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THREE-DIMENSIONAL SOL MANIFOLDS
AND COMPLEX KLEINIAN GROUPS

WALDEMAR BARRERA, RENE GARCIA-LARA AND JUAN NAVARRETE

We give a topological description of the quotient space �(G)/G, in the case
when G ⊂ PSL(3, C) is a discrete subgroup acting on P2

C
and the maxi-

mum number of complex projective lines in general position contained in
the Kulkarni limit set 3(G)= P2

C
\�(G) is equal to 4. Moreover, we give a

topological description of the quotient space �(G)/G in the case when G is
a lattice of the Heisenberg group.

1. Introduction

Complex Kleinian groups were introduced by José Seade and Alberto Verjovsky
[2001]. A complex Kleinian group G is a subgroup of PSL(n+1,C) acting properly
and discontinuously on a nonempty G-invariant open subset of Pn

C
. We remark that

complex Kleinian groups are discrete subgroups of PSL(n+ 1,C) but the converse
is not necessarily true; for example, the group PSL(3,Z) is a discrete subgroup of
PSL(3,C) which is not a complex Kleinian group. See [Barrera et al. 2014].

There is no standard definition of limit set for a complex Kleinian group, we use
the following three notions: Kulkarni limit set, Myrberg limit set, or the complement
of a maximal region of discontinuity which are discussed in detail in [Barrera et al.
2016]. However by some additional hypotheses on the action of G on the projective
plane, all these concepts of limit set are equivalent; see [Barrera et al. 2011a]. In
the classical theory of Kleinian groups, there is a theorem which states that discrete
infinite subgroups contain one, two, or infinity points in its limit set. On the other
hand, Angel Cano and José Seade show that every infinite discrete subgroup of
PSL(3,C) has a complex projective line contained in its limit set (see [Cano and
Seade 2014]), in consequence, the limit set of infinite subgroups of PSL(3,C) is an
uncountable subset of P2

C
.

Thus, it is natural to say that G ⊂ PSL(3,C) is an elementary complex Kleinian
group whenever its limit set contains a finite number of complex projective lines;
see [Cano et al. 2013]. There is another kind of group whose limit set contains
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infinitely many complex projective lines but only finitely many in general position.
We call these groups elementary complex Kleinian groups of type II.

In [Barrera et al. 2011b], the authors give an algebraic characterization of those
complex Kleinian groups such that the maximum number of complex projective
lines in general position contained in its Kulkarni limit set is equal to 4. In this
article we describe the topology of the quotient space of these groups. In fact, we
prove the following theorem:

Theorem 1.1. Let G ⊂ PSL(3,C) be a torsion-free complex Kleinian group, such
that the maximum number of complex projective lines in general position contained
in its Kulkarni limit set is equal to 4, then:

(i) The group G is isomorphic to a lattice of the group Sol (see Section 2F ).

(ii) If �0 is a G-invariant connected component of the Kulkarni discontinuity
region of G, then �0/G is diffeomorphic to (Sol/G)×R.

Corollary 1.2. There is a countable number of nonisomorphic complex Kleinian
groups such that the maximum number of complex projective lines in general
position contained in its Kulkarni limit set is equal to 4.

Corollary 1.3. Under the hypotheses of Theorem 1.1, �0/G is a fiber bundle with
base S1 and fiber T2

×R.

Theorem 1.4. If G is a lattice on the three-dimensional real Heisenberg group H,
then there exists a G-invariant open set �⊂ P2

C
such that �/G is diffeomorphic to

(H/G)×R.

This article is organized in the following way: In Section 2 we include some
basic preliminaries about complex Kleinian groups, and a brief survey on complex
Kleinian groups, such that the maximum number of complex lines contained in
their Kulkarni limit set is equal to 4 [Barrera et al. 2011b]. In Section 3 we give an
explicit smooth foliation of the bidisc H×H where the leaves are diffeomorphic
copies of Sol. In Section 4, we study the geometry of the leaves and we show that
the bidisc H×H is diffeomorphic to Sol×R. Moreover this diffeomorphism is
G-equivariant, where G denotes an hyperbolic toral group. In Section 5 we do
some explicit computations to determine the Riemannian metrics of the leaves. For
each leaf we obtain an isometric embedding of the group Sol to H×H. Finally,
we give a proof of Theorem 1.1.

Corollaries 1.2 and 1.3 are a consequence of Theorem 1.1 and [de la Harpe
2000, Proposition 30]. In Section 6 we give a proof of Theorem 1.4, the procedure
is similar to the proof of Theorem 1.1, except that we have not a G-equivariant
diffeomorphism between C×H and H×R. However the proof can be done because
the natural action of G on C×H translated to H×R is the classical action on the
first factor of G on H, and it is the trivial action on the second factor.
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2. Preliminaries

The purpose of this section is to provide some definitions and results about complex
Kleinian groups that will be helpful to the reader. For more details see [Cano et al.
2013; Barrera et al. 2011b; 2011a].

