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COACTION FUNCTORS, 11

S. KALISZEWSKI, MAGNUS B. LANDSTAD AND JOHN QUIGG

In their study of the application of crossed-product functors to the Baum—
Connes conjecture, Buss, Echterhoff, and Willett introduced various prop-
erties that crossed-product functors may have. Here we introduce and study
analogues of some of these properties for coaction functors, making sure
that the properties are preserved when the coaction functors are composed
with the full crossed product to make a crossed-product functor. The new
properties for coaction functors studied here are functoriality for general-
ized homomorphisms and the correspondence property. We also study the
connections with the ideal property. The study of functoriality for gener-
alized homomorphisms requires a detailed development of the Fischer con-
struction of maximalization of coactions with regard to possibly degenerate
homomorphisms into multiplier algebras. We verify that all “KLQ” func-
tors arising from large ideals of the Fourier-Stieltjes algebra B(G) have all
the properties we study, and at the opposite extreme we give an example of
a coaction functor having none of the properties.

1. Introduction

As part of their study of the Baum—Connes conjecture, [Baum et al. 2016] considered
exotic crossed products between the full and reduced crossed products of a C*-
dynamical system, and a crucial feature was that the construction be functorial
for equivariant homomorphisms. In [Kaliszewski et al. 2016a], we introduced
a two-step construction of crossed-product functors: first form the full crossed
product, then apply a coaction functor. Although this recipe does not give all
crossed-product functors, there is some evidence that it might produce the functors
that are most important for the program of [Baum et al. 2016].

In [Baum et al. 2016], the applications to the Baum—Connes conjecture lead to
the desire that the crossed-product functors be exact and Morita compatible, and it
was proved that there is a smallest (for a suitable partial ordering) crossed product
with these properties. The idea is that every family of crossed-product functors has
a greatest lower bound, and that exactness and Morita compatibility are preserved
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by greatest lower bounds. In [Kaliszewski et al. 2016a] we proved analogues of
these facts for coaction functors.

In further study of the application of crossed-product functors to the Baum—
Connes conjecture, Buss et al. [2014] studied various other properties that crossed-
product functors may have. This motivated us to investigate in the current paper
the analogous properties of coaction functors.

There is a subtlety regarding the appropriate choices of categories. To study short
exact sequences, the morphisms should be homomorphisms between the C*-algebras
themselves, and we call the resulting categories classical. On the other hand, some
of the properties considered in [Buss et al. 2014] (hereafter cited as [BEW]) require
homomorphisms into multiplier algebras. Most of the literature on noncommutative
C*-crossed-product duality uses nondegenerate categories, where the morphisms
are nondegenerate homomorphisms into multiplier algebras; the nondegeneracy
guarantees that the maps can be composed. On the other hand, for some of the
properties studied in [BEW] it is actually important to allow possibly degenerate
homomorphisms into multiplier algebras. Of course this is problematic in terms of
composing morphisms, but nevertheless Buss et al. introduced a reasonable notation
of functoriality for generalized homomorphisms, involving such possibly degenerate
homomorphisms. In this paper we chose to develop the theory along three parallel
tracks: first we prove what we can in the context of generalized homomorphisms,
then we specialize to the classical and the nondegenerate categories. However, our
main interest is in the classical categories, and for much of this paper the classical
case will be our default, with occasional mention of nondegenerate categories.

Nondegenerate equivariant categories have been well studied, but (perhaps un-
expectedly) the classical counterparts have not, especially in noncommutative
crossed-product duality. In [Kaliszewski et al. 2016a], we began to fill in some of
these gaps in the theory of classical categories, and here we will continue this, to
prepare the way for our study of analogues for coaction functors of some of the
properties introduced in [BEW]. In [Kaliszewski et al. 2016a], we gave a brief
indication of how maximalization of coactions is a functor on the classical category
of coactions, which we make more precise in Section 3.

We begin Section 2 by recording a few of our conventions for coactions and
actions. We also discuss the distinction between nondegenerate and classical
categories of C*-algebras with extra structure. For the study of exactness of coaction
functors, the classical categories are appropriate, so we focus upon them in this paper.
Coaction functors involve maximalization of coactions, and we outline Fischer’s
construction of maximalization as a composition of three simpler functors. We finish
Section 2 with a short discussion of coaction functors, taken from [Kaliszewski et al.
2016a; 2016b]. In particular, we recall a few properties that coaction functors may



COACTION FUNCTORS, 11 303

have: exactness, Morita compatibility, and the ideal property. The first of these occu-
pies a central position in the application of coaction functors to the crossed-product
functors of [Baum et al. 2016], while the second and third are analogues of properties
of action-crossed-product functors discussed in [BEW]. In Proposition 2.3, we
record a more precise statement of a result in [Kaliszewski et al. 2016a] regarding
greatest lower bounds of exact or Morita compatible coaction functors. The whole
point of coaction functors is that they give a large (albeit not exhaustive) source
of crossed-product functors in the sense of [Baum et al. 2016]. There are numerous
open problems regarding the relationship between these two types of functors, and in
Section 2 we mention one of these, involving greatest lower bounds. We also recall
another type of coaction functor: decreasing, which include those coaction functors
arising from large ideals of the Fourier—Stieltjes algebra B(G); the associated
crossed-product functors for actions have been referred to as “KLQ functors” [Buss
et al. 2014; 2016] or “KLQ crossed products” [Baum et al. 2016].

In Section 3, we discuss how to maximalize possibly degenerate equivariant
homomorphisms into multiplier algebras, with an eye toward developing an analogue
for coaction functors of the functoriality for generalized homomorphisms discussed
in [BEW]. This requires consideration of generalized homomorphisms for each of
the three steps in the Fischer construction. As a side benefit, we close Section 3
by remarking how Theorem 3.9 gives a more precise justification than the one
in [Kaliszewski et al. 2016a, Section 3] that maximalization is a functor on the
classical category of coactions.

In Section 4, we introduce an analogue for coaction functors of the property called
functoriality for generalized homomorphisms in [BEW]. Here the term “generalized
homomorphism” refers to a possibly degenerate homomorphism ¢ : A — M (B);
these are somewhat delicate, and some care must be exercised in dealing with
them. We prove some analogues for coaction functors of results of [BEW]; for
example, coaction functors that are functorial for generalized homomorphisms in
the sense of Definition 4.1 satisfy a limited version of the usual composability
aspect of actual functors, and every functor arising from a large ideal of B(G) has
this generalized functoriality property. We also give a further discussion of the ideal
property, in particular proving that it is implied by functoriality for generalized
homomorphisms. This is weaker than the corresponding result of [BEW], namely
that for crossed-product functors these two properties are equivalent. We also prove
that both the ideal property and functoriality for generalized homomorphisms are
inherited by greatest lower bounds.

In Section 5, we introduce the correspondence property for coaction functors,
which is an analogue of the correspondence crossed-product functors of [BEW].
This is much stronger than Morita compatibility, and we need to do a bit of work
to develop it. As a side benefit of this work, we prove that if a coaction functor
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is Morita compatible then the associated crossed-product functor for actions is
strongly Morita compatible in the sense of [BEW], and we also prove a technical
lemma showing that, in the presence of the ideal property, the test for Morita
compatibility can be relaxed somewhat. We prove that a coaction functor has the
correspondence property if and only if it is both Morita compatible and functorial
for generalized homomorphisms, which is an analogue of a similar equivalence for
crossed-product functors in [BEW]. It follows that if a coaction functor has the
correspondence property then the associated crossed-product functor for actions
is a correspondence crossed-product functor in the sense of [BEW]. Among the
consequences, we deduce that every coaction functor arising from a large ideal of
B(G) has the correspondence property, and that the correspondence property is
inherited by greatest lower bounds, so that in particular there is a smallest coaction
functor with the correspondence property. Also, a result of [BEW] showing that the
output of a correspondence crossed-product functor carries a quotient of the dual
coaction on the full crossed product strengthens our belief that the most important
crossed-product functors are those arising from coaction functors.

2. Preliminaries

Throughout, G will be a locally compact group, A, B, C, D will be C*-algebras,
actions of G are denoted by letters such as «, 8, y, and coactions of G by letters
such as §, €, ¢. Throughout, we assume that G is second countable, so that the
Hilbert space L%(G) will be separable; second countability of G is needed for the
use of Fischer’s result, and in that proof separability of L?(G) is essential. We refer
to [Echterhoff et al. 2004; 2006, Appendix A] for conventions regarding actions and
coactions, and to [Echterhoff et al. 2006, Chapters 1-2] for C*—correspondences1
and imprimitivity bimodules.

We write A x4, G for the crossed product of an action (A, «), and (ia, ig)
for the universal covariant homomorphism from (A, G) to the multiplier algebra
M (A x¢ G), occasionally writing i¢; to avoid ambiguity. We write & for the dual
coaction.

We write A x5 G for the crossed product of a coaction (A, §), and (j4, jg) for the
universal covariant homomorphism from (A, Co(G)) to M(A x5 G), occasionally
writing jg to avoid ambiguity. We write § for the dual action.

Given a coaction (A, §), we find it convenient to use the associated B(G)-module
structure given by

fa=({d®f)od(a) forfeB(G), acA,

and in [Kaliszewski et al. 2016a, Appendix A] we recorded a few properties. We will
need the following mild strengthening of [Kaliszewski et al. 2016a, Proposition A.1]:

I These are called right-Hilbert bimodules in [Echterhoff et al. 2006].



COACTION FUNCTORS, 11 305

Proposition 2.1. Let (A, §) and (B, €) be coactions of G, and let ¢ : A — M(B)
be a homomorphism. Then ¢ is § — € equivariant if and only if it is a module map,
that is,
¢(f-a)=f-¢(a) forall fe B(G), acA.

