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JEAN ROYDOR

We prove that if a nonselfadjoint dual operator algebra admitting a normal
virtual diagonal and an injective von Neumann algebra are close enough
for the Kadison–Kastler metric, then they are similar. The bound explicitly
depends on the norm of the normal virtual diagonal. This is inspired by
E. Christensen’s work on perturbation of operator algebras and is related
to a conjecture of G. Pisier on nonselfadjoint amenable operator algebras.

1. Introduction

The starting point of this paper is the conjunction of perturbation theory of operator
algebras and a conjecture on amenable nonselfadjoint operator algebras. Let us
first recall this conjecture and propose a dual version of it, then we will explain the
connection with our main result.

A conjecture raised by G. Pisier asserts that a nonselfadjoint amenable operator
algebra A should be similar to a nuclear C∗-algebra (i.e., there is an invertible
operator S such that SAS−1 is a C∗-algebra). Recently, this conjecture has been
proved for commutative amenable operator algebras in [Marcoux and Popov 2016].
It generalizes [Choi 2013; Willis 1995]; see also [Marcoux 2008] for more details
around this conjecture. A nonseparable counter-example to Pisier’s conjecture has
been found [Choi et al. 2014] but the separable case remains open.

In his memoir, B.E. Johnson [1972] characterized amenability of Banach algebras
by the existence of a virtual diagonal. Recall that injectivity for von Neumann
algebras can be characterized by the existence of a normal virtual diagonal (in the
sense of E.G. Effros [1988], see Section 2C below for details). Therefore, a dual
version of Pisier’s conjecture would be:

Conjecture. A unital dual operator algebra admitting a normal virtual diagonal
should be similar to an injective von Neumann algebra. In that case, it is expected
that the similarity constant is controlled by a nondecreasing function of the norm of
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the normal virtual diagonal. Note that one advantage of this conjecture is to avoid
the separability question.

In 1972, R.V. Kadison and D. Kastler defined a metric d on the collection of
all subspaces of the bounded operators on a fixed Hilbert space (see Section 2A).
They conjectured [1972] that sufficiently close C∗-algebras are necessarily unitarily
conjugated. A great amount of work around this conjecture has been done since
then (see [Christensen et al. 2012] for a nice introduction on this topic). Notably,
E. Christensen proved the conjecture for the class of type I von Neumann algebras
[Christensen 1975] and for the class of injective von Neumann algebras [Chris-
tensen 1977]. Very recently, Kadison and Kastler’s conjecture has been proved
for the class of separable nuclear C∗-algebras in [Christensen et al. 2012] (see
also [Christensen et al. 2010b]). The recent paper [Cameron et al. 2014] is an
important breakthrough beyond amenability. Let us state Christensen’s first result
on perturbation of injective von Neumann algebras (this result has subsequently
been improved in [Christensen 1980]):

Theorem 1 [Christensen 1977, Theorem 4.1]. Let M,N be two von Neumann
subalgebras of a fixed B(H). We suppose that M has Schwartz’s property (P) and
N has the extension property. If d(M,N ) < 1

169 , then there is a unitary U in the
von Neumann algebra generated by M ∪N such that UMU∗ = N. Moreover,
‖U − IH‖ ≤ 19d(M,N )1/2.

It is now well known, after the work of A. Connes [1976; 1978] and U. Haagerup
[1985], that Schwartz’s property (P), the extension property and injectivity (and
thus the existence of a normal virtual diagonal) are equivalent conditions for von
Neumann algebras.

The aforementioned conjecture leads to the following question: can we replace, in
the preceding theorem, M by a unital nonselfadjoint dual operator algebra admitting
a normal virtual diagonal? In other words, is the selfadjointness hypothesis on M
necessary? Indeed, assume for a moment that our conjecture is true, then there would
be an invertible S such that SMS−1 is an injective von Neumann algebra. Moreover,

d(M, SMS−1)≤ 2(1+‖S‖‖S−1
‖)‖S− IH‖

(and this last quantity is controlled by a nondecreasing function of the norm of
the normal virtual diagonal). Hence, if d(M,N ) is small enough such that the
following strict inequality holds

d(N , SMS−1)≤ d(M,N )+ 2(1+‖S‖‖S−1
‖)‖S− IH‖<

1
169 ,

then (from Theorem 1 above) the injective von Neumann algebras N and SMS−1

would be unitarily conjugated, so M and N would be similar. Therefore, it is
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not incongruous to try to replace M by a unital dual operator algebra admitting
a normal virtual diagonal.

In this paper, we prove:

Theorem 2. Let M,N ⊂ B(H) be two unital w∗-closed operator algebras. Sup-
pose that M admits a normal virtual diagonal u and N is an injective von Neumann
algebra. If d(M,N ) < 1/(656‖u‖), then there exists an invertible operator S in
the w∗-closed algebra generated by M ∪N such that SMS−1

= N. Moreover,
‖S− IH‖ ≤ 656‖u‖d(M,N ).