2A. Projective geometry. We recall that the complex projective plane P2
C

is defined
as the orbit space of the usual scalar multiplication action of the Lie group C∗ in
C3
\ {0} and it is denoted by

P2
C := (C

3
\ {0})/C∗.

This is a compact connected complex 2-dimensional manifold. Let [ ] :C3
\{0}→P2

C

be the quotient map. If β={e1, e2, e3} is the standard basis of C3, we write [e j ]= e j ,
for j = 1, 2, 3, and if z = (z1, z2, z3) ∈ C3

\ {0} then we write [z] = [z1 : z2 : z3].
Also, `⊂ P2

C
is said to be a complex line if [`]−1

∪{0} is a complex linear subspace
of dimension 2. Given two distinct points [z], [w] ∈ P2

C
, there is a unique complex

projective line passing through [z] and [w]. This kind of complex projective line is
called a line, for short, and it is denoted by

←−−→
[z], [w]. Consider the action of C∗ on

GL(3,C) given by the usual scalar multiplication, then

PGL(3,C)= GL(3,C)/C∗

is a Lie group whose elements are called projective transformations. Letting
[[ ]] :GL(3,C)→PGL(3,C) be the quotient map, g∈PGL(3,C) and g ∈GL(3,C),
we say that g is a lift of g if [[g]] = g. One can show that PGL(3,C) is a
Lie group which acts transitively, effectively and by biholomorphisms on P2

C
by

[[g]]([w])= [g(w)], where w ∈ C3
\ {0} and g ∈ GL(3,C).

We could have considered the action of the cube roots of unity {1, ω, ω2
} ⊂ C∗

on SL(3,C) given by the usual scalar multiplication, then

PSL(3,C)= SL(3,C)/{1, ω, ω2
} ∼= PGL(3,C).

We denote by M3×3(C) the space of all 3×3 matrices with entries in C equipped
with the standard topology. The quotient space

End(3,C) := (M3×3(C) \ {0})/C∗

is called the space of pseudoprojective maps of P2
C

and it is naturally identified
with the projective space P8

C
. Since GL(3,C) is an open, dense, C∗-invariant

set of M3×3(C) \ {0}, we get that the space of pseudoprojective maps of P2
C

is a
compactification of PGL(3,C) (or PSL(3,C)). As in the case of projective maps, if
s is an element in M3×3(C)\{0}, then [s] denotes the equivalence class of the matrix
s in the space of pseudoprojective maps of P2

C
. Also, we say that s ∈M3×3(C)\{0}

is a lift of the pseudoprojective map S whenever [s] = S.



4 WALDEMAR BARRERA, RENE GARCIA-LARA AND JUAN NAVARRETE

Let S be an element in (M3×3(C)\{0})/C∗ and s a lift to M3×3(C)\{0} of S. The
matrix s induces a nonzero linear transformation s :C3

→C3, which is not necessarily
invertible. Let Ker(s)( C3 be its kernel and let Ker(S) denote its projectivization
to P2

C
, taking into account that Ker(S) :=∅ whenever Ker(s)= {(0, 0, 0)}.

2B. Discontinuous actions on P2
C

.

Definition 2.1. Let G⊂PSL(3,C) be a group. We say that G is a complex Kleinian
group if it acts properly and discontinuously on an open nonempty G-invariant set
U ⊂ P2

C
, meaning that for each pair of compact subsets C, D ⊂U, the set

{g ∈ G : g(C)∩ D 6=∅}
is finite.

One of the main difficulties in deciding whether a group G is Kleinian complex
is to find an open set verifying the definition above. In order to give an answer to
this problem we study two mathematical concepts: the equicontinuity set of G and
the Kulkarni discontinuity region of G. Now, we discuss each of these concepts.

2C. The equicontinuity set. The concept of equicontinuity has long been studied
in mathematics. For convenience to the reader, we include the definition and notation
that we use in this work.

Definition 2.2. The equicontinuity set for a family F of endomorphisms of P2
C

,
denoted Eq(F), is defined as the set of points z ∈ P2

C
for which there is an open

neighborhood U of z such that { f |U : f ∈ F} is a normal family.

This modern approach and ideas on this concept were studied by Angel Cano
in his Ph.D thesis. However, thanks to a reference by Ravi Kulkarni to works of
Myrberg, we found that some of these results had already been discovered, in an
arcane mathematical language. However, it is fair to acknowledge Angel Cano for
rediscovering these results and applying them successfully to the theory of complex
Kleinian groups.

