Pacific

Journal of Mathematics

A LOCAL WEIGHTED AXLER-ZHENG THEOREM IN $\mathbb{C}^{\boldsymbol{n}}$
Željko Čučković, Sönmez Şahutoc̆lu and Yunus E. Zeytuncu

A LOCAL WEIGHTED AXLER-ZHENG THEOREM IN $\mathbb{C}^{\boldsymbol{n}}$

Željko ČučKović, Sönmez ŞahutoğLu and Yunus E. Zeytuncu

Abstract

The well-known Axler-Zheng theorem characterizes compactness of finite sums of finite products of Toeplitz operators on the unit disk in terms of the Berezin transform of these operators. Subsequently this theorem was generalized to other domains and appeared in different forms, including domains in \mathbb{C}^{n} on which the $\bar{\partial}$-Neumann operator N is compact. In this work we remove the assumption on N, and we study weighted Bergman spaces on smooth bounded pseudoconvex domains. We prove a local version of the Axler-Zheng theorem characterizing compactness of Toeplitz operators in the algebra generated by symbols continuous up to the boundary in terms of the behavior of the Berezin transform at strongly pseudoconvex points. We employ a Forelli-Rudin type inflation method to handle the weights.

1. Introduction

1.1. History. In the theory of Bergman space operators on the open unit disk \mathbb{D}, the Axler-Zheng theorem [1998] provides an important characterization of compactness of a large class of operators in terms of their Berezin transforms. Specifically this theorem states that if S is a finite sum of finite products of Toeplitz operators on the Bergman space $A^{2}(\mathbb{D})$ whose symbols are in $L^{\infty}(\mathbb{D})$, then S is compact if and only if $B S(z)$, the Berezin transform of S, tends to 0 as $|z| \rightarrow 1$. This theorem has been extended by Suárez [2007] to include all operators in the Toeplitz algebra in the unit ball in \mathbb{C}^{n}. Engliš [1999] extended the Axler-Zheng theorem to irreducible bounded symmetric domains and the unit polydisk. Mitkovski, Suárez and Wick [Mitkovski et al. 2013] proved a weighted version of Suárez's result on the unit ball in \mathbb{C}^{n}. Using the techniques of several complex variables, Čučković and Şahutoğlu [2013] proved a version of the Axler-Zheng theorem on smooth bounded pseudoconvex domains on which the $\bar{\partial}$-Neumann operator is compact. The use of the $\bar{\partial}$ techniques required that the operators in their theorem belong to the algebra $\mathscr{T}(\bar{\Omega})$ which is the norm closed algebra generated by $\left\{T_{\phi}: \phi \in C(\bar{\Omega})\right\}$. Recently, Kreutzer [2014] generalized Čučković and Şahutoğlu's result in a more abstract setting.

[^0]Our aim is to extend the previous result of Čučković and Şahutoğlu in two ways: Firstly, we want to remove the hypothesis of the compactness of the $\bar{\partial}$-Neumann operator on Ω. We also want to consider weighted Bergman spaces. Our main theorem gives a local version of the Axler-Zheng theorem for a wide class of domains in \mathbb{C}^{n}. The novelty of our approach is to use the inflation of the domain argument pioneered by Forelli and Rudin [1974] and Ligocka [1989]. The second important ingredient is the B-regularity of the inflated domain which will give us the compactness of $\bar{\partial}$, thus replacing the assumption on the compactness of the $\bar{\partial}$-Neumann operator. As a corollary we obtain a weighted version of the AxlerZheng theorem for strongly pseudoconvex domains, which itself is a new result.
1.2. Preliminaries. Let Ω be a C^{1}-smooth bounded pseudoconvex domain in \mathbb{C}^{n} with a defining function ρ. We denote the boundary of Ω by $b \Omega$. Let $L^{2}\left(\Omega,(-\rho)^{r}\right)$ denote the square integrable functions on Ω with respect to the measure $(-\rho)^{r} d V$ where $d V$ denotes the Lebesgue measure, $r \geq 0$, and

$$
A^{2}\left(\Omega,(-\rho)^{r}\right)=\left\{f \in L^{2}\left(\Omega,(-\rho)^{r}\right): f \text { is holomorphic }\right\} .
$$

