = 1. Now,

g3(p, y, r, s)−1qg3(p, x, r, s)

=


kpr x +µps

+ 1
−(bl − aµ)pr x + bps

−(dl − cµ+ kps)pr x − (µps
− d)ps

− ps

(blps
− aµps

− kpr y+ 1)pr x − (µpr y+ bps)ps
− pr y

kps
+ l

−(bl − aµ)ps
+ a

−(dl − cµ+ kps)ps
− lps

+ c
−lpr y+ (blps

− aµps
− kpr y+ 1)ps

− aps

µ k
b −bl + aµ

−µps
+ d −dl + cµ− kps

−µpr y− bps blps
− aµps

− kpr y+ 1

 ,

and then looking at the lowest left entry we get

(blps
− aµps

− kpr y+ 1)pr x − (µpr y+ bps)ps
− pr y ≡ 0 mod pn

=⇒ pr (x − y)+ (bl − aµ)xpr+s
− kxyp2r

−µypr+s
+ bp2s

≡ 0 mod pn

=⇒ x − y+ (bl − aµ)xps
− kxypr

−µyps
+ bp2s−r

≡ 0 mod pn−r

=⇒ x − y ≡ 0 mod p f .

Conversely, we show that if y−x ≡ 0 mod p f then g3(p, x, r, s) and g3(p, y, r, s)
lie in the same double-coset. If f = n− r , then let x − y = k1 pn−r .

Q(Q)g3(p, x, r, s)00(pn)= Q(Q)g3(p, y, r, s)


1

1
1

pr x − pr y 1

00(pn)

= Q(Q)g3(p, y, r, s)


1

1
1

pnk1 1

00(pn)

= Q(Q)g3(p, y, r, s)00(pn).
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On the other hand if f = 2s− r or equivalently 2s ≤ n, then let x − y = k2 p2s−r .

Q(Q)g3(p, x, r, s)00(pn)= Q(Q)


1

1 k2

1
1

 g3(p, x, r, s)00(pn)

= Q(Q)g3(p, y, r, s)


1

k2 ps 1 k2

1
−k2 ps 1

00(pn)

= Q(Q)g3(p, y, r, s)00(pn).

This means that g3(p, x, r, s) and g3(p, y, r, s) lie in the same double coset and
the first part of lemma follows. Next,

Q(Q)g3(p, x, r, s)00(pn)= Q(Q)


1

1 pr−2s x
1

1

 g3(p, x, r, s)00(pn)

= Q(Q)g2(p, s)


1

pr−2s ps x 1 pr−2s x
1

−pr−2s ps x 1

00(pn)

= Q(Q)g2(p, s)00(pn).

This completes the proof of the second part of lemma. Finally, the last part of
the lemma follows from the calculation

g2(p, s)−1g3(p, x, r, s)=


1

1
1

pr x 1

 ∈ 00(pn). �

Proof of Theorem 3.1.
Proof. First we prove completeness. We begin by writing

(5-4) GSp(4,Q)= Q(Q)t Q(Q)s1


1 ∗

1
1 ∗

1



tQ(Q)s1s2


1 ∗

1 ∗ ∗
1

1

t Q(Q)s1s2s1


1 ∗ ∗ ∗

1 ∗

1 ∗
1

 ,
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by using the Bruhat decomposition. We consider all the different possibilities.

First Cell: If g ∈ Q(Q), then, of course, Q(Q)g00(pn) is represented by 1.

Second Cell: Assume that g is in the second cell. Then we may assume that

g = s1


1 x1

x2

1
1 − x1

x2

1

 , x1, x2 ∈ Z and gcd(x1, x2)= 1.

As gcd(x1, x2)= 1, there exist integers l1 and l2 such that −l1x1+ l2x2 = 1.

Q(Q)g00(pn)= Q(Q)


1
x2

l1

x2
1
x2
−l1

x2

 g00(pn)

= Q(Q)


l1

l1x1
x2
+

1
x2

x2 x1

−l1
l1x1
x2
+

1
x2

x2 −x1

00(pn)= Q(Q)100(pn).

Third Cell: Next let g be an element in the third cell. We may assume that

g = s1s2


1 y

1 x y
1

1

 , x, y ∈ Q(Q).

The following calculation shows that we can replace x, y by x + 1 and y + 1
respectively.

s1s2


1 y

1 x y
1

1

∼ s1s2


1 y

1 x y
1

1




1 1
1 1 1

1
1

∼ s1s2


1 y+ 1

1 x + 1 y+ 1
1

1

 .
Let x1, x2, x3 and p be pairwise coprime. Also assume y1, y2, y3, p to be pairwise
coprime. Let x = x3 pr1/x2 with r1 > 0. Then the above calculation shows that we
can change x to x + 1 = (x3 pr1 + x2)/x2. So we can always assume x to be of
the form x1/(x2 pr ) for some r ≥ 0. Similarly, we can also assume y to be of the
form y1/(y2 ps) with s ≥ 0. Next, suppose τ = gcd(x1, y1) > 1. Then replacing
x = x1/(x2 pr ) by x + τ1, with τ1 being the largest factor of y1 that is coprime to τ ,
we can also assume that gcd(x1, y1)= 1.

Now we consider all the different possibilities that may arise. First of all, it
is clear that, if both x and y are in Z, i.e., x2 = y2 = 1, r = 0, s = 0, then
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Q(Q)g00(pn)= Q(Q)s1s200(pn). Next, if x ∈ Z but y /∈ Z, then

Q(Q)g00(pn)= Q(Q)s1s2


1 y

1 y
1

1

00(pn)

= Q(Q)


1
y 1

1
−y 1

s1s200(pn)

= Q(Q)s1


1 y−1

1
1 −y−1

1

s1s200(pn)

= Q(Q)


1

1
y−1 1

y−1 1

00(pn)= Q(Q)


1

1
y2 ps

y1
1

y2 ps

y1
1

00(pn).

We note that the third equality follows from the following matrix identity:
1
y 1

1
−y 1

=

−y−1 1

y
y−1 1
−y

 s1


1 y−1

1
1 −y−1

1

 .
But, now from Lemmas 5.5 and 5.3 it follows that if 0< s < n, then

Q(Q)g00(pn)= Q(Q)


1

1
ps 1

ps 1

00(pn),

and if s ≥ n then

Q(Q)g00(pn)= Q(Q)100(pn).

Further, If s = 0 then from the Lemma 5.5 and 5.7 it follows that

Q(Q)g00(pn)= Q(Q)s1s200(pn),

which is one of the listed representatives in the statement of the theorem. Therefore
we are done in this case.
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Now consider the case when x 6∈ Z and y ∈ Z. Then we have

Q(Q)g00(pn)= Q(Q)s1s2


1

1 x
1

1

00(pn)

= Q(Q)


x 1

1
1

1/x

 s1s2


1

1 x
1

1

00(pn)

= Q(Q)


1

1
1

x−1 1



−1

1
1

−1

00(pn)

= Q(Q)


1

1
1

x−1 1

00(pn).

Now it follows from Lemmas 5.6 and 5.7 that if r = 0, then

Q(Q)g00(pn)= Q(Q)s1s200(pn),

and if r ≥ n, then
Q(Q)g00(pn)= Q(Q)100(pn).

Further, if 0< r < n, then Lemma 5.6 yields that

Q(Q)g00(pn)= Q(Q)


1

1
1

c1 pr 1

00(pn)

for some integer c1 such that gcd(c1, p)= 1. Then it follows from Lemma 5.8 that
g lies in the same double coset as one of the elements listed in the statement of the
theorem.

Next, suppose x /∈ Z and y /∈ Z. If s = r = 0 then from Lemmas 5.1 and 5.7 it
follows that

Q(Q)g00(pn)= Q(Q)s1s200(pn).

Further it follows from Lemma 5.1 that if s ≤ r and r ≥ n, then

Q(Q)g00(pn)= Q(Q)100(pn);
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otherwise, if s ≤ r < n, then

Q(Q)g00(pn)= Q(Q)g1(x3, p, r)00(pn)

for some nonzero integer x3 coprime to p. But then these cases have already been
considered. Hence, we are left with the case when s > r , and then if s ≥ n from
Lemma 5.1 we get

Q(Q)g00(pn)= Q(Q)100(pn),

and we are done. Otherwise, still assuming s > r but s < n, we get

Q(Q)g00(pn)= Q(Q)


1

1
η1 ps 1

η2 p−r+2s η1 ps 1

00(pn),

where η1, η2 ∈ Z and gcd(ηi , p)= 1 for i = 1, 2. In view of Lemma 5.4 it further
reduces to

Q(Q)g00(pn)= Q(Q)


1

1
ps 1

η2 p−r+2s ps 1

00(pn).