Definition 2.3. Let G ⊂ PSL(3,C) be a discrete group. If

G ′ = {S is a pseudoprojective map of P2
C : S is a cluster point of G},

then the Myrberg limit set (see [Myrberg 1925]) is defined as the set

3Myr(G)=
⋃

S∈G ′
Ker(S).

Myrberg [1925] shows that G acts properly and discontinuously on P2
C
\3Myr(G).

Theorem 2.4 [Barrera et al. 2011a]. If G ⊂ PSL(3,C) is a discrete group, then:

(i) The group G acts properly and discontinuously on Eq(G).
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(ii) The equicontinuity set of G satisfies:

Eq(G)= P2
C \3Myr(G)

(iii) If U is an open G-invariant subset such that P2
C
\U contains at least three

complex lines in general position, then U ⊂ Eq(G).

2D. Kulkarni discontinuity region. Kulkarni [1978] defined a limit set for groups
of homeomorphisms acting on a locally compact Hausdorff space. For the reader’s
convenience, we explain this construction in the context of projective spaces.

Definition 2.5. Let G ⊂ PSL(3,C) be a subgroup.

• The set L0(G) is defined as the closure of the set of points in P2
C

with infinite
isotropy group.

• The set L1(G) is defined as the closure of the set of cluster points of the orbit
Gz, where z runs over P2

C
\ L0(G).

• The set L2(G) is defined as the closure of the set of cluster points of the family
of compact sets {g(K ) : g ∈ G}, where K runs over all the compact subsets of

P2
C \ (L0(G)∪ L1(G)).

The Kulkarni limit set of G is defined as

3Kul(G)= L0(G)∪ L1(G)∪ L2(G).

The Kulkarni discontinuity region of G is defined as:

�(G)= P2
C \3Kul(G).

Kulkarni [1978] proves that G acts properly and discontinuously on the set�(G).
However, �(G) is not necessarily the maximal open subset of P2

C
where G acts

properly and discontinuously.
We notice that the Kulkarni limit set is a generalization of the classical limit set

for a discrete subgroup of hyperbolic isometries acting on the sphere at infinity of
hyperbolic space. In general, it is very hard to give an explicit computation of the
Kulkarni limit set. In [Navarrete 2006; 2008], we can find these computations for
the cyclic subgroups of PSL(3,C) and for discrete subgroups of PU(2, 1) acting
on the complex projective plane P2

C
.

We could define the limit set as the complement of a maximal open set where the
group acts properly and discontinuously, but in general there is no canonical way
to build this G-invariant open set. On the other hand, when we ensure the existence
of this maximal open set, this notion of limit set has good properties. See [Barrera
et al. 2014].
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2E. Four lines complex Kleinian groups. This section is devoted to complex
Kleinian groups of PSL(3,C) such that the maximum number of complex pro-
jective lines in general position contained in its Kulkarni limit set is equal to 4.
For simplicity we call groups of this kind four lines complex Kleinian groups. In
[Barrera et al. 2011b], the authors give an algebraic characterization of four lines
complex Kleinian groups. For the reader’s convenience, we reproduce briefly the
main ideas and the notation used there.

Letting A∈SL(2,Z), with |tr(A)|>2, we define the following discrete subgroup
of PSL(3,C), called hyperbolic toral group.

G A =

{(
Ak b
0 1

)
: b ∈ M(2× 1,Z), k ∈ Z

}
,

The group G A is a four lines complex Kleinian group and moreover if G is a
four lines complex Kleinian group, then there exists a hyperbolic toral group G A

such that [G : G A] ≤ 8.
It is possible to conjugate the group G A to a group, still denoted by G A, where

each element is of the form λk 0 ny0+mx0

0 λ−k nx0+mz0

0 0 1


where k, m and n run over Z and λ is one of the eigenvalues of A. At this point it is
not hard to see that the Kulkarni discontinuity region consists of four disjoint copies
of H±×H±, where H+ is the upper half plane and H− is the lower half plane.

2F. The Sol geometries. Sol is one of the eight geometries defined by William
Thurston in his famous program of geometrization of compact three manifolds. The
group Sol is defined as the space R3

= R2
×R equipped with the group operation((

x1

y1

)
, t1

)
·

((
x2

y2

)
, t2

)
=

((
x1+ et1 x2

y1+ e−t1 y2

)
, t1+ t2

)
.

