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SIMULTANEOUS CONSTRUCTION OF HYPERBOLIC
ISOMETRIES

MATT CLAY AND CAGLAR UYANIK

Given isometric actions by a group G on finitely many δ-hyperbolic metric
spaces, we provide a sufficient condition that guarantees the existence of a sin-
gle element in G that is hyperbolic for each action. As an application we prove
a conjecture of Handel and Mosher regarding relatively fully irreducible sub-
groups and elements in the outer automorphism group of a free group.

1. Introduction

A δ-hyperbolic space is a geodesic metric space where geodesic triangles are
δ-slim: the δ-neighborhood of any two sides of a geodesic triangle contains the
third side. Such spaces were introduced by Gromov [1987] as a coarse notion of
negative curvature for geodesic metric spaces and since then have evolved into an
indispensable tool in geometric group theory.

There is a classification of isometries of δ-hyperbolic metric spaces analogous
to the classification of isometries of hyperbolic space Hn into elliptic, hyperbolic
and parabolic. Of these, hyperbolic isometries have the best dynamical properties
and are often the most desired. For example, typically they can be used to produce
free subgroups in a group acting on a δ-hyperbolic space [Gromov 1987, 5.3B];
see also [Bridson and Haefliger 1999, III.0.3.20]. Another application is to show
that a certain element does not have fixed points in its action on some set. Indeed,
if the set naturally sits inside a δ-hyperbolic metric space and the given element
acts as a hyperbolic isometry then it has no fixed points (in a strong sense). This
strategy has been successfully employed for the curve complex of a surface and for
the free factor complex of a free group by several authors [Clay et al. 2012; Clay
and Pettet 2012; Dowdall and Taylor 2018; Fujiwara 2015; Gültepe 2017; Horbez
2016; Mangahas 2013; Taylor 2014].
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We consider the situation of a group acting on finitely many δ-hyperbolic spaces
and produce a sufficient condition that guarantees the existence of a single element
in the group that is a hyperbolic isometry for each of the spaces. Of course, a
necessary condition is that for each of the spaces there is some element of the group
that is a hyperbolic isometry. Thus we are concerned with when we may reverse
the quantifiers: ∀∃ ∃∀. Our main result is the following theorem.

Theorem 5.1. Suppose that {X i }i=1,...,n is a collection of δ-hyperbolic spaces, G
is a group and for each i = 1, . . . , n there is a homomorphism ρi : G→ Isom(X i )

such that

(1) there is an element fi ∈ G such that ρi ( fi ) is hyperbolic; and

(2) for each g ∈ G, either ρi (g) has a periodic orbit or is hyperbolic.

Then there is an f ∈ G such that ρi ( f ) is hyperbolic for all i = 1, . . . , n.

Remark 1.1. Since the completion of this paper we have been alerted to the fact that
Theorem 5.1 should follow from random walk techniques developed in [Björklund
and Hartnick 2011; Maher and Tiozzo 2016]. Here we provide an elementary and
constructive proof.

Essentially, we assume that there are no parabolic isometries and that elliptic
isometries are relatively tame.

As an application of our main theorem we prove a conjecture of Handel and
Mosher which involves exactly the same type of quantifier reversing: ∀∃ ∃∀.
Consider a finitely generated subgroup H< IAN (Z/3) < Out(FN ) and a maximal
H-invariant filtration of FN , the free group of rank N, by free factor systems,

∅= F0 @ F1 @ · · ·@ Fm = {[FN ]}

(see Section 6). Handel and Mosher [2013a, Theorem D] prove that for each multi-
edge extension Fi−1 @ Fi there exists some ϕi ∈H that is irreducible with respect
to Fi−1 @ Fi . They conjecture that there exists a single ϕ ∈H that is irreducible
with respect to each multi-edge extension Fi−1 @ Fi . We show that this is indeed
the case.

Theorem 6.6. For each finitely generated subgroup H < IAN (Z/3) < Out(FN )

and each maximal H-invariant filtration by free factor systems,

∅= F0 @ F1 @ · · ·@ Fm = {[FN ]},

there is an element ϕ ∈H such that for each i = 1, . . . ,m such that Fi−1 @ Fi is a
multi-edge extension, ϕ is irreducible with respect to Fi−1 @ Fi .

Our paper is organized as follows. Section 2 contains background on δ-hyperbolic
spaces and their isometries. In Section 3 we generalize a construction from [Clay
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and Pettet 2012] that is useful in constructing hyperbolic isometries. This result
is Theorem 3.1. We examine certain cases that will arise in the proof of the main
theorem to see how to apply Theorem 3.1 in Section 4. The proof of Theorem 5.1
constitutes Section 5. The application to Out(FN ) appears in Section 6.

2. Background on δ-hyperbolic spaces

In this section we recall basic notions and facts about δ-hyperbolic spaces, their
isometries and their boundaries. The reader familiar with these topics can safely
skip this section, with the exception of Definition 2.8. References for this section
are [Alonso et al. 1991; Bridson and Haefliger 1999; Kapovich and Benakli 2002].

2A. δ-hyperbolic spaces. We recall the definition of a δ-hyperbolic space given in
the Introduction.

Definition 2.1. Let (X, d) be a geodesic metric space. A geodesic triangle with
sides α, β and γ is δ-slim if for each x ∈ α, there is some y ∈ β ∪ γ such that
d(x, y) ≤ δ. The space X is said to be δ-hyperbolic if every geodesic triangle is
δ-slim.