Since $A^{2}\left(\Omega,(-\rho)^{r}\right)$ is a closed subspace of $L^{2}\left(\Omega,(-\rho)^{r}\right)$, a bounded orthogonal projection,

$$
P_{r}: L^{2}\left(\Omega,(-\rho)^{r}\right) \rightarrow A^{2}\left(\Omega,(-\rho)^{r}\right),
$$

(called Bergman projection) exists. P_{r} is an integral operator of the form

$$
P_{r}(f)(z)=\int_{\Omega} K^{r}(z, \zeta) f(\xi)(-\rho)^{r} d V
$$

for $f \in L^{2}\left(\Omega,(-\rho)^{r}\right)$. The integral kernel $K^{r}(z, \xi)$ is called the Bergman kernel and the normalized Bergman kernel $k_{z}^{r}(\xi)$ is defined as

$$
k_{z}^{r}(\xi)=\frac{K^{r}(\xi, z)}{\sqrt{K^{r}(z, z)}} .
$$

When $r=0$ we drop the superscript r; that is, $K=K_{\Omega}$ denotes the unweighted Bergman kernel and k_{z} denotes the unweighted normalized Bergman kernel. For a bounded operator T on $A^{2}\left(\Omega,(-\rho)^{r}\right)$, the Berezin transform $B_{r} T$ of T is defined as

$$
B_{r} T(z)=\left\langle T k_{z}^{r}, k_{z}^{r}\right\rangle_{r},
$$

where $\langle\cdot, \cdot\rangle_{r}$ is the inner product on $A^{2}\left(\Omega,(-\rho)^{r}\right)$.
For $\phi \in L^{\infty}(\Omega)$, the weighted Toeplitz operator T_{ϕ}^{r} and the weighted Hankel operator H_{ϕ}^{r} are defined as

$$
\begin{aligned}
T_{\phi}^{r} & =P^{r} M_{\phi}, \\
H_{\phi}^{r} & =\left(I-P^{r}\right) M_{\phi},
\end{aligned}
$$

where $M_{\phi}: A^{2}\left(\Omega,(-\rho)^{r}\right) \rightarrow L^{2}\left(\Omega,(-\rho)^{r}\right)$ denotes the multiplication by ϕ.

We use $\mathscr{T}\left(\bar{\Omega},(-\rho)^{r}\right)$ to denote the norm closed subalgebra of bounded linear operators on $A^{2}\left(\Omega,(-\rho)^{r}\right)$ generated by the set of Toeplitz operators

$$
\left\{T_{\phi}^{r}: \phi \in C(\bar{\Omega})\right\}
$$

For $\phi \in L^{\infty}$ we define $B_{r} \phi=B_{r} T_{\phi}$.
In this paper we look at weighted Hankel and Toeplitz operators on various domains and various weighted spaces. Whenever we need to clarify where these operators are defined, we will use appropriate subscripts and superscripts. In particular, when we need to emphasize the underlying domain we will write $P^{\Omega}, K_{\Omega}(z, \xi), H_{\phi}^{\Omega}$, and T_{ϕ}^{Ω}, where the Bergman spaces are unweighted. When we have weighted spaces and we need to indicate the domain and the weight we will write $P^{\Omega, r}, K_{\Omega}^{r}(z, \xi), H_{\phi}^{\Omega, r}$, and $T_{\phi}^{\Omega, r}$.
1.3. Main result. We start with the following two definitions that capture the local structure of the main theorem. To motivate the following definition, if $f_{j} \rightarrow f$ weakly in $A^{2}(\Omega)$ then for any point $p \in b \Omega$ and $r>0$ one can show that $f_{j} \rightarrow f$ weakly in $A^{2}(\Omega \cap B(p, r))$ where $B(p, r)$ is the open ball centered at p with radius r.

Definition 1. Let $r \geq 0$ and Ω be a C^{2}-smooth bounded pseudoconvex domain in \mathbb{C}^{n} with a defining function ρ. Furthermore, let $\left\{f_{j}\right\} \subset A^{2}\left(\Omega,(-\rho)^{r}\right)$ be a sequence and $f \in A^{2}\left(\Omega,(-\rho)^{r}\right)$. We say that $\left\{f_{j}\right\}$ converges to f weakly about strongly pseudoconvex points if:
(i) $f_{j} \rightarrow f$ weakly in $A^{2}\left(\Omega,(-\rho)^{r}\right)$ as $j \rightarrow \infty$.
(ii) When Γ_{Ω}, the set of the weakly pseudoconvex points in $b \Omega$, is nonempty, there exists an open neighborhood U of Γ_{Ω} such that $\left\|f_{j}-f\right\|_{L^{2}\left(U \cap \Omega,(-\rho)^{r}\right)} \rightarrow 0$ as $j \rightarrow \infty$.

