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We characterize sums of CR functions from competing CR structures in two
scenarios. In one scenario the structures are conjugate and we are adding
to the theory of pluriharmonic boundary values. In the second scenario the
structures are related by projective duality considerations. In both cases
we provide explicit vector field-based characterizations for two-dimensional
circular domains satisfying natural convexity conditions.

1. Introduction

The Dirichlet problem for pluriharmonic functions is a natural problem in several
complex variables with a long history going back at least to Amoroso [1912], Severi
[1931], Wirtinger [1927], and others. It was known early on that the problem is not
solvable for general boundary data, so we may try to characterize the admissible
boundary values with a system of tangential partial differential operators. This was
first done for the ball by Bedford [1974]; see Section 2.1 for details. More precisely,
given a bounded domain � with smooth boundary S, we seek a system L of partial
differential operators tangential to S such that a function u ∈ C∞(S,C) satisfies
Lu = 0 if and only if there exists U ∈ C∞(�) such that U |S = u and ∂∂U = 0. The
problem may also be considered locally.

While natural in its own right, this problem also arises in less direct fashion in
many areas of complex analysis and geometry. For instance, this problem plays a
fundamental role in Graham’s work [1983] on the Bergman Laplacian, Lee’s work
[1988] on pseudo-Einstein structures, and Case, Chanillo, and Yang’s work [Case
et al. 2016] on CR Paneitz operators. From another point of view, the existence of
nontrivial restrictions on pluriharmonic boundary values points to the need to look
elsewhere (such as to the Monge–Ampère equations studied in [Bedford and Taylor
1976]) for Dirichlet problems solvable for general boundary data.

The pluriharmonic boundary value problem is closely related to the problem
of characterizing sums of CR functions from different, competing CR structures;
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indeed, when the competing CR structures are conjugate then these problems
coincide (in simply connected settings); see Propositions 3 and 4 below. Another
natural construction leading to competing CR structures arises from the study of
projective duality (see Section 3 or [Barrett 2016] for precise definitions).

In each of these two scenarios, we precisely characterize sums of CR functions
from the two competing CR structures in the setting of two-dimensional circular
domains satisfying appropriate convexity conditions. For conjugate structures we
assume strong pseudoconvexity; our result appears as Theorem A below. In the
projective duality scenario we assume strong convexity (the correct assumption
without the circularity assumption would be strong C-convexity, but these notions
coincide in the circular case; see Section 3.1), and the main result appears as
Theorem B below (with an expanded version appearing later in Section 3.2). Our
techniques for these two related problems are interconnected to a surprising extent,
and the reader will notice that the projective dual scenario actually turns out to have
more structure and symmetry.

Theorem A. Let S ⊂ C2 be a strongly pseudoconvex circular hypersurface. Then
there exist nowhere-vanishing tangential vector fields X, Y on S satisfying the
following conditions:

(1-1a) If u is a smooth function on a relatively open subset of S, then u is CR if and
only if Xu = 0.

(1-1b) If u is a smooth function on a relatively open subset of S, then u is CR if and
only if Y u = 0.

(1-1c) If S is compact, then a smooth function u on S is a pluriharmonic boundary
value (in the sense of Proposition 3 below) if and only if X XY u = 0.

(1-1d) A smooth function u on a relatively open subset of S is a pluriharmonic
boundary value (in the sense of Proposition 4 below) if and only if X XY u =
0= X XY u.

Theorem B. Let S ⊂ C2 be a strongly convex circular hypersurface. Then there
exist nowhere-vanishing tangential vector fields X, T on S satisfying the following
conditions:

(1-2a) If u is a smooth function on a relatively open subset of S, then u is CR if and
only if Xu = 0.

(1-2b) If u is a smooth function on a relatively open subset of S, then u is dual-CR
if and only if T u = 0.

(1-2c) If S is compact, then a smooth function u on S is the sum of a CR function
and a dual-CR function if and only if X XT u = 0.

(1-2d) If S is simply connected (but not necessarily compact), then a smooth function
u on S is the sum of a CR function and a dual-CR function if and only if
X XT u = 0= T T Xu.



SUMS OF CR FUNCTIONS FROM COMPETING CR STRUCTURES 259

This paper is organized as follows. In Section 2 we focus on the case of conjugate
CR structures (the pluriharmonic case). In Section 3 we study the competing CR
structures coming from projective duality. In Section 4 we prove Theorem B, while
Theorem A is proved in Section 5. The final Section 6 includes a discussion of
uniqueness issues.