There are several equivalent definitions that we will use in the sequel. The first
of these is insize. Let 1 be the geodesic triangle with vertices x , y and z and sides
α from y to z, β from z to x and γ from x to y. There exist unique points α̂ ∈ α,
β̂ ∈ β and γ̂ ∈ γ , called the internal points of 1, such that

d(x, β̂)= d(x, γ̂ ), d(y, γ̂ )= d(y, α̂) and d(z, α̂)= d(z, β̂).

The insize of 1 is the diameter of the set {α̂, β̂, γ̂ }.
Another notion makes use of the so-called Gromov product:

(2-1) (x . y)w = 1
2(d(x, w)+ d(w, y)− d(x, y)).

The Gromov product is said to be δ-hyperbolic (with respect to w ∈ X ) if for all
x, y, z ∈ X ,

(x . z)w ≥min{(x . y)w, (y . z)w}− δ.

Proposition 2.2 [Alonso et al. 1991, Proposition 2.1; Bridson and Haefliger 1999,
III.H.1.17 and III.H.1.22]. The following are equivalent for a geodesic metric
space X :

(1) There is a δ1 ≥ 0 such that every geodesic triangle in X is δ1-slim, i.e., X is
δ1-hyperbolic.

(2) There is a δ2 ≥ 0 such that every geodesic triangle in X has insize at most δ2.

(3) There is a δ3 ≥ 0 such that for some (equivalently any) w ∈ X, the Gromov
product is δ3-hyperbolic.
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Henceforth, when we say X is a δ-hyperbolic space we assume that δ is large
enough to satisfy each of the above conditions.

2B. Boundaries. There is a useful notion of a boundary for a δ-hyperbolic space
that plays the role of the “sphere at infinity” for Hn. This space is defined using
equivalence classes of certain sequences of points in X and the Gromov product.
Fix a basepoint w ∈ X.

Definition 2.3. We say a sequence (xn)⊆ X converges to infinity if (xi . x j )w→∞

as i, j→∞. Two such sequences (xn), (yn) are equivalent if (xi . y j )w→∞ as
i, j →∞. The boundary of X , denoted ∂X, is the set of equivalence classes of
sequences (xn)⊆ X that converge to infinity.

One can show that the notion of “converges to infinity” and the subsequent
equivalence relation do not depend on the choice of basepoint w ∈ X [Kapovich and
Benakli 2002]. The definition of the Gromov product in (2-1) extends to boundary
points x̂, ŷ ∈ ∂X by

(x̂ . ŷ)w = inf{lim inf
n

(xn . yn)w},

where the infimum is over sequences (xn) ∈ x̂ , (yn) ∈ ŷ. If y ∈ X then we set

(x̂ . y)w = inf{lim inf
n

(xn . y)w},

where the infimum is over sequences (xn) ∈ x̂ . For x ∈ X, the Gromov product
(x . ŷ)w is defined analogously. Let X = X ∪ ∂X.

We will make use of the following properties of the Gromov product on X .

Proposition 2.4 [Alonso et al. 1991, Lemma 4.6; Bridson and Haefliger 1999,
III.H.3.17]. Let X be a δ-hyperbolic space.

(1) If x, y ∈ X then (x . y)w =∞⇐⇒ x = y ∈ ∂X.

(2) If x̂ ∈ ∂X and (xn)⊆ X then (x̂ . xn)w→∞ as n→∞⇐⇒ (xn) ∈ x̂ .

(3) If x̂, ŷ ∈ ∂X and (xn) ∈ x̂ , (yn) ∈ ŷ then

(x̂ . ŷ)w ≤ lim inf
n

(xn . yn)w ≤ (x̂ . ŷ)w − 2δ.

(4) If x, y, z ∈ X then
(x . z)w ≥min{(x . y)w, (y . z)w}− δ.

Proposition 2.5 [Alonso et al. 1991, Proposition 4.8]. The following collection of
subsets of X forms a basis for a topology:

(1) B(x, r)= {y ∈ X | d(x, y) < r} for each x ∈ X and r > 0.

(2) N (x̂, k)= {y ∈ X | (x̂ . y)w > k} for each x̂ ∈ ∂X and k > 0.

2C. Isometries. As mentioned in the Introduction, there is a classification of
isometries of a δ-hyperbolic space X into elliptic, parabolic and hyperbolic; see
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[Gromov 1987, 8.1.B]. We will not make use of parabolic isometries and so do not
give the definition here.

Definition 2.6. An isometry f ∈ Isom(X) is elliptic if for any x ∈ X, the set
{ f nx | n ∈ Z} has bounded diameter.

An isometry f ∈ Isom(X) is hyperbolic if for any x ∈ X there is a t > 0 such that

t |m− n| ≤ d( f m x, f nx)

for all m, n ∈ Z. In this case, one can show the sequence ( f nx)⊆ X converges to
infinity and the equivalence class it defines in ∂X is independent of x ∈ X. This
point in ∂X is called the attracting fixed point of f . The repelling fixed point of f
is the attracting fixed point of f −1 and is represented by the sequence ( f −nx)⊆ X.

The action of a hyperbolic isometry f ∈ Isom(X) on X has “North-South
dynamics.”

Proposition 2.7 [Gromov 1987, 8.1.G]. Suppose that f ∈ Isom(X) is a hyperbolic
isometry and that U+,U− ⊂ X are disjoint neighborhoods of the attracting and
repelling fixed points of f respectively. There exists an N ≥ 1 such that for n ≥ N :

f n(X −U−)⊆U+ and f −n(X −U+)⊆U−.