We note that on strongly pseudoconvex domains, sequences converging weakly about strongly pseudoconvex points and weakly convergent sequences coincide.

Definition 2. Let r, Ω, and ρ be as above. Furthermore, let $T: A^{2}\left(\Omega,(-\rho)^{r}\right) \rightarrow$ $A^{2}\left(\Omega,(-\rho)^{r}\right)$ be a bounded linear operator. We say that T is compact about strongly pseudoconvex points if $T f_{j} \rightarrow T f$ in $A^{2}\left(\Omega,(-\rho)^{r}\right)$ whenever $f_{j} \rightarrow f$ weakly about strongly pseudoconvex points.

Remark 3. As shown in Proposition 13 below, it is interesting that any Hankel operator with a symbol continuous on the closure of the domain is compact about strongly pseudoconvex points.

With the help of these two definitions, we state our main result as follows.
Theorem 4. Let r be a nonnegative real number, Ω be a C^{2}-smooth bounded pseudoconvex domain in \mathbb{C}^{n} with a defining function ρ, and $T \in \mathscr{T}\left(\bar{\Omega},(-\rho)^{r}\right)$.

Then T is compact about strongly pseudoconvex points on $A^{2}\left(\Omega,(-\rho)^{r}\right)$ if and only if $\lim _{z \rightarrow p} B_{r} T(z)=0$ for any strongly pseudoconvex point $p \in b \Omega$.

If Ω is a strongly pseudoconvex domain then we have the following corollary.
Corollary 5. Let r be a nonnegative real number, Ω be a C^{2}-smooth bounded strongly pseudoconvex domain in \mathbb{C}^{n} with a defining function ρ, and T be an element of $\mathscr{T}\left(\bar{\Omega},(-\rho)^{r}\right)$. Then T is compact on $A^{2}\left(\Omega,(-\rho)^{r}\right)$ if and only if $\lim _{z \rightarrow p} B_{r} T(z)=0$ for any $p \in b \Omega$.
Remark 6. In the case of the unit ball \mathbb{B}^{n} in \mathbb{C}^{n} and $\rho(z)=|z|^{2}-1$, we partially recover [Mitkovski et al. 2013, Theorem 1.1]. Unlike the arguments on the unit ball, the proof of Corollary 5 does not require any explicit form for the weight or the weighted Bergman kernel.

2. Proof of Theorem 4

In this section, before we prove Theorem 4, we present some propositions and lemmas that encapsulate the technical details of the proof.
Proposition 7. Let Ω be a C^{2}-smooth bounded pseudoconvex domain in \mathbb{C}^{n} and $\left\{T_{j}\right\}$ be a sequence of operators compact about strongly pseudoconvex points that converges to T in the operator norm. Then T is compact about strongly pseudoconvex points.
Proof. Let $\left\{f_{j}\right\}$ be a sequence in $A^{2}\left(\Omega,(-\rho)^{r}\right)$ that converges to 0 weakly about strongly pseudoconvex points. Since $f_{j} \rightarrow 0$ weakly there exists $C>0$ such that

$$
\sup \left\{\left\|f_{j}\right\|: j=1,2,3, \ldots\right\} \leq C
$$

Then for any k we have

$$
\left\|T f_{j}\right\| \leq\left\|\left(T-T_{k}\right) f_{j}\right\|+\left\|T_{k} f_{j}\right\| \leq C\left\|T-T_{k}\right\|+\left\|T_{k} f_{j}\right\|
$$

Let $\varepsilon>0$ be given. Since $T_{j} \rightarrow T$ in the operator norm, we choose k_{ε} such that $\left\|T-T_{k_{\varepsilon}}\right\| \leq \varepsilon$. Then

$$
\limsup _{j \rightarrow \infty}\left\|T f_{j}\right\| \leq C \varepsilon+\underset{j \rightarrow \infty}{\limsup }\left\|T_{k_{\varepsilon}} f_{j}\right\| \leq C \varepsilon .
$$

Since $\varepsilon>0$ was arbitrary, we conclude that $T f_{j} \rightarrow 0$. That is, T is compact about strongly pseudoconvex points.