2. Conjugate structures

2.1. Results on the ball. Early work focused on the case of the ball Bn in Cn. In
particular, Nirenberg observed that there is no second-order system of differential
operators tangent to S3 that exactly characterize pluriharmonic functions (see
Section 6.2 for more details). Third-order characterizations were developed by
Bedford in the global case and Audibert in the local case (which requires stronger
conditions). To state these results, we define the tangential operators

(2-1) Lkl = zk
∂

∂zl
− zl

∂

∂zk
, Lkl = zk

∂

∂zl
− zl

∂

∂zk
for 1≤ k, l ≤ n.

Theorem 1 [Bedford 1974]. Let u be smooth on S2n−1. Then

Lkl Lkl Lklu = 0

for 1≤ k, l ≤ n if and only if u extends to a pluriharmonic function on Bn.

Theorem 2 [Audibert 1977]. Let S be a relatively open subset of S2n−1, and let u
be smooth on S. Then

L jk L lm Lrsu = 0= L jk L lm Lrsu

for 1≤ j, k, l,m, r, s ≤ n if and only if u extends to a pluriharmonic function on a
one-sided neighborhood of S.

For a treatment of both of these results along with further details and examples,
see §18.3 of [Rudin 1980].

2.2. Other results. Laville [1977; 1984] also gave a fourth order operator to solve
the global problem. Bedford and Federbush [1974] solved the local problem in the
more general setting where b� has nonzero Levi form at some point. Later Bedford
[1980] used the induced boundary complex (∂∂)b to solve the local problem in
certain settings. In Lee’s work [1988] on pseudo-Einstein structures, he gives
a characterization for abstract CR manifolds using third order pseudohermitian
covariant derivatives. Case, Chanillo, and Yang [Case et al. 2016] study when the
kernel of the CR Paneitz operator characterizes CR-pluriharmonic functions.
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2.3. Relation to decomposition on the boundary. Outside the proof of Theorem 30
below, all forms, functions, and submanifolds will be assumed C∞-smooth.

Proposition 3. Let S ⊂ Cn be a compact, connected and simply connected real
hypersurface, and let� be the bounded domain with boundary S. Then for u : S→C

the following conditions are equivalent:

(2-2a) u extends to a (smooth) function U on � that is pluriharmonic on �;

(2-2b) u is the sum of a CR function and a conjugate-CR function.

Proof. In the proof that (2-2a) implies (2-2b), the CR term is the restriction to S
of an antiderivative for ∂U on a simply connected one-sided neighborhood of S,
and the conjugate-CR term is the restriction to S of an antiderivative for ∂U on a
one-sided neighborhood of S (adjusting one term by a constant as needed).

To see that (2-2b) implies (2-2a), we use the global CR extension result [Hör-
mander 1990, Theorem 2.3.2] to extend the terms to holomorphic and conjugate-
holomorphic functions, respectively; U is then the sum of the extensions. �

Proposition 4. Let S ⊂ Cn be a simply connected, strongly pseudoconvex real
hypersurface. Then for u : S→ C the following conditions are equivalent:

(2-3a) there is an open subset W of Cn with S ⊂ bW (with W lying locally on the
pseudoconvex side of S) so that u extends to a (smooth) function U on W ∪ S
that is pluriharmonic on W ;

(2-3b) u is the sum of a CR function and a conjugate-CR function.

Proof. The proof follows the proof of Proposition 3 above, replacing the global CR
extension result by the Hans Lewy local CR extension result as stated in [Boggess
1991, Section 14.1, Theorem 1]. �

3. Projective dual structures

3.1. Projective dual hypersurfaces. Let S ⊂ Cn be an oriented real hypersurface
with defining function ρ. Then S is said to be strongly C-convex if S is locally
equivalent via a projective transformation (that is, via an automorphism of projective
space) to a strongly convex hypersurface; this condition is equivalent to either of
the following two equivalent conditions:

(3-1a) the second fundamental form for S is positive definite on the maximal
complex subspace Hz S of each Tz S;

(3-1b) the complex tangent (affine) hyperplanes for S lie to one side (the “concave
side”) of S near the point of tangency with minimal order of contact.

Theorem 5. When S is compact and strongly C-convex the complex tangent hyper-
planes for S are in fact disjoint from the domain bounded by S.
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Proof. [Andersson et al. 2004, §2.5]. �

We note that strongly C-convex hypersurfaces are also strongly pseudoconvex.
A circular hypersurface (that is, a hypersurface invariant under rotations z 7→ eiθ z)

is strongly C-convex if and only if it is strongly convex [Černe 2002, Proposi-
tion 3.7].