Now, the result follows from Lemma 5.9 and we are done in this case as well.

Fourth Cell: Next we consider an element g from the fourth cell and let

g = s1s2s1


1 x

1
1 −x

1




1 y z
1 y

1
1

 .
If x ∈ Z then

Q(Q)g00(pn)= Q(Q)s1s2


1 y

1 z+ 2xy y
1

1

00(pn),

and we are reduced to the case of the third cell. Therefore let us assume that x 6∈ Z.
If necessary on multiplication by a suitable matrix from right, we can assume that
x = x1/(pr x2), y = y1/(ps y2) and z= z1/(pr1 z2) where xi , yi , zi ∈Z, for i = 1, 2;
r , s, r1 are nonnegative integers, x1, x2, p are mutually coprime integers; y1, y2, p
are mutually coprime integers and z1, z2, p are also mutually coprime integers. We
can further adjust x1, y1 and z1 by multiplication by a proper matrix from the right,
such that any two nonzero elements selected from the set {x1, y1, z1, x2, y2, z2, p}
are mutually coprime except, possibly, when both the chosen elements belong to
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{x2, y2, z2}. Then by the virtue of Lemma 5.2 once again we are reduced to the
case of the third cell. This proves that the representatives listed in the theorem
constitute a complete set of double coset representatives.

Disjointness. Now we prove that the double cosets represented by the represen-
tatives listed in the theorem are disjoint. It is clear that two elements w1 and w2

represent the same double coset if and only if there exists an element

q =


t

a b
c d

(ad − bc)t−1




1 l µ k
1 µ

1 −l
1

 ∈ Q(Q)

such thatw−1
2 qw1∈00(pn). On comparing the multiplier on both sides we conclude

that ad − bc = 1. Then it is also clear that we can assume t = 1. Also clearly
q must be a matrix with integral entries. Now we consider all pairs of different
representatives for checking disjointness.

w1 = g3( p, α, r, s), w2 = g3( p, β, v,w): Let

w1= g3(p,α,r,s)=


1

1
ps 1
αpr ps 1

 and w2= g3(p,β,v,w)=


1

1
pw 1
βpv pw 1

,
with α, β integers coprime to p and r, s, v, w ∈ Z such that 0 < s < r < 2s,
0< v < w < 2v, 0< s, r < n, 0<w, v < n. We see that

w−1
2 qw1 =


∗

∗

−(dl − cµ+ kpw)αpr
− (µpw − d)ps

− pw

−(βkpv − blpw + aµpw − 1)αpr
− (βµpv + bpw)ps

−βpv

∗ ∗ ∗

∗ ∗ ∗

−(dl − cµ+ kpw)ps
− lpw + c ∗ ∗

−βlpv − (βkpv − blpw + aµpw − 1)ps
− apw ∗ ∗


Suppose s >w. If w−1

2 qw1 ∈ 00(pn), then looking at the bottom two entries of the
second column we conclude that p must divide both a and c. But this contradicts
that ad − bc = 1. Similarly, if s < w, by looking at first two entries of the third
row we get that p | d and p | c contradicting ad − bc = 1. Therefore, we assume
s =w. Now looking at the bottommost entry of the first column we conclude that if
r 6= v, then the valuation of this element can not be n. Therefore, if r 6= v or s 6=w,
then g3(p, α, r, s) and g3(p, β, v,w) lie in different double cosets. If r = v and
s =w, then Lemma 5.9 describes the condition for g3(p, α, r, s) and g3(p, β, v,w)
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to lie in the same double coset. We conclude that such representatives listed in the
theorem represent disjoint double cosets.

w1 = g3( p, α, r, s), w2 = g2( p,w): Let w1 = g3(p, α, r, s) and w2 = g2(p, w).
Assume w−1

2 qw1 ∈ 00(pn). Then we see that

w−1
2 qw1

=


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

−(dl−cµ+kpw)αpr
−(µpw−d)ps

− pw −(dl−cµ+kpw)ps
−lpw+c ∗ ∗

(blpw−aµpw+1)αpr
−bps pw (blpw−aµpw+1)ps

−apw ∗ ∗


and it is clear that p | c and if s > w then and p | a or else if s < w then p | d.
In any case p | ad − bc = 1 which is a contradiction. Hence, we further assume
s = w. Now, as s < r < 2s, looking at the last entry of the first column we see that
the valuation of the element (blps

− aµps
+ 1)αpr

− b(ps)2 is r . Since r < n, we
conclude that g3(p, α, r, s) and g2(p, w) lie in different double cosets.

w1 = g3( p,α,r,s),w2 = g1( p,β,v): Let w1= g3(p,α,r,s) and w2= g1(p,β,v).
Assume w−1

2 qw1 ∈ 00(pn). Then we see that

w−1
2 qw1 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

−(dl − cµ)αpr
+ dps

−(dl − cµ)ps
+ c ∗ ∗

−βµps pv − (βkpv − 1)αpr
−βpv −βlpv − (βkpv − 1)ps

∗ ∗

 .
Clearly, p | c. Since r > s, p also divides d and it contradicts the condition
ad − bc = 1. Therefore g3(p, α, r, s) and w2 = g1(p, β, v) lie in different double
cosets.

w1 = g2( p, s), w2 = g1( p, β, v): Let w1 = g2(p, s) and w2 = g1(p, β, v). As-
sume w−1

2 qw1 ∈ 00(pn). Then we see that

w−1
2 qw1 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

dps
−(dl − cµ)ps

+ c ∗ ∗

−βµps pv −βpv −βlpv − (βkpv − 1)ps
∗ ∗

 .
Once again we see that p divides both c and d which is a contradiction to the
condition ad − bc = 1. Therefore g2(p, s) and w2 = g1(p, β, v) lie in different
double cosets.
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w1 = g2( p, s), w2 = g2( p,w): Let w1 = g2(p, s) and w2 = g1(p, w). Let us
assume that w−1

2 qw1 ∈ 00(pn). Then we see that

w−1
2 qw1 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

dps
−(dl − cµ)ps

+ c ∗ ∗

−βµps pw −βpw −βlpw − (βkpw − 1)ps
∗ ∗

 .
Once again we see that p | c and if s >w, then p | a or else if s <w, then p | d . In
any case p |ad−bc= 1, which is a contradiction. Therefore g2(p, s) and g2(p, w)
lie in different double cosets.

w1 = g1( p, α, r), w2 = g1( p, β, v): Let w1 = g1(p, α, r) and w2 = g1(p, β, v).
Let us assume that w−1

2 qw1 ∈ 00(pn). Then we see that

w−1
2 qw1 =


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

−(dl − cµ)αpr c ∗ ∗

−(βkpv − 1)αpr
−βpv −βlpv ∗ ∗

 .
Since r, v < n, we see that if r 6= v, then valuation of −(βkpv − 1)αpr

−βpv is less
than n. Therefore g1(p, α, r) and g1(p, β, v) lie in different double cosets. This
completes the proof of disjointness.

The number of representatives. Finally, we calculate the total number of inequiv-
alent representatives. First let n be even, say n = 2m for some positive integer m.
Then

#(Q(Q)\GSp(4,Q)/00(p2m))

= 2+ 2m− 1+
2m−1∑
r=1

φ(pmin(r,2m−r))+

2m−1∑
s=1

min(2s−1,2m−1)∑
r=s+1

φ(pmin(2s−r,2m−r))

=
pm+1

+ pm
− 2

p− 1
.

Similarly, if n is odd, say n = 2m+ 1, then

#(Q(Q)\GSp(4,Q)/00(p2m+1))

= 2+ 2m+
2m∑

r=1

φ(pmin(r,2m+1−r))+

2m∑
s=1

min(2s−1,2m)∑
r=s+1

φ(pmin(2s−r,2m+1−r))

=
2(pm+1

− 1)
p− 1

.

Thus on combining these we obtain the formula (3-1) for the number of one-
dimensional cusps. �
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Proof of Lemma 3.2.