One of the key ideas in the proof is to use an inflated domain over Ω to understand the weighted Bergman spaces. For this purpose, unless stated otherwise, for the rest of the paper, Ω will be a bounded pseudoconvex domain in \mathbb{C}^{n} with C^{2}-smooth boundary, ρ will be a defining function for Ω, and

$$
\begin{equation*}
\Omega_{r}^{p}=\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{p}: z \in \Omega \text { and } \rho(z)+\left|w_{1}\right|^{2 p / r}+\cdots+\left|w_{p}\right|^{2 p / r}<0\right\}, \tag{1}
\end{equation*}
$$

where p is a positive integer and r is a real number such that $0<r \leq p$. For a function $f \in A^{2}\left(\Omega,(-\rho)^{r}\right)$, we let $F(z, w)=f(z)$ be the trivial extension of f to Ω_{r}^{p}. It easily follows from an iterated integral argument that $F \in A^{2}\left(\Omega_{r}^{p}\right)$.

The following proposition is interesting in its own right as it gives a relationship between the Bergman kernels of the inflated domain and base.

Proposition 8. Using the notation above,

$$
K_{\Omega}^{r}(z, \xi)=c_{p, r} K_{\Omega_{r}^{p}}(z, 0 ; \xi, 0),
$$

where $c_{p, r}=\int_{\left|\widetilde{w}_{1}\right|^{2 p / r}+\cdots+\left|\widetilde{w}_{p}\right|^{2 p / r}<1} d V(\widetilde{w})$ and $K_{\Omega}^{r}(z, \xi)$ is the weighted Bergman kernel of Ω with weight $(-\rho)^{r}$.

Proof. We will follow a standard inflation argument (see, for instance, [Forelli and Rudin 1974; Ligocka 1989]). Since Ω_{r}^{p} is a Hartogs domain with base Ω, the Bergman kernel of Ω_{r}^{p} can be written as

$$
K_{\Omega_{r}^{p}}(z, w ; \xi, \eta)=K_{\Omega_{r}^{p}}(z, 0 ; \xi, 0)+\sum_{|J| \geq 1} K_{J}(z, \xi) w^{J} \bar{\eta}^{J},
$$

where J is a multiindex with nonnegative entries. Then for $f \in A^{2}\left(\Omega,(-\rho)^{r}\right)$ and $z \in \Omega$ we have (F below is the trivial extension of f)

$$
\begin{align*}
& f(z)=\int_{\Omega_{r}^{p}} K_{\Omega_{r}^{p}}(z, 0 ; \xi, 0) F(\xi, \eta) d V(\xi, \eta) \tag{2}\\
&+\sum_{|J| \geq 1} \int_{\Omega_{r}^{p}} K_{J}(z, \xi) w^{J} \bar{\eta}^{J} F(\xi, \eta) d V(\xi, \eta)
\end{align*}
$$

However, the integrals under the sum on the right-hand side above all vanish.
Using the change of variables $\widetilde{w}_{j}=w_{j} /(-\rho(z))^{r / 2 p}$, one can compute that

$$
\begin{equation*}
\int_{\left|w_{1}\right|^{2 p / r}+\cdots+\left|w_{p}\right|^{2 p / r}<-\rho(z)} d V(w)=(-\rho(z))^{r} \int_{\left|\widetilde{w}_{1}\right|^{2 p / r}+\cdots+\left|\widetilde{w}_{p}\right|^{2 p / r}<1} d V(\widetilde{w}) . \tag{3}
\end{equation*}
$$

We denote

$$
\begin{equation*}
c_{p, r}=\int_{\left|\widetilde{w}_{1}\right|^{p / r}+\cdots+\left|\widetilde{w}_{p}\right|^{2 p / r}<1} d V(\widetilde{w}) . \tag{4}
\end{equation*}
$$

Then using (2), (3), and (4) we get

$$
\begin{aligned}
f(z) & =\int_{\Omega_{r}^{p}} K_{\Omega_{r}^{p}}(z, 0 ; \xi, 0) F(\xi, \eta) d V(\xi, \eta) \\
& =c_{p, r} \int_{\Omega} K_{\Omega_{r}^{p}}(z, 0 ; \xi, 0) f(\xi)(-\rho(\xi))^{r} d V(\xi) .
\end{aligned}
$$

Therefore, $c_{p, r} K_{\Omega_{r}^{p}}(z, 0 ; \xi, 0)=K_{\Omega}^{r}(z, \xi)$.

