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ON TATE DUALITY AND
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FLORIAN EISELE, MICHAEL GELINE,
RADHA KESSAR AND MARKUS LINCKELMANN

We identify a class of symmetric algebras over a complete discrete valuation
ring O of characteristic zero to which the characterisation of Knörr lattices
in terms of stable endomorphism rings in the case of finite group algebras can
be extended. This class includes finite group algebras, their blocks and source
algebras and Hopf orders. We also show that certain arithmetic properties of
finite group representations extend to this class of algebras. Our results are
based on an explicit description of Tate duality for lattices over symmetric
O-algebras whose extension to the quotient field of O is separable.

1. Introduction

Let p be a prime. Let O be a complete discrete valuation ring with maximal
ideal J (O) = πO for some π ∈ O, residue field k = O/J (O) of characteristic
p, and field of fractions K of characteristic zero. An O-algebra A is symmetric
if A is isomorphic to its O-dual A∗ as an A-A-bimodule; this implies that A is
free of finite rank over O. The image s of 1A under a bimodule isomorphism
A ∼= A∗ is called a symmetrising form for A; it has the property that s(ab)= s(ba)
for all a, b ∈ A and that the bimodule isomorphism A ∼= A∗ sends a ∈ A to the
map sa ∈ A∗ defined by sa(b) = s(ab) for all a, b ∈ A. Since the automorphism
group of A as an A-A-bimodule is canonically isomorphic to Z(A)×, any other
symmetrising form of A is of the form sz for some z ∈ Z(A)×. If X is an O-basis
of A, then any symmetrising form s of A determines a dual basis X∨= {x∨ | x ∈ X}
satisfying s(xx∨)= 1 for x ∈ X and s(xy∨)= 0 for x, y ∈ X, x 6= y. We denote
by TrA

1 : A→ Z(A) the Z(A)-linear map defined by TrA
1 (a)=

∑
x∈X xax∨ for all

a ∈ A. This map depends on the choice of s but not on the choice of the basis X.
We set z A = TrA

1 (1A) and call z A the relative projective element of A in Z(A) with
respect to s. This is also called the central Casimir element in [Broué 2009]. If
z ∈ Z(A)× and s ′= sz , then the dual basis of X with respect to s ′ is equal to X∨z−1,
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where X∨ is the dual basis of X with respect to s, and hence the relatively projective
element in Z(A) with respect to s ′ is equal to z′A = z Az−1. If we do not specify a
symmetric form of a symmetric algebra A, then the relative projective elements
form a Z(A)×-orbit in Z(A). See Broué [2009] for more details.

The purpose of this paper is to examine situations in which some relative projec-
tive element is a scalar multiple of the identity.

Definition 1.1. A symmetric O-algebra A is said to have the projective scalar
property if there exists a symmetrising form s of A such that the corresponding
relative projective element z A is of the form z A = λ1A for some λ ∈O.

Throughout the paper we will be working with a symmetric O-algebra A such
that the K -algebra K⊗O A is separable. Since K has characteristic zero, K⊗O A is
separable if and only if it is semisimple. This in turn is equivalent to the condition
that the relative projective element with respect to some, and hence any, symmetris-
ing form on A is invertible in Z(K ⊗O A), see [Broué 2009, Proposition 3.6].
In particular, when A has the projective scalar property, the separability of K ⊗O A
is equivalent to the property that the relative projective elements of A are nonzero.

Matrix algebras, finite group algebras, blocks and source algebras of finite group
algebras, as well as Hopf algebras whose extension to K is semisimple have the
projective scalar property (see Examples 5.1, 5.2, and 5.3), but Iwahori–Hecke
algebras and rings of generalised characters do not typically have this property (see
Examples 5.4, 5.5, and 5.6). The projective scalar property is invariant under taking
direct factors and tensor products but not under direct products, and is not invariant
under Morita equivalences (see Example 5.1).

Our motivation for studying algebras with the projective scalar property comes
from a characterisation of Knörr lattices for a finite group algebra in terms of the
relatively O-stable module category of the algebra. Recall that an A-lattice is a left
unital A-module which is free of finite rank as an O-module. An indecomposable
A-lattice U is called a Knörr lattice if the linear trace form trU on EndO(U ) satisfies
trU (α)O ⊆ rankO(U )O for every α ∈ EndA(U ), with equality precisely when α is
an automorphism.

Now for two finitely generated A-modules U and V, we denote by HomA(U, V )
the homomorphism space in the O-stable category mod(A) of finitely generated
A-modules; that is, HomA(U, V ) is the quotient of HomA(U, V ) by the subspace
Hompr

A (U, V ) of A-homomorphisms U → V which factor through a relatively
O-projective A-module. We write

Endpr
A (U )= Hompr

A (U,U ) and EndA(U )= HomA(U,U ).

For an A-lattice U, let a(U ) denote the smallest nonnegative integer such that
πa(U ) annihilates EndA(U ). In [Carlson and Jones 1989], the element πa(U ) is
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referred to as the exponent of U. If U is indecomposable nonprojective, U is said
to have the stable exponent property if the socle of EndA(U ) as a (left or right)
module over itself is equal to πa(U )−1EndA(U ).

Carlson and Jones [1989], and independently Thévenaz [1988] and Knörr [1987]
proved that for G a finite group, an absolutely indecomposable nonprojective OG-
lattice is a Knörr lattice if and only if it has the stable exponent property. The
projective scalar property guarantees such an equivalence:

Theorem 1.2. Let A be a symmetric O-algebra such that K ⊗O A is separable.
Suppose that A has the projective scalar property. Then an indecomposable nonpro-
jective A-lattice U is a Knörr lattice if and only if U is absolutely indecomposable
and has the stable exponent property.

The converse to this theorem is false. In Example 5.8, we shall see a symmetric
algebra without the projective scalar property for which the Knörr lattices coincide
with those having the stable exponent property. Thus, the equivalence between the
Knörr and stable exponent properties does not provide a characterisation of the
projective scalar property. Also, in Example 5.7, we shall see both Knörr lattices
which do not have the stable exponent property, as well as lattices with the stable
exponent property which are not Knörr.

Example 5.7 will, in addition, show that the property of being a Knörr lattice
is not invariant under Morita equivalences. However, it is easy to see that the
stable exponent property is invariant under such equivalences. Thus, two subclasses
can be identified within a given Morita equivalence class of symmetric algebras,
namely, those for which the above two types of lattices coincide, and those with
the projective scalar property.

The basic ingredient for the proof of Theorem 1.2 is a description of Tate duality
for lattices over symmetric O-algebras with separable coefficient extensions which
makes the role of the relative projective element explicit. Note that HomA(U, V ) is
a torsion O-module for any A-lattices U and V when K⊗O A is separable. This fol-
lows from the Gaschütz–Ikeda lemma (cf. [Geck and Pfeiffer 2000, Lemma 7.1.11]),
which is a special case of Higman’s criterion for modules over symmetric algebras
in Broué [2009].

Theorem 1.3. Let A be a symmetric O-algebra with symmetrising form s such
that K ⊗O A is separable. Set z = z A. Let U and V be A-lattices. The map
sending (α, β) ∈ HomA(U, V )×HomA(V,U ) to trK⊗OU (z−1β ◦ α) ∈ K induces
a nondegenerate pairing

HomA(U, V )×HomA(V,U )→ K/O.