The proof of Theorem 2 is the consequence of Theorem 5.2 and Lemma 5.4.
Note that von Neumann algebras enjoy a self-improvement phenomenon; if a von
Neumann algebra admits a normal virtual diagonal then it admits a normal virtual
diagonal of norm 1, see [Haagerup 1985; Effros 1988; Effros and Kishimoto 1987]
(self-improvement phenomena are frequent for selfadjoint algebras, for instance
nuclearity constant and exactness constant). This may explain why in Theorem 1
the bound is a universal constant, whereas in Theorem 2, the bound depends on the
feature of the nonselfadjoint algebra involved. Moreover, from Theorem 7.4.18 (1)
in [Blecher and Le Merdy 2004] and Remark 2.1 below, if a unital dual operator
algebra admits a normal virtual diagonal of norm 1, then it is necessarily a von
Neumann algebra (no similarity is needed in this extreme case). Hence, Theorem 1
corresponds exactly to the case ‖u‖ equals 1 in Theorem 2 (as the unitary U is
obtained by taking the polar decomposition of S, see Lemma 2.7 in [Christensen
1975]). Our bound in this special case is not as good as Christensen’s one, but the
important point is that we have been able to remove the selfadjointness hypothesis
on M. This is not a minor modification; knowing that nonselfadjoint algebras are
less rigid than selfadjoint ones (no order structure for instance) and fewer tools
are available (no continuous or Borel functional calculus), our proof requires new
ingredients from operator space theory in particular the normal Haagerup tensor
product of dual operator spaces.

Now let us sketch the main lines of our proof. There are three steps (as in
Christensen’s work [1977]):

Step 1. Find a linear isomorphism, between the two algebras, which is close to
the identity representation.

Step 2. Find an algebra homomorphism close to the previous linear isomorphism.

Step 3. Prove this algebra homomorphism is similar to the identity representation.

For the first step, as N is injective, one just has to take the restriction to M of
a completely contractive projection onto N. This gives a linear isomorphism T
from M onto N which is close to the identity representation of M. But in order
to apply certain averaging procedure for Step 2, we need a w∗-continuous linear
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isomorphism. For this, Christensen used Tomiyama’s decomposition into normal
and singular parts of bounded linear maps defined on von Neumann algebras. But
when M is nonselfadjoint, such decomposition is not available. Hence, we have to
consider the normal part of T−1. This w∗-continuous linear isomorphism from N
onto M is not necessarily completely positive, and moreover the target algebra M is
not necessarily selfadjoint, thus we can not use Christensen’s averaging trick [1977,
Lemma 3.3] to accomplish the second step. The idea is to turn to Banach algebras
results and operator spaces tools. More precisely, we will use a dual operator space
version of a B.E. Johnson theorem [1988] on almost multiplicative maps. Indeed,
the issue here is that we need to preserve the w∗-continuity, but we cannot use the
normal projective tensor product of dual Banach spaces (as we could not check its
associativity, see Section 3). This second step will force us to work with the normal
Haagerup tensor product of dual operator spaces.

Finally, the third step, which is related to a more general problem on neighboring
representations (already mentioned in [Kadison and Kastler 1972]), is done by an
averaging technique. However, because of the second step, we have had to work in
the operator space category and as a consequence we had to assume that the algebras
Mn(M) nearly embed in Mn(N ) uniformly in n (see the notion of near cb-inclusion
defined in Section 2A). As an intermediate result, we prove a perturbation theorem
with a near cb-inclusion assumption (see Theorem 5.2). Therefore, our final task
is to notice that the existence of a normal virtual diagonal is an “automatic near
cb-inclusion” condition (see Lemma 5.4).

To conclude this introduction, let us mention that an engaging objective would be
to prove an analog of Theorem 2 when both algebras are nonselfadjoint (for details
see Remark 5.6). We also should mention that after the writing and circulation of
our paper, L. Dickson has obtained an improvement of our Theorem 2 (see [Dickson
2014, Theorem 6.1.1]). His result is interesting because he was able to get rid of the
normal virtual diagonal hypothesis. His proof uses a variant of Johnson’s result on
almost multiplicative maps (like our proof) and also the characterization of injective
von Neumann algebras as the w∗-closure of a net of finite-dimensional subalgebras.
This is a strong approximation property characterization, but such a characterization
is far from being available for nonselfadjoint operator algebras admitting normal vir-
tual diagonal. Hence, unfortunately, we can not use Dickson’s techniques for our per-
turbation problem (mentioned in Remark 5.6) when both algebras are nonselfadjoint.

2. Preliminaries

For background on completely bounded maps, operator space theory and nonselfad-
joint algebra theory, the reader is referred to [Blecher and Le Merdy 2004; Effros
and Ruan 2000; Paulsen 2002; Pisier 2003], especially Section 2.7 in [Blecher and
Le Merdy 2004] for background on dual operator algebras.
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2A. Perturbation theory. We first recall definitions and notations commonly used
in perturbation theory of operator algebras (see, e.g., [Christensen et al. 2010a]).
Let H be a Hilbert space, and B(H) be the von Neumann algebra of all bounded
operators on H. Let E,F be two subspaces of B(H). We denote by d the Kadison–
Kastler metric, i.e., d(E,F) denotes the Hausdorff distance between the unit balls
of E and F. More explicitly,

d(E,F)= inf
{
γ > 0 : for all x ∈ BE , there exists x ′ ∈ BF , ‖x − x ′‖< γ and

for all y ∈ BF , there exists y′ ∈ BE , ‖y− y′‖< γ
}
,

where BE (respectively, BF ) denotes the unit ball of E (respectively, F). Let γ > 0,
then we write E ⊆γ F if for any x in the unit ball of E , there exists y in F such that

‖x − y‖ ≤ γ.