For a C^{2}-smooth function ρ around a point $P \in \mathbb{C}^{n}, X=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$, and $Y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$, we define the complex Hessian of ρ at P as

$$
H_{\rho}(P ; X, Y)=\sum_{j, k=1}^{n} \frac{\partial^{2} \rho(P)}{\partial z_{j} \partial \bar{z}_{k}} x_{j} \bar{y}_{k} .
$$

Furthermore, we use the notation $H_{\rho}(P ; X)=H_{\rho}(P ; X, X)$.
Lemma 9. Let Ω be a C^{2}-smooth bounded pseudoconvex domain in $\mathbb{C}^{n}, z_{0} \in b \Omega$ be a strongly pseudoconvex point, and Ω_{r}^{p} be defined as in (1). Then there exists $s>0$ such that $(z, w) \in b \Omega_{r}^{p}$ is strongly pseudoconvex for $\left|z-z_{0}\right|<s$ and $w_{k} \neq 0$ for all $1 \leq k \leq p$.

Proof. Let $\tilde{\rho}(z, w)=\rho(z)+\lambda(w)$ where $\lambda(w)=\left|w_{1}\right|^{2 p / r}+\cdots+\left|w_{p}\right|^{2 p / r}$ and $p \geq r$ an integer. Then $\tilde{\rho}$ is a C^{2}-smooth function. Assume that $Q=(z, w) \in b \Omega_{r}^{p}$ is near z_{0} and X is a complex tangential vector to $b \Omega_{r}^{p}$ at Q. Then X can be written as $X=X_{n}+X_{p}$ where X_{n} and X_{p} are the components of X in the z and w variables, respectively. Then

$$
H_{\tilde{\rho}}(Q ; X)=H_{\rho}\left(z ; X_{n}\right)+H_{\tilde{\rho}}\left(Q ; X_{n}, X_{p}\right)+H_{\tilde{\rho}}\left(Q ; X_{p}, X_{n}\right)+H_{\lambda}\left(w ; X_{p}\right) .
$$

However, $H_{\tilde{\rho}}\left(Q ; X_{n}, X_{p}\right)=H_{\tilde{\rho}}\left(Q ; X_{p}, X_{n}\right)=0$ as z and w are decoupled in $\tilde{\rho}$. Then

$$
H_{\tilde{\rho}}(Q ; X)=H_{\rho}\left(z ; X_{n}\right)+H_{\lambda}\left(w ; X_{p}\right) .
$$

Let π denote the projection from a neighborhood of $b \Omega$ in \mathbb{C}^{n} onto $b \Omega$. Then $X_{n}=X_{t}+X_{v}$ where X_{t} is a tangential vector to $b \Omega$ at πz and X_{v} is a vector complex normal to $b \Omega$ at πz. Then

$$
H_{\rho}\left(z ; X_{n}\right)=H_{\rho}\left(z ; X_{t}\right)+H_{\rho}\left(z ; X_{t}, X_{v}\right)+H_{\rho}\left(z ; X_{v}, X_{t}\right)+H_{\rho}\left(z ; X_{v}\right) .
$$

We note that the complex Hessian H_{ρ} changes continuously and $w \rightarrow 0$ as $z \rightarrow z_{0}$ (here we assume $(z, w) \in b \Omega_{r}^{p}$). Furthermore, $X_{v} \rightarrow 0$ as $z \rightarrow z_{0}$ (as the complex normal to $b \Omega$ at z_{0} is parallel to the complex normal to $b \Omega_{r}^{p}$ at $\left(z_{0}, 0\right)$). Then, using the fact that z_{0} is a strongly pseudoconvex point, we conclude that there exists $s>0$ so that

$$
H_{\rho}\left(z ; X_{n}\right) \geq \frac{H_{\rho}\left(\pi z ; X_{t}\right)}{2}>0
$$

for $\left|z-z_{0}\right|<s$ and $X_{t} \neq 0$. Also $H_{\lambda}\left(w ; X_{p}\right)>0$ whenever $X_{p} \neq 0$ and $w_{k} \neq 0$ for all k as λ is strictly plurisubharmonic whenever $w_{k} \neq 0$ for all k. Therefore, $H_{\tilde{\rho}}(Q ; X)>0$ for $Q=(z, w) \in b \Omega_{r}^{p}$ such that $\left|z-z_{0}\right|<s$ and $w_{k} \neq 0$ for all k.