Here, trK⊗OU (z−1β ◦α) is the trace of the K -linear endomorphism of K ⊗O U
obtained from extending the endomorphism β◦α of U linearly to K⊗OU, composed
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with the endomorphism given by multiplication on K ⊗O U with the inverse z−1

of z in Z(K ⊗O A). If A has the projective scalar property, then the Tate duality
pairing admits the following description (which is well known in this form for finite
group algebras, see [Brown 1982, Theorem 7.4]).

Corollary 1.4. Let A be a symmetric O-algebra such that K ⊗O A is separa-
ble. Suppose that z A = πn1A for some choice of a symmetrising form of A
and some positive integer n. Let U and V be A-lattices. The map sending
(α, β)∈HomA(U, V )×HomA(V,U ) to trU (β◦α) induces a nondegenerate pairing

HomA(U, V )×HomA(V,U )→O/πnO.

Remark 1.5. Theorem 1.3, applied to U = V, shows that if U is an indecomposable
nonprojective lattice for a symmetric O-algebra A such that K ⊗O A is separable,
then the socle of EndA(U ) as a module over itself is simple, since it is dual to
EndA(U )/J (EndA(U ))∼= k. This fact is well known (see Roggenkamp [1977]) and
this is the key step in the existence proof of almost split sequences of A-modules.
Applying Theorem 1.3 to Heller translates of V yields nondegenerate pairings

ÊxtnA(U, V )× Êxt−n
A (V,U )→ K/O

for any integer n. Applied to U = V = A as a module over A⊗O Aop this yields
nondegenerate pairings in Tate–Hochschild cohomology;

Ĥ H n
(A)× Ĥ H−n

(A)→ K/O.

Theorem 1.2 is a special case of the following consequence of Theorem 1.3
which gives a characterisation of absolutely indecomposable modules with the
stable exponent property for symmetric O-algebras. Denote by ν a π -adic valuation
on K.

Theorem 1.6. Let A be a symmetric O-algebra with symmetrising form s such that
K ⊗O A is separable. Denote by z the associated relatively projective element of A
in Z(A). Let U be an indecomposable nonprojective A-lattice. The following are
equivalent:

(i) For any α ∈ EndA(U ) we have ν(trK⊗OU (z−1α))≥ ν(trK⊗OU (z−1IdU )), with
equality if and only if α is an automorphism of U.

(ii) The A-lattice U is absolutely indecomposable and has the stable exponent
property.

Symmetric O-algebras with split semisimple coefficient extensions to K having
the projective scalar property can be characterised as follows.

Theorem 1.7. Let A be a symmetric O-algebra such that K⊗O A is split semisimple.
Denote by ρ : A→O the regular character of A. The following are equivalent:
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(i) The algebra A has the projective scalar property.

(ii) There exists a nonnegative integer n such that π−nρ is a symmetrising form
of A.

(iii) There exists a nonnegative integer n such that for any A-lattice U we have

trU (EndA(U ))= πn−a(U )O.

Moreover, if these three equivalent statements hold, then the integers n in (ii)
and (iii) coincide, and πn1A is a relative projective element with respect to some
symmetrising form of A.

We also have a characterisation, in terms of the decomposition matrix, of symmet-
ric O-algebras A such that some algebra in the Morita or derived equivalence class
of A has the scalar projective property. Recall that if B is a split finite-dimensional
algebra over a field F then the set of characters of simple A-modules is a linearly
independent subset of the F-vector space of functions from B to F (see, for instance,
[Nagao and Tsushima 1989, Chapter 3, Theorem 3.13]), and hence may be identified
with a set of representatives of the isomorphism classes of simple B-modules.

Theorem 1.8. Let A be a symmetric O-algebra such that K⊗O A is split semisimple
and k ⊗O A is split. Denote by IrrK (A) the set of characters of simple K ⊗O A-
modules and by Irrk(A) the set of characters of simple k ⊗O A-modules. For
χ ∈ IrrK (A) and ϕ ∈ Irrk(A), denote by dχ,ϕ the multiplicity of S as a composition
factor of k⊗O V, where V is an A-lattice such that K ⊗O V has character χ , and
S is a simple k⊗O A-module with character ϕ. The following are equivalent:

(i) There exists an algebra Morita equivalent to A with the projective scalar
property.

(ii) There exists an algebra derived equivalent to A with the projective scalar
property.

(iii) There exist a nonnegative integer n and positive integers mϕ , where ϕ∈ Irrk(A),
such that setting

aχ :=
∑

ϕ∈Irrk(A)

mϕdχ,ϕ,

where χ ∈ IrrK (A), the form π−n ∑
χ∈IrrK (A) aχχ is a symmetrising form for A.

(iv) There exist a nonnegative integer n and integers mϕ , where ϕ ∈ Irrk(A),
such that setting aχ :=

∑
ϕ∈Irrk(A) mϕdχ,ϕ , where χ ∈ IrrK (A), the form

π−n ∑
χ∈IrrK (A) aχχ is a symmetrising form for A.

We point out that certain arithmetic features of finite group representations carry
over to algebras with the projective scalar property. Recall that the degree of an
ordinary irreducible character of a finite group G divides the order of G and that if
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U is a projective OG-lattice, then the p-part of |G| divides the p-part of the O-rank
of U.

Proposition 1.9. Let A be a symmetric O-algebra such that K⊗O A is split semisim-
ple. Assume that A has the projective scalar property and let πn1A be a relative
projective element with respect to some symmetrising form on A.

(i) If U is a Knörr A-lattice, then the p-part of the O-rank of U divides πn in O.

(ii) If U is a projective A-lattice, then the p-part of the O-rank of U is divisible in
O by πn.

Theorem 1.7 and Proposition 1.9 combine to give the following generalisation
of the Brauer–Nesbitt theorem of classical modular representation theory.

Proposition 1.10. Under the assumptions of Proposition 1.9, suppose that U is a
Knörr lattice. Then U is projective if and only if the p-part of the O-rank of U is
equal to πn .

Remark 1.11. Note that if A=OG, then |G|·1OG is the relative projective element
with respect to the standard symmetrising form, see [Broué 2009, Examples and
Remarks after Proposition 3.3]. Moreover, an absolutely irreducible OG-lattice is
a Knörr OG-lattice. Hence, letting p vary across all primes in (i), one sees that
the above does generalise the corresponding results for group algebras. A related
global divisibility criterion for irreducible lattices of symmetric algebras has been
given by Jacoby and Lorenz [2017, Corollary 6] in the context of Kaplansky’s sixth
conjecture.

For U an A-lattice, define the height of U to be the number h(U ) such that

rank(U )p = pm+h(U ),

where m is defined by
pm
=min

V
{rank(V )p}

as V ranges over all irreducible A-lattices. Note that h(U ) is a nonnegative integer.
It is well known that a Morita equivalence between blocks of finite group algebras

or between a block algebra and the corresponding source algebra preserves the height
of corresponding irreducible characters, see [Broué 1990; 1994]. The following
theorem generalises this to algebras with the projective scalar property and to Knörr
lattices.

Theorem 1.12. Let A be a symmetric O-algebra such that K ⊗O A is split semisim-
ple. Let A′ be an O-algebra Morita equivalent to A, and suppose that both A and
A′ have the projective scalar property. Let U be a Knörr A-lattice and let U ′ be
an A′-lattice corresponding to U through a Morita equivalence between A and A′.
Then U ′ is a Knörr A′-lattice and h(U )= h(U ′).
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Finally we point out that although the stable exponent property does not apply
to projective lattices, we can, following Knörr [1989, Lemma 1.9], characterise
projective Knörr lattices in the presence of the projective scalar property.