Proof. We note that the representatives for Q(Q)\GSp(4,Q)/00(N ) may be
obtained from the representatives of Q(Q)\GSp(4,Q)/00(p

ni
i ) for i = 1 to m.

This observation is essentially based on the following two well known facts.

(1) The natural projection map from Sp(4,Z) to Sp(4,Z/NZ) is surjective.

(2) Sp(4,Z/
∏

p peZ)−→∼
∏

p Sp(4,Z/peZ).

In fact, we have
Sp(4,Z)/00(N)−→∼ (Sp(4,Z)/0(N ))/(00(N)/0(N ))

−→∼ Sp(4,Z/NZ)/1(Z/NZ).

Clearly, 1(Z/NZ)=
∏m

i=11(Z/pni
i Z), and the following diagram is commutative.

Sp(4,Z/NZ)
∏m

i=1 Sp(4,Z/pni
i Z)

g (g1, . . . , gm)

g1(Z/NZ) (g11(Z/pn1
1 Z), . . . , gm1(Z/pnm

m Z))

A = Sp(4,Z/NZ)/1(Z/NZ)
∏m

i=1 Sp(4,Z/pni
i Z)/1(Z/pni

i Z)= B

∈

∼

ψ

∈

∈ ∈

∼

φ

Next we show that the left action by 0∞(Z) is compatible with the isomorphisms
described in the commutative diagram above. In fact, 0∞(Z) acts on both sides as
follows:

• on A: via
0∞(Z)→ 0∞(Z/NZ), γ → γ

• on B: via

0∞(Z)→ 0∞(Z/NZ)−→∼
m∏

i=1

0∞(Z/pni
i Z)

γ → γ −→∼ (γ1, γ2, . . . , γm−1, γm).

Let g ∈ Sp(4,Z/NZ), a = g1(Z/NZ) ∈ A and γ ∈ 0∞(Z). Then it is easy to
check that φ(γ a)= γ (φ(a)). Therefore we obtain,

Q(Q)\GSp(4,Q)/00(N )−→∼ (Q(Q)∩Sp(4,Z))\Sp(4,Z)/00(N)

−→∼ 0∞(Z/NZ)\Sp(4,Z/NZ)/1(Z/NZ)

−→∼

m∏
i=1

0∞(Z/pni
i Z)\Sp(4,Z/pni

i Z)/1(Z/pni
i Z).

Now the result follows from Theorem 3.1. �
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Proof of Corollary 3.3.

Proof. It is easy to check that the double cosets represented by the listed representa-
tives are disjoint. Let α(N ) denote the total number of representatives listed in the
statement of the corollary. We note that for N = pn, with p a prime and n ≥ 1, the
number of listed representatives are the same as given by Theorem 3.1 (moreover,
the set of representatives in this case will be seen to be equivalent to the set of
representatives given by Theorem 3.1 if one applies Lemma 5.8 and Lemma 5.9
and works out the details). We will show that for any pair of coprime positive
integers R and S we have α(RS)= α(R)α(S). Then it will follow that the listed
representatives form a complete set because for any N their number will agree with
the number given in Lemma 3.2. We have

α(RS)= 1+
∑
γ |RS

1<γ≤RS

φ
(
gcd

(
γ,

RS
γ

))
+

∑
γ |RS

1<γ≤RS

∑
δ|γ,γ |δ2

γ>δ

φ
(
gcd

(δ2

γ
,

RS
γ

))

= 1+
∑
γ |RS

1<γ≤RS

∑
δ|γ,γ |δ2

γ≥δ

φ
(
gcd

(δ2

γ
,

RS
γ

))

= 1+
∑

γ1|R,γ2|S
1<γ1γ2≤RS

∑
δ|γ1γ2,γ1γ2|δ

2

γ1γ2≥δ

φ
(
gcd

( δ2

γ1γ2
,

RS
γ1γ2

))

+

∑
γ1|R

1<γ1≤R

∑
δ|γ1,γ1|δ

2

γ1≥δ

φ
(
gcd

(δ2

γ1
,

RS
γ1

))

+

∑
γ2|S

1<γ1≤S

∑
δ|γ2,γ2|δ

2

γ2≥δ

φ
(
gcd

(δ2

γ2
,

RS
γ2

))

=

(
1+

∑
γ1|R

1<γ1≤R

∑
δ1|γ1,γ1|δ

2
1

γ1≥δ1

φ
(
gcd

(δ2
1

γ1
,

R
γ1

)))(
1+

∑
γ2|S

1<γ2≤S

∑
δ2|γ2,γ2|δ

2
2

γ2≥δ2

φ
(
gcd

(δ2
2

γ2
,

S
γ2

)))

= α(R)α(S).

This completes the proof.
Alternatively, instead of the above counting argument the corollary could also

be proved by giving an explicit bijection between sets of representatives for∏m
i=1 Q(Q)\GSp(4,Q)/00(p

ni
i ) and Q(Q)\GSp(4,Q)/00(N ). For this we re-

call the remark (ii) after Theorem 3.1 and note that for m = 1, i.e., for N = pn1
1 , a
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complete set of representatives for Q(Q)\GSp(4,Q)/00(N ) is also given by

g0(γ, δ, y) :=


1

1
δ 1

yγ δ 1

 , 1≤ δ ≤ γ ≤ N , γ | N , δ | N , δ | γ, γ | δ2,

with y being the same as in the statement of the corollary.
Now suppose N =

∏m
i=1 Ni with Ni = pni

i and m > 1. We define the map

φ :

m∏
j=1

Q(Q)\GSp(4,Q)/00(p
n j
j )→ Q(Q)\GSp(4,Q)/00(N )

(g0(γ j , δj , yj )) j=1,...,m→ g0(γ, δ, y),

where γ j and δj are factors of Nj such that 1 ≤ δj ≤ γ j ≤ Nj , δj | γ j , γ j | δ
2
j and

γ =
∏m

j=1 γ j , δ =
∏m

j=1 δj . Also, yj = L j + θj with L j = gcd(δ2
j /γ j , Nj/γ j ) and

θj = 0 if L j = 1 otherwise θj ∈ (Z/L j Z)
×. Also, y = L + θβ with L =

∏m
j=1 L j ,

β =
∏

pi -L , pi |N pni
i , θ =

∑m
j=1 α j (L/L j )θj and α j is such that α jβ(L/L j ) ≡ 1

mod L j .
It is clear that L = gcd(δ2/γ, N/γ ). If a prime p divides L then it must divide

some Lk with 1≤ k ≤m. Assume this to be the case. Then from the definition of θ
it follows that βθ ≡ θk mod Lk . As p | Lk and θk ∈ (Z/LkZ)×, it is clear that p - θ .
Therefore θ ∈ (Z/LZ)× as desired.

Next we show that φ is injective. For this let us assume that

φ((g0(γ j , δj , yj )) j=1,...,m)= φ((g0(γ
′

j , δ
′

j , y′j )) j=1,...,m)= g0(γ, δ, y).

Then γ =
∏m

j=1 γ j =
∏m

j=1 γ
′

j implies γ j = γ
′

j for all j. Similarly δj = δ
′

j for
all j . Hence L j = L ′j for all j. Moreover, we have y ≡ βθ ≡ θj ≡ yj mod L j .
Similarly y ≡ βθ ≡ θ ′j ≡ y′j mod L ′j . This gives yj ≡ y′j mod L j for all j. Now
Lemmas 5.8 and 5.9 imply that g0(γ j , δj , yj ) is equivalent to g0(γ

′

j , δ
′

j , y′j ) in
Q(Q)\GSp(4,Q)/00(p

n j
j ). This shows that φ is injective.

