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SCALAR CURVATURE AND SINGULAR METRICS

YUGUANG SHI AND LUEN-FAI TAM

Let Mn, n ≥ 3, be a compact differentiable manifold with nonpositive
Yamabe invariant σ(M). Suppose g0 is a continuous metric with volume
V (M, g0) = 1, smooth outside a compact set 6, and is in W 1, p

loc for some
p > n. Suppose the scalar curvature of g0 is at least σ(M) outside 6. We
prove that g0 is Einstein outside 6 if the codimension of 6 is at least 2. If
in addition, g0 is Lipschitz then g0 is smooth and Einstein after a change
of the smooth structure. If 6 is a compact embedded hypersurface, g0

is smooth up to 6 from two sides of 6, and if the difference of the mean
curvatures along 6 at two sides of 6 has a fixed appropriate sign, then
g0 is also Einstein outside 6. For manifolds with dimension between 3
and 7, without a spin assumption we obtain a positive mass theorem on
an asymptotically flat manifold for metrics with a compact singular set of
codimension at least 2.

1. Introduction

There are two celebrated results on manifolds with nonnegative scalar curvature.
The first result is on compact manifolds. It was proved by Schoen and Yau [1979a;
1979c] that any smooth metric on a torus T n , n ≤ 7, with nonnegative scalar
curvature must be flat. Later, the result was proved to be true for all n by Gromov
and Lawson [1983]. The second result is the positive mass theorem on noncompact
manifolds. Schoen and Yau [1979b; 1981; Schoen 1989] proved that the Arnowitt–
Deser–Misner (ADM) mass of each end of an n-dimensional asymptotically flat
(AF) manifold with 3≤ n ≤ 7 with nonnegative scalar curvature is nonnegative and
if the ADM mass of an end is zero, then the manifold is isometric to the Euclidean
space. Under the additional assumption that the manifold is spin, the same result
is still true and was proved by Witten [1981]; see also [Parker and Taubes 1982;
Bartnik 1986]. In the two results the metrics are assumed to be smooth.

There are many results on positive mass theorem for nonsmooth metrics. Miao
[2002] and the authors [Shi and Tam 2002] studied and proved positive mass
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theorems for metrics with corners. The metrics are smooth away from a compact
hypersurface, which are Lipschitz and satisfy certain conditions on the mean cur-
vatures of the hypersurface. The result was used to prove the positivity of the
Brown–York quasilocal mass [Shi and Tam 2002]. Lee [2013] considered a positive
mass theorem for metrics with bounded C2 norm and are smooth away from a
singular set with codimension greater than n/2, where n is the dimension of the
manifold. On the other hand, McFeron and Székelyhidi [2012] were able to prove
Miao’s result using Ricci flow and Ricci–DeTurck flow, which was studied in
detail by Simon [2002]. There is a positive mass theorem for spin manifolds or
manifolds with dimension n less than eight obtained by Grant and Tassotti [2014]
under the assumptions that the metric is continuous and in Sobolev space W 2,n/2

loc .
More recently, Lee and LeFloch [2015] were able to prove for spin manifolds,
under rather general conditions, a positive mass theorem for metrics which may
be singular. Their theorem can be applied to all previous results for nonsmooth
metrics under the additional assumption that the manifold is spin.

Motivated by these studies of singular metrics on AF manifolds, we want to
understand singular metrics on compact manifolds. One of the questions is to see
if there are nonflat metrics with nonnegative scalar curvature on T n which may
be singular somewhere. Another question can be described as follows. It is now
well known that in every conformal class of smooth metrics on a compact manifold
without boundary there is a metric with constant scalar curvature; see [Yamabe
1960; Trudinger 1968; Aubin 1976a; 1976b; Schoen 1984]. One motivation for the
result is to obtain Einstein metric. It is well known that if a smooth metric on a
compact manifold attains the Yamabe invariant and if the invariant is nonpositive,
then the metric is Einstein. See [Schoen 1989, pp. 126–127]. In this work, we will
study the question whether this last result is still true for nonsmooth metrics.

Let us recall the definition of Yamabe invariant, which is called σ -invariant in
[Schoen 1989]. Let C be a conformal class of smooth Riemannian metrics g on a
smooth compact manifold Mn; then the Yamabe constant of C is defined as

Y (C)= inf
g∈C

∫
M Sg dvg

(V (M, g))1−2/n ,

where Sg is the scalar curvature and V (M, g) is the volume of M with respect to g.
The Yamabe invariant is defined as

σ(M)= supC Y (C).

The supremum is taken among all conformal classes of smooth metrics. It is finite;
see [Aubin 1976a]. If g attains σ(M) > 0, then in general it is still unclear whether
g is Einstein or not; see [Macbeth 2017].
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To answer the question on Einstein metrics, let Mn be a compact smooth mani-
fold without boundary and let g0 be a continuous Riemannian metric on M with
V (M, g0)= 1 such that it is smooth outside a compact set 6. The first case is that
6 has codimension at least 2 and g0 is in W 1,p

loc for some p > n (see Sections 3
and 5 for more precise definitions).

Theorem 1.1. Let (Mn, g0) be as above. Suppose σ(M) ≤ 0 and suppose the
scalar curvature of g0 outside 6 is at least σ(M). Then g0 is Einstein outside 6. If
in addition g0 is Lipschitz, then after changing the smooth structure, g0 is smooth
and Einstein.

In the case that 6 is a compact embedded hypersurface, as in [Miao 2002] we
assume that near 6, g0 = dt2

+ g±(z, t), z ∈ 6, t ∈ (−ε, ε) such that (t, z) are
smooth coordinates and g−( · , 0) = g+( · , 0), where g+, g− are defined on the
neighborhood of 6 where t > 0 and t < 0 respectively and are smooth up to 6.
Moreover, with respect to the unit normal ∂

∂t the mean curvature H+ of 6 with
respect to g+ and the mean curvature H− of6 with respect to g− satisfies H−≥ H+.
Under these assumptions, we have:

Theorem 1.2. Let (Mn, g0) be as above with V (m, g0) = 1. Suppose σ(M) ≤ 0
and suppose the scalar curvature of g0 outside 6 is at least σ(M). Then g0 is
Einstein outside 6. Moreover, H+ = H−.

Note that it is easy to construct examples so that the theorem is not true if the
assumption H− ≥ H+ is removed.

In the process of proving the theorems, one also obtains the following: In the case
that Mn is T n , under the regularity assumptions in Theorem 1.1 or Theorem 1.2
and if g0 has nonnegative scalar curvature outside 6, then g0 is flat outside 6.

The method of proof of the above results can also be adapted to AF manifolds. We
want to discuss the positive mass theorem with singular metric on an AF manifold
with dimension 3 ≤ n ≤ 7 without assuming that the manifold is spin. We will
prove the following:

Theorem 1.3. Let (Mn, g0) be an AF manifold with 3 ≤ n ≤ 7, where g0 is a
continuous metric on M with regularity assumptions as in Theorem 1.1. Suppose
g0 has nonnegative scalar curvature outside 6. Then the ADM mass of each end
is nonnegative. Moreover, if the ADM mass of one of the ends is zero, then M is
diffeomorphic to Rn and is flat outside 6.

We should mention that all the results mentioned above for nonsmooth metrics,
all the metrics are assumed to be continuous. On the other hand, one can construct
an example of AF metric with a cone singularity and nonnegative scalar curvature
and with negative ADM mass; see Section 2. One can also construct examples of
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metrics on compact manifolds with a cone singularity so that Theorem 1.1 is not
true. In these examples, the metrics are not continuous.

The structure of the paper is as follows. In Section 2, we construct examples which
are related to results in later sections; in Section 3 we obtain some estimates for the
Ricci–DeTurck flow; in Section 4 we use the Ricci–DeTurck flow to approximate
singular metrics; in Sections 5 and 6 we prove Theorems 1.1 and 1.2; in Section 7
we prove Theorem 1.3. In this work, the dimension of any manifold is assumed to
be at least three. We will also use the Einstein summation convention.

2. Examples of metrics with cone singularities

In previous results on positive mass theorems on AF manifolds with singular metrics
mentioned in Section 1, the metrics are all assumed to be continuous. To understand
this condition on continuity and to motivate our study, in this section, we construct
some examples with cone singularities which are related to the study in the later
sections.

The following lemma is standard. See [Petersen 1998].

Lemma 2.1. Consider the metric g= dr2
+φ2(r)h0 on (0, r0)×Sn−1, where h0 is

the standard metric of Sn−1, n ≥ 3, and φ is a smooth positive function on (0, r0).
Then the scalar curvature of g is given by

S = (n− 1)
[
−

2φ′′

φ
+ (n− 2)

1− (φ′)2

φ2

]
.

Suppose φ = αrβ , with α, β > 0. Then S > 0 if α < 1, β = 1 or if 0< β ≤ 2/n. In
both cases, the metric is not continuous up to r = 0. If α > 1, β = 1, then S < 0 for
r small enough.

We can construct asymptotically flat manifolds with nonnegative scalar curvature
defined on R3

\ {0} such that the metric behaves like dr2
+ (αr)2h0 near the origin

for some 0< α < 1 with positive mass.

Proposition 2.2. Let 0 < ε < 1
2 and let η(x) = η(r), with r = |x |, be a smooth

function on R3
\ {0} such that

η(r)=−ε(1− ε)r−ε−2 if 0< r ≤ 1,
η(r) < 0 if 1≤ r ≤ 2,
η(r)= 0 if r ≥ 2.

Let φ be the function defined on R3
\ {0} with

φ(r)=
∫ r

1

1
s2

(∫ s

0
t2η(t) dt

)
ds.
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Then there are constants a, b > 0 such that if

u = φ+ b+
a
2
+ 1

then u > 0. Moreover, if g = u4ge, where ge is the standard Euclidean metric, then
near infinity,

g =
(

1+
a
r

)4

ge,

and near r = 0,

g = dρ2
+
(
(1− 2ε)2ρ2

+ O(ρ2+δ)
)
h0

for some δ > 0, where

ρ =

∫ r

0
u2(t) dt.

The metric g has nonnegative scalar curvature and has zero scalar curvature outside
a compact set. Moreover, the end near infinity is asymptotically flat in the sense of
Definition 7.1 in Section 7, and has positive mass 2a.

Proof. Let 10 be the Euclidean Laplacian. Then one can check that

10φ = η ≤ 0.

For 0< r ≤ 1,

φ(r)= r−ε − 1.

For r ≥ 2, let

a =−
∫ r

0
s2η(s) ds > 0,

and

b =−
∫ 2

1

1
s2

(∫ s

0
τ 2η(τ)dτ

)
ds > 0.

Then

φ(r)=−b+
∫ r

2

1
s2

(∫ s

0
t2η(t) dt

)
ds

=−b− a
∫ r

2

1
s2 ds

=−b−
a
2
+

a
r
.

Hence if u = φ + b+ a/2+ 1, then 10u = η ≤ 0. Since u→∞ as r → 0 and
u→ 1 as r→∞, u > 0 by the strong maximum principle. The metric

g = u4ge
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is defined on R3
\{0}, has nonnegative scalar curvature and has zero scalar curvature

near infinity. g is also asymptotically flat. Near r = 0,

u = b+
a
2
+ r−ε.

Since 0< ε < 1
2 , we let

ρ =

∫ r

0
u2(t) dt =

1
(1− 2ε)

r1−2ε
+ O(r1−ε).

So

ρ2
=

1
(1− 2ε)2

r2−4ε
+ O(r2−3ε).

Hence near r = 0,

g = dρ2
+ u4r2h0

= dρ2
+ (r2−4ε

+ O(r2−3ε))h0

= dρ2
+ ((1− 2ε)2ρ2

+ O(r2−3ε))h0

= dρ2
+ (α2ρ2

+ O(r2−3ε))h0,

where α = 1− 2ε. Note that r2−3ε
= O(ρ2+δ) for some δ > 0. �

The following example is the type of singularity which is called zero area
singularity in [Bray and Jauregui 2013].