Proposition 1.13. Let A be as in the previous theorem. Assume that U is an A-
lattice which is both projective and Knörr. Then U/πU is a simple A/π A-module.
In particular, K ⊗O U is an irreducible K ⊗O A-module.

Section 2 contains the proof of Theorems 1.3, 1.6 and 1.2. We prove Theorems 1.7
and 1.8 in Section 3. This section also contains a characterisation of the projective
scalar property in terms of rational centres. Section 4 discusses arithmetic properties
of Knörr lattices in the presence of the projective scalar property, including the
proof of Proposition 1.9 and Theorem 1.12. Section 5 contains various examples.

2. Tate duality for symmetric algebras

The proof of Theorem 1.3 is an adaptation of ideas from Thévenaz [1988, Section 1].
We keep the notation used in Theorem 1.3. For simplicity, we write in this section
K A= K ⊗O A, KU = K ⊗O U, and K V = K ⊗O V. We write K HomO(U, V )=
K ⊗O HomO(U, V ) and identify this space with HomK (KU, K V ) whenever con-
venient. Similarly, we write K HomA(U, V )= K⊗O HomA(U, V ) and identify this
space with HomK A(KU, K V ). Let X, X∨ be a pair of O-bases of A dual to each
other with respect to the symmetrising form s; in particular, the relative projective
element with respect to s is

z A =
∑
x∈X

xx∨ =
∑
x∈X

x∨x,

where x∨ denotes the unique element in X∨ satisfying s(xx∨)= 1, for x ∈ X. We
denote by

TrA
1 : K HomO(U, V )→ K HomA(U, V )

the K -linear map which sends α ∈ HomO(U, V ) to
∑

x∈X xαx∨. Here xαx∨ ∈
HomO(U, V ) is defined by (xαx∨)(u)= xα(x∨u) for u∈U and x ∈ X. Clearly, TrA

1
restricts to a map HomO(U, V )→ HomA(U, V ). By Higman’s criterion for sym-
metric algebras (cf. [Broué 2009]), we have TrA

1 (HomO(U, V )) = Hompr
A (U, V ).

Denote by
ϕ : K HomO(U, V )× K HomO(V,U )→ K

the K -linear map sending (α, β)∈ HomO(U, V )×HomO(V,U ) to trU (β ◦α), and
denote by

ϕA : K HomA(U, V )× K HomA(V,U )→ K

the map sending (α, β) ∈ HomA(U, V )×HomA(V,U ) to trKU (z−1
A β ◦α), where

α and β are extended linearly to maps between KU and K V. The following fact
generalises [Thévenaz 1988, Proposition 1.1].
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Proposition 2.1. Using the same notation as above, for α ∈ HomO(U, V ) and
β ∈ HomA(V,U ) we have

ϕA(TrA
1 (α), β)= ϕ(α, β).

Similarly, for γ ∈ HomA(U, V ) and δ ∈ HomO(V,U ) we have

ϕA(γ,TrA
1 (δ))= ϕ(γ, δ).

In particular, ϕA is nondegenerate.

Proof. We regard HomO(U, V ) and HomO(V,U ) as A-A-bimodules in the canoni-
cal way. If µ ∈ HomO(U, V ) and ν ∈ HomO(V,U ), then for any a ∈ A, we have
ν ◦aµ= νa ◦µ. If ε ∈ EndO(U ) and a ∈ A, then trU (εa)= trU (aε). Thus we have

ϕA(TrA
1 (α), β)= trKU

(
z−1

A

∑
x∈X

β ◦ xαx∨
)
= trKU

(
z−1

A

∑
x∈X

x∨β ◦ xα
)

= trKU

(
z−1

A

∑
x∈X

x∨βx ◦α
)
= trKU

(
z−1

A

∑
x∈X

x∨xβ ◦α
)

= trKU
(
z−1

A z Aβ ◦α
)
= ϕ(α, β).

This shows the first equality, and the proof of the second is analogous. Clearly ϕ is
nondegenerate, and hence so is ϕA. �

Proof of Theorem 1.3. For E an O-submodule of HomK A(KU, K V ) denote by E⊥

the O-submodule in HomK A(K V, KU ) consisting of all β ∈ HomK A(K V, KU )
such that ϕA(ε, β) ∈ O for all ε ∈ E . By the previous proposition, ϕA is non-
degenerate, and hence if E is a lattice in HomK A(KU, K V ), then E⊥ is a lat-
tice in HomK A(K V, KU ), and we have (E⊥)⊥ = E . We need to show that
(Hompr

A (U, V ))⊥ = HomA(V,U ). Let β ∈ HomK A(KU, K V ). We have β ∈
(Hompr

A (U, V ))⊥ if and only if ϕA(TrA
1 (α), β) ∈ O for all α ∈ HomO(U, V ). By

Proposition 2.1, this is equivalent to trKU (β ◦ α) ∈ O for all α ∈ HomO(U, V ).
This, in turn, is the case if and only if β belongs to the subspace HomA(U, V ) of
HomK A(KU, K V ). (To see this, choose a basis of U, a basis of V, and let α range
over the maps sending exactly one basis element in U to a basis element in V and
all other basis elements of U to 0). �

Proof of Corollary 1.4. We have z A = π
n1A. The nondegenerate pairing

HomA(U, V )×HomA(V,U )→ K/O

from Theorem 1.3 has image contained in the submodule π−nO/O of K/O. Multi-
plication by πn yields an isomorphism π−nO/O ∼= O/πnO. Thus Corollary 1.4
follows from Theorem 1.3. �

In order to prove Theorem 1.6, we need the following generalisation of [Carlson
and Jones 1989, Proposition 4.2].
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Proposition 2.2. Let A be a symmetric O-algebra with symmetrising form s such
that K ⊗O A is separable. Set z = z A. Let U be an A-lattice and let a be the
smallest nonnegative integer such that πa annihilates EndA(U ). Then

πatrKU (z−1EndA(U ))=O.

Proof. Let α ∈ EndA(U ). By the assumptions we have πaα ∈ Endpr
A (U ). Applying

Theorem 1.3 with U = V and β = IdU implies that πatrKU (z−1α) ∈ O. Thus
πatrKU (z−1EndA(U ))⊆O. For the reverse inclusion, consider first the case that
U is nonprojective. Then a ≥ 1, and πa−1IdU is not contained in Endpr

A (U );
equivalently, its image in EndA(U ) is nonzero. Again by Theorem 1.3, there exists
α ∈ EndA(U ) such that πa−1trU (z−1α) /∈ O. Thus πatrKU (z−1EndA(U )) is not
contained in πO, whence the equality in this case. Suppose U is projective, so
a = 0. Let α ∈ EndO(U ) be such that trU (α)= 1 and set β = TrA

1 (α) ∈ EndA(U ).
By Proposition 2.1, we have

trU (z−1β)= ϕA(TrA
1 (α), IdU )= ϕ(α, IdU )= trU (α)= 1.

The result follows. �

Proof of Theorem 1.6. Let a be the smallest positive integer such that πa annihilates
EndA(U ). The algebra EndA(U ) is local, as U is indecomposable nonprojective.
The duality in Theorem 1.3 implies that soc(EndA(U )) is simple.