Proof. As we mentioned in [Kaliszewski et al. 2016b, proof of Lemma 3.17], the
argument of [Kaliszewski et al. 2016a, Proposition A.1] carries over, with the minor
adjustment that in the expression “(id ® f)((¢ ® id) o §(a))” there, the map ¢ ® id
must be replaced by the canonical extension

¢ ®id: M(A® C*(G)) - M(B® C*(G)),

which exists by [Echterhoff et al. 2006, Proposition A.6], and where we recall the
notation

M(A® C*(G))
—meMA®CHG)):m(1®C*(G)HU(1®C*(G)m C A® C*G)). O

Classical and nondegenerate categories. In all of our categories, the objects will
be C*-algebras, usually equipped with some extra structure, and the morphisms will
be homomorphisms that preserve this extra structure in some sense. We consider two
main types of homomorphisms: nondegenerate homomorphisms ¢ : A — M (B),
and what we call classical homomorphisms ¢ : A — B, and these give rise to what
we call nondegenerate and classical categories, respectively. We are concerned
mainly with the classical case, but occasionally we will refer to the nondegenerate
case, and sometimes we will develop the two in parallel. We also need to consider
what Buss, Echterhoff, and Willett call generalized homomorphisms ¢ : A — M (B),
which are allowed to be degenerate. Perhaps surprisingly, in the noncommutative
crossed-product duality literature, the nondegenerate categories are used almost
exclusively; here we will devote more attention to developing the tools we need for
the classical categories.

Warning: in this paper we will slightly modify some of the notation from
[Kaliszewski et al. 2016a]: given a coaction (A, §), recall from [Echterhoff et al.
2004] that § is called maximal if the canonical map ®: Ax ;G x;G — AQK(L?*(G))
is an isomorphism. Recall also that an arbitrary (A, §) has a maximalization, which
is a maximal coaction (A™, §"*) and a 6" — § equivariant surjection, which we will
write as ¥4 : A™ — A, rather than ¢}, having the property that

wANGAmmsmG—)ANSG

is an isomorphism. On the nondegenerate category of coactions, Fischer proves
that ¥4 gives a natural transformation from maximalization to the identity functor;
in [Kaliszewski et al. 2016a] we stated this for the classical category, and we will
make this more precise in Theorem 3.9.
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On the other hand, we will use the same notation as in [Kaliszewski et al. 2016a]
for the surjections A4 : A — A" giving a natural transformation from the identity
functor to the normalization functor (A, §) — (A", §") (for both the classical and
the nondegenerate categories).

Given a coaction (A, §), we call a C*-subalgebra B of M (A) strongly é-invariant i

span{s(B)(1® C*(G)} = B® C*(G),

in which case, by [Quigg 1994, Lemma 1.6], § restricts to a coaction §g on B. If
I is a strongly 8-invariant ideal of A, then by [Nilsen 1999, Propositions 2.1 and
2.2, Theorem 2.3] (see also [Landstad et al. 1987, Proposition 4.8]), I x5, G can
be naturally identified with an ideal of A x5 G, and § descends to a coaction 8/ on
A/I in such a manner that

0—=1Ix5G—AxsG— (A/l) x5 G—0
is a short exact sequence in the classical category of C*-algebras.

Remark 2.2. Given a coaction (A, §) and an ideal I of A, the existence of a
coaction 8 on the quotient A/I such that the quotient map A — A/I is § — &'
equivariant is a weaker condition than the above strong invariance, and when it is
satisfied we say that § descends to a coaction on A/1.

The Fischer construction. For convenient reference we record the following rough
outline of Fischer’s construction of the maximalization of a coaction (A, §) [Fischer
2004, Section 6] (see also [Kaliszewski et al. 2016¢; 2017]). First of all, letting 1
denote the algebra of compact operators on a separable infinite-dimensional Hilbert
space, a K-algebra is a pair (A, t), where A is a C*-algebraand 1 : K — M(A) is a
nondegenerate homomorphism. Given a K-algebra (A, ), the A-relative commutant
of K is
CA, ) ={meMA):muk)=1t(kyme A forall ke K}.
The canonical isomorphism 6, : C(A, 1) ® K —> A is determined by
Oala ®k) =at(k)

fora € C(A, ), k € K (see [Fischer 2004, Remark 3.1; Kaliszewski et al. 2016c,
Proposition 3.4]). If (B, j) is another K-algebra and ¢ : A — M(B) is a nonde-
generate homomorphism such that ¢ ot = j, then there is a unique nondegenerate
homomorphism C(¢) : C(A, 1) - M(C(B, j)) making the diagram

A ¢ M(B)

J T

commute.
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A K-coaction is a triple (A, 8, t), where (A, §) is a coaction and (A, ¢) is a K-
algebra such that ot =1®1. If (A, §, ¢) is a K-coaction, then the relative commutant
C(A, ) is strongly §-invariant, and the restricted coaction C(8) =8¢ (4, is maximal
if § is, and 04 is (C(8) ®,1id) — § equivariant [Kaliszewski et al. 2017, Lemma 3.2].

An equivariant action is a triple (A, o, i), where (A, ) is an action of G and
u: Co(G) — M(A) is a nondegenerate rt —a equivariant homomorphism, and
where, in turn, rt is the action of G on Cy(G) given by 1ty (f)(¢) = f(t5).

A cocycle for a coaction (A, §) is a unitary element U € M (A® C*(G)) such that

(d®c)(U)=U1)(®id)(U) and AdUo8(A)(1®C*(G)) C AQC*(G).

Then AdU o § is a coaction on A, and is Morita equivalent to §, and hence is
maximal if and only if § is. If U is a é-cocycle, (B, €) is another coaction, and
¢: A— M(B)is anondegenerate § —e equivariant homomorphism, then (¢ ®id) (U)
is an e-cocycle and ¢ is AdU o § — Ad(¢ ® id)(U) o € equivariant.

Given an equivariant action (A, «, ), the unitary element

Vai=((iaop) ®id)(we)

is an &-cocycle, and we write @« = Ad V4 o&. Then (A X, G, &, u % G) is a maximal
K-coaction [Kaliszewski et al. 2017, Lemma 3.1].
Now, if (A, §) is a coaction, then (A x5 G, §, jg) is an equivariant action, so

(A5G x5 G, 3, jo % G)
is a K-coaction, and hence
(A™,8™):=(C(Ax5G %3G, jg ©G), C(§))
is a maximal coaction. Letting

@AIAstXSG—)A(@IC

be the canonical surjection, which is §— (6 ®4 id) equivariant, Fischer proves that
there is a unique §” — § equivariant surjective homomorphism 4 : A”™ — A such
that the diagram

A><I§GX(§G

m
A" QK o AQK

commutes, and moreover ¥4 : (A™, §™) — (A, §) is a maximalization of (A, §).
Fischer goes on to prove that maximalization is a functor on the nondegenerate
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category of coactions, by showing that if ¢ : A — M (B) is a nondegenerate § — €
equivariant homomorphism then there is a unique homomorphism

" A" — M(B™)

making the diagram

AxsG N3 G
QAW ‘ X
Am
®K Ya®id ALK
ldexG
" ®id M(B %G X G) $®id
~ Dp
93><1€G><1§G
M(B™
(B"®@K) e M(B®K)
commute. Consequently, the diagram
¢)I)‘l

A" ——— M(B™)

N

A — M (B)
also commutes, and ¢ is nondegenerate and §” — €™ equivariant.

Coaction functors. A functor t : (A, 8) — (A", 8%), ¢ — ¢ on the classical
category of coactions is a coaction functor if it fits into a commutative diagram

(A™,8™)
2N
2-1) (A, 6) (A%, 8%)
k AY
(A", &™)

of surjective natural transformations. In [Kaliszewski et al. 2016a, Lemma 4.3], we
proved that the existence of the natural transformation A® is automatic, provided
we insist that kerg} C ker Ay o v/4.

We observed in [Kaliszewski et al. 2016a, Example 4.2] that maximalization,
normalization, and the identity functor are all coaction functors.
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Given two coaction functors T and o, we say o is smaller than t, written o < 7,
if there is a natural transformation I"'*“ fitting into commutative diagrams

(A™, &™)

k)
/ q
e

94 4
(A%, 8%) (A%,89)
k %

(A", 8™)

in other words, kerg} C kerq{. In [Kaliszewski et al. 2016a, Theorem 4.9], we
proved that every nonempty family 7 of coaction functors has a greatest lower
bound glb T, characterized by

glb T

kerg = spankerg”.

teT
A coaction functor 7 is exact [Kaliszewski et al. 2016a, Definition 4.10] if for
every short exact sequence

0— (I.y) 2> (A,8) L5 (B.e) > 0
in the classical category of coactions the image
0 (I%,y9) L5 (A7, 57 L5 (BT, ) > 0

under 7 is also exact. Maximalization is exact, see [Kaliszewski et al. 2016a,
Theorem 4.11].

A coaction functor 7 is Morita compatible (as defined in [Kaliszewski et al. 2016a,
Definition 4.16]) if for every (A, §) — (B, €) imprimitivity-bimodule coaction (X, ¢),
with associated (A™, §™) — (B™, €) imprimitivity-bimodule coaction (X", ™),
the Rieffel correspondence of ideals satisfies

kergy = X"-Indkergp,

equivalently there are an A — B' imprimitivity bimodule X* and a surjective g, —q
compatible imprimitivity-bimodule homomorphism g3 : X" — X* [Kaliszewski
et al. 2016a, Lemma 4.19]. Trivially, maximalization is Morita compatible, and
routine linking-algebra techniques show that the identity functor is Morita com-
patible [Kaliszewski et al. 2016a, Lemma 4.21]. In [Kaliszewski et al. 2016a,
Theorem 4.22], we proved that the greatest lower bound of the family of all exact
and Morita compatible coaction functors is itself exact and Morita compatible. It is
easy to check that the arguments can be used to prove the following more precise
statement:
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Proposition 2.3. Let T be a nonempty family of coaction functors. If every functor
in T is exact, then so is glb T, and if every functor in T is Morita compatible then
soisglbT.

