## Pacific

Journal of Mathematics

SCALAR CURVATURE AND SINGULAR METRICS

Yuguang Shi and Luen-Fai Tam

# SCALAR CURVATURE AND SINGULAR METRICS 

Yuguang Shi and LuEn-Fai Tam

Let $M^{n}, n \geq 3$, be a compact differentiable manifold with nonpositive Yamabe invariant $\sigma(M)$. Suppose $g_{0}$ is a continuous metric with volume $V\left(M, g_{0}\right)=1$, smooth outside a compact set $\Sigma$, and is in $W_{\text {loc }}^{1, p}$ for some $p>n$. Suppose the scalar curvature of $g_{0}$ is at least $\sigma(M)$ outside $\Sigma$. We prove that $g_{0}$ is Einstein outside $\Sigma$ if the codimension of $\Sigma$ is at least 2 . If in addition, $g_{0}$ is Lipschitz then $g_{0}$ is smooth and Einstein after a change of the smooth structure. If $\boldsymbol{\Sigma}$ is a compact embedded hypersurface, $g_{0}$ is smooth up to $\Sigma$ from two sides of $\Sigma$, and if the difference of the mean curvatures along $\Sigma$ at two sides of $\Sigma$ has a fixed appropriate sign, then $g_{0}$ is also Einstein outside $\Sigma$. For manifolds with dimension between 3 and 7 , without a spin assumption we obtain a positive mass theorem on an asymptotically flat manifold for metrics with a compact singular set of codimension at least 2 .

## 1. Introduction

There are two celebrated results on manifolds with nonnegative scalar curvature. The first result is on compact manifolds. It was proved by Schoen and Yau [1979a; 1979c] that any smooth metric on a torus $T^{n}, n \leq 7$, with nonnegative scalar curvature must be flat. Later, the result was proved to be true for all $n$ by Gromov and Lawson [1983]. The second result is the positive mass theorem on noncompact manifolds. Schoen and Yau [1979b; 1981; Schoen 1989] proved that the Arnowitt-Deser-Misner (ADM) mass of each end of an $n$-dimensional asymptotically flat (AF) manifold with $3 \leq n \leq 7$ with nonnegative scalar curvature is nonnegative and if the ADM mass of an end is zero, then the manifold is isometric to the Euclidean space. Under the additional assumption that the manifold is spin, the same result is still true and was proved by Witten [1981]; see also [Parker and Taubes 1982; Bartnik 1986]. In the two results the metrics are assumed to be smooth.

There are many results on positive mass theorem for nonsmooth metrics. Miao [2002] and the authors [Shi and Tam 2002] studied and proved positive mass

[^0]theorems for metrics with corners. The metrics are smooth away from a compact hypersurface, which are Lipschitz and satisfy certain conditions on the mean curvatures of the hypersurface. The result was used to prove the positivity of the Brown-York quasilocal mass [Shi and Tam 2002]. Lee [2013] considered a positive mass theorem for metrics with bounded $C^{2}$ norm and are smooth away from a singular set with codimension greater than $n / 2$, where $n$ is the dimension of the manifold. On the other hand, McFeron and Székelyhidi [2012] were able to prove Miao's result using Ricci flow and Ricci-DeTurck flow, which was studied in detail by Simon [2002]. There is a positive mass theorem for spin manifolds or manifolds with dimension $n$ less than eight obtained by Grant and Tassotti [2014] under the assumptions that the metric is continuous and in Sobolev space $W_{\mathrm{loc}}^{2, n / 2}$. More recently, Lee and LeFloch [2015] were able to prove for spin manifolds, under rather general conditions, a positive mass theorem for metrics which may be singular. Their theorem can be applied to all previous results for nonsmooth metrics under the additional assumption that the manifold is spin.

Motivated by these studies of singular metrics on AF manifolds, we want to understand singular metrics on compact manifolds. One of the questions is to see if there are nonflat metrics with nonnegative scalar curvature on $T^{n}$ which may be singular somewhere. Another question can be described as follows. It is now well known that in every conformal class of smooth metrics on a compact manifold without boundary there is a metric with constant scalar curvature; see [Yamabe 1960; Trudinger 1968; Aubin 1976a; 1976b; Schoen 1984]. One motivation for the result is to obtain Einstein metric. It is well known that if a smooth metric on a compact manifold attains the Yamabe invariant and if the invariant is nonpositive, then the metric is Einstein. See [Schoen 1989, pp. 126-127]. In this work, we will study the question whether this last result is still true for nonsmooth metrics.

Let us recall the definition of Yamabe invariant, which is called $\sigma$-invariant in [Schoen 1989]. Let $\mathcal{C}$ be a conformal class of smooth Riemannian metrics $g$ on a smooth compact manifold $M^{n}$; then the Yamabe constant of $\mathcal{C}$ is defined as

$$
Y(\mathcal{C})=\inf _{g \in \mathcal{C}} \frac{\int_{M} \mathcal{S}_{g} d v_{g}}{(V(M, g))^{1-2 / n}},
$$

where $\mathcal{S}_{g}$ is the scalar curvature and $V(M, g)$ is the volume of $M$ with respect to $g$. The Yamabe invariant is defined as

$$
\sigma(M)=\sup _{\mathcal{C}} Y(\mathcal{C}) .
$$

The supremum is taken among all conformal classes of smooth metrics. It is finite; see [Aubin 1976a]. If $g$ attains $\sigma(M)>0$, then in general it is still unclear whether $g$ is Einstein or not; see [Macbeth 2017].

To answer the question on Einstein metrics, let $M^{n}$ be a compact smooth manifold without boundary and let $g_{0}$ be a continuous Riemannian metric on $M$ with $V\left(M, g_{0}\right)=1$ such that it is smooth outside a compact set $\Sigma$. The first case is that $\Sigma$ has codimension at least 2 and $g_{0}$ is in $W_{\text {loc }}^{1, p}$ for some $p>n$ (see Sections 3 and 5 for more precise definitions).

Theorem 1.1. Let $\left(M^{n}, g_{0}\right)$ be as above. Suppose $\sigma(M) \leq 0$ and suppose the scalar curvature of $g_{0}$ outside $\Sigma$ is at least $\sigma(M)$. Then $g_{0}$ is Einstein outside $\Sigma$. If in addition $g_{0}$ is Lipschitz, then after changing the smooth structure, $g_{0}$ is smooth and Einstein.

In the case that $\Sigma$ is a compact embedded hypersurface, as in [Miao 2002] we assume that near $\Sigma, g_{0}=d t^{2}+g_{ \pm}(z, t), z \in \Sigma, t \in(-\epsilon, \epsilon)$ such that $(t, z)$ are smooth coordinates and $g_{-}(\cdot, 0)=g_{+}(\cdot, 0)$, where $g_{+}, g_{-}$are defined on the neighborhood of $\Sigma$ where $t>0$ and $t<0$ respectively and are smooth up to $\Sigma$. Moreover, with respect to the unit normal $\frac{\partial}{\partial t}$ the mean curvature $H_{+}$of $\Sigma$ with respect to $g_{+}$and the mean curvature $H_{-}$of $\Sigma$ with respect to $g_{-}$satisfies $H_{-} \geq H_{+}$. Under these assumptions, we have:

Theorem 1.2. Let $\left(M^{n}, g_{0}\right)$ be as above with $V\left(m, g_{0}\right)=1$. Suppose $\sigma(M) \leq 0$ and suppose the scalar curvature of $g_{0}$ outside $\Sigma$ is at least $\sigma(M)$. Then $g_{0}$ is Einstein outside $\Sigma$. Moreover, $H_{+}=H_{-}$.

Note that it is easy to construct examples so that the theorem is not true if the assumption $H_{-} \geq H_{+}$is removed.

In the process of proving the theorems, one also obtains the following: In the case that $M^{n}$ is $T^{n}$, under the regularity assumptions in Theorem 1.1 or Theorem 1.2 and if $g_{0}$ has nonnegative scalar curvature outside $\Sigma$, then $g_{0}$ is flat outside $\Sigma$.

The method of proof of the above results can also be adapted to AF manifolds. We want to discuss the positive mass theorem with singular metric on an AF manifold with dimension $3 \leq n \leq 7$ without assuming that the manifold is spin. We will prove the following:

Theorem 1.3. Let $\left(M^{n}, g_{0}\right)$ be an AF manifold with $3 \leq n \leq 7$, where $g_{0}$ is a continuous metric on $M$ with regularity assumptions as in Theorem 1.1. Suppose $g_{0}$ has nonnegative scalar curvature outside $\Sigma$. Then the ADM mass of each end is nonnegative. Moreover, if the ADM mass of one of the ends is zero, then $M$ is diffeomorphic to $\mathbb{R}^{n}$ and is flat outside $\Sigma$.

We should mention that all the results mentioned above for nonsmooth metrics, all the metrics are assumed to be continuous. On the other hand, one can construct an example of AF metric with a cone singularity and nonnegative scalar curvature and with negative ADM mass; see Section 2. One can also construct examples of
metrics on compact manifolds with a cone singularity so that Theorem 1.1 is not true. In these examples, the metrics are not continuous.

The structure of the paper is as follows. In Section 2, we construct examples which are related to results in later sections; in Section 3 we obtain some estimates for the Ricci-DeTurck flow; in Section 4 we use the Ricci-DeTurck flow to approximate singular metrics; in Sections 5 and 6 we prove Theorems 1.1 and 1.2; in Section 7 we prove Theorem 1.3. In this work, the dimension of any manifold is assumed to be at least three. We will also use the Einstein summation convention.

## 2. Examples of metrics with cone singularities

In previous results on positive mass theorems on AF manifolds with singular metrics mentioned in Section 1, the metrics are all assumed to be continuous. To understand this condition on continuity and to motivate our study, in this section, we construct some examples with cone singularities which are related to the study in the later sections.

The following lemma is standard. See [Petersen 1998].
Lemma 2.1. Consider the metric $g=d r^{2}+\phi^{2}(r) h_{0}$ on $\left(0, r_{0}\right) \times \mathbb{S}^{n-1}$, where $h_{0}$ is the standard metric of $\mathbb{S}^{n-1}, n \geq 3$, and $\phi$ is a smooth positive function on $\left(0, r_{0}\right)$. Then the scalar curvature of $g$ is given by

$$
\mathcal{S}=(n-1)\left[-\frac{2 \phi^{\prime \prime}}{\phi}+(n-2) \frac{1-\left(\phi^{\prime}\right)^{2}}{\phi^{2}}\right]
$$

Suppose $\phi=\alpha r^{\beta}$, with $\alpha, \beta>0$. Then $\mathcal{S}>0$ if $\alpha<1, \beta=1$ or if $0<\beta \leq 2 / n$. In both cases, the metric is not continuous up to $r=0$. If $\alpha>1, \beta=1$, then $\mathcal{S}<0$ for $r$ small enough.

We can construct asymptotically flat manifolds with nonnegative scalar curvature defined on $\mathbb{R}^{3} \backslash\{0\}$ such that the metric behaves like $d r^{2}+(\alpha r)^{2} h_{0}$ near the origin for some $0<\alpha<1$ with positive mass.

Proposition 2.2. Let $0<\epsilon<\frac{1}{2}$ and let $\eta(x)=\eta(r)$, with $r=|x|$, be a smooth function on $\mathbb{R}^{3} \backslash\{0\}$ such that

$$
\begin{cases}\eta(r)=-\epsilon(1-\epsilon) r^{-\epsilon-2} & \text { if } 0<r \leq 1 \\ \eta(r)<0 & \text { if } 1 \leq r \leq 2 \\ \eta(r)=0 & \text { if } r \geq 2\end{cases}
$$

Let $\phi$ be the function defined on $\mathbb{R}^{3} \backslash\{0\}$ with

$$
\phi(r)=\int_{1}^{r} \frac{1}{s^{2}}\left(\int_{0}^{s} t^{2} \eta(t) d t\right) d s
$$

Then there are constants $a, b>0$ such that if

$$
u=\phi+b+\frac{a}{2}+1
$$

then $u>0$. Moreover, if $g=u^{4} g_{e}$, where $g_{e}$ is the standard Euclidean metric, then near infinity,

$$
g=\left(1+\frac{a}{r}\right)^{4} g_{e},
$$

and near $r=0$,

$$
g=d \rho^{2}+\left((1-2 \epsilon)^{2} \rho^{2}+O\left(\rho^{2+\delta}\right)\right) h_{0}
$$

for some $\delta>0$, where

$$
\rho=\int_{0}^{r} u^{2}(t) d t .
$$

The metric $g$ has nonnegative scalar curvature and has zero scalar curvature outside a compact set. Moreover, the end near infinity is asymptotically flat in the sense of Definition 7.1 in Section 7, and has positive mass $2 a$.

Proof. Let $\Delta_{0}$ be the Euclidean Laplacian. Then one can check that

$$
\Delta_{0} \phi=\eta \leq 0 .
$$

For $0<r \leq 1$,

$$
\phi(r)=r^{-\epsilon}-1 .
$$

For $r \geq 2$, let

$$
a=-\int_{0}^{r} s^{2} \eta(s) d s>0,
$$

and

$$
b=-\int_{1}^{2} \frac{1}{s^{2}}\left(\int_{0}^{s} \tau^{2} \eta(\tau) d \tau\right) d s>0 .
$$

Then

$$
\begin{aligned}
\phi(r) & =-b+\int_{2}^{r} \frac{1}{s^{2}}\left(\int_{0}^{s} t^{2} \eta(t) d t\right) d s \\
& =-b-a \int_{2}^{r} \frac{1}{s^{2}} d s \\
& =-b-\frac{a}{2}+\frac{a}{r} .
\end{aligned}
$$

Hence if $u=\phi+b+a / 2+1$, then $\Delta_{0} u=\eta \leq 0$. Since $u \rightarrow \infty$ as $r \rightarrow 0$ and $u \rightarrow 1$ as $r \rightarrow \infty, u>0$ by the strong maximum principle. The metric

$$
g=u^{4} g_{e}
$$

is defined on $\mathbb{R}^{3} \backslash\{0\}$, has nonnegative scalar curvature and has zero scalar curvature near infinity. $g$ is also asymptotically flat. Near $r=0$,

$$
u=b+\frac{a}{2}+r^{-\epsilon} .
$$

Since $0<\epsilon<\frac{1}{2}$, we let

$$
\rho=\int_{0}^{r} u^{2}(t) d t=\frac{1}{(1-2 \epsilon)} r^{1-2 \epsilon}+O\left(r^{1-\epsilon}\right) .
$$

So

$$
\rho^{2}=\frac{1}{(1-2 \epsilon)^{2}} r^{2-4 \epsilon}+O\left(r^{2-3 \epsilon}\right)
$$

Hence near $r=0$,

$$
\begin{aligned}
g & =d \rho^{2}+u^{4} r^{2} h_{0} \\
& =d \rho^{2}+\left(r^{2-4 \epsilon}+O\left(r^{2-3 \epsilon}\right)\right) h_{0} \\
& =d \rho^{2}+\left((1-2 \epsilon)^{2} \rho^{2}+O\left(r^{2-3 \epsilon}\right)\right) h_{0} \\
& =d \rho^{2}+\left(\alpha^{2} \rho^{2}+O\left(r^{2-3 \epsilon}\right)\right) h_{0},
\end{aligned}
$$

where $\alpha=1-2 \epsilon$. Note that $r^{2-3 \epsilon}=O\left(\rho^{2+\delta}\right)$ for some $\delta>0$.
The following example is the type of singularity which is called zero area singularity in [Bray and Jauregui 2013].

Proposition 2.3. Let $m>0$ and let $\phi=1-2 m / r$. Then the metric

$$
g=\phi^{4} g_{e}
$$

is asymptotically flat defined on $r>2 m$ in $\mathbb{R}^{3}$, with zero scalar curvature and with negative mass $-m$. Moreover, near $r=2 m$,

$$
g=d \rho^{2}+c \rho^{4 / 3}\left(1+O\left(\rho^{2 / 3}\right)\right) h_{0}
$$

for some $c>0$, where

$$
\rho=\int_{0}^{r-2 m} \phi^{2}(t+2 m) d t
$$

Hence near $\rho=0$ the metric is asymptotically of the form as in Lemma 2.1 with $\beta=\frac{2}{3}$.
Proof. We only need to consider $g$ near $r=2 m$. The rest is well known. Let $t=r-2 m, r>2 m$. Then

$$
\tilde{\phi}(t)=\phi(t+2 m)=\frac{t}{t+2 m}=\frac{t}{2 m}\left(1-\frac{t}{2 m}+\frac{t^{2}}{4 m^{2}}+O\left(t^{3}\right)\right)
$$

and

$$
\rho=\int_{0}^{t} \tilde{\phi}^{2}(s) d s=\int_{0}^{t} \frac{s^{2}}{(s+2 m)^{2}} d s
$$

Note that as $r \rightarrow 2 m, \rho \rightarrow 0$. In terms of $\rho$, near $\rho=0$,

$$
g=d \rho^{2}+\phi^{4} r^{2} h_{0}
$$

Near $\rho=0$,

$$
\begin{aligned}
\phi^{4} r^{2} & =\frac{t^{4}}{(t+2 m)^{4}}(t+2 m)^{2} \\
& =c \rho^{4 / 3}\left(1+O\left(\rho^{2 / 3}\right)\right)
\end{aligned}
$$

for some $c>0$.
We can also construct a conical metric on $T^{3} \backslash\{$ a point \}, with nonnegative scalar curvature and with positive scalar curvature somewhere.

First, we have
Proposition 2.4. Let $m>0$. There is a metric $g$ on $\mathbf{R}^{3} \backslash B(2 m)$ such that
(i) the scalar curvature $R$ is nonnegative and $R>0$ somewhere;
(ii) there exist $r_{0}$ and $r_{1}$ with $r_{1}>r_{0}>2 m$ such that $g=(1-2 m / r)^{4} g_{e}$ for any $r \in\left(2 m, r_{0}\right)$ and $g=g_{e}$ for any $r \geq r_{1}$, where $g_{e}$ is the Euclidean metric.
Proof. Let $r_{1}>r_{0}>2 m$ to be chosen later. Let $\eta(r)$ be a smooth nonincreasing function with

$$
\eta(r)= \begin{cases}2 m, & 2 m \leq r \leq r_{0}  \tag{2-1}\\ 0, & r \geq r_{1}\end{cases}
$$

For any $\rho \geq 2 m$, let

$$
y(\rho)=\int_{2 m}^{\rho} \frac{\eta(r)}{r^{2}} d r
$$

By choosing suitable $r_{0}, r_{1}$, we may get $y(\rho)=1$ for any $\rho \geq r_{1}$; then we see that

$$
y(r)= \begin{cases}1-2 m / r, & 2 m \leq r \leq r_{0}  \tag{2-2}\\ 1, & r \geq r_{1}\end{cases}
$$

We claim that

$$
\Delta_{0} y \leq 0 \quad \text { on } \mathbb{R}^{3} \backslash B_{2 m}
$$

here $\Delta_{0}$ is the standard Laplace operator on $\mathbb{R}^{3}$. By a direct computation, we see that

$$
\begin{equation*}
\Delta_{0} y=y^{\prime \prime}+\frac{2}{r} y^{\prime}=r^{-2}\left(r^{2} y^{\prime}\right)^{\prime}=r^{-2} \eta^{\prime} \leq 0 \tag{2-3}
\end{equation*}
$$

For any $x \in \mathbb{R}^{3} \backslash B_{2 m}$, let $u(x)=y(|x|)$; then $g=u^{4}\left(d r^{2}+r^{2} h_{0}\right)$ is the required metric.

Suppose $T^{3}(r)$ is a flat torus, by taking $r$ large enough we may glue ( $B_{r} \backslash B_{2 m}, g$ ) with $T^{3}(r) \backslash B_{r}$ directly. As in Proposition 2.3, near $r=2 m$, the metric can be considered as a metric with cone singularity. The question is whether we have a metric on $n$-torus which has a cone singularity of the form $d r^{2}+\alpha^{2} r^{2} h_{0}$ with $0<\alpha<1$ and with nonnegative scalar curvature. This will be answered in Section 4. The problem can be reduced to the study of singular metrics on $T^{n}$ with nonnegative scalar curvature.