Suppose that (i) holds. We show first that U is absolutely indecomposable. The
inequality in (i) applied to the endomorphism α given by multiplication with z
shows that

ν(rankO(U ))= ν(trU (IdU ))≥ ν(trKU (z−1IdU )),

so in particular, trKU (z−1IdU ) is nonzero. The inequality in (i) applied to an arbitrary
α ∈ EndA(U ) implies that the scalar τ defined by

τ = trKU (z−1α)trKU (z−1IdU )
−1

belongs to O. One then has

trKU (z−1(α− τ IdU ))= 0.

Thus (i) implies that α−τ IdU is not an automorphism, and is hence in J (EndA(U )).
It follows that EndA(U ) = O · IdU + J (EndA(U )), and hence U is absolutely
indecomposable.

We show next that U has the stable exponent property. Since the socle of
EndA(U ) is simple, we have

soc(EndA(U ))⊆ π
a−1EndA(U ),

and it thus suffices to show that πa−1EndA(U ) is a semisimple EndA(U )-module.
That is, it suffices to show that πa−1EndA(U ) is annihilated by J (EndA(U )). Let
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α ∈ J (EndA(U )). The assumptions in (i) together with Proposition 2.2 imply
that πatrKU (z−1α) ∈ πO, hence πa−1trKU (z−1α) ∈ O. By Theorem 1.3, this is
equivalent to πa−1α ∈ Endpr

A (U ), or equivalently, to πa−1α = 0. This shows that
(i) implies (ii).

Suppose conversely that (ii) holds. In particular, the socle of EndA(U ) is simple
and equal to πa−1EndA(U ). Let α ∈ J (EndA(U )). The image α in EndA(U ) is
contained in J (EndA(U )), and hence α annihilates πa−1EndA(U ). Thus πa−1α=0.
Theorem 1.3 implies that πa−1trKU (z−1α) ∈O, hence πatrKU (z−1α) ∈ πO.

By Proposition 2.2, there exists α ∈ EndA(U ) such that πatrKU (z−1α) = 1.
By the previous argument, this forces α /∈ J (EndA(U )). Since U is absolutely
indecomposable, it follows that EndA(U ) is split local, and hence we have α =
λIdU +ρ for some λ∈O× and some ρ ∈ J (EndA(U )). Since πatrKU (z−1ρ)∈ πO,
it follows that

πatrKU (z−1λIdU ) ∈O×.

Then in fact πatrKU (z−1λIdU )∈O× for any λ∈O×, and hence πatrKU (z−1α)∈O×

for any automorphism α of U. This shows that (ii) implies (i). �

Proof of Theorem 1.2. Let n be the positive integer such that z A = π
n1A, for some

choice of a symmetrising form. Theorem 1.6(i) is then equivalent to stating that U
is a Knörr lattice. Thus Theorem 1.2 follows from Theorem 1.6. �

3. Characterisations of the projective scalar property

Throughout this section, A will denote an O-order such that K ⊗O A is separable.
We identify A with its canonical image in K A = K ⊗O A. Denote by IrrK (A) the
set of the characters of the simple K A-modules. For χ ∈ IrrK (A) denote by e(χ)
the unique primitive idempotent in Z(K A) satisfying χ(e(χ)) 6= 0. We will use
this notation for other orders as well.

Proof of Theorem 1.7. Suppose that K ⊗O A is split semisimple. Proposition 2.2
shows that (i) implies (iii).

By the assumptions, K Ae(χ) is a matrix algebra over K of dimension χ(1)2.
In particular, K Ae(χ) is symmetric with symmetrising form χ , and we have
Z(K A)=

∏
χ∈IrrK (A) K e(χ). Fix a symmetrising form s of A. Then s extends to a

symmetrising form of K A, still denoted s, and we have

s =
∑

χ∈IrrK (A)

σχ ·χ,

for some σχ ∈ K. The relative projective element of the matrix algebra K Ae(χ)
with respect to χ is χ(1) · e(χ), and hence the relative projective element of A with
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respect to s is

z A =
∑

χ∈IrrK (A)

σ−1
χ ·χ(1) · e(χ).

Suppose that (ii) holds; that is, we may assume that s satisfies

s = π−nρ =
∑

χ∈IrrK (A)

π−n
·χ(1) ·χ.

Comparing coefficients in the two expressions for s now gives σχ = π−n
· χ(1).

Plugging this into the expression for z A yields z A = π
n
· 1A. So (ii) implies (i).

Suppose finally that (iii) holds. We need to show that (ii) holds. For U an A-
lattice, write as before KU = K⊗OU, and denote by a(U ) the smallest nonnegative
integer such that πa(U ) annihilates EndA(U ). By the assumptions in (iii) and by
Proposition 2.2, there is a nonnegative integer n such that

πn
· trKU (z−1

A ·EndA(U ))= trU (EndA(U ))= πn−a(U )O

for any A-lattice U. We apply this first to U = A. Since A is projective as a left
A-module, we have a(A)= 0, and hence

πn
· trK A(z−1

A ·EndA(A))= trA(EndA(A))= πnO.

Any A-endomorphism is given by right multiplication with an element a in A. By
elementary linear algebra, the trace of this endomorphism is equal to the trace of
the linear endomorphism given by left multiplication with a, and hence this trace is
equal to ρ(a). Thus trA(EndA(A))= ρ(A)= πnO, which implies that π−nρ sends
A to O. Thus we have

π−nρ = sw,

for some w ∈ Z(A). In order to show that π−nρ is a symmetrising form on A we
need to show that w ∈ Z(A)×. Writing

w =
∑

χ∈IrrK (A)

ωχe(χ)

with coefficients ωχ ∈O, we need to show that ωχ ∈O×.
In terms of the coefficients σχ already introduced in the expression for s, we have

sw =
∑

χ∈IrrK (A)

σχωχχ.

Comparing coefficients with π−nρ yields therefore

σχωχ = π
−nχ(1),
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for all χ ∈ IrrK (A), and hence

ν(σχωχ )= ν(π
−nχ(1)).

Let χ ∈ IrrK (A), and let V be an A-lattice such that K V = K⊗O V has character χ .
Using that EndA(V )=O · IdV , we get from the above that

ν(πn
· trK V (z−1

A ))= ν(IdV )= ν(χ(1)).

By the above formula for z A, we have z−1
A =

∑
χ∈IrrK (A) σχ ·χ(1)

−1
· e(χ), and

hence trK V (z−1
A )= σχ . Thus

ν(πnσχ )= ν(χ(1)).

Combining the previous statements yields

ν(σχωχ )= ν(π
−nχ(1))= ν(σχ )

and hence ωχ is invertible in O. This shows that (iii) implies (ii). The last statement
in Theorem 1.7 on the integer n is obvious from the proofs of the implications. �

Remark 3.1. The coefficients σ−1
χ in the above proof are called Schur elements in

[Geck and Pfeiffer 2000, §7.2].

Next, we prove Theorem 1.8. As in the theorem, let Irrk(A) denote the set
of characters afforded by the simple k ⊗O A-modules, and for χ ∈ IrrK (A) and
ϕ ∈ Irrk(A), denote by dχ,ϕ the multiplicity of S as a composition factor of k⊗O V,
where V is an A-lattice such that K ⊗O V has character χ , and S is a simple
k⊗O A-module with character ϕ. We adopt the analogous notation for other orders.