The proper general context for the notion of strong C-convexity is in the study
of real hypersurfaces in complex projective space CPn (see for example [Barrett
2016] and [Andersson et al. 2004]).

We specialize now to the two-dimensional case.

Lemma 6. Let S ⊂ C2 be a compact strongly C-convex hypersurface enclosing the
origin. Then there is a uniquely determined map

D : S→ C2
\ {0}, z 7→ w(z)= (w1(z), w2(z))

satisfying

(3-2a) z1w1+ z2w2 = 1 on S;

(3-2b) the vector field

Y def
= w2

∂

∂z1
−w1

∂

∂z2

is tangent to S. Moreover, Y annihilates conjugate-CR functions on any
relatively open subset of S.

Proof. It is easy to check that (3-2a) and (3-2b) force

w1(z)=
∂ρ
∂z1

z1
∂ρ
∂z1
+ z2

∂ρ
∂z2

, w2(z)=
∂ρ
∂z2

z1
∂ρ
∂z1
+ z2

∂ρ
∂z2

.

establishing uniqueness. Existence follows provided that the denominators do not
vanish, but the vanishing of the denominators occurs precisely when the complex
tangent line for S at z passes through the origin, and Theorem 5 above guarantees
that this does not occur under the given hypotheses. �

Remark 7. It is clear from the proof that the conclusions of Lemma 6 also hold
under the assumption that S is a (not necessarily compact) hypersurface satisfying

(3-3) no complex tangent line for S passes through the origin.

Remark 8. Any tangential vector field annihilating conjugate-CR functions will
be a scalar multiple of Y.

Remark 9. The complex line tangent to S at z is given by

(3-4) {ζ ∈ C2
: w1(z)ζ1+w2(z)ζ2 = 1}.
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Remark 10. The maximal complex subspace Hz S of each Tz S is annihilated by
the form w1 dz1+w2 dz2.

Proposition 11. For S strongly C-convex satisfying (3-3), the map D is a local
diffeomorphism onto an immersed strongly C-convex hypersurface S∗, with each
maximal complex subspace Hz S of Tz S mapped (not C-linearly) by D′z onto the
corresponding maximal complex subspace of Hw(z)S∗. For S strongly C-convex and
compact, S∗ is an embedded strongly C-convex hypersurface and D is a diffeomor-
phism.

Proof. [Barrett 2016, §6], [Andersson et al. 2004, §2.5]. �

For S strongly C-convex satisfying (3-3) we may extend D to a smooth map on an
open set in C2; the extended map D? will be a local diffeomorphism in some neigh-
borhood U of S. We may then define vector fields ∂/∂w1, ∂/∂w2, ∂/∂w1, ∂/∂w2

on U by applying ((D?)−1)′ to the corresponding vector fields on D?(U ); these
newly defined vector fields will depend on the choice of the extension D?.

Lemma 12. The nonvanishing vector field

V def
= z2

∂

∂w1
− z1

∂

∂w2

is tangent to S and is independent of the choice of the extension D?.

Proof. From (3-2a) we have

0= d(z1w1+ z2w2)= z1 dw1+ z2 dw2+w1 dz1+w2 dz2 on Tz S.

From Remark 10 we deduce that the null space in TzC2 of z1 dw1 + z2 dw2

is precisely the maximal complex subspace Hz S of Tz S (and moreover the null
space in (TzC2) ⊗ C of z1 dw1 + z2 dw2 is precisely (Hz S) ⊗ C). If we apply
z1 dw1+ z2 dw2 to V we obtain

z1 · Vw1+ z2 · Vw2 = z1 · z2− z2 · z1 = 0

showing that V takes values in (Hz S)⊗C and is thus tangential.
If an alternate tangential vector field Ṽ is constructed with the use of an alternate

extension D̃? of D, then

Ṽwj =±z3− j = Vwj , Ṽw j = 0= Vw j

along S, so Ṽ = V along S. �

Definition 13. A function u on a relatively open subset of S will be called dual-CR
if V u = 0.

Example 14. If S is the unit sphere in C2, then w(z) = z and the set of dual-CR
functions on S coincides with the set of conjugate-CR functions on S.
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The set of dual-CR functions will only rarely coincide with the set of conjugate-
CR functions as we see from the following two related results.

Theorem 15. If S is a compact strongly C-convex hypersurface in C2, then the set
of dual-CR functions on S will coincide with the set of conjugate-CR functions on S
if and only if S is a complex affine image of the unit sphere.