## 3. Gradient estimates for solutions to the $\boldsymbol{h}$-flow

We want to use the Ricci-DeTurck flow to deform a singular metric to a smooth one. We need some basic facts about the flow.

Let $\left(M^{n}, h\right)$ be a complete manifold without boundary. We assume that the curvature of $h$ and its covariant derivatives are bounded:

$$
\begin{equation*}
\left|\widetilde{\nabla}^{(i)} \widetilde{\operatorname{Rm}}\right| \leq k_{i} \tag{3-1}
\end{equation*}
$$

for all $3 \geq i \geq 0$. Here $\widetilde{\nabla}$ is the covariant derivative with respect to $h$ and $\widetilde{\operatorname{Rm}}$ is the curvature tensor of $h$. A smooth family of metrics $g(t)$ on $M \times(0, T], T>0$, is said to be a solution to the $h$-flow if $g(t)$ satisfies

$$
\begin{align*}
& \frac{\partial}{\partial t} g_{i j}=g^{\alpha \beta} \widetilde{\nabla}_{\alpha} \widetilde{\nabla}_{\beta} g_{i j}-g^{\alpha \beta} g_{i p} h^{p q} \widetilde{\mathrm{Rm}}_{j \alpha q \beta}-g^{\alpha \beta} g_{j p} h^{p q} \widetilde{\mathrm{Rm}}_{i \alpha q \beta}  \tag{3-2}\\
&+\frac{1}{2} g^{\alpha \beta} g^{p q}\left(\widetilde{\nabla}_{i} g_{p \alpha} \cdot \widetilde{\nabla}_{j} g_{q \beta}+\right. 2 \widetilde{\nabla}_{\alpha} g_{j p} \cdot \widetilde{\nabla}_{q} g_{i \beta}-2 \widetilde{\nabla}_{\alpha} g_{j p} \cdot \widetilde{\nabla}_{\beta} g_{i q} \\
&\left.-2 \widetilde{\nabla}_{j} g_{\alpha p} \cdot \widetilde{\nabla}_{\beta} g_{i q}-2 \widetilde{\nabla}_{i} g_{\alpha p} \cdot \widetilde{\nabla}_{\beta} g_{j q}\right)
\end{align*}
$$

The $h$-flow is closely related to the Ricci flow

$$
\frac{\partial}{\partial t} g=-2 \operatorname{Ric}(g)
$$

Suppose $g_{0}$ is a smooth metric with bounded curvature; then the solution to the $h$-flow with $h=g_{0}$ such that $g(0)=g_{0}$ is the solution to the usual Ricci-DeTurck flow. Using the solution to the Ricci-DeTurck flow, one can obtain a solution to the Ricci flow through a smooth family of diffeomorphisms. Hence $h$-flow can be considered as a generalization of Ricci flow with initial data which may not be smooth.

Let

$$
\begin{equation*}
\square=\frac{\partial}{\partial t}-g^{i j} \widetilde{\nabla}_{i} \widetilde{\nabla}_{j} \tag{3-3}
\end{equation*}
$$

For a constant $\delta>1, h$ is said to be $\delta$ close to a metric $g$ if

$$
\delta^{-1} h \leq g \leq \delta h
$$

Theorem 3.1 [Simon 2002]. There exists $\epsilon=\epsilon(n)>0$ depending only on $n$ such that if $\left(M^{n}, g_{0}\right)$ is an $n$-dimensional compact or noncompact manifold without boundary with continuous Riemannian metric $g_{0}$ which is $(1+\epsilon(n))$ close to a smooth complete Riemannian metric $h$ with curvature bounded by $k_{0}$, then the $h$-flow (3-2) has a smooth solution on $M \times(0, T]$ for some $T>0$ with $T$ depending only on $n, k_{0}$ such that $g(t) \rightarrow g_{0}$ as $t \rightarrow 0$ uniformly on compact sets and such that

$$
\sup _{x \in M}\left|\widetilde{\nabla}^{i} g(t)\right|^{2} \leq \frac{C_{i}}{t^{i}}
$$

for all $i$, where $C_{i}$ depends only on $n, k_{0}, \ldots, k_{i}$ where $k_{j}$ is the bound of $\left|\widetilde{\nabla}^{j} \operatorname{Rm}(h)\right|$. Moreover, $h$ is $(1+2 \epsilon)$ close to $g(t)$ for all $t$. Here and in the following $|\cdot|$ is the norm with respect to $h$.

In the case that $g_{0}$ is smooth, and if $\left|\widetilde{\nabla} g_{0}\right|$ is bounded, then it is also proved in [Simon 2002] that

$$
|\widetilde{\nabla} g(t)| \leq C, \quad\left|\widetilde{\nabla}^{2} g(t)\right| \leq C t^{-1 / 2}
$$

We want to obtain estimates in the case that $g_{0} \in W_{\text {loc }}^{1, p}$ in the sense that $\left|\widetilde{\nabla} g_{0}\right|$ is in $L_{\mathrm{loc}}^{p}$, for $p>n$. We have the following:

Lemma 3.2. Fix $p \geq 2$. There is $b=b(n, p)>0$ depending only on $n$, $p$, with $e^{b} \leq 1+\epsilon(n)$, where $\epsilon(n)$ is the constant in Theorem 3.1, such that if $g_{0}$ is a smooth metric which is $e^{b}$ close to $h$, where $h$ is smooth and satisfies (3-1) for $0 \leq i \leq 2$, then the solution $g(t)$ of the h-flow with initial metric $g_{0}$ on $M \times[0, T]$ described in Theorem 3.1 satisfies the following estimates. There is a constant $C>0$ depending only $n, p, h$ such that for any $x_{0} \in M$ with injectivity radius $\iota\left(x_{0}\right)$ with respect to $h$,

$$
\left|\widetilde{\nabla} g\left(t, x_{0}\right)\right|^{2} \leq \frac{C D}{t^{n /(2 p)}}
$$

for $T>t>0$, where $D$ is a constant depending only $n$, the lower bound of $\iota\left(x_{0}\right)$ and the $L^{2 p}$ norm of $\left|\widetilde{\nabla} g_{0}\right|$ in $B\left(x_{0}, \iota\left(x_{0}\right)\right)$, which is the geodesic ball with respect to $h$.

Proof. Suppose $g_{0}$ is $e^{b}<1+\epsilon(n)$ close to $h$; then for any $\lambda>0, \lambda g_{0}$ is also $e^{b}$ close to $\lambda h$. Moreover, if $g(t)$ is the solution to the $h$-flow, then $\lambda g\left(\frac{1}{\lambda} t\right)$ is a solution to the $\lambda h$-flow. Hence by scaling, we may assume that $k_{0}+k_{1}+k_{2} \leq 1$. The solution $g(t)$ constructed in [Simon 2002] is $e^{2 b}$ close to $h$. Moreover, we may assume that $T \leq 1$.

Denote $\iota\left(x_{0}\right)$ by $\iota_{0}$ and we may assume that $\iota_{0} \leq 1$. In the following $c_{i}$ will denote a constant depending only on $n$. Let $m \geq 2$ be an integer, which will be chosen depending only on $n, p$. Let $b=1 /(2 m)$. First choose $m$ so that $e^{b} \leq 1+\epsilon(n)$. Let $f_{1}=|\widetilde{\nabla} g|$ and $\psi=\left(a+\sum_{i=1}^{n} \lambda_{i}^{m}\right) f_{1}^{2}$ with $a>0$, where $\lambda_{i}$ are the eigenvalues of $g(t)$ with respect to $h$. By choosing $a$ depending only on $n$ and $m$ large enough
depending only on $n$, as in [Shi 1989; Simon 2002] (see also [Huang and Tam 2015, (5.8)]), we have

$$
\begin{equation*}
\square \psi \leq c_{1}-c_{2} m^{2} f_{1}^{4} \tag{3-4}
\end{equation*}
$$

Let $x^{i}$ be normal coordinates in $B\left(x_{0}, \iota_{0}\right)$. Since $k_{0}+k_{1}+k_{2} \leq 1$, by [Hamilton 1995, Corollary 4.11] on $B\left(x_{0}, \iota_{0}\right)$ we have

$$
\begin{cases}\frac{1}{2}|\xi|^{2} \leq h_{i j} \xi^{i} \xi^{j} \leq 2|\xi|^{2} & \text { for } \xi \in \mathbb{R}^{n}  \tag{3-5}\\ \left|D_{x}^{\beta} h_{i j}\right| \leq c_{3} & \text { for all } i, j\end{cases}
$$

where

$$
h_{i j}=h\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)
$$

and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ is a multi-index with $|\beta| \leq 2$ and

$$
D_{x^{k}}=\frac{\partial}{\partial x^{k}}
$$

Let $\eta$ be a smooth function on $[0,1]$ such that $0 \leq \eta \leq 1, \eta(s)=0$ for $s \geq \frac{3}{4}, \eta(s)=1$ for $0 \leq s \leq \frac{1}{2}$. Still denote $\eta\left(|x| / \iota_{0}\right)$ by $\eta(x)$. Then $|\widetilde{\nabla} \eta| \leq c_{4} l_{0}^{-1}$. We have

$$
\begin{aligned}
& \frac{d}{d t} \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p} d v_{h} \\
&= p \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p-1} \psi_{t} d v_{h} \\
& \leq p \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p-1} g^{i j} \widetilde{\nabla}_{i} \widetilde{\nabla}_{j} \psi d v_{h}+p \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p-1}\left(c_{1}-c_{2} m^{2} f_{1}^{4}\right) d v_{h} \\
& \leq-p(p-1) c_{5} \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p-2}|\widetilde{\nabla} \psi|^{2} d v_{h}+p c_{6} \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p-1} f_{1}|\widetilde{\nabla} \psi| d v_{h} \\
&+p c_{7 l_{0}}^{-1} \int_{B\left(x_{0}, \iota_{0}\right)} \eta \eta^{\prime} \psi^{p-1}|\widetilde{\nabla} \psi| d v_{h}+p \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p-1}\left(c_{1}-c_{2} m^{2} f_{1}^{4}\right) d v_{h} \\
& \leq \frac{c_{6}^{2}}{2 c_{5}(p-1)} \int_{B\left(x_{0}, \iota_{0}\right)} f_{1}^{2} \eta^{2} \psi^{p} d v_{h}+\frac{c_{7}^{2}}{2 c_{5}(p-1) \iota_{0}^{2}} \int_{B\left(x_{0}, \iota_{0}\right)}\left(\eta^{\prime}\right)^{2} \psi^{p} d v_{h} \\
&+p \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p-1}\left(c_{1}-c_{2} m^{2} f_{1}^{4}\right) d v_{h} \\
& \leq \frac{c_{8} p}{p-1} \int_{B\left(x_{0}, \iota_{0}\right)} f_{1}^{4} \eta^{2} \psi^{p-1} d v_{h}+\frac{c_{7}^{2}}{2 c_{5}(p-1) \iota_{0}^{2}} \int_{B\left(x_{0}, \iota_{0}\right)}\left(\eta^{\prime}\right)^{2} \psi^{p} d v_{h} \\
&+p \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p-1}\left(c_{1}-c_{2} m^{2} f_{1}^{4}\right) d v_{h}
\end{aligned}
$$

where we have used the fact that $\psi \leq c f_{1}^{2}$ for some constant $c$ depending only on $n$ by the fact that $2 b m=1$ so that $\lambda_{i}^{m} \leq 1$ for all $i$. We have also used the fact that

$$
\begin{aligned}
& c_{6} \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p-1} f_{1}|\widetilde{\nabla} \psi| d v_{h} \\
& \quad \leq \frac{1}{2} c_{5}(p-1) \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p-2}|\widetilde{\nabla} \psi|^{2} d v_{h}+\frac{c_{6}^{2}}{2 c_{5}(p-1)} \int_{B\left(x_{0}, \iota_{0}\right)} f_{1}^{2} \eta^{2} \psi^{p} d v_{h}
\end{aligned}
$$

and

$$
\begin{aligned}
& c_{7} \iota_{0}^{-1} \int_{B\left(x_{0}, \iota_{0}\right)} \eta \eta^{\prime} \psi^{p-1}|\widetilde{\nabla} \psi| d v_{h} \\
& \quad \leq \frac{1}{2} c_{5}(p-1) \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p-2}|\widetilde{\nabla} \psi|^{2} d v_{h}+\frac{c_{7}^{2}}{2 c_{5}(p-1) \iota_{0}^{2}} \int_{B\left(x_{0}, \iota_{0}\right)}\left(\eta^{\prime}\right)^{2} \psi^{p} d v_{h}
\end{aligned}
$$

Hence by choosing $m$ large enough depending only on $n, p$ and if $b=1 /(2 m)$, we have

$$
\frac{d}{d t} \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p} d v_{h} \leq c_{9} p \iota_{0}^{-2}\left(\int_{B\left(x_{0}, \iota_{0}\right)}\left(\eta^{\prime}\right)^{2} \psi^{p} d v_{h}+\int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p-1} d v_{h}\right)
$$

By replacing $\eta$ by $\eta^{q}$ for $q \geq 1$, we may assume that $\left|\eta^{\prime}\right| \leq C \eta^{1-1 / q}$, where $C$ depends only on $q$. Let $q=2 p$, say; then we have

$$
\begin{aligned}
& \frac{d}{d t} \int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p} d v_{h} \\
& \leq C_{1} \iota_{0}^{-2}\left(\int_{B\left(x_{0}, \iota_{0}\right)}\left(\eta^{2}\right)^{1-\frac{1}{2 p}} \psi^{p} d v_{h}+\int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p-1} d v_{h}\right) \\
& \leq C_{1} \iota_{0}^{-2}\left[\left(\int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p} d v_{h}\right)^{1-\frac{1}{2 p}}\left(\int_{B\left(x_{0}, \iota_{0}\right)} \psi^{p} d v_{h}\right)^{\frac{1}{2 p}}+\left(\int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p} d v_{h}\right)^{1-\frac{1}{p}}\right] \\
& \leq C_{2} \iota_{0}^{-2}\left[\left(\int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p} d v_{h}\right)^{1-\frac{1}{2 p}} t^{-1 / 2}+\left(\int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p} d v_{h}\right)^{1-\frac{1}{p}}\right]
\end{aligned}
$$

Here and below upper case $C_{i}$ denote a positive constant depending only on $n, p$ and $h$. Here we have used the estimates in Theorem 3.1. Let

$$
F=\int_{B\left(x_{0}, \iota_{0}\right)} \eta^{2} \psi^{p} d v_{h}+1
$$

Then we have

$$
\frac{d}{d t} F \leq C_{3} l_{0}^{-2} F^{1-\frac{1}{2 p}} t^{-\frac{1}{2}}
$$

Let $I=\int_{B\left(x_{0}, \iota_{0}\right)}\left|\widetilde{\nabla} g_{0}\right|^{2 p} d v_{h}$. We conclude that

$$
F(t) \leq C_{4}\left(I+\iota_{0}^{-4 p}\right)
$$

or

$$
\int_{B\left(x_{0}, \frac{1}{2} \iota_{0}\right)} \psi^{p} d v_{h} \leq C_{5}\left(I+\iota_{0}^{-4 p}\right)
$$

Hence $0<t_{0}<T$, by the mean value equality [Lieberman 1996, Theorem 7.21] applied to (3-4) to $B\left(x_{0}, r\right) \times\left(t_{0}-r^{2}, t_{0}\right)$ with $r=\frac{1}{2} \sqrt{t_{0}}$, we have

$$
\psi^{p}\left(x_{0}, t_{0}\right) \leq C_{6} r^{-n}\left(I+\iota_{0}^{-2 p}+1\right)
$$

From this the result follows.
Assume $2 p>n$ and let $\delta=n /(2 p)$. Let $b$ as in Lemma 3.2. Assume $h$ satisfies (3-1), for $0 \leq i \leq 2$.

Lemma 3.3. Let $x_{0} \in M$ and let $r_{0}>0$. Let

$$
I:=\int_{B\left(x_{0}, r_{0}\right)}\left|\widetilde{\nabla} g_{0}\right|^{2 p} d v_{h}
$$

Let $\iota$ be the infimum of the injectivity radii $\iota(x), x \in B\left(x_{0}, r_{0}\right)$. Then there is $a$ constant $C$ depending only on $n, p, h, r_{0}$, the lower bound of $\iota$ and the upper bound of I such that

$$
\left|\widetilde{\nabla}^{2} g\left(x_{0}, t\right)\right|^{2} \leq C t^{-1-\delta}
$$

Proof. In the following, $C_{i}$ will denote a constant depending only on the quantities mentioned in the lemma. By Lemma 3.2, we have

$$
\begin{equation*}
\sup _{=B\left(x_{0}, \frac{r_{0}}{2}\right)}|\widetilde{\nabla} g(x, t)|^{2} \leq C_{1} t^{-\delta} \tag{3-6}
\end{equation*}
$$

Let $f_{i}=\left|\widetilde{\nabla}^{i} g\right|$. As in [Shi 1989; Simon 2002] (see also [Huang and Tam 2015, (5.11)]), one can find $a>0$ depending only on the quantities mentioned in the lemma such that if $\psi=\left(a t^{-\delta}+f_{1}^{2}\right) f_{2}^{2}$, then

$$
\begin{equation*}
\square \psi \leq-\frac{1}{8} f_{2}^{4}+C_{2} t^{-4 \delta} \tag{3-7}
\end{equation*}
$$

on $B\left(x_{0}, r_{0} / 2\right) \times(0, T]$. We may assume that $\iota\left(x_{0}\right) \leq r_{0} / 2$. Let $\eta$ be a cutoff function such that $\left(\eta^{\prime}\right)^{2}+\left|\eta^{\prime \prime}\right| \leq c \eta$ for some absolute constant as in the proof of Lemma 3.3, let $F=t^{1+2 \delta} \eta \psi$. Since $g$ is smooth up to $t=0$, and $f_{1}^{2} \leq C_{1} t^{-\delta}$, we have $F(\cdot, 0)=0$. If $F$ has a positive maximum, then there is $x_{1} \in B\left(x_{0}, \iota\right)$ and $T \geq t_{1}>0$ such that

$$
F\left(x_{1}, t_{1}\right)=\sup _{B\left(x_{0}, \iota\right) \times[0, T]} F .
$$

Hence at $\left(x_{1}, t_{1}\right)$, we have

$$
\eta \widetilde{\nabla}_{i} \psi+\psi \widetilde{\nabla}_{i} \eta=0
$$

and

$$
\begin{aligned}
0 & \leq \square F \\
& =t_{1}^{1+2 \delta}\left(\eta \square \psi+\psi \square \eta-2 g^{i j} \widetilde{\nabla}_{i} \psi \widetilde{\nabla}_{j} \eta\right)+(1+2 \delta) t_{1}^{-1} F \\
& \leq t_{1}^{1+2 \delta}\left[\eta\left(-\frac{1}{8} f_{2}^{4}+C_{2} t^{-4 \delta}\right)-\psi g^{i j} \widetilde{\nabla}_{i} \widetilde{\nabla}_{j} \eta+2 g^{i j} \eta^{-1} \psi \widetilde{\nabla}_{i} \eta \widetilde{\nabla}_{j} \eta\right]+(1+2 \delta) t_{1}^{-1} F \\
& \leq t_{1}^{1+2 \delta}\left[\eta\left(-\frac{1}{8} f_{2}^{4}+C_{2} t^{-4 \delta}\right)+C_{3} \psi\right]+(1+2 \delta) t_{1}^{-1} F .
\end{aligned}
$$

Multiply the inequality by $t_{1}^{1+2 \delta} \eta\left(a t^{-\delta}+f_{1}^{2}\right)^{2}=F \psi^{-1}\left(a t^{-\delta}+f_{1}^{2}\right)$, we have

$$
\begin{aligned}
0 & \leq-\frac{1}{8} F^{2}+C_{3} t_{1}^{1+\delta}\left(a t^{-\delta}+f_{1}^{2}\right) F+(1+2 \delta) t^{2 \delta}\left(a t^{-\delta}+f_{1}^{2}\right)^{2} F \\
& \leq-\frac{1}{8} F^{2}+C_{4} F
\end{aligned}
$$

Hence $F \leq 8 C_{4}$. From this it is easy to see that the result follows.