Proposition 2.3. Let m > 0 and let φ = 1− 2m/r . Then the metric

g = φ4ge

is asymptotically flat defined on r > 2m in R3, with zero scalar curvature and with
negative mass −m. Moreover, near r = 2m,

g = dρ2
+ cρ4/3(1+ O(ρ2/3))h0

for some c > 0, where

ρ =

∫ r−2m

0
φ2(t + 2m) dt.

Hence near ρ = 0 the metric is asymptotically of the form as in Lemma 2.1 with
β = 2

3 .

Proof. We only need to consider g near r = 2m. The rest is well known. Let
t = r − 2m, r > 2m. Then

φ̃(t)= φ(t + 2m)=
t

t + 2m
=

t
2m

(
1−

t
2m
+

t2

4m2 + O(t3)

)
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and

ρ =

∫ t

0
φ̃2(s) ds =

∫ t

0

s2

(s+ 2m)2
ds.

Note that as r→ 2m, ρ→ 0. In terms of ρ, near ρ = 0,

g = dρ2
+φ4r2h0.

Near ρ = 0,

φ4r2
=

t4

(t + 2m)4
(t + 2m)2

= cρ4/3(1+ O(ρ2/3))

for some c > 0. �

We can also construct a conical metric on T 3
\ {a point}, with nonnegative scalar

curvature and with positive scalar curvature somewhere.
First, we have

Proposition 2.4. Let m > 0. There is a metric g on R3
\ B(2m) such that

(i) the scalar curvature R is nonnegative and R > 0 somewhere;

(ii) there exist r0 and r1 with r1 > r0 > 2m such that g = (1− 2m/r)4ge for any
r ∈ (2m, r0) and g = ge for any r ≥ r1, where ge is the Euclidean metric.

Proof. Let r1 > r0 > 2m to be chosen later. Let η(r) be a smooth nonincreasing
function with

(2-1) η(r)=
{

2m, 2m ≤ r ≤ r0,
0, r ≥ r1.

For any ρ ≥ 2m, let

y(ρ)=
∫ ρ

2m

η(r)
r2 dr.

By choosing suitable r0, r1, we may get y(ρ)= 1 for any ρ ≥ r1; then we see that

(2-2) y(r)=
{

1− 2m/r, 2m ≤ r ≤ r0,
1, r ≥ r1.

We claim that
10 y ≤ 0 on R3

\ B2m;

here10 is the standard Laplace operator on R3. By a direct computation, we see that

(2-3) 10 y = y′′+ 2
r

y′ = r−2(r2 y′)′ = r−2η′ ≤ 0.

For any x ∈R3
\ B2m , let u(x)= y(|x |); then g = u4(dr2

+r2h0) is the required
metric. �
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Suppose T 3(r) is a flat torus, by taking r large enough we may glue (Br \B2m, g)
with T 3(r) \ Br directly. As in Proposition 2.3, near r = 2m, the metric can be
considered as a metric with cone singularity. The question is whether we have
a metric on n-torus which has a cone singularity of the form dr2

+ α2r2h0 with
0<α< 1 and with nonnegative scalar curvature. This will be answered in Section 4.
The problem can be reduced to the study of singular metrics on T n with nonnegative
scalar curvature.

3. Gradient estimates for solutions to the h-flow

We want to use the Ricci–DeTurck flow to deform a singular metric to a smooth
one. We need some basic facts about the flow.

Let (Mn, h) be a complete manifold without boundary. We assume that the
curvature of h and its covariant derivatives are bounded:

(3-1) |∇̃
(i)R̃m| ≤ ki

for all 3≥ i ≥ 0. Here ∇̃ is the covariant derivative with respect to h and R̃m is the
curvature tensor of h. A smooth family of metrics g(t) on M × (0, T ], T > 0, is
said to be a solution to the h-flow if g(t) satisfies

(3-2) ∂

∂t
gi j = gαβ∇̃α∇̃βgi j − gαβgi ph pq R̃m jαqβ − gαβgj ph pq R̃miαqβ

+
1
2 gαβg pq(

∇̃i gpα · ∇̃j gqβ + 2∇̃αgj p · ∇̃q giβ − 2∇̃αgj p · ∇̃βgiq

− 2∇̃j gαp · ∇̃βgiq − 2∇̃i gαp · ∇̃βgjq
)
.

The h-flow is closely related to the Ricci flow

∂

∂t
g =−2 Ric(g).

Suppose g0 is a smooth metric with bounded curvature; then the solution to the
h-flow with h = g0 such that g(0)= g0 is the solution to the usual Ricci–DeTurck
flow. Using the solution to the Ricci–DeTurck flow, one can obtain a solution to
the Ricci flow through a smooth family of diffeomorphisms. Hence h-flow can
be considered as a generalization of Ricci flow with initial data which may not be
smooth.

Let

(3-3) �= ∂

∂t
− gi j
∇̃i ∇̃j .

For a constant δ > 1, h is said to be δ close to a metric g if

δ−1h ≤ g ≤ δh.
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Theorem 3.1 [Simon 2002]. There exists ε = ε(n) > 0 depending only on n such
that if (Mn, g0) is an n-dimensional compact or noncompact manifold without
boundary with continuous Riemannian metric g0 which is (1+ ε(n)) close to a
smooth complete Riemannian metric h with curvature bounded by k0, then the
h-flow (3-2) has a smooth solution on M× (0, T ] for some T > 0 with T depending
only on n, k0 such that g(t)→ g0 as t→ 0 uniformly on compact sets and such that

sup
x∈M
|∇̃

i g(t)|2 ≤
Ci

t i

for all i , where Ci depends only on n, k0, . . . , ki where kj is the bound of |∇̃ j Rm(h)|.
Moreover, h is (1+ 2ε) close to g(t) for all t . Here and in the following | · | is the
norm with respect to h.

In the case that g0 is smooth, and if |∇̃g0| is bounded, then it is also proved in
[Simon 2002] that

|∇̃g(t)| ≤ C, |∇̃2g(t)| ≤ Ct−1/2.

We want to obtain estimates in the case that g0 ∈W 1,p
loc in the sense that |∇̃g0| is in

L p
loc, for p > n. We have the following:

Lemma 3.2. Fix p ≥ 2. There is b = b(n, p) > 0 depending only on n, p, with
eb
≤ 1+ε(n), where ε(n) is the constant in Theorem 3.1, such that if g0 is a smooth

metric which is eb close to h, where h is smooth and satisfies (3-1) for 0 ≤ i ≤ 2,
then the solution g(t) of the h-flow with initial metric g0 on M×[0, T ] described in
Theorem 3.1 satisfies the following estimates. There is a constant C > 0 depending
only n, p, h such that for any x0 ∈ M with injectivity radius ι(x0) with respect to h,

|∇̃g(t, x0)|
2
≤

CD
tn/(2p)

for T > t > 0, where D is a constant depending only n, the lower bound of ι(x0) and
the L2p norm of |∇̃g0| in B(x0, ι(x0)), which is the geodesic ball with respect to h.

Proof. Suppose g0 is eb < 1+ ε(n) close to h; then for any λ > 0, λg0 is also
eb close to λh. Moreover, if g(t) is the solution to the h-flow, then λg

( 1
λ

t
)

is a
solution to the λh-flow. Hence by scaling, we may assume that k0+ k1+ k2 ≤ 1.
The solution g(t) constructed in [Simon 2002] is e2b close to h. Moreover, we may
assume that T ≤ 1.

Denote ι(x0) by ι0 and we may assume that ι0≤ 1. In the following ci will denote
a constant depending only on n. Let m ≥ 2 be an integer, which will be chosen
depending only on n, p. Let b= 1/(2m). First choose m so that eb

≤ 1+ ε(n). Let
f1 = |∇̃g| and ψ =

(
a+

∑n
i=1 λ

m
i

)
f 2
1 with a > 0, where λi are the eigenvalues of

g(t) with respect to h. By choosing a depending only on n and m large enough
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depending only on n, as in [Shi 1989; Simon 2002] (see also [Huang and Tam 2015,
(5.8)]), we have

(3-4) �ψ ≤ c1− c2m2 f 4
1 .

Let x i be normal coordinates in B(x0, ι0). Since k0+ k1+ k2 ≤ 1, by [Hamilton
1995, Corollary 4.11] on B(x0, ι0) we have

(3-5)

{
1
2 |ξ |

2
≤ hi jξ

iξ j
≤ 2|ξ |2 for ξ ∈ Rn,

|Dβ
x hi j | ≤ c3 for all i, j,

where

hi j = h
(
∂

∂x i ,
∂

∂x j

)
and β = (β1, . . . , βn) is a multi-index with |β| ≤ 2 and

Dxk =
∂

∂xk .

Let η be a smooth function on [0, 1] such that 0≤ η≤ 1, η(s)= 0 for s≥ 3
4 , η(s)= 1

for 0≤ s ≤ 1
2 . Still denote η(|x |/ι0) by η(x). Then |∇̃η| ≤ c4ι

−1
0 . We have

d
dt

∫
B(x0,ι0)

η2ψ p dvh

= p
∫

B(x0,ι0)

η2ψ p−1ψt dvh

≤ p
∫

B(x0,ι0)

η2ψ p−1gi j
∇̃i ∇̃jψ dvh + p

∫
B(x0,ι0)

η2ψ p−1(c1− c2m2 f 4
1 ) dvh

≤−p(p− 1)c5

∫
B(x0,ι0)

η2ψ p−2
|∇̃ψ |2 dvh + pc6

∫
B(x0,ι0)

η2ψ p−1 f1|∇̃ψ | dvh

+ pc7ι
−1
0

∫
B(x0,ι0)

ηη′ψ p−1
|∇̃ψ | dvh + p

∫
B(x0,ι0)

η2ψ p−1(c1− c2m2 f 4
1 ) dvh

≤
c2

6

2c5(p− 1)

∫
B(x0,ι0)

f 2
1 η

2ψ p dvh +
c2

7

2c5(p− 1)ι20

∫
B(x0,ι0)

(η′)2ψ p dvh

+ p
∫

B(x0,ι0)

η2ψ p−1(c1− c2m2 f 4
1 ) dvh

≤
c8 p

p− 1

∫
B(x0,ι0)

f 4
1 η

2ψ p−1 dvh +
c2

7

2c5(p− 1)ι20

∫
B(x0,ι0)

(η′)2ψ p dvh

+ p
∫

B(x0,ι0)

η2ψ p−1(c1− c2m2 f 4
1 ) dvh,
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where we have used the fact that ψ ≤ c f 2
1 for some constant c depending only on n

by the fact that 2bm = 1 so that λm
i ≤ 1 for all i . We have also used the fact that

c6

∫
B(x0,ι0)

η2ψ p−1 f1|∇̃ψ | dvh

≤
1
2 c5(p− 1)

∫
B(x0,ι0)

η2ψ p−2
|∇̃ψ |2 dvh +

c2
6

2c5(p− 1)

∫
B(x0,ι0)

f 2
1 η

2ψ p dvh

and

c7ι
−1
0

∫
B(x0,ι0)

ηη′ψ p−1
|∇̃ψ | dvh

≤
1
2 c5(p− 1)

∫
B(x0,ι0)

η2ψ p−2
|∇̃ψ |2 dvh +

c2
7

2c5(p− 1)ι20

∫
B(x0,ι0)

(η′)2ψ p dvh .

Hence by choosing m large enough depending only on n, p and if b = 1/(2m),
we have

d
dt

∫
B(x0,ι0)

η2ψ p dvh ≤ c9 pι−2
0

(∫
B(x0,ι0)

(η′)2ψ p dvh +

∫
B(x0,ι0)

η2ψ p−1 dvh

)
.

By replacing η by ηq for q ≥ 1, we may assume that |η′| ≤ Cη1−1/q , where C
depends only on q . Let q = 2p, say; then we have

d
dt

∫
B(x0,ι0)

η2ψ p dvh

≤ C1ι
−2
0

(∫
B(x0,ι0)

(η2)
1− 1

2pψ p dvh +

∫
B(x0,ι0)

η2ψ p−1 dvh

)

≤ C1ι
−2
0

[(∫
B(x0,ι0)

η2ψ p dvh

)1− 1
2p
(∫

B(x0,ι0)

ψ p dvh

) 1
2p

+

(∫
B(x0,ι0)

η2ψ p dvh

)1− 1
p
]

≤ C2ι
−2
0

[(∫
B(x0,ι0)

η2ψ p dvh

)1− 1
2p

t−1/2
+

(∫
B(x0,ι0)

η2ψ p dvh

)1− 1
p
]
.