Lemma 3.2. Let A′ be an O-order which is derived equivalent to A. Then we have
|Irrk(A)| = |Irrk(A′)| and |IrrK (A)| = |IrrK (A′)|. Further, there exists a bijection
χ→ χ ′ from IrrK (A) to IrrK (A′), signs εχ ∈ {±1}, χ ∈ IrrK (A), and integers uϕ,ψ ,
ϕ ∈ Irrk(A), ψ ∈ Irrk(A′) such that:

(i) For χ ∈ IrrK (A), ψ ∈ Irrk(A′),

dχ ′,ψ = εχ
∑

ϕ∈Irrk(A)

dχ,ϕuϕ,ψ .

(ii) The form s =
∑

χ∈IrrK (A) σχχ , σχ ∈ K is a symmetrising form of A if and only
if the form s ′ =

∑
χ∈IrrK (A) εχσχχ

′ is a symmetrising form of A′.

If A and A′ are Morita equivalent, then in addition there is a bijection ϕ→ ϕ′

from Irrk(A) to Irrk(A′) such that dχ ′,ϕ′ = dχ,ϕ and εχ = 1 for all χ ∈ IrrK (A),
ϕ ∈ Irrk(A).

Proof. The first statement follows from [Zimmermann 2014, Theorem 6.8.8]. The
transfer of symmetrising forms as in (ii) is proved in [Eisele 2012, Theorem 4.7]. �
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Proof of Theorem 1.8. Suppose that the O-order A′ is Morita equivalent to A and
let χ → χ ′, and let ϕ → ϕ′ be the bijections of Lemma 3.2. Denoting by nϕ
the k-dimension of the simple A′-module labelled by ϕ′ (ϕ ∈ Irrk(A)), we have
that χ ′(1) =

∑
ϕ∈Irrk(A) nϕ · dχ,ϕ for all χ ∈ IrrK (A). The equivalence between

(i) and (iii) is now immediate from Lemma 3.2 and the equivalence between (i)
and (ii) of Theorem 1.7. We now prove that (iv) implies (iii). Let n and mϕ ,
ϕ ∈ Irrk(A), be integers such that π−n ∑

χ∈IrrK (A) aχχ is a symmetrising form of A,
where aχ =

∑
ϕ∈Irrk(A) mϕdχ,ϕ , χ ∈ IrrK (A). Let X be an O-basis of A. Choose

a positive integer t such that π−n
· pt
· dχ,ϕχ(x) ∈ πO and m′ϕ := mϕ + pt > 0 for

all χ ∈ IrrK (A), ϕ ∈ Irrk(A) and x ∈ X. Set s ′ = π−n ∑
χ∈IrrK (A) a′χ · χ , where

a′χ =
∑

ϕ∈Irrk(A) m′ϕ · dχ,ϕ , χ ∈ IrrK (A). Then for all a ∈ A, s ′(a)− s(a) ∈ πO.
Hence by considering the determinant of the Gram matrices of the bilinear forms
associated to s and s ′, it follows that s ′ is also a symmetrising form of A. This
proves that (iii) holds. Since (i) clearly implies (ii) and (iii) implies (iv), in order to
complete the proof, it suffices to show that (ii) implies (iv). Suppose that A′ has
the projective scalar property and that A′ and A are derived equivalent. Then (iii)
holds for A′, say for the integers mψ , ψ ∈ Irrk(A′). Then by Lemma 3.2, we have
that (iv) holds for A with the integers nϕ =

∑
ψ∈Irrk(A′) mψuϕ,ψ , ϕ ∈ Irrk(A). �

For the rest of this section we will expand on the question of the extent to which
the characterisations of the projective scalar property up to Morita equivalence
given in Theorem 1.8(iii) and (iv) are constructive. The point here is that the set
of symmetrising forms for an order A is actually a Z(A)×-orbit, and Z(A) is an
O-order for a (potentially) quite large ring O. But in fact, as we will see, the
criterion can be reduced to linear algebra over Q.

The following proposition shows that the projective scalar property is essentially
independent of the choice of the ring O. This is particularly interesting to note
since we often make the assumption that K is a splitting field.

Proposition 3.3. Let A be an O-order and let E ⊇O be a discrete valuation ring
containing O such that J (E)∩O = J (O). Then the O-order A has the projective
scalar property if and only if the E-order E ⊗O A has the projective scalar property.

Proof. By the characterisation in Theorem 1.7, A having the projective scalar
property is equivalent to some multiple of the regular trace being a symmetrising
form for A. But the regular trace on A and the regular trace of E⊗O A have the same
Gram matrix (when the same basis is chosen for both of them), and invertibility of
a multiple of said Gram matrix over O is equivalent to invertibility over E , provided
of course that we multiplied by an element of O.

So the only thing that still requires proof is that if τ is a generator of J (E), then the
integer m such that τ−m

·ρ is a symmetrising form for E⊗O A, satisfies τmE =πnE
for some n ∈ Z≥0 (since this means that π−n

·ρ is a symmetrising form for A). But
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by Theorem 1.7 we have τmE = trE⊗O A(EndE⊗O A(E⊗O A))= E⊗O trA(EndA(A)),
and trA(EndA(A)) is certainly of the form πnO for some nonnegative integer n. �

Definition 3.4. Let A be an O-algebra which is free of finite rank as an O-module
such that K A is split semisimple. Fix an isomorphism

ϕ : Z(K A)−→∼ K × · · ·× K .

We define the rational centre Z rat(K A) of K A to be the Q-algebra

ϕ−1(Q× · · ·×Q).

We define the rational centre of A, denoted by Z rat(A), as the intersection of A
with Z rat(K A).

We say that A is rationally symmetric if there is an element

σ̃ =
∑

χ∈IrrK (A)

σ̃χeχ ∈ Z rat(A)

and an n ∈ Z such that
π−n
·

∑
χ∈IrrK (A)

σ̃χ ·χ

is a symmetrising form for A.

We should note that σχ = π−n
· σ̃χ with σχ defined as earlier. Therefore rational

symmetry is not the same as asking that the σχ be rational. Not even the projective
scalar property implies rationality of the σχ .

The rational centre of A is a Z(p)-order, and the projective scalar property implies
rational symmetry. We should remark that, if O is ramified over Zp, then rational
symmetry is not necessarily preserved under direct sums. Neither is the projective
scalar property, or even the property of being Morita-equivalent to an order which
satisfies the projective scalar property. This is due to the possibility that the rational
symmetrising forms involve different powers of π , whose quotient may have a
nonintegral p-valuation (using the convention ν(p)= 1).

Remark 3.5. An element σ̃ (together with an n ∈ Z) as above and the central
projective element z A are related by the formula

z A = π
n
· σ̃−1

·

∑
χ∈IrrK (A)

χ(1) · eχ .

In particular, σ̃ can be chosen in Z rat(A) if and only if z A ∈ K× · Z rat(A). Now we
can reinterpret the projective scalar property and rational symmetry in the following
way: we consider the orbit Z(A)× ·z A. If it intersects nontrivially with K× ·Z rat(A),
then A is rationally symmetric, and if it intersects nontrivially with K× · 1A, then
A has the projective scalar property.
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In view of everything we have seen so far, the following is fairly straightforward.