## 4. Approximation of singular metrics

Let $\left(M^{n}, \mathfrak{b}\right)$ be a smooth complete Riemannian manifold of dimension $n$ without boundary. Let $g_{0}$ be a continuous Riemannian metric on $M$ satisfying the following:
(a1) There is a compact subset $\Sigma$ such that $g_{0}$ is smooth on $M \backslash \Sigma$.
(a2) The metric $g_{0}$ is in $W_{\mathrm{loc}}^{1, p}$ for some $p \geq 1$ in the sense that $g_{0}$ has weak derivative and $\left|g_{0}\right|_{\mathfrak{b}},\left.\left.\right|^{\mathfrak{b}} \nabla g_{0}\right|_{\mathfrak{b}} \in L_{\text {loc }}^{p}$ with respect to the metric $\mathfrak{b}$.

We want to approximate $g_{0}$ by smooth metrics with uniform bound on the $W^{1, p}$ norm locally. As in [Lee 2013], cover $\Sigma$ by finitely many precompact coordinate patches $U_{1}, \ldots, U_{N}$ and cover $M$ with $U_{1}, \ldots, U_{N}$ and $U_{N+1}$ such that $U_{N+1}$ is an open set with $U_{N+1} \cap \Sigma=\varnothing$. We may assume that there is a partition of unity $\psi_{k}$ with $\operatorname{supp}\left(\psi_{k}\right) \subset U_{k}$. Since $g_{0}$ is continuous, we may assume that $g_{0}, \mathfrak{b}$ and the Euclidean metric are equivalent in each $U_{k}, 1 \leq k \leq N$. For any $a>0$, let $\Sigma(a)=\left\{x \in M \mid d_{\mathfrak{b}}(x, \Sigma)<a\right\}$. By [Lee 2013, Lemma 3.1], for each $1 \leq k \leq N$, there is a smooth function $\epsilon \geq \rho_{k} \geq 0$ in $U_{k}$ such that for $\epsilon>0$ small enough

$$
\begin{cases}\rho_{k}=\epsilon, & \Sigma(\epsilon) \cap U_{k}  \tag{4-1}\\ \rho_{k}=0, & U_{k} \backslash \Sigma(2 \epsilon) \\ \left|\partial \rho_{k}\right| \leq C ; & \\ \left|\partial^{2} \rho_{k}\right| \leq C \epsilon^{-1} & \end{cases}
$$

for some $C$ independent of $\epsilon$ and $k$. Here $\partial \rho_{k}$ and $\partial^{2} \rho_{k}$ are derivatives with respect to the Euclidean metric. Let $g_{0}^{k}=\psi_{k} g_{0}$ and for $1 \leq k \leq N$, let

$$
\begin{equation*}
\left(g_{\epsilon, 0}^{k}\right)_{i j}(x)=\int_{\mathbb{R}^{n}} g_{0, i j}^{k}\left(x-\lambda \rho_{k}(x) y\right) \varphi(y) d y \tag{4-2}
\end{equation*}
$$

Here $\varphi$ is a nonnegative smooth function in $\mathbb{R}^{n}$ with support in $B(1)$ and integral equal to $1 . \lambda>0$ is a constant independent of $\epsilon$ and $k$, to be determined. Finally, define

$$
\begin{equation*}
g_{\epsilon, 0}=\sum_{k=1}^{N} g_{\epsilon, 0}^{k}+\psi_{N+1} g_{0} \tag{4-3}
\end{equation*}
$$

Lemma 4.1. For $\epsilon>0$ small enough, $g_{\epsilon, 0}$ is a smooth metric such that $g_{\epsilon, 0}$ converges to $g_{0}$ in $C^{0}$ norm as $\epsilon \rightarrow 0$, and $g_{\epsilon, 0}=g_{0}$ outside $\Sigma(2 \epsilon)$. Moreover, there is a constant $C$ independent of $\epsilon$ such that

$$
\left.\left.\int_{\Sigma(1)}\right|^{\mathfrak{b}} \nabla g_{\epsilon, 0}\right|_{\mathfrak{b}} ^{p} d v_{\mathfrak{b}} \leq C .
$$

Proof. It is easy to see that $g_{\epsilon, 0}$ is smooth and converges to $g_{0}$ uniformly as $\epsilon \rightarrow 0$. In order to estimate the $W_{\text {loc }}^{1, p}$ norm of $g_{\epsilon, 0}$, it is sufficient to estimate the norm in each $U_{k}, 1 \leq k \leq N$. Moreover, we may assume that $\mathfrak{b}$ is the Euclidean metric. So it is sufficient to prove the following: For fixed $k, 1 \leq k \leq N$, and for any $u \in W_{\text {loc }}^{1, p}$ if

$$
v(x)=\int_{\mathbb{R}^{n}} u\left(x-\lambda \rho_{k}(x) y\right) \varphi(y) d y
$$

then the $W^{1, p}$ norm of $v$ in $\Sigma(1)$ can be estimated in terms of the $W^{1, p}$ norm of $u$ in $\Sigma(2)$, say. For fixed $y$ with $|y| \leq 1$, let $z=x-\lambda \rho_{k}(x) y$. Then

$$
\frac{\partial z^{i}}{\partial x^{j}}=\delta_{i j}-y^{i} \lambda \frac{\partial \rho_{k}}{\partial x^{i}} .
$$

By (4-1), we can choose $\lambda>0$ small enough independent of $\epsilon$ and $k$ so that

$$
2 \geq \operatorname{det}\left(\delta_{i j}-\lambda y^{i} \frac{\partial \rho_{k}}{\partial x^{i}}\right) \geq \frac{1}{2},
$$

and so that $z=z(x)$ is a diffeomorphism with the Jacobian being bounded above and below by some constants independent of $\epsilon, k$. Hence

$$
\begin{aligned}
\left(\int_{\Sigma(1) \cap U_{k}}|v|^{p}(x) d x\right)^{\frac{1}{p}} & \leq\left[\int_{\Sigma(1) \cap U_{k}}\left(\int_{\mathbb{R}^{n}}\left|u\left(x-\lambda \rho_{k}(x) y\right)\right| \varphi(y) d y\right)^{p} d x\right]^{\frac{1}{p}} \\
& \leq \int_{\mathbb{R}^{n}} \varphi(y)\left(\int_{\Sigma(1) \cap U_{k}}\left|u\left(x-\lambda \rho_{k}(x) y\right)\right|^{p} d x\right)^{\frac{1}{p}} d y \\
& =\int_{B(1)} \varphi(y)\left(\int_{\Sigma(1) \cap U_{k}}\left|u\left(x-\lambda \rho_{k}(x) y\right)\right|^{p} d x\right)^{\frac{1}{p}} d y \\
& \leq C_{1}\left(\int_{\Sigma(2)}|u(z)|^{p} d z\right)^{\frac{1}{p}}
\end{aligned}
$$

for some constant $C_{1}$ independent of $\epsilon, k$ provided $\epsilon$ is small enough, where we have used Minkowski's integral inequality [Stein 1970, Section A.1]. Now, if $x \notin \Sigma(2 \epsilon)$, then $v(x)=u(x)$ and if $x \in \Sigma(\epsilon)$, then $v(x)$ is the standard mollification. If $x \in \Sigma(2 \epsilon) \backslash \Sigma(\epsilon)$, then

$$
|\partial v|(x) \leq \int_{\mathbb{R}^{n}}|\partial u|\left(x-\lambda \rho_{k}(x) y\right) \lambda\left|\partial \rho_{k}(x)\right| \varphi(y) d y .
$$

Since $\left|\partial \rho_{k}\right|$ is bounded by (4-1), we can prove as before that

$$
\left(\int_{\Sigma(1) \cap U_{k}}|\partial v|^{p}(x) d x\right)^{\frac{1}{p}} \leq C_{2}\left(\int_{\Sigma(2)}|\partial u|^{p}(z) d z\right)^{\frac{1}{p}}
$$

for some constant $C_{2}$ independent of $\epsilon, k$ provided $\epsilon$ is small enough.
In addition to (a1) and (a2), assume
(a3) The scalar curvature $\mathcal{S}_{g_{0}}$ of $g_{0}$ satisfies $\mathcal{S}_{g_{0}} \geq \sigma$ in $M \backslash \Sigma$, where $\sigma$ is a constant.
We want to modify $g_{\epsilon, 0}$ to obtain a smooth metric with scalar curvature bounded below by $\sigma$. We first consider the case that $M$ is compact. Let $\epsilon_{0}>0$ be small enough so that for all $\epsilon_{0} \geq \epsilon>0$,

$$
(1+\epsilon(n))^{-1} g_{\epsilon_{0}, 0} \leq g_{\epsilon, 0} \leq(1+\epsilon(n)) g_{\epsilon_{0}, 0},
$$

where $\epsilon(n)>0$ is the constant depending only on $n$ in Theorem 3.1. Hence if we let $h=g_{\epsilon_{0}, 0}$, then the $h$-flow has solution $g_{\epsilon}(t)$ on $M \times[0, T]$ for some $T>0$ independent of $\epsilon$, with initial data $g_{\epsilon, 0}$ in the sense that $\lim _{t \rightarrow 0} g_{\epsilon}(x, t)=g_{\epsilon, 0}(x)$ uniformly in $M$; see Theorem 3.1. The curvature and all the covariant derivatives of curvature of $h$ are bounded because $M$ is compact.

By [Simon 2002] and Lemmas 3.2, 3.3 and 4.1 we have the following:
Lemma 4.2. Let $M$ be compact and suppose $g_{0}$ satisfies (a1)-(a3). Suppose $p>n$. Let $\delta=n / p<1$. Then

$$
\left.\left.\right|^{h} \nabla g_{\epsilon}(t)\right|_{h} ^{2} \leq C t^{-\delta} \quad \text { and }\left.\left.\quad\right|^{h} \nabla^{2} g_{\epsilon}(t)\right|^{2} \leq C t^{-1-\delta}
$$

for some constant $C$ independent of $\epsilon, t$. Moreover, $g_{\epsilon}(t)$ subconverges to the solution $g(t)$ of the h-flow with initial data $g_{0}$ in $C^{\infty}$ norm in compact sets of $M \times(0, T]$ and in compact sets of $M \backslash \Sigma \times[0, T]$.

For $\epsilon>0$ small enough, let

$$
\begin{equation*}
W^{k}=\left(g_{\epsilon}(t)\right)^{p q}\left(\Gamma_{p q}^{k}\left(g_{\epsilon}(t)\right)-\Gamma_{p q}^{k}(h)\right), \tag{4-4}
\end{equation*}
$$

and let $\Phi_{t}$ be the diffeomorphism given by

$$
\begin{equation*}
\frac{\partial}{\partial t} \Phi_{t}(x)=-W\left(\Phi_{t}(x), t\right), \quad \Phi_{0}(x)=x \tag{4-5}
\end{equation*}
$$

Let $\tilde{g}_{\epsilon}(t)=\Phi_{t}^{*} g_{\epsilon}(t)$. Then $\tilde{g}_{\epsilon}(t)$ satisfies the Ricci flow equation with initial data $g_{\epsilon, 0}$. Note that $W$ and $\Phi_{t}$ depend also on $\epsilon$. Recall the Ricci flow equation is

$$
\begin{equation*}
\frac{\partial}{\partial t} g_{i j}=-2 R_{i j} . \tag{4-6}
\end{equation*}
$$

Lemma 4.3. With the same assumptions and notation as in Lemma 4.2, for $\epsilon$ small enough, $|W|_{h} \leq C t^{-\frac{1}{2} \delta},\left|\operatorname{Rm}\left(\tilde{g}_{\epsilon}(t)\right)\right| \leq C t^{-\frac{1}{2}(1+\delta)}$ and

$$
C^{-1} h \leq g_{\epsilon}(t) \leq C h
$$

for some $C$, independent of $\epsilon, t$.
Proof. The bound of $W$ is given by Lemma 4.2. Since the bound of curvature is unchanged under diffeomorphism, $\left|\operatorname{Rm}\left(\tilde{g}_{\epsilon}(t)\right)\right| \leq C t^{-\frac{1}{2}(1+\delta)}$ by Lemma 4.2. From this we conclude from the Ricci flow equation that $\tilde{g}_{\epsilon}(t)$ is uniformly equivalent to $g_{0, \epsilon}$ which is uniformly equivalent to $h$.
Lemma 4.4. Let $\mathcal{S}(t)$ be the scalar curvature of $g(t)$. Then there is a constant $C>0$ independent of $t, \epsilon$ such that

$$
\exp \left(-C t^{\frac{1}{2}(1-\delta)}\right) \int_{M}(\mathcal{S}(t)-\sigma)_{-} d v_{g(t)}
$$

is nonincreasing in $(0, T]$, where $f_{-}=\max \{-f, 0\}$ is the negative part of $f$.
Proof. As in [McFeron and Székelyhidi 2012], fix $\theta>0$, and for $\epsilon>0$, let

$$
v=\left(\left(\mathcal{S}_{\epsilon}(t)-\sigma\right)^{2}+\theta\right)^{1 / 2}-\left(\mathcal{S}_{\epsilon}(t)-\sigma\right),
$$

where $\mathcal{S}_{\epsilon}(t)$ is the scalar curvature of $\tilde{g}_{\epsilon}(t)$. Let $\Delta$ and $\nabla$ be the Laplacian and covariant derivative with respect to $\tilde{g}_{\epsilon}(t)$. Using the evolution equation of the scalar curvature in Ricci flow, we have

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}-\Delta\right) v & =\left(\frac{\mathcal{S}_{\epsilon}(t)-\sigma}{\left(\left(\mathcal{S}_{\epsilon}(t)-\sigma\right)^{2}+\theta\right)^{1 / 2}}-1\right)\left(\frac{\partial}{\partial t}-\Delta\right) \mathcal{S}_{\epsilon}(t)-\frac{\theta\left|\nabla \mathcal{S}_{\epsilon}\right|^{2}}{\left(\left(\mathcal{S}_{\epsilon}(t)-\sigma\right)^{2}+\theta\right)^{1 / 2}} \\
& =\left(\frac{\mathcal{S}_{\epsilon}(t)-\sigma}{\left(\left(\mathcal{S}_{\epsilon}(t)-\sigma\right)^{2}+\theta\right)^{1 / 2}}-1\right) \cdot 2|\nabla \operatorname{Ric}(t)|^{2}-\frac{\theta\left|\nabla \mathcal{S}_{\epsilon}(t)\right|^{2}}{\left(\left(\mathcal{S}_{\epsilon}(t)-\sigma\right)^{2}+\theta\right)^{3 / 2}} \\
& \leq 0,
\end{aligned}
$$

where $\operatorname{Ric}(t)$ is the Ricci tensor of $\tilde{g}_{\epsilon}(t)$. Using Lemma 4.3 we have

$$
\begin{align*}
\frac{d}{d t} \int_{M} v d v_{\tilde{g}_{\epsilon}(t)} & =\int_{M} \frac{\partial}{\partial t} v d v_{\tilde{g}_{\epsilon}(t)}-\int_{M} \mathcal{S}_{\epsilon}(t) v d v_{\tilde{g}_{\epsilon}(t)}  \tag{4-7}\\
& \leq \int_{M} \Delta v d v_{\tilde{g}_{\epsilon}(t)}+C_{1} t^{-\frac{1}{2}(1+\delta)} \int_{M} v d v_{\tilde{g}_{\epsilon}(t)} \\
& =C_{1} t^{-\frac{1}{2}(1+\delta)} \int_{M} v d v_{\tilde{g}_{\epsilon}(t)}
\end{align*}
$$

for some constant $C_{1}$ independent of $t, \epsilon$. From this and letting $\theta \rightarrow 0$, we conclude that for some constant $C$ independent of $t$ and $\epsilon$,

$$
\exp \left(-C t^{\frac{1}{2}(1-\delta)}\right) \int_{M}\left(\mathcal{S}_{\epsilon}(t)-\sigma\right)-d v_{\tilde{g}_{\epsilon}(t)}
$$

is nonincreasing in $(0, T]$. Noting that $\tilde{g}_{\epsilon}(t)=\Phi_{t}^{*}\left(g_{\epsilon}(t)\right)$, by Lemma 4.2 let $\epsilon \rightarrow 0$, the result follows.

We first consider the case that the codimension of $\Sigma$ is at least 2 in the following sense:
(a4) The volume $V\left(\Sigma(\epsilon), g_{0}\right)$ with respect to $g_{0}$ of the $\epsilon$-neighborhood $\Sigma(\epsilon)$ of $\Sigma$ is bounded by $C \epsilon^{2}$ for some constant $C$ independent of $\epsilon$. Here

$$
\Sigma(\epsilon)=\left\{x \in M \mid d_{g_{0}}(x, \Sigma)<\epsilon\right\} .
$$

Lemma 4.5. With the same assumptions and notation as in Lemma 4.2, suppose (a4) is true. Then $S(t) \geq \sigma$ for all $t>0$.

Proof. By Lemma 4.4, it is sufficient to prove that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{M}(\mathcal{S}(t)-\sigma)_{-} d v_{g(t)}=0 \tag{4-8}
\end{equation*}
$$

For any $\epsilon>0$, let $\Phi_{t}$ be the diffeomorphisms as before so that $\tilde{g}_{\epsilon}(t)=\Phi_{t}^{*}\left(g_{\epsilon}(t)\right)$ is the solution to the Ricci flow. For any $\theta>0$, let $v$ as in the proof of Lemma 4.4. Let

$$
\beta=\frac{1}{\epsilon}\left(\epsilon-\sum_{k=1}^{N} \psi_{k} \rho_{k}\right) .
$$

We may modify $\rho_{k}$ so that if $\epsilon$ is small enough then $\beta$ is a smooth function on $M$ such that $\beta=0$ in $\Sigma(2 \epsilon), \beta=1$ outside $\Sigma(4 \epsilon), 0 \leq \beta \leq 1,\left.\right|^{h} \nabla \beta \mid \leq C \epsilon^{-1}$, and $\left.\right|^{h} \nabla^{2} \beta \mid \leq C \epsilon^{-2}$ for some constant $C$ independent of $\epsilon, t$. Let

$$
\tilde{\beta}(t, x)=\beta\left(\Phi_{t}(x)\right) .
$$

Then

$$
\begin{aligned}
\frac{d}{d t} \int_{M} \tilde{\beta}^{2} v d v{\tilde{\tilde{g}_{\epsilon}}(t)}= & \int_{M} v \frac{\partial}{\partial t}\left(\tilde{\beta}^{2}\right) d v{\tilde{\tilde{g}_{\epsilon}}(t)}+\int_{M} \tilde{\beta}^{2} \frac{\partial}{\partial t} v d v_{\tilde{g}_{\epsilon}(t)}-\int_{M} \mathcal{S}_{\epsilon}(t) \tilde{\beta}^{2} v d v_{\tilde{g}_{\epsilon}(t)} \\
\leq & \int_{M} v \frac{\partial}{\partial t}\left(\tilde{\beta}^{2} d v_{\tilde{g}_{\epsilon}(t)}+\int_{M} \tilde{\beta}^{2} \Delta_{\tilde{g}_{\epsilon}(t)} v d v_{\tilde{g}_{\epsilon}(t)}\right. \\
& +C_{1} t^{-\frac{1}{2}(1+\delta)} \int_{M} \tilde{\beta}^{2} v d v_{\tilde{g}_{\epsilon}(t)} \\
= & I+I I+C_{1} t^{-\frac{1}{2}(1+\delta)} \int_{M} \tilde{\beta}^{2} v d v_{\tilde{g}_{\epsilon}(t)} .
\end{aligned}
$$

for some constant $C_{1}>0$ independent of $t, \epsilon, \theta$ by Lemma 4.3. Let $w(y)=$ $v\left(\Phi_{t}^{-1}(y)\right)$. Since in local coordinates,

$$
\Delta_{g_{\epsilon}(t)} f=g_{\epsilon}^{i j}\left(\partial_{i} \partial_{j} f-\Gamma_{i j}^{k} \partial_{k}\right)
$$

with $\left|\Gamma_{i j}^{k}\right| \leq C t^{-\delta / 2}$ for some constant $C$ independent of $\epsilon, t$ by Lemma 4.2, we have $|w| \leq C t^{-\frac{1}{2}(1+\delta)}$ for some constant $C$ independent of $\epsilon, t, \theta$. Using also (a4) and Lemma 4.1, we have

$$
\begin{aligned}
I I & =\int_{M} \beta^{2} \Delta_{g_{\epsilon}(t)} w d v_{g_{\epsilon}(t)} \\
& =\int_{M} w \Delta_{g_{\epsilon}(t)}\left(\beta^{2}\right) d v_{g_{\epsilon}(t)} \\
& \leq C_{2} \int_{\Sigma(4 \epsilon) \backslash \Sigma(2 \epsilon)} w \epsilon^{-2}+\epsilon^{-1} t^{-\delta / 2} \beta \mid d v_{g_{\epsilon}(t)} \\
& \leq C_{3}\left(t^{-\frac{1}{2}(1+\delta)}+\epsilon^{-1} t^{-\frac{\delta}{2}-\frac{1}{4}(1+\delta)} \int_{\Sigma(4 \epsilon)} \beta w^{1 / 2} d v_{g_{\epsilon}(t)}\right) \\
& \leq C_{4}\left[t^{-\frac{1}{2}(1+\delta)}+t^{-\frac{1}{4}(1+3 \delta)}\left(\int_{M} \tilde{\beta}^{2} v d v_{\tilde{g}_{\epsilon}(t)}\right)^{\frac{1}{2}}\right]
\end{aligned}
$$

for some constants $C_{2}-C_{4}$ independent of $\epsilon, t, \theta$, where we have used Lemma 4.2, the fact that $\beta=1$ outside $\Sigma(4 \epsilon)$, the Hölder inequality and the fact that $V(\Sigma(4 \epsilon))=$ $O\left(\epsilon^{2}\right)$. To estimate $I$, we have

$$
\begin{aligned}
\frac{\partial}{\partial t} \tilde{\beta} & =(d \tilde{\beta})\left(\frac{\partial}{\partial t}\right) \\
& =d \beta \circ d \Phi_{t}\left(\frac{\partial}{\partial t}\right) \\
& =d \beta(W)
\end{aligned}
$$