Here and below upper case Ci denote a positive constant depending only on n, p
and h. Here we have used the estimates in Theorem 3.1. Let

F =
∫

B(x0,ι0)

η2ψ p dvh + 1.

Then we have
d
dt

F ≤ C3ι
−2
0 F1− 1

2p t−
1
2 .

Let I =
∫

B(x0,ι0)
|∇̃g0|

2p dvh . We conclude that

F(t)≤ C4(I + ι
−4p
0 ),
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or ∫
B
(
x0,

1
2 ι0
) ψ p dvh ≤ C5(I + ι

−4p
0 ).

Hence 0< t0 < T , by the mean value equality [Lieberman 1996, Theorem 7.21]
applied to (3-4) to B(x0, r)× (t0− r2, t0) with r = 1

2
√

t0, we have

ψ p(x0, t0)≤ C6r−n(I + ι−2p
0 + 1).

From this the result follows. �

Assume 2p > n and let δ = n/(2p). Let b as in Lemma 3.2. Assume h satisfies
(3-1), for 0≤ i ≤ 2.

Lemma 3.3. Let x0 ∈ M and let r0 > 0. Let

I :=
∫

B(x0,r0)

|∇̃g0|
2p dvh .

Let ι be the infimum of the injectivity radii ι(x), x ∈ B(x0, r0). Then there is a
constant C depending only on n, p, h, r0, the lower bound of ι and the upper bound
of I such that

|∇̃
2g(x0, t)|2 ≤ Ct−1−δ.

Proof. In the following, Ci will denote a constant depending only on the quantities
mentioned in the lemma. By Lemma 3.2, we have

(3-6) sup
x∈B

(
x0,

r0
2

) |∇̃g(x, t)|2 ≤ C1t−δ.

Let fi = |∇̃
i g|. As in [Shi 1989; Simon 2002] (see also [Huang and Tam 2015,

(5.11)]), one can find a > 0 depending only on the quantities mentioned in the
lemma such that if ψ = (at−δ + f 2

1 ) f 2
2 , then

(3-7) �ψ ≤− 1
8 f 4

2 +C2t−4δ

on B(x0, r0/2) × (0, T ]. We may assume that ι(x0) ≤ r0/2. Let η be a cutoff
function such that (η′)2+ |η′′| ≤ cη for some absolute constant as in the proof of
Lemma 3.3, let F = t1+2δηψ . Since g is smooth up to t = 0, and f 2

1 ≤ C1t−δ , we
have F( · , 0) = 0. If F has a positive maximum, then there is x1 ∈ B(x0, ι) and
T ≥ t1 > 0 such that

F(x1, t1)= sup
B(x0,ι)×[0,T ]

F.

Hence at (x1, t1), we have
η∇̃iψ +ψ∇̃iη = 0
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and

0≤�F

= t1+2δ
1 (η�ψ +ψ�η− 2gi j

∇̃iψ∇̃jη)+ (1+ 2δ)t−1
1 F

≤ t1+2δ
1

[
η
(
−

1
8 f 4

2 +C2t−4δ)
−ψgi j

∇̃i ∇̃jη+ 2gi jη−1ψ∇̃iη∇̃jη
]
+ (1+ 2δ)t−1

1 F

≤ t1+2δ
1

[
η
(
−

1
8 f 4

2 +C2t−4δ)
+C3ψ

]
+ (1+ 2δ)t−1

1 F.

Multiply the inequality by t1+2δ
1 η(at−δ + f 2

1 )
2
= Fψ−1(at−δ + f 2

1 ), we have

0≤− 1
8 F2
+C3t1+δ

1 (at−δ + f 2
1 )F + (1+ 2δ)t2δ(at−δ + f 2

1 )
2 F

≤−
1
8 F2
+C4 F.

Hence F ≤ 8C4. From this it is easy to see that the result follows. �

4. Approximation of singular metrics

Let (Mn, b) be a smooth complete Riemannian manifold of dimension n without
boundary. Let g0 be a continuous Riemannian metric on M satisfying the following:

(a1) There is a compact subset 6 such that g0 is smooth on M \6.

(a2) The metric g0 is in W 1,p
loc for some p≥1 in the sense that g0 has weak derivative

and |g0|b, |b∇g0|b ∈ L p
loc with respect to the metric b.

We want to approximate g0 by smooth metrics with uniform bound on the W 1,p

norm locally. As in [Lee 2013], cover 6 by finitely many precompact coordinate
patches U1, . . . ,UN and cover M with U1, . . . ,UN and UN+1 such that UN+1 is
an open set with UN+1 ∩6 =∅. We may assume that there is a partition of unity
ψk with supp(ψk) ⊂ Uk . Since g0 is continuous, we may assume that g0, b and
the Euclidean metric are equivalent in each Uk , 1 ≤ k ≤ N . For any a > 0, let
6(a)= {x ∈ M | db(x, 6) < a}. By [Lee 2013, Lemma 3.1], for each 1≤ k ≤ N ,
there is a smooth function ε ≥ ρk ≥ 0 in Uk such that for ε > 0 small enough

(4-1)


ρk = ε, 6(ε)∩Uk ;
ρk = 0, Uk \6(2ε);
|∂ρk | ≤ C;
|∂2ρk | ≤ Cε−1

for some C independent of ε and k. Here ∂ρk and ∂2ρk are derivatives with respect
to the Euclidean metric. Let gk

0 = ψk g0 and for 1≤ k ≤ N , let

(4-2) (gk
ε,0)i j (x)=

∫
Rn

gk
0,i j (x − λρk(x)y)ϕ(y) dy.
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Here ϕ is a nonnegative smooth function in Rn with support in B(1) and integral
equal to 1. λ > 0 is a constant independent of ε and k, to be determined. Finally,
define

(4-3) gε,0 =
N∑

k=1

gk
ε,0+ψN+1g0.

Lemma 4.1. For ε > 0 small enough, gε,0 is a smooth metric such that gε,0 con-
verges to g0 in C0 norm as ε→ 0, and gε,0 = g0 outside 6(2ε). Moreover, there is
a constant C independent of ε such that∫

6(1)
|
b
∇gε,0|

p
b dvb ≤ C.

Proof. It is easy to see that gε,0 is smooth and converges to g0 uniformly as ε→ 0.
In order to estimate the W 1,p

loc norm of gε,0, it is sufficient to estimate the norm in
each Uk , 1≤ k ≤ N . Moreover, we may assume that b is the Euclidean metric. So it
is sufficient to prove the following: For fixed k, 1≤ k ≤ N , and for any u ∈W 1,p

loc if

v(x)=
∫

Rn
u(x − λρk(x)y)ϕ(y) dy,

then the W 1,p norm of v in 6(1) can be estimated in terms of the W 1,p norm of
u in 6(2), say. For fixed y with |y| ≤ 1, let z = x − λρk(x)y. Then

∂zi

∂x j = δi j − yiλ
∂ρk

∂x i .

By (4-1), we can choose λ > 0 small enough independent of ε and k so that

2≥ det
(
δi j − λyi ∂ρk

∂x i

)
≥

1
2 ,

and so that z = z(x) is a diffeomorphism with the Jacobian being bounded above
and below by some constants independent of ε, k. Hence(∫

6(1)∩Uk

|v|p(x) dx
)1

p

≤

[∫
6(1)∩Uk

(∫
Rn
|u(x − λρk(x)y)|ϕ(y) dy

)p

dx
]1

p

≤

∫
Rn
ϕ(y)

(∫
6(1)∩Uk

|u(x − λρk(x)y)|p dx
)1

p

dy

=

∫
B(1)

ϕ(y)
(∫

6(1)∩Uk

|u(x − λρk(x)y)|p dx
)1

p

dy

≤ C1

(∫
6(2)
|u(z)|p dz

)1
p
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for some constant C1 independent of ε, k provided ε is small enough, where we have
used Minkowski’s integral inequality [Stein 1970, Section A.1]. Now, if x /∈6(2ε),
then v(x) = u(x) and if x ∈ 6(ε), then v(x) is the standard mollification. If
x ∈6(2ε) \6(ε), then

|∂v|(x)≤
∫

Rn
|∂u|(x − λρk(x)y)λ|∂ρk(x)|ϕ(y) dy.

Since |∂ρk | is bounded by (4-1), we can prove as before that(∫
6(1)∩Uk

|∂v|p(x) dx
)1

p

≤ C2

(∫
6(2)
|∂u|p(z) dz

)1
p

for some constant C2 independent of ε, k provided ε is small enough. �

In addition to (a1) and (a2), assume

(a3) The scalar curvature Sg0 of g0 satisfies Sg0 ≥ σ in M \6, where σ is a constant.

We want to modify gε,0 to obtain a smooth metric with scalar curvature bounded
below by σ . We first consider the case that M is compact. Let ε0 > 0 be small
enough so that for all ε0 ≥ ε > 0,

(1+ ε(n))−1gε0,0 ≤ gε,0 ≤ (1+ ε(n))gε0,0,

where ε(n) > 0 is the constant depending only on n in Theorem 3.1. Hence if we
let h = gε0,0, then the h-flow has solution gε(t) on M × [0, T ] for some T > 0
independent of ε, with initial data gε,0 in the sense that limt→0 gε(x, t)= gε,0(x)
uniformly in M ; see Theorem 3.1. The curvature and all the covariant derivatives
of curvature of h are bounded because M is compact.

By [Simon 2002] and Lemmas 3.2, 3.3 and 4.1 we have the following:

Lemma 4.2. Let M be compact and suppose g0 satisfies (a1)–(a3). Suppose p > n.
Let δ = n/p < 1. Then

|
h
∇gε(t)|2h ≤ Ct−δ and |

h
∇

2gε(t)|2 ≤ Ct−1−δ

for some constant C independent of ε, t . Moreover, gε(t) subconverges to the
solution g(t) of the h-flow with initial data g0 in C∞ norm in compact sets of
M × (0, T ] and in compact sets of M \6×[0, T ].

For ε > 0 small enough, let

(4-4) W k
= (gε(t))pq(0k

pq(gε(t))−0
k
pq(h)

)
,

and let 8t be the diffeomorphism given by

(4-5) ∂

∂t
8t(x)=−W (8t(x), t), 80(x)= x .
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Let g̃ε(t)=8∗t gε(t). Then g̃ε(t) satisfies the Ricci flow equation with initial data
gε,0. Note that W and 8t depend also on ε. Recall the Ricci flow equation is

(4-6) ∂

∂t
gi j =−2Ri j .

Lemma 4.3. With the same assumptions and notation as in Lemma 4.2, for ε small
enough, |W |h ≤ Ct−

1
2 δ, |Rm(g̃ε(t))| ≤ Ct−

1
2 (1+δ) and

C−1h ≤ gε(t)≤ Ch

for some C , independent of ε, t .

Proof. The bound of W is given by Lemma 4.2. Since the bound of curvature is
unchanged under diffeomorphism, |Rm(g̃ε(t))| ≤ Ct−

1
2 (1+δ) by Lemma 4.2. From

this we conclude from the Ricci flow equation that g̃ε(t) is uniformly equivalent to
g0,ε which is uniformly equivalent to h. �

Lemma 4.4. Let S(t) be the scalar curvature of g(t). Then there is a constant
C > 0 independent of t, ε such that

exp(−Ct
1
2 (1−δ))

∫
M
(S(t)− σ)− dvg(t)

is nonincreasing in (0, T ], where f− =max{− f, 0} is the negative part of f .