We also write E ⊂γ F if there exists γ ′ < γ such that E ⊆γ ′ F. We will also need
the notion of near cb-inclusion. As usual in operator space theory, Mn(E), the
subspace of n× n matrices with coefficients in E is normed by the identification
Mn(E)⊂Mn(B(H))= B(`2

n ⊗ H). We write

E ⊆γcb F

if Mn(E)⊆γ Mn(F), for all n.

2B. The normal projective tensor product and normal Haagerup tensor product.
For dual operator spaces X and Y, we denote by (X ⊗h Y)∗σ the space of all com-
pletely bounded bilinear forms which are separately w∗-continuous (see [Blecher
and Le Merdy 2004, Paragraph 1.5.4] for the definition of completely bounded
bilinear maps). The normal Haagerup tensor product, denoted⊗σh , can be defined as

(2-1) X ⊗σh Y = ((X ⊗h Y)∗σ )
∗,

see [Blecher and Le Merdy 2004, Paragraph 1.6.8]. The normal Haagerup tensor
product is characterized by the following universal property: X ⊗Y is w∗-dense
in X ⊗σh Y and, for any dual operator space Z, for any w∗-continuous completely
contractive bilinear map B : X × Y → Z, there exists a (unique) w∗-continuous
completely contractive linear map B̃ : X ⊗σh Y→ Z such that B̃(x⊗ y)= B(x, y),
for all x ∈ X and y ∈ Y. We will also need the normal projective tensor product
⊗̂σ of dual Banach spaces. If X and Y are dual Banach spaces,

X ⊗̂σY = ((X ⊗̂Y)∗σ )
∗,

where (X ⊗̂Y)∗σ denotes the space of all bounded bilinear forms on X×Y which are
separately w∗-continuous. The normal projective tensor product enjoys a similar
universal property to the normal Haagerup tensor product, but for separately w∗-
continuous bounded bilinear maps instead of separately w∗-continuous completely
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bounded (for von Neumann algebras, the projective normal tensor product appeared
for instance in [Effros 1988] under the name binormal projective tensor product).
These two tensor products are “functorial” in the sense that, if L i : Xi → Yi ,
i = 1, 2, are bounded (respectively, completely bounded) w∗-continuous linear
maps between dual Banach spaces (dual operator spaces), then there is a unique
bounded (completely bounded) w∗-continuous linear map

L1⊗̂σ L2 : X1⊗̂σX2→ Y1⊗̂σY2

(L1⊗σh L2 : X1⊗σh X2→ Y1⊗σh Y2) extending L1⊗ L2. Moreover,

‖L1⊗̂σ L2‖ ≤ ‖L1‖‖L2‖

(‖L1⊗σh L2‖cb ≤ ‖L1‖cb‖L2‖cb).
The main difference between these two tensor products is that the normal

Haagerup tensor product is associative (see Lemma 2.2 in [Blecher and Kashyap
2008]), whereas the normal projective tensor product does not seem to be associative
in general (this difference will have an important consequence for us in Section 3).

2C. Normal virtual diagonals and normal virtual h-diagonals. Normal virtual
diagonals appeared implicitly in [Haagerup 1985] and explicitly in [Effros 1988]
(see p. 147 thereof). In this paper, we also need the notion of normal virtual h-
diagonal (called reduced normal virtual diagonal in [Effros 1988], see also [Blecher
and Le Merdy 2004, Paragraph 7.4.8] for more details). Let us just recall this
notion. Replacing the normal Haagerup tensor product by the normal projective
tensor product in the following, one can analogously obtain the definition of normal
virtual diagonal. Let M be a unital dual operator algebra, and let us recall the
M-bimodule structure of M⊗σh M. Letting ψ ∈ (M⊗h M)∗σ and a, b, c, d ∈M,

〈b ·ψ · a, c⊗ d〉 = ψ(ac, db).

Hence by duality, one can define actions of M on M⊗σh M = ((M⊗h M)∗σ )
∗.

One can check that these actions are determined on the elementary tensors by

a · (c⊗ d) · b = ac⊗ db.

On a dual operator algebra, the multiplication is a separately w∗-continuous com-
pletely contractive bilinear map [Blecher and Le Merdy 2004, Proposition 2.7.4 (1)].
Consequently, it induces a w∗-continuous complete contraction,

mσh :M⊗σh M→M.

A normal virtual h-diagonal for M is an element u ∈M⊗σh M satisfying

(C1) m · u = u ·m for any m ∈M,

(C2) mσh(u)= 1.
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Note that condition (C2) implies that the norm of a normal virtual h-diagonal is
always greater than or equal to 1.

Remark 2.1. Note that the inclusion (X ⊗h Y)∗σ ⊂ (X ⊗̂Y)∗σ induces, by duality, a
contraction from M⊗̂σM into M⊗σh M and this contraction sends normal virtual
diagonals into normal virtual h-diagonals. Consequently, if M admits a normal
virtual diagonal, it admits a normal virtual h-diagonal.

3. B.E. Johnson’s theorem revisited

The aim of this section is to find a solution to the second step mentioned in the
Introduction. Johnson [1988] proved that an approximately multiplicative map
defined on an amenable Banach algebra is close to an actual algebra homomorphism.
His result is the Banach algebraic version of an earlier result due to D. Kazhdan
[1982] for amenable groups (see also [Burger et al. 2013]). If L is a linear map
between operator algebras M and N, we denote by L∨ :M×M→N the bilinear
map defined by

L∨(x, y)= L(xy)− L(x)L(y).