Hence by Lemma 4.2, we have

$$
\left|\frac{\partial}{\partial t} \tilde{\beta}\right|(x) \leq\left. C_{5}\right|^{h} \nabla \beta\left|\left(\Phi_{t}(x)\right)\right| \leq C_{6} \epsilon^{-1} t^{-\delta / 2}
$$

for some constants $C_{5}, C_{6}$ independent of $\epsilon, t, \theta$. Hence if $w$ is as above, then

$$
\begin{aligned}
I & \leq C_{6} \epsilon^{-1} t^{-\delta / 2} \int_{\Sigma(4 \epsilon)} \beta w(y) d v_{g_{\epsilon}(t)} \\
& \leq C_{7} t^{-\frac{1}{4}(1+3 \delta)}\left(\int_{\Sigma(4 \epsilon)} \tilde{\beta}^{2} v d v_{\tilde{g}_{\epsilon}(t)}\right)^{\frac{1}{2}}
\end{aligned}
$$

for some constant $C_{7}$ independent of $\epsilon, t, \theta$. To summarize, if we let

$$
F=\int_{M} \tilde{\beta}^{2} v d v_{\tilde{g}_{\epsilon}(t)},
$$

then

$$
\begin{aligned}
\frac{d F}{d t} & \leq C_{8}\left(t^{-\frac{1}{2}(1+\delta)}+t^{-\frac{1}{2}(1+\delta)} F+t^{-\frac{1}{4}(1+3 \delta)} F^{1 / 2}\right) \\
& \leq C_{8}\left(t^{-\frac{1}{2}(1+\delta)}+t^{-\delta}+2 t^{-\frac{1}{2}(1+\delta)} F\right)
\end{aligned}
$$

for some constant $C_{8}$ independent of $\epsilon, t, \theta$. Integrate from 0 to $t$, and let $\theta \rightarrow 0$. Since $g_{\epsilon, 0}=g_{0}$ outside $\Sigma(2 \epsilon), \Phi_{0}=\mathrm{id}$, and $\beta=0$ on $\Sigma(2 \epsilon)$, and $\mathcal{S}_{g_{0}} \geq \sigma$ outside $\Sigma$, there exist constants $C_{9}-C_{10}$ independent of $\epsilon, t$ such that

$$
\exp \left(-C_{9} t^{\frac{1}{2}(1-\delta)}\right) \int_{M} \tilde{\beta}^{2}\left(\mathcal{S}_{\epsilon}(t)-\sigma\right)_{-} d v_{\tilde{g}_{\epsilon}(t)} \leq C_{10}\left(t^{\frac{1}{2}(1-\delta)}+t^{1-\delta}\right)
$$

because $0<\delta<1$. Letting $\epsilon \rightarrow 0$, we see that (4-8) is true and the proof of the lemma is completed.

By Lemmas 4.2 and 4.5, using $g(t)$ we have:
Corollary 4.6. Let $\left(M^{n}, \mathfrak{b}\right)$ be a smooth compact manifold and let $g_{0}$ be a continuous Riemannian metric satisfying the following:
(a) There is a compact set $\Sigma$ such that $g_{0}$ is smooth on $M \backslash \Sigma$ with scalar curvature bounded below by $\sigma$.
(b) The metric $g_{0}$ is in $W_{\text {loc }}^{1, p}$ for some $p>n$.
(c) $V\left(\Sigma(\epsilon), g_{0}\right)=O\left(\epsilon^{2}\right)$ as $\epsilon \rightarrow 0$, where $\Sigma(\epsilon)=\left\{x \in M \mid d_{\mathfrak{b}}(x, \Sigma)<\epsilon\right\}$.

Then there exists a sequence of smooth metrics $g_{i}$ satisfying the following: (i) as $i$ tends to infinity $g_{i}$ converges to $g_{0}$ uniformly in $M$, and converges to $g_{0}$ in $C^{\infty}$ norm on any compact subset of $M \backslash \Sigma$; (ii) the scalar curvature $\mathcal{S}_{i}$ of $g_{i}$ satisfies $\mathcal{S}_{i} \geq \sigma$.
Remark 4.7. If the codimension of $\Sigma$ is only assumed to be larger than 1 , then the conclusions of Lemma 4.5 and Corollary 4.6 are still true under some additional assumptions on the second derivatives of $g_{0}$.

Next let us consider the case that $\Sigma$ is an embedded hypersurface. Let ( $M^{n}, g_{0}$ ) be a Riemannian metric satisfying the following:
(b1) $\Sigma$ is a compact embedded orientable hypersurface, and $g_{0}$ is smooth on $M \backslash \Sigma$ with scalar curvature $\mathcal{S}_{g_{0}} \geq \sigma$.
(b2) There is a neighborhood $U$ of $\Sigma$ and a smooth function $t$ defined near $U$ such that $U$ is diffeomorphic to $\{-a<t<a\} \times \Sigma$ for some $a>0$ with $\Sigma=\{t=0\}$. Moreover, $g_{0}=d t^{2}+g_{ \pm}(z, t), z \in \Sigma$, such that $(t, z)$ are smooth coordinates and $g_{-}(\cdot, 0)=g_{+}(\cdot, 0)$, where $g_{+}$is defined and smooth on $t \geq 0, g_{-}$is defined and smooth on $t \leq 0$.
(b3) Let $U_{+}=\{t>0\}, U_{-}=\{t<0\}$. With respect to the unit normal $\frac{\partial}{\partial t}$ the mean curvature $H_{+}$of $\Sigma$ with respect to $g_{+}$and the mean curvature $H_{-}$of $\Sigma$ with respect to $g_{-}$satisfy $H_{-} \geq H_{+}$.

By [Miao 2002, Proposition 3.1], letting $\epsilon>0$ be small enough, one can find a smooth metric $g_{\epsilon, 0}$ such that (i) $g_{\epsilon, 0}=g_{0}$ outside $U(\epsilon)=\{-\epsilon<t<\epsilon\}$; (ii) $g_{0, \epsilon}$ converges uniformly to $g_{0}$; (iii) $\left.\left.\right|^{h} \nabla g_{0, \epsilon}\right|_{h} \leq C$ with respect to some fixed background smooth metric $h$; (iv) there exists a constant $c>0$ independent of $\epsilon$ such that the scalar curvature $\mathcal{S}_{g_{0, \epsilon}}$ satisfies

$$
\begin{cases}\mathcal{S}_{g_{0, \epsilon}}=\mathcal{S}_{g_{0}} & \text { outside } U(\epsilon),  \tag{4-9}\\ \left|\mathcal{S}_{g_{0, \epsilon}}\right| \leq c & \text { in } \frac{\epsilon^{2}}{100}<|t| \leq \epsilon, \\ \mathcal{S}_{g_{0, \epsilon}}(z, t) \geq-c+\left(H_{-}(z)-H_{+}(z)\right) \epsilon^{-2} \phi\left(\frac{100 t}{\epsilon^{2}}\right) & \text { in }-\frac{\epsilon^{2}}{100}<t \leq \frac{\epsilon^{2}}{100}, \\ \left|\mathcal{S}_{g_{0, \epsilon}}\right| \leq c \epsilon^{-2} & \end{cases}
$$

for $z \in \Sigma$. Here $\phi \geq 0$ is a smooth function in $\mathbb{R}$ with compact support in $\left[-\frac{1}{2}, \frac{1}{2}\right]$ such that

$$
\int_{\mathbb{R}} \phi(s) d s=1 .
$$

Using arguments similar to those before using $h$-flow, we can conclude:
Corollary 4.8. Let $M^{n}$ be a compact smooth manifold and let $g_{0}$ be a Riemannian metric satisfying (b1)-(b3) such that the scalar curvature of $g_{0}$ on $M \backslash \Sigma$ is at least $\sigma$. Then there exists a sequence of smooth metrics $g_{i}$ such that as $i$ tends to infinity $g_{i}$ converges to $g_{0}$ uniformly in $M$, and converges to $g_{0}$ in $C^{\infty}$ norm on any compact subset of $M \backslash \Sigma$. Moreover, $\mathcal{S}_{g_{i}} \geq \sigma$.

Proof. As before, choose $h=g_{0, \epsilon_{0}}$ for $\epsilon_{0}$ small enough, one can solve the $h$-flow with initial data $g_{0, \epsilon}$. Let $g_{\epsilon}(t)$ be the solution and let $\mathcal{S}_{\epsilon}(t)$ be its scalar curvature. From the proof of Lemma 4.4, one can conclude that

$$
\begin{aligned}
\exp \left(-C_{3} t^{1 / 2}\right) \int_{M}\left(\mathcal{S}_{\epsilon}(t)-\sigma\right)_{-} d v_{g_{\epsilon}(t)} & \leq \int_{M}\left(\mathcal{S}_{g_{0, \epsilon}}-\sigma\right)_{-} d v_{g_{0, \epsilon}} \\
& =\int_{U(\epsilon)}\left(\mathcal{S}_{g_{0, \epsilon}}-\sigma\right)_{-} d v_{g_{0, \epsilon}} \\
& \leq C_{1} \epsilon
\end{aligned}
$$

for some $C_{1}, C_{3}>0$ independent of $\epsilon, t$. Here we used the fact that $H_{-}-H_{+} \geq 0$. Let $\epsilon \rightarrow 0$, we conclude that the solution $g(t)$ of the $h$-flow with initial value $g_{0}$ has scalar curvature no less than $\sigma$. The result follows as before.

Remark 4.9. By [Miao 2002], suppose $\Sigma$ is a compact orientable hypersurface, and a neighborhood of $\Sigma$ is of the disjoint union of $U_{1}, U_{2}$ and $\Sigma$. Assume $g_{0}$ is smooth up $\Sigma$ from each side $U_{i}$ of $\Sigma$ and such that the mean curvatures $H_{1}, H_{2}$ with respect to unit normals in the two sides of $\Sigma$ satisfying $H_{1}+H_{2} \geq 0$, where
unit normals are chosen to be outward pointing in each side. Then one can find a smooth structure so that (b2) and (b3) are true.

We give some applications.
Corollary 4.10. Let $\left(M^{n}, g\right)$ be a compact manifold such that $M^{n}$ is the topological $n$-torus, $g$ is smooth except at a point, where it has a cone singularity of the form

$$
g=d r^{2}+\alpha^{2} r^{2} h_{0}
$$

with $0<\alpha \leq 1$ and where $h_{0}$ is the standard metric on $\mathbb{S}^{n-1}$. Suppose the scalar curvature of $g$ is nonnegative; then $g$ must be flat and $\alpha=1$.
Proof. For $r$ small, the mean curvature of the level set $\{r\} \times \mathbb{S}^{n-1}$ with respect to the normal $\partial_{r}$ is $H=(n-1) / r$. Consider the Euclidean ball $B(\alpha r)$ of radius $\alpha r$ with center at the origin. Then metric of the boundary is $(\alpha r)^{2} h_{0}$. Moreover, the mean curvature is $H_{0}=(n-1) /(\alpha r)$. Since $\alpha \leq 1, H_{0} \geq H$. By gluing $B(\alpha r)$ along with $M$ along $\{r\} \times \mathbb{S}^{n-1}$, we obtain a metric with corner so that (b1)-(b3) are true by changing the smooth structure if necessary. Still denote this metric by $g$. By Corollary 4.8, there exist smooth metrics $g_{i}$ on the new manifold with nonnegative scalar curvature such that $g_{i} \rightarrow g$ in $C^{\infty}$ away from the singular part. By [Schoen and Yau 1979a; 1979c; Gromov and Lawson 1983], $g_{i}$ is flat. Hence $g$ must be flat away from the singular part. Let $r \rightarrow 0$, we conclude that the original metric $g$ is flat, and we must have $\alpha=1$.

Similarly, one can prove the following:
Corollary 4.11. Let $\left(M^{n}, g\right)$ be a compact manifold such that $M^{n}$ is the topological $n$-torus and $g$ is smooth away from some compact set with codimension at least 2 . Moreover, assume $g$ is in $W_{\mathrm{loc}}^{1, p}$ for some $p>n$. Suppose the scalar curvature of $g$ is nonnegative; then $g$ must be flat.
Remark 4.12. Suppose $M$ is asymptotically flat with nonnegative scalar curvature and with some cone singularities as in Corollary 4.10; then we still have positive mass for each end by [Miao 2002]. The proof is similar. Compare this result with the example in Proposition 2.3.

Let us consider the case that $M^{n}$ is noncompact. Let $g_{0}$ be a continuous Riemannian metric on $M$ which is smooth outside a compact set $\Sigma$. Suppose there is a family of smooth complete metrics $g_{\epsilon, 0}$ on $M$ such that $g_{\epsilon, 0}$ converges uniformly to $g_{0}$ and converges smoothly on compact sets of $M \backslash \Sigma$. Assume $g_{\epsilon, 0}$ has bounded curvature for all $\epsilon$. As before, we can find $\epsilon_{0}>0$ such that if $h=g_{\epsilon_{0}, 0}$ then there are solutions $g_{\epsilon}(t)$ to the $h$-flow with initial data $g_{\epsilon, 0}$, and solution to the $h$-flow with initial data $g_{0}$ on some fixed interval [ $0, T$ ], $T>0$. As in [Simon 2002], using [Shi 1989], we may assume that all the derivatives of the curvature of $h$ are bounded. Moreover, $g_{\epsilon}(t)$ converges uniformly on compact sets of $M \times(0, T]$ and
$M \backslash \Sigma \times[0, T]$. Suppose the scalar curvature of $g_{0}$ satisfies $\mathcal{S}_{g_{0}} \geq \sigma$. We want to find conditions so that the scalar curvature of $g(t)$ is also bounded below by $\sigma$.

Lemma 4.13. With the above assumptions and notation, suppose
(i) $g_{\epsilon, 0}=g_{0}$ outside $\Sigma(2 \epsilon)$;
(ii) $\left|{ }^{h} \nabla g_{\epsilon}(t)\right| \leq C t^{-\frac{\delta}{2}}$ and $\left.\right|^{h} \nabla^{2} g_{\epsilon}(t) \left\lvert\, \leq C t^{-\frac{1}{2}(1+\delta)}\right.$ for some $C$ independent of $\epsilon, t$;
(iii) there is an $R_{0}>0$ and $a C>0$ independent of $\epsilon, t$ such that

$$
\int_{M \backslash B\left(o, R_{0}\right)}\left|\mathcal{S}_{\epsilon}(t)-\sigma\right| d v_{h} \leq C,
$$

where $B\left(o, R_{0}\right)$ is the geodesic ball with respect to $h$ and $\mathcal{S}_{\epsilon}(t)$ is the scalar curvature of $g_{\epsilon}(t)$;
(iv) $V\left(\Sigma(2 \epsilon), g_{0}\right)=O\left(\epsilon^{2}\right)$.

Then the scalar curvature $\mathcal{S}(t)$ of $g(t)$ satisfies $\mathcal{S}(t) \geq \sigma$ for all $t>0$.
Proof. By [Shi 1989; Tam 2010], we can find a smooth function $\rho$ such that

$$
C_{1}^{-1}(r(x)+1) \leq \rho(x) \leq C_{1}(1+r(x))
$$

for some constant $C_{1}>0$ where $r(x)$ is the distance function to a fixed point $o$ with respect to $h$. Moreover, the gradient and Hessian of $\rho$ with respect to $h$ are uniformly bounded. (Hence the constants in the lemma may depend also on the choice of $o$.)

Let $0 \leq \eta \leq 1$ be a smooth function on $\mathbb{R}$ such that $\eta=1$ on $[0,1]$ and $\eta=0$ on $[2, \infty)$. We proceed as in the proofs of Lemmas 4.4 and 4.5. For $R \gg 1$, denote $\eta(\rho(x) / R)$ still by $\eta(x)$. Let $\tilde{g}_{\epsilon}$ be the Ricci flow corresponding to the $g_{\epsilon}(t)$ and let $\mathcal{S}_{\epsilon}(t)$ be its scalar curvature. Let $\theta>0$ and let $v$ be as in the proof of Lemma 4.4. We have

$$
\begin{aligned}
& \frac{d}{d t} \int_{M} \eta v d v_{\tilde{g}_{\epsilon}(t)} \\
& \quad \leq C_{2}\left(t^{-\frac{1}{2}(1+\delta)} \int_{M} \eta v d v_{\tilde{g}_{\epsilon}(t)}+\int_{M} v|\Delta \eta| d v_{\tilde{g}_{\epsilon}(t)}\right) \\
& \quad \leq C_{3}\left(t^{-\frac{1}{2}(1+\delta)} \int_{M} \eta v d v_{\tilde{g}_{\epsilon}(t)}+t^{-\delta / 2} R^{-1} \int_{M \backslash B\left(o, 2 C_{1} R\right)}\left(\left|\mathcal{S}_{\epsilon}(t)-\sigma\right|+\theta\right) d v_{\tilde{g}_{\epsilon}(t)}\right)
\end{aligned}
$$

for some positive constants $C_{2}, C_{3}$ independent of $t, \epsilon, \theta$. Hence

$$
\begin{aligned}
& \frac{d}{d t}\left(\exp \left(-C_{4} t^{\frac{1}{2}(1+\delta)}\right) \int_{M} \eta v d v_{\tilde{g}_{\epsilon}(t)}\right) \\
& \quad \leq C_{5} t^{-\delta / 2} R^{-1} \int_{M \backslash B\left(o, 2 C_{1} R\right)}\left(\left|\mathcal{S}_{\epsilon}(t)-\sigma\right|+\theta\right) d v_{\tilde{g}_{\epsilon}(t)}
\end{aligned}
$$

for some positive constants $C_{4}, C_{5}$ independent of $t, \epsilon, \theta$. Integrating from $0<$ $t_{1}<t_{2}$, let $\theta \rightarrow 0$ and then let $R \rightarrow \infty$. Using condition (iii), we conclude that

$$
\exp \left(-C_{4} t^{\frac{1}{2}(1+\delta)}\right) \int_{M}\left(\mathcal{S}_{\epsilon}(t)-\sigma\right)_{-} d v_{\tilde{g}_{\epsilon}(t)}
$$

is nonincreasing in $t$. Let $\epsilon \rightarrow 0$, we conclude that

$$
\exp \left(-C_{4} t^{\frac{1}{2}(1+\delta)}\right) \int_{M}(\mathcal{S}(t)-\sigma)_{-} d v_{g_{\epsilon}(t)}
$$

is nonincreasing in $t$.
Next we proceed as in the proof of Lemma 4.5. But we need the cutoff function $\eta$. For $\epsilon>0$ and $\theta>0$ as in the proof of Lemma 4.5, let $\beta, \tilde{\beta}$ as in that proof, we have for $R \gg 1$,

$$
\text { (4-10) } \begin{aligned}
\frac{d}{d t} F d v \leq & C_{6}\left(t^{-\frac{1}{2}(1+\delta)}+t^{-\delta}+t^{-\frac{1}{2}(1+\delta)} F+\int_{M}|\Delta \eta| v \tilde{\beta}^{2} d v_{\tilde{g}_{\epsilon}(t)}\right) \\
\leq & C_{7}\left(t^{-\frac{1}{2}(1+\delta)}+t^{-\delta}+t^{-\frac{1}{2}(1+\delta)} F\right. \\
& \left.\quad+\frac{1}{R} \int_{M \backslash B\left(o, 2 C_{1} R\right)}\left(\left|\mathcal{S}_{\epsilon}(t)-\sigma\right|+\theta\right) d v_{\tilde{g}_{\epsilon}(t)}\right)
\end{aligned}
$$

for some constants $C_{6}, C_{7}$ independent of $\epsilon, t, \theta$ where

$$
F=\int_{M} \eta \tilde{\beta}^{2} v d v_{\tilde{g}_{\epsilon}(t)} .
$$

Integrate from 0 to $t$ and let $\theta \rightarrow 0$. We have

$$
\begin{aligned}
\int_{M} \eta \tilde{\beta}^{2}\left(\mathcal{S}_{\epsilon}(t)-\right. & \sigma)_{-} d v_{\tilde{\sigma}_{\epsilon}(t)} \\
& \leq C_{8}\left(t^{1-\delta}+t^{\frac{1}{2}(1-\delta)}+\frac{1}{R} \int_{0}^{t} \int_{M \backslash B\left(o, 2 C_{1} R\right)}\left(\left|\mathcal{S}_{\epsilon}(s)-\sigma\right| d v_{\tilde{g}_{\epsilon}(s)}\right) d s\right)
\end{aligned}
$$

for some constant $C_{8}$ independent of $\epsilon, t$. Here we have used the fact that $g_{\epsilon, 0}=g_{0}$ outside $\Sigma(2 \epsilon)$ and the fact that $\mathcal{S}_{g_{0}} \geq \sigma$. Let $R \rightarrow \infty$, using (iii), and finally let $\epsilon \rightarrow 0$, we conclude that

$$
\int_{M}(\mathcal{S}(t)-\sigma)_{-} d v_{g(t)} \leq C_{8}\left(t^{1-\delta}+t^{\frac{1}{2}(1-\delta)}\right)
$$

Since

$$
\exp \left(-C_{4} t^{\frac{1}{2}(1+\delta)}\right) \int_{M}(\mathcal{S}(t)-\sigma)_{-} d v_{g_{\epsilon}(t)}
$$

is nonincreasing in $t$, we conclude that the lemma is true.