In particular, there are both a smallest exact coaction functor and a smallest
Morita compatible coaction functor.

Every coaction functor t determines a crossed-product functor CP® on actions
by composing with the full-crossed-product functor (A, @) — (A x4 G, &). If
7 is exact or Morita compatible then so is CP*, and if T < o then CP* < CP?.
However, if 7 is a nonempty family of coaction functors, and S = {CP* : 7 € T} is
the associated family of crossed-product functors, with respective greatest lower
bounds glb S and glb 7, then

CPePT < glb S,

but we do not know whether this is always an equality. In particular (see [Kaliszewski
et al. 2016a, Question 4.25]), we do not know whether the smallest exact and Morita
compatible crossed-product functor is naturally isomorphic to the composition with
the full crossed product of the smallest exact and Morita compatible coaction functor.

A coaction functor 7 is decreasing if there is a natural transformation Q° fitting
into the embellishment

(A™, &™)
y q%
(A. ) o (A", 57)
(A", ")

of the diagram (2-1), equivalently 7 < id (the identity functor). This property
tends to simplify considerations of various properties of coaction functors, mainly
by replacing ¢g* by Q7. For example, a decreasing coaction functor 7 is Morita
compatible if and only if whenever (X, ¢) is an (A, §) — (B, €) imprimitivity-
bimodule coaction, there are an A* — BY imprimitivity bimodule X* and a Q' — Q5
compatible imprimitivity-bimodule homomorphism Q5% : X — X7 [Kaliszewski
et al. 2016a, Proposition 5.5].

The most studied decreasing coaction functors are those determined by large
ideals of the Fourier—Stieltjes algebra B(G), i.e., nonzero G-invariant weak* closed
ideals E of B(G). The preannihilator *E is an ideal of C*(G), and, denoting the
quotient map by

g : C*(G) = CE(G) := C*(G)/E,
for any coaction (A, §) we let

A = A/ker((id ®qE) 08).
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Then § descends to a coaction 8% on the quotient AZ, and the assignments (A, §)
(AE, §F) determine a decreasing coaction functor 7z. We write

QF =07 :A— A

The maximalization functor is not decreasing, so is not of the form 7z for any
large ideal E. Moreover, [Kaliszewski et al. 2016b, Example 3.16] gives an example
of a decreasing coaction functor t such that for every large ideal E the restrictions
of T and 7 to the subcategory of maximal coactions are not naturally isomorphic;
in particular, t is not itself of the form tg.

We call the large ideal E exact if the coaction functor g is exact. It is quite
frustrating that so far we have few exact large ideals; for arbitrary G we only know
of one exact large ideal, namely B(G), and tp(c) is the identity functor. If the group
G is exact, then it seems plausible — although we have not checked this — that
B, (G) is also an exact large ideal, and would obviously be the smallest one. The
frustrating thing is that for arbitrary G we do not know whether there is a smallest
exact large ideal E. On the other hand, for every large ideal E the coaction functor
7 1s Morita compatible [Kaliszewski et al. 2016a, Proposition 6.10]. We do not
know whether the intersection of all exact large ideals is exact; the best we can say
for now is that the set of all exact large ideals is closed under finite intersections
[Kaliszewski et al. 2016b, Theorem 3.2]. In a similar vein, if F is a collection of
large ideals, with intersection F, we do not know whether 7y is the greatest lower
bound of {tg : E € F}.

A coaction functor t has the ideal property [Kaliszewski et al. 2016b, Defini-
tion 3.10] if for every coaction (A, §) and every strongly §-invariant ideal / of A,
letting ¢ : I < A denote the inclusion map, the induced map ¢* : I* — A7 is injective.
For every large ideal E, the coaction tg has the ideal property [Kaliszewski et al.
2016b, Lemma 3.11]. We do not know an example of a decreasing coaction functor
that is Morita compatible and does not have the ideal property (see [Kaliszewski
et al. 2016b, Remark 3.12]).

3. Maximalization of degenerate homomorphisms

Our main objects of study are coaction functors, which involve maximalization
of coactions. We will need to maximalize possibly degenerate homomorphisms.
Maximalization can be characterized by a universal property (see [Fischer 2004,
Lemma 6.2] for nondegenerate morphisms, and [Kaliszewski et al. 2016a] for the
classical case), but this does not seem well-suited to handling possibly degenerate
homomorphisms. Instead, we rely upon the Fischer construction, which involves
three steps: first form the crossed product by the coaction, then the crossed prod-
uct by the dual action, and finally destabilize, which roughly means extract A
from A ® K.
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Our strategy for maximalizing possibly degenerate homomorphisms is to do it
for each of the three steps in the Fischer construction, then combine. The steps are
Lemmas 3.1, 3.7, and 3.8, which will be combined in Theorem 3.9.

Lemma 3.1. Let (A, §) and (B, €) be coactions, and let ¢ : A — M(B) be a
possibly degenerate § — € equivariant homomorphism. Then there is a unique

homomorphism
PdXG:AXsG—> M(B x:G)

such that
(3-D (¢>4G)(jA(a)jg(g))=j30¢(a)j5(g) forall acA, geC.(G)C C*(G).

Moreover, ¢ X G is nondegenerate if ¢ is, and is §—¢ equivariant, and if  (A) C B
then
(p X G)(A xsG) C BxG.

Finally, given a third action (C, y) and a possibly degenerate ¢ — y equivariant
homomorphism r : B — M(C), if either ¢ (A) C B or \ is nondegenerate then

Y xG)o(pxG)=(Yod)xG.
Proof. The first part is [Echterhoff et al. 2006, Lemma A.46], and the other

statements follow from direct calculation. O

For the next step, we need some ancillary lemmas. Lemmas 3.2-3.4 are com-
pletely routine — we record them for convenient reference. Lemmas 3.5-3.6 are
included to prepare for Lemma 3.7.

Lemma 3.2. Let B be a C*-algebra, and let D and E be C*-subalgebras of M (B).
Suppose that
span{ED} =D,

so that also span{D E} = D. Then there is a unique homomorphism p : E — M (D)
such that
p(m)d=md forall meE,deD,

and moreover p is nondegenerate.

Lemma 3.3. Let D, B, F be C*-algebras, with D C M(B), and letv : F — M(B)
be a nondegenerate homomorphism. Suppose that span{v(F)D}=D. Let E =v(F).
Let p: E — M (D) be the homomorphism from Lemma 3.2. Then

T:=pov:F —> M(D)
is the unique nondegenerate homomorphism satisfying

(3-2) v(f)d =t(f)d forall feF,deD.
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Lemma 3.4. Keep the notation from Lemma 3.3, and let C be another C*-algebra.
Let w e M(F ® C). Define

U=0vQidw) e M(EQC)CM(B®C),
W=(r®id)(w) e M(D® C).

Then
W= (p®id)(U),

and ~
Wm=Um forall me M(D®C).

Let D, B, and C be C*-algebras, with D C M(B). Leto : D < M(B) be
the inclusion map. Then, by [Echterhoff et al. 2006, Proposition A.6], o ® id :
D ®C — M(B ® C) extends canonically to an injective homomorphism,

c®id: M(D®C) — M(B®C),

that is continuous from the C-strict topology to the strict topology, and we frequently
identify M (D ® C) with its image in M(B ® C).

Lemma 3.5. Keep the notation from the Lemmas 3.2-3.4, and let F = Cy(G),
C = C*(G), and w = wg. Also let € be a coaction of G on B. Suppose that D
is strongly e-invariant, and let { = €p. Suppose that U := (v ® id)(wg) is an
e-cocycle, and W := (t ® id)(wg) is a ¢ -cocycle. Define

&:=AdUoe and [:=AdWoc.
Then D is also strongly é-invariant, and { = &p.
Proof. For d € D, we have
€(d)=AdU oce(d)

=AdUo¢(d) (since ¢ = €p)

=AdWol(d) (by Lemma 3.4)

=(d).
Since ¢ is a coaction of G on D, we conclude that D is strongly é-invariant.  [J

Lemma 3.6. Let (A, §) and (B, €) be coactions, and let ¢ : A — M(B) be a
possibly degenerate 5 — € equivariant homomorphism. Let i : Co(G) — M (A) and
v : Co(G) — M(B) be nondegenerate homomorphisms, and assume that

¢(an(f)) =¢@v(f) forall aeA, feCo(G).
Define
V=(uid)(wg) e M(AQC*(G)) and U = (v®id)(wg) € M(BQC*(G)).
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Suppose that V is a 6-cocycle and U is an €-cocycle. Define
§=AdVos and E=AdUoe.

Then ¢ is also § — & equivariant.

Proof. Define D = ¢ (A). Then there is a unique coaction ¢ of G on D such that the
surjection ¢ : A — D is 6 — ¢ equivariant. It follows that D is strongly e-invariant.
Moreover, { = €p, since for all d € D we can choose a € A such that d = ¢(a),
and then, regarding 1\71(D ® C*(G)) as a subset of M(B ® C*(G)),

{d)=¢o0¢(d)=(¢p®1id)od(a)
=cogp(a) =€(d).