In fact, it is a Lie group and it is equipped with the left-invariant Riemannian
metric: ds2

= e2t dx2
+e−2t dy2

+dt2. An interesting fact about the Sol geometries
is given by the following theorem of [de la Harpe 2000], which we state for
convenience:

Proposition 2.6. Let A, B in GL(2,Z) be two matrices with traces of absolute
value strictly larger than 2. The semidirect products Z2 oA Z, and Z2 oB Z consid-
ered as the matrix groups{(

Ak b
0 1

)
: b ∈ M(2× 1,Z), k ∈ Z

}
,
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Bk b
0 1

)
: b ∈ M(2× 1,Z), k ∈ Z

}
are isomorphic if and only if A is conjugate in GL(2,Z) to B or B−1, and they are
quasi-isometric in all cases.

The quotient spaces Sol/(Z2 oA Z) are examples of compact three manifolds
where the topological type is determined by the fundamental group. For more
details about this subject see [Scott 1983; Thurston 1997; de la Harpe 2000].

3. Foliation of H×H by Sol

In [Barrera et al. 2011b], the authors introduce the concept of hyperbolic toral
groups. These groups are matrix groups where the elements are given byλk 0 ny0+mx0

0 λ−k nx0+mz0

0 0 1

,
where λ is a fixed real number, |λ| 6= 1 and k, n, m run over Z. It is not hard
to check this group is isomorphic to Z2 oA Z. Moreover, a continuous version
of this group is given in the following way. Let A ∈ SL(2,Z) be a hyperbolic
automorphism with Jordan form

A =
(
λ 0
0 λ−1

)
and consider the set of matrices of the formλt 0 x

0 λ−t y
0 0 1

,
where t , x , y run over R. It is not hard to check that this group is isomorphic to
Sol= R2 oR. For convenience for our computations we use this representation of
the Lie group Sol. In the sequel, we will use the product metric in H×H, where
we endow each copy of H with a metric homothetic to the hyperbolic metric by a
factor of 1

2 :
dx2

1 + dy2
1

2y2
1
+

dx2
2 + dy2

2

2y2
2

.

Proposition 3.1. Let z1, z2 ∈ H. We define a natural action of Sol in H×H byλt 0 x
0 λ−t y
0 0 1

z1

z2

1

=
 λt z1+ x
λ−t z2+ y

1

.
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The natural action of the group Sol on H×H satisfies the following:

(i) The action is free.

(ii) For each z = (z1, z2) ∈ H × H the function fz : Sol→ H × H defined by
fz(g)= gz is a smooth embedding.

(iii) If {e1, e2, e3, e4} is the canonical basis of R4, then

X = y1e2+ y2e4

is one of the two normal unitary vector fields to the embedding fz(Sol) in
H×H, which therefore is a smooth vector field globally defined.

Proof. (i) Let z = (z1, z2) ∈ H×H, and assume that γ ∈ Sol is such that γ · z = z.
Let zk = xk + iyk , where k = 1, 2. Taking imaginary parts in the action, we get

λt y1 = y1, λ−t y2 = y2,

so λt
= λ−t

= 1, because imaginary parts can not be null. Taking real parts, we
obtain x1+ x = x1 and x2+ y = x2, then x = y = 0.

(ii) From the definition of the action, it is clear that fz is smooth in t, x, y, which
parametrizes Sol. By straightforward computations, we have that d fz has the
Jacobian matrix given by

[d fz] =


ln(λ) λt x1 1 0
ln(λ) λt y1 0 0

− ln(λ) λ−t x2 0 1
− ln(λ) λ−t y2 0 0

.
Since y1 > 0, the Jacobian matrix has rank 3. Therefore, fz in an immersion.

If zk = xy+ iyk , and z′ = (x ′1, y′1, x ′2, y′2) ∈H×H, define t such that λt
= y′1/y1,

and (x ′, y′) such that (
x ′

y′

)
=

x ′1−
y′1x1
y1

x ′2−
y′2 y2

y′1

.
These values for (t, x ′, y′) define a mapping F, from H×H to R3 ∼= Sol, such

that F ◦ fz = Id. Note that F is a left continuous inverse for fz , and hence, fz is an
homeomorphism.

(iii) The given formula for the product metric implies that X is unitary. By the form
of the Jacobian matrix, the tangent space to the leaf passing through z = (z1, z2) ∈

H×H is spanned by the vectors, e1, e3, λ
t x1e1+ λ

t y1e2− λ
−t x2e3− λ

−t y2e4.
A straightforward computation shows that X = λt y1e2+ λ

−t y2e4 is orthogonal
to the spanning tangent vectors. Finally, the result is obtained by taking t = 0. �
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By this theorem, if we vary z, we obtain a foliation fz(Sol) of H×H by copies
of Sol. We proceed to show that this foliation is globally rectifiable, in the sense
that it induces a diffeomorphism to R3

× R, such that the hyperplanes R3
× {t}

correspond to the leaves, and are diffeomorphic to Sol. For details on the theory of
foliations, the reader can consult [Candel and Conlon 2000].