## 5. Singular metrics realizing the nonpositive Yamabe invariant

In this section, we will apply the results in previous sections to study singular metrics on compact manifolds. Let $M^{n}$ be a compact smooth manifold without boundary. Then as in the Introduction, we may define the Yamabe invariant $\sigma(M)$. It is well known that if $\sigma(M) \leq 0$ and if $g$ is a smooth metric which realizes $\sigma(M)$, then $g$ is Einstein; see [Schoen 1989, pp. 126-127] for example. If $\sigma(M)>0$, the situation is more complicated; for some recent results see [Macbeth 2017].

In this section we want to discuss the following question:
Suppose $g$ is a continuous Riemannian metric on $M$ which is smooth outside some compact set $\Sigma$ such that the volume of $g$ is normalized to be 1 . Suppose the scalar curvature of $g$ satisfies $\mathcal{S}_{g} \geq \sigma(M)$ away from $\Sigma$. What can we say about $g$ ?
In the case that $\Sigma$ has codimension at least 2 , we have the following:
Theorem 5.1. Let $M^{n}$ be a smooth compact manifold such that $\sigma(M) \leq 0$. Suppose $g_{0}$ is a Riemannian metric with $V\left(M, g_{0}\right)=1$ satisfying the following:
(i) There is a compact subset $\Sigma$ such that $g_{0}$ is smooth on $M \backslash \Sigma$ with scalar curvature $\mathcal{S}_{g_{0}} \geq \sigma(M)$ away from $\Sigma$.
(ii) The metric $g_{0}$ is in $W_{\text {loc }}^{1, q}$ for some $q>n$ in the sense that $g_{0}$ has weak derivative and $\left|g_{0}\right|_{\mathfrak{b}},\left.\left.\right|^{\mathfrak{b}} \nabla g_{0}\right|_{\mathfrak{b}} \in L_{\mathrm{loc}}^{q}$ with respect to a smooth background metric $\mathfrak{b}$.
(iii) The volume $V\left(\Sigma(\epsilon), g_{0}\right)$ with respect to $g_{0}$ of the $\epsilon$-neighborhood $\Sigma(\epsilon)$ of $\Sigma$ is bounded by $C \epsilon^{2}$ for some constant $C$ independent of $\epsilon$. Here

$$
\Sigma(\epsilon)=\left\{x \in M \mid d_{g_{0}}(x, \Sigma)<\epsilon\right\} .
$$

Then $g_{0}$ is Einstein on $M \backslash \Sigma$.
To prove the theorem, let $\left(M^{n}, g_{0}\right)$ be as in the theorem. Let

$$
\operatorname{Ric}\left(g_{0}\right)=\operatorname{Ric}\left(g_{0}\right)-\frac{\mathcal{S}_{0}}{n} g_{0}
$$

be the traceless part of $\operatorname{Ric}\left(g_{0}\right)$ where $\mathcal{S}_{0}=\mathcal{S}_{g_{0}}$ is the scalar curvature of $g_{0}$. Let $x_{0} \in M \backslash \Sigma$. We want to prove that $\operatorname{Ric}\left(x_{0}\right)=0$. Suppose $\operatorname{Ric}\left(g_{0}\right)\left(x_{0}\right) \neq 0$, then there is $r>0$ such that $B_{x_{0}}\left(4 r ; g_{0}\right) \cap \Sigma=\varnothing$ and there is $c>0,\left|\operatorname{Ric}\left(g_{0}\right)\right|\left(x_{0}\right) \geq 2 c$ in $B_{x_{0}}(3 r)$. By Corollary 4.6, we can find smooth metrics $g_{i}$ such that (i) $g_{i}$ converges uniformly to $g_{0}$ and converges in $C^{\infty}$ norm on any compact sets in $M \backslash \Sigma$; (ii) $V\left(M, g_{i}\right)=1$; (iii) the scalar curvature $\mathcal{S}_{i}$ of $g_{i}$ satisfies $\mathcal{S}_{i} \geq \sigma-\delta_{i}$ for all $i$ with $\delta_{i} \downarrow 0$. Hence we may assume that

$$
\begin{equation*}
\left|\operatorname{Ric}\left(g_{i}\right)\right|(x) \geq c \tag{5-1}
\end{equation*}
$$

in $B_{x_{0}}\left(2 r ; g_{i}\right)$ for all $i$, and $B_{x_{0}}\left(r ; g_{i}\right) \subset B_{x_{0}}(2 r ; g), B_{x_{0}}\left(2 r ; g_{i}\right) \subset B_{x_{0}}(3 r ; g)$. We may also assume that the distance function $r_{i}(x)$ from $x_{0}$ with respect to $g_{i}$ are smooth in $B_{x_{0}}(3 r ; g)$, provided $r>0$ is small enough, independent of $i$.

Let $\phi$ be a smooth function on $[0, \infty)$ with $\phi \geq 0, \phi=1$ on $[0,1]$ and $\phi=0$ on $[2, \infty)$ and such that $\left|\phi^{\prime}\right|^{2} \leq C \phi$, with $C$ being an absolute constant. Let

$$
h_{i}(x)=\phi\left(\frac{r_{i}(x)}{r}\right) \operatorname{Ric}\left(g_{i}\right)(x) .
$$

For $|\tau|>0$, let $G_{i ; \tau}=g_{i}+\tau h_{i}$. Then there is $\tau_{0}>0$ such that $G_{i ; \tau}$ are smooth metrics for all $i$ and for all $0<|\tau| \leq \tau_{0}$.

In the following, $E_{k}=E_{k}(x, \tau)(k=1,2)$ will denote a quantity such that $\left|E_{k}\right| \leq C|\tau|^{k}$ for some $C$ independent of $x, i$ and $\tau$.

Lemma 5.2. We have

$$
d v_{G_{i, t}}=d v_{g_{i}}\left(1+E_{2}\right)
$$

and

$$
V\left(M, G_{i, t}\right)=1+E_{2} ;
$$

here $d v_{g}$ denotes the volume element of metric $g$.
Proof. Since $g_{i} \rightarrow g$ uniformly on compact sets of $M \backslash \Sigma$ in $C^{\infty}$ norm and since $h_{i}$ is traceless, the results follow.

We have the following general fact [Brendle and Marques 2011, Proposition 4]:
Lemma 5.3. Let $\left(\Omega^{n}, g\right)$ be a smooth Riemannian manifold. Let $\bar{g}=g+h$ with $|h|_{g} \leq \frac{1}{2}$. Then the scalar curvatures are related as

$$
\mathcal{S}_{\bar{g}}-\mathcal{S}_{g}=\operatorname{div}_{g}\left(\operatorname{div}_{g}(h)\right)-\Delta_{g} \operatorname{tr}_{g} h-\langle h, \operatorname{Ric}(g)\rangle_{g}+F,
$$

where

$$
|F| \leq C\left(|\nabla h|^{2}+|h|_{g}\left|\nabla^{2} h\right|_{g}+|\operatorname{Ric}(g)||h|_{g}^{2}\right)
$$

for some constant $C$ depending only on $n$. Here $\nabla$ is the covariant derivative with respect to $g$.

Lemma 5.4. Let $\mathcal{S}_{i}$ be the scalar curvature of $g_{i}$ and $\mathcal{S}_{i, \tau}$ be the scalar curvature of $G_{i ; \tau}$. Then

$$
\mathcal{S}_{i ; \tau}=\mathcal{S}_{i}+\tau \operatorname{div}_{g_{i}}\left(\operatorname{div}_{g_{i}} h_{i}\right)-\tau\left\langle h_{i}, \operatorname{Ric}\left(g_{i}\right)\right\rangle_{g_{i}}+E_{2}(\tau) .
$$

Note that $\mathcal{S}_{i ; \tau}=\mathcal{S}_{i}$ outside $B_{x_{0}}\left(2 r, g_{i}\right)$ and is bounded below by a constant independent of $i, \tau$.

Proof. This follows from Lemma 5.3, the fact that $h_{i}$ is traceless, $h_{i}=0$ outside $B_{x_{0}}\left(2 r, g_{i}\right)$, the fact that $g_{i} \rightarrow g$ in $C^{\infty}$ outside $\Sigma$ and the fact that $\mathcal{S}_{i} \geq \sigma-\delta_{i}$.

In the following, let

$$
\begin{equation*}
a=\frac{4(n-1)}{n-2}, \quad p=\frac{2 n}{n-2} . \tag{5-2}
\end{equation*}
$$

By the resolution of the Yamabe conjecture [Yamabe 1960; Trudinger 1968; Aubin 1976b; Schoen 1984], for each $i, \tau$, we can find a smooth positive solution $u_{i ; \tau}$ of

$$
\begin{equation*}
-a \Delta_{G_{i, \tau}} u_{i ; \tau}+\mathcal{S}_{i ; \tau} u_{i ; \tau}=\lambda_{i ; \tau} V_{i ; \tau}^{-2 / n} u_{i ; \tau}^{p-1} \tag{5-3}
\end{equation*}
$$

with $\lambda_{i ; \tau}=Y\left(\mathcal{C}_{i, \tau}\right)$ which is less than or equal to $\sigma$ (in particular, it is nonpositive), where $\mathcal{C}_{i, \tau}$ is the class of smooth metrics conformal to $G_{i ; \tau}$. Moreover, $u_{i ; \tau}$ is normalized by

$$
\int_{M} u_{i ; \tau}^{p} d v_{G_{i ; \tau}}=1,
$$

and $V_{i, \tau}=V\left(M, G_{i ; \tau}\right)$.
Lemma 5.5. There is $0<\tau_{1} \leq \tau_{0}$ independent of $i$ such that if $0>\tau \geq-\tau_{1}$, then

$$
\begin{aligned}
\left.\left.\frac{a}{2} \int_{M}\right|^{(i ; \tau)} \nabla u_{i ; \tau}\right|_{G_{i, \tau}} ^{2} d v_{G_{i, \tau}}-\lambda_{i ; \tau} V_{i ; \tau}^{-2 / n} & +\sigma \\
& \leq-C|\tau| \int_{B_{x_{0}}\left(2 r, g_{i}\right)} \phi u_{i ; \tau}^{2} d v_{g_{i}}+C^{\prime} \delta_{i}+E_{2}(\tau)
\end{aligned}
$$

for some positive constants $C, C^{\prime}$ independent of $i$ and $\tau$. Here ${ }^{(i ; \tau)} \nabla$ is the covariant derivative with respect to $G_{i, \tau}$.

Proof. For simplicity of notation, in the following we denote ${ }^{(i ; \tau)} \nabla$ by $\nabla, G_{i ; \tau}$ by $G ; g_{i}$ by $g ; u_{i ; \tau}$ by $u ; \lambda_{i ; \tau}$ by $\lambda ; \mathcal{S}_{i ; \tau}$ by $\mathcal{S}_{G} ; \mathcal{S}_{i}$ by $\mathcal{S}_{g}$; and $V_{i ; \tau}$ by $V$.

Multiply (5-3) by $u$ and integrating by parts, using the fact that

$$
\int_{M} u^{p} d v_{G}=1,
$$

we have

$$
\begin{align*}
a \int_{M}|\nabla u|_{G}^{2} d v_{G}-\lambda V^{-2 / n} & =-\int_{M} \mathcal{S}_{G} u^{2} d v_{G}  \tag{5-4}\\
& \leq-\int_{M} \mathcal{S}_{G} u^{2} d v_{g}+E_{2}(\tau) \int_{M} u^{2} d v_{g}
\end{align*}
$$

by Lemmas 5.2 and 5.4 and the fact that $g_{i}$ converges in $C^{\infty}$ norm in $B_{x_{0}}\left(3 r, g_{0}\right) \supset$ $B_{x_{0}}\left(g_{i}, 2 r\right)$. On the other hand, by Lemma 5.4, for any $0<\epsilon<1$,

$$
\begin{align*}
-\int_{M} & \mathcal{S}_{G} u^{2} d v_{g} \\
\leq & -\int_{M} \mathcal{S}_{g} u^{2} d v_{g}-\tau \int_{M}\left(\operatorname{div}_{g}\left(\operatorname{div}_{g} h\right)-\langle h, \operatorname{Ric}(g)\rangle_{g}\right) u^{2} d v_{g} \\
& +E_{2}(\tau) \int_{B_{x_{0}}(2 r ; g)} u^{2} d v_{g} \\
\leq & -\int_{M} \mathcal{S}_{g} u^{2} d v_{g}+\left.\left.C_{1}|\tau| \int_{M} u\right|^{g} \nabla u\right|_{g}\left(\left|\phi^{\prime}\right||\operatorname{Ric}(g)|_{g}+\left.\left.\phi\right|^{g} \nabla \mathcal{S}_{0}\right|_{g}\right) d v_{g} \\
& \quad-|\tau| \int_{M} \phi|\operatorname{Ric}(g)|^{2} u^{2} d v_{g}+E_{2}(\tau) \int_{B_{x_{0}}(2 r ; g)} u^{2} d v_{g} \\
\leq & (-\sigma+\delta) \int_{M} u^{2} d v_{g}+\left(C_{2}+\epsilon^{-1}\right)|\tau| \int_{M}\left|{ }^{g} \nabla u\right|_{g}^{2} d v_{g} \\
& \quad-C_{3}|\tau| \int_{M} \phi|\operatorname{Ric}(g)|^{2} u^{2} d v_{g}+\left(E_{2}(\tau)+C_{2} \epsilon|\tau|\right) \int_{B_{x_{0}}(2 r ; g)} \phi u^{2} d v_{g} \\
\leq & (-\sigma+\delta) \int_{M} u^{2} d v_{g}+\left.\left.\left(C_{2}+\epsilon^{-1}\right)|\tau| \int_{M}\right|^{g} \nabla u\right|_{g} ^{2} d v_{g} \\
& +\left(E_{1}(\tau)+C_{2} \epsilon-C_{3} c\right)|\tau| \int_{B_{x_{0}}(2 r ; g)} \phi u^{2} d v_{g}
\end{align*}
$$

for some constants $C_{1}, C_{2}, C_{3}>0$ independent of $i, \tau$. Here we have used the fact that $\left|\phi^{\prime}\right|^{2} \leq C \phi$ and the fact that $\mathcal{S}_{g} \geq \sigma-\delta_{i}$ which is negative, where we denote $\delta_{i}$ by $\delta$. Choose $\epsilon>0$ so that $C_{2} \epsilon=\frac{1}{2} C_{3} c$. Then the result follows if $\tau_{1}>0$ is small enough and independent of $i$, by (5-4), (5-5), the Hölder inequality, the fact that $g, G$ are uniformly equivalent, and the fact that

$$
\int_{M} u^{p} d v_{G}=1, \quad V(M, g)=1,
$$

and

$$
V(M, G)=1+E_{2}(\tau) .
$$

Let $0>\tau_{k}>-\tau_{1}, \tau_{k} \rightarrow 0$. Since $\delta_{i} \rightarrow 0$, for each $k$ we can find $i_{k}$ such that $\delta_{i_{k}} \leq \tau_{k}^{2}, i_{k} \rightarrow \infty$. Let us denote $G_{i_{k} ; \tau_{k}}$ by $G_{k}$, and $u_{i_{k} ; \tau_{k}}$ by $u_{k}$. We want to prove the following:

Lemma 5.6. There is a constant $C>0$ such that for all $k$,

$$
\inf _{B_{x_{0}}\left(3, g_{0}\right)} u_{k} \geq C .
$$

Proof of Theorem 5.1. Suppose the lemma is true then we will have a contradiction. In fact, if we denote $\delta_{i_{k}}$ by $\delta_{k}$, since $V\left(M, G_{k}\right)=1+E_{2}\left(\tau_{k}\right), \lambda \leq \sigma$, by Lemma 5.5 , we have

$$
\begin{aligned}
\left.\left.\frac{a}{2} \int_{M}\right|^{G_{k}} \nabla u_{k}\right|_{G_{k}} ^{2} d v_{G_{k}} & \leq-C_{1}\left|\tau_{k}\right| \int_{B_{x_{0}}\left(2 r, g_{i_{k}}\right)} \phi u_{k}^{2} d v_{g_{i_{k}}}+C_{2} \delta_{k}+C_{2} \tau_{k}^{2} \\
& \leq-C_{1}\left|\tau_{k}\right| \int_{B_{x_{0}}\left(2 r, g_{i_{k}}\right)} \phi u_{k}^{2} d v_{g_{i_{k}}}+\left(C_{2}+1\right) \tau_{k}^{2}
\end{aligned}
$$

for some positive constants $C_{1}, C_{2}$ independent of $k$. By Lemma 5.6, this is impossible if $k$ is large enough. Hence $\operatorname{Ric}\left(g_{0}\right)\left(x_{0}\right)$ must be zero. Theorem 5.1 then follows.