Theorem 16. If S is a strongly C-convex hypersurface in C2, then the set of dual-CR
functions on S will coincide with the set of conjugate-CR functions on S if and only
if S is locally the image of a relatively open subset of the unit sphere by a projective
transformation.

For proofs of these results see [Jensen 1983], [Detraz and Trépreau 1990], and
[Bolt 2008].

Remark 17. The constructions of the vector fields Y and V transform naturally
under complex affine mappings of S. The construction of the dual-CR structure
transforms naturally under projective transformation of S. (See for example [Barrett
2016, §6].)

Lemma 18. Relations of the form

V = χY + σY , Y = κV + ξV

hold along S with σ and ξ nowhere vanishing.

Proof. This follows from the following facts:

• V, V , Y and Y all take values in the two-dimensional space (Hz S)⊗C;

• V and V are C-linearly independent, as are Y and Y ;

• the map D′z : (Hz S)⊗C→ (Hz S∗)⊗C is not C-linear (see Proposition 11). �

Lemma 19. If f1, f2 are CR functions and g1, g2 are dual-CR functions on a
connected relatively open subset W of S with f1+g1= f2+g2, then g2−g1= f1− f2

is constant.

Proof. From Lemma 18 we deduce that the directional derivatives of g2−g1= f1− f2

vanish in every direction belonging to the maximal complex subspace of T S.
Applying one Lie bracket we find that in fact all directional derivatives along S of
g2− g1 = f1− f2 vanish. �

Corollary 20. If W is a simply connected relatively open subset of S and u is a
function on W that is locally decomposable as the sum of a CR function and a
dual-CR function, then u is decomposable on all of W as the sum of a CR function
and a dual-CR function.
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3.2. Circular hypersurfaces in C2. We begin the section with an expanded restate-
ment of the main theorem in the projective setting.

Theorem B [expanded statement]. Let S ⊂ C2 be a strongly (C-)convex circular
hypersurface. Then there exist scalar functions φ and ψ on S so that the vector
fields

(3-5a) X = V +φV ,

(3-5b) T = Y +ψY

satisfy the following conditions.

(3-6a) If u is a smooth function on a relatively open subset of S, then u is CR if and
only if Xu = 0; equivalently, X is a nonvanishing scalar multiple αY of Y.

(3-6b) If u is a smooth function on a relatively open subset of S, then u is dual-CR
if and only if T u = 0; equivalently, T is a nonvanishing scalar multiple βV
of V.

(3-6c) If S is compact, then a smooth function u on S is the sum of a CR function
and a dual-CR function if and only if X XT u = 0.

(3-6d) If S is simply connected (but not necessarily compact), then a smooth
function u on S is the sum of a CR function and a dual-CR function if
and only if X XT u = 0= T T Xu.

As we shall see the vector field X in Theorem B will also work as the vector
field X in Theorem A.

Example 21 (cf. [Audibert 1977]). The function z1/w2 satisfies X XT (z1/w2)= 0
but is not globally defined. Since T T X (z1/w2)= 2 6= 0, this function is not locally
the sum of a CR function and a dual-CR function.

Conditions (3-5a), (3-6a) and (3-6b) uniquely determine X and T. See Section 6.1
for some discussion of what can happen without condition (3-5a).

4. Proof of Theorem B

To prove Theorem B we start by consulting Lemma 18 and note that (3-5a), (3-6a)
and (3-6b) will hold if we set

α = 1/ξ, β = 1/σ , φ = κ/ξ, ψ = χ/σ ;

it remains to check (3-6c) and (3-6d).
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We note for future reference and the reader’s convenience that

(4-1)

Xw1 = z2, Xw2 =−z1, Yw1 = ξ z2, Yw2 =−ξ z1,

Xw1 = φz2, Xw2 =−φz1, Xz1 = Y z1 = 0, Xz2 = Y z2 = 0,

Xz1 = αw2, Xz2 =−αw1, T z1 = w2, T z2 =−w1,

V z1 = σw2, V z2 =−σw1, T z1 = ψw2, T z2 =−ψw1,

Tw1 = Vw1 = 0, Tw2 = Vw2 = 0, Tw1 = βz2, Tw2 =−βz1.

Lemma 22.

[Y, Y ] = ξ
(

z1
∂

∂z1
+ z2

∂

∂z2

)
− ξ

(
z1
∂

∂z1
+ z2

∂

∂z2

)
[V, V ] = σ

(
w1

∂

∂w1
+w2

∂

∂w2

)
− σ

(
w1

∂

∂w1
+w2

∂

∂w2

)
.