Proposition 3.6. Assume that A is rationally symmetric, and σ̃ ∈ Z rat(A) is as
before. Then A has the projective scalar property if and only if

(1)
〈∑

χ∈IrrK (A)
dχ,ϕ ·χ |ϕ∈ Irrk(A)

〉
Q
∩

{∑
χ∈IrrK (A)

σ̃χ ·
χ(z)
χ(1)
·χ | z∈ Z rat(A)

}
properly contains

(2)
〈∑

χ∈IrrK (A)
dχ,ϕ ·χ |ϕ ∈ Irrk(A)

〉
Q
∩

{∑
χ∈IrrK (A)

σ̃χ ·
χ(z)
χ(1)

·χ | z ∈ I
}

for all maximal ideals I in Z rat(A).

Note that the right-hand side in both (1) and (2) is the intersection of a Q-vector
space and a Z(p)-lattice, which can be computed by means of linear algebra.

We conclude this section with an example of a symmetric algebra which is not
rationally symmetric, to show that the two notions are not equivalent.

Example 3.7. Assume that k has characteristic two and O is unramified, i.e.,
π = p = 2. Let x ∈ O× be an arbitrary unit in O. We consider the order A =
〈λ1, λ2, λ3, λ4〉O in the commutative split-semisimple K -algebra K × K × K × K,
where

(3)

λ1 =(1 1 1 1),

λ2 =(0 2 0 2x),

λ3 =(0 0 2 2x),

λ4 =(0 0 0 4x).

We claim that the map

(4) s : K×K×K×K −→ K : (a1, a2, a3, a4) 7→
2−x−1

4
a1+

1
4

a2+
1
4

a3+
x−1

4
a4

defines a symmetrising form for A. The Gram matrix of s with respect to the basis
(λ1, . . . , λ4) is

(5) (s(λi · λ j ))i, j =


1 1 1 1
1 1+ x x 2x
1 x 1+ x 2x
1 2x 2x 4x

.
The determinant of this matrix is congruent to 1 mod 2O, which implies that it is
invertible over O, which in turn implies that A is a self-dual lattice with respect
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to s. So, clearly, A is a symmetric O-order. However, if x + 2O 6= 1+ 2O, then A
is not rationally symmetric. To see this we consider the family of forms

(6) su : K × K × K × K −→ K : (a1, a2, a3, a4) 7→
1
4 ·

4∑
i=1

ui · ai ,

where u ∈ (K×)4. By definition, the order A is rationally symmetric if and only if su

is a symmetrising form for A for some u ∈ (Q×)4. We know that the symmetrising
forms for A are exactly the forms s(z · −) with z ∈ Z(A)× and s as in (4). The
form s(z · −) is equal to sz·v with v = (2− x−1, 1, 1, x−1). Since z is a unit each
zi lies in O×, and so do all vi . So if A is symmetric with respect to su , then each
ui needs to lie in O×. Moreover, A being symmetric with respect to su would
necessitate A being integral with respect to su , which in particular would require
su(λ2) = 2−1

· u2+ 2−1
· u4 · x ∈ O. That is, −u2/u4+ 2O = x + 2O, which can

only hold true for rational ui if x + 2O lies in the prime field of k, which means
x + 2O = 1+ 2O (since we asked that x be a unit, the case x + 2O = 0+ 2O is
impossible).

4. Heights and degrees of Knörr lattices

Proof of Proposition 1.9. Let U be a Knörr lattice. Then, trU (EndA(U )) =
rank(U )O. By Theorem 1.7(iii), we have that trU (EndA(U )) = πn−a(U )O. By
Theorem 1.7(ii), we have

rank(A)
πn =

ρ(1A)

πn ∈O.

It then follows that
rank(A)O ⊆ πnO ⊆ πn−a(U )O = rank(U )O.

This proves (i). Now suppose that U is a projective lattice. Then, by Theorem 1.7(iii)
we have that trU (EndA(U ))=πnO. On the other hand, rank(U )O⊆ trU (EndA(U )).
This proves (ii). �

The next lemma is needed to prove Theorem 1.12.

Lemma 4.1. Let A be a symmetric O-algebra such that K ⊗O A is split semisimple.
Assume that A has the projective scalar property and let πn1A be a relative projec-
tive element with respect to some symmetrising form on A. Let a0=maxV {a(V )} as
V ranges over all A-lattices. There exists χ ∈ IrrK (A) such that χ(1)O = πn−a0O.

Proof. By Theorem 1.7(ii), a0 ≤ n and we have that χ(1)O ⊆ πn−a0O for all χ ∈
IrrK (A). Let U be an A-lattice and α ∈ EndA(U ) be such that trU (α)O = πn−a0O.
Let f ∈O[x] be the characteristic polynomial of α and let g∈O[x] be an irreducible
monic factor of f . Let K be an algebraic closure of K, let λi , where i ∈ I, be the
roots of g in K and for i ∈I let Wi be the generalised λi -eigenspace of α in K⊗OU.
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Set λg :=
∑

i∈I λi ∈ O and Wg := ⊕i∈IWi . We have dim(Wi ) = dim(W j ) =: dg

for all i, j ∈ I. So,
trWg (α)= λgdg.

Since trU (α) is the sum of trWg (α) as g runs through the irreducible factors of f
and since λg ∈O, replacing g by some other irreducible factor of f if necessary,
we may assume that

πn−a0O = trU (α)O ⊆ dgO.

Now α ∈ EndA(U ), hence Ui is a K ⊗O A-submodule of K ⊗O A. In particular, dg

is the dimension of a K ⊗O A-module. Since K ⊗O A is split it follows that there
exists some χ ∈ I such that

πn−a0O = trU (α)O ⊆ dgO ⊆ χ(1)O ⊆ πn−a0O.

Hence, χ(1)O = πn−a0O as desired. �

Proof of Theorem 1.12 . The fact that U ′ is a Knörr A′-lattice is a consequence of
Theorem 1.2. Let a0 =maxV {a(V )} as V ranges over all A-lattices. Then a0 also
equals maxV ′{a(V ′)} as V ′ ranges over all A′-lattices. Further, a(U )= a(U ′). Let
π eO = pO and let πn1A be a relative projective element of A. For any A-lattice V,
rank(V )O ⊆ trV (EndA(V )), hence by Lemma 4.1 and Theorem 1.7,

p(n−a0)/e =min
V
{rank(V )p}

as V ranges over all A-lattices. Since U is a Knörr A-lattice and using again
Theorem 1.7, it follows that

πn−a(U )O = p(n−a0)/e+h(U )O

and hence
h(U )=

a0− a(U )
e

.

Applying the same argument to A′ and U ′ gives the desired result. �

Proof of Proposition 1.13. Let u be an element of U \πU. Let ϕ :U →U be an
O-linear projection onto Ou, and let TrA

1 (ϕ) be the corresponding A-endomorphism
of U. A calculation similar to that in Proposition 2.1 and using the assumption that
πn1A is a relative projective element as in Theorem 1.7, shows that

trU (TrA
1 (ϕ))= π

n.

Now because U is projective, we have a(U )= 0. It follows that

trU (EndA(U ))= πnO.