We will make use of the following definition.

Definition 2.8. Suppose X is a δ-hyperbolic space and f, g ∈ Isom(X) are hyper-
bolic isometries. Let A+, A− be the attracting and repelling fixed points of f in
∂X and let B+ and B− be the attracting and repelling fixed points of g in ∂X. We
say f and g are independent if

{A+, A−} ∩ {B+, B−} =∅.

Hyperbolic isometries that are not independent are said to be dependent.

3. A recipe for hyperbolic isometries

In this section we prove the principal tool used in the proof of the main result of this
article, producing a single element in the given group that is hyperbolic for each
action. The idea is to start with elements f and g that are hyperbolic for different
actions and then combine them into a single element f agb that is hyperbolic for both
actions. A theorem of Clay and Pettet shows that if g does not send the attracting
fixed point of f to the repelling fixed point, then f ag is hyperbolic in the first
action for large enough a. We can reverse the roles to get that f gb is hyperbolic in
the second action for large enough b. In order to simultaneously work with powers
for both f and g, we need a uniform version of this result. That is the content of
the next theorem, which generalizes [Clay and Pettet 2012, Theorem 4.1].
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Theorem 3.1. Suppose X is a δ-hyperbolic space and f ∈ Isom(X) is a hyperbolic
isometry with attracting and repelling fixed points A+ and A− respectively. Fix
disjoint neighborhoods U+ and U− in X for A+ and A− respectively. Then there is
an M ≥ 1 such that if m ≥ M and g ∈ Isom(X) then f m g is a hyperbolic isometry
whenever gU+ ∩U− =∅.

The proof follows along the lines of [Clay and Pettet 2012, Theorem 4.1]. In the
following two lemmas we assume the hypotheses of Theorem 3.1. The first lemma
is obvious in the hypothesis of [Clay and Pettet 2012, Theorem 4.1] but requires a
proof in this setting.

Lemma 3.2. Given a point x ∈U+ ∩ X , there are constants t > 0 and C ≥ 0 such
that if g ∈ Isom(X) is such that gU+ ∩U− = ∅ then d(x, f m gx) ≥ mt − C for
all m ≥ 0.

Proof. Let A = { f nx | n ∈ Z} and for z ∈ X let

dz = inf{d(x ′, z) | x ′ ∈ A}.

As f is a hyperbolic isometry, there is a constant τ ≥ 1 such that
1
τ
|m− n| ≤ d( f m x, f n x)≤ τ |m− n|.

This shows that for any z ∈ X the set πz = {x ′ ∈ A | d(x ′, z)= dz} is nonempty and
finite.

Claim 1. There is a constant D ≥ 0 such that for any z ∈ X and xz ∈ πz ,

d(x, z)≥ d(x, xz)+ d(xz, z)− D.

Proof of Claim 1. Fix a point xz ∈ πz and geodesics α from xz to x , β from z to
xz and γ from z to x . Let 1 be the geodesic triangle formed with these segments
and α̂ ∈ α, β̂ ∈ β and γ̂ ∈ γ be the internal points of 1. These points satisfy the
equalities

d(z, β̂)= d(z, γ̂ )= a,

d(x, γ̂ )= d(x, α̂)= b,

d(xz, α̂)=d(xz, β̂)= c.

As the insize of geodesic triangles is bounded by δ in a δ-hyperbolic space, we have
that d(α̂, β̂), d(β̂, γ̂ ), d(γ̂ , α̂) ≤ δ. By the Morse lemma [Bridson and Haefliger
1999, III.H.1.7], there is a constant R, only depending on τ and δ, and a point y ∈ A
such that d(α̂, y)≤ R. Thus we have

d(z, y)≤ d(z, β̂)+ d(β̂, α̂)+ d(α̂, y)≤ a+ δ+ R.

As xz ∈ πz , we have
a+ c = d(xz, z)≤ d(z, y)≤ a+ δ+ R,
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and so c ≤ δ+ R. Letting D = 2δ+ 2R we compute

d(x, z)= a+ b = (b+ c)+ (a+ c)− 2c

≥ d(x, xz)+ d(xz, z)− D. �

Claim 2. There is a constant M0 ∈ Z such that if z /∈ U− and f m x ∈ πz then
m ≥ M0.

Proof of Claim 2. Let xz = f m x ∈ πz and without loss of generality assume
that m ≤ 0. Using the constant D from Claim 1 we have:

(xz . z)x = 1
2(d(x, xz)+ d(x, z)− d(xz, z))

≥ d(x, xz)− D/2.

Suppose that i ≤ m and let α be a geodesic from f i x to x . The Morse lemma
implies that there is a y ∈ α such that d(xz, y)≤ R. Therefore,

d(x, xz)+ d(xz, f i x)≤ d(x, y)+ d(y, f i x)+ 2R

= d(x, f i x)+ 2R.

Hence for such i we have:

(xz . f i x)x = 1
2(d(x, xz)+ d(x, f i x)− d(xz, f i x))

≥ d(x, xz)− R.

This shows that (xz . A−)x ≥ d(x, xz)− R− 2δ and so for K =max{D/2, R+ 2δ}
we have

(z . A−)x ≥min{(xz . z)x , (xz . A−)x}− δ ≥ d(x, xz)− K − δ.