The canonical extension Jb : M(A) — M(D) takes u to the unique nondegenerate
homomorphism t : Co(G) — M (D) satisfying (3-2) with F = Cy(G), and the
unitary

W= (¢®id)(V) = (r ®id)(wg)

is a ¢-cocycle. The hypotheses imply that v(Co(G))D = D. Thus we can apply
Lemma 3.5: the right-front rectangle (involving D and M (B)) of the diagram

¢

M(B)

é

~ P®id
M(A®C*(G)) M(B ® C*(G))

N

M(D ® C*(G))

commutes, and the left-front rectangle (involving A and D) commutes by naturality
of cocycles, and therefore the rear rectangle (involving A and M (B)) commutes,
giving § — € equivariance of ¢. ]

We are now ready for the second step of the Fischer construction for possibly
degenerate homomorphisms:

Lemma 3.7. Let (A, a, i) and (B, B, v) be equivariant actions,and ¢ : A — M (B)
be a possibly degenerate o — B equivariant homomorphism such that

dlan(f)) =¢(@v(f) forall aeA, feCo(G).
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Then there is a unique ( possibly degenerate) homomorphism

PXG:AXeG— M(B xgG)
such that

(3-3)  (@xG)(ia@i&()) =ip o¢(a)i§(c) forall ae A, c e C*(G).
Moreover, ¢ x G is nondegenerate if ¢ is, and is & — B equivariant, and
(3-4) (pxG)(c(uxG) (k) =(@xG)()vxG)(k) forall ceAxyG, kek.
Also, if p(A) C B then

(@ X G)(A Xy G)C BxgG.

Finally, given a third action (C, y) and a possibly degenerate 8 — y equivariant
homomorphism  : B — M (C), if either ¢ (A) C B or  is nondegenerate then

(Y xG)o(pxG)=(Yog)xG.

Proof. The first statement, up to and including (3-3), is [Echterhoff et al. 2006,
Remark A.8(4)], the preservation of nondegeneracy is well known, and the last part,
starting with “Also”, follows from direct calculation. We must verify the & — f8
equivariance and (3-4). We first claim that for all c € A x4 G, d € C*(G), a € A,

and f € Cyo(G) we have

(3-5) (¢ x G)(ci&(d)) = (§ x G)(0)if(d)
(3-6) (@ % G)(cia(@) = (¢ % G)(c)ipop(a)
(3-7) (@ > G)(ciaon(f)) =@ xG)(cigov(f).

Equations (3-5) and (3-6) follow by first replacing ¢ by appropriately chosen
generators, and to see (3-7) we use nondegeneracy of i 4 and the Cohen factorization
theorem to write

c=cigq(b) forc’ e Axy,G,beA,

and then compute

(@ G)(cinon(f)=(pxG)(c"ia(B)ison(f))
= (@ x G)(c'ia(bu(f)))
= (¢ x G)(igop(bu(f))
= (¢ % G)(Nig(pD)v([))
= (¢ X G)(Nip(@))ip(v(f))
= (¢ x G)(c'ia(B))ig(v(f))
= (@ x G)(©)ipov(f).
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Combining (3-7) with the other hypotheses, we can apply Lemma 3.6 to conclude
that ¢ x G is @ — B equivariant.
For (3-4), it suffices to consider a generator

k=icya)(Nigd) for f € Co(G),d e C*(G),
and then compute
(@ % G)(c(p x G)(k)) = (¢ x G)(cia o u(f)ig(d))

= (¢ x G)(ciaou(f))if(d)  (by (3-5)

= (¢ % G)(©)ip o v(f)ify(d) (by (3-7))

= (¢ x G)(c)(v x G) (k). O

Finally, we are ready for the third step of the Fischer construction for possibly

degenerate homomorphisms:

Lemma 3.8. Let (A, 8, ) and (B, €, j) be K-coactions, and let ¢ : A — M (B) be
a possibly degenerate § — € equivariant homomorphism such that

¢lark)) =¢(a)j(k) forall ae A, kelk.

Then there is a unique ( possibly degenerate) homomorphism,

C(¢): C(A,1) > M(C(B, ),
making the diagram

CANRK—2 A

(3-8) C(¢)®idl l¢

M(C(B. ) ®K) —— M(B)
commute. Moreover, C(¢) is nondegenerate if ¢ is, and is C(5§) — C(€) equivari-
ant. Also, if p(A) C B then C(¢)(C(A,t)) C C(B, j). Finally, given a third
K-coaction (C, ¢, w) and a possibly degenerate € — ¢ equivariant homomorphism
Y B — M(C) satisfying v (bj(k)) = v (b)w k) forall b € B and k € K, if either
¢ (A) C B or  is nondegenerate then
(3-9) CW)oC(p)=C(Yod).

Proof. By [Deaconu et al. 2012, Lemma A.5], ¢ extends uniquely to a homomor-
phism B
¢: M (A) - M(B)

that is continuous from the /C-strict topology to the strict topology. Since C (A, t) C
Mj:(A), we can define B
C(@) =dlcay-
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We will show that the diagram (3-8) commutes, and then the uniqueness will be
obvious. Form € C(A, ) and k € K we have

0p o (C(¢) ®id)(m Q@ k) = O (Pp(m) k)
= ¢p(m); (k)
= ¢ (mu(k))
= ¢ ] 9A (m ® k),
where the equality at * follows from K-strict to strict continuity. The preservation
of nondegeneracy is proven in [Kaliszewski et al. 2016c, Theorem 4.4], and follows
from a routine approximate-identity argument.
For the equivariance, let f € B(G), m € C(A, ), and k € K. Since C(A, 1) is a
B(G)-submodule of M(A), we can compute as follows:
C(P)(f -m) (k) =p(f -m) (k) (since C(¢) = @lc(a.n)
=¢((f -m)(k)) (by [Deaconu et al. 2012, Lemma A.5])
=¢(f - (mu(k))) (since ot =1®1)
= f-¢p(mik)) (by Proposition 2.1)
= f - (¢(m); (k)
= f - (¢(m)); (k)
= f-(C(@)(m)) (k).
Thus C(¢)(f -m) = f-C(¢)(m) since j : K — M (B) is nondegenerate, and hence

¢ is equivariant by Proposition 2.1.
Now suppose that ¢ (A) C B. Then for allm € C(A, ¢) and k € K we have

C(¢)(m)j (k) = p(m) (k)
= ¢ (m(k)) = ¢ (t(kym)
= J()p(m) = j (k) C(¢)(m),

which is an element of B since mi(k) € A.

The final statement, regarding composition, seems to not be recorded in the
literature, so we give the proof here. First suppose that ¢ (A) C B. Then by
[Deaconu et al. 2012, Lemma A.5] the extension ¢ maps My (A) into My (B) and
is continuous for the KC-strict topologies. Also, ¥ : Mic(B) — M(C) is continuous
from the K-strict topology to the strict topology. Let {a;} be a net in A converging
KC-strictly to m € My (A). Then ¢ (a;) — ¢(m) K-strictly in My (B), and so

Y (¢(a) = Y (@(m)) strictly in M(C).
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On the other hand, the composition

Vo : Mc(A)— M(C)
is continuous from the KC-strict topology to the strict topology, so

YV og(ai) = yop(m).
Since V¥ (¢ (a;)) = (¥ o @) (a;) for all i, we conclude that

Y op(m) =y op(m).
Since C(¢) and C () are the restrictions to the relative commutants C (A, ¢) and
C(B, ), respectively, we get C (¥ o) = C () o C(¢).

For the other case, where 1 is nondegenerate, we use the canonical extension of i

to M (B) to compose, getting a § — ¢ equivariant homomorphism ¥y o¢: A — M (C)
such that

(Y op)(at(k)) = (Y op)(@)w(k) forall acA, kek,

so that C( o ¢) makes sense. Since C(¢) is computed by restricting the canonical
extension ¢ : Mx(A) — M(B), and similarly for C(¢ o ¢), and since we can
compute the extension of i on all of M (B), (3-9) follows. U

We are now ready to maximalize possibly degenerate homomorphisms:

Theorem 3.9. Let (A, §) and (B, €) be coactions, and let ¢ : A — M(B) be a
possibly degenerate § — € equivariant homomorphism. Then there is a unique
(possibly degenerate) homomorphism ¢™ : A — M (B™) making the diagram

A As G >4(§ G
m
A :X>IC o ARK
(3-10) | J/¢><G><1G
[
¢"®id | M(B X G x; G) p®id
: >~ CI)B
4 93><15G><1€G
m
M(B" ®K) — M(BQK)

commute, where ra : (A™,8™) — (A, ) is the maximalization (and similarly
for ). Moreover, ¢" is nondegenerate if ¢ is, the diagram

am — " veem

(3-11) ‘/fAl ll//s

A M(B)
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also commutes, and ¢" is ™ — €™ equivariant. Further, if ¢(A) C B then
@™ (A™) C B™. Finally, given a third coaction (C, {) and a possibly degenerate
€ — ¢ equivariant homomorphism w : B — M(C), if either ¢(A) C B or 7 is
nondegenerate then

(mo)" =a"o™.