Proof. The first statement follows from

[Y, Y ] = (Yw2)
∂

∂z1
− (Yw1)

∂

∂z2
− (Yw2)

∂

∂z1
+ (Yw1)

∂

∂z2

along with (4-1).
The proof of the second statement is similar. �

We note that the assumption that S is circular has not been used so far in this
section. We now bring it into play by introducing the real tangential vector field

R def
= i

(
z1
∂

∂z1
+ z2

∂

∂z2
− z1

∂

∂z1
− z2

∂

∂z2

)
generating the rotations of z 7→ eiθ z of S.

Lemma 23. The following equalities hold.

(4-2a) ξ = ξ .

(4-2b) σ = σ .

(4-2c) α = α.

(4-2d) β = β.

(4-2e) R =−i
(
w1

∂

∂w1
+w2

∂

∂w2
−w1

∂

∂w1
−w2

∂

∂w2

)
.

(4-2f) [Y, Y ] = −iξ R.

(4-2g) [V, V ] = iσ R.

(4-2h) [X, Y ] = i R− (Yα)Y .

Proof. We start by considering the tangential vector field

[Y, Y ] + iξ R = (ξ − ξ)
(

z1
∂

∂z1
+ z2

∂

∂z2

)
;
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if (4-2a) fails, then z1 ∂/∂z1+ z2 ∂/∂z2 is a nonvanishing holomorphic tangential
vector field on some nonempty relatively open subset of S, contradicting the strong
pseudoconvexity of S.

To prove (4-2e) we first note from Lemma 6 that w(eiθ z)= e−iθw(z); differenti-
ation with respect to θ yields (4-2e).

The proof of (4-2a) now may be adapted to prove (4-2b). (4-2c) and (4-2d)
follow immediately.

Using Lemma 22 in combination with (4-2a) and (4-2b) we obtain (4-2f) and
(4-2g).

From (3-6a) and (4-2f) we obtain (4-5b). �

Lemma 24. [X, T ] = i R.

Proof. On the one hand,

[X, T ] = [V +φV , βV ] = ((V +φV )β −β(Vφ))V + iβσ R

= ((V +φV )β −β(Vφ))V + i R.

On the other hand,

[X, T ] = [αY , Y +ψY ] = (α(Yψ)− (Y +ψY )α)Y + iαξ R

= (α(Yψ)− (Y +ψY )α)Y + i R.

Since V and Y are linearly independent, it follows that [X, T ] = i R. �

Lemma 25. The following equalities hold.

(4-3a) [R, Y ] = −2iY .

(4-3b) [R, Y ] = 2iY .

(4-3c) [R, V ] = 2iV .

(4-3d) [R, V ] = −2iV .

(4-3e) [R, X ] = 2i X.

(4-3f) [R, X ] = −2i X.

(4-3g) [R, T ] = −2iT .

(4-3h) [R, T ] = 2iT .

(4-3i) Rα = 0.

(4-3j) Rβ = 0.

Proof. (4-3a), (4-3b), (4-3c) and (4-3d) follow from direct calculation.
For (4-3g) first note that writing T = βV and using (4-3d) we see that [R, T ] is

a scalar multiple of T. Then writing

[R, T ] = [R, Y +ψY ] = −2iY + (multiple of Y ),
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we conclude using (3-5a) that [R, T ] = −2iT. The proof of (4-3e) is similar, and
(4-3f) and (4-3h) follow by conjugation.

Using (3-6a) along with (4-3b) and (4-3e) we obtain (4-3i); (4-3j) is proved
similarly. �

Lemma 26. X X f = 0 if and only if f = f1w1+ f2w2 with f1, f2 CR.

Proof. From (3-6a) and (4-1) it is clear that X X ( f1w1+ f2w2) = 0 if f1 and f2

are CR.
For the other direction, suppose that X X f = 0. Then if we set

f1
def
= z1 f +w2 X f, f2

def
= z2 f −w1 X f,

it is clear that f = f1w1+ f2w2; with the use of (3-6a) and (4-1) it is also easy to
check that f1 and f2 are CR. �

Lemma 27. Suppose that X XT u = 0 so that by Lemma 26 we may write T u =
f1w1+ f2w2 with f1, f2 CR. Then

(4-4) T T Xu =
∂ f1

∂z1
+
∂ f2

∂z2
.

In particular, T T Xu is CR.

The nontangential derivatives appearing in (4-4) may be interpreted using the
Hans Lewy local CR extension result mentioned in the proof of Proposition 4, or
else by rewriting them in terms of tangential derivatives (as in the last step of the
proof below).