As z /∈U−, the Gromov product (z . A−)x is bounded independently of z and hence
d(x, xz) is also bounded. �

Now we will finish the proof of the lemma. Fix a point xg ∈ πgx . Clearly we
have f m xg ∈ π f m gx for m ≥ 0. As gx /∈U−, by Claim 2 we have xg = f M0+nx for
some n ≥ 0 and therefore,

d(x, f m xg)= d(x, f M0+n+m x)≥ d(x, f m+nx)− d(x, f M0 x)

≥
1
τ

m− τ |M0|.

As f m xg ∈ π f m gx , Claim 1 implies

d(x, f m gx)≥ d(x, f m xg)+ d( f m xg, f m gx)− D

≥
1
τ

m− (τ |M0| + D).

Since the constants τ , D and M0 only depend on f , x and the open neighborhoods
U+ and U−, the lemma is proven. �
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The next lemma replaces Lemma 4.3 in [Clay and Pettet 2012] and its proof is a
small modification of the proof there.

Lemma 3.3. Fix x ∈ X ∩U+ and for m ≥ 0 let αm be a geodesic connecting x
to f m gx. Then there is an ε≥ 0 and M1≥ 0 such that for m≥M1 the concatenation
of the geodesics αm · f m gαm is a (1, ε)-quasigeodesic.

Proof. Let dm = d(x, f m gx).
As gU+ ∩ U− = ∅ we have U+ ∩ g−1U− = ∅ and so the Gromov product

(g−1 f −m x . f m x)x is bounded independent of g and m ≥M1 for some constant M1.
Indeed, by Proposition 2.5 there is a k≥0 such that N (A+, k)⊆U+ and M1≥0 such
that f −m x ∈U− and f m x ∈N (A+, k+2δ) for m≥M1. Thus, (A+ . g−1 f −m x)x ≤k
and so (g−1 f −m x . f m x)x ≤ k+ δ as

min{(A+ . f m x)x , (g−1 f −m x . f m x)x}− δ ≤ (A+ . g−1 f −m x)x ≤ k,

for m ≥ M1.
By making M1 larger, we can assume that for m ≥ M1 we have

f m(X −U−)⊆ N (A+, k+ 4δ),

by Proposition 2.7. Since gx, x /∈U−, we have f m gx, f m x ∈ N (A+, k+ 4δ) and
so ( f m xg . f m x)x ≥ k+ 3δ. Hence (g−1 f −m x . f m gx)x ≤ k+ 2δ as

min{(g−1 f −m x . f m gx)x , ( f m gx . f m x)x} − δ ≤ (g−1 f −m x . f m x)x ≤ k + δ.

Therefore for C = k+ 2δ and m ≥ M1 we have:

d(x, f m g f m gx)= d(g−1 f −m x, g f m x)

≥ d(g−1 f −m x, x)+ d(x, f m gx)− 2C

= 2dm − 2C.

The proof now proceeds exactly as that of Lemma 4.3 in [Clay and Pettet 2012]. �

Proof of Theorem 3.1. Using Lemmas 3.2 and 3.3, the proof of Theorem 3.1
proceeds exactly like that of Theorem 4.1 in [Clay and Pettet 2012]. We repeat the
argument here.

Fix x ∈ U+ ∩ X, and let t > 0 and C ≥ 0 be the constants from Lemma 3.2,
and ε > 0 and M1 ≥ 0 be the constants from Lemma 3.3. For m ≥ M1 we set
Lm = d(x, f m gx)≥mt−C . As in Lemma 3.3, let αm : [0, Lm]→ X be a geodesic
connecting x to f m gx , and let βm = αm · f m gαm . Then define a path γ :R→ X by:

γ = · · · ( f m g)−1βm

⋃
αm

βm

⋃
f m gαm

f m gβm

⋃
( f m g)2αm

( f m g)2βm · · ·

See Figure 1.
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( f m g)−1βm

βm

( f m g)−1x f m gx ( f m g)3x ( f m g)5x

x ( f m g)2x ( f m g)4x

Figure 1. The path γ in the proof of Theorem 3.1.

By Lemma 3.3, γ is an Lm-local (1, ε)-quasigeodesic and hence for m large
enough, γ is a (λ′, ε′)-quasigeodesic from some λ′ ≥ 1 and ε′ ≥ 0; see [Bridson and
Haefliger 1999, III.H.1.7 and III.H.1.13] or [Clay and Pettet 2012, Theorem 4.4].

Let N be such that t = 1
λ′

Lm N − ε′ > 0. Then for any k 6= ` ∈ Z we have

d(( f m g)Nk x, ( f m g)N`x)≥ 1
λ′

Lm N |k− `| − ε′ ≥ t |k− `|.

Thus ( f m g)N is hyperbolic and therefore so is f m g. �

We conclude this section with an application of Theorem 3.1 to dependent
hyperbolic isometries; [Clay and Pettet 2012, Theorem 4.1] would suffice as well.

Proposition 3.4. Suppose X is a δ-hyperbolic space and f, g ∈ Isom(X) are de-
pendent hyperbolic isometries. There is an N ≥ 0 such that if n ≥ N then f gn is
hyperbolic.

Proof. Let A+, A−, B+, B− ∈ ∂X be the attracting and repelling fixed points for
f and g, respectively. Then f B+ 6= B− as one of these points is fixed by f . Thus
there are neighborhoods V+ and V− for B+ and B−, respectively, in X such that
f V+∩V− =∅. Let N be the constant from Theorem 3.1 applied to this setup after
interchanging the roles of f and g. Hence gn f , and therefore also its conjugate f gn ,
are hyperbolic when n ≥ N. �

4. Finding neighborhoods

We now need to understand when we can find neighborhoods satisfying the hy-
potheses of Theorem 3.1 for all powers (or, at least, many powers) of a given g.
There are two cases that we examine: first when g has a fixed point and second
when g is hyperbolic.