Proof. The right-rear rectangle in the diagram (3-10) (involving A X G < G and
A ® K) commutes by direct computation.
Now, (A5G, 3, jg) and (Bx.G, €, J¢) are equivariant actions. By Lemma 3.1,
the homomorphism
PXG:AXsG—> M(B x:G)

is 8 — € equivariant and satisfies
(¢ x G)(cjb (1) = (@ % G)©)j&(f) forall ce Ax; G, feCo(G).
Thus, by Lemma 3.7 the homomorphism
PpHGHNG:AXsGX5G—> M(Bx:G % G)
is § — € equivariant and satisfies
(@ % G % G)(c(jg x G)(k)) = (¢ % G % G)(c)(j§ % G)(k)

for all c € A X5 G x5 G and k € K. Furthermore, (A x5 G x; G, 5, jg x G) and
(BXeGX:G, €, jixG) are K-coactions. Thus, by Lemma 3.8 the homomorphism

C(¢>4G>4G):C(A>45G>43G,jgNG)—>M(C(B>4€G>4gG,jg>4G))

makes the diagram

04x5Gx5G

C(Ax5G %3G, j&xG)®K — Axs;G x;G

C(¢><1G><1G)®idl J/dMGNG

~

M(C(B %G % G, j& xG)®K) ———— M(B X G x¢ G)

eBngng

commute. Since
Am = C(A As G ><]g Ga iA><1,3‘G Ojg)v

by Lemma 3.8 we can define
" =C(pxGxG),

which is then the unique homomorphism making the left-rear rectangle in the
diagram (3-10) (involving A™ ® K and A X G x G) commute. The preservation
of nondegeneracy follows immediately from the corresponding properties of the
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functors whose composition is ¢ +— ¢™. Then the front rectangle (involving
A" ® K and A ® K) commutes, and hence so does the diagram (3-11). Moreover,
since 6" = C(§) and €™ = C(¢), by Lemma 3.8 again we see that ¢ is §™ — €™
equivariant.

For the final statement, involving composition, suppose that we have C, ¢, and 7.
We consider the two cases separately: first of all, assume that ¢ (A) C B. Then
from Lemma 3.1 we conclude that the equivariant actions

(A x5 G, 3, j&),
(B %e G, €, jg),
(€ G, j6)
and the homomorphisms
X G:AxXsG— BxG,
TXG:Bx.G— M(C x;G)

satisfy the hypotheses of Lemma 3.7. Thus, Lemma 3.7 now tells us that the
KC-coactions

(Ax5Gx;G,38, jExG),
(Bx:Gx:G,€, jixG),
(Cx;Gx; G, L, jsxG)
and the homomorphisms
PHNGHG:AXsG N3G —> BxG X G,
n><|G>4G:B><|€G>4gG—>M(C>4;G><|5G)

satisfy the hypotheses of Lemma 3.8, and hence, by construction of the maximal-
izations 8™, €, ¢ of §, €, ¢, we get

7" o™ = (rop)".
On the other hand, if we assume that 7 is nondegenerate instead of ¢(A) C B, the

argument proceeds similarly, except we keep tacitly using the canonical extension
to multiplier algebras of any homomorphism constructed from 7. ]

Remark 3.10. Theorem 3.9 gives a precise justification that the assignments
(A, 8) > (A", 8™),
¢ 9"

define a functor on the classical category of coactions.
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4. Generalized homomorphisms

Definition 4.1. We say that a coaction functor t is functorial for generalized
homomorphisms if whenever (A, §) and (B, €) are coactions and ¢ : A — M (B)
is a possibly degenerate § — € equivariant homomorphism there is a (necessarily
unique) possibly degenerate homomorphism ¢* making the following diagram
commute:

Aﬂl ¢ M(Bm)

4-1) ) l lqé

AT = = = =3 M(B")

Note that the existence of the homomorphism ¢™ is guaranteed by Theorem 3.9.
If ¢ is only presumed to exist when ¢ is nondegenerate, then we say that t is
functorial for nondegenerate homomorphisms. Note that if T is functorial for gener-
alized homomorphisms, it automatically sends nondegenerate homomorphisms to
nondegenerate homomorphisms. This follows immediately from the corresponding
property for the maximalization functor A +— A™.

Remark 4.2. Let t be a coaction functor, and let CP* be the associated crossed-
product functor for actions, given by full crossed product followed by t. If 7 is
functorial for generalized homomorphisms, then CP® is also functorial for gener-
alized homomorphisms in the sense of Buss et al. — see the paragraph following
Definition 3.1 in [BEW].

Thus, a coaction functor t is functorial for generalized homomorphisms if and
only if for every possibly degenerate § —e equivariant homomorphism ¢ : A — M (B)
we have

kergy Ckergpo¢™,
and similarly for nondegenerate functoriality.

Example 4.3. The maximalization functor is functorial for generalized homomor-
phisms, by Theorem 3.9. Thus the identity functor id is functorial for generalized
homomorphisms, since we can take qf =14 and ¢! = ¢.

Remark 4.4. Suppose that t is functorial for generalized homomorphisms, and
that ¢ : A — B is § — € equivariant. Then the map ¢* vouchsafed by Definition 4.1
agrees with the one that we get by the assumption that 7 is a coaction functor. In
particular, if ¢ : A < M (A) is the canonical embedding then (* coincides with the
canonical embedding AT < M (A").

Lemma 4.5. Let T be a coaction functor that is functorial for generalized homo-
morphisms, let (A, ), (B, €), and (C, ¢) be coactions, and let ¢ : A — M(B)
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and ¥ : B — M(C) be possibly degenerate equivariant homomorphisms. If either
¢ (A) C B or  is nondegenerate, then (Y o )" =" o p°.

Proof. First assume that ¢(A) C B. Then v o¢p : A - M(C) is § — ¢ equivariant.
Consider the following diagram:

A "’m B™
(Yog)" /
i

M(Cc™) 45
T qé
T ¢ T
M /
M(CY)

The top triangle commutes by Theorem 3.9. The rear, right-front, and left-front
rectangles commute since t is functorial for generalized homomorphisms. Since
the left vertical arrow g is surjective, it follows that the bottom triangle commutes,
as desired.

On the other hand, assume that v is nondegenerate. Then again we have a § — ¢
equivariant homomorphism ¥ o ¢ (extending ¥ canonically to M (B)), the above
diagram becomes

Am 4 M(B™)
a4 M(C™) a5
ac
T ¢r T
A M (B")
% /
M(C")
and the argument proceeds as in the first part. ([l

Essentially the same techniques as in the above proof can be used to verify the
following:

Lemma 4.6. Let T be a coaction functor that is functorial for nondegenerate
homomorphisms, let (A, §), (B, €), and (C, §) be coactions, and let ¢ : A — M(B)
and W : B — M(C) be possibly degenerate equivariant homomorphisms. If ¥ is
nondegenerate, and if either ¢ (A) C B or ¢ is nondegenerate, then (Y o )" =
YT o@'. In particular, every coaction functor that is functorial for nondegenerate
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homomorphisms in the sense of Definition 4.1 is also a functor on the nondegenerate
category of coactions.

As usual, things are simpler for decreasing coaction functors:

Lemma4.7. A decreasing coaction functor t is functorial for generalized homomor-
phisms if and only if whenever (A, §) and (B, €) are coactions and ¢ : A — M(B)
is a possibly degenerate § — € equivariant homomorphism there is a (necessarily
unique) possibly degenerate homomorphism ¢* making the diagram

A—" M

(4-2) Q;l lQ%

AT~~~ M(BY)

commute. If ¢* is only presumed to exist when ¢ is nondegenerate, then t is
functorial for nondegenerate homomorphisms.

Proof. The above diagram fits into a bigger one:

Am va A
a4 05
o" AT ¢
|
4-
4-3) , : o
M(B™) A M(B)
|
|
45 3 0%
M(BY)

The top and bottom triangles commute since 7 is a decreasing coaction functor.
The rear rectangle commutes since the identity functor is functorial for generalized
homomorphisms. If there is a homomorphism ¢* making the left-front rectangle
commute, then the right-front rectangle also commutes since ¥4 is surjective.
Conversely, if there is a homomorphism ¢* making the diagram (4-2) commute,
then the right-front rectangle in the diagram (4-3) commutes, and hence so does
the left-front rectangle. U

Thus, a decreasing coaction functor t is functorial for generalized homomor-
phisms if and only if for every possibly degenerate § — e equivariant homomorphism
¢: A— M(B) we have

ker Q% Cker Q0 ¢.
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Example 4.8. We apply Lemma 4.7 to show that for every large ideal E of B(G),
the coaction functor 7 is functorial for generalized homomorphisms. Let ¢ :
A — M(B) be a § — € equivariant homomorphism, and let

ackerQf ={be A:E-a={0}).
Then for all f € E we have

fd@=¢(f-a) (by equivariance)
= 0’

so a € ker Qg o ¢. In particular, the identity functor and the normalization functor
are functorial for generalized homomorphisms. For the identity functor this fact
was already noted in Example 4.3.

The ideal property. A coaction functor 7 has the ideal property [Kaliszewski et al.
2016b, Definition 3.10] if for every coaction (A, §) and every strongly invariant
ideal I of A, letting ¢ : I — A denote the inclusion map, the induced map

It — AT
is injective.
Example 4.9. The identity functor trivially has the ideal property.

Example 4.10. Every exact coaction functor has the ideal property, and hence by
[Kaliszewski et al. 2016a, Theorem 4.11] maximalization has the ideal property.
However, normalization has the ideal property, but is not exact unless G is, since by
[Kaliszewski et al. 2016a, Proposition 4.24] the composition of an exact coaction
functor with the full-crossed-product functor is an exact crossed-product functor,
and the composition of normalization with the full-crossed-product functor is the
reduced crossed product, which is not an exact crossed-product functor unless G is
an exact group.

Remark 4.11. If a coaction functor 7 has the ideal property, then the associated
crossed-product functor for actions has the ideal property in the sense of [BEW,
Definition 3.2], since the full-crossed-product functor is exact [Green 1978, Propo-
sition 12]. For crossed-product functors, [BEW, Lemma 3.3] includes the fact that
functoriality for generalized homomorphisms and the ideal property are equivalent.
In the following proposition we show that part of this carries over to coaction
functors. However, our naive attempts to adapt the argument from [BEW] to show
that the ideal property implies functoriality for generalized homomorphisms seem
to require that if ¢ : A — M (B) is a § — € equivariant homomorphism then there
is a strongly e-invariant C*-subalgebra E of M (B) containing both B and ¢ (A),
which we have unfortunately been unable to prove.
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Proposition 4.12. If a coaction functor t is functorial for nondegenerate homomor-
phisms, in particular if t is functorial for generalized homomorphisms, then T has
the ideal property.