4. Geometry of the leaves

In the previous section, we described how Sol induces a foliation in the space H×H

and gave an explicit formula for a smooth vector field X, normal to any leaf of the
foliation in a product metric, which is homothetic to the canonical metric in each
hyperbolic factor. In this section, we study the dynamics of the integral curves for
this normal field. Let

ψ(t)= (z1(t), z2(t))

be an integral curve of the field, where zk = xk+iyk is as before. From the definition
of X, it follows that the integral curves satisfy the set of equations

ẋk = 0, ẏk = yk .

These equations can be readily solved to get constant solutions in the real part
of each copy of the hyperbolic, and exponentials in the imaginary parts. The flow
of the normal field defines a one-parameter family of diffeomorphisms in H×H,
denoted by ψt(z1, z2), where

ψt(z1, z2)= (x1, et y1, x2, et y2), t ∈ R,

and it satisfies the following:

Proposition 4.1. (i) The flow ψt rules H×H by geodesics.

(ii) The action of fz is equivariant with the action induced by the flow, that is,

ψs ◦ fz = fψs(z).

Proof. (i) Both curves

(x1, et y1) and (x2, et y2)

correspond to a parametrization of a vertical geodesic in H with respect to the
hyperbolic metric. Since the metric we consider is homothetic to the standard
hyperbolic metric, with a constant factor, these parametrizations correspond to
geodesics with respect to this metric as well. Since the metric in H×H is a product,
the result follows (see [Gallot et al. 2004]).

(ii) ψs ◦ fz(t, x, y)= (λt x1+ x, λt es y1, λ
−t x2+ y, λ−t es y2),

which is the same expression obtained calculating fψs(z). �
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Observe that if we reparametrize the presentation of Sol we have used so far by
the change of coordinates

(t ′, x ′, y′) 7→
( t ′

ln(λ)
, x ′, y′

)
,

we recover the original description of the group as given in [Scott 1983], and that
under this reparametrization, we can analyze the geometry of the foliation in simpler
terms, i.e., we can and will assume that

ψs ◦ fz(t, x, y)=
(
et x1+ x, et+s y1, e−t x2+ y, e−t+s y2

)
in order to analyze the metric properties of the foliation.

Proposition 4.2. Let z = (iy1, iy2). Consider the leaf fz : Sol→ H×H, then the
pullback metric is

dt2
+

e−2t

2y2
1

dx2
+

e2t

2y2
2

dy2.

In particular, if y1 = y2 = 1/
√

2, fz is an isometric embedding of Sol into H×H.

Proof. We have
fz(t, x, y)= (x, et y1, y, e−t y2).

Therefore, the Jacobian matrix is
0 1 0

et y1 0 0
0 0 1

−e−t y2 0 0

 .
Applying the product metric to the basis vectors et y1e2− e−t y2e4, e1, e3 we get
the result. �

In the sequel, unless otherwise established, z0 will denote the special point
1/
√

2 (i, i).

Corollary 4.3. The leaves fψs(z0) : Sol→ H×H can be identified with Sol, up to
a homothety in the direction spanned by the x, y coordinates.

Proof. We have

ψs ◦ fz0(t, x, y)=
(

x, 1
√

2
et+s, y, 1

√
2

e−t+s
)
.

If we pullback the induced metric to Sol, we get

dt2
+ e−2(t+s)dx2

+ e2(t−s)dy2.

Define Fs : Sol→ Sol by Fs(t, x, y) = (t, es x, es y). Another pullback with Fs

turns the induced metric into the standard metric in Sol. �
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Proposition 4.4. The foliation is globally rectifiable: there is a diffeomorphism
9 :R3

×R→H×H, such that each hyperplane R3
×{c} is diffeomorphic to a leaf.