This enables us to measure the defect of multiplicativity of L .
In our present case, we have to take into account the dual operator space structure

of our algebras. Starting from a w∗-continuous linear map from M into N, we
must obtain a w∗-continuous algebra homomorphism. This will force us to work in
the category of operator spaces. The proof of Theorem 3.1 in [Johnson 1988] is by
induction, the algebra homomorphism is the limit (in operator norm) of a sequence
of linear maps with multiplicativity defect tending to zero. The problem is that these
linear maps are defined using thew∗-topology of the target algebra (see equation (∗)
in the proof of [Johnson 1988, Theorem 3.1]). Here, to justify the w∗-continuity of
these linear maps, we must consider a trilinear map defined on M×M×M; see
(3-1) below. But the normal projective tensor product does not seem associative.
To circumvent this difficulty, we will instead work with the normal Haagerup tensor
product, which is associative [Blecher and Kashyap 2008, Lemma 2.2]. As a
consequence, we have to control the cb-norm of the bilinear map L∨.

Remark 3.1. Actually, this difficulty concerning the associativity of the normal
projective tensor product has already been encountered in disguise. The main issue
in [Effros 1988] is that one cannot check whether the Banach M-bimodule M⊗̂σM
is normal or not. But if one assumes that the normal projective tensor product is
associative, then it is easy to check that M⊗̂σM is a normal bimodule.

Theorem 3.2. Let M,N be two unital dual operator algebras. We suppose that
M has a normal virtual h-diagonal u ∈M⊗σh M. Then, for any ε ∈ (0, 1), for
any µ > 0, there exists δ > 0 such that: for every unital w∗-continuous linear map
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L :M→N satisfying ‖L‖cb ≤ µ and ‖L∨‖cb ≤ δ, there is a unital w∗-continuous
completely bounded algebra homomorphism π :M→N such that ‖L −π‖cb ≤ ε.

Proof. Let ε ∈ (0, 1), µ > 0 and let L be a unital w∗-continuous linear map from
M into N such that ‖L‖cb ≤ µ. The trilinear map

(3-1) (x, y, z) ∈M×M×M 7→ L(x)L∨(y, z) ∈N

is separately w∗-continuous and completely bounded. By the universal property
of the normal Haagerup tensor product, it extends to a w∗-continuous completely
bounded linear map

3L :M⊗σh M⊗σh M→N

such that
3L(x ⊗ y⊗ z)= L(x)L∨(y, z)

and ‖3L‖cb≤‖L‖cb‖L∨‖cb. By definition and associativity of the normal Haagerup
tensor product, the linear map

m ∈M 7→ u⊗m ∈ (M⊗σh M)⊗σh M=M⊗σh M⊗σh M

is w∗-continuous; see (2-1). We can define R :M→N by

R(m)=3L(u⊗m)

which is w∗-continuous and

(3-2) ‖R‖cb ≤ ‖u‖‖L‖cb‖L∨‖cb.

As u ∈M⊗σhM, there is a net (ut)t in M⊗M converging to u in the w∗-topology
of M⊗σh M. For any t , there are finite families (at

k)k, (b
t
k)k of elements in M

such that
ut =

∑
k

at
k ⊗ bt

k .

Now fixing m ∈ M, once again by definition and associativity of the normal
Haagerup tensor product, the linear map

v ∈M⊗σh M 7→ v⊗m ∈ (M⊗σh M)⊗σh M=M⊗σh M⊗σh M

is w∗-continuous as well. Hence, using the w∗-continuity of 3L , we obtain

R(m)= w∗− lim
t
3L(ut ⊗m)= w∗− lim

t

∑
k

L(at
k)L
∨(bt

k,m).

From this point, we just need to check that the computations of [Johnson 1988,
Theorem 3.1] remain valid with matrix coefficients. Fix n ∈N, let x, y be in the unit
ball of Mn(M) (in the following computation, In denotes the identity matrix in Mn ,
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and the other subscripts n denote the n-th ampliation of a linear or bilinear map),
then as in [Johnson 1988], we have

(L+R)∨n (x,y)=

L∨n (x,y)−w
∗
−lim

t

∑
k

Ln(In⊗at
kbt

k)L
∨

n (x,y)

−Rn(x)Rn(y)

+w∗−lim
t

∑
k

L∨n (x,In⊗at
k)L
∨

n (In⊗bt
k,y)

+w∗−lim
t

∑
k

L∨n (In⊗at
k,In⊗bt

k)L
∨

n (x,y)

+w∗−lim
t

∑
k

Ln(In⊗at
k)Ln((In⊗bt

k)xy)−Ln(x(In⊗at
k))Ln((In⊗bt

k)y)

−w∗−lim
t

∑
k
(Ln(In⊗at

k)Ln((In⊗bt
k)x)−Ln(x(In⊗at

k))Ln(In⊗bt
k))Ln(y).