Proof. We adapt the proof from [BEW]: let (A, §) be a coaction and let I be a
strongly §-invariant ideal of A. Let ¢ : I < A be the inclusion map, lety: A — M (1)
be the canonical map, and let ¢ : I < M (I) be the canonical embedding. Note
that ¢ and v are nondegenerate equivariant homomorphisms, and ¢ is a classical
equivariant homomorphism. We have i o ¢ =, so by Lemma 4.6 we also have
YT o™ =17. Since (" is the canonical embedding /* < M (I*), we conclude that
@7 is injective. O
Remark 4.13. By combining Example 4.8 with Proposition 4.12, we recover
[Kaliszewski et al. 2016b, Lemma 3.11]: for every large ideal E of B(G) the
coaction functor 7¢ has the ideal property. In particular, the identity functor and
the normalization functor have the ideal property (and for the identity functor we
already noted this in Example 4.9).

Example 4.14. We adapt the techniques of [Kaliszewski et al. 2016b, Example 3.16]
(which was in turn adapted from the techniques of [Buss et al. 2014, Section 2.5
and Example 3.5]) to show that if G is nonamenable then there is a decreasing
coaction functor for G that does not have the ideal property, and hence is not exact,
and also, by Proposition 4.12, is not functorial for nondegenerate homomorphisms,
and a fortiori is not functorial for generalized homomorphisms. Let

R={(Cl0. ) ® C*(G). id ®55)]},
and for every coaction (A, §) let R4,s) be the collection of all triples (B, €, ¢),

where either (B,€) e R and ¢ : A — B is a § — € equivariant homomorphism or
(B,e)=(A",6") and ¢ : A — A" is the normalization map. Then let

B. o). )
<@(B,e,¢)em,s( ) @(B,e,dJ)GRA.sE

be the direct-sum coaction. Define a nondegenerate § — €D p . 4)er, ,€ €quivariant
homomorphism

R _ .
Oi= @<B,e,¢)em,a¢ A= M<€B(B.e,¢)eRA,sB>’

and let AR = Q% (A). Then there is a unique coaction ™ of G on A™ such that Q%
is 8 — 8™ equivariant. Moreover, for every morphism ¢ : (4, §) — (B, €) in the clas-
sical category of coactions there is a unique homomorphism ¢ making the diagram

(A.8) — 5 (B. )

Q?l lQ?

(AR, 87 7 (BR, €%)

R
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commute, giving a decreasing coaction functor t® with (A™®, §7®) = (AR, §%)
and ¢p™* = ¢p~.

We will show that (assuming that G is nonamenable) the coaction functor T
does not have the ideal property. Consider the coaction

(A,8)=(C[0,1]1® C*(G), ild ®¢).

Then
1:=C[0,1)®C*(G)

is a strongly invariant ideal of A, because & restricts on / to the coaction
81 :=1dco,1) ®dc-.

To see that Q}z is faithful, note that R(; 5, contains the triple (/, 87, id). On the
other hand, to see that Q} is not faithful on I, note that, since I has no nonzero
projections, there is no nonzero homomorphism from CJ[0, 1] to /, and hence no
nonzero homomorphism from A = C[0, 1]® C*(G) to I, and so the only morphism
in R(4,s) is the normalization map

idexr: C[0,11® C*(G) — C[0,11® C}(G),
which is not faithful on / because G is nonamenable.

Proposition 4.15. Let T be a nonempty family of coaction functors. If every functor
in T is functorial for generalized homomorphisms, then so is glb T.

Proof. Let p : A — M(B) be a § — € equivariant homomorphism. We must show
ker¢% C ker(q% o ¢™),
equivalently
(4-4) ¢" (kergq)B™ C kerqp.
For each T € T we have
¢" (kerqy)B™ C kerqp C kerg$,
so by linearity

¢" (spanker ¢ ) B" = span @™ (ker g) B" C kerg§,
teT teT
and hence by density and continuity
¢" (Spankerqj) B" C kerqJ,.
TeT

By definition of greatest lower bound, we have verified (4-4). O
Proposition 4.16. Let T be a nonempty family of coaction functors. If every functor
in T has the ideal property, then so does glbT.
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Proof. Let (A, §) be a coaction, let / be a strongly invariant ideal of A, and let
t: I — A denote the inclusion map. We must show that the induced map

17— A°
is injective, equivalently
(4-5) M(kerqy) =/"(I")Nkerq§.
We know that for every T € 7 the map

i IT— AT

is injective. The computation justifying (4-5) is the same as part of the proof of
[Kaliszewski et al. 2016a, Theorem 4.22]:

/" (ker g)
= " (spankerqj )
TeT
= span (" (kergq;)
TeT

=span (" (I"™) Nkerg}) (since T has the ideal property)
TeT

=/"(I")Nspankerq)  (since all spaces involved are ideals in C*-algebras)
teT

=/"(I")Nkerq}. ([

This might be an appropriate place to record a similar fact for decreasing coaction
functors:

Proposition 4.17. The greatest lower bound of any family of decreasing coaction
functors is itself decreasing.

Proof. We first point out a routine fact: if o and t are coaction functors, and if
o <t and 7 is decreasing, then ¢ is decreasing. To see this, let (A, §) be a coaction.
Sinceo <7,

kergy C kergy.

Since t is decreasing,
ker Y4 C kergy.

Thus ker ¢4 C kerg§, so o is decreasing.
Now let o be the greatest lower bound of 7. For every T € 7 we have 0 <t
and 7 is decreasing, so o is decreasing. U
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5. Correspondence property

Given C*-algebras A and B, recall that an A — B correspondence is a Hilbert
B-module X equipped with a homomorphism ¢4 : A — £(X), inducing a left
A-module structure via ax = @4 (a)x. We sometimes write X = 4 X g to emphasize
A and B. If A= B we call X an A-correspondence.

The closed span of the inner product, written span{(X, X) g}, is an ideal of B, and
X is full if this ideal is dense. By the Cohen—Hewitt factorization theorem, the set
AX ={ax:a e A, x € X}is an A — B subcorrespondence, and X is nondegenerate
if AX =X,

If¢: A— M(B) is a homomorphism, the associated standard A — B correspon-
dence, denoted by 4 Bp, has left-module homomorphism ¢4 = ¢.

If X is an A — B correspondence and Y is a C — D correspondence, a corre-
spondence homomorphism from X to Y is a triple (m, ¥, p), where m : A — C
and p : B — D are homomorphisms and ¢ : X — Y is a linear map such that
V(ax) =@y (x), ¥(xb) =1y (x)pb), and (Y (x), ¥ (y))p = p((x, y)p) (and
recall that the second property, involving xb, is automatic). If 7w and p are understood
we sometimes write i for the correspondence homomorphism. If 7, i, and p are
all bijections then 1 is a correspondence isomorphism, and we write X >~ Y. If
A=C, B=D, 7 =idu, and p =idp, we call ¥ an A — B correspondence homo-
morphism, and an A — B correspondence isomorphism is an A — B correspondence
homomorphism that is also a correspondence isomorphism.

An A — B Hilbert bimodule is an A — B correspondence X equipped with a
left A-valued inner product 4 (-, -) that is compatible with the B-valued one. X is
left-full if span{4 (X, X)} = A; to avoid ambiguity we sometimes say X is right-full
if span{(X, X)p} = B. If X is both left- and right-full, it is an A — B imprimitivity
bimodule. We write X* for the reverse B — A Hilbert bimodule.?> The linking
algebra of an A — B Hilbert bimodule X is L(X) = ( {. % ). but we frequently just
write (4 %) because the lower-left corner takes care of itself. The linking algebra
of the reverse bimodule is L(X™*) = (g )g) The linking algebra of an A — B
correspondence X is defined as the linking algebra of the associated (left-full)
K(X) — B Hilbert bimodule.

Recall from [Echterhoff et al. 2006, Definition 1.7] that if X is an A — B
correspondence and [ is an ideal of B, then X/ is an A — B subcorrespondence
of X, and the ideal

X-IndI = X-Indy I :={a € A:aX C XI}

of A is said to be induced from I via X. If X ~ Y as A — B correspondences, then
X-Ind I = Y-Ind [ for every ideal I of B.

2Although the notation X is perhaps more common, it would conflict with another usage of ~ we
will need later.
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The quotient X/ X1 becomes an (A/X-Ind I) — (B/I) correspondence.
Let J =span{(X, X)p}. Then X is a nondegenerate right J-module and J is an

ideal of B, so
XI=XNHI=X{UJDH=X{JI).

Thus X-Ind I = X-Ind(JI). Moreover, X may also be regarded as an A — J corre-
spondence, and the quotient X/ X I may also be regarded as an (A/ X -Indj‘ JI))—
(J/(JI)) correspondence.

If I and J are ideals of B, and we regard J as a J — B correspondence with the
given algebraic operations, then

J-Indjyl=f{aeJ:alJ CJI}=JI

On the other hand, regarding B as a J — B correspondence with the given algebraic
operations, then, since BI = I, we nevertheless still get the same result:

B-Indjl=faeJ:aBCl}=JNI=JI.