Because U is a Knörr lattice, we can conclude that TrA
1 (ϕ) is an invertible element of

EndA(U ). In particular, it is surjective. However, the image of TrA
1 (ϕ) is contained

in the A-lattice Au. We thus have Au =U. The result follows because u was an
arbitrary element of U \πU. �
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5. Examples

Example 5.1. If A =Matn(O) for some positive integer n or if A =OG for some
finite group G, then A has the scalar projective property, see [Broué 2009, Examples
and Remarks after Proposition 3.3]. If an O-algebra A has the projective scalar
property, and if B is a direct factor of A, then B has the projective scalar property.
This is immediate from the fact that the relative projective element with respect to a
symmetrising form on A is independent of the choice of an O-basis. If O-algebras
A and B have the projective scalar property, then so does A⊗O B. However, the
projective scalar property is not preserved under taking direct products, whilst the
property of being symmetric is. For instance if p = 2, then by Proposition 1.9,
O×Mat2(O) does not have the projective scalar property. Further, O×Mat2(O) is
Morita equivalent to O×O from which we see that the scalar projective property
is not invariant under Morita equivalence.

Example 5.2. Source algebras of blocks of finite groups have the projective scalar
property. More precisely, if A is a source algebra of a block of a finite group algebra
with defect group P, and k is a splitting field for the underlying finite group and its
subgroups, then there is a symmetrising form on A such that the relative projective
element of A is equal to |P| · 1. To see this, let G be a finite group, B a block
algebra of OG, P a defect group of B, and i a source idempotent of B; that is, i is a
primitive idempotent in B P satisfying BrP(i) 6= 0, where BrP : (OG)P

→ kCG(P)
is the Brauer homomorphism. Assume that k is a splitting field for G and all of its
subgroups. The source algebra A= iOGi is again symmetric, and any symmetrising
form on OG restricts to a symmetrising form on A. Denote by s : OG→ O the
canonical symmetrising form, sending 1G to 1O and x ∈ G \ {1G} to zero. With
respect to this form, the relative trace TrOG

1 on OG is equal to the relative trace map
TrG

1 , sending a ∈OG to
∑

x∈G xax−1. The relative trace map TrA
1 with respect to

the symmetrising form s restricted to A satisfies TrA
1 (a)= TrG

1 (a)i . In particular,
we have TrA

1 (i) = TrG
1 (i)i . As a consequence of [Picaronny and Puig 1987] or

[Thévenaz 1988, 9.3], the element u = TrG
P (i) is invertible in Z(B). Moreover, we

have TrG
1 (i) = |P|TrG

P (i) = |P|u. Denote by t the symmetrising form given by
t (a)= s(ua). The relative trace map on A with respect to the form t sends the unit
element i of A to |P|uu−1i = |P|i as required.

Example 5.3. If A is a Hopf algebra over O such that K ⊗O A is semisimple, then
A has the projective scalar property. This is well known to Hopf algebra experts —
we just sketch the trail of ideas. By [Larson and Radford 1988a, Theorem 3.3]
and [Larson and Radford 1988b, Theorem 4], the antipode of K ⊗O A and of
K ⊗O A∗ = (K ⊗O A)∗ has order 2. Hence the same is true for the antipode of A
and A∗. By the main theorem of [Larson and Sweedler 1969], A has a nonsingular
left integral, say, λ. Then λ is also a nonsingular left integral for K ⊗ A. Hence by
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Propositions 3 and 4 of the same paper, ε(λ) 6= 0 and A is unimodular. Since the
antipode of A∗ also has order 2, by the second corollary to [Larson and Sweedler
1969, Proposition 8], applied with the roles of A and A∗ reversed, we have that
if 3 ∈ A∗ is a nonsingular integral (3 exists by the main theorem of [Larson and
Sweedler 1969] applied to A∗), then 3 is a symmetrising form on A. Further, by
[Lorenz 2011, Section 5.3], the corresponding projective element is a scalar.

Example 5.4. This example shows that very few local commutative symmetric O-
algebras of O-rank 2 have the projective scalar property. Let A be an indecomposable
O-algebra such that K ⊗O A= K ×K ; in particular, A is commutative. Then there
is a unique positive integer m such that

A = {(α, β) ∈O×O | β −α ∈ πmO} = {(α, α+β) | α ∈O, β ∈ πmO}.

The algebra A is local commutative and symmetric, with symmetrising form s
sending (α, α+β) ∈ A to π−mβ. We are going to show that A has the projective
scalar property if and only if p = 2 and 2 ∈ πmO.

The O-basis X = {(1, 1), (0, πm)} of A has, with respect to s, the dual basis
{(−πm, 0), (1, 1)}. Thus the relative projective element with respect to the sym-
metrising form s is z A= (−π

m, πm). We have A×= {(α, α+πmγ ) |α∈O×, γ ∈O}.
Thus the A×-orbit of z A is

{−πmα, πmα+π2mγ | α ∈O×, γ ∈O}.

An element in this set is a scalar if and only if πmγ = −2α. For p odd, this is
impossible as the right side is invertible in O whereas the left side has a positive
valuation of at least m. This shows that for p odd, A does not have the projective
scalar property. For p = 2, the algebra A has the scalar property if and only if πm

divides 2 in O.
Note that since A is local, any O-algebra Morita equivalent to A is a matrix

algebra over A. Hence if A does not have the projective scalar property, then neither
does any algebra Morita equivalent to A.

Example 5.5. Let (W, S) be a finite Coxeter group with length function ` and
q ∈O×. Let H=Hq(W, S) be the associated Iwahori–Hecke algebra over O with
parameter q. That is, H has an O-basis {Tw}w∈W , with multiplication given by
TwTy= Twy ifw, y ∈W such that `(wy)= `(w)+`(y), and (Ts)

2
=qT1+(1−q)Ts

for s∈ S. By [Geck and Pfeiffer 2000, Proposition 8.1.1], the algebra H is symmetric,
with a symmetrising form sending T1 to 1 and Tw to 0 for w ∈W \ {1}. The dual
basis of {Tw}w∈W with respect to this form is {q−`(w)Tw−1}w∈W , and hence the
associated relative projective element is

zH =
∑
w∈W

q−`(w)TwTw−1 .
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Whether H has the projective scalar property seems to be difficult to read off this
expression. If p = 2 and W = S2 = S = {1, s}, and if q is an odd integer, then the
map sending T1 to (1, 0) and Ts to (1, 1−q) is an injective algebra homomorphism
from H to O×O. The previous example shows that H has the scalar property if
and only if q ≡ 3 mod 4.

Example 5.6. Let G be a finite group and assume that O contains the values of all
irreducible characters of G. Let

A =O[Irr(G)] =O⊗Z Z[Irr(G)].

The irreducible characters of G form an O-basis for A. For K -valued functions α
and β on G, define the usual

[α, β] = 1
|G|

∑
g∈G

α(g)β(g−1) ∈ K .

For χ ∈ Irr(G), let χ denote the character of the contragredient representation, so
χ(g)= χ(g−1) for all g ∈ G. Finally, let 1G denote the trivial character of G.