Proof. As in [McFeron and Székelyhidi 2012], fix θ > 0, and for ε > 0, let

v =
(
(Sε(t)− σ)2+ θ

)1/2
− (Sε(t)− σ),

where Sε(t) is the scalar curvature of g̃ε(t). Let 1 and ∇ be the Laplacian and
covariant derivative with respect to g̃ε(t). Using the evolution equation of the scalar
curvature in Ricci flow, we have(
∂

∂t
−1

)
v =

(
Sε(t)−σ(

(Sε(t)−σ)2+θ
)

1/2
−1
)(

∂

∂t
−1

)
Sε(t)−

θ |∇Sε |2(
(Sε(t)−σ)2+θ

)
1/2

=

(
Sε(t)−σ(

(Sε(t)−σ)2+θ
)

1/2
−1
)
·2|∇Ric(t)|2−

θ |∇Sε(t)|2(
(Sε(t)−σ)2+θ

)
3/2

≤ 0,

where Ric(t) is the Ricci tensor of g̃ε(t). Using Lemma 4.3 we have

(4-7) d
dt

∫
M
v dvg̃ε(t) =

∫
M

∂

∂t
v dvg̃ε(t)−

∫
M
Sε(t)v dvg̃ε(t)

≤

∫
M
1v dvg̃ε(t)+C1t−

1
2 (1+δ)

∫
M
v dvg̃ε(t)

= C1t−
1
2 (1+δ)

∫
M
v dvg̃ε(t)
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for some constant C1 independent of t, ε. From this and letting θ→ 0, we conclude
that for some constant C independent of t and ε,

exp(−Ct
1
2 (1−δ))

∫
M
(Sε(t)− σ)− dvg̃ε(t)

is nonincreasing in (0, T ]. Noting that g̃ε(t)=8∗t (gε(t)), by Lemma 4.2 let ε→ 0,
the result follows. �

We first consider the case that the codimension of 6 is at least 2 in the following
sense:

(a4) The volume V (6(ε), g0) with respect to g0 of the ε-neighborhood 6(ε) of 6
is bounded by Cε2 for some constant C independent of ε. Here

6(ε)= {x ∈ M | dg0(x, 6) < ε}.

Lemma 4.5. With the same assumptions and notation as in Lemma 4.2, suppose
(a4) is true. Then S(t)≥ σ for all t > 0.

Proof. By Lemma 4.4, it is sufficient to prove that

(4-8) lim
t→0

∫
M
(S(t)− σ)− dvg(t) = 0.

For any ε > 0, let 8t be the diffeomorphisms as before so that g̃ε(t)=8∗t (gε(t))
is the solution to the Ricci flow. For any θ > 0, let v as in the proof of Lemma 4.4.
Let

β =
1
ε

(
ε−

N∑
k=1

ψkρk

)
.

We may modify ρk so that if ε is small enough then β is a smooth function on M
such that β = 0 in 6(2ε), β = 1 outside 6(4ε), 0 ≤ β ≤ 1, |h∇β| ≤ Cε−1, and
|
h
∇

2β| ≤ Cε−2 for some constant C independent of ε, t . Let

β̃(t, x)= β(8t(x)).

Then

d
dt

∫
M
β̃2v dvg̃ε(t) =

∫
M
v
∂

∂t
(β̃2) dvg̃ε(t)+

∫
M
β̃2 ∂

∂t
v dvg̃ε(t)−

∫
M
Sε(t)β̃2v dvg̃ε(t)

≤

∫
M
v
∂

∂t
(β̃)2 dvg̃ε(t)+

∫
M
β̃21g̃ε(t)v dvg̃ε(t)

+C1t−
1
2 (1+δ)

∫
M
β̃2v dvg̃ε(t)

= I + II +C1t−
1
2 (1+δ)

∫
M
β̃2v dvg̃ε(t).
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for some constant C1 > 0 independent of t, ε, θ by Lemma 4.3. Let w(y) =
v(8−1

t (y)). Since in local coordinates,

1gε(t) f = gi j
ε (∂i∂j f −0k

i j∂k)

with |0k
i j | ≤ Ct−δ/2 for some constant C independent of ε, t by Lemma 4.2, we

have |w| ≤ Ct−
1
2 (1+δ) for some constant C independent of ε, t, θ . Using also (a4)

and Lemma 4.1, we have

II =
∫

M
β21gε(t)w dvgε(t)

=

∫
M
w1gε(t)(β

2) dvgε(t)

≤ C2

∫
6(4ε)\6(2ε)

w|ε−2
+ ε−1t−δ/2β| dvgε(t)

≤ C3

(
t−

1
2 (1+δ)+ ε−1t−

δ
2−

1
4 (1+δ)

∫
6(4ε)

βw1/2 dvgε(t)

)

≤ C4

[
t−

1
2 (1+δ)+ t−

1
4 (1+3δ)

(∫
M
β̃2v dvg̃ε(t)

)1
2
]

for some constants C2−C4 independent of ε, t, θ , where we have used Lemma 4.2,
the fact that β=1 outside6(4ε), the Hölder inequality and the fact that V (6(4ε))=
O(ε2). To estimate I , we have

∂

∂t
β̃ = (dβ̃)

(
∂

∂t

)
= dβ ◦ d8t

(
∂

∂t

)
= dβ(W ).

Hence by Lemma 4.2, we have∣∣∣ ∂
∂t
β̃

∣∣∣(x)≤ C5|
h
∇β|(8t(x))| ≤ C6ε

−1t−δ/2

for some constants C5,C6 independent of ε, t, θ . Hence if w is as above, then

I ≤ C6ε
−1t−δ/2

∫
6(4ε)

βw(y) dvgε(t)

≤ C7t−
1
4 (1+3δ)

(∫
6(4ε)

β̃2v dvg̃ε(t)

)1
2

for some constant C7 independent of ε, t, θ . To summarize, if we let

F =
∫

M
β̃2v dvg̃ε(t),
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then
d F
dt
≤ C8(t−

1
2 (1+δ)+ t−

1
2 (1+δ)F + t−

1
4 (1+3δ)F1/2)

≤ C8(t−
1
2 (1+δ)+ t−δ + 2t−

1
2 (1+δ)F)

for some constant C8 independent of ε, t, θ . Integrate from 0 to t , and let θ→ 0.
Since gε,0= g0 outside6(2ε),80=id, and β= 0 on6(2ε), and Sg0 ≥ σ outside6,
there exist constants C9−C10 independent of ε, t such that

exp(−C9t
1
2 (1−δ))

∫
M
β̃2(Sε(t)− σ)− dvg̃ε(t) ≤ C10(t

1
2 (1−δ)+ t1−δ)

because 0 < δ < 1. Letting ε→ 0, we see that (4-8) is true and the proof of the
lemma is completed. �

By Lemmas 4.2 and 4.5, using g(t) we have:

Corollary 4.6. Let (Mn, b) be a smooth compact manifold and let g0 be a continu-
ous Riemannian metric satisfying the following:

(a) There is a compact set6 such that g0 is smooth on M \6 with scalar curvature
bounded below by σ .

(b) The metric g0 is in W 1,p
loc for some p > n.

(c) V (6(ε), g0)= O(ε2) as ε→ 0, where 6(ε)= {x ∈ M | db(x, 6) < ε}.

Then there exists a sequence of smooth metrics gi satisfying the following: (i) as i
tends to infinity gi converges to g0 uniformly in M , and converges to g0 in C∞ norm
on any compact subset of M \6; (ii) the scalar curvature Si of gi satisfies Si ≥ σ .

Remark 4.7. If the codimension of 6 is only assumed to be larger than 1, then the
conclusions of Lemma 4.5 and Corollary 4.6 are still true under some additional
assumptions on the second derivatives of g0.

Next let us consider the case that 6 is an embedded hypersurface. Let (Mn, g0)

be a Riemannian metric satisfying the following:

(b1) 6 is a compact embedded orientable hypersurface, and g0 is smooth on M \6
with scalar curvature Sg0 ≥ σ .

(b2) There is a neighborhood U of 6 and a smooth function t defined near U such
that U is diffeomorphic to {−a < t < a}×6 for some a > 0 with 6 = {t = 0}.
Moreover, g0 = dt2

+ g±(z, t), z ∈6, such that (t, z) are smooth coordinates
and g−( · , 0) = g+( · , 0), where g+ is defined and smooth on t ≥ 0, g− is
defined and smooth on t ≤ 0.

(b3) Let U+ = {t > 0}, U− = {t < 0}. With respect to the unit normal ∂
∂t the mean

curvature H+ of 6 with respect to g+ and the mean curvature H− of 6 with
respect to g− satisfy H− ≥ H+.
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By [Miao 2002, Proposition 3.1], letting ε > 0 be small enough, one can find
a smooth metric gε,0 such that (i) gε,0 = g0 outside U (ε) = {−ε < t < ε}; (ii)
g0,ε converges uniformly to g0; (iii) |h∇g0,ε|h ≤ C with respect to some fixed
background smooth metric h; (iv) there exists a constant c > 0 independent of ε
such that the scalar curvature Sg0,ε satisfies

(4-9)



Sg0,ε = Sg0 outside U (ε),

|Sg0,ε | ≤ c in ε2

100
< |t | ≤ ε,

Sg0,ε (z, t)≥−c+ (H−(z)− H+(z))ε−2φ

(
100t
ε2

)
in − ε2

100
< t ≤ ε2

100
,

|Sg0,ε | ≤ cε−2

for z ∈6. Here φ ≥ 0 is a smooth function in R with compact support in
[
−

1
2 ,

1
2

]
such that ∫

R

φ(s) ds = 1.

Using arguments similar to those before using h-flow, we can conclude:

Corollary 4.8. Let Mn be a compact smooth manifold and let g0 be a Riemannian
metric satisfying (b1)–(b3) such that the scalar curvature of g0 on M \6 is at
least σ . Then there exists a sequence of smooth metrics gi such that as i tends to
infinity gi converges to g0 uniformly in M , and converges to g0 in C∞ norm on any
compact subset of M \6. Moreover, Sgi ≥ σ .

Proof. As before, choose h = g0,ε0 for ε0 small enough, one can solve the h-flow
with initial data g0,ε . Let gε(t) be the solution and let Sε(t) be its scalar curvature.
From the proof of Lemma 4.4, one can conclude that

exp(−C3t1/2)

∫
M
(Sε(t)− σ)− dvgε(t) ≤

∫
M
(Sg0,ε− σ)− dvg0,ε

=

∫
U (ε)

(Sg0,ε− σ)− dvg0,ε

≤ C1ε

for some C1,C3 > 0 independent of ε, t . Here we used the fact that H−− H+ ≥ 0.
Let ε→ 0, we conclude that the solution g(t) of the h-flow with initial value g0

has scalar curvature no less than σ . The result follows as before. �

Remark 4.9. By [Miao 2002], suppose 6 is a compact orientable hypersurface,
and a neighborhood of 6 is of the disjoint union of U1, U2 and 6. Assume g0 is
smooth up 6 from each side Ui of 6 and such that the mean curvatures H1, H2

with respect to unit normals in the two sides of 6 satisfying H1+ H2 ≥ 0, where
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unit normals are chosen to be outward pointing in each side. Then one can find a
smooth structure so that (b2) and (b3) are true.

We give some applications.

Corollary 4.10. Let (Mn, g) be a compact manifold such that Mn is the topological
n-torus, g is smooth except at a point, where it has a cone singularity of the form

g = dr2
+α2r2h0

with 0< α ≤ 1 and where h0 is the standard metric on Sn−1. Suppose the scalar
curvature of g is nonnegative; then g must be flat and α = 1.

Proof. For r small, the mean curvature of the level set {r}×Sn−1 with respect to the
normal ∂r is H = (n− 1)/r . Consider the Euclidean ball B(αr) of radius αr with
center at the origin. Then metric of the boundary is (αr)2h0. Moreover, the mean
curvature is H0 = (n − 1)/(αr). Since α ≤ 1, H0 ≥ H . By gluing B(αr) along
with M along {r}×Sn−1, we obtain a metric with corner so that (b1)–(b3) are true
by changing the smooth structure if necessary. Still denote this metric by g. By
Corollary 4.8, there exist smooth metrics gi on the new manifold with nonnegative
scalar curvature such that gi → g in C∞ away from the singular part. By [Schoen
and Yau 1979a; 1979c; Gromov and Lawson 1983], gi is flat. Hence g must be flat
away from the singular part. Let r→ 0, we conclude that the original metric g is
flat, and we must have α = 1. �

Similarly, one can prove the following:

Corollary 4.11. Let (Mn, g) be a compact manifold such that Mn is the topological
n-torus and g is smooth away from some compact set with codimension at least 2.
Moreover, assume g is in W 1,p

loc for some p > n. Suppose the scalar curvature of g
is nonnegative; then g must be flat.