Finally we prove that φ is surjective. Assume that g0(γ, δ, y) is a given repre-
sentative of Q(Q)\GSp(4,Q)/00(N ). We define γ j and δj as the highest power
of pj that divides γ and δ respectively. Then we define L j = gcd(δ2

j /γ j , Nj/γ j ).
Also let θj be defined as βθ mod L j and let yj = L j + θj . It is enough to define
θj modulo L j because Lemmas 5.8 and 5.9 imply that if yj ≡ y′j mod L j then
g0(γ j , δj , yj ) is equivalent to g0(γ j , δj , y′j ) in Q(Q)\GSp(4,Q)/00(p

n j
j ). Hence

we have uniquely defined the representative g0(γ j , δj , yj ) up to equivalence in
Q(Q)\GSp(4,Q)/00(p

n j
j ). It can be checked that φ((g0(γ j , δj , yj )) j=1,...,m) =

g0(γ, δ, y) up to equivalence in Q(Q)\GSp(4,Q)/00(N ). Therefore φ is surjec-
tive and we are done. �
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Proof of Corollary 3.4. Since k≥ 6 and even the Klingen–Eisenstein series defined
in the statement of the Corollary have nice convergence properties. Let  (α) and
 (β) be two one-dimensional cusps for 00(N ). Let

Eα(z)=
∑

 (ξ)∈( (α)Q(Q) (α−1)∩00(N ))\00(N )

fα(α−1ξ〈Z〉∗) det( j (α−1ξ, Z))−k,

be a Klingen–Eisenstein series associated to α. We have

(Eα|kβ)(Z)=
∑

fα(α−1ξ〈β〈Z〉〉∗) det( j (α−1ξ, β〈Z〉))−k det( j (β, Z))−k

=

∑
fα(α−1ξβ〈Z〉∗) det( j (α−1ξβ, Z))−k,

where the sums are taken over  (ξ) ∈ ( (α)Q(Q) (α−1)∩00(N ))\00(N ). Next
consider 8(Eα|kβ)(z)= limλ→∞(Eα|kβ)

([ z
iλ

])
where 8 is the Siegel 8 operator

defined earlier. The limit can be evaluated term by term because of nice convergence
properties of the Eisenstein series. It follows from the proof of [Klingen 1990,
Proposition 5, Chapter 5], that on taking the limit the only surviving terms are
those with  (α−1) (ξ) (β) ∈ Q(Q) with  (ξ) ∈ 00(N ). If  (α) and  (β) are
inequivalent cusps, then clearly no term survives and 8(Eα|kβ)(z)= 0, whereas
we see that 8(Eα|kα)(z) = fα(z). We have shown that each Eisenstein series is
supported on a unique one-dimensional cusp. Further for a fixed one-dimensional
cusp all the associated Klingen–Eisenstein series are clearly linearly independent.
The corollary is now evident. �
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NONEXISTENCE RESULTS FOR SYSTEMS
OF ELLIPTIC AND PARABOLIC
DIFFERENTIAL INEQUALITIES
IN EXTERIOR DOMAINS OF Rn

YUHUA SUN

We present a unified approach for the investigation of nonexistence results of
systems of elliptic and parabolic differential inequalities. Our results accord
with those on elliptic differential inequalities given by Bidaut-Véron and Po-
hozaev. The results on systems of parabolic differential inequalities are new.

1. Introduction

In this paper, we study the nonexistence of nonnegative solutions to systems of the
following elliptic and parabolic differential inequalities

(1-1)


1u+ |x |av p

≤ 0 in Dc,

1v+ |x |buq
≤ 0 in Dc,

u(x)≥ f (x), v(x)≥ g(x) on ∂D,

and

(1-2)


1u− ∂t u+ |x |av p

≤ 0 in Dc
× (0,∞),

1v− ∂tv+ |y|buq
≤ 0 in Dc

× (0,∞),
u(x, t)≥ f (x), v(x, t)≥ g(x) on ∂D× (0,∞),
u(x, 0)= u0(x), v(x, 0)= v0(x) in Dc,

where D is a bounded Lipschitz domain in Rn with n ≥ 3 containing the origin,
and Dc

= Rn
\ D. The exponents satisfy a, b >−2 and p, q > 1, and f (x), g(x)

are L1(∂D) nonnegative and positive somewhere functions, and u0(x), v0(x) are
nonnegative functions.

It is well known that the nonexistence theorems for elliptic equations started from
the seminal work by Gidas and Spruck [1981], where they proved the following
results for the semilinear problem

(1-3) 1u+ u p
= 0, in Rn.
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If

(1-4) 1< p < n+2
n−2

,

then the only nonnegative solution of (1-3) is identically zero.
In 1986, Ni and Serrin showed that the exponent (n + 2)/(n − 2) in (1-4) is

critical; namely, if p≥ (n+2)/(n−2), then there exist nontrivial positive solutions
to (1-3). We refer to the papers [Ni and Serrin 1986a; 1986b] for more information.

In the study of equation (1-3) in the exterior domain Rn
\B1(0) instead of the entire

Euclidean space Rn, some incredible phenomena arise. Here Br (0) is the ball of ra-
dius r centered at the origin. This marvelous result is due to Bidaut-Véron [1989]: if

(1-5) 1< p ≤ n
n−2

,

then the only nonnegative solution of (1-3) in the exterior domain is identically zero.
Actually Bidaut-Véron [1989] obtained more generalized results on the problem
1mu+u p

= 0 in the exterior domain under additional restrictions on m and p. Here
to compare with Gidas and Spruck’s result profitably, we only list the nonexistence
result for m = 2. However, if p > n/(n− 2), the nonexistence result does not hold
any more. A simple counterexample is given by the function

u(x)= λ|x |−2/(p−1),

which is a well-defined solution to (1-3) in Rn
\ B1(0), where

λ= (p− 1)−2/(p−1)
[
2(n− 2)

(
p− n

n−2

)]1/(p−1)
.

Let us turn our attention to the elliptic differential inequality case; namely,
consider the problem

(1-6) 1u+ u p
≤ 0, in Rn,

with n > 2. Ni and Serrin [1986a] proved that if

(1-7) 1< p ≤ n
n−2

,

then the only nonnegative solution of (1-6) is identically zero. For more elliptic
differential inequality cases, we refer to the papers [Caristi et al. 2008; 2009;
Mitidieri and Pohozaev 1998; 2001].

Bidaut-Véron and Pohozaev [2001] showed that in the exterior domain Rn
\B1(0),

if under the same condition (1-7) as in the entire Euclidean space, then the only
nonnegative solution of (1-6) in the exterior domain Rn

\ B1(0) is identically zero.
It is easy to see that in the inequality case, the critical exponents arising from the
entire Euclidean space and exterior domain settings are the same. The difference
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between the entire Euclidean space and exterior domain vanishes when we move
our focus from equation to differential inequality problems.

Now, let us provide some motivations from the point of view of parabolic equa-
tions. The study of critical exponents of the parabolic equation also has a long story.
When D is empty, in a celebrated paper, Fujita [1966] proved that for the problem

(1-8)
{
∂t u−1u = u p in Rn

× (0,∞),
u(x, 0)= u0(x) in Rn .

(1) If 1< p< 1+2/n and u0 > 0, then (1-8) possesses no global positive solution.

(2) If p > 1+ 2/n and u0 is smaller than a small Gaussian, then (1-8) has global
solutions.

Usually, we call 1+ 2/n the Fujita exponent. The sharpness of p = 1+ 2/n is
more difficult. Several authors independently showed that p = 1+ 2/n belongs to
the blowup case; we refer to the papers [Aronson and Weinberger 1978; Hayakawa
1973; Kobayashi et al. 1977]. Let us replace Rn by Dc in (1-8) (here D is a bounded
nonempty domain), and we have an additional boundary condition u|∂D ≡ f (x)≥ 0.
If the boundary condition f (x)≡ 0, Bandle and Levine [1989] proved the Fujita
exponent is still p = 1+ 2/n for (1-8). But, if the boundary condition f (x) is not
identically zero, Zhang found that the Fujita exponent for (1-8) will jump from
1+ 2/n to a much bigger value 1+ 2/(n− 2); see [Zhang 2001].

Laptev [2003] considered the scalar case of (1-2) with the nonzero boundary
condition

(1-9) ∂t u−1u ≥ |x |au p, Dc
× (0,∞),

and obtained that if 1 < p < (n + 1+ a)/(n − 1), then (1-9) has no nontrivial
nonnegative global solutions.

Motivated by the above literature, we investigate systems of elliptic and parabolic
differential inequalities. First, let us explain in which sense solutions of (1-2) are
defined.