Proposition 4.1. Suppose X is a δ-hyperbolic space and f ∈ Isom(X) is a hyper-
bolic isometry with attracting and repelling fixed points A+ and A− in ∂X. Suppose
g ∈ Isom(X) has a fixed point and consider a sequence of elements (gk)k∈N ⊆ 〈g〉.
Then either

(1) there are disjoint neighborhoods U+ and U− of A+ and A−, respectively, and
a constant M ≥ 1 such that if k ≥ M then gkU+ ∩U− =∅; or
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(2) there is a subsequence (gkn ) so that gkn A+→ A−.

Further, if g A− = A− then (1) holds.

Proof. Let p ∈ X be such that gp = p. Thus gk p = p for all k ∈ N.
Fix a system of decreasing disjoint neighborhoods U k

−
of A− and U k

+
of A+

indexed by the natural numbers so that:

(x . A+)p ≥ k+ δ, for x ∈U k
+
, and

(x . A−)p ≥ k+ δ, for x ∈U k
−
.

This implies that for any two points x, x ′ ∈U k
+

we have that

(x . x ′)p ≥min{(x . A+)p, (x ′ . A+)p}− δ ≥ k.

Likewise for any two points y, y′ ∈U k
−

we have (y . y′)p ≥ k.
For each n ∈ N, define

In = {k ∈ N | gkU n
+
∩U n
−
6=∅}.

If In is a finite set for some n, then (1) holds for the neighborhoods U− =U n
−

and
U+ =U n

+
where M =max In + 1.

Otherwise, there is a strictly increasing sequence (kn)n∈N such that kn ∈ In .
Hence, for each n ∈ N, there is an element xn ∈ U n

+
such that gkn xn ∈ U n

−
. In

particular,

(4-1) (gkn xn . A−)p ≥ n+ δ.

On the other hand, since xn ∈U n
+

and gkn fixes the point p, we have

(gkn xn . gkn A+)p = (gkn xn . gkn A+)gkn p

= (xn . A+)p ≥ n+ δ.(4-2)

Combining (4-1) and (4-2), we get (gkn A+ . A−)p ≥ n for any n ∈ N. Hence (2)
holds.

Now suppose that g A− = A−. As A+ 6= A−, there is a constant D ≥ 0 such that
( f −k p . f k p)p ≤ D for all k ∈N. For any n ∈Z, we have ( f −k p . gn f −k p)p→∞

as k →∞. In particular, for each n ∈ Z, there is a constant Kn ≥ 0 such that
( f −k p . gn f −k p)p ≥ D+ δ for k ≥ Kn . Therefore (gn f −k p . f k p)p ≤ D+ δ for
k ≥ Kn as:

( f −k p . f k p)p ≥min{( f −k p . gn f −k p)p, (gn f −k p . f k p)p}− δ.

As gp = p, we have ( f −k p . gn f k p)p = (g−n f −k p . f k p)p and so we see that
( f −k p . gn f k p)p ≤ D + δ for k ≥ K−n . This shows that (2) cannot hold if
g A− = A−. �
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Proposition 4.2. Suppose X is a δ-hyperbolic space and f, g ∈ Isom(X) are inde-
pendent hyperbolic isometries. There are disjoint neighborhoods U+ and U− of A+
and A− and an N ≥ 1 such that if k ≥ N then gkU+ ∩U− =∅.

Proof. Let A+, A−, B+, B− ∈ ∂X be the attracting and repelling fixed points for f
and g, respectively. As f and g are independent, the set {A−, A+, B−, B+} consists
of four distinct points. Take mutually disjoint open neighborhoods U−,U+, V−, V+
of A−, A+, B−, B+, respectively. The North-South dynamics of the action of g
on X implies that there exists an N ≥ 1 such that gk(X − V−)⊂ V+ for all k ≥ N.
In particular, gkU+ ⊆ V+ and since V+ ∩U− = ∅ we see that gkU+ ∩U− = ∅
for k ≥ N. �

5. Simultaneously producing hyperbolic isometries

We can now apply the above propositions via a careful induction to prove the main
result.

Theorem 5.1. Suppose that {X i }i=1,...,n is a collection of δ-hyperbolic spaces, G
is a group and for each i = 1, . . . , n there is a homomorphism ρi : G→ Isom(X i )

such that

(1) there is an element fi ∈ G such that ρi ( fi ) is hyperbolic; and

(2) for each g ∈ G, either ρi (g) has a periodic orbit or is hyperbolic.

Then there is an f ∈ G such that ρi ( f ) is hyperbolic for all i = 1, . . . , n.

Proof. We will prove this by induction. The case n = 1 obviously holds by
hypothesis.

For n≥2, by induction there is an f ∈G such that for i=1, . . . , n−1 the isometry
ρi ( f ) ∈ Isom(X i ) is hyperbolic. For i = 1, . . . , n − 1, let Ai

+
, Ai
−
∈ ∂X i be the

attracting and repelling fixed points of the hyperbolic isometry ρi ( f ). By hypothesis,
there is a g ∈ G so that ρn(g) ∈ Isom(Xn) is hyperbolic. Let B+, B− ∈ ∂Xn be the
attracting and repelling fixed points of the hyperbolic isometry ρn(g). Our goal is
to find a, b ∈ N so that ρi ( f agb) is hyperbolic for each i = 1, . . . , n.