To evaluate the norm of (L + R)∨n , we treat each line of the right-hand side
successively. As u is a normal virtual h-diagonal, w∗− limt

∑
k at

kbt
k = 1. But L is

unital and w∗-continuous, so

w∗− lim
t

∑
k

Ln(In ⊗ at
kbt

k)= 1

and the first line of the right-hand side is 0. Clearly, the norm of the term in the
second line is bounded by ‖R‖2cb. Now let us show that the norm of the term in the
third line is bounded by ‖u‖‖L∨‖2cb. The quadrilinear map

(3-3) (x, y, z, t) ∈M×M×M×M 7→ L∨(x, y)L∨(z, t) ∈N

is separately w∗-continuous and completely bounded. By the universal property
of the normal Haagerup tensor product, it extends to a w∗-continuous completely
bounded linear map 0L :M⊗σh M⊗σh M⊗σh M→N such that

0L(x ⊗ y⊗ z⊗ t)= L∨(x, y)L∨(z, t)

and ‖0L‖cb ≤ ‖L∨‖cb‖L∨‖cb. The bilinear map

B : (x, y) ∈M×M 7→ x ⊗ u⊗ y ∈M⊗σh M⊗σh M⊗σh M

is separatelyw∗-continuous and ‖B‖cb≤‖u‖. The bilinear map 0L ◦B :M×M→
N is also separately w∗-continuous and

‖0L ◦ B‖cb ≤ ‖0L‖cb ‖B‖cb ≤ ‖u‖‖L∨‖2cb.

We claim that the term of the third line is the n-th ampliation of the bilinear map
0L ◦B applied to x, y in the unit ball of Mn(M) (and this gives the desired estimate).
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Note first that

Bn(x, y)=
[∑

l

xil ⊗ u⊗ yl j

]
i, j
= w∗− lim

t

∑
k

[∑
l

xil ⊗ at
k ⊗ bt

k ⊗ yl j

]
i, j

and also that (L∨)n = (Ln)
∨ and

(L∨)n(x, In ⊗ at
k)=

[∑
l

L∨(xil, (In ⊗ at
k)l j )

]
i, j
=

[
L∨(xi j , at

k)
]

i, j

and similarly
(L∨)n(In ⊗ bt

k, y)=
[
L∨(bt

k, yi j )
]

i, j .

Using these computations, we can prove our claim:

(0L ◦ B)n(x, y)= (0L)n(Bn(x, y))

= (0L)n

(
w∗− lim

t

∑
k

[∑
l

xil ⊗ at
k ⊗ bt

k ⊗ yl j

]
i, j

)
= w∗− lim

t

∑
k

[∑
l

0L(xil ⊗ at
k ⊗ bt

k ⊗ yl j )
]

i, j

= w∗− lim
t

∑
k

[∑
l

L∨(xil, at
k)L
∨(bt

k, yl j )
]

i, j

= w∗− lim
t

∑
k

(
[L∨(xi j , at

k)]i, j · [L∨(bt
k, yi j )]i, j

)
= w∗− lim

t

∑
k

L∨n (x, In ⊗ at
k)L
∨

n (In ⊗ bt
k, y).

Consequently, we can estimate the norm of the term of the third line∥∥∥w∗− lim
t

∑
k

L∨n (x, In ⊗ at
k)L
∨

n (In ⊗ bt
k, y)

∥∥∥≤ ‖0L ◦ B‖cb ≤ ‖u‖‖L∨‖2cb.

In the same manner, one can prove that the norm of the term in the fourth line is
bounded by ‖u‖‖L∨‖2cb. For the term in the fifth line, note that its (i, j)-entry is

w∗− lim
t

∑
k

n∑
p=1

(
L(at

k)L(b
t
k xi p ypj )− L(xi pat

k)L(b
t
k ypj )

)
∈N .

But u is a normal virtual h-diagonal, so for any i and p,

w∗− lim
t
(xi p · ut − ut · xi p)= 0,

hence for any i, j, p,

w∗− lim
t

(∑
k

xi p · at
k ⊗ bt

k · ypj −
∑

k

at
k ⊗ bt

k · xi p ypj

)
= 0.
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The bilinear map
(x, y) ∈M×M 7→ L(x)L(y) ∈N

extends to a w∗-continuous map, consequently the term in the fifth line is 0. Analo-
gously, the term in the sixth line is also 0. Finally we obtain

(3-4) ‖(L + R)∨‖cb ≤ 2‖u‖‖L∨‖2cb+‖R‖
2
cb ≤ (2‖u‖+‖u‖

2
‖L‖2cb)‖L

∨
‖

2
cb.

Now we are in position to follow the induction of [Johnson 1988] with cb-norms
instead of norms (for the reader’s convenience, we reproduce it here). The important
point is that each Lq (and thus each Rq ) defined below is w∗-continuous. Define

(3-5) δ =
ε

4‖u‖+ 8µ2‖u‖2
.

Suppose that ‖L∨‖cb ≤ δ. Inductively, we define a sequence of linear maps from
M into N by L0 = L and R0 = R, and for q ≥ 0,

Lq+1
= Lq

+ Rq and Rq+1( · )=3Lq+1(u⊗ · ).

We also define µq = (2− 2−q)µ and δq = 2−qδ. By induction, we prove that
‖(Lq)∨‖cb ≤ δq and ‖Lq

‖cb ≤µq , for all q . It is obvious for q = 0. Then using the
inequality (3-4) above, we have

‖(Lq+1)∨‖cb ≤ (2‖u‖+‖u‖2µ2
q)δ

2
q ≤ δq+1,

and using (3-2) to majorize the cb-norm of Rq, we obtain

‖Lq+1
‖cb ≤ µq +‖u‖µqδq ≤ µq+1,

(the last inequality coming from the fact that ‖u‖δ ≤ 4−1). Consequently,

‖Rq
‖cb ≤ ‖u‖‖Lq

‖cb ‖(Lq)∨‖cb ≤ 2‖u‖µδq ,

so
∑

q≥0 Rq converges in cb-norm. We can define

π = L +
∑
q≥0

Rq ,

in other words π = limq Lq, so π is w∗-continuous. Hence π∨ = limq(Lq)∨, but
we proved that ‖(Lq)∨‖cb ≤ δq , so π is multiplicative. Moreover,