Definition 1.1. A nonnegative pair (u, v) is called a weak nonnegative global
solution of the inequality system (1-2), if

(i) ∇x u,∇xv ∈ L2
loc(D

c);

(ii) For all compactly supportedψ ∈C2(Dc
×[0,∞))∩C1(Dc

×[0,∞)) vanishing
on ∂D×[0,∞), and for all τ ∈ [0,∞), we have

(1-10)



∫ τ
0

∫
Dc [u1ψ + u∂tψ + |y|av p(y, s)ψ] dy ds
−
∫ τ

0

∫
∂D f (∂ψ/∂n+) d Sy ds−

∫
Dc u(x, · )ψ(x, · )|τ0 dx ≤ 0,∫ τ

0

∫
Dc [v1ψ + v∂tψ + |y|buq(y, s)ψ] dy ds
−
∫ τ

0

∫
∂D g(∂ψ/∂n+) d Sy ds−

∫
Dc v(x, · )ψ(x, · )|τ0 dx ≤ 0.
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Here, n+ means the outward unit normal of ∂D, relative to Dc, which is defined
almost everywhere.

Throughout, when we say that (u, v) is a global positive solution of (1-2), we
mean that u, v ≥ 0 and u(x, t), v(x, t) are not identically zero for each t > 0.

Here are our main results:

Theorem 1.2. Assume p ≥ q > 1. If

(1-11) max
{

2p(1+ q)+ bp+ a
pq − 1

,
2q(1+ p)+ aq + b

pq − 1

}
> n,

then there exist no global positive solutions to (1-2).

Corollary 1.3. Assume p ≥ q > 1. If

(1-12) max
{

2p(1+ q)+ bp+ a
pq − 1

,
2q(1+ p)+ aq + b

pq − 1

}
> n,

then there exist no positive solutions to (1-1).

Theorem 1.2 and Corollary 1.3 require that D is not empty, since we technically
depend on Proposition 2.1. Corollary 1.3 was also obtained by Bidaut-Véron and
Pohozaev [2001]. We claim that our technique is quite different from the one in
that work, where they investigated various elliptic inequalities, and their technique
is to multiply the elliptic inequalities (1-1) by functions uαϕ, vβϕ and to obtain the
integral estimates with respect to the polynomials of u, v near infinity, where ϕ has
compact support in Dc, and α, β < 0. However, we mainly investigate the parabolic
differential inequalities. As a byproduct, we obtain the same result for the elliptic
problem. Our method, motivated by [Zhang 1998; 1999; 2001], is to show that the
integrals of IR, JR in (2-9) and (2-10) will blow up in some selected fixed domain.

We also improve the result obtained by Laptev [2003]. When u= v, p= q, a= b,
the system (1-2) is reduced to the scalar case (1-9). From Theorem 1.2, it is
easy to obtain that if 1 < p < (n + a)/(n − 2), then (1-9) admits no nontrivial
nonnegative global solutions. Our exponent (n+ a)/(n− 2) here is strictly bigger
than (n+ 1+a)/(n− 1) which is obtained by Laptev. We claim that our method is
also different from Laptev’s, since his method is based on the test function approach,
which was developed by Mitidieri and Pohozaev [1998; 2001].

Notation. The letters C,C ′,C0,C1, . . . denote positive constants whose values
are unimportant and may vary at different occurrences.

2. Proof of Theorem 1.2

In this section, we show the proof of Theorem 1.2. Since every positive solution
(u, v) of the elliptic problem (1-1) can also be considered as a global nontrivial
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positive solution of the parabolic inequality system (1-2), it suffices to show that
the parabolic system (1-2) has no global positive solution, provided that

max
{

2p(1+ q)+ bp+ a
pq − 1

,
2q(1+ p)+ aq + b

pq − 1

}
> n.

Before presenting the proof, let us cite a result which is proved in [Zhang 2001].

Proposition 2.1. Let ζi = ζi (x, t), i = 1, 2 be the solution of the linear problem

(2-1)


1ζ − ∂tζ = 0 in Dc

× (0,∞),
ζ(x, t)= f (x) (respectively g(x)) on ∂D× (0,∞),
ζ(x, 0)= 0 in Dc.

If f (x), g(x) are nonnegative and positive somewhere, then there exist positive
constants C and R0 such that

(2-2) ζ1(x, t), ζ2(x, t)≥ C
Rn−2 , if R0 ≤ R ≤ |x | ≤ 2R, R4n

≤ t.

Now we step into the proof of Theorem 1.2.

Proof of Theorem 1.2. Let

(2-3) ω1(x, t) := u(x, t)− ζ1(x, t), ω2(x, t) := v(x, t)− ζ2(x, t),

From (1-2) and (2-1), we derive that ω1, ω2 satisfy the following problems:

(2-4)


1ω1− ∂tω1+ |x |a(ω2+ ζ2)

p
≤ 0, in Dc

× (0,∞)
ω1(x, t)≥ 0, on ∂D× (0,∞),
ω1(x, 0)= u0(x), in Dc,

and

(2-5)


1ω2− ∂tω2+ |x |b(ω1+ ζ1)

q
≤ 0, in Dc

× (0,∞)
ω2(x, t)≥ 0, on ∂D× (0,∞),
ω2(x, 0)= v0(x), in Dc.

Moreover, applying the maximum principle, we know that ω1, ω2 are nonnegative
functions.

Since

|x |a(ω1+ ζ1)
q
≥ |x |aωq

1 + |x |
aζ

q
1 , |x |

b(ω2+ ζ2)
p
≥ |x |bωp

2 + |x |
bζ

p
2 ,

we obtain that

(2-6) 1ω1− ∂tω1+ |x |aω
p
2 + |x |

aζ
p

2 ≤ 0,

and

(2-7) 1ω2− ∂tω2+ |x |bω
q
1 + |x |

bζ
q
1 ≤ 0.
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Introduce two functions ϕ, η ∈C∞[0,∞) which satisfy the following conditions:

(i) 0≤ ϕ ≤ 1; ϕ(r)= 1, r ∈ [2, 3]; ϕ(r)= 0, r ∈ [0, 1)∪ (4,∞);

(ii) |ϕ′(r)| ≤ C; ϕ′(1)= ϕ′(4)= 0; |ϕ′′(r)| ≤ C ;

(iii) 0≤ η ≤ 1; η(t)= 1, t ∈
[
0, 1

4

]
; η(t)= 0, t ∈ [1,∞); −C ≤ η′(t)≤ 0.

Since D is bounded, we can choose R> 0 large enough so that D⊂ BR(0). Denote

ϕR(x) := ϕ
(
|x |
R

)
, ηR(t) := η

( t−R4n

R2

)
.

It is obvious that

(2-8)
∣∣∣∣∂ϕR

∂r

∣∣∣∣≤ C
R
,

∣∣∣∣∂2ϕR

∂r2

∣∣∣∣≤ C
R2 , −

C
R2 ≤ η

′

R(t)≤ 0,

and also
∂ϕR(x)
∂r

= 0 for |x | = R or |x | = 4R.

Denote

Q R := [B4R(0) \ BR(0)]× [R4n, R4n
+ R2
],

and also

ψR(x, t) := ϕR(x)ηR(t).

Let us estimate the following two integrals:

(2-9) IR :=

∫
Q R

|x |aωp
2 (x, t)ψq ′

R (x, t) dx dt,

and

(2-10) JR :=

∫
Q R

|x |bωq
1 (x, t)ψq ′

R (x, t) dx dt,

where q ′ is Hölder conjugate to q , satisfying 1/q + 1/q ′ = 1.
Since ω1(x, t) is a nonnegative solution of (2-6), we obtain

IR +

∫
Q R

|x |aζ p
2 ψ

q ′
R (x, t) dx dt ≤

∫
Q R

[∂tω1−1ω1]ψ
q ′
R (x, t) dx dt,
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Integration by parts yields

IR +

∫
Q R

|x |aζ p
2 ψ

q ′
R (x, t) dx dt ≤

∫
B4R(0)\BR (0)

ω1(x, · )ψ
q ′
R (x, · )

∣∣∣R4n
+R2

R4n
dx

− q ′
∫

Q R

ω1(x, t)ϕq ′
R (x)η

q ′−1
R (t)η′R(t) dx dt

+

∫ R4n
+R2

R4n

∫
∂B4R(0)

ω1(x, t)
∂ϕ

q ′
R (x)
∂n

η
q ′
R (t) d Sx dt

−

∫ R4n
+R2

R4n

∫
∂B4R(0)

ψ
q ′
R
∂ω1

∂n
(x, t) d Sx dt

−

∫ R4n
+R2

R4n

∫
∂BR(0)

ω1(x, t)
∂ϕ

q ′
R (x)
∂n

η
q ′
R (t) d Sx dt

+

∫ R4n
+R2

R4n

∫
∂BR(0)

ψ
q ′
R
∂ω1

∂n
(x, t) d Sx dt

−

∫
Q R

ω1(x, t)1ϕq ′
R (x)η

q ′
R (t) dx dt.