Given a homomorphism ¢ : A — M (B) and an ideal I of B, and regarding B
as the associated standard A — B correspondence (with left-module multiplication
given by a-b =¢(a)b fora € A and b € B), then

B-IndjI={acA:¢(a)BCI)

is sometimes denoted by ¢*(1).
Regarding A as a standard A — A correspondence, for every ideal I of A we
have A-Ind4 I =1.
If X is an A — B correspondence and Y is a B — C correspondence, we write
X ®p Y for the balanced tensor product, which is an A — C correspondence. Letting
K = K(X), X becomes a left-full K — B Hilbert bimodule, and
AXp >~ (aKk)®k (kYp).

Letting J = span{(X, X)p}, X becomes a full A — J correspondence, and
AXp > (X)) ®s(yBp).

By Rieffel’s induction in stages theorem, if X is an A — B correspondence, Y is a
B — C correspondence, and [ is an ideal of C, then

(X ®p Y)-Ind} I = X-Ind Y-Ind2 1.
If X is an A — B imprimitivity bimodule then
X" ®a X >~ pBg,
so if I is an ideal of B, then
X*-Ind§ X-Indg I = 1.
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Given actions « and 8 of G on A and B, respectively, and an « — 8 compatible
action y on X, we say (X, y) is an (A, o) — (B, B) correspondence action. The
crossed product X x,, G is an (A Xy G) — (B xg G) correspondence, and we let
ix : X - M(X x, G) denote the canonical iy — ip compatible correspondence
homomorphism. Writing (! for the induced action of G on K(X), there is a
canonical isomorphism

’C(X Xy G) =~ ’C(X) Ny(l) G,
and, blurring the distinction between these two isomorphic algebras, the left-module
homomorphism of the crossed-product correspondence is given by

PaxG =PaX G AN, G —> M(K(X) x,0 G).

In particular, if X is a left-full A — B Hilbert bimodule, then X x,, G is a left-full
(A Xy G) — (B xg G) bimodule, and is moreover an imprimitivity bimodule if X is.

Let (X,y)bean (A,a)—(B, B) correspondence action, and let J =span{(X, X)z}.
Then J is a B-invariant ideal of B, and we write 5 for the action on J gotten by
restricting 8. As in [Echterhoff et al. 2006, Proposition 3.2],

span(X %, G, X x,, G)BWG =Jx,G,

where the latter is identified with an ideal of B x4 G in the canonical way.

If (X, y)isan (A, o) — (B, B) Hilbert bimodule action (so that 4 (ys(x), ys(¥)) =
as(4{x, y)) also), there are a canonical 8 — o compatible action y* on X™* and a
canonical isomorphism

(X Xy G)" = X" %px G.

Dually, given coactions § and € of G on A and B, respectively, and a 6 — €
compatible coaction ¢ on X, we say (X, ¢) is an (A, §) — (B, €) correspondence
coaction. The crossed product X x; G is an (Ax5G)— (B xG) correspondence, and
welet jx : X — M (X x;G) denote the canonical j, — jp compatible correspondence
homomorphism. Writing ¢ for the induced coaction of G on K(X), there is a
canonical isomorphism

K(X % G) ~ K(X) Xm0 G,
and, blurring the distinction between these two isomorphic algebras, the left-module
homomorphism of the crossed-product correspondence is given by

PaxsG =Pa X G AXs G— M(K(X) X G).

In particular, if X is a left-full A — B Hilbert bimodule, then X x, G is a left-full
(A x5 G) — (B X G) bimodule, and is moreover an imprimitivity bimodule if X is.

Suppose that (X, ¢) is an (A, §) — (B, €) correspondence coaction, and let
J =span{(X, X)g}. Then J is a strongly e-invariant ideal of B [Echterhoff et al.

3The theory of [Echterhoff et al. 2006] uses reduced crossed products, but for the results of concern
to us here the same techniques handle the case of full crossed products.
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2006, Lemma 2.32], and we write 1 for the coaction on J gotten by restricting €.
As in [Echterhoff et al. 2006, Proposition 3.9],

span(X x; G, X X; G)pu.c =J X, G,

where the latter is identified with an ideal of B X G in the canonical way.
If (X,¢)isan (A, 8) — (B, €) Hilbert-bimodule coaction (so that

Maec*G)(E(x), C(y)) =48(alx, y))

also), there are a canonical € — § compatible coaction ¢* on X™* and a canonical
isomorphism

If (X, y)isan (A, a) — (B, B) correspondence action, the dual coaction y on
Xx,Gis &—,3 compatible, and dually if (X, ¢) isan (A, §)— (B, €) correspondence
coaction, the dual action 2 on X X G is §—¢ compatible. Moreover, if (X, ) is an
(A, o) — (B, p) Hilbert-bimodule action, the isomorphism (X <, G)* >~ X* x,+ G
is p*— );* equivariant, and dually if (X, ¢) is an (A, §) — (B, €) Hilbert bimodule
coaction, the isomorphism (X x; G)* =~ X* x,+ G is {* — {* equivariant.

Given equivariant actions (A, «, ) and (B, 8, v), and an (A, o) — (B, B) cor-
respondence action (X, y), by [Kaliszewski et al. 2017, Lemma 6.1], there is an
@ — B compatible coaction* 7 on X X, G given by

7)) =Vay()V;.
Moreover, if (X, y) is a Hilbert bimodule action, the isomorphism (X %, G)* ~
X* Xy« G is y* — y* equivariant.’
Given K-algebras (A,t) and (B, j), and an A — B correspondence X, Theo-

rem 6.4 of [Kaliszewski et al. 2016¢] and its proof construct a C(A, 1) — C(B, j)
correspondence C (X, t, ) given by

CX,t,))=fxeM(X):ttk)-x=x-j(k)e X forall k € K}.

Writing k : K — M (K (X)) for the induced nondegenerate homomorphism, there is
a canonical isomorphism

K(C(X, ¢, ) ~C(K(X), k),

and, blurring the distinction between these two isomorphic algebras, the left-module
homomorphism of the relative-commutant correspondence is given by

ocay =C(pa): C(A, 1) > M(C(K(X), k)).

“4Recall from Section 2 the definition of &. We define 3 similarly.
SHere is where the notation * for the reverse bimodule is important.
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In particular, if X is a left-full A — B Hilbert bimodule, then C (X, ¢, ;) is a left-full
C(A, 1) — C(B, j) bimodule, and is moreover an imprimitivity bimodule if X is.

Given KC-coactions (A, §, t) and (B, €, j), and an (A, ) — (B, €) correspondence
coaction (X, ¢), by [Kaliszewski et al. 2017, Lemma 6.3] there is a C(6) — C(¢)
compatible coaction C(¢) on C(X, ¢, j) given by the restriction of the canonical
extension to M (X) of {. As before, let J =span{(X, X)p}, and let = €, be the
restricted coaction. Letting p : B — M (J) be the canonical homomorphism, which
is nondegenerate, we can define a nondegenerate homomorphism

w=poj:K—> M),
and (J, n, w) is a K-coaction. It is not hard to verify that
span{(C(X, ¢, 1), C(X,t, )))ci.)} =CWJ, w),

which we identify with an ideal of C(B, j).
If (A,d,1) and (B, €, j) are K-coactions and X is an (A, §) — (B, €) Hilbert
bimodule coaction, there is an isomorphism

C(X,t, )" ~C(X", J,0)

of C(B, j)—C(A, 1) Hilbert bimodules, and moreover this isomorphism is C(¢)* —
C(¢™) equivariant.
Recall that the maximalization of a coaction (A, §) is the coaction

(A", 8™) = (C(A x5 G x5 G, j& x G), C(3)),

where - A
§=05=AdVax;G09.

Definition 5.1. Given coactions (A, §) and (B, €), the maximalization of an (A, §)—
(B, €) correspondence coaction (X, ¢) is the (A™, §) — (B™, €™) correspondence
coaction

(X", ¢™) = (C(X % G % G, jg %G, j& % G),C(Q)),

where _ ~ A
C(Y) =¢() = Vax;c C(Y)VBx.G

for y e X™.
There is a canonical isomorphism
(5-1) (ex™, ™MD) = (ko™ ¢ ").

Blurring the distinction between these two isomorphic algebras, the left-module
homomorphism of the A™ — B™ correspondence X" is given by

pan =gy 1 A" = M(K(X)") = M(K(X™)).
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In particular, if X is a left-full A — B Hilbert bimodule, then X is a left-full

A™ — B™ Hilbert bimodule, and is moreover an imprimitivity bimodule if X is.
Letting J = span{(X, X)p} with coaction n = € as before, it follows from the

above properties of the functors in the factorization of the Fischer construction that

span{(X"™, X")gn} = J",

which we identify with an ideal of B™.

If (X, ¢) is an (A, §) — (B, €) Hilbert bimodule coaction, then it follows from
the properties of the steps in the Fischer construction that there is a canonical
isomorphism

(Xm*’ ;m*) ~ (X*m, é_*m)

Let t be a coaction functor, and let (X, ¢) be a Hilbert (B, €)-module coaction
(equivalently, a (C, éyiv) — (B, €) correspondence coaction, where 8y is the trivial
coaction on C). Then X" ker g, is a Hilbert B"-submodule of X™. We define

X*=X"/X"kerqp,
which is a Hilbert B*-module, and we further write
gy X" — X°

for the quotient map, which is a surjective homomorphism of the Hilbert B™-
module X onto the Hilbert B*-module X°. It follows quickly from the definitions
that there is a (necessarily unique) Hilbert-module homomorphism ¢* making the
diagram

xm— L R(X" @ CHG))

q}(l lq,’( ®id

XT— - — - + M(XT ® C*(G))

commute, and that ¢7 is moreover a coaction on the Hilbert B*-module X°. Let
@V KX™) = K(XT)

be the induced surjection, which is equivariant for the induced coactions ()" on
K(X™) and (%) on K(X7).