Remark 4.12. Suppose M is asymptotically flat with nonnegative scalar curvature
and with some cone singularities as in Corollary 4.10; then we still have positive
mass for each end by [Miao 2002]. The proof is similar. Compare this result with
the example in Proposition 2.3.

Let us consider the case that Mn is noncompact. Let g0 be a continuous Rie-
mannian metric on M which is smooth outside a compact set 6. Suppose there is a
family of smooth complete metrics gε,0 on M such that gε,0 converges uniformly
to g0 and converges smoothly on compact sets of M \6. Assume gε,0 has bounded
curvature for all ε. As before, we can find ε0 > 0 such that if h = gε0,0 then there
are solutions gε(t) to the h-flow with initial data gε,0, and solution to the h-flow
with initial data g0 on some fixed interval [0, T ], T > 0. As in [Simon 2002],
using [Shi 1989], we may assume that all the derivatives of the curvature of h are
bounded. Moreover, gε(t) converges uniformly on compact sets of M × (0, T ] and
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M \6×[0, T ]. Suppose the scalar curvature of g0 satisfies Sg0 ≥ σ . We want to
find conditions so that the scalar curvature of g(t) is also bounded below by σ .

Lemma 4.13. With the above assumptions and notation, suppose

(i) gε,0 = g0 outside 6(2ε);

(ii) |h∇gε(t)| ≤Ct−
δ
2 and |h∇2gε(t)| ≤Ct−

1
2 (1+δ) for some C independent of ε, t ;

(iii) there is an R0 > 0 and a C > 0 independent of ε, t such that∫
M\B(o,R0)

|Sε(t)− σ | dvh ≤ C,

where B(o, R0) is the geodesic ball with respect to h and Sε(t) is the scalar
curvature of gε(t);

(iv) V (6(2ε), g0)= O(ε2).

Then the scalar curvature S(t) of g(t) satisfies S(t)≥ σ for all t > 0.

Proof. By [Shi 1989; Tam 2010], we can find a smooth function ρ such that

C−1
1 (r(x)+ 1)≤ ρ(x)≤ C1(1+ r(x))

for some constant C1 > 0 where r(x) is the distance function to a fixed point o
with respect to h. Moreover, the gradient and Hessian of ρ with respect to h are
uniformly bounded. ( Hence the constants in the lemma may depend also on the
choice of o.)

Let 0≤ η ≤ 1 be a smooth function on R such that η = 1 on [0, 1] and η = 0 on
[2,∞). We proceed as in the proofs of Lemmas 4.4 and 4.5. For R� 1, denote
η(ρ(x)/R) still by η(x). Let g̃ε be the Ricci flow corresponding to the gε(t) and let
Sε(t) be its scalar curvature. Let θ > 0 and let v be as in the proof of Lemma 4.4.
We have

d
dt

∫
M
ηv dvg̃ε(t)

≤ C2

(
t−

1
2 (1+δ)

∫
M
ηv dvg̃ε(t)+

∫
M
v|1η| dvg̃ε(t)

)
≤ C3

(
t−

1
2 (1+δ)

∫
M
ηv dvg̃ε(t)+ t−δ/2 R−1

∫
M\B(o,2C1 R)

(|Sε(t)− σ | + θ) dvg̃ε(t)

)
for some positive constants C2,C3 independent of t, ε, θ . Hence

d
dt

(
exp(−C4t

1
2 (1+δ))

∫
M
ηv dvg̃ε(t)

)
≤ C5t−δ/2 R−1

∫
M\B(o,2C1 R)

(|Sε(t)− σ | + θ) dvg̃ε(t)
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for some positive constants C4,C5 independent of t, ε, θ . Integrating from 0 <
t1 < t2, let θ→ 0 and then let R→∞. Using condition (iii), we conclude that

exp(−C4t
1
2 (1+δ))

∫
M
(Sε(t)− σ)− dvg̃ε(t)

is nonincreasing in t . Let ε→ 0, we conclude that

exp(−C4t
1
2 (1+δ))

∫
M
(S(t)− σ)− dvgε(t)

is nonincreasing in t .
Next we proceed as in the proof of Lemma 4.5. But we need the cutoff function η.

For ε > 0 and θ > 0 as in the proof of Lemma 4.5, let β, β̃ as in that proof, we
have for R� 1,

(4-10) d
dt

F dv ≤ C6

(
t−

1
2 (1+δ)+ t−δ + t−

1
2 (1+δ)F +

∫
M
|1η|vβ̃2 dvg̃ε(t)

)
≤ C7

(
t−

1
2 (1+δ)+ t−δ + t−

1
2 (1+δ)F

+
1
R

∫
M\B(o,2C1 R)

(|Sε(t)− σ | + θ) dvg̃ε(t)

)
for some constants C6,C7 independent of ε, t, θ where

F =
∫

M
ηβ̃2v dvg̃ε(t).

Integrate from 0 to t and let θ→ 0. We have∫
M
ηβ̃2(Sε(t)− σ)− dvg̃ε(t)

≤ C8

(
t1−δ
+ t

1
2 (1−δ)+

1
R

∫ t

0

∫
M\B(o,2C1 R)

(|Sε(s)− σ | dvg̃ε(s)) ds
)

for some constant C8 independent of ε, t . Here we have used the fact that gε,0 = g0

outside 6(2ε) and the fact that Sg0 ≥ σ . Let R→∞, using (iii), and finally let
ε→ 0, we conclude that∫

M
(S(t)− σ)− dvg(t) ≤ C8(t1−δ

+ t
1
2 (1−δ)).

Since

exp(−C4t
1
2 (1+δ))

∫
M
(S(t)− σ)− dvgε(t)

is nonincreasing in t , we conclude that the lemma is true. �
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5. Singular metrics realizing the nonpositive Yamabe invariant

In this section, we will apply the results in previous sections to study singular
metrics on compact manifolds. Let Mn be a compact smooth manifold without
boundary. Then as in the Introduction, we may define the Yamabe invariant σ(M).
It is well known that if σ(M)≤ 0 and if g is a smooth metric which realizes σ(M),
then g is Einstein; see [Schoen 1989, pp. 126–127] for example. If σ(M) > 0, the
situation is more complicated; for some recent results see [Macbeth 2017].

In this section we want to discuss the following question:

Suppose g is a continuous Riemannian metric on M which is smooth outside some
compact set 6 such that the volume of g is normalized to be 1. Suppose the scalar
curvature of g satisfies Sg ≥ σ(M) away from 6. What can we say about g?

In the case that 6 has codimension at least 2, we have the following:

Theorem 5.1. Let Mn be a smooth compact manifold such that σ(M)≤ 0. Suppose
g0 is a Riemannian metric with V (M, g0)= 1 satisfying the following:

(i) There is a compact subset 6 such that g0 is smooth on M \6 with scalar
curvature Sg0 ≥ σ(M) away from 6.

(ii) The metric g0 is in W 1,q
loc for some q>n in the sense that g0 has weak derivative

and |g0|b, |b∇g0|b ∈ Lq
loc with respect to a smooth background metric b.

(iii) The volume V (6(ε), g0) with respect to g0 of the ε-neighborhood 6(ε) of 6
is bounded by Cε2 for some constant C independent of ε. Here

6(ε)= {x ∈ M | dg0(x, 6) < ε}.

Then g0 is Einstein on M \6.

To prove the theorem, let (Mn, g0) be as in the theorem. Let

◦

Ric(g0)= Ric(g0)−
S0

n
g0

be the traceless part of Ric(g0) where S0 = Sg0 is the scalar curvature of g0. Let
x0 ∈ M \6. We want to prove that

◦

Ric(x0)= 0. Suppose
◦

Ric(g0)(x0) 6= 0, then
there is r > 0 such that Bx0(4r; g0)∩6=∅ and there is c> 0, |

◦

Ric(g0)|(x0)≥ 2c in
Bx0(3r). By Corollary 4.6, we can find smooth metrics gi such that (i) gi converges
uniformly to g0 and converges in C∞ norm on any compact sets in M \6; (ii)
V (M, gi )= 1; (iii) the scalar curvature Si of gi satisfies Si ≥ σ − δi for all i with
δi ↓ 0. Hence we may assume that

(5-1) |
◦

Ric(gi )|(x)≥ c
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in Bx0(2r; gi ) for all i , and Bx0(r; gi )⊂ Bx0(2r; g), Bx0(2r; gi )⊂ Bx0(3r; g). We
may also assume that the distance function ri (x) from x0 with respect to gi are
smooth in Bx0(3r; g), provided r > 0 is small enough, independent of i .

Let φ be a smooth function on [0,∞) with φ ≥ 0, φ = 1 on [0, 1] and φ = 0 on
[2,∞) and such that |φ′|2 ≤ Cφ, with C being an absolute constant. Let

hi (x)= φ
(

ri (x)
r

)
◦

Ric(gi )(x).

For |τ |> 0, let Gi;τ = gi + τhi . Then there is τ0 > 0 such that Gi;τ are smooth
metrics for all i and for all 0< |τ | ≤ τ0.

In the following, Ek = Ek(x, τ ) (k = 1, 2) will denote a quantity such that
|Ek | ≤ C |τ |k for some C independent of x , i and τ .

Lemma 5.2. We have

dvGi;t = dvgi (1+ E2)

and

V (M,Gi;t)= 1+ E2;

here dvg denotes the volume element of metric g.

Proof. Since gi → g uniformly on compact sets of M \6 in C∞ norm and since
hi is traceless, the results follow. �

We have the following general fact [Brendle and Marques 2011, Proposition 4]:

Lemma 5.3. Let (�n, g) be a smooth Riemannian manifold. Let ḡ = g+ h with
|h|g ≤ 1

2 . Then the scalar curvatures are related as

Sḡ −Sg = divg(divg(h))−1g trg h−〈h,Ric(g)〉g + F,

where

|F | ≤ C
(
|∇h|2+ |h|g|∇2h|g + |Ric(g)||h|2g

)
for some constant C depending only on n. Here ∇ is the covariant derivative with
respect to g.

Lemma 5.4. Let Si be the scalar curvature of gi and Si;τ be the scalar curvature
of Gi;τ . Then

Si;τ = Si + τ divgi (divgi hi )− τ 〈hi ,Ric(gi )〉gi + E2(τ ).

Note that Si;τ = Si outside Bx0(2r, gi ) and is bounded below by a constant indepen-
dent of i, τ .
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Proof. This follows from Lemma 5.3, the fact that hi is traceless, hi = 0 outside
Bx0(2r, gi ), the fact that gi → g in C∞ outside 6 and the fact that Si ≥ σ − δi . �

In the following, let

(5-2) a =
4(n− 1)

n− 2
, p =

2n
n− 2

.

By the resolution of the Yamabe conjecture [Yamabe 1960; Trudinger 1968; Aubin
1976b; Schoen 1984], for each i, τ , we can find a smooth positive solution ui;τ of

(5-3) −a1Gi;τ ui;τ +Si;τui;τ = λi;τV−2/n
i;τ u p−1

i;τ

with λi;τ = Y (Ci,τ ) which is less than or equal to σ (in particular, it is nonpositive),
where Ci,τ is the class of smooth metrics conformal to Gi;τ . Moreover, ui;τ is
normalized by ∫

M
u p

i;τ dvGi;τ = 1,

and Vi,τ = V (M,Gi;τ ).

Lemma 5.5. There is 0< τ1 ≤ τ0 independent of i such that if 0> τ ≥−τ1, then

a
2

∫
M
|
(i;τ)
∇ui;τ |

2
Gi;τ

dvGi;τ − λi;τV−2/n
i;τ + σ

≤−C |τ |
∫

Bx0 (2r,gi )

φu2
i;τ dvgi +C ′δi + E2(τ )

for some positive constants C,C ′ independent of i and τ . Here (i;τ)
∇ is the

covariant derivative with respect to Gi;τ .