Proof. Sol is diffeomorphic to R3 in a natural way. Any γ ∈ Sol is uniquely
determined by a triplet (t, x, y). Define 9 : R3

×R→ H×H by 9(t, x, y, s) =
ψs ◦ fz0(γ ). The function9 is injective because the action is free. Given z′ ∈H×H,
there is a leaf going through it, and since ψs(z0) traverses all the leaves, there exists
a number s, such that ψ−s(z′) is in the leaf passing through z0. Let γ ∈Sol be such
that ψ−s(z′)= fz0(γ ). Therefore,

z′ = ψs ◦ fz0(γ ),

which implies that 9 is also surjective. Finally, the Jacobian of 9 is

[d9] =


0 1 0 0

et+s/
√

2 0 0 et+s/
√

2
0 0 1 0

−e−t+s/
√

2 0 0 e−t+s/
√

2

,
which is nondegenerated. By the inverse function theorem, 9 is a diffeomorphism.
The last claim follows from the fact that ψs maps leaves onto leaves. �

Corollary 4.5. The previous diffeomorphism can be modified, such that it not only
maps the foliation to a Cartesian product globally, but also maps each leaf in the
foliation isometrically to Sol.

Proof. The pullback of the metric in H×H with the previous diffeomorphism is

dt2
+ e−2(t+s)dx2

+ e2(t−s)dy2
+ ds2,

which is analogous to the expression in Corollary 4.3. Let

9̃(t, x, y, s)=9(t, es x, es y, s).

9̃ is a leaf-preserving diffeomorphism such that, for fixed s, it isometrically maps
Sol into the leaf R3

×{s}. �

5. Extrinsic geometry

Proposition 5.1. Integral curves of the normal field X are geodesics.

Proof. We previously found that the integral curves of the field are given by
γ (t)= (x1, et y1, x2, et y2). Let φ(t) be a smooth curve in H with the homothetic
metric. Then,

‖φ̇(t)‖2 =
ẋ2
+ ẏ2

2y2 ,
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which is half the standard hyperbolic square length [Gallot et al. 2004]. Therefore,
a curve minimizes hyperbolic arc length if and only if it minimizes the homothetic
metric arc length, i.e., geodesics in both cases are the same. It is a well known fact
that the vertical curves (xk, et yk) are geodesics in hyperbolic space. Finally, since
γ can be projected in two geodesics and the metric is a product, γ is a geodesic in
H×H (see 3.15 in [Gallot et al. 2004]). �

Proposition 5.2. There are isometries in H×H acting transitively and sending
leaves onto leaves.

Proof. We work in the R3
×R picture with the 9̃ isometry. By straightforward

calculations we have that the mappings

(t, x, y, s) 7→ (t + t ′, et ′+s′x + x ′, e−t ′+s′ y+ y′, s+ s ′)

are isometries. The first claim comes from the fact that given a pair of points
(tk, xk, yk, sk), there exists exactly one such isometry sending one onto another. That
this isometry sends leaves onto leaves is obvious, since under this diffeomorphism,
they correspond to hypersurfaces where s is constant. �

We aim to calculate the distance between any pair of leaves. Recall that in any
metric space, the distance from a point p to a set S 6=∅ is given by the expression

d(p, S)= inf{d(p, x) : x ∈ S}.

See [Munkres 2000] for details.

Proposition 5.3. The separation between two leaves in H×H is constant. Moreover,
if leaves are parametrized with the normal field affine parameter, then leaves’
separation is given by the difference |s− s ′| between the parameters corresponding
to any leaf.

Proof. A point in a leaf can be parametrized as(
x,

es+t
√

2
, y,

es−t
√

2

)
,

where x, y, t are arbitrary, and s is the parameter corresponding to the leaf. Given
a second point in another leaf, say,(

x ′, es′+t ′/
√

2, y′, es′−t ′/
√

2
)
,

and since the metric is a product, we can find a geodesic minimizing the arc length in
H×H, such that, in each factor H, the distance is also minimized [Gallot et al. 2004].
On the other hand, the metric we use in each factor of H×H is half the hyperbolic
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distance, for which a well-known formula gives us the distance [Anderson 2005].
Let ρk denote the distance in each factor with our metric, then,

cosh
(√

2ρ1
)
= 1+

2(x − x ′)2+ (es+t
− es′+t ′)2

2es+t es′+t ′ ,

cosh
(√

2ρ2
)
= 1+

2(y− y′)2+ (es−t
− es′−t ′)2

2es−t es′−t ′ ,

where the
√

2 factor within the hyperbolic cosine is due to the factor relating the
standard hyperbolic metric with ours. The previous expression shows that, in order
to get the minimum distance, x ′ must be equal to x and y′ to y. Simplifying the
previous expressions for such values of x ′ and y′, we find

cosh
(√

2ρ1
)
= cosh(s− s ′+ t − t ′),

cosh
(√

2ρ2
)
= cosh(s− s ′+ t ′− t).

Therefore,

ρ1 =
|s− s ′+ t − t ′|

√
2

, ρ2 =
|s− s ′+ t ′− t |

√
2

,

and the distance in the product metric is given by
√
ρ2

1 + ρ
2
2 . In order for this

distance to be a minimum, a short analysis shows that one must take t ′ = t , and the
statement follows. �

Proposition 5.4. The principal curvatures of each leaf are−1 with multiplicity two,
and 0. The principal directions are determined by the integral curves of the vectors
∂x , ∂y , ∂t respectively.