Proof. T T Xu = T XT u+ T [T, X ]u

= T X ( f1w1+ f2w2)− iT Ru (Lemma 24)

= T ( f1z2− f2z1)− i RT u− i[T, R]u (3-6a), (4-1)

= T ( f1z2− f2z1)− i R( f1w1+ f2w2)+ 2T u (4-3g)

= (T f1)z2− f1w1− (T f2)z1− f2w2

− i(R f1)w1− f2w2− i(R f2)w2− f2w2

+ 2( f1w1+ f2w2) (4-1), (4-2e)

= (z2T − iw1 R) f2− (z1T + iw2 R) f2

= (z2Y − iw1 R) f2− (z1Y + iw2 R) f2

=
∂ f1

∂z1
+
∂ f2

∂z2
. �

Lemma 28. The following statements hold.

(4-5a) The operator XT maps CR functions to CR functions.



268 DAVID E. BARRETT AND DUSTY E. GRUNDMEIER

(4-5b) The operator XY maps CR functions to CR functions.

(4-5c) The operator T X maps dual-CR functions to dual-CR functions.

(4-5d) The operator XY maps conjugate-CR functions to conjugate-CR functions.

Proof. To prove (4-5a) and (4-5b) note that for u CR we have XT u = XY u =
−z1 ∂u/∂z1− z2 ∂u/∂z2, which is also CR. The other proofs are similar. �

Proof of (3-6d). To get the required lower bound on the null spaces, it will suffice
to show that X XT and T T X annihilate CR functions and dual-CR functions. This
follows from (3-6a) and (3-6b) along with (4-5a) and (4-5c).

For the other direction, if X XT u = 0= T T Xu, then from Lemma 27 we have a
closed 1-form ω

def
= f2 dz1− f1 dz2 on S where f1 and f2 are CR functions satisfying

T u = f1w1+ f2w2. Since S is simply connected we may write ω= d f with f CR.
Then from (3-5a) we have

T f = Y f = w2 f2+w1 f1 = T u.

Thus u is the sum of the CR function f and the dual-CR function u− f . �

To set up the proof of the global result (3-6c) we introduce the form

(4-6) ν
def
= (z2 dz1− z1 dz2)∧ dw1 ∧ dw2

and the C-bilinear pairing

(4-7) 〈〈µ, η〉〉
def
=

∫
S

µη · ν

between functions on S (but see Technical Remark 32 below).

Lemma 29. 〈〈T γ, η〉〉 = −〈〈γ, Tη〉〉.

Proof. In the sequence of equalities below we will use

• the definition (4-7) of the pairing 〈〈 · , · 〉〉,

• the Leibniz rule ιT (ϕ1 ∧ ϕ2) = (ιTϕ1) ∧ ϕ2 + (−1)degϕ1ϕ1 ∧ (ιTϕ2) for the
interior product ιT ,

• the fact that S is integral for 4-forms,

• Stokes’ theorem,

• the rules (4-1),

• the relation (3-2a).
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〈〈T γ, η〉〉+ 〈〈γ, Tη〉〉 =
∫
S

T (γ η) · ν

=

∫
S

ιT d(γ η) · ν

=

∫
S

d(γ η) · ιT ν

=

∫
S

d(γ η · ιT ν)−
∫
S

γ η · d(ιT ν)

= 0−
∫
S

γ η · d
(
ιT ((z2 dz1− z1 dz2)∧ dw1 ∧ dw2)

)
=−

∫
S

γ η · d((z2 · T z1− z1 · T z2) · dw1 ∧ dw2)

+

∫
S

γ η · d((z2 dz1− z1 dz2) · Tw1 ∧ dw2)

−

∫
S

γ η · d((z2 dz1− z1 dz2)∧ dw1 · Tw2)

=−

∫
S

γ η · d((z2w2+ z1w1) dw1 ∧ dw2)+ 0− 0

=−

∫
S

γ η · d(dw1 ∧ dw2)

= 0. �

Theorem 30. Let µ be a CR function on a compact strongly C-convex hypersurface
S. Then µ= 0 if and only if 〈〈µ, η〉〉 = 0 for all dual-CR η on S.

Proof. [Barrett 2016, (4.3d) from Theorem 3]. (Note also definition enclosing
[Barrett 2016, (4.2)].) �

Proof of (3-6c). Assume that X XT u = 0. Noting that S is simply connected, from
(3-6d) it suffices to prove that T T Xu = 0. From Lemma 27 we know that T T Xu
is CR. By Theorem 30 it will suffice to show that

〈〈T T Xu, η〉〉 = 0

for dual-CR η. But from Lemma 29 we have, as required,

〈〈T T Xu, η〉〉 = −〈〈T Xu, Tη〉〉 = 0. �
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Remark 31. From symmetry of formulas in Lemmas 6 and 12 we have

X S∗ = D∗TS, TS∗ = D∗X S, S∗∗ = S.