Noting here that −∂/∂n = ∂/∂n+, ω1(x, R4n)≥ 0,

∂ϕ
q ′
R

∂n
= q ′ϕq ′−1

R
∂ϕR

∂n
= 0 on ∂BR(0)∪ ∂B4R(0)

and ψR(x, t)= 0 on the lateral boundary of Q R , we obtain

(2-11) IR+

∫
Q R

|x |aζ p
2 ψ

q ′
R (x,t)dx dt ≤−q ′

∫
Q R

ω1(x,t)ϕ
q ′
R (x)η

q ′−1
R (t)η′R(t)dx dt

−

∫
Q R

ω1(x,t)1ϕ
q ′
R (x)η

q ′
R (t)dx dt.

Since 1ϕq ′
R = q ′ϕq ′−1

R 1ϕR+q ′(q ′−1)ϕq ′−2
R |∇ϕR|

2, combining with (2-11), we get

(2-12) IR+

∫
Q R

|x |aζ p
2 ψ

q ′
R dx dt ≤−q ′

∫
Q R

ω1(x, t)ϕq ′
R (x)η

q ′−1
R (t)η′R(t) dx dt

−q ′
∫

Q R

ω1(x, t)ϕq ′−1
R (x)1ϕR(x)η

q ′
R (t) dx dt.

By the definition of ϕR and ηR , and applying Proposition 2.1, for large R, we obtain∫
Q R

|x |aζ p
2 ψ

q ′
R (x, t) dx dt ≥

∫ R4n
+R2/4

R4n

∫
B3R(0)\B2R(0)

|x |aζ p
2 dx dt

≥ CRn+2+a−p(n−2).
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It follows from (2-12) that

(2-13) IR +CRn+2+a−p(n−2)
≤− q ′

∫
Q R

ω1(x, t)ϕq ′
R (x)η

q ′−1
R (t)η′R(t) dx dt

− q ′
∫

Q R

ω1(x, t)ϕq ′−1
R (x)1ϕR(x)η

q ′
R (t) dx dt.

Noting that ϕR is radial, we obtain 1ϕR = ϕ
′′

R+ (n−1)/rϕ′R . For large enough R,

(2-14) |1ϕR| ≤
C
R2 , for x ∈ B4R(0) \ BR(0).

Combining (2-13) and (2-14), we obtain

IR +CRn+2+a−p(n−2)

≤
C
R2

∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

ω1(x, t)ϕq ′
R (x)η

q ′−1
R (t) dx dt

+
C
R2

∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

ω1(x, t)ϕq ′−1
R (x)ηq ′

R (t) dx dt.

According to the assumptions that ϕR(x), ηR(t) ≤ 1 and ψR(x, t) = ϕR(x)ηR(t),
we have ϕq ′

R (x)η
q ′−1
R (t)≤ψq ′−1

R (x, t), and ϕq ′−1
R (x)ηq ′

R (t)≤ψ
q ′−1
R (x, t). Applying

the Hölder inequality to the above, we obtain

IR +CRn+2+a−p(n−2)

≤
C
R2

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |bωq
1ψ

q(q ′−1)
R (x, t) dx dt

]1/q

×

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |−bq ′/q dx dt
]1/q ′

+
C
R2

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |bωq
1ψ

q(q ′−1)
R (x, t) dx dt

]1/q

×

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |−bq ′/q dx dt
]1/q ′

.

Hence

IR +CRn+2+a−p(n−2)

≤ C
[∫ R4n

+R2

R4n

∫
B4R(0)\BR(0)

|x |bωq
1ψ

q ′
R (x, t) dx dt

] 1
q
R
(n+2)(q−1)−b

q −2

+C
[∫ R4n

+R2

R4n

∫
B4R(0)\BR(0)

|x |bωq
1ψ

q ′
R (x, t) dx dt

] 1
q
R
(n+2)(q−1)−b

q −2
,



NONEXISTENCE RESULTS FOR SYSTEMS OF DIFFERENTIAL INEQUALITIES 253

which yields

(2-15) IR +CRn+2+a−p(n−2)
≤ C J

1
q

R R
(n+2)(q−1)−b

q −2
,

where we have used the definition of JR in (2-10).
Using the same arguments with JR , we obtain an analogous inequality for JR .

Since ω2(x, t) is a solution of (2-7), we have

JR +

∫
Q R

|x |bζ q
1 ψ

q ′
R (x, t) dx dt ≤

∫
Q R

[∂tω2−1ω2]ψ
q ′
R (x, t) dx dt.

It follows that

JR +CRn+2+b−q(n−2)
≤

C
R2

∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

ω2(x, t)ϕq ′
R η

q ′−1
R (t) dx dt

+
C
R2

∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

ω2(x, t)ϕq ′−1
R (x)ηq ′

R (t) dx dt.

Applying the Hölder inequality, we obtain

JR +CRn+2+b−q(n−2)

≤
C
R2

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |aωp
2 (x, t)ψ p(q ′−1)

R (x, t) dx dt
]1/p

×

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |−ap′/p dx dt
]1/p′

+
C
R2

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |aωp
2 (x, t)ψ p(q ′−1)

R (x, t) dx dt
]1/p

×

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |−ap′/p dx dt
]1/p′

,

where 1/p+1/p′=1. Using thatψR(x, t)≤1, p≥q andψ p(q ′−1)
R ≤ψ

q(q ′−1)
R =ψ

q ′
R ,

we obtain

JR +CRn+2+b−q(n−2)
≤

C
R2

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |aωp
2 (x, t)ψq ′

R (x, t) dx dt
]1/p

×

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |−ap′/p dx dt
]1/p′

+
C
R2

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |aωp
2 (x, t)ψq ′

R (x, t) dx dt
]1/p

×

[∫ R4n
+R2

R4n

∫
B4R(0)\BR(0)

|x |−ap′/p dx dt
]1/p′

.
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which is

(2-16) JR +CRn+2+b−q(n−2)
≤ C I

1
p

R R
(n+2)(p−1)−a

p −2
.

Case 1: If

2p(q + 1)+ bp+ a
pq − 1

=max
{

2p(q + 1)+ bp+ a
pq − 1

,
2q(1+ p)+ aq + b

pq − 1

}
> n.

Combining (2-15) and (2-16), we obtain

(2-17) JR +C0 Rn+2+b−q(n−2)
≤ C1 J

1
pq

R R
(n+2)(pq−1)−b−aq

pq −
2(1+p)

p .

Denote

(2-18)
k0 := n+ 2+ b− q(n− 2),

k1 :=
(n+ 2)(pq − 1)− b− aq

pq
−

2(1+ p)
p

.

From (2-17), we obtain

(2-19) JR ≥

(C0
C1

)pq
Rk0(pq)−k1(pq).

Substituting (2-19) into the left-hand side of (2-17), we obtain

JR ≥
C (pq)q

0

C pq+(pq)2
1

Rk0(pq)2−k1(pq)2−k1(pq).

Repeating the above procedure, we obtain for any integer j > 1

(2-20) JR ≥
C (pq) j

0

C pq+···+(pq) j

1

Rk0(pq) j
−k1[pq+···+(pq) j

].

The exponent of R in the right-hand side of (2-20) gives

k0(pq) j
− k1[pq + · · ·+ (pq) j

] = k0(pq) j
− k1 pq

(pq) j
− 1

pq − 1

= (pq) j
[

k0−
k1 pq

pq − 1

]
+

k1 pq
pq − 1

.

From (2-20), we obtain

(2-21) JR ≥ C (pq) j

2 R(pq) j
[k0−k1 pq/(pq−1)]Rk1 pq/(pq−1)

= (C2 Rk0−k1 pq/(pq−1))(pq) j
Rk1 pq/(pq−1).
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Combining with (2-18), we obtain

k0−
k1 pq
pq−1

= n+2+b−q(n−2)−
[
(n+2)(pq−1)−b−aq

pq
−

2(1+ p)
p

]
pq

pq−1

=
2pq(1+q)+bpq+aq−nq(pq−1)

pq−1
.