Proof. For simplicity of notation, in the following we denote (i;τ)
∇ by ∇, Gi;τ

by G; gi by g; ui;τ by u; λi;τ by λ; Si;τ by SG ; Si by Sg; and Vi;τ by V .
Multiply (5-3) by u and integrating by parts, using the fact that∫

M
u p dvG = 1,

we have

(5-4) a
∫

M
|∇u|2G dvG − λV−2/n

=−

∫
M
SGu2 dvG

≤−

∫
M
SGu2 dvg + E2(τ )

∫
M

u2 dvg
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by Lemmas 5.2 and 5.4 and the fact that gi converges in C∞ norm in Bx0(3r, g0)⊃

Bx0(gi , 2r). On the other hand, by Lemma 5.4, for any 0< ε < 1,

(5-5) −
∫

M
SGu2 dvg

≤−

∫
M
Sgu2 dvg − τ

∫
M

(
divg(divg h)−〈h,Ric(g)〉g

)
u2 dvg

+ E2(τ )

∫
Bx0 (2r;g)

u2 dvg

≤−

∫
M
Sgu2 dvg +C1|τ |

∫
M

u|g∇u|g
(
|φ′||

◦

Ric(g)|g +φ|g∇S0|g
)

dvg

− |τ |

∫
M
φ|

◦

Ric(g)|2u2 dvg + E2(τ )

∫
Bx0 (2r;g)

u2 dvg

≤ (−σ + δ)

∫
M

u2 dvg + (C2+ ε
−1)|τ |

∫
M
|
g
∇u|2g dvg

−C3|τ |

∫
M
φ|

◦

Ric(g)|2u2 dvg + (E2(τ )+C2ε|τ |)

∫
Bx0 (2r;g)

φu2 dvg

≤ (−σ + δ)

∫
M

u2 dvg + (C2+ ε
−1)|τ |

∫
M
|
g
∇u|2g dvg

+ (E1(τ )+C2ε−C3c)|τ |
∫

Bx0 (2r;g)
φu2 dvg

for some constants C1,C2,C3 > 0 independent of i, τ . Here we have used the fact
that |φ′|2 ≤Cφ and the fact that Sg ≥ σ − δi which is negative, where we denote δi

by δ. Choose ε > 0 so that C2ε =
1
2C3c. Then the result follows if τ1 > 0 is small

enough and independent of i , by (5-4), (5-5), the Hölder inequality, the fact that
g,G are uniformly equivalent, and the fact that∫

M
u p dvG = 1, V (M, g)= 1,

and

V (M,G)= 1+ E2(τ ). �

Let 0 > τk > −τ1, τk → 0. Since δi → 0, for each k we can find ik such that
δik ≤ τ

2
k , ik→∞. Let us denote Gik ;τk by Gk , and uik ;τk by uk . We want to prove

the following:

Lemma 5.6. There is a constant C > 0 such that for all k,

inf
Bx0 (3r,g0)

uk ≥ C.
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Proof of Theorem 5.1. Suppose the lemma is true then we will have a contradiction.
In fact, if we denote δik by δk , since V (M,Gk)= 1+E2(τk), λ≤ σ , by Lemma 5.5,
we have

a
2

∫
M
|
Gk∇uk |

2
Gk

dvGk ≤−C1|τk |

∫
Bx0 (2r,gik )

φu2
k dvgik

+C2δk +C2τ
2
k

≤−C1|τk |

∫
Bx0 (2r,gik )

φu2
k dvgik

+ (C2+ 1)τ 2
k

for some positive constants C1,C2 independent of k. By Lemma 5.6, this is
impossible if k is large enough. Hence

◦

Ric(g0)(x0) must be zero. Theorem 5.1
then follows. �

It remains to prove Lemma 5.6. Consider the equation

(5-6) −a1u+Su = λu p−1.

Lemma 5.7. Let (Mn, g) be a smooth metric with scalar curvature S ≥−s0, with
s0 ≥ 0. Let u > 0 be a solution of (5-6) with ‖u‖p = 1 and with λ≤ 0. Then for any
q > p,

‖u‖q ≤ C(s0, V (M; g), n, q).

Proof. See [Trudinger 1968]; see also [Lee and Parker 1987, Proposition 4.4]. �

Lemma 5.8. Using the notation of Lemma 5.6,

(i) for any q > p, there is a constant C independent of k such that

‖uk‖q,g0 ≤ C;

(ii) uk subconverges in C2 norm with respect to g0 in any compact set K ⊂ M \6;

(iii) limk→∞
∫

M ‖
g0∇uk‖

2
g0

dvg0 = 0;

(iv) limk→∞ λk = σ , where λk = λik ;τk as in (5-3).

Proof. Since Sik ;τk ≥ σ − δk and δk→ 0, (i) follows from Lemma 5.7 and the fact
that C−1g0 ≤ Gk ≤ Cg0 for some C > 0 for all k.

To prove (ii), for any compact set K ⊂M\6, there is an open set K bU ⊂M\6
such that Gk converges in C∞ norm to g0 on U . By Lemma 5.5, we conclude that
0≤−λk ≤C for some constant independent of k. Then by (i), and [Lee and Parker
1987, Theorem 2.4], we conclude that for any U ′ bU ,

‖uk‖Lq
2 (U

′) ≤ C1

for some constant C independent of k. We then use the Sobolev embedding theorem
to conclude that the Cα norm of uk are uniformly bounded in U ′ bU . From this
the result follows by Schauder estimates.

Parts (iii) and (iv) follow from Lemma 5.5. �



SCALAR CURVATURE AND SINGULAR METRICS 455

Corollary 5.9. After passing to a subsequence, uk converges in C2 norm locally in
M \6 to a function u. Moreover, u= 1 in M \6 and

Sg0 = σ.

In particular Lemma 5.6 is true.

Proof. By Lemma 5.8, after passing to a subsequence, uk converges in C2 norm
locally in M \6 to a function u. Moreover, u is constant in each component of
M \6. We claim that there is C1 > 0 such that 0≤ uk ≤ C1 for all k.

Since the scalar curvature SGk ≥−s0 for some s0 > 0 independent of k and since
λk ≤ 0, we have

−a1Gk uk − s0uk ≤−a1Gk uk +SGk uk ≤ 0.

Moreover,
∫

M u p
k dvGk = 1 and Gk is equivalent to g0 uniformly in k, the claim

follows from mean value inequality [Gilbarg and Trudinger 1983, Theorem 8.17].
Since uk→ u almost everywhere, and Gk converges uniformly to g0, we have∫

M
up dvg0 = 1.

In particular, u> 0 somewhere.
Next we want to prove that u is constant on M . By Lemma 5.8, there is a constant

C2 independent of k such that∫
M
(|g0∇uk |

2
g0
+ u2

k) dvg0 ≤ C2.

Passing to a subsequence, we may assume that uk converges weakly in W 1,2(M, g0)

to v say. We claim that v is constant. In fact, for any ` ≥ 1, the sequence u`+k ,
k ≥ 1, also weakly converges to v. Then we can find convex combinations of u`+k

which converge to v strongly in W 1,2(M, g0). Namely, for any ε > 0, there exists
α1, . . . , αm with αk ≥ 0,

∑m
k=1 αk = 1 such that if w =

∑m
k=1 αku`+k , then

‖w− v‖W 1,2(M,g0) ≤ ε.

On the other hand, by Lemma 5.8, if ` is large enough, then(∫
M
|
g0∇w|2g0

dvg0

)1
2

≤

(∫
M

(∑
k

αk |
g0∇u`+k |g0

)2

dvg0

)1
2

≤

∑
k

αk

(∫
M
|
g0∇ul+k |

2
g0

dvg0

)1
2

≤ ε.
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Hence ∫
M
|
g0∇v|2 dvg0 ≤ (2ε)

2.

This implies g0∇v = 0, a.e. Since v ∈ W 1,2(M, g0), we conclude that v = c is a
constant as claimed.

On the other hand, for any smooth function φ on M

lim
k→∞

∫
M
(〈g0∇φ,g0 ∇uk〉g0 +φuk) dvg0 =

∫
M
(〈g0∇φ,g0 ∇v〉g0 +φv) dvg0

=

∫
M
φv dvg0 .

Also by Lemma 5.8 again, and the fact that uk are uniformly bounded and uk→ u

a.e., we have

lim
k→∞

∫
M
(〈g0∇φ,g0 ∇uk〉g0 +φuk) dvg0 =

∫
M
φu dvg0 .

So ∫
M
φu dvg0 =

∫
M
φv dvg0 .

Hence u= v is a constant. Since
∫

M up dvg0 = 1 so u= 1. Since u satisfies

−a1g0u+Sg0u= σu
p,

the last assertion follows. �

This completes the proof of Theorem 5.1. Next we want to discuss the case that
6 has codimension one. We have the following:

Theorem 5.10. Let Mn be a smooth compact manifold such that σ(M)≤ 0. Sup-
pose g0 is a Riemannian metric with V (M, g0)= 1 satisfying (b1)–(b3) in Section 4.
Then g0 is Einstein on M \6 and Sg0 = σ(M). Moreover, H− = H+.

Proof. Let gi = gεi ,0 be the smooth approximation of g0 by [Miao 2002] as given in
Section 4. The fact that g0 is Einstein outside 6 can be proved similarly as above
using Corollary 4.8. It remains to prove that H− = H+. Let εi → 0 and let ui be
the positive solution of

−a1i ui +Si ui = λi u
p−1
i

normalized as ∫
M

u p
i dvi = 1.

Here 1i is the Laplacian of gi etc. Also λi ≤ σ , where σ := σ(M). Suppose
H−(z) > H+(z) somewhere; then one can easily check that there is a positive
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constant b such that for i large enough,

(5-7)
∫

M
Si dvi ≥ σ + b.

As before, passing to a subsequence if necessary, ui → 1 outside 6 and uniform in
C∞ norm in any compact set of M \6. Moreover, ui are uniformly bounded, and
λi → σ . Since Si be bounded below by −s0, for some s0 ≥ 0 and ui is bounded
from below, we have

σ = lim
i→∞

λi

∫
M

u p−1
i dvi

= lim
i→∞

∫
M
Si ui dvi

≥ lim
i→∞

∫
M
Si (ui − 1) dvi + σ + b,

where we have used the fact that V (M, g0,εi )→ V (M, g0)= 1 and (5-7). We claim

lim
i→∞

∫
M
Si (ui − 1) dvi = 0.

If the claim is true, then we have a contradiction because b> 0. To prove the claim,
note that on |t | ≤ a, the original metric g0 is of the form

g0(z, t)= dt2
+ gi j (z, t)dzi dz j.

We assume that gi j (z, t) (which will be denoted by ht
i j (z)) is uniformly equivalent

to gi j (z, 0) (which will be denoted by hi j (z)). For any z ∈6 and for any 1≥ t ≥ 0,

|ui (z, a)− ui (z, t)| ≤
∫ a

0

∣∣∣∣∂ui (z, s)
∂s

∣∣∣∣ ds ≤
∫ 1

0
|
g0∇ui |(z, s) ds.

By the properties of g0,ε ,

(5-8)
∫
ε2

i /100≤|t |≤εi

|Si (ui − 1)| dvi = o(1)

because ui are uniformly bounded. So

(5-9)
∫
|t |≤ε2

i /100
Si (z, t)(ui (z, t)− 1) dvgi

=

∫
|t |≤ε2

i /100
Si (z, t)(ui (z, 1)− 1) dvgi

+

∫
|t |≤ε2

i /100
Si (z, t)(ui (z, t)− ui (z, 1)) dvgi

= I + II.
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Since ui (z, 1)→ 1 uniformly on z ∈6, and
∫

M |Si | dvgi is bounded, we conclude
that

(5-10) I = o(1)

as i→∞. On the other hand,

(5-11) |II | ≤
∫
|t |≤ε2

i /100
|Si (z, t)(ui (z, t)− ui (z, 1))| dvgi

≤ c
∫

z∈6

(∫ ε2
i /100

−ε2
i /100

ε−2
i

∫ 1

0
|∇ui (z, s)| ds

)
dt dvh

≤ c
∫

z∈6

(∫ a

0
|∇ui (z, s)| ds

)
dt dvh

≤ c
∫

M
|∇ui | dvgi

= o(1)

by the Schwartz inequality and Lemma 5.8. The claim follows from (5-8)–(5-11). �

6. Singular Einstein metrics

In the conclusions of Theorem 5.1, one obtains metrics which are smooth and
Einstein outside some singular sets. In this section, we want to prove that under
certain conditions, one may introduce a smooth structure so that the Einstein metric
is actually smooth. More precisely, we have the following:

Theorem 6.1. Let Mn , n ≥ 3, be a smooth manifold and g be a Riemannian metric
on M satisfying the following conditions: There is a compact set 6 in M such that

(i) g is Lipschitz and g is smooth on M \6;

(ii) g = λRic on M \6 for some constant λ;

(iii) the codimension of 6 is larger than 1 in the sense that V (6(ε), g)= O(ε1+θ )

for some θ > 0, where 6(ε)= {x ∈ M | d(x, 6) < ε}.