These facts serve to explain why the formulas throughout this section appear in
dual pairs.

Technical Remark 32. In [Barrett 2016] the pairing (4-7) applies not to functions
µ, ν but rather to forms µ(z) (dz1 ∧ dz2)

2/3, µ(w) (dw1 ∧ dw2)
2/3; the additional

notation is important there for keeping track of invariance properties under projective
transformation but is not needed here.

Note also that (4-7) coincides (up to a constant) with the pairing (3.1.8) in
[Andersson et al. 2004] with s = w1 dz1+w2 dz2.

5. Proof of Theorem A

For the reader’s convenience we restate the main theorem in the conjugate setting.

Theorem A. Let S ⊂ C2 be a strongly pseudoconvex circular hypersurface. Then
there exist nowhere-vanishing tangential vector fields X, Y on S satisfying the
following conditions:

(5-1a) If u is a smooth function on a relatively open subset of S, then u is CR if and
only if Xu = 0.

(5-1b) If u is a smooth function on a relatively open subset of S, then u is CR if and
only if Y u = 0.

(5-1c) If S is compact, then a smooth function u on S is a pluriharmonic boundary
value (in the sense of Proposition 3 below) if and only if X XY u = 0.

(5-1d) A smooth function u on a relatively open subset of S is a pluriharmonic
boundary value (in the sense of Proposition 4 below) if and only if

X XY u = 0= X XY u.

It is not possible in general to have Y = X.

Lemma 33. Suppose that X XY u = 0 so that by Lemma 26 we may write

Y u = f1w1+ f2w2

with f1, f2 CR. Then

(5-2) X XY u = α
(∂ f1

∂z1
+
∂ f2

∂z2

)
.

In particular, α−1 X XY u is CR.
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Proof. We have

X XY u = XY Xu+ X [X ,Y ]u

= XY (α( f1w1+ f2w2))+ X(−i R−(Yα)Y )u (3-6a), (4-2c), (4-5b)

= X(αY ( f1w1+ f2w2))− i X Ru

= X( f1z2− f2z1)− i R Xu− i[X ,R]u (3-6a), (4-1)

= X( f1z2− f2z1)− i R(α( f1w1+ f2w2))+2Xu (3-6a), (4-3f)

= (X f1) · z2− f1 ·αw1−(X f2) · z1− f2 ·αw2

− iα((R f1) ·w1− f1 ·(iw1)+(R f2) ·w2− f2 ·(iw2)) (4-1),(4-3i),

+2α( f1w1+ f2w2) (4-2e), (3-6a)

= (X f1) · z2−(X f2) · z1− iα((R f1) ·w1+(R f2) ·w2)

= α
(
(z2Y − iw1 R) f1−(z1Y + iw2 R) f2

)
= α

(∂ f1

∂z1
+
∂ f2

∂z2

)
. �

Proof of (1-1d). To get the required lower bound on the null spaces, it will suffice
to show that X XY and X XY annihilate CR functions and conjugate-CR functions.
This follows from (1-1a) along with (4-5b) and (4-5d).

For the other direction, if X XY u = 0= X XY u, then from Lemma 27 we have a
closed 1-form ω̃

def
= f2 dz1− f1 dz2 on the open subset of S where f1 and f2 are

CR functions satisfying Y u = f1w1+ f2w2. Restricting our attention to a simply
connected subset, we may write ω = d f with f CR. Then we have

Y f = w2 f2+w1 f1 = Y u.

Thus u is the sum of the CR function f and the conjugate-CR function u− f .
The general case follows by localization. �

Lemma 34. div Y def
= ∂w2/∂z1−∂w1/∂z2 and div Y def

= ∂w2/∂z1−∂w1/∂z2 vanish
on S.

Proof. Since S is circular, any defining function ρ for S will satisfy

Im
(

z1
∂ρ

∂z1
+ z2

∂ρ

∂z2

)
=−

Rρ
2
= 0.

Adjusting our choice of defining function we may arrange that

z1
∂ρ

∂z1
+ z2

∂ρ

∂z2
≡ 1
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in some neighborhood of S. Then from the proof of Lemma 6 we have

(5-3)
∂w2

∂z1
−
∂w1

∂z2
=

∂2ρ

∂z1∂z2
−

∂2ρ

∂z2∂z1
= 0.