Obviously, if
2p(1+ q)+ bp+ a

pq − 1
> n,

then k0 − k1 pq/(pq − 1) > 0. Whence, if R is chosen large enough, we have
C2 Rk0−k1 pq/(pq−1) > 1.

From (2-21), for fixed R, letting j→∞, we obtain

(2-22) JR =

∫
Q R

|x |bωq
1 (x, t)ψq ′

R (x, t) dx dt =∞.

However, the above contradicts (2-17), since (2-17) implies that JR ≤CRk1 pq/(pq−1).
Moreover, by the definition of JR , (2-22) means that u(x, t) has to blow up when
t ≤ R4n

+ R2.

Case 2: If
2q(1+ p)+ aq + b

pq − 1
=max

{
2p(q + 1)+ bp+ a

pq − 1
,

2q(1+ p)+ aq + b
pq − 1

}
> n,

one can argue in the same way as with IR and obtain the same contradiction. Hence,
we finish the proof. �

Acknowledgments

We would like to thank the referees very much for their valuable comments and
suggestions. This research was in part supported by the National Natural Science
Foundation of China (No. 11501303), and the Scientific Research Foundation for
the Returned Overseas Chinese Scholars, State Education Ministry.

References

[Aronson and Weinberger 1978] D. G. Aronson and H. F. Weinberger, “Multidimensional nonlinear
diffusion arising in population genetics”, Adv. in Math. 30:1 (1978), 33–76. MR Zbl

[Bandle and Levine 1989] C. Bandle and H. A. Levine, “On the existence and nonexistence of global
solutions of reaction-diffusion equations in sectorial domains”, Trans. Amer. Math. Soc. 316:2 (1989),
595–622. MR Zbl

[Bidaut-Véron 1989] M.-F. Bidaut-Véron, “Local and global behavior of solutions of quasilinear
equations of Emden–Fowler type”, Arch. Rational Mech. Anal. 107:4 (1989), 293–324. MR Zbl

[Bidaut-Véron and Pohozaev 2001] M.-F. Bidaut-Véron and S. Pohozaev, “Nonexistence results and
estimates for some nonlinear elliptic problems”, J. Anal. Math. 84 (2001), 1–49. MR Zbl

http://dx.doi.org/10.1016/0001-8708(78)90130-5
http://dx.doi.org/10.1016/0001-8708(78)90130-5
http://msp.org/idx/mr/511740
http://msp.org/idx/zbl/0407.92014
http://dx.doi.org/10.2307/2001363
http://dx.doi.org/10.2307/2001363
http://msp.org/idx/mr/937878
http://msp.org/idx/zbl/0693.35081
http://dx.doi.org/10.1007/BF00251552
http://dx.doi.org/10.1007/BF00251552
http://msp.org/idx/mr/1004713
http://msp.org/idx/zbl/0696.35022
http://dx.doi.org/10.1007/BF02788105
http://dx.doi.org/10.1007/BF02788105
http://msp.org/idx/mr/1849197
http://msp.org/idx/zbl/1018.35040


256 YUHUA SUN

[Caristi et al. 2008] G. Caristi, L. D’Ambrosio, and E. Mitidieri, “Liouville theorems for some
nonlinear inequalities”, Tr. Mat. Inst. Steklova 260:1 (2008), 97–118. In Russian; translated in Proc.
Steklov Inst. Math. 260:1 (2008), 90–111. MR Zbl

[Caristi et al. 2009] G. Caristi, E. Mitidieri, and S. I. Pohozaev, “Liouville theorems for quasilinear
elliptic inequalities”, Dokl. Acad. Nauk. 424:6 (2009), 741–747. In Russian; translation in Dokl.
Math. 79:1 (2009) 118–124. MR Zbl

[Fujita 1966] H. Fujita, “On the blowing up of solutions of the Cauchy problem for ut =1u+u1+α”,
J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124. MR Zbl

[Gidas and Spruck 1981] B. Gidas and J. Spruck, “Global and local behavior of positive solutions of
nonlinear elliptic equations”, Comm. Pure Appl. Math. 34:4 (1981), 525–598. MR Zbl

[Hayakawa 1973] K. Hayakawa, “On nonexistence of global solutions of some semilinear parabolic
differential equations”, Proc. Japan Acad. 49 (1973), 503–505. MR Zbl

[Kobayashi et al. 1977] K. Kobayashi, T. Sirao, and H. Tanaka, “On the growing up problem for
semilinear heat equations”, J. Math. Soc. Japan 29:3 (1977), 407–424. MR

[Laptev 2003] G. G. Laptev, “Nonexistence results for higher-order evolution partial differential
inequalities”, Proc. Amer. Math. Soc. 131:2 (2003), 415–423. MR Zbl

[Mitidieri and Pohozaev 1998] E. Mitidieri and S. I. Pohozaev, “Absence of global positive solutions
of quasilinear elliptic inequalities”, Dokl. Akad. Nauk 359:4 (1998), 456–460. In Russian; translated
in Dokl. Math. 57:2 (1998), 250–253. MR Zbl

[Mitidieri and Pohozaev 2001] E. Mitidieri and S. I. Pohozaev, “A priori estimates and the absence
of solutions of nonlinear partial differential equations and inequalities”, Tr. Mat. Inst. Steklova 234
(2001), 3–383. In Russian; translation in Proc. Steklov Inst. Math. 234:3 (2001), 1–362. MR Zbl

[Ni and Serrin 1986a] W.-M. Ni and J. Serrin, “Existence and non-existence theorems for ground
states of quasilinear partial differential equations: the anomalous case”, Atti Conv. Lincei 77 (1986),
231–257.

[Ni and Serrin 1986b] W.-M. Ni and J. Serrin, “Nonexistence theorems for singular solutions of
quasilinear partial differential equations”, Comm. Pure Appl. Math. 39:3 (1986), 379–399. MR Zbl

[Zhang 1998] Q. S. Zhang, “Blow up and global existence of solutions to an inhomogeneous parabolic
system”, J. Differential Equations 147:1 (1998), 155–183. MR Zbl

[Zhang 1999] Q. S. Zhang, “Blow-up results for nonlinear parabolic equations on manifolds”, Duke
Math. J. 97:3 (1999), 515–539. MR Zbl

[Zhang 2001] Q. S. Zhang, “A general blow-up result on nonlinear boundary-value problems on
exterior domains”, Proc. Roy. Soc. Edinburgh Sect. A 131:2 (2001), 451–475. MR Zbl

Received July 3, 2016. Revised July 28, 2017.

YUHUA SUN

SCHOOL OF MATHEMATICAL SCIENCES AND LPMC
NANKAI UNIVERSITY

TIANJIN

CHINA

sunyuhua@nankai.edu.cn

http://dx.doi.org/10.1134/S0081543808010070
http://dx.doi.org/10.1134/S0081543808010070
http://dx.doi.org/10.1134/S0081543808010070
http://dx.doi.org/10.1134/S0081543808010070
http://msp.org/idx/mr/2489506
http://msp.org/idx/zbl/1233.35207
http://dx.doi.org/10.1134/S1064562409010360
http://dx.doi.org/10.1134/S1064562409010360
https://doi.org/10.1134/S1064562409010360
https://doi.org/10.1134/S1064562409010360
http://msp.org/idx/mr/2513890
http://msp.org/idx/zbl/06106404
http://msp.org/idx/mr/0214914
http://msp.org/idx/zbl/0163.34002
http://dx.doi.org/10.1002/cpa.3160340406
http://dx.doi.org/10.1002/cpa.3160340406
http://msp.org/idx/mr/615628
http://msp.org/idx/zbl/0465.35003
http://dx.doi.org/10.3792/pja/1195519254
http://dx.doi.org/10.3792/pja/1195519254
http://msp.org/idx/mr/0338569
http://msp.org/idx/zbl/0281.35039
http://dx.doi.org/10.2969/jmsj/02930407
http://dx.doi.org/10.2969/jmsj/02930407
http://msp.org/idx/mr/0450783
http://dx.doi.org/10.1090/S0002-9939-02-06665-0
http://dx.doi.org/10.1090/S0002-9939-02-06665-0
http://msp.org/idx/mr/1933332
http://msp.org/idx/zbl/1008.35081
http://msp.org/idx/mr/1668404
http://msp.org/idx/zbl/0976.35100
http://mi.mathnet.ru/eng/tm230
http://mi.mathnet.ru/eng/tm230
http://msp.org/idx/mr/1879326
http://msp.org/idx/zbl/0987.35002
http://dx.doi.org/10.1002/cpa.3160390306
http://dx.doi.org/10.1002/cpa.3160390306
http://msp.org/idx/mr/829846
http://msp.org/idx/zbl/0602.35031
http://dx.doi.org/10.1006/jdeq.1998.3448
http://dx.doi.org/10.1006/jdeq.1998.3448
http://msp.org/idx/mr/1632677
http://msp.org/idx/zbl/0914.35024
http://dx.doi.org/10.1215/S0012-7094-99-09719-3
http://msp.org/idx/mr/1682987
http://msp.org/idx/zbl/0954.35029
http://dx.doi.org/10.1017/S0308210500000950
http://dx.doi.org/10.1017/S0308210500000950
http://msp.org/idx/mr/1830420
http://msp.org/idx/zbl/0979.35021
mailto:sunyuhua@nankai.edu.cn