Then for any open set U containing 6, there is a smooth structure on M which is
the same as the original smooth structure on M \U so that g is a smooth Einstein
metric on M.

We want to construct the required smooth structure using harmonic coordinates.
First recall the following.

Lemma 6.2. Let B(1) be the unit ball in Rn with center at the origin. Let (ai j ) be
a symmetric matrix such that

λ|ξ |2 ≤ ai jξ iξ j
≤3|ξ |2,
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for some 3 > λ > 0 for all ξ ∈ Rn and where ai j is Lipschitz with Lipschitz
constant L. Let f ∈ L∞(B(1)). Then the boundary value problem

∂

∂x i

(
ai j ∂u
∂x j

)
= f in B(1),

u = 0 on ∂B(1)

has a unique solution in W 2,p(B(1)) for any p> 1 with u ∈W 1,p
0 (B(1)). Moreover,

we have
‖u‖2,p ≤ C(‖u‖p +‖ f ‖p)

for some constant C depending only on p, n, λ,3, L. Here ‖u‖2,p is the W 2,p

norm on B(1) and ‖u‖p is the L p norm in B(1).

Proof. The results follow from [Gilbarg and Trudinger 1983, Theorem 9.15, Corol-
lary 9.13]. By taking p > n and the Sobolev embedding theorem, u is continuous
up to the boundary and u = 0 at the boundary. �

With the same assumptions and notation as in Theorem 6.1, let q ∈ 6. Let
Uδ = {(x1, . . . , xn) | |x | < δ} be a smooth local coordinate neighborhood with q
being at the origin such that gi j is equivalent to the Euclidean metric and gi j is
Lipschitz with Lipschitz constant L

Lemma 6.3. With the above assumptions and notation, there is δ > ε > 0 and
functions u1, . . . , un on Uε = {(x1, . . . , xn) | |x | < ε} such that the mapping
(x1, . . . , xn)→ (u1, . . . , un) is a local C1,α diffeomorphism at the origin for some
0 < α < 1, ui

∈ W 2,p(Uε) for all p > 1 and ui is harmonic with respect to g for
1≤ i ≤ n. Moreover, ui is smooth outside 6.

Proof. Let δ > ε > 0 to be chosen later. Fix `, let f =1gx` which is bounded by
the assumption on gi j . Let λ,3 > 0 be such that

(6-1) λ|ξ |2 ≤ gi jξ iξ j
≤3|ξ |2

in Uδ.
Let y = ε−1x . Consider the following boundary value problem on B(1) in the

y-space

(6-2)


∂

∂yi

(
√

ggi j ∂v

∂y j

)
= ε2√g f in B(1),

v = 0 on ∂B(1).

By Lemma 6.2, the boundary value problem has a solution v satisfying the con-
clusions in that lemma. Here we have used the fact that gi j has Lipschitz constant
bounded by εL and still satisfies (6-1) as functions of y. In particular, we have

‖v‖2,p;y ≤ C1(‖v‖p;y + ε
2).
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Here and below, Ci will denote positive constants independent of ε. Let p > n
be fixed; then one can see that there is 1> α > 0 such that v ∈ C1,α(B(1)) in the
y-space and

(6-3) ‖v‖C1,α(B(1)) ≤ C2(‖v‖p;y + ε
2)

for some positive constants C2−C4 independent of ε.
Let w(x)= v(ε−1x) with x ∈ B(ε) in the x-space. Then w satisfies

∂

∂x i

(
√

ggi j ∂w

∂x j

)
=
√

g f in B(ε),

w = 0 on ∂B(ε)

in the x-space. Moreover, w ∈W 2,p(B(ε)). Let u` =w− x`. Then u` is harmonic,
namely, u` satisfies 

1
√

g
∂

∂x i

(
√

ggi j ∂u`

∂x j

)
= 0 in B(ε),

u` = x` on ∂B(ε).

By the maximum principle, we conclude that |u`|≤ ε and so |w|≤2ε, and moreover,
we have

(6-4) supB(ε) |∂xw| = ε
−1 supB(1) |∂yv| ≤ C2ε

−1(‖v‖p;y + ε
2).

To estimate the right-hand side, multiply (6-2) by v and integrating by parts, using
the Poincaré inequality, we have∫

B(1)
v2 dy ≤ C3ε

2
∫

B(1)
|v| dy

and so

‖v‖p;y ≤
(
supB(1) |v|

)1−2/p
(∫

B(1)
v2 dy

)1/p

≤ C4ε
1−2/p

· ε4/p

= C4ε
1+2/p,

where we have used the Hölder inequality and the fact that |v| = |w| ≤ 2ε. By (6-4)
we conclude that

supB(ε) |∂xw| ≤ C5ε
2/p.

Hence
∂u`

∂x i = δ
`
i + O(ε2/p).

From this and the fact that g is smooth outside 6 it is easy to see that the lemma is
true, provided ε is small enough. �
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Proof of Theorem 6.1. Let U be any open set containing 6. For any q ∈ 6, by
Lemma 6.3, we can find smooth coordinates neighborhood Vq bU around q and
C1,α functions u1, . . . , un on Vq near q which are in W 2,p(Vq) as functions of x .
Moreover, (x1, . . . , xn)→ (u1, . . . , un) is a C1 diffeomorphism from Vq to its
image Ṽq in the u-space. Let

(6-5) hab = g
(
∂

∂ua ,
∂

∂ub

)
=
∂x i

∂ua

∂x j

∂ub gi j ,

where

gi j = g
(
∂

∂x i ,
∂

∂x j

)
.

Let

Rab = Ric
(
∂

∂ua ,
∂

∂ub

)
.

Since each ua is harmonic, and Rab = λhab by assumption, away from 6 for all
a, b we have

(6-6) hcdhab,cd =−2λhab+ ∂h−1
∗ ∂h+ h−1

∗ h−1
∗ ∂h ∗ ∂h := Q(h, ∂h),

where (hcd)= (hcd)
−1,

hab,c =
∂

∂uc hab

etc., and ∂h−1
∗ ∂h denotes a sum of finite terms of the form(

∂

∂uc hab
)(

∂

∂u f hde

)
etc. By (6-5),

(6-7) hab,c = 2
∂2x i

∂ua∂uc

∂x j

∂ub gi j +
∂x i

∂ua

∂x j

∂ub

∂xk

∂uc

∂

∂xk gi j .

We may assume that Ṽq contains the origin which is the coordinates of q . Then by
shrinking Ṽq if necessary, by Lemma 6.3, hab is bounded and hab,c is in L p for all
p> 1 for all a, b, c as functions of u. In particular, hab is in W 1,p(Ṽq) for all p> 1.
Moreover, (hab) is uniformly elliptic. Since hab is only in Cα with 0< α < 1, we
cannot apply the standard L p estimate as in [Gilbarg and Trudinger 1983, Theorem
9.19]. Hence, we want to prove that hab is in W 2,p(B(δ)) for all a, b for all p > n
and for some δ > 0 in the u-space, where B(δ)= {u | |u|< δ}. Suppose this is true;
then hab ∈ C0,1

loc (B(δ)) and ∂h ∈W 1,p
loc (B(δ)). This implies Q(h, ∂h) in (6-6) is in

W 1,p/2
loc (B(δ)). Since this is true for all p > n, by [Gilbarg and Trudinger 1983,

Theorem 9.19], we conclude that hab is in W 3,p(B(δ)). Continuing in this way, we
conclude that hab ∈W k,p

loc (B(δ)) for all k ≥ 1 and p > n by a bootstrap argument.
Hence hab is smooth near the origin.
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It remains to prove that hab ∈ W 2,p(B(δ)) for all p > n for all a, b for some
δ > 0. Fix a, b and let w = φhab where φ is a smooth cutoff function in B(2δ)
such that φ = 1 in B(δ), φ = 0 outside B

( 3
2δ
)
, where δ > 0 is small enough so that

B(2δ)b Ṽq . Then away from 6, w satisfies

(6-8) hcdwcd = Q1(h, ∂h, φ, ∂φ, ∂2φ).

Since Q1 is in L p(B(2δ)) by Lemma 6.3 and (hcd) is continuous and is uniformly
elliptic, by [Gilbarg and Trudinger 1983, Theorem 9.15] for any p > n there is
v ∈W 2,p(B(2δ))∩W 1,p

0 (B(2δ)) such that

hcdvcd = Q1(h, ∂h, φ, ∂φ, ∂2φ).

Since hcd
∈W 1,p(B(2δ)) for all p, for any smooth function η with compact support

in B(2δ), we have

(6-9)
∫

B(2δ)

(
hcd ∂η

∂ua

∂v

∂ub + ηsd ∂v

∂ud

)
du =−

∫
B(2δ))

ηQ1 du.

where sd
=

∂
∂uc hcd . We want to prove that w also satisfies this relation.

To prove the claim, note that if we consider 6 ∩ Ṽq then the codimension of
6 in the u-space is at least 1+ θ for some θ > 0 because hab and the Euclidean
metric are uniformly equivalent. As in [Lee 2013], for ε > 0 small enough, we can
find a smooth function 0≤ ξε ≤ 1 in Ṽq such that ξε = 1 outside 62ε and is zero in
6ε ∩ Ṽq where 6ε = {u ∈ Ṽq | d(u, 6) < ε} where the distance is the Euclidean
distance. Moreover, |∂ξε | ≤ C1ε

−1. Here and below Ci denotes a positive constant
independent of ε. Now let η be a smooth function with compact support in B(2δ).
Multiply (6-8) by ηξε and integrating by parts, we have

−

∫
B(2δ)

ηξεQ1 du =
∫

B(2δ)

[
hcd
(
ξε
∂η

∂ua + η
∂ξε

∂ua

)
∂w

∂ub + ηξεs
d ∂w

∂ud

]
du.

Since w, hcd
∈ L1,p(B(2δ)) for all p > 1, we have∫

B(2δ)
|η(ξε − 1)Q1| du ≤

(∫
B(2δ)
|η(ξε − 1)Q1|

2 du
)1/2

V (62ε)
1/2
→ 0

as ε→ 0. Similarly, one can prove that∫
B(2δ)

∣∣∣∣hcd(ξε − 1)
∂η

∂ua

∂w

∂ub + η(ξε − 1)sd ∂w

∂ud

∣∣∣∣ du→ 0
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as ε→ 0. On the other hand,∫
B(2δ)

∣∣∣∣hcdη
∂ξε

∂ua

∂w

∂ub

∣∣∣∣ du ≤ C2ε
−1
∫
62ε

|∂w| du

≤ C3ε
−1
(∫

62ε

|∂w|p du
)1

p

(V (6(2ε)))1−
1
p

≤ C4ε
−1+(1+θ)(1−1/p)

(∫
62ε

|∂w|p du
)1

p

→ 0

as ε→ 0 provided p is large enough. Hence we have

(6-10)
∫

B(2δ)

(
hcd ∂η

∂ua

∂w

∂ub + ηsd ∂w

∂ud

)
du =−

∫
B(2δ))

ηQ1 du

for all smooth functions η with compact support B(2δ).
Let ζ = v−w; then v−w ∈W 1,p

0 for all p > 1 and

(6-11)
∫

B(2δ)

(
hcd ∂η

∂ua

∂ζ

∂ub + ηsd ∂ζ

∂ud

)
du = 0

for all smooth functions η with compact support in B(2δ). Using the fact that
sd
∈ L p(B(2δ)) we can proceed as in the proof of [Gilbarg and Trudinger 1983,

Theorem 8.1] to conclude that ζ ≡ 0, because sq
∈ L p(B(2δ)) for all p > 1.