For χ,ψ ∈ Irr(G), the identity [χψ, 1G] = [χ,ψ] = δχ,ψ implies that the
O-linear function s : A→O given by

s(α)= coefficient of 1G in α

is a symmetrising form on A. The same identity makes it clear that the basis of A
dual to Irr(G) with respect to s is given by χ∨ = χ . The corresponding relative
projective element, z =

∑
χ∈Irr(G) χχ , coincides with the function on G sending g

to |CG(g)|. Clearly, z is a scalar multiple of 1G if and only if G is abelian. In this
case, we have z= |G| ·1G . However, to see exactly when A has the projective scalar
property, it is necessary to consider the action of A× on z. Let u be an invertible
element of A. Then u is a function from G to O×. Assume that uz = λ · 1G for
some element λ ∈O. We must then have

(7) u(g)= λ

|CG(g)|
∈O×

for all g ∈ G. Thus, |CG(g)|p is independent of g. We deduce that every element
of G must centralise a Sylow p-subgroup. So, let P be a Sylow p-subgroup. By
Sylow’s theorem, every element of G is conjugate to an element of CG(P). A
well known application of Burnside’s counting lemma allows us to conclude that
CG(P) = G. Thus, P is abelian, and G ∼= P × H for some group H of p′ order.
Conversely, we claim that if G = P×H, with P an abelian p-group and H a group
of p′-order, then A has the projective scalar property. All that remains to do is to
verify that the function u(g)= 1/(|CG(g)|p′) for g ∈G actually lies in A, assuming
G = P × H as above. So let χ ∈ Irr(G). We must show that [χ, u] ∈ O. We can
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write χ = θ ⊗ψ for irreducible characters θ of P and ψ of H. One verifies

[χ, u] =


1
|H |

∑
h∈H

ψ(h)
|CH (h)|

if θ = 1P ,

0 if θ 6= 1P .

In both cases, we have [χ, u] ∈O.
Finally, we remark that if O is a Dedekind domain in which no prime dividing

the order of G is invertible, then A has the projective scalar property if and only if
G is abelian.

Example 5.7. The Knörr property is not preserved by Morita equivalences in
general. The idea is that all absolutely indecomposable A-lattices of p′-rank are
Knörr, but among those of rank divisible by p, only the absolutely irreducible lattices
tend to have the property. Indeed, the proof of [Knörr 1989, Corollary 1.6] does
not require the O-algebra to be a group ring (nor even a symmetric algebra). Thus,
any Morita equivalence that sends a lattice of p′-rank which is indecomposable but
not irreducible to a lattice of rank divisible by p is likely to give an example.

Specifically, let p = 2 and assume that O is unramified and k is algebraically
closed. Let A be the principal block algebra of OA5, where A5 is the alternating
group of degree 5. Then |IrrK (A)| = 4, |Irrk(A)| = 3, and the decomposition matrix
of A with respect to some ordering of IrrK (A) is

(8)

ϕ1 ϕ2 ϕ3

χ1 1 0 0
χ2 1 0 1
χ3 1 1 0
χ4 1 1 1

where ϕ1 corresponds to a one-dimensional k A-module, and ϕ2 and ϕ3 correspond
to simple k A-modules of dimension 2.

For each i , where 1≤ i ≤ 3, let Pi denote a projective indecomposable A-module
such that Pi/ rad(Pi ) is isomorphic to a simple k A-module corresponding to ϕi .
Let e be an idempotent in A such that Ae∼= P1+2P2+ P3 as left A-modules. Then
A and eAe are Morita equivalent via the functor sending an A-module M to the
eAe-module eM and an A-module homomorphism α : M→ N to the eAe-module
homomorphism e · α : eM → eN defined through restriction to eM. The simple
eAe-modules corresponding to ϕ1 and ϕ3 have dimension 1 whereas the simple
eAe-module corresponding to ϕ2 has dimension 2.

From the decomposition matrix above, one sees that the character afforded by
K P1 has two irreducible constituents, one of degree 5 and the other of degree 3. It
follows from [Knörr 1989, Lemma 1.9] that P1 is not a Knörr A-lattice. However,
the rank of the eAe-lattice eP1 is 7. Thus eP1 is a Knörr eAe-lattice.
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To obtain an example in which neither lattice is projective, it is enough to inflate
the Pi above to lattices for the group A5×C2, where C2 is a cyclic group of order 2.

Notice also that although eP1 is Knörr, it does not have the stable exponent
property. This is the case for both the A5 and A5×C2 situations. Next, we produce
a lattice with the stable exponent property which is not Knörr.

First, we have Q(
√

5) ⊆ K, so K A is split semisimple. Let M be the unique
quotient lattice of P1 such that K M has character χ1+χ2+χ3. Since M has rank 7,
M is a Knörr A-lattice. Because A has the projective scalar property, M and hence
eM also have the stable exponent property. We shall show that eM is not Knörr.

Let L be the unique O-free quotient of M affording the character χ3 and let
α : M → L be the projection map. Since α is surjective, and L and M are not
projective, α /∈Hompr

A (M, L). Thus, by Corollary 1.4, there exists β ∈HomA(L ,M)
such that trM(β ◦α) /∈ 4O (since 4 · 1A is a projective scalar element of A).

Let τ = βα and denote also by τ the K -linear extension of τ to K M. For
each i , 1≤ i ≤ 4, let ei be the primitive central idempotent of K A corresponding
to χi . Since τ(K M) is contained in e3(K M), we have that (e2 + e4)(K M) is
contained in the kernel of τ . On the other hand, 1− e = (e2+ e4)(1− e). Thus,
trK M(τ )= tre(K M)(τ ). It follows that

treM(e · τ)= trK M(τ )= trM(τ ) /∈ 4O.

Since eM has rank 6, we have that ν2(treM(e · τ))≤ ν2(rankO(eM)). Since τ is
not invertible, neither is e · τ , hence eM is not a Knörr eAe-lattice.

Example 5.8. Let O = Z3, and consider the O-order A =OS3, that is, the group
ring of the symmetric group on three points. The decomposition matrix of A is

(9)

ϕ(3) ϕ(2,1)

χ(3) 1 0
χ(2,1) 1 1
χ(13) 0 1

Here we use the standard indexing of ordinary and modular irreducible characters
of symmetric groups via partitions. Let e(3), e(2,1) and e(13) denote the primitive
idempotents in Z(K A). The inertial index of this block is 2, and, according
to [Bessenrodt 1982], that means that this block has six isomorphism types of
indecomposable lattices (one can also show this in an elementary way). It is
also easy to enumerate those isomorphism types: there are two indecomposable
projective lattices, which are nonirreducible. Then there is a unique lattice with
character χ(3) and a unique lattice with character χ(13). Moreover there is a lattice
with character χ(2,1) whose top has Brauer character ϕ(3) and there is a lattice
with character χ(2,1) whose top has Brauer character ϕ(2,1) (those two lattices
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are the projective lattices over the order Ae(2,1)). As there are but six lattices in
total we know that there can be no further indecomposable lattices. In particular,
all indecomposable lattices are either projective or absolutely irreducible. This
implies that each algebra in the Morita equivalence class of A has the property
that Knörr-lattices and absolutely indecomposable nonprojective lattices with the
stable exponent property coincide. Any algebra in the Morita equivalence class of
A which does not possess the projective scalar property will therefore provide a
counterexample to the converse of Theorem 1.2.

Choose B in the Morita equivalence class of A such that the Morita equivalence
sends the simple module with character ϕ(3) to a one-dimensional module and the
simple module with character ϕ(2,1) to a two-dimensional module. Note that

(10) 1
3 ·
(
χ(3)(−)+ 2 ·χ(2,1)(−)+χ(13)(−)

)
is a symmetrising form for A, and therefore also for B (with the characters replaced
by the corresponding characters of B). It follows that

(11) zB = 3 ·
(
e(3)+ 3

2 · e(2,1)+ 2 · e(13)

)
and this element is determined uniquely up to multiplications by units in Z(A)=
Z(B). But multiplication by units cannot turn the above element into a scalar, since
it will leave the 3-valuation of the coefficients of the idempotents e(3), e(2,1) and
e(13) invariant. Hence B does not possess the projective scalar property.
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