Guidelines for Authors

Authors may submit articles at msp.org/pjm/about/journal/submissions.html and choose an
editor at that time. Exceptionally, a paper may be submitted in hard copy to one of the
editors; authors should keep a copy.

By submitting a manuscript you assert that it is original and is not under consideration
for publication elsewhere. Instructions on manuscript preparation are provided below. For
further information, visit the web address above or write to pacific@math.berkeley.edu or
to Pacific Journal of Mathematics, University of California, Los Angeles, CA 90095–1555.
Correspondence by email is requested for convenience and speed.

Manuscripts must be in English, French or German. A brief abstract of about 150 words or
less in English must be included. The abstract should be self-contained and not make any
reference to the bibliography. Also required are keywords and subject classification for the
article, and, for each author, postal address, affiliation (if appropriate) and email address if
available. A home-page URL is optional.

Authors are encouraged to use LATEX, but papers in other varieties of TEX, and exceptionally
in other formats, are acceptable. At submission time only a PDF file is required; follow
the instructions at the web address above. Carefully preserve all relevant files, such as
LATEX sources and individual files for each figure; you will be asked to submit them upon
acceptance of the paper.

Bibliographical references should be listed alphabetically at the end of the paper. All ref-
erences in the bibliography should be cited in the text. Use of BibTEX is preferred but not
required. Any bibliographical citation style may be used but tags will be converted to the
house format (see a current issue for examples).

Figures, whether prepared electronically or hand-drawn, must be of publication quality.
Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or
in a form that can be converted to EPS, such as GnuPlot, Maple or Mathematica. Many
drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS output.
Figures containing bitmaps should be generated at the highest possible resolution. If there
is doubt whether a particular figure is in an acceptable format, the authors should check
with production by sending an email to pacific@math.berkeley.edu.

Each figure should be captioned and numbered, so that it can float. Small figures occupying
no more than three lines of vertical space can be kept in the text (“the curve looks like
this:”). It is acceptable to submit a manuscript will all figures at the end, if their placement
is specified in the text by means of comments such as “Place Figure 1 here”. The same
considerations apply to tables, which should be used sparingly.

Forced line breaks or page breaks should not be inserted in the document. There is no point
in your trying to optimize line and page breaks in the original manuscript. The manuscript
will be reformatted to use the journal’s preferred fonts and layout.

Page proofs will be made available to authors (or to the designated corresponding author)
at a website in PDF format. Failure to acknowledge the receipt of proofs or to return
corrections within the requested deadline may cause publication to be postponed.

http://msp.org/pjm/about/journal/submissions.html
mailto:pacific@math.berkeley.edu
mailto:pacific@math.berkeley.edu


PACIFIC JOURNAL OF MATHEMATICS

Volume 293 No. 1 March 2018

1Large-scale rigidity properties of the mapping class groups
BRIAN H. BOWDITCH

75Bach-flat isotropic gradient Ricci solitons
ESTEBAN CALVIÑO-LOUZAO, EDUARDO GARCÍA-RÍO,
IXCHEL GUTIÉRREZ-RODRÍGUEZ and RAMÓN
VÁZQUEZ-LORENZO

101Contact stationary Legendrian surfaces in S5

YONG LUO

121Irreducibility of the moduli space of stable vector bundles of rank two
and odd degree on a very general quintic surface

NICOLE MESTRANO and CARLOS SIMPSON

173A capillary surface with no radial limits
COLM PATRIC MITCHELL

179Initial-seed recursions and dualities for d-vectors
NATHAN READING and SALVATORE STELLA

207Codimensions of the spaces of cusp forms for Siegel congruence
subgroups in degree two

ALOK SHUKLA

245Nonexistence results for systems of elliptic and parabolic differential
inequalities in exterior domains of Rn

YUHUA SUN

Pacific
JournalofM

athem
atics

2018
Vol.293,N

o.1


	 vol. 293, no. 1, 2018
	Masthead and Copyright
	Brian H. Bowditch
	1. Introduction
	2. Median metric spaces
	3. Blocks
	4. Cubulating planes
	5. Ultraproducts
	6. Coarse median spaces
	7. A general construction of coarse medians
	8. The marking complex
	9. Multicurves
	10. Quasicubes
	11. The asymptotic cone of  M() 
	12. Cubes in  M*() 
	13. Flats in  M*() 
	14. Controlling Hausdorff distance
	15. Rigidity of the marking graph
	Acknowledgements
	References

	Esteban Calviño-Louzao and Eduardo García-Río and Ixchel Gutiérrez-Rodríguez and Ramón Vázquez-Lorenzo
	1. Introduction
	2. Preliminaries
	Riemannian extensions
	Gradient Ricci solitons and affine gradient Ricci solitons

	3. Bach-flat modified Riemannian extensions
	Affine connections supporting parallel nilpotent tensors

	4. Bach-flat gradient Ricci solitons
	Einstein nilpotent Riemannian extensions
	Gradient Ricci solitons on nilpotent Riemannian extensions

	5. Half conformally flat nilpotent Riemannian extensions
	Anti-self-dual gradient Ricci solitons

	6. Conformally Einstein nilpotent Riemannian extensions
	7. Examples
	Nilpotent Riemannian extensions with flat base
	Nilpotent Riemannian extensions with nonrecurrent base

	References

	Yong Luo
	1. Introduction
	2. Preliminaries on contact geometry
	Contact manifolds
	Sasakian manifolds

	3. Proof of the theorems
	Several lemmas
	Proof of 0=theorem.61=Theorem 1.3
	Proof of 0=theorem.151=Theorem 1.8

	Appendix
	Final discussions

	Acknowledgement
	References

	Nicole Mestrano and Carlos Simpson
	1. Introduction
	Outline of the proof
	Example on a sextic

	2. Preliminary facts
	3. Review of c29
	Using the Cayley–Bacharach condition
	For c2=4,5
	For c2=6,7
	For c2=8
	For c2=9
	For c210

	4. The double dual stratification
	5. Hartshorne's connectedness theorem
	6. Seminaturality along the 19-dimensional boundary strata
	7. The lowest stratum
	8. Irreducibility for c2=10
	Physics discussion

	9. Irreducibility for c211
	10. An irregularity estimate
	11. Example on a degree 6 hypersurface
	Points on the rational normal cubic
	Points on a plane

	References

	Colm Patric Mitchell 
	References

	Nathan Reading and Salvatore Stella
	1. Introduction
	2. Results
	3. Proofs of general results
	4. Duality and recursion in certain cluster algebras
	4A. Rank two
	4B. Finite type
	4C. Marked surfaces

	5. Source-sink moves on triangulated surfaces
	References

	Alok Shukla
	1. Introduction
	2. Notation
	3. A brief overview of the main results
	4. Cusps of  ``0(N) 
	5. Proofs
	Proof of 0=thm.171=Theorem 3.5 
	Proof of 0=thm.41=Theorem 3.1.
	Proof of Lemma 3.2
	Proof of Corollary 3.3 
	Proof of Corollary 3.4

	References

	Yuhua Sun
	1. Introduction
	2. Proof of 1.2
	Acknowledgments
	References

	Guidelines for Authors
	Table of Contents