To summarize we have proved that hab ∈W 2,p(B(2δ)) for all p > n and hab is
smooth in u for all a, b.

We can cover 6 by such harmonic coordinate neighborhoods Vq so that the
components of g are smooth with respect to these coordinates. By [Taylor 2006,
Theorem 2.1] one can conclude that the theorem is true. �

Corollary 6.4. Suppose (Mn, g0) is as in Theorem 5.1. If in addition, g0 is Lipschitz,
then there is a smooth structure on M such that g0 is smooth and Einstein.

7. A positive mass theorem with singular set

In this section, we will use the results in Sections 3 and 4 to study positive mass
theorems on asymptotically flat manifolds with singular metrics. We want to
discuss the theorem without assuming that the manifold is spin. There are different
definitions for asymptotically flat manifold. For our purpose, we use the following:

Definition 7.1. An n-dimensional Riemannian manifold (Mn, g), where g is con-
tinuous, is said to be asymptotically flat (AF) if there is a compact subset K such
that g is smooth on M \K , and M \K has finitely many components Ek , 1≤ k ≤ l,
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each Ek is called an end of M , such that each Ek is diffeomorphic to Rn
\ B(Rk)

for some Euclidean ball B(Rk), and the following are true:

(i) In the standard coordinates x i of Rn ,

gi j = δi j + σi j

with

sup
Ek

{ 2∑
s=0

|x |τ+s
|∂sσi j | + [|x |α+2+τ∂∂σi j ]α

}
<∞,

for some 0 < α ≤ 1, τ > (n− 2)/2, where ∂ f and ∂2 f are the gradient and
Hessian of f with respect to the Euclidean metric, and [ f ]α is the α-Hölder
norm of f .

(ii) The scalar curvature S satisfies the decay condition

|S|(x)≤ C(1+ d(x))−q

for some q > n. Here d(x) is the distance function from a fixed point in M .

The coordinate chart satisfying (i) is said to be admissible.

Without loss of generality, we assume that q ≤ n+ 2. This assumption will be
used in (7-3).

In the following, for a function f defined near infinity or Rn , and for k ≥ 0,
f = Ok(r−τ ) refers to

∑k
i=0 r i

|∂ i f | = O(r−τ ) as r→∞, where r = |x |.

Definition 7.2. The Arnowitt–Deser–Misner (ADM) mass (see [Arnowitt et al.
1961]) of an end E of an AF manifold M is defined as

(7-1) mADM(E)= lim
r→∞

1
2(n− 1)

ωn−1

∫
Sr

(gi j,i − gi i, j )ν
j d60

r

in an admissible coordinate chart where Sr is the Euclidean sphere, ωn−1 is the
volume of the (n−1)-dimensional unit sphere, d60

r is the volume element induced
by the Euclidean metric, ν is the outward unit normal of Sr in Rn and the derivative
is the ordinary partial derivative.

By [Bartnik 1986], mADM(E) is well-defined, i.e., it is independent of the choice
of admissible charts.

For smooth metrics, without assuming the manifold is spin, we have the following
positive mass theorem by Schoen and Yau [1979b; 1981; Schoen 1989]:

Theorem 7.3. Let (Mn, g), 3≤ n ≤ 7, be an AF manifold with nonnegative scalar
curvature S ≥ 0. Then the ADM mass of each end is nonnegative. Moreover, if
the ADM mass of one of the ends is zero, then (Mn, g) is isometric to Rn with the
standard metric.



SCALAR CURVATURE AND SINGULAR METRICS 465

We want to prove the following positive mass theorem for metrics which are
smooth outside a compact set of codimension at least 2. More precisely, we want
to prove the following:

Theorem 7.4. Let (Mn, g0) be an AF manifold with 3≤n≤7, g0 being a continuous
metric on M such that

(i) g0 is smooth outside a compact set 6 with codimension at least 2 as in (a4) in
Section 4,

(ii) the scalar curvature S of g0 is nonnegative outside 6,

(iii) g0 ∈W 1,p
loc for some p > n as in (a2) in Section 4,

(iv) on each end E , in an admissible coordinate chart,

gi j = δi j + σi j

with σi j = O5(r−τ ) with τ > (n− 2)/2.

Then the ADM mass of each end is nonnegative. Moreover, if the mass of one of the
ends is zero, then M is diffeomorphic to Rn , and g0 is flat outside 6.

Remark 7.5. (a) The assumption of continuity of the metric cannot be removed.
See the construction in Proposition 2.3.

(b) The case that the singular set is an embedded hypersurface has been studied in
[Miao 2002; Shi and Tam 2002]; see also [McFeron and Székelyhidi 2012].

(c) In the case that the singular set has codimension larger than 1, for spin manifolds,
positive mass theorems have been obtained under rather general assumptions in
[Lee and LeFloch 2015]. Without the spin condition, there are also results for
metrics with bounded C2 norm and with singular set having codimension at least
n/2 [Lee 2013].

We proceed as in [McFeron and Székelyhidi 2012]. As in Section 4, let ε > 0,
ε→ 0. We can construct a family of metrics gε,0 such that

(i) gε,0→ g0 uniformly,

(ii) gε,0 = g0 outside 6(2ε),

(iii) the W 1,p norm of gε,0 in a fixed precompact open set containing 6 is bounded
by a constant independent of ε.

As in Section 4, we can choose ε0 > 0 small enough and let h = gε0,0. Then
there is a T > 0 independent of ε such that if 0 < ε ≤ ε0, then there is a smooth
solution gε(t) on M × [0, T ] to the h-flow with initial data gε,0. There is also a
smooth solution g(t) on M× (0, T ] to the h-flow such that g(t)→ g0 uniformly on
compact sets as t→ 0. Moreover, Lemma 4.2 is still true with M being noncompact
in this case because M is AF.
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Let g̃ε(t) be the corresponding solution to the Ricci flow with g̃ε(t)=8∗t (gε(t))
as in the compact case in Section 4. Then we have the following:

Lemma 7.6. (i) The metrics gε(t), g̃ε(t), g(t) are AF in the sense of Definition 7.1.

(ii) For each end E of M , m(E)(ε, t) = m(E)(ε, 0) = m(E), where m(E)(ε, t)
is the mass with respect to gε(t) or g̃ε(t), and m(E)(ε, 0) is the mass with
respect to gε,0 or g0.

Proof. (i) First note that C−1
1 h≤ gε(t)≤C1h for some constant C1> 0 independent

of ε, t . On the other hand, by Lemma 4.2 applied to the noncompact case, we
conclude that the curvature of g̃ε(t) is bounded by Ct−

1
2 (1+δ) for some 0< δ < 1

where C, δ are independent of ε, t . Hence we also have C−1
1 gε,0 ≤ gε(t)≤ C1gε,0

and C−1
1 h ≤ g̃ε(t)≤ C1h, with possible larger C1.

Using the fact that σi j = O5(r−τ ), we can proceed with some modifications as
in [Dai and Ma 2007; McFeron and Székelyhidi 2012] to show that outside a fixed
compact set, for 0≤ l ≤ 3,

|
h
∇

l gε(x, t)| ≤ C2d−l−τ (x)

for some constant C2 independent of ε, t, x , where d(x) is the distance function
from a fixed point with respect to h. Here we use the fact that σi j = O5(r−τ ). The
proof is similar to the proof for the decay rate of scalar curvature. So we only carry
out the proof for this case in more detail.

We want to prove that there is a constant C3 > 0 independent of ε, t and a
compact set K such that if S̃ε(t) is the scalar curvature of g̃ε(t), then

(7-2) supM\K dq(x)|S̃ε(x, t)| ≤ C3.

We will prove this on each end. Fix ε. Denote the scalar curvature of gε(t)
simply by S and curvature by Rm etc. Let E be an end which is diffeomorphic to
Rn
\B(R), say. By [Simon 2002], by choosing R large enough so that gε,0= h= g0

outside B(R/2) and g0 is smooth there, we may assume that |Rm(gε(t))| ≤ C4 for
some constant C4 independent of ε, t outside B(R/2). Here we have used the fact
that gε(t), g̃ε(t) are uniformly equivalent.

Let ge be the standard Euclidean metric and let 0 ≤ φ ≤ 1 be a fixed smooth
function on Rn such that φ = 1 in B(R) and φ = 0 outside B(2R). Consider the
metric φge+ (1−φ)gε(t). Still denote its curvature by Rm etc.

Let ρ be a fixed function ρ≥ 1, ρ= 1 in B(R), ρ(x)= |x | outside B(2R). Hence
the gradient and the Hessian of ρ with respect to gε(t) are bounded by a constant
independent of ε, t . We have

∂

∂t
S2
≤1S2

+C5
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in B(2R) and
∂

∂t
S2
=1S2

+ 2S|Ric|2− 2|∇S|2

outside B(2R).
Let F = ρ2qS2; then outside B(2R),

(7-3)
(
∂

∂t
−1

)
F = ρ2q(2S|Ric|2− 2|∇S|2)− 2〈∇ρ2q ,∇S2

〉+ F1ρ2q

≤ C6ρ
q−4−2τρqS − 4qρ−1

〈∇ρ,∇F〉+C6 F

≤ C7− 4qρ−1
〈∇ρ,∇F〉+C7 F

for some constants C6,C7 independent of ε, t since q − 4− 2τ < q − (n+ 2)≤ 0.
The inequality is still true in B(2R) because in B(R), ∇ρ = 0 and in B(2R)\B(R),
|∇ρ| and |∇S| are uniformly bounded. Hence if F̃ = e−C7t F −C7t , then

(7-4)
(
∂

∂t
−1

)
F̃ ≤−4qρ−1

〈∇ρ,∇ F̃〉.

Let A > 0 to be chosen later. Let η = exp(2At + ρ). Then(
∂

∂t
−1

)
η ≥ 2Aη−Cη

for some constant C independent of ε, t . Choose A = C ; then we have(
∂

∂t
−1

)
η ≥ Aη.

Let κ > 0 be any positive number; then(
∂

∂t
−1

)
(F̃ − κη)≤−4qρ−1

〈∇ρ,∇ F̃〉− κAη.

Since F̃ has at most polynomial growth, if F̃−κη has a positive maximum, then the
maximum will be attained at some point (x0, t0). Suppose t0 > 0; then at (x0, t0),

∇ F̃ = κ∇η.

Hence at (x0, t0),

0≤
(
∂

∂t
−1

)
(F̃ − κη)

≤−4qρ−1
〈∇ρ,∇ F̃〉− κAη

=−4qρ−1κ〈∇ρ,∇η〉− κAη

≤−κAη,

which is impossible. Hence either F̃ − κη ≤ 0, or

F̃ − κη ≤ supRn

(
ρ2q(x)S2(0)

)
,
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where S(0) is the scalar curvature of φge+ (1−φg0). Let κ→ 0, we conclude the
(7-2) is true.

(ii) Since gε,0 = g0 outside a compact set, m(E)=m(E)(ε, 0). On the other hand,
by the fact that g̃ε(t) and g̃(t) are given by a diffeomorphism and by (i) and [Bartnik
1986], the mass of E is the same whether it is computed with respect to g̃ε(t) or gε(t).

The fact that m(E)(ε, t)=m(E)(ε, 0) follows from [Dai and Ma 2007]. �

Proof of Theorem 7.4. By Lemmas 4.1 and 4.13, we conclude that g(t) is AF and
with nonnegative scalar curvature for t > 0. Let E be an end. Using the notation in
Lemma 7.6, by the lemma and [McFeron and Székelyhidi 2012, Theorem 14] (see
also [Jauregui 2014]), the mass m(E)(t) of E with respect to g(t) satisfies

m(E)= lim inf
ε→0

m(E)(ε, 0)

= lim inf
ε→0

m(E)(ε, t)

≥m(E)(t).

By Theorem 7.3, m(E)(t)≥ 0, we have m(E)≥ 0. If m(E)= 0, then m(E)(t)= 0
and (Mn, g(t)) is isometric to the Euclidean space. Since g(t) converges to g0 in
C∞ as t→ 0 away from 6, g0 is flat outside 6. �
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