We begin with some simplifications. If ρn( f )∈ Isom(Xn) is hyperbolic then there
is nothing to prove, so assume that ρn( f ) has a periodic orbit, and so after replacing
f by a power we have that f has a fixed point. By replacing g with a power if
necessary, we can assume that for i = 1, . . . , n− 1 the isometry ρi (g) is either the
identity or has infinite order. In fact, we can assume that ρi (g) has infinite order.
Indeed, if ρi (g) is the identity, then for all a, b ∈ N we have ρi ( f agb) = ρi ( f a),
which is hyperbolic by the inductive hypothesis. Hence any powers for f and g
that work for all other indices between 1 and n− 1 necessarily work for this index
i as well. Again, by replacing g with a power if necessary, we can assume that for
each i = 1, . . . , n−1 either ρi (g)Ai

−
= Ai

−
or ρi (gb)Ai

−
6= Ai

−
for each b ∈Z−{0}.
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Finally, replacing g with a further power necessary, we can assume that for each
i = 1, . . . , n−1 if ρi (g) is not hyperbolic, then it has a fixed point. Analogously, by
replacing f with a power if necessary, we can assume that the isometry ρn( f ) has
infinite order and that either ρn( f )B− = B− or ρn( f a)B− 6= B− for a ∈ Z−{0}.

There are various scenarios depending on the dynamics of the isometries ρi (g)
and ρn( f ).

Let E ⊆ {1, . . . , n− 1} be the subset where the isometry ρi (g) has a fixed point.
Let H = {1, . . . , n− 1}− E ; this is of course the subset where ρi (g) is hyperbolic.
For i ∈ H, let Bi

+
, Bi
−
∈ ∂X i be the attracting and repelling fixed points of the

hyperbolic isometry ρi (g). We further identify the subset H ′ ⊆ H where ρi ( f ) and
ρi (g) are independent.

We first deal with the spaces where ρi (g) is hyperbolic. To this end, fix i ∈ H.
If i ∈H ′, then by Proposition 4.2 there are disjoint neighborhoods U i

+
,U i
−
⊂ X i of

Ai
+

and Ai
−

, respectively, and an Ni so that for k ≥ Ni we have ρi (gk)U i
+
∩U i
−
=∅.

Applying Theorem 3.1 with the neighborhoods U+ and U−, there is an Mi so that
for a ≥ Mi and b ≥ Ni the element ρi ( f agb) is hyperbolic.

If i ∈ H−H ′ then, by Proposition 3.4, for each a ∈N there is a constant Ci (a)≥0
such that the isometry ρi ( f agb) is hyperbolic if b ≥ Ci (a).

To create a uniform statement in the sequel, for i /∈ H ′ (including i ∈ E), set
Ci (a)= 0 for all a ∈ N. Also, set Mi = Ni = 0 for i ∈ H − H ′.

Summarizing the situation so far, we let M0 = max{Mi | i ∈ H} and N0 =

max{Ni | i ∈ H}. Then, at this point, we know that if i ∈ H, a ≥M0 and b ≥ N0

then the element ρi ( f agb) is hyperbolic so long as b ≥ Ci (a).
Next we deal with the spaces where ρi (g) has a fixed point. To this end, fix i ∈ E .
Let E ′ ⊆ E be the subset where condition (1) of Proposition 4.1 holds using

ρi (gk) = ρi (gN0+k). The analysis here is similar to the case when i ∈ H ′. By
assumption, for i ∈ E ′, there are disjoint neighborhoods U i

+
,U i
−
⊂ X i of Ai

+

and Ai
−

, respectively, and an Ni so that for k ≥ Ni we have ρi (gk)U i
+
∩U i
−
= ∅.

Applying Theorem 3.1 with the neighborhoods U i
+

and U i
−

, there is an Mi so that
for a ≥ Mi the element ρi ( f agb) is hyperbolic if b ≥ Ni .

To summarize again, let M1=max{Mi | i ∈H∪E ′} and N1=max{Ni | i ∈H∪E ′}.
Then at this point, if i ∈ H ∪ E ′, a ≥M1 and b ≥ N1 then the element ρi ( f agb) is
hyperbolic so long as b ≥ Ci (a).

It remains to deal with E−E ′; enumerate this set by {i1, . . . , i`}. As condition (1)
of Proposition 4.1 does not hold for ρi1(gk)= ρi1(g

N0+k) acting on X i1 , there is a
subsequence (gkn )⊆ (gN0+k) such that ρi1(g

kn )Ai1
+→ Ai1

−. By iteratively passing
to subsequences of (gkn ), we can assume that for all i ∈ E− E ′, either the sequence
of points (ρi (gkn )Ai

+
)⊆ ∂X i converges or is discrete.