‖π − L‖cb = ‖
∑
q≥0

Rq
‖cb ≤ 4‖u‖µδ < ε. �

Remark 3.3. One important point which does not appear in the statement of the
previous theorem is that δ is an explicit function of µ, ε and ‖u‖; see (3-5).
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4. Neighboring representations

We now show that two representations of a dual operator algebra, admitting a
normal virtual h-diagonal, which are close enough in cb-norm are necessarily
similar. Apparently, this phenomena is well known to Banach algebraists (see,
e.g., Chapter 8 of [Runde 2002]). We give here a quick proof for dual operator
algebras. This proposition will enable us to perform the third step mentioned in the
Introduction. If S ∈B(H) is an invertible operator, we denote by AdS the similarity
implemented by S.

Proposition 4.1. Let M be a unital dual operator algebra. We suppose that M
has a normal virtual h-diagonal u ∈M ⊗σh M. Let π1 and π2 be two unital
w∗-continuous completely bounded representations on the same Hilbert space K. If
‖π1−π2‖cb< ‖u‖−1 max{‖π1‖

−1
cb , ‖π2‖

−1
cb }, then there exists an invertible operator

S in the w∗-closed algebra generated by π1(M)∪π2(M) such that π1 = AdS ◦π2.

Proof. Let π1, π2 be as above. For two completely bounded w∗-continuous linear
maps F,G :M→ B(K ), we denote (with notation of Sections 2B and 2C)

9F,G =mσh ◦(F ⊗σh G),

which is a completely bounded w∗-continuous linear map defined on M⊗σh M.
Now, define

S =9π1,π2(u) ∈ B(K ).

As u ∈M⊗σhM, there is a net (ut)t in M⊗M converging to u in the w∗-topology
of M⊗σh M. For any t , there are finite families (at

k)k, (b
t
k)k of elements in M

such that
ut =

∑
k

at
k ⊗ bt

k .

Hence, S = w∗− limt
∑

k π1(at
k)π2(bt

k). Let m ∈M, then

π1(m)S = π1(m).w∗− lim
t

∑
k

π1(at
k)π2(bt

k)

= w∗− lim
t

∑
k

π1(mat
k)π2(bt

k)

= w∗− lim
t
9π1,π2(m · ut)

=9π1,π2(m · u).

Analogously, we can show that

Sπ2(m)=9π1,π2(u ·m).

But u is a normal virtual h-diagonal, so m · u = u ·m, hence

π1(m)S = Sπ2(m).
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To conclude, we just need to prove that S is invertible. Without loss of generality
we can assume that ‖π1−π2‖cb < ‖u‖−1

‖π1‖
−1
cb . As above, we have 9π1,π1(u)=

w∗ − limt
∑

k π1(at
k)π1(bt

k). Using the condition (C2) defining a normal virtual
h-diagonal, we obtain

9π1,π1(u)=w
∗
− lim

t

∑
k

π1(at
kbt

k)= π1

(
w∗− lim

t

∑
k

at
kbt

k

)
=π1(mσh(u))= π1(1)= IK .

Consequently,

‖S− IK‖ = ‖9π1,π2(u)−9π1,π1(u)‖ = ‖9π1,π2−π1(u)‖

≤ ‖u‖‖π1−π2‖cb‖π1‖cb < 1. �

5. Proof of the main theorems

We start this section with a very simple lemma that we will use repeatedly in the
proof of the next theorem; we just sketch the proof. Recall that T∨ denotes the
bilinear map from M ×M into N defined by T∨(x, y) = T (xy) − T (x)T (y).
Also in this section, we denote by idA the identity representation of a concretely
represented operator algebra A.

Lemma 5.1. Let A,B ⊂ B(H) be two operator algebras and T : A→ B be a
completely bounded linear map. Then:

(i) ‖T∨‖cb ≤ (2+‖T ‖cb)‖T − idA‖cb.

(ii) If ‖T − idA‖cb < 1, then T is injective and has closed range. Moreover, if
there exists α ∈ [0, 1) such that for any y in the unit ball of B, there is x in A
satisfying ‖T (x)− y‖ ≤ α, then T is bijective and

‖T−1
‖cb ≤

1
1−‖T − idA‖cb

.

Proof. Let x, y be in the unit ball of Mn(M), then (i) follows from the decomposition

(T∨)n(x, y)= Tn(xy)− Tn(x)Tn(y)

= Tn(xy)− xy+ xy− xTn(y)+ xTn(y)− Tn(x)Tn(y).

The first assertion of (ii) follows from

‖Tn(x)‖ ≥
∣∣‖Tn(x)− x‖−‖x‖

∣∣≥ (1−‖T − idA‖cb)‖x‖.

The surjectivity of T is proved by induction. Let y be in the unit ball of N, then for
any integer j, we can find t1, . . . , t j in the range of T such that

‖y− (t1+ t2+ · · ·+ t j )‖ ≤ α
j .

As α < 1, we conclude that y belongs to the closure of the range of T. �
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Note that, in the following theorem, M is just assumed to be a dual operator
algebra, but we require a near cb-inclusion of M into N (see Section 2A).