It remains to prove Lemma 5.6. Consider the equation

$$
\begin{equation*}
-a \Delta u+\mathcal{S} u=\lambda u^{p-1} \tag{5-6}
\end{equation*}
$$

Lemma 5.7. Let $\left(M^{n}, g\right)$ be a smooth metric with scalar curvature $\mathcal{S} \geq-s_{0}$, with $s_{0} \geq 0$. Let $u>0$ be a solution of (5-6) with $\|u\|_{p}=1$ and with $\lambda \leq 0$. Then for any $q>p$,

$$
\|u\|_{q} \leq C\left(s_{0}, V(M ; g), n, q\right) .
$$

Proof. See [Trudinger 1968]; see also [Lee and Parker 1987, Proposition 4.4]
Lemma 5.8. Using the notation of Lemma 5.6,
(i) for any $q>p$, there is a constant $C$ independent of $k$ such that

$$
\left\|u_{k}\right\|_{q, g_{0}} \leq C
$$

(ii) $u_{k}$ subconverges in $C^{2}$ norm with respect to $g_{0}$ in any compact set $K \subset M \backslash \Sigma$;
(iii) $\lim _{k \rightarrow \infty} \int_{M}\left\|^{g_{0}} \nabla u_{k}\right\|_{g_{0}}^{2} d v_{g_{0}}=0$;
(iv) $\lim _{k \rightarrow \infty} \lambda_{k}=\sigma$, where $\lambda_{k}=\lambda_{i_{k} ; \tau_{k}}$ as in (5-3).

Proof. Since $\mathcal{S}_{i_{k} ; \tau_{k}} \geq \sigma-\delta_{k}$ and $\delta_{k} \rightarrow 0$, (i) follows from Lemma 5.7 and the fact that $C^{-1} g_{0} \leq G_{k} \leq C g_{0}$ for some $C>0$ for all $k$.

To prove (ii), for any compact set $K \subset M \backslash \Sigma$, there is an open set $K \Subset U \subset M \backslash \Sigma$ such that $G_{k}$ converges in $C^{\infty}$ norm to $g_{0}$ on $U$. By Lemma 5.5 , we conclude that $0 \leq-\lambda_{k} \leq C$ for some constant independent of $k$. Then by (i), and [Lee and Parker 1987, Theorem 2.4], we conclude that for any $U^{\prime} \Subset U$,

$$
\left\|u_{k}\right\|_{L_{2}^{q}\left(U^{\prime}\right)} \leq C_{1}
$$

for some constant $C$ independent of $k$. We then use the Sobolev embedding theorem to conclude that the $C^{\alpha}$ norm of $u_{k}$ are uniformly bounded in $U^{\prime} \Subset U$. From this the result follows by Schauder estimates.

Parts (iii) and (iv) follow from Lemma 5.5.

Corollary 5.9. After passing to a subsequence, $u_{k}$ converges in $C^{2}$ norm locally in $M \backslash \Sigma$ to a function $\mathfrak{u}$. Moreover, $\mathfrak{u}=1$ in $M \backslash \Sigma$ and

$$
\mathcal{S}_{g_{0}}=\sigma
$$

In particular Lemma 5.6 is true.
Proof. By Lemma 5.8, after passing to a subsequence, $u_{k}$ converges in $C^{2}$ norm locally in $M \backslash \Sigma$ to a function $\mathfrak{u}$. Moreover, $\mathfrak{u}$ is constant in each component of $M \backslash \Sigma$. We claim that there is $C_{1}>0$ such that $0 \leq u_{k} \leq C_{1}$ for all $k$.

Since the scalar curvature $\mathcal{S}_{G_{k}} \geq-s_{0}$ for some $s_{0}>0$ independent of $k$ and since $\lambda_{k} \leq 0$, we have

$$
-a \Delta_{G_{k}} u_{k}-s_{0} u_{k} \leq-a \Delta_{G_{k}} u_{k}+\mathcal{S}_{G_{k}} u_{k} \leq 0
$$

Moreover, $\int_{M} u_{k}^{p} d v_{G_{k}}=1$ and $G_{k}$ is equivalent to $g_{0}$ uniformly in $k$, the claim follows from mean value inequality [Gilbarg and Trudinger 1983, Theorem 8.17].

Since $u_{k} \rightarrow \mathfrak{u}$ almost everywhere, and $G_{k}$ converges uniformly to $g_{0}$, we have

$$
\int_{M} \mathfrak{u}^{p} d v_{g_{0}}=1
$$

In particular, $\mathfrak{u}>0$ somewhere.
Next we want to prove that $\mathfrak{u}$ is constant on $M$. By Lemma 5.8, there is a constant $C_{2}$ independent of $k$ such that

$$
\int_{M}\left(\left.\left.\right|^{g_{0}} \nabla u_{k}\right|_{g_{0}} ^{2}+u_{k}^{2}\right) d v_{g_{0}} \leq C_{2}
$$

Passing to a subsequence, we may assume that $u_{k}$ converges weakly in $W^{1,2}\left(M, g_{0}\right)$ to $v$ say. We claim that $v$ is constant. In fact, for any $\ell \geq 1$, the sequence $u_{\ell+k}$, $k \geq 1$, also weakly converges to $v$. Then we can find convex combinations of $u_{\ell+k}$ which converge to $v$ strongly in $W^{1,2}\left(M, g_{0}\right)$. Namely, for any $\epsilon>0$, there exists $\alpha_{1}, \ldots, \alpha_{m}$ with $\alpha_{k} \geq 0, \sum_{k=1}^{m} \alpha_{k}=1$ such that if $w=\sum_{k=1}^{m} \alpha_{k} u_{\ell+k}$, then

$$
\|w-v\|_{W^{1,2}\left(M, g_{0}\right)} \leq \epsilon
$$

On the other hand, by Lemma 5.8, if $\ell$ is large enough, then

$$
\begin{aligned}
\left(\int_{M}\left|{ }^{g_{0}} \nabla w\right|_{g_{0}}^{2} d v_{g_{0}}\right)^{\frac{1}{2}} & \leq\left(\int_{M}\left(\left.\left.\sum_{k} \alpha_{k}\right|^{g_{0}} \nabla u_{\ell+k}\right|_{g_{0}}\right)^{2} d v_{g_{0}}\right)^{\frac{1}{2}} \\
& \leq \sum_{k} \alpha_{k}\left(\int_{M}\left|{ }^{g_{0}} \nabla u_{l+k}\right|_{g_{0}}^{2} d v_{g_{0}}\right)^{\frac{1}{2}} \\
& \leq \epsilon
\end{aligned}
$$

Hence

$$
\int_{M}\left|{ }^{g_{0}} \nabla v\right|^{2} d v_{g_{0}} \leq(2 \epsilon)^{2}
$$

This implies ${ }^{g_{0}} \nabla v=0$, a.e. Since $v \in W^{1,2}\left(M, g_{0}\right)$, we conclude that $v=c$ is a constant as claimed.

On the other hand, for any smooth function $\phi$ on $M$

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \int_{M}\left(\left\langle{ }^{g_{0}} \nabla \phi,{ }^{g_{0}} \nabla u_{k}\right\rangle_{g_{0}}+\phi u_{k}\right) d v_{g_{0}} & =\int_{M}\left(\left\langle{ }^{g_{0}} \nabla \phi,{ }^{g_{0}} \nabla v\right\rangle_{g_{0}}+\phi v\right) d v_{g_{0}} \\
& =\int_{M} \phi v d v_{g_{0}}
\end{aligned}
$$

Also by Lemma 5.8 again, and the fact that $u_{k}$ are uniformly bounded and $u_{k} \rightarrow \mathfrak{u}$ a.e., we have

$$
\lim _{k \rightarrow \infty} \int_{M}\left(\left\langle{ }^{g_{0}} \nabla \phi,{ }^{g_{0}} \nabla u_{k}\right\rangle_{g_{0}}+\phi u_{k}\right) d v_{g_{0}}=\int_{M} \phi \mathfrak{u} d v_{g_{0}}
$$

So

$$
\int_{M} \phi \mathfrak{u} d v_{g_{0}}=\int_{M} \phi v d v_{g_{0}} .
$$

Hence $\mathfrak{u}=v$ is a constant. Since $\int_{M} \mathfrak{u}^{p} d v_{g_{0}}=1$ so $\mathfrak{u}=1$. Since $\mathfrak{u}$ satisfies

$$
-a \Delta_{g_{0}} \mathfrak{u}+\mathcal{S}_{g_{0}} \mathfrak{u}=\sigma \mathfrak{u}^{p},
$$

the last assertion follows.
This completes the proof of Theorem 5.1. Next we want to discuss the case that $\Sigma$ has codimension one. We have the following:

Theorem 5.10. Let $M^{n}$ be a smooth compact manifold such that $\sigma(M) \leq 0$. Suppose $g_{0}$ is a Riemannian metric with $V\left(M, g_{0}\right)=1$ satisfying (b1)-(b3) in Section 4. Then $g_{0}$ is Einstein on $M \backslash \Sigma$ and $\mathcal{S}_{g_{0}}=\sigma(M)$. Moreover, $H_{-}=H_{+}$.

Proof. Let $g_{i}=g_{\epsilon_{i}, 0}$ be the smooth approximation of $g_{0}$ by [Miao 2002] as given in Section 4. The fact that $g_{0}$ is Einstein outside $\Sigma$ can be proved similarly as above using Corollary 4.8. It remains to prove that $H_{-}=H_{+}$. Let $\epsilon_{i} \rightarrow 0$ and let $u_{i}$ be the positive solution of

$$
-a \Delta_{i} u_{i}+\mathcal{S}_{i} u_{i}=\lambda_{i} u_{i}^{p-1}
$$

normalized as

$$
\int_{M} u_{i}^{p} d v_{i}=1
$$

Here $\Delta_{i}$ is the Laplacian of $g_{i}$ etc. Also $\lambda_{i} \leq \sigma$, where $\sigma:=\sigma(M)$. Suppose $H_{-}(z)>H_{+}(z)$ somewhere; then one can easily check that there is a positive
constant $b$ such that for $i$ large enough,

$$
\begin{equation*}
\int_{M} \mathcal{S}_{i} d v_{i} \geq \sigma+b \tag{5-7}
\end{equation*}
$$

As before, passing to a subsequence if necessary, $u_{i} \rightarrow 1$ outside $\Sigma$ and uniform in $C^{\infty}$ norm in any compact set of $M \backslash \Sigma$. Moreover, $u_{i}$ are uniformly bounded, and $\lambda_{i} \rightarrow \sigma$. Since $\mathcal{S}_{i}$ be bounded below by $-s_{0}$, for some $s_{0} \geq 0$ and $u_{i}$ is bounded from below, we have

$$
\begin{aligned}
\sigma & =\lim _{i \rightarrow \infty} \lambda_{i} \int_{M} u_{i}^{p-1} d v_{i} \\
& =\lim _{i \rightarrow \infty} \int_{M} \mathcal{S}_{i} u_{i} d v_{i} \\
& \geq \lim _{i \rightarrow \infty} \int_{M} \mathcal{S}_{i}\left(u_{i}-1\right) d v_{i}+\sigma+b
\end{aligned}
$$

where we have used the fact that $V\left(M, g_{0, \epsilon_{i}}\right) \rightarrow V\left(M, g_{0}\right)=1$ and (5-7). We claim

$$
\lim _{i \rightarrow \infty} \int_{M} \mathcal{S}_{i}\left(u_{i}-1\right) d v_{i}=0
$$

If the claim is true, then we have a contradiction because $b>0$. To prove the claim, note that on $|t| \leq a$, the original metric $g_{0}$ is of the form

$$
g_{0}(z, t)=d t^{2}+g_{i j}(z, t) d z^{i} d z^{j}
$$

We assume that $g_{i j}(z, t)$ (which will be denoted by $h_{i j}^{t}(z)$ ) is uniformly equivalent to $g_{i j}(z, 0)$ (which will be denoted by $h_{i j}(z)$ ). For any $z \in \Sigma$ and for any $1 \geq t \geq 0$,

$$
\left.\left|u_{i}(z, a)-u_{i}(z, t)\right| \leq \int_{0}^{a}\left|\frac{\partial u_{i}(z, s)}{\partial s}\right| d s \leq\left.\int_{0}^{1}\right|^{g_{0}} \nabla u_{i} \right\rvert\,(z, s) d s
$$

By the properties of $g_{0, \epsilon}$,

$$
\begin{equation*}
\int_{\epsilon_{i}^{2} / 100 \leq|t| \leq \epsilon_{i}}\left|\mathcal{S}_{i}\left(u_{i}-1\right)\right| d v_{i}=o(1) \tag{5-8}
\end{equation*}
$$

because $u_{i}$ are uniformly bounded. So

$$
\begin{align*}
\int_{|t| \leq \epsilon_{i}^{2} / 100} \mathcal{S}_{i}(z, t) & \left(u_{i}(z, t)-1\right) d v_{g_{i}}  \tag{5-9}\\
= & \int_{|t| \leq \epsilon_{i}^{2} / 100} \mathcal{S}_{i}(z, t)\left(u_{i}(z, 1)-1\right) d v_{g_{i}} \\
& \quad+\int_{|t| \leq \epsilon_{i}^{2} / 100} \mathcal{S}_{i}(z, t)\left(u_{i}(z, t)-u_{i}(z, 1)\right) d v_{g_{i}} \\
= & I+I I
\end{align*}
$$

Since $u_{i}(z, 1) \rightarrow 1$ uniformly on $z \in \Sigma$, and $\int_{M}\left|\mathcal{S}_{i}\right| d v_{g_{i}}$ is bounded, we conclude that

$$
\begin{equation*}
I=o(1) \tag{5-10}
\end{equation*}
$$

as $i \rightarrow \infty$. On the other hand,

$$
\begin{align*}
|I I| & \leq \int_{|t| \leq \epsilon_{i}^{2} / 100}\left|\mathcal{S}_{i}(z, t)\left(u_{i}(z, t)-u_{i}(z, 1)\right)\right| d v_{g_{i}}  \tag{5-11}\\
& \leq c \int_{z \in \Sigma}\left(\int_{-\epsilon_{i}^{2} / 100}^{\epsilon_{i}^{2} / 100} \epsilon_{i}^{-2} \int_{0}^{1}\left|\nabla u_{i}(z, s)\right| d s\right) d t d v_{h} \\
& \leq c \int_{z \in \Sigma}\left(\int_{0}^{a}\left|\nabla u_{i}(z, s)\right| d s\right) d t d v_{h} \\
& \leq c \int_{M}\left|\nabla u_{i}\right| d v_{g_{i}} \\
& =o(1)
\end{align*}
$$

by the Schwartz inequality and Lemma 5.8. The claim follows from (5-8)-(5-11).

## 6. Singular Einstein metrics

In the conclusions of Theorem 5.1, one obtains metrics which are smooth and Einstein outside some singular sets. In this section, we want to prove that under certain conditions, one may introduce a smooth structure so that the Einstein metric is actually smooth. More precisely, we have the following:
Theorem 6.1. Let $M^{n}, n \geq 3$, be a smooth manifold and $g$ be a Riemannian metric on $M$ satisfying the following conditions: There is a compact set $\Sigma$ in $M$ such that
(i) $g$ is Lipschitz and $g$ is smooth on $M \backslash \Sigma$;
(ii) $g=\lambda \operatorname{Ric}$ on $M \backslash \Sigma$ for some constant $\lambda$;
(iii) the codimension of $\Sigma$ is larger than 1 in the sense that $V(\Sigma(\epsilon), g)=O\left(\epsilon^{1+\theta}\right)$ for some $\theta>0$, where $\Sigma(\epsilon)=\{x \in M \mid d(x, \Sigma)<\epsilon\}$.
Then for any open set $U$ containing $\Sigma$, there is a smooth structure on $M$ which is the same as the original smooth structure on $M \backslash U$ so that $g$ is a smooth Einstein metric on $M$.

We want to construct the required smooth structure using harmonic coordinates. First recall the following.

Lemma 6.2. Let $B(1)$ be the unit ball in $\mathbb{R}^{n}$ with center at the origin. Let $\left(a_{i j}\right)$ be a symmetric matrix such that

$$
\lambda|\xi|^{2} \leq a^{i j} \xi^{i} \xi^{j} \leq \Lambda|\xi|^{2}
$$

for some $\Lambda>\lambda>0$ for all $\xi \in \mathbb{R}^{n}$ and where $a^{i j}$ is Lipschitz with Lipschitz constant L. Let $f \in L^{\infty}(B(1))$. Then the boundary value problem

$$
\begin{cases}\frac{\partial}{\partial x^{i}}\left(a^{i j} \frac{\partial u}{\partial x^{j}}\right)=f & \text { in } B(1) \\ u=0 & \text { on } \partial B(1)\end{cases}
$$

has a unique solution in $W^{2, p}(B(1))$ for any $p>1$ with $u \in W_{0}^{1, p}(B(1))$. Moreover, we have

$$
\|u\|_{2, p} \leq C\left(\|u\|_{p}+\|f\|_{p}\right)
$$

for some constant $C$ depending only on $p, n, \lambda, \Lambda, L$. Here $\|u\|_{2, p}$ is the $W^{2, p}$ norm on $B(1)$ and $\|u\|_{p}$ is the $L^{p}$ norm in $B(1)$.

Proof. The results follow from [Gilbarg and Trudinger 1983, Theorem 9.15, Corollary 9.13]. By taking $p>n$ and the Sobolev embedding theorem, $u$ is continuous up to the boundary and $u=0$ at the boundary.

With the same assumptions and notation as in Theorem 6.1, let $q \in \Sigma$. Let $U_{\delta}=\left\{\left(x^{1}, \ldots, x^{n}\right)| | x \mid<\delta\right\}$ be a smooth local coordinate neighborhood with $q$ being at the origin such that $g_{i j}$ is equivalent to the Euclidean metric and $g_{i j}$ is Lipschitz with Lipschitz constant $L$
Lemma 6.3. With the above assumptions and notation, there is $\delta>\epsilon>0$ and functions $u^{1}, \ldots, u^{n}$ on $U_{\epsilon}=\left\{\left(x^{1}, \ldots, x^{n}\right)| | x \mid<\epsilon\right\}$ such that the mapping $\left(x^{1}, \ldots, x^{n}\right) \rightarrow\left(u^{1}, \ldots, u^{n}\right)$ is a local $C^{1, \alpha}$ diffeomorphism at the origin for some $0<\alpha<1, u^{i} \in W^{2, p}\left(U_{\epsilon}\right)$ for all $p>1$ and $u^{i}$ is harmonic with respect to $g$ for $1 \leq i \leq n$. Moreover, $u^{i}$ is smooth outside $\Sigma$.

Proof. Let $\delta>\epsilon>0$ to be chosen later. Fix $\ell$, let $f=\Delta_{g} x^{\ell}$ which is bounded by the assumption on $g_{i j}$. Let $\lambda, \Lambda>0$ be such that

$$
\begin{equation*}
\lambda|\xi|^{2} \leq g^{i j} \xi^{i} \xi^{j} \leq \Lambda|\xi|^{2} \tag{6-1}
\end{equation*}
$$

in $U_{\delta}$.
Let $y=\epsilon^{-1} x$. Consider the following boundary value problem on $B(1)$ in the $y$-space

$$
\begin{cases}\frac{\partial}{\partial y^{i}}\left(\sqrt{g} g^{i j} \frac{\partial v}{\partial y^{j}}\right)=\epsilon^{2} \sqrt{g} f & \text { in } B(1)  \tag{6-2}\\ v=0 & \text { on } \partial B(1)\end{cases}
$$

By Lemma 6.2, the boundary value problem has a solution $v$ satisfying the conclusions in that lemma. Here we have used the fact that $g_{i j}$ has Lipschitz constant bounded by $\epsilon L$ and still satisfies (6-1) as functions of $y$. In particular, we have

$$
\|v\|_{2, p ; y} \leq C_{1}\left(\|v\|_{p ; y}+\epsilon^{2}\right)
$$

Here and below, $C_{i}$ will denote positive constants independent of $\epsilon$. Let $p>n$ be fixed; then one can see that there is $1>\alpha>0$ such that $v \in C^{1, \alpha}(B(1))$ in the $y$-space and

$$
\begin{equation*}
\|v\|_{C^{1, \alpha}(B(1))} \leq C_{2}\left(\|v\|_{p ; y}+\epsilon^{2}\right) \tag{6-3}
\end{equation*}
$$

for some positive constants $C_{2}-C_{4}$ independent of $\epsilon$.
Let $w(x)=v\left(\epsilon^{-1} x\right)$ with $x \in B(\epsilon)$ in the $x$-space. Then $w$ satisfies

$$
\begin{cases}\frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial w}{\partial x^{j}}\right)=\sqrt{g} f & \text { in } B(\epsilon), \\ w=0 & \text { on } \partial B(\epsilon)\end{cases}
$$

in the $x$-space. Moreover, $w \in W^{2, p}(B(\epsilon))$. Let $u^{\ell}=w-x^{\ell}$. Then $u^{\ell}$ is harmonic, namely, $u^{\ell}$ satisfies

$$
\begin{cases}\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial u^{\ell}}{\partial x^{j}}\right)=0 & \text { in } B(\epsilon), \\ u^{\ell}=x^{\ell} & \text { on } \partial B(\epsilon) .\end{cases}
$$

By the maximum principle, we conclude that $\left|u^{\ell}\right| \leq \epsilon$ and so $|w| \leq 2 \epsilon$, and moreover, we have

$$
\begin{equation*}
\sup _{B(\epsilon)}\left|\partial_{x} w\right|=\epsilon^{-1} \sup _{B(1)}\left|\partial_{y} v\right| \leq C_{2} \epsilon^{-1}\left(\|v\|_{p ; y}+\epsilon^{2}\right) \tag{6-4}
\end{equation*}
$$

To estimate the right-hand side, multiply (6-2) by $v$ and integrating by parts, using the Poincaré inequality, we have

$$
\int_{B(1)} v^{2} d y \leq C_{3} \epsilon^{2} \int_{B(1)}|v| d y
$$

and so

$$
\begin{aligned}
\|v\|_{p ; y} & \leq\left(\sup _{B(1)}|v|\right)^{1-2 / p}\left(\int_{B(1)} v^{2} d y\right)^{1 / p} \\
& \leq C_{4} \epsilon^{1-2 / p} \cdot \epsilon^{4 / p} \\
& =C_{4} \epsilon^{1+2 / p}
\end{aligned}
$$

where we have used the Hölder inequality and the fact that $|v|=|w| \leq 2 \epsilon$. By (6-4) we conclude that

$$
\sup _{B(\epsilon)}\left|\partial_{x} w\right| \leq C_{5} \epsilon^{2 / p} .
$$

Hence

$$
\frac{\partial u^{\ell}}{\partial x^{i}}=\delta_{i}^{\ell}+O\left(\epsilon^{2 / p}\right) .
$$

From this and the fact that $g$ is smooth outside $\Sigma$ it is easy to see that the lemma is true, provided $\epsilon$ is small enough.