Notice that for i ∈ E − E ′, the final statement of Proposition 4.1 implies that
ρi (g)Ai

−
6= Ai

−
. Coupling this with one of our earlier simplifications, we have
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that ρi (gb)Ai
−
6= Ai

−
for all b ∈ Z− {0}. Hence, there is a K ∈ N such that for

any i ∈ E − E ′ the sequence (gK+kn ) either satisfies ρi (gK+kn )Ai
+
→ pi 6= Ai

−
,

or (ρi (gK+kn )Ai
+
) ⊂ ∂X i is discrete. Indeed, suppose ρi (gkn )Ai

+
→ pi (nothing

new is being claimed in the discrete case). If pi is not in {ρi (gk)Ai
−
}k∈Z, then

neither is ρi (gK )pi for any K ∈ N so ρi (gK+kn )Ai
+
→ ρi (gK )pi 6= Ai

−
. Else, if

pi = ρi (gKi )Ai
−

, then for K 6= −Ki we have

ρi (gK+kn )Ai
+
→ ρi (gK+Ki )Ai

−
6= Ai

−
.

So by taking K ∈ N to avoid the finitely many such −Ki we see that the claim
holds. Without loss of generality, we can assume that K ≥ N1.

Hence for each i ∈ E − E ′, by Proposition 4.1, there are disjoint neighborhoods
U i
+
,U i
−
⊂ X of Ai

+
and Ai

−
, respectively, and an Ni so that for n ≥ Ni we have

ρi (gK+kn )U i
+
∩U i
−
=∅. Applying Theorem 3.1 with the neighborhoods U i

+
and U i

−
,

there is an Mi so that for a ≥ Mi the element ρi ( f agK+kn ) is hyperbolic if n ≥ Ni .
Putting all of this together, let M2 = max{Mi | 1 ≤ i ≤ n − 1} and let N2 =

max{Ni | i ∈ E − E ′}. Thus for all i = 1, . . . , n− 1, if a ≥M2, and n ≥ N2 then
ρi ( f agK+kn ) is hyperbolic so long as K + kn ≥ Ci (a). (Notice K + kn ≥ K ≥ N1

by assumption.)
We now work with the action on the space Xn . Interchanging the roles of f

and g and arguing as above using Proposition 4.1 to the sequence of isometries
(ρn( f `)) we obtain a subsequence ( f `m )⊆ ( f `) and constants M3 and N3 so that
ρn( f `m gb) is hyperbolic if m ≥M3 and b ≥ N3.

Fix some m ≥M3 large enough so that a = `m ≥M2 and let

C=max{Ci (a) | 1≤ i ≤ n− 1}.

Now for n ≥ N2 large enough so that b = K + kn ≥ max{C,N3} we have that
ρi ( f agb) is hyperbolic for i = 1, . . . , n as desired. �

6. Application to Out(FN)

Let FN be a free group of rank N ≥ 2. A free factor system of FN is a finite
collection A = {[A1], [A2], . . . , [AK ]} of conjugacy classes of subgroups of FN ,
such that there exists a free factorization

FN = A1 ∗ · · · ∗ AK ∗ B,

where B is a (possibly trivial) subgroup, called a cofactor. There is a natural partial
ordering among the free factor systems: AvB if for each [A] ∈A there is a [B] ∈B
such that g Ag−1 < B for some g ∈ FN . In this case, we say that A is contained in
B or B is an extension of A.

Recall, the reduced rank of a subgroup A < FN is defined as

rk(A)=min{0, rk(A)− 1}.
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We extend this to a free factor system by addition:

rk(A)=
K∑

k=1

rk(Ak),

where A = {[A1], [A2], . . . , [AK ]}. An extension A v B is called a multi-edge
extension if rk(B)≥ rk(A)+ 2.

The group Out(FN ) naturally acts on the set of free factor systems as follows.
Given A= {[A1], [A2], . . . , [AK ]}, and ϕ ∈ Out(FN ) choose a representative 8 ∈
Aut(FN ) of ϕ, a realization FN = A1 ∗ · · · ∗ AK ∗ B of A and define ϕ(A) to
be the free factor system {[8(A1)], . . . , [8(AK )]}. Given a free factor system
A consider the subgroup Out(FN ;A) of Out(FN ) that stabilizes the free factor
system A. The group Out(FN ;A) is called the outer automorphism group of FN

relative to A, or the relative outer automorphism group if the free factor system A is
clear from context. If A= {[A]}, there is a well-defined restriction homomorphism
Out(FN ;A)→Out(A), which we denote by ϕ 7→ ϕ |A [Handel and Mosher 2013b,
Fact 1.4].

For a subgroup H< Out(FN ) and H-invariant free factor systems F1 v F2, we
say that H is irreducible with respect to the extension F1vF2 if for any H-invariant
free factor system F such that F1vF vF2, it follows that either F =F1 or F =F2.
We sometimes say that H is relatively irreducible if the extension is clear from the
context. The subgroup H is relatively fully irreducible if each finite index subgroup
H′ <H is relatively irreducible. For an individual element ϕ ∈ Out(FN ), we say
that ϕ is relatively (fully) irreducible if the cyclic subgroup 〈ϕ〉 is relatively (fully)
irreducible.

In close analogy with Ivanov’s classification [1992] of subgroups of mapping
class groups, in a series of papers Handel and Mosher gave a classification of finitely
generated subgroups of Out(FN ) [2013a; 2013b; 2013c; 2013d; 2013e].

Theorem 6.1 [Handel and Mosher 2013a, Theorem D]. For each finitely generated
subgroup H< IAN (Z/3) < Out(FN ), each maximal H-invariant filtration by free
factor systems

∅= F0 @ F1 @ · · ·@ Fm = {[FN ]},

and each i = 1, . . . ,m such that Fi−1 @ Fi is a multi-edge extension, there exists
ϕ ∈H which is irreducible with respect to Fi−1 @ Fi .