The remaining statement follows by conjugation. �

Lemma 35.
∫
S

(Xγ )η d S
α
=−

∫
S

γ (Xη) d S
α

Proof.
∫
S

(Xγ )η d S
α
=

∫
S

(Yγ )η d S (3-6a)

=−

∫
S

γ (Yη) d S (Lemma 34)

=−

∫
S

γ (Xη) d S
α

(3-6a)

(The integration by parts above may be justified by applying the divergence theorem
on a tubular neighborhood of S and passing to a limit.) �

Proof of (1-1c). Assume that X XY u = 0. Noting that S is simply connected,
from (1-1d) it suffices to prove that X XY u = 0. From Lemma 27 we know that
α−1 X XY u is CR. The desired conclusion now follows from∫

S

|X XY u|2 d S
α2 =

∫
S

α−1 X XY u · X XY u d S
α

=−

∫
S

X (α−1 X XY u) · XY u d S
α

(Lemma 35)

=−

∫
S

0 · XY u d S
α

(Lemma 33)

= 0. �

6. Further comments

6.1. Remarks on uniqueness.

Proposition 36. Suppose that in the setting of Theorem B we have vector fields
X̃ , T̃ satisfying (suitably modified) (3-6a) and (3-6b). Then X̃ X̃ T̃ annihilates CR
functions and dual-CR functions if and only if there are CR functions f1, f2 and f3

so that f1w1+ f2w2 and f3 are nonvanishing and

X̃ = f3( f1w1+ f2w2)
2 X, T̃ = 1

f1w1+ f2w2
T .
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Proof. From (3-6a) and (3-6b) we have X̃ = γ X, T̃ = ηT with nonvanishing scalar
functions γ and η.

Suppose that X̃ X̃ T̃ annihilates CR functions and dual-CR functions. By routine
computation we have

X̃ X̃ T̃ = γ 2ηX XT + γ
(
(2γ (Xη)+ η(Xγ ))XT + X (γ (Xη))T

)
.

The operator (2γ (Xη)+η(Xγ ))XT +X (γ (Xη))T must in particular annihilate
CR functions. But if f is CR, then using Lemma 24 we have(
(2γ (Xη)+η(Xγ ))XT+X (γ (Xη))T

)
f=
(
i(2γ (Xη)+η(Xγ ))R+X (γ (Xη))T

)
f

Since R and T are C-linearly independent and f is arbitrary it follows that

X (γ η2)= 2γ (Xη)+ η(Xγ )= 0, X (γ (Xη))= 0.

We set f3 = γ η
2, which is CR and nonvanishing. Then the second equation

above yields

− f3 · X X (η−1)= X ( f3η
−2(Xη))= X (γ (Xη))= 0,

and hence X X (η−1)= 0. From Lemma 26 we have η = 1/( f1w1+ f2w2) with f1

and f2 CR. The result now follows.
The converse statement follows by reversing steps. �

Proposition 37. Suppose that in the setting of Theorem A we have vector fields
X̃ , T̃ satisfying (suitably modified) (1-1a) and (1-1b). Then X̃ X̃ Ỹ annihilates CR
functions and conjugate-CR functions if and only if there are CR functions f1, f2

and f3 so that f1w1+ f2w2 and f3 are nonvanishing and

X̃ = f3( f1w1+ f2w2)
2 X, Ỹ = 1

f1w1+ f2w2
Y.

The proof is similar to that of Proposition 36, using (4-2h) in place of Lemma 26.

6.2. Nirenberg-type result.

Proposition 38. Given a point p on a strongly pseudoconvex hypersurface S ⊂ C2,
any 2-jet at p of a C-valued function on S is the 2-jet of the restriction to S of a
pluriharmonic function on C2.

Proof. After performing a standard local biholomorphic change of coordinates we
may reduce to the case where p = 0 and S is described near 0 by an equation of
the form

y2 = z1z1+ O(‖(z1, x2)‖)
3.
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The projection (z1, x2 + iy2) 7→ (z1, x2) induces a bijection between 2-jets at 0
along S and 2-jets at 0 along C×R. It suffices now to note that the 2-jet

A+ Bz1+Cz1+ Dx2+ Ez2
1+ Fz2

1+Gz1z1+ H z1x2+ I z1x2+ J x2
2

is induced by the pluriharmonic polynomial

A+ Bz1+Cz1+
D−iG

2
z2+

D+iG
2

z2+Ez2
1+Fz2

1+H z1z2+ I z1z2+ J z2
2. �
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