Proof of Theorem 6.1. Let $U$ be any open set containing $\Sigma$. For any $q \in \Sigma$, by Lemma 6.3, we can find smooth coordinates neighborhood $V_{q} \Subset U$ around $q$ and $C^{1, \alpha}$ functions $u^{1}, \ldots, u^{n}$ on $V_{q}$ near $q$ which are in $W^{2, p}\left(V_{q}\right)$ as functions of $x$. Moreover, $\left(x^{1}, \ldots, x^{n}\right) \rightarrow\left(u^{1}, \ldots, u^{n}\right)$ is a $C^{1}$ diffeomorphism from $V_{q}$ to its image $\widetilde{V}_{q}$ in the $u$-space. Let

$$
\begin{equation*}
h_{a b}=g\left(\frac{\partial}{\partial u^{a}}, \frac{\partial}{\partial u^{b}}\right)=\frac{\partial x^{i}}{\partial u^{a}} \frac{\partial x^{j}}{\partial u^{b}} g_{i j} \tag{6-5}
\end{equation*}
$$

where

$$
g_{i j}=g\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)
$$

Let

$$
R_{a b}=\operatorname{Ric}\left(\frac{\partial}{\partial u^{a}}, \frac{\partial}{\partial u^{b}}\right) .
$$

Since each $u^{a}$ is harmonic, and $R_{a b}=\lambda h_{a b}$ by assumption, away from $\Sigma$ for all $a, b$ we have

$$
\begin{equation*}
h^{c d} h_{a b, c d}=-2 \lambda h_{a b}+\partial h^{-1} * \partial h+h^{-1} * h^{-1} * \partial h * \partial h:=Q(h, \partial h) \tag{6-6}
\end{equation*}
$$

where $\left(h^{c d}\right)=\left(h_{c d}\right)^{-1}$,

$$
h_{a b, c}=\frac{\partial}{\partial u^{c}} h_{a b}
$$

etc., and $\partial h^{-1} * \partial h$ denotes a sum of finite terms of the form

$$
\left(\frac{\partial}{\partial u^{c}} h^{a b}\right)\left(\frac{\partial}{\partial u^{f}} h_{d e}\right)
$$

etc. By (6-5),

$$
\begin{equation*}
h_{a b, c}=2 \frac{\partial^{2} x^{i}}{\partial u^{a} \partial u^{c}} \frac{\partial x^{j}}{\partial u^{b}} g_{i j}+\frac{\partial x^{i}}{\partial u^{a}} \frac{\partial x^{j}}{\partial u^{b}} \frac{\partial x^{k}}{\partial u^{c}} \frac{\partial}{\partial x^{k}} g_{i j} . \tag{6-7}
\end{equation*}
$$

We may assume that $\widetilde{V}_{q}$ contains the origin which is the coordinates of $q$. Then by shrinking $\widetilde{V}_{q}$ if necessary, by Lemma 6.3, $h_{a b}$ is bounded and $h_{a b, c}$ is in $L^{p}$ for all $p>1$ for all $a, b, c$ as functions of $u$. In particular, $h_{a b}$ is in $W^{1, p}\left(\widetilde{V}_{q}\right)$ for all $p>1$. Moreover, $\left(h^{a b}\right)$ is uniformly elliptic. Since $h^{a b}$ is only in $C^{\alpha}$ with $0<\alpha<1$, we cannot apply the standard $L^{p}$ estimate as in [Gilbarg and Trudinger 1983, Theorem 9.19]. Hence, we want to prove that $h_{a b}$ is in $W^{2, p}(B(\delta))$ for all $a, b$ for all $p>n$ and for some $\delta>0$ in the $u$-space, where $B(\delta)=\{u| | u \mid<\delta\}$. Suppose this is true; then $h_{a b} \in C_{\mathrm{loc}}^{0,1}(B(\delta))$ and $\partial h \in W_{\mathrm{loc}}^{1, p}(B(\delta))$. This implies $Q(h, \partial h)$ in (6-6) is in $W_{\text {loc }}^{1, p / 2}(B(\delta))$. Since this is true for all $p>n$, by [Gilbarg and Trudinger 1983, Theorem 9.19], we conclude that $h_{a b}$ is in $W^{3, p}(B(\delta))$. Continuing in this way, we conclude that $h_{a b} \in W_{\text {loc }}^{k, p}(B(\delta))$ for all $k \geq 1$ and $p>n$ by a bootstrap argument. Hence $h_{a b}$ is smooth near the origin.

It remains to prove that $h_{a b} \in W^{2, p}(B(\delta))$ for all $p>n$ for all $a, b$ for some $\delta>0$. Fix $a, b$ and let $w=\phi h_{a b}$ where $\phi$ is a smooth cutoff function in $B(2 \delta)$ such that $\phi=1$ in $B(\delta), \phi=0$ outside $B\left(\frac{3}{2} \delta\right)$, where $\delta>0$ is small enough so that $B(2 \delta) \Subset \widetilde{V}_{q}$. Then away from $\Sigma, w$ satisfies

$$
\begin{equation*}
h^{c d} w_{c d}=Q_{1}\left(h, \partial h, \phi, \partial \phi, \partial^{2} \phi\right) . \tag{6-8}
\end{equation*}
$$

Since $Q_{1}$ is in $L^{p}(B(2 \delta))$ by Lemma 6.3 and $\left(h^{c d}\right)$ is continuous and is uniformly elliptic, by [Gilbarg and Trudinger 1983, Theorem 9.15] for any $p>n$ there is $v \in W^{2, p}(B(2 \delta)) \cap W_{0}^{1, p}(B(2 \delta))$ such that

$$
h^{c d} v_{c d}=Q_{1}\left(h, \partial h, \phi, \partial \phi, \partial^{2} \phi\right) .
$$

Since $h^{c d} \in W^{1, p}(B(2 \delta))$ for all $p$, for any smooth function $\eta$ with compact support in $B(2 \delta)$, we have

$$
\begin{equation*}
\int_{B(2 \delta)}\left(h^{c d} \frac{\partial \eta}{\partial u^{a}} \frac{\partial v}{\partial u^{b}}+\eta s^{d} \frac{\partial v}{\partial u^{d}}\right) d u=-\int_{B(2 \delta))} \eta Q_{1} d u . \tag{6-9}
\end{equation*}
$$

where $s^{d}=\frac{\partial}{\partial u^{c}} h^{c d}$. We want to prove that $w$ also satisfies this relation.
To prove the claim, note that if we consider $\Sigma \cap \widetilde{V}_{q}$ then the codimension of $\Sigma$ in the $u$-space is at least $1+\theta$ for some $\theta>0$ because $h_{a b}$ and the Euclidean metric are uniformly equivalent. As in [Lee 2013], for $\epsilon>0$ small enough, we can find a smooth function $0 \leq \xi_{\epsilon} \leq 1$ in $\widetilde{V}_{q}$ such that $\xi_{\epsilon}=1$ outside $\Sigma_{2 \epsilon}$ and is zero in $\Sigma_{\epsilon} \cap \widetilde{V}_{q}$ where $\Sigma_{\epsilon}=\left\{u \in \widetilde{V}_{q} \mid d(u, \Sigma)<\epsilon\right\}$ where the distance is the Euclidean distance. Moreover, $\left|\partial \xi_{\epsilon}\right| \leq C_{1} \epsilon^{-1}$. Here and below $C_{i}$ denotes a positive constant independent of $\epsilon$. Now let $\eta$ be a smooth function with compact support in $B(2 \delta)$. Multiply (6-8) by $\eta \xi_{\epsilon}$ and integrating by parts, we have

$$
-\int_{B(2 \delta)} \eta \xi_{\epsilon} Q_{1} d u=\int_{B(2 \delta)}\left[h^{c d}\left(\xi_{\epsilon} \frac{\partial \eta}{\partial u^{a}}+\eta \frac{\partial \xi_{\epsilon}}{\partial u^{a}}\right) \frac{\partial w}{\partial u^{b}}+\eta \xi_{\epsilon} s^{d} \frac{\partial w}{\partial u^{d}}\right] d u .
$$

Since $w, h^{c d} \in L^{1, p}(B(2 \delta))$ for all $p>1$, we have

$$
\int_{B(2 \delta)}\left|\eta\left(\xi_{\epsilon}-1\right) Q_{1}\right| d u \leq\left(\int_{B(2 \delta)}\left|\eta\left(\xi_{\epsilon}-1\right) Q_{1}\right|^{2} d u\right)^{1 / 2} V\left(\Sigma_{2 \epsilon}\right)^{1 / 2} \rightarrow 0
$$

as $\epsilon \rightarrow 0$. Similarly, one can prove that

$$
\int_{B(2 \delta)}\left|h^{c d}\left(\xi_{\epsilon}-1\right) \frac{\partial \eta}{\partial u^{a}} \frac{\partial w}{\partial u^{b}}+\eta\left(\xi_{\epsilon}-1\right) s^{d} \frac{\partial w}{\partial u^{d}}\right| d u \rightarrow 0
$$

as $\epsilon \rightarrow 0$. On the other hand,

$$
\begin{aligned}
\int_{B(2 \delta)}\left|h^{c d} \eta \frac{\partial \xi_{\epsilon}}{\partial u^{a}} \frac{\partial w}{\partial u^{b}}\right| d u & \leq C_{2} \epsilon^{-1} \int_{\Sigma_{2 \epsilon}}|\partial w| d u \\
& \leq C_{3} \epsilon^{-1}\left(\int_{\Sigma_{2 \epsilon}}|\partial w|^{p} d u\right)^{\frac{1}{p}}(V(\Sigma(2 \epsilon)))^{1-\frac{1}{p}} \\
& \leq C_{4} \epsilon^{-1+(1+\theta)(1-1 / p)}\left(\int_{\Sigma_{2 \epsilon}}|\partial w|^{p} d u\right)^{\frac{1}{p}} \\
& \rightarrow 0
\end{aligned}
$$

as $\epsilon \rightarrow 0$ provided $p$ is large enough. Hence we have

$$
\begin{equation*}
\int_{B(2 \delta)}\left(h^{c d} \frac{\partial \eta}{\partial u^{a}} \frac{\partial w}{\partial u^{b}}+\eta s^{d} \frac{\partial w}{\partial u^{d}}\right) d u=-\int_{B(2 \delta))} \eta Q_{1} d u \tag{6-10}
\end{equation*}
$$

for all smooth functions $\eta$ with compact support $B(2 \delta)$.
Let $\zeta=v-w$; then $v-w \in W_{0}^{1, p}$ for all $p>1$ and

$$
\begin{equation*}
\int_{B(2 \delta)}\left(h^{c d} \frac{\partial \eta}{\partial u^{a}} \frac{\partial \zeta}{\partial u^{b}}+\eta s^{d} \frac{\partial \zeta}{\partial u^{d}}\right) d u=0 \tag{6-11}
\end{equation*}
$$

for all smooth functions $\eta$ with compact support in $B(2 \delta)$. Using the fact that $s^{d} \in L^{p}(B(2 \delta))$ we can proceed as in the proof of [Gilbarg and Trudinger 1983, Theorem 8.1] to conclude that $\zeta \equiv 0$, because $s^{q} \in L^{p}(B(2 \delta))$ for all $p>1$.

To summarize we have proved that $h_{a b} \in W^{2, p}(B(2 \delta))$ for all $p>n$ and $h_{a b}$ is smooth in $u$ for all $a, b$.

We can cover $\Sigma$ by such harmonic coordinate neighborhoods $V_{q}$ so that the components of $g$ are smooth with respect to these coordinates. By [Taylor 2006, Theorem 2.1] one can conclude that the theorem is true.

Corollary 6.4. Suppose ( $M^{n}, g_{0}$ ) is as in Theorem 5.1. If in addition, $g_{0}$ is Lipschitz, then there is a smooth structure on $M$ such that $g_{0}$ is smooth and Einstein.

## 7. A positive mass theorem with singular set

In this section, we will use the results in Sections 3 and 4 to study positive mass theorems on asymptotically flat manifolds with singular metrics. We want to discuss the theorem without assuming that the manifold is spin. There are different definitions for asymptotically flat manifold. For our purpose, we use the following:

Definition 7.1. An $n$-dimensional Riemannian manifold ( $M^{n}, g$ ), where $g$ is continuous, is said to be asymptotically flat (AF) if there is a compact subset $K$ such that $g$ is smooth on $M \backslash K$, and $M \backslash K$ has finitely many components $E_{k}, 1 \leq k \leq l$,
each $E_{k}$ is called an end of $M$, such that each $E_{k}$ is diffeomorphic to $\mathbb{R}^{n} \backslash B\left(R_{k}\right)$ for some Euclidean ball $B\left(R_{k}\right)$, and the following are true:
(i) In the standard coordinates $x^{i}$ of $\mathbb{R}^{n}$,

$$
g_{i j}=\delta_{i j}+\sigma_{i j}
$$

with

$$
\sup _{E_{k}}\left\{\sum_{s=0}^{2}|x|^{\tau+s}\left|\partial^{s} \sigma_{i j}\right|+\left[|x|^{\alpha+2+\tau} \partial \partial \sigma_{i j}\right]_{\alpha}\right\}<\infty,
$$

for some $0<\alpha \leq 1, \tau>(n-2) / 2$, where $\partial f$ and $\partial^{2} f$ are the gradient and Hessian of $f$ with respect to the Euclidean metric, and $[f]_{\alpha}$ is the $\alpha$-Hölder norm of $f$.
(ii) The scalar curvature $\mathcal{S}$ satisfies the decay condition

$$
|\mathcal{S}|(x) \leq C(1+d(x))^{-q}
$$

for some $q>n$. Here $d(x)$ is the distance function from a fixed point in $M$.
The coordinate chart satisfying (i) is said to be admissible.
Without loss of generality, we assume that $q \leq n+2$. This assumption will be used in (7-3).

In the following, for a function $f$ defined near infinity or $\mathbb{R}^{n}$, and for $k \geq 0$, $f=O_{k}\left(r^{-\tau}\right)$ refers to $\sum_{i=0}^{k} r^{i}\left|\partial^{i} f\right|=O\left(r^{-\tau}\right)$ as $r \rightarrow \infty$, where $r=|x|$.

Definition 7.2. The Arnowitt-Deser-Misner (ADM) mass (see [Arnowitt et al. 1961]) of an end $E$ of an AF manifold $M$ is defined as

$$
\begin{equation*}
\mathfrak{m}_{\mathrm{ADM}}(E)=\lim _{r \rightarrow \infty} \frac{1}{2(n-1)} \omega_{n-1} \int_{S_{r}}\left(g_{i j, i}-g_{i i, j}\right) \nu^{j} d \Sigma_{r}^{0} \tag{7-1}
\end{equation*}
$$

in an admissible coordinate chart where $S_{r}$ is the Euclidean sphere, $\omega_{n-1}$ is the volume of the ( $n-1$ )-dimensional unit sphere, $d \Sigma_{r}^{0}$ is the volume element induced by the Euclidean metric, $v$ is the outward unit normal of $S_{r}$ in $\mathbb{R}^{n}$ and the derivative is the ordinary partial derivative.

By [Bartnik 1986], $\mathfrak{m}_{\mathrm{ADM}}(E)$ is well-defined, i.e., it is independent of the choice of admissible charts.

For smooth metrics, without assuming the manifold is spin, we have the following positive mass theorem by Schoen and Yau [1979b; 1981; Schoen 1989]:

Theorem 7.3. Let $\left(M^{n}, g\right), 3 \leq n \leq 7$, be an AF manifold with nonnegative scalar curvature $\mathcal{S} \geq 0$. Then the ADM mass of each end is nonnegative. Moreover, if the $A D M$ mass of one of the ends is zero, then $\left(M^{n}, g\right)$ is isometric to $\mathbb{R}^{n}$ with the standard metric.

We want to prove the following positive mass theorem for metrics which are smooth outside a compact set of codimension at least 2 . More precisely, we want to prove the following:

Theorem 7.4. Let $\left(M^{n}, g_{0}\right)$ be an AF manifold with $3 \leq n \leq 7, g_{0}$ being a continuous metric on $M$ such that
(i) $g_{0}$ is smooth outside a compact set $\Sigma$ with codimension at least 2 as in (a4) in Section 4,
(ii) the scalar curvature $\mathcal{S}$ of $g_{0}$ is nonnegative outside $\Sigma$,
(iii) $g_{0} \in W_{\text {loc }}^{1, p}$ for some $p>n$ as in (a2) in Section 4,
(iv) on each end $E$, in an admissible coordinate chart,

$$
g_{i j}=\delta_{i j}+\sigma_{i j}
$$

with $\sigma_{i j}=O_{5}\left(r^{-\tau}\right)$ with $\tau>(n-2) / 2$.
Then the ADM mass of each end is nonnegative. Moreover, if the mass of one of the ends is zero, then $M$ is diffeomorphic to $\mathbb{R}^{n}$, and $g_{0}$ is flat outside $\Sigma$.
Remark 7.5. (a) The assumption of continuity of the metric cannot be removed. See the construction in Proposition 2.3.
(b) The case that the singular set is an embedded hypersurface has been studied in [Miao 2002; Shi and Tam 2002]; see also [McFeron and Székelyhidi 2012].
(c) In the case that the singular set has codimension larger than 1 , for spin manifolds, positive mass theorems have been obtained under rather general assumptions in [Lee and LeFloch 2015]. Without the spin condition, there are also results for metrics with bounded $C^{2}$ norm and with singular set having codimension at least $n / 2$ [Lee 2013].

We proceed as in [McFeron and Székelyhidi 2012]. As in Section 4, let $\epsilon>0$, $\epsilon \rightarrow 0$. We can construct a family of metrics $g_{\epsilon, 0}$ such that
(i) $g_{\epsilon, 0} \rightarrow g_{0}$ uniformly,
(ii) $g_{\epsilon, 0}=g_{0}$ outside $\Sigma(2 \epsilon)$,
(iii) the $W^{1, p}$ norm of $g_{\epsilon, 0}$ in a fixed precompact open set containing $\Sigma$ is bounded by a constant independent of $\epsilon$.
As in Section 4, we can choose $\epsilon_{0}>0$ small enough and let $h=g_{\epsilon_{0}, 0}$. Then there is a $T>0$ independent of $\epsilon$ such that if $0<\epsilon \leq \epsilon_{0}$, then there is a smooth solution $g_{\epsilon}(t)$ on $M \times[0, T]$ to the $h$-flow with initial data $g_{\epsilon, 0}$. There is also a smooth solution $g(t)$ on $M \times(0, T]$ to the $h$-flow such that $g(t) \rightarrow g_{0}$ uniformly on compact sets as $t \rightarrow 0$. Moreover, Lemma 4.2 is still true with $M$ being noncompact in this case because $M$ is AF.