Here, IAN (Z/3) is the finite index subgroup of Out(FN ) which is the kernel of
the natural surjection

p : Out(FN )→ H 1(FN ,Z/3)∼= GL(N ,Z/3).

For elements in IAN (Z/3), irreducibility is equivalent to full irreducibility hence in
the above statement we can also conclude that ϕ is fully irreducible [Handel and
Mosher 2013a, Theorem B].
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Handel and Mosher conjecture that there is a single ϕ ∈ H which is (fully)
irreducible for each multi-edge extension Fi−1 @ Fi [Handel and Mosher 2013a,
Remark following Theorem D]. The goal of this section is to prove this conjecture.
Invoking theorems of Handel–Mosher and Horbez–Guirardel, this is (essentially) an
immediate application of Theorem 5.1. We state the setup and their theorems now.

Definition 6.2. Let A be a free factor system of FN . The complex of free factor
systems of FN relative to A, denoted FF(FN ;A), is the geometric realization of the
partial ordering v restricted to proper free factor systems that properly contain A.

If A={[A1],[A2],...,[AK ]} is a free factor system for FN , its depth is defined as:

DFF (A)= (2N − 1)−
K∑

k=1

(2 rk(Ak)− 1).

The free factor system A is nonexceptional if DFF (A)≥ 3.

Theorem 6.3 [Handel and Mosher 2014, Theorem 1.2]. For any nonexceptional free
factor system A of FN , the complex FF(FN ;A) is positive-dimensional, connected
and δ-hyperbolic.

Although the group Out(FN ) does not act on FF(FN ;A), the natural subgroup
Out(FN ;A) associated to the free factor system A acts on FF(FN ;A) by simplicial
isometries. In a companion paper Handel and Mosher characterize the elements of
Out(FN ;A) that act as a hyperbolic isometry of FF(FN ;A):
Theorem 6.4 [Handel and Mosher ≥ 2018]. For any nonexceptional free factor
system A of FN , ϕ ∈ Out(FN ;A) acts as a hyperbolic isometry on FF(FN ;A) if
and only if ϕ is fully irreducible with respect to A@ {[FN ]}.

Remark 6.5. An alternative proof of Theorem 6.4 is given by Guirardel and Horbez
[2017] using the description of the boundary of the relative free factor complex.
Further, with a slight modification of the definition of the relative free factor complex,
both Handel and Mosher and Guirardel and Horbez can additionally prove that
the theorem holds for the only remaining multi-edge configuration which is when
A= {[A1], [A2], [A3]} and FN = A1∗ A2∗ A3. Yet another proof of Theorem 6.4 is
given by Radhika Gupta [2016] using dynamics on relative outer space and relative
currents.

We are now ready to prove our application:

Theorem 6.6. For each finitely generated subgroup H < IAN (Z/3) < Out(FN )

and each maximal H-invariant filtration by free factor systems

∅= F0 @ F1 @ · · ·@ Fm = {[FN ]},

there is an element ϕ ∈H such that for each i = 1, . . . ,m such that Fi−1 @ Fi is a
multi-edge extension, ϕ is irreducible with respect to Fi−1 @ Fi .



86 MATT CLAY AND CAGLAR UYANIK

Proof. Let I be the subset of indices i such that Fi−1@Fi is a multi-edge extension.
Given i ∈ I, since H< IAN (Z/3), each component of Fi−1 and Fi is H-invariant

[Handel and Mosher 2013c, Lemma 4.2]. Moreover, by the argument at the be-
ginning of Section 2.1 in [Handel and Mosher 2013e], since H is irreducible
with respect to Fi−1 @ Fi (this follows from maximality of the filtration) there is
precisely one component [Bi ] ∈ Fi that is not a component of Fi−1. Let Âi be
the maximal subset of Fi−1 such that Âi @ {[Bi ]}. Notice that this extension is
again multi-edge, indeed rk(Bi )− rk(Âi )= rk(Fi )− rk(Fi−1). The system Âi can
be represented by {[Ai,1], . . . , [Ai,Ki ]} where Ai,k < Bi for each k. Let Ai be the
free factor system in the subgroup Bi consisting of the conjugacy classes in Bi of
the subgroups Ai,k . Then a given ϕ ∈H is irreducible with respect to Âi @ {[Bi ]},
equivalently Fi−1 @ Fi as the remaining components are the same, if and only if
the restriction ϕ |Bi∈ Out(Bi ;Ai ) is irreducible relative to Ai .

For i ∈ I, let X i = FF(Bi ;Ai ) and consider the action homomorphism

ρi :H→ Isom(X i )

defined by ρi (ϕ)= ϕ |Bi . These spaces are δ-hyperbolic for some δ by Theorem 6.3,
and by the above discussion and Theorem 6.4, ρi (ϕ) is a hyperbolic isometry if
ϕ ∈ H is irreducible with respect to Fi−1 @ Fi . If ρi (ϕ) is not irreducible with
respect to Fi−1@Fi , then ρi (ϕ) fixes a point in X i . By Theorem 6.1, for each i ∈ I,
there exists some ϕi ∈H that is irreducible with respect to Fi−1 @ Fi and hence
ρi (ϕi ) is a hyperbolic isometry.

We are now in the model situation of Theorem 5.1. We conclude that there is a
ϕ ∈H such that ρi (ϕ) is a hyperbolic isometry for all i ∈ I. By the above discussion,
this means that ϕ is (fully) irreducible with respect to Fi−1 @ Fi for each i ∈ I as
desired. �
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