Recall from [Kaliszewski et al. 2016a, Definition 4.16] that we call a coaction
functor T Morita compatible if whenever (X, ¢) is an (A, §) — (B, €) imprimitivity-
bimodule coaction we have

kergy = X"-Indker gp.
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Remark 5.2. Lemma 4.19 of [Kaliszewski et al. 2016a] says that a coaction functor
7 is Morita compatible if and only if for every (A, §)— (B, €) imprimitivity-bimodule
coaction (X, ¢) the maximalization X" descends to an A® — B® imprimitivity
bimodule X*. Thus, if CP® is the crossed-product functor given by T composed
with the full crossed product, then Morita compatibility of ¢ implies that CP® is
strongly Morita compatible in the sense of [BEW, Definition 4.7].

Example 5.3. The maximalization functor, and also the functors 7 for large ideals
E of B(G), are Morita compatible, by [Kaliszewski et al. 2016a, Lemma 4.15,
Remark 4.18, and Proposition 6.10].

Remark 5.4. Proposition 5.5 of [Kaliszewski et al. 2016a] can be equivalently
stated as follows: a decreasing coaction functor 7 is Morita compatible if and only
if whenever (X, ¢) is an (A, §) — (B, €) imprimitivity-bimodule coaction we have

ker Q7 = X-Ind’s ker Q5.

Remark 5.5. Let (A, §) be a coaction, and let / be a strongly §-invariant ideal
of A. The diagram

m

" —— A™

(5-2) qil lqﬁ

IT—T>AT
L

commutes because 7 is a coaction functor. The top arrow is always injective, so we
can identify /™ with the ideal (" (I™) of A™. Thus we always have

kerg; C ker(gj ot™) = 1" Nkergq},

and since kerg; C I"™ we have kerq; C kerg}. The ideal property for r means
that the bottom arrow is injective, equivalently

(5-3) kerq; = I" Nkergq},
in which case the quotient map ¢; may be regarded as the restriction of g to the
ideal 1™.

Lemma 5.6. Let Tt be a coaction functor that has the ideal property. Then T is
Morita compatible if and only if for every left-full (A, §) — (B, €) Hilbert-bimodule
coaction (X, ¢) we have

(5-4) ker ¢} = X"-Indp, ker ¢ 5.

Proof. The condition involving (5-4) of course implies Morita compatibility, so
suppose that t is Morita compatible and (X, ¢) is a left-full (A, §) — (B, €) Hilbert-
bimodule coaction.
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As before, let J =span{(X, X) g} with the restricted coaction n =¢€;. Then (X, ¢)
is an (A, §) — (J, n) imprimitivity-bimodule coaction, so by Morita compatibility
we have

(5-5) ker ¢} = X™-Ind%, kerq’.

Identify J™ with an ideal of B™ in the usual way. Regarding B" as a standard
J™ — B™ correspondence, we have

(5-6) kerg? = J™ Nkergh = B"-Ind%, kerg§.
Thus by induction in stages we can combine (5-5) and (5-6) to conclude that
ker g} = X"-Ind, ker g 5. O

Definition 5.7. We say that a coaction functor t has the correspondence property
if for every (A, §) — (B, €) correspondence coaction (X, {) we have

kerg’ C X™-Ind4, ker g5.
Note that we have a commutative diagram
Am — M pxm)
l lq;?
A™/X"-Indkergp —— L(XT)

with

X"-Indker gp = ker(gy o @an).
The composition gy o g4n gives X* a left A”-module multiplication, and 7 has
the correspondence property if and only if this left A”™-module multiplication

on X' factors through a left A*-module multiplication, making (X7, ¢7) into a
(A7, 8%) — (BY, €7) correspondence coaction.

Example 5.8. Trivially the maximalization functor has the correspondence property.

Theorem 5.9. A coaction functor t has the correspondence property if and only if
it is Morita compatible and functorial for generalized homomorphisms.

Proof. First assume that T has the correspondence property. For the Morita compat-
ibility, let (X, ¢) be an (A, §) — (B, €) imprimitivity bimodule coaction. We must
show that

(5-7) kergy = X™ —Indkergjp.

By the correspondence property the left side is contained in the right side. Since
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(X*,¢*)isa (B, €) — (A, §) imprimitivity bimodule coaction, we also have
kergp C X™-Indkerq}.
By induction in stages and the properties of reverse bimodules,
kergy C X"-Indkergj, C X"™-Ind X*"-Ind ker ¢, = ker ¢},

so we must have equality throughout, and in particular (5-7) holds.

For the functoriality, let ¢ : A — M (B) be a § — € equivariant homomorphism.
Then (B, €) is a standard (A, §) — (B, €) correspondence coaction. By assumption,
we have kerg} C B™-Indker qy. Since

B™"-Indkergp ={a € A™ : " (a)B" C kerqg} =ker(qg o ™),

7 is functorial for generalized homomorphisms.

Conversely, assume that 7 is Morita compatible and functorial for generalized
homomorphisms. Let (X, ¢) be an (A, §) — (B, €) correspondence coaction. We
need to show that

(5-8) kerg} C X™-Ind4n ker ¢5.

Let K = K(X), with induced coaction u. Let ¢4 : A — M(K) be the left-
module homomorphism, which is § — u equivariant. We use the associated §” — u™
equivariant homomorphism ¢’y : A™ — M(K™) to regard (K™, ™) as a standard
(A™,8™) — (K™, u™) correspondence coaction. By functoriality for generalized
homomorphisms we have

(5-9) kerg} C K™-Ind%, ker g .

Note that (X, ¢) may be regarded as a left-full (K, u) — (B, €) Hilbert-bimodule
coaction. Since 7 is functorial for generalized homomorphisms, by Proposition 4.12
it has the ideal property, so, since t is also assumed to be Morita compatible, by
Lemma 5.6 we have

(5-10) ker g} = X™-Ind%, kergqp.
By induction in stages we can combine (5-9) and (5-10) to deduce (5-8). O

Remark 5.10. Although we do not need it in the current paper, it is natural to
wonder whether a coaction functor with the correspondence property will auto-
matically be functorial under composition of correspondences. More precisely,
let T be a coaction functor with the correspondence property, and let (X, ¢) and
(Y, n)be (A, 8)— (B, €)and (B, €) — (C, v) correspondence coactions, respectively.
Then the balanced tensor product (X ®p Y, ¢ § 1) isan (A, §) — (C, v) correspon-
dence coaction (see [Echterhoff et al. 2006, Proposition 2.13]). The assumption
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that 7 has the correspondence property implies that there are (A", §%) — (B7, €%),
(B*,€") — (C*,v"), and (A7, 6%) — (C*, v*) correspondence coactions (X7, {7),
(Y*, n"), and (X ®p Y)7, (¢ 4 n)7), respectively. The functoriality property we
are wondering about here is whether there is a natural isomorphism

(X®Y)", (CEnT) = (X ®p Y7, " 81")

of (A%, §%) — (C*, v") correspondence coactions. It seems plausible that this could
be checked via a tedious diagram chase, or via linking algebras.

Example 5.11. Combining Example 4.8, Example 5.3, and Theorem 5.9, we see
that Tz has the correspondence property for every large ideal E of B(G).

Remark 5.12. Theorem 5.9 is similar to the equivalence (2)<=(3) in [BEW,
Theorem 4.9], except that, as we mentioned in Remark 4.11, we have not been able
to prove that for coaction functors the ideal property is equivalent to functoriality
for generalized homomorphisms.

Remark 5.13. [BEW, Theorem 5.6] shows that every correspondence crossed-
product functor produces C*-algebras carrying a quotient of the dual coaction on
the full crossed product. This reinforces our belief in the importance of studying
crossed-product functors arising from coaction functors composed with the full
cross product.

Corollary 5.14. Let T be a nonempty family of coaction functors. If every functor
in T has the correspondence property, then so does glb T. In particular, there is a
smallest coaction functor with the correspondence property.

Not surprisingly, the correspondence property is simpler for decreasing functors:

Lemma 5.15. A decreasing coaction functor T has the correspondence property if
and only if for every (A, 8) — (B, €) correspondence coaction (X, ¢) we have

ker Q% C X-Indj ker Q%.

Proof. We must show that the stated condition involving Q° holds if and only if
kergjy C Xm—Ind‘gﬁ kerqgp. Let

I =kerya, J =keryp, K =kerq}, L =Xkerqpg.

Then I Cc KNX"-IndJ, I C K, and J C L, and we can identify A with A" /I,
ker Q% with K /I, X with X" /X™J, B with B™/J and ker Q with L/J, so the
desired equivalence follows from the general Lemma 5.16 below, which is probably
folklore. O

Lemma 5.16. Let X be an A — B correspondence, let I C K be ideals of A, and let
J C L beideals of B. Suppose that I C X-Ind J, so that X/ X J isan (A/I)—(B/J)
correspondence. Then K C X-Ind L ifand only if K/I C (X/XJ)-IndL/J.
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Proof. Let
¢p:A—>AJI, Yv:X—>X/XJ, p:B—>B/J

be the quotient maps. First assume that K C X-Ind L. Then

(K/D(X/XJ) = ¢(K)P(X)
=y (KX) Cy(XL)
=¥ (X)p(L) =(X/XJ)(L/J),

soK/I C(X/XJ)-IndL/J.
Conversely, assume that K /I C (X/XJ)-Ind L/J. Then

KX Cy '(W(EKX) =y (¢(K)¥ (X))
cy ' (v(X)pL) =y ' (Y(XL) = XL,

where the equality at * holds since ¥ is a surjective homomorphism of correspon-
dences and X L is a closed subcorrespondence containing ker v = K J. (]
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