Let $\tilde{g}_{\epsilon}(t)$ be the corresponding solution to the Ricci flow with $\tilde{g}_{\epsilon}(t)=\Phi_{t}^{*}\left(g_{\epsilon}(t)\right)$ as in the compact case in Section 4. Then we have the following:

Lemma 7.6. (i) The metrics $g_{\epsilon}(t), \tilde{g}_{\epsilon}(t), g(t)$ are AF in the sense of Definition 7.1.
(ii) For each end $E$ of $M, \mathfrak{m}(E)(\epsilon, t)=\mathfrak{m}(E)(\epsilon, 0)=\mathfrak{m}(E)$, where $\mathfrak{m}(E)(\epsilon, t)$ is the mass with respect to $g_{\epsilon}(t)$ or $\tilde{g}_{\epsilon}(t)$, and $\mathfrak{m}(E)(\epsilon, 0)$ is the mass with respect to $g_{\epsilon, 0}$ or $g_{0}$.
Proof. (i) First note that $C_{1}^{-1} h \leq g_{\epsilon}(t) \leq C_{1} h$ for some constant $C_{1}>0$ independent of $\epsilon, t$. On the other hand, by Lemma 4.2 applied to the noncompact case, we conclude that the curvature of $\tilde{g}_{\epsilon}(t)$ is bounded by $C t^{-\frac{1}{2}(1+\delta)}$ for some $0<\delta<1$ where $C, \delta$ are independent of $\epsilon, t$. Hence we also have $C_{1}^{-1} g_{\epsilon, 0} \leq g_{\epsilon}(t) \leq C_{1} g_{\epsilon, 0}$ and $C_{1}^{-1} h \leq \tilde{g}_{\epsilon}(t) \leq C_{1} h$, with possible larger $C_{1}$.

Using the fact that $\sigma_{i j}=O_{5}\left(r^{-\tau}\right)$, we can proceed with some modifications as in [Dai and Ma 2007; McFeron and Székelyhidi 2012] to show that outside a fixed compact set, for $0 \leq l \leq 3$,

$$
\left.\right|^{h} \nabla^{l} g_{\epsilon}(x, t) \mid \leq C_{2} d^{-l-\tau}(x)
$$

for some constant $C_{2}$ independent of $\epsilon, t, x$, where $d(x)$ is the distance function from a fixed point with respect to $h$. Here we use the fact that $\sigma_{i j}=O_{5}\left(r^{-\tau}\right)$. The proof is similar to the proof for the decay rate of scalar curvature. So we only carry out the proof for this case in more detail.

We want to prove that there is a constant $C_{3}>0$ independent of $\epsilon, t$ and a compact set $K$ such that if $\tilde{\mathcal{S}}_{\epsilon}(t)$ is the scalar curvature of $\tilde{g}_{\epsilon}(t)$, then

$$
\begin{equation*}
\sup _{M \backslash K} d^{q}(x)\left|\tilde{\mathcal{S}}_{\epsilon}(x, t)\right| \leq C_{3} . \tag{7-2}
\end{equation*}
$$

We will prove this on each end. Fix $\epsilon$. Denote the scalar curvature of $g_{\epsilon}(t)$ simply by $\mathcal{S}$ and curvature by Rm etc. Let $E$ be an end which is diffeomorphic to $\mathbb{R}^{n} \backslash B(R)$, say. By [Simon 2002], by choosing $R$ large enough so that $g_{\epsilon, 0}=h=g_{0}$ outside $B(R / 2)$ and $g_{0}$ is smooth there, we may assume that $\left|\operatorname{Rm}\left(g_{\epsilon}(t)\right)\right| \leq C_{4}$ for some constant $C_{4}$ independent of $\epsilon, t$ outside $B(R / 2)$. Here we have used the fact that $g_{\epsilon}(t), \tilde{g}_{\epsilon}(t)$ are uniformly equivalent.

Let $g_{e}$ be the standard Euclidean metric and let $0 \leq \phi \leq 1$ be a fixed smooth function on $\mathbb{R}^{n}$ such that $\phi=1$ in $B(R)$ and $\phi=0$ outside $B(2 R)$. Consider the metric $\phi g_{e}+(1-\phi) g_{\epsilon}(t)$. Still denote its curvature by Rm etc.

Let $\rho$ be a fixed function $\rho \geq 1, \rho=1$ in $B(R), \rho(x)=|x|$ outside $B(2 R)$. Hence the gradient and the Hessian of $\rho$ with respect to $g_{\epsilon}(t)$ are bounded by a constant independent of $\epsilon, t$. We have

$$
\frac{\partial}{\partial t} \mathcal{S}^{2} \leq \Delta \mathcal{S}^{2}+C_{5}
$$

in $B(2 R)$ and

$$
\left.\frac{\partial}{\partial t} \mathcal{S}^{2}=\Delta \mathcal{S}^{2}+2 \mathcal{S} \right\rvert\, \text { Ric }\left.\right|^{2}-2|\nabla \mathcal{S}|^{2}
$$

outside $B(2 R)$.
Let $F=\rho^{2 q} \mathcal{S}^{2}$; then outside $B(2 R)$,

$$
\begin{align*}
\left(\frac{\partial}{\partial t}-\Delta\right) F & =\rho^{2 q}\left(2 \mathcal{S}|\operatorname{Ric}|^{2}-2|\nabla \mathcal{S}|^{2}\right)-2\left\langle\nabla \rho^{2 q}, \nabla \mathcal{S}^{2}\right\rangle+F \Delta \rho^{2 q}  \tag{7-3}\\
& \leq C_{6} \rho^{q-4-2 \tau} \rho^{q} \mathcal{S}-4 q \rho^{-1}\langle\nabla \rho, \nabla F\rangle+C_{6} F \\
& \leq C_{7}-4 q \rho^{-1}\langle\nabla \rho, \nabla F\rangle+C_{7} F
\end{align*}
$$

for some constants $C_{6}, C_{7}$ independent of $\epsilon, t$ since $q-4-2 \tau<q-(n+2) \leq 0$. The inequality is still true in $B(2 R)$ because in $B(R), \nabla \rho=0$ and in $B(2 R) \backslash B(R)$, $|\nabla \rho|$ and $|\nabla \mathcal{S}|$ are uniformly bounded. Hence if $\tilde{F}=e^{-C_{7} t} F-C_{7} t$, then

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-\Delta\right) \tilde{F} \leq-4 q \rho^{-1}\langle\nabla \rho, \nabla \tilde{F}\rangle . \tag{7-4}
\end{equation*}
$$

Let $A>0$ to be chosen later. Let $\eta=\exp (2 A t+\rho)$. Then

$$
\left(\frac{\partial}{\partial t}-\Delta\right) \eta \geq 2 A \eta-C \eta
$$

for some constant $C$ independent of $\epsilon, t$. Choose $A=C$; then we have

$$
\left(\frac{\partial}{\partial t}-\Delta\right) \eta \geq A \eta
$$

Let $\kappa>0$ be any positive number; then

$$
\left(\frac{\partial}{\partial t}-\Delta\right)(\tilde{F}-\kappa \eta) \leq-4 q \rho^{-1}\langle\nabla \rho, \nabla \tilde{F}\rangle-\kappa A \eta .
$$

Since $\tilde{F}$ has at most polynomial growth, if $\tilde{F}-\kappa \eta$ has a positive maximum, then the maximum will be attained at some point $\left(x_{0}, t_{0}\right)$. Suppose $t_{0}>0$; then at $\left(x_{0}, t_{0}\right)$,

$$
\nabla \tilde{F}=\kappa \nabla \eta
$$

Hence at $\left(x_{0}, t_{0}\right)$,

$$
\begin{aligned}
0 & \leq\left(\frac{\partial}{\partial t}-\Delta\right)(\tilde{F}-\kappa \eta) \\
& \leq-4 q \rho^{-1}\langle\nabla \rho, \nabla \tilde{F}\rangle-\kappa A \eta \\
& =-4 q \rho^{-1} \kappa\langle\nabla \rho, \nabla \eta\rangle-\kappa A \eta \\
& \leq-\kappa A \eta,
\end{aligned}
$$

which is impossible. Hence either $\tilde{F}-\kappa \eta \leq 0$, or

$$
\tilde{F}-\kappa \eta \leq \sup _{\mathbb{R}^{n}}\left(\rho^{2 q}(x) \mathcal{S}^{2}(0)\right),
$$

where $\mathcal{S}(0)$ is the scalar curvature of $\phi g_{e}+\left(1-\phi g_{0}\right)$. Let $\kappa \rightarrow 0$, we conclude the (7-2) is true.
(ii) Since $g_{\epsilon, 0}=g_{0}$ outside a compact set, $\mathfrak{m}(E)=\mathfrak{m}(E)(\epsilon, 0)$. On the other hand, by the fact that $\tilde{g}_{\epsilon}(t)$ and $\tilde{g}(t)$ are given by a diffeomorphism and by (i) and [Bartnik 1986], the mass of $E$ is the same whether it is computed with respect to $\tilde{g}_{\epsilon}(t)$ or $g_{\epsilon}(t)$.

The fact that $\mathfrak{m}(E)(\epsilon, t)=\mathfrak{m}(E)(\epsilon, 0)$ follows from [Dai and Ma 2007].
Proof of Theorem 7.4. By Lemmas 4.1 and 4.13, we conclude that $g(t)$ is AF and with nonnegative scalar curvature for $t>0$. Let $E$ be an end. Using the notation in Lemma 7.6, by the lemma and [McFeron and Székelyhidi 2012, Theorem 14] (see also [Jauregui 2014]), the mass $\mathfrak{m}(E)(t)$ of $E$ with respect to $g(t)$ satisfies

$$
\begin{aligned}
\mathfrak{m}(E) & =\liminf _{\epsilon \rightarrow 0} \mathfrak{m}(E)(\epsilon, 0) \\
& =\liminf _{\epsilon \rightarrow 0} \mathfrak{m}(E)(\epsilon, t) \\
& \geq \mathfrak{m}(E)(t)
\end{aligned}
$$

By Theorem 7.3, $\mathfrak{m}(E)(t) \geq 0$, we have $\mathfrak{m}(E) \geq 0$. If $\mathfrak{m}(E)=0$, then $\mathfrak{m}(E)(t)=0$ and $\left(M^{n}, g(t)\right)$ is isometric to the Euclidean space. Since $g(t)$ converges to $g_{0}$ in $C^{\infty}$ as $t \rightarrow 0$ away from $\Sigma, g_{0}$ is flat outside $\Sigma$.

## Acknowledgments

The authors thank Xue Hu and Richard Schoen for useful discussions and also thank the referee for some suggested revisions.

## References

[Arnowitt et al. 1961] R. Arnowitt, S. Deser, and C. W. Misner, "Coordinate invariance and energy expressions in general relativity", Phys. Rev. (2) 122:3 (1961), 997-1006. MR Zbl
[Aubin 1976a] T. Aubin, "Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire", J. Math. Pures Appl. (9) 55:3 (1976), 269-296. MR Zbl
[Aubin 1976b] T. Aubin, "The scalar curvature", pp. 5-18 in Differential geometry and relativity, edited by M. Cahen and M. Flato, Math. Phys. Appl. Math. 3, Reidel, Dordrecht, 1976. MR Zbl
[Bartnik 1986] R. Bartnik, "The mass of an asymptotically flat manifold", Comm. Pure Appl. Math. 39:5 (1986), 661-693. MR Zbl
[Bray and Jauregui 2013] H. L. Bray and J. L. Jauregui, "A geometric theory of zero area singularities in general relativity", Asian J. Math. 17:3 (2013), 525-559. MR Zbl
[Brendle and Marques 2011] S. Brendle and F. C. Marques, "Scalar curvature rigidity of geodesic balls in $S^{n \prime \prime}$, J. Differential Geom. 88:3 (2011), 379-394. MR Zbl
[Dai and Ma 2007] X. Dai and L. Ma, "Mass under the Ricci flow", Comm. Math. Phys. 274:1 (2007), 65-80. MR Zbl
[Gilbarg and Trudinger 1983] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Math. Wissenschaften 224, Springer, 1983. MR Zbl
[Grant and Tassotti 2014] J. D. E. Grant and N. Tassotti, "A positive mass theorem for low-regularity Riemannian metrics", preprint, 2014. arXiv
[Gromov and Lawson 1983] M. Gromov and H. B. Lawson, Jr., "Positive scalar curvature and the Dirac operator on complete Riemannian manifolds", Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83-196. MR Zbl
[Hamilton 1995] R. S. Hamilton, "A compactness property for solutions of the Ricci flow", Amer. J. Math. 117:3 (1995), 545-572. MR Zbl
[Huang and Tam 2015] S. Huang and L.-F. Tam, "Kähler-Ricci flow with unbounded curvature", 2015. To appear in Amer. J. Math. arXiv
[Jauregui 2014] J. L. Jauregui, "On the lower semicontinuity of the ADM mass", 2014. To appear in Comm. Anal. Geom. arXiv
[Lee 2013] D. A. Lee, "A positive mass theorem for Lipschitz metrics with small singular sets", Proc. Amer. Math. Soc. 141:11 (2013), 3997-4004. MR Zbl
[Lee and LeFloch 2015] D. A. Lee and P. G. LeFloch, "The positive mass theorem for manifolds with distributional curvature", Comm. Math. Phys. 339:1 (2015), 99-120. MR Zbl
[Lee and Parker 1987] J. M. Lee and T. H. Parker, "The Yamabe problem", Bull. Amer. Math. Soc. (N.S.) 17:1 (1987), 37-91. MR Zbl
[Lieberman 1996] G. M. Lieberman, Second order parabolic differential equations, World Sci., River Edge, NJ, 1996. MR Zbl
[Macbeth 2017] H. R. Macbeth, "Conformal classes realizing the Yamabe invariant", Int. Math. Res. Not. 2017 (online publication July 2017).
[McFeron and Székelyhidi 2012] D. McFeron and G. Székelyhidi, "On the positive mass theorem for manifolds with corners", Comm. Math. Phys. 313:2 (2012), 425-443. MR Zbl
[Miao 2002] P. Miao, "Positive mass theorem on manifolds admitting corners along a hypersurface", Adv. Theor. Math. Phys. 6:6 (2002), 1163-1182. MR
[Parker and Taubes 1982] T. Parker and C. H. Taubes, "On Witten's proof of the positive energy theorem", Comm. Math. Phys. 84:2 (1982), 223-238. MR Zbl
[Petersen 1998] P. Petersen, Riemannian geometry, Graduate Texts in Mathematics 171, Springer, 1998. MR Zbl
[Schoen 1984] R. Schoen, "Conformal deformation of a Riemannian metric to constant scalar curvature", J. Differential Geom. 20:2 (1984), 479-495. MR Zbl
[Schoen 1989] R. Schoen, "Variational theory for the total scalar curvature functional for Riemannian metrics and related topics", pp. 120-154 in Topics in calculus of variations (Montecatini Terme, 1987), edited by M. Giaquinta, Lecture Notes in Math. 1365, Springer, 1989. MR Zbl
[Schoen and Yau 1979a] R. Schoen and S. T. Yau, "Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature", Ann. of Math. (2) 110:1 (1979), 127-142. MR Zbl
[Schoen and Yau 1979b] R. Schoen and S. T. Yau, "On the proof of the positive mass conjecture in general relativity", Comm. Math. Phys. 65:1 (1979), 45-76. MR Zbl
[Schoen and Yau 1979c] R. Schoen and S. T. Yau, "On the structure of manifolds with positive scalar curvature", Manuscripta Math. 28:1-3 (1979), 159-183. MR Zbl
[Schoen and Yau 1981] R. Schoen and S. T. Yau, "The energy and the linear momentum of space-times in general relativity", Comm. Math. Phys. 79:1 (1981), 47-51. MR Zbl
[Shi 1989] W.-X. Shi, "Deforming the metric on complete Riemannian manifolds", J. Differential Geom. 30:1 (1989), 223-301. MR Zbl
[Shi and Tam 2002] Y. Shi and L.-F. Tam, "Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature", J. Differential Geom. 62:1 (2002), 79-125. MR Zbl
[Simon 2002] M. Simon, "Deformation of $C^{0}$ Riemannian metrics in the direction of their Ricci curvature", Comm. Anal. Geom. 10:5 (2002), 1033-1074. MR Zbl
[Stein 1970] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30, Princeton Univ. Press, 1970. MR Zbl
[Tam 2010] L.-F. Tam, "Exhaustion functions on complete manifolds", pp. 211-215 in Recent advances in geometric analysis (Taipei, 2007), edited by Y.-I. Lee et al., Adv. Lect. Math. 11, Int. Press, Somerville, MA, 2010. MR Zbl
[Taylor 2006] M. Taylor, "Existence and regularity of isometries", Trans. Amer. Math. Soc. 358:6 (2006), 2415-2423. MR Zbl
[Trudinger 1968] N. S. Trudinger, "Remarks concerning the conformal deformation of Riemannian structures on compact manifolds", Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 265-274. MR Zbl
[Witten 1981] E. Witten, "A new proof of the positive energy theorem", Comm. Math. Phys. 80:3 (1981), 381-402. MR Zbl
[Yamabe 1960] H. Yamabe, "On a deformation of Riemannian structures on compact manifolds", Osaka Math. J. 12 (1960), 21-37. MR Zbl

Received December 1, 2016. Revised May 4, 2017.
Yuguang Shi
Key Laboratory of Pure and Applied Mathematics
School of Mathematical Sciences
Peking University
Beijing
China
ygshi@math.pku.edu.cn
Luen-Fai Tam
Institute of Mathematical Sciences and Department of Mathematics
Chinese University of Hong Kong
Shatin
China
lftam@math.cuhk.edu.hk

# PACIFIC JOURNAL OF MATHEMATICS 

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm
EDITORS
Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@ math.ucla.edu

Paul Balmer<br>Department of Mathematics<br>University of California<br>Los Angeles, CA 90095-1555<br>balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department
National University of Singapore
Singapore 119076
matgwt@nus.edu.sg

## Sorin Popa

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu
Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics University of California
Santa Barbara, CA 93106-3080 cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

## PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

## SUPPORTING INSTITUTIONS

aCADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
oregon state univ.

STANFORD UNIVERSITY
univ. of british columbia
UNIV. OF CALIFORNIA, BERKELEY
univ. of California, davis
UNIV. OF CALIFORNIA, LOS ANGELES
univ. of CALIFORNIA, RIVERSIDE
univ. of CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2018 is US $\$ 475 /$ year for the electronic version, and $\$ 640 /$ year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY

- mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers


## PACIFIC JOURNAL OF MATHEMATICS

Volume 293 No. 2 April 2018
Sums of CR functions from competing CR structures ..... 257
David E. Barrett and Dusty E. Grundmeier
On Tate duality and a projective scalar property for symmetric algebras 277
Florian Eisele, Michael Geline, Radha Kessar and Markus Linckelmann
Coaction functors, II ..... 301S. Kaliszewski, Magnus B. Landstad and John Quigg
Construction of a Rapoport-Zink space for $\mathrm{GU}(1,1)$ in the ramified ..... 341
2-adic case
Daniel Kirch
Group and round quadratic forms ..... 391
James O'Shea
Dual operator algebras close to injective von Neumann algebras ..... 407
Jean Roydor
Scalar curvature and singular metrics ..... 427
Yuguang Shi and Luen-Fai Tam
On the differentiability issue of the drift-diffusion equation with ..... 471nonlocal Lévy-type diffusionLiutang Xue and Zhuan Ye


[^0]:    Shi was partially supported by NSFC 11671015. Tam was partially supported by Hong Kong RGC General Research Fund \#CUHK 14305114.
    MSC2010: primary 53C20; secondary 83C99.
    Keywords: Yamabe invariants, positive mass theorems, singular metrics.