Theorem 5.2. Let M,N ⊂ B(H) be two unital w∗-closed operator algebras. We
suppose that N is an injective von Neumann algebra. If N ⊂1 M and M⊆γcb N,
with γ < 1

164 , then there exists an invertible operator S in the w∗-closed algebra
generated by M∪N such that SMS−1

=N.

Proof. Since N is injective, there is a completely contractive projection P from
B(H) onto N. Denote T = P|M. Let x be in the unit ball of Mn(M), then there is
y in Mn(N ) such that ‖x − y‖ ≤ γ .

‖Tn(x)− x‖ = ‖Tn(x − y)− (x − y)‖cb ≤ 2γ,

hence
‖T − idM‖cb ≤ 2γ < 1.

Let us prove that T is surjective. Since N ⊂1 M, there is γ ′< 1 such that N ⊆γ ′M.
Let y be in the unit ball of N, then there exists x in M such that ‖y − x‖ ≤ γ ′,
therefore from Lemma 5.1(ii), T is a linear cb-isomorphism and

(5-1) ‖T−1
‖cb ≤

1
1−2γ

.

The problem is that T is not necessarily w∗-continuous, so we are going to consider
the normal of T−1 (see [Tomiyama 1959], we denote with an exponent n the normal
part of a linear map defined on N ). Note first that

(5-2) ‖T−1
− idN‖cb ≤ ‖T−1

‖cb‖T − idM‖cb ≤
2γ

1−2γ
.

Let V = (T−1)n :N →M be the normal part of T−1. Using Lemma 5.1(ii) again,
let us show that V is a completely bounded w∗-continuous linear isomorphism from
N onto M. As taking the normal part is a completely contractive operation, we have

(5-3) ‖V − idN‖cb = ‖(T−1
− idN )

n
‖cb ≤ ‖T−1

− idN‖cb ≤
2γ

1−2γ
,

thus V is an injective map and has closed range. Now let y be in the unit ball of M,
and pick x in N such that ‖x − y‖ ≤ γ . Thus ‖x‖ ≤ 1+ γ and

‖V (x)− y‖ ≤ ‖V (x)− x‖+‖x − y‖

≤
2γ

1−2γ
(1+ γ )+ γ

≤
5γ

1−2γ
< 1,

so V is surjective.
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In order to apply Theorem 3.2, we need to unitize V. From equation (5-3),
‖V (1)− 1‖ ≤ (2γ )/(1− 2γ ) < 1, hence V (1) is invertible in M and

(5-4) ‖V (1)−1
‖ ≤

1
1−‖V (1)−1‖

≤
1−2γ
1−4γ

.

Denote L = V (1)−1V, so L is a unital w∗-continuous completely bounded isomor-
phism from N onto M and from (5-1) we have

(5-5) ‖L‖cb ≤ ‖V (1)−1
‖‖V ‖cb ≤ ‖V (1)−1

‖‖T−1
‖cb ≤

1
1−4γ

.

Let us compute the norm of L∨, the defect of multiplicativity of L (see Section 3 for
notation). Fix n, let x be in unit ball of Mn(N ), then from (5-3) and (5-4) we obtain

‖Ln(x)− x‖ ≤ ‖In ⊗ V (1)−1(Vn(x)− x)‖+‖In ⊗ V (1)−1x − x‖

≤ ‖V (1)−1
‖‖V − idN‖cb+‖V (1)−1

‖‖V (1)− 1‖

≤
4γ

1−4γ
,

which means that

(5-6) ‖L − idN‖cb ≤
4γ

1−4γ
.

Therefore, by Lemma 5.1(i) and equation (5-5) we obtain

‖L∨‖cb ≤ (2+‖L‖cb)‖L − idN ‖cb ≤
12γ

(1−4γ )2
.

We want to apply Theorem 3.2 to L . Put

µ=
1

1−4γ
and δ =

12γ
(1−4γ )2

.

As N is an injective von Neumann algebra, we can find a normal virtual h-diagonal
u of norm 1 [Effros 1988; Effros and Kishimoto 1987], and thus (see (3-5)) let

ε = δ(4‖u‖+ 8µ2
‖u‖2)= 12γ

(1−4γ )2

(
4+ 8

(1−4γ )2

)
.

We can then apply Theorem 3.2 to L and find a unital w∗-continuous completely
bounded homomorphism π :N →M such that

‖L −π‖cb ≤ ε.

Consequently, from (5-6),

‖π − idN‖cb ≤ ‖π − L‖cb+‖L − idN‖cb

≤ ε+
4γ

1−4γ
,
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and this last quantity is strictly smaller than 1, because γ < 1
164 . Therefore, we

can apply Proposition 4.1 to π and idN and find an invertible operator S in the
w∗-closed algebra generated by M∪N such that

AdS ◦π = idN

(in particular π is injective and has closed range). To achieve the proof, it is
sufficient to prove that the range of π is M. Let y be in the unit ball of M, then

‖π(L−1(y))− y‖ ≤ ‖π − L‖cb‖L−1
‖cb,

so by Lemma 5.1(ii), we just need to check that this last quantity is strictly smaller
than 1. From (5-6)