Proof. Recall the principal curvatures and directions for an orientable submanifold
M are determined by the shape operator, S, which, in codimension 1, can be
regarded as the mapping T M→ T M given by vx 7→ ∇vx X, where X is the normal
field to the manifold, compatible with orientation (see [Spivak 1979, Chapter 1]).
Here, the principal directions and curvatures are the shape operator eigenvectors,
and eigenvalues. Consider a leaf embedded in H×H,(

x, e−t−s
√

2
, y, et−s
√

2

)
,

with normal field X = x2∂2 + x4∂4, where x2 = e−t−s/
√

2 and x4 = et−s/
√

2.
A calculation shows that

∇X =−dx1⊗ ∂1− dx3⊗ ∂3,

i.e., the shape operator is diagonal, once expressed in the base for the tangent space
to the leaf, spanned by the coordinate vectors ∂1, ∂3, and the vector −x2∂2+ x4∂4,
with eigenvalues {−1,−1, 0} counted with multiplicity. �
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5A. Proof of Theorem 1.1. Let G be a complex Kleinian group with a maximum
of four lines in general position contained in its limit set, then G acts properly and
discontinuously in four disjoint copies of H×H. Without loss of generality we can
assume that H×H is G-invariant. By Proposition 3.1, if

ψ : Sol×R→ H×H

is a G-equivariant diffeomorphism, then (H×H)/G is diffeomorphic to (Sol/G)×R.
We notice the topological type is perfectly determined by the group G. In fact,
the group G is the fundamental group of the manifold (H×H)/G. We remember
the Kulkarni discontinuity region is equal to four disjoint copies of H×H, hence
�/G is equal to four disjoint copies of (H×H)/G. We remark that if G represents
a lattice of the Lie group Sol, then Sol/G is a compact 3 manifold. This last
statement implies in some sense that Sol/G is the compact heart of (H×H)/G.

6. The Heisenberg group

Given a symplectic vector space, V, with symplectic form ω, recall the Heisenberg
group, H, is the space V ×R, with the product operation given by

(v, t) ∗ (w, s)= (v+w, t + s+ω(v,w)).

An account of this group in the context of complex hyperbolic geometry can be
found in [Cano et al. 2013]. If V is of dimension 2, and {∂p, ∂q} is a symplectic
base for V, that is, ω(∂p, ∂q)= 1, a well-known fact from Lie group theory is that
there is a faithful representation H→ SL(3,R) [Binz and Pods 2008], given by

(p∂p+q∂q t)→

1 p t + 1
2 pq

0 1 q
0 0 1

.
We will use this representation and identify H with a subgroup of SL(3,R). There-
fore, we will identify H with R3, with group structure,

(a, b, c) ∗ (a′, b′, c′)= (a+ a′, b+ b′, c+ c′+ ab′),

which corresponds to the matrix product1 a c
0 1 b
0 0 1

1 a′ c′

0 1 b′

0 0 1

 .
With these identifications, there is a natural left action H	 C×H:1 a c

0 1 b
0 0 1

 z
w

1

=
z+ aw+ c

w+ b
1

,
which we will denote by (a, b, c) ∗ (z, w).
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Proposition 6.1. The action of H in C×H is free.

Proof. If (a, b, c) ∗ (z, w)= (z, w), then

z+ aw+ c = z,

w+ b = w.

From this linear system, one deduces that a = b = c = 0. �

Proposition 6.2. For fixed (z, w) ∈ C×H, the orbit h ∈H 7→ h ∗ (z, w) defines a
differentiable embedding H ↪→ C×H.

Proof. The map is injective, since the action is free. Let w = p+ qi , the Jacobian
matrix of the mapping in (a, b, c) ∈H is given by

p 0 1
q 0 0
0 1 0
0 0 0

.
Since the Jacobian has rank 3, the action defines a local diffeomorphism, and hence
an embedding. �

Therefore, the action of H defines a foliation of C×H, in analogy with the
foliation of H×H generated by Sol.

Proposition 6.3. Consider C×H as a subset of R4, but with the product metric
of the euclidean metric in C and the hyperbolic metric in H. If e1, . . . , e4 denote
the canonical coordinates in R4, and (p, q) denotes the coordinates in H, then the
vector field X = qe4 is unitary and orthogonal to any leaf of the foliation generated
by H.