‖L−1
‖cb ≤

1
1−‖L−idN ‖cb

≤
1−4γ
1−8γ

,

it follows that
‖π − L‖cb ‖L−1

‖cb ≤
1−4γ
1−8γ

ε

which is strictly smaller than 1, because γ < 1
164 . �

At this point, we want to get rid of the near cb-inclusion hypothesis appearing in
the previous theorem. The task is to find conditions of “automatic near cb-inclusion”
on the algebra M. More explicitly, under which conditions does a near inclusion
M⊆γ N automatically imply a near cb-inclusion? For C∗-algebras, Christensen
isolated property Dk which ensures such an “automatic near cb-inclusion” result.
Recall that a C∗-algebra A has property Dk if for any unital ∗-representation (π, K )
one has

∀x ∈ B(K ), d(x, π(A)′)≤ k‖δ(x)|π(A)‖,

where d denotes the usual distance between subsets and δ(x) denotes the inner
derivation implemented by x on B(K ). It is well known that amenable C∗-algebras
(or injective von Neumann algebras) have D1, the next easy lemma is the nonselfad-
joint analog of this fact (it also works for amenable Banach algebras).

Lemma 5.3. Let M be a unitalw∗-closed operator admitting a normal virtual diag-
onal u ∈M⊗̂σM. Then, for any unital w∗-continuous contractive representation
(π, K ) of M which satisfies π(M)= π(M)

w∗

, we have

(5-7) ∀x ∈ B(K ), d(x, π(M)′)≤ ‖u‖‖δ(x)|π(M)‖.

Proof. Let us denote N = π(M) ⊂ B(K ) and v = π⊗̂σπ(u) ∈ N ⊗̂σN, hence
‖v‖≤ ‖u‖. Since π has w∗-closed range, v is a normal virtual diagonal for the dual
operator algebra N. Note that B(K ) is obviously a normal dual Banach N -bimodule
(in the sense of [Runde 2002, Definition 4.4.6]). Now, let x be in B(K ) and consider
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the w∗-continuous bounded derivation D = δ(x)|N : N → B(K ). Adapting the
proof of Johnson’s theorem on characterization of amenability by virtual diagonals,
we know that there is ϕ ∈ B(K ) such that D = δ(ϕ)|N . Actually ϕ = D⊗̂σ idN (v),
so ‖ϕ‖ ≤ ‖D‖‖v‖. As D = δ(x)|N = δ(ϕ)|N , we have x −ϕ ∈N ′. Therefore,

d(x, π(M)′)= d(ϕ,N ′)≤ ‖ϕ‖ ≤ ‖D‖‖v‖ ≤ ‖u‖‖δ(x)|π(M)‖,

which ends the proof. �

Lemma 5.4. Let M ⊂ B(H) be a unital w∗-closed operator algebra admitting
a normal virtual diagonal u ∈ M⊗̂σM. Let N be an injective von Neumann
subalgebra of B(H). Then, for any γ > 0, M⊆γ N implies M⊆4‖u‖γ

cb N.

Proof. This follows from the previous lemma and the first lines of the proof of
Theorem 3.1 in [Christensen 1980], with D =Mn (for arbitrary n), with k = ‖u‖
(by (5-7)) and the 3

2 must replaced by 1 because N is injective, so we get 4‖u‖γ
instead of 6kγ . �

Now, using the previous lemma and Theorem 5.2 above, we can prove Theorem 2.
This question of “automatic near cb-inclusion” can be thought of as an analog

of the “automatic complete boundedness” question for homomorphisms (or equiva-
lently Kadison’s similarity problem). For this problem, Pisier defined the notion of
length for operator algebras (see [Pisier 1998; 2000; 2001a; 2001b; 2007]). The
connection between this notion of length and property Dk is now well known for
C∗-algebras, see [Christensen et al. 2010a]. As we are working with dual operator
algebras, C. Le Merdy’s notion of length (or degree) denoted d∗ in [Le Merdy 2000]
is more appropriate (we call this quantity normal length in the following corollary).

Corollary 5.5. Let M,N ⊂ B(H) be two unital w∗-closed operator algebras.
Suppose that M has finite normal length at most d∗ with constant at most C > 0.
We suppose that N is an injective von Neumann algebra. If N ⊂1 M and M⊆γ N,
with γ < (1+ 1/(164C))1/d∗ − 1, then there exists an invertible operator S in the
w∗-closed algebra generated by M∪N such that SMS−1

=N and consequently,
d∗(M)≤ 2.

Proof. If M⊆γ N, then M⊆C((1+γ )d∗−1)
cb N as in Proposition 2.10 in [Christensen

et al. 2010a]. The result follows from the similarity degree characterization of
injectivity for von Neumann algebras in [Pisier 2006]. �

Remark 5.6. As explained in the Introduction, the main benefit of Theorem 2
(compared to Theorem 1) is that we can get rid of the selfadjointness hypothesis
on one of the algebras. It would be very interesting to improve our theorem to
both algebras being nonselfadjoint. More precisely, let M,N ⊂ B(H) be two
unital w∗-closed operator algebras, suppose that M has a normal virtual diagonal
u and that N is the range of a completely bounded projection P. Does there
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exist a continuous function f : [1,∞)2 → [0,∞) with f (1, 1) = 0 such that if
dcb(M,N )< f (‖P‖cb, ‖u‖), then M and N are similar? In our proof of Theorem 2,
the only characterization of injectivity of a von Neumann algebra that we use is
that of being the range of completely contractive projection. This is one advantage
of our proof, because if one wants to positively answer the preceding question,
the only obstruction in our proof is to find a Tomiyama type decomposition (into
normal and singular parts) for nonselfadjoint dual operator algebras admitting a
normal virtual diagonal.
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