Proof. From Theorem 2.4, the vector fields pe1+ qe2, e3, e1 generate the tangent
space to the orbit of (z, w)∈C×H, where w= p+qi . Since the metric is a product,
X is orthogonal to pe1+ qe2 and e1. Moreover, the metric in H is conformal to
the euclidean, and therefore X is orthogonal to e3. Finally, qe4 is unitary in the
hyperbolic metric. �

Corollary 6.4. Let (z, w)∈C×H, z= x+ yi and w= p+qi . The integral curves
of X are geodesics.

Proof. The integral curves of X are constant in the first factor, and vertical straight
lines in the hyperbolic factor. �

Although in this case, the action induced by the normal field X is not equivariant,
we can describe in a precise way the quotients (C×H)/0, where 0 is a discrete
subgroup of H. Moreover, if 0 acts properly discontinuously in C×H, it has to act
in the same way in Heisenberg, because the slices H×{qi} are preserved. This is a
general property of Lie groups that we prove in the following lemma.
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Lemma 6.5. Let X and Y be two locally compact spaces. If 0 	 X × Y, and the
action of g ∈ 0 can be decomposed as g · (x, y) = (g · x, y) then 0 acts properly
discontinuously in X if and only if it acts properly discontinuously in X × Y.

Proof. Let K ⊂ X be a compact set. Fix y ∈ Y. With the product topology, K ×{y}
is a compact set in X × Y. One can easily verify the equality

{g ∈ 0 : g · K ∩ K 6=∅} =
{
g ∈ 0 : g× 1 · K ×{y} ∩ K ×{y} 6=∅

}
.

If 0 acts properly discontinuously in X × Y, the previous equality implies that it
acts properly discontinuously in X. On the other hand, if K ⊂ X × Y is compact,
the product topology together with the local compacity implies that we can find
an open set U × V, with U ∈ X and V ∈ Y, such that U is compact in X, V is
compact in Y, and K ⊂U × V. We have the contention

{g ∈ 0 : gK ∩ K 6=∅} ⊂
{
g ∈ 0 : g · l(U × V )∩U × V 6=∅

}
Take g∈0 and (x, y)∈U×V , such that g·(x, y)∈U×V . Since g·(x, y)= (g·x, y),
it follows that g · x ∈U . Therefore, the second set in the previous contention is at
the same time contained in

{g ∈ 0 : g ·U ∩U 6=∅}.

If 0 acts properly discontinuously in X, this set has to be finite, and the same must
be true for the set of intersections in X ×Y, that is, 0 acts properly discontinuously
in X. �

Proposition 6.6. C×H is diffeomorphic to H×R, where, up to diffeomorphism,
H acts on the first factor only.

Proof. Let γ = (a, b, c) ∈H and take (0, qi) ∈ C×H. We can describe the orbits
γ · (0, qi) explicitly: 1 a c

0 1 b
0 0 1

 ·
 0

qi
1

=
aqi + c

qi + b
1

.
Therefore, there is exactly one (0, qi) in each orbit of the group action. Define

9 :H×R→ C×H as
9(γ, q)= γ · (0, qi).

It can be shown that 9 is bijective. It is a diffeomorphism, since an explicit
computation shows that d9 maps the canonical vectors T(γ,q)H × R ∼= R4

→

Tγ ·(0,qi)C×H∼= R4:

{∂1, . . . , ∂4} 7→ {q∂2, ∂3, ∂1, a∂2+ ∂4}.

The last assertion follows since the action is associative, i.e., γ ′ · (γ · (0, qi))=
(γ ′ ·γ ) ·(0, qi), and therefore, preserves the imaginary part on the second factor. �
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6A. Proof of Theorem 1.4. The proof is analogous to that of Theorem 1.1, the only
difference is that we need the technical Lemma 6.5. A consequence of Theorem 1.4
is the following corollary:

Corollary 6.7. If 0 <H is a discrete subgroup acting properly and discontinuously
in C×H, up to diffeomorphism, (C×H)/0 ∼= (H/0)×R, and the quotient H/0
is a manifold whose fundamental group is π1(H/0)∼= 0.

Example 6.8. Let HZ <H be the discrete subgroup of Heisenberg matrices with
integer coefficients. It can be shown that the unit cube KC = [0, 1]3 ⊂ H is a
fundamental region for the action of HZ [Lukyanenko 2014]. The quotient HZ \H
is an example of a nilmanifold, whose fundamental group is

HZ
∼= 〈m, n, k : [m, n] = k4

〉;

see [Lukyanenko 2014]. In view of the previous results, HZ acts properly and
discontinuously in C×H, and the quotient (C×H)/HZ is a product of a nilmanifold
times R, whose fundamental group has the previous presentation.
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