The following corollary follows from the previous lemma together with the fact that Ω_{r}^{p} has C^{2}-smooth boundary for $0<r \leq p$.

Corollary 10. Let Ω be a C^{2}-smooth bounded pseudoconvex domain in $\mathbb{C}^{n}, z_{0} \in b \Omega$ be a strongly pseudoconvex point, and Ω_{r}^{p} be defined as in (1). Then there exists $\varepsilon>0$ such that $B\left(\left(z_{0}, 0\right), \varepsilon\right) \cap \Omega_{r}^{p}$ is pseudoconvex.

Next we will prove some statements about compactness of single Toeplitz and Hankel operators.
Lemma 11. Let $\phi \in L^{\infty}(\Omega),\left\{f_{j}\right\}$ be a bounded sequence in $A^{2}\left(\Omega,(-\rho)^{r}\right)$ and F_{j} be the trivial extension of f_{j} to Ω_{r}^{p} for each j where Ω_{r}^{p} is defined as in (1). Assume that $\left\{H_{\phi}^{\Omega_{r}^{p}} F_{j}\right\}$ is convergent in $L^{2}\left(\Omega_{r}^{p}\right)$. Then $\left\{H_{\phi}^{\Omega, r} f_{j}\right\}$ is convergent in $L^{2}\left(\Omega,(-\rho)^{r}\right)$.
Proof. We will abuse the notation and denote the trivial extension of ϕ to Ω_{r}^{p} by ϕ. We assume that $\left\{H_{\phi}^{\Omega_{r}^{p}} F_{j}\right\}$ is convergent (and hence Cauchy). Let

$$
G_{j}(z, w)=\left(H_{\phi}^{\Omega_{r}^{p}} F_{j}\right)(z, w)
$$

and $g_{j}(z)=G_{j}(z, 0)$. Then G_{j} is holomorphic in w because

$$
\frac{\partial G_{j}}{\partial \bar{w}_{k}}=\frac{\partial}{\partial \bar{w}_{k}}\left(I-P^{\Omega_{r}^{p}}\right)\left(F_{j} \phi\right)=\frac{\partial\left(F_{j} \phi\right)}{\partial \bar{w}_{k}}=0
$$

for all j and $1 \leq k \leq p$. We note that $\partial\left(F_{j} \phi\right) / \partial \bar{w}_{k}=0$ as $F_{j} \phi$ is independent of w_{k}. Then $\left|G_{j}(z, w)-G_{k}(z, w)\right|^{2}$ is subharmonic in w and using the mean value property for subharmonic functions together with (3) and (4) one can show that

$$
\begin{aligned}
& \left|g_{j}(z)-g_{k}(z)\right|^{2} \\
& \quad \leq \frac{1}{c_{p, r}(-\rho(z))^{r}} \int_{\left|w_{1}\right|^{2 p / r}+\cdots+\left|w_{p}\right|^{2 p / r}<-\rho(z)}\left|G_{j}(z, w)-G_{k}(z, w)\right|^{2} d V(w)
\end{aligned}
$$

for $j=1,2, \ldots$ and $z \in \Omega$. By integrating over Ω we get

$$
c_{p, r}\left\|g_{j}-g_{k}\right\|_{L_{(0,1)}^{2}\left(\Omega,(-\rho)^{r}\right)}^{2} \leq\left\|G_{j}-G_{k}\right\|_{L_{(0,1)}^{2}\left(\Omega_{r}^{p}\right)}^{2}
$$

for $j, k=1,2, \ldots$ Then $\left\{g_{j}\right\}$ is a Cauchy sequence in $L_{(0,1)}^{2}\left(\Omega,(-\rho)^{r}\right)$ (and hence convergent) because $\left\|G_{j}-G_{k}\right\|_{L_{(0,1)}^{2}\left(\Omega_{r}^{p}\right)} \rightarrow 0$ as $j, k \rightarrow \infty$.

Let $h_{j}(z)=P^{\Omega_{r}^{p}}\left(\phi F_{j}\right)(z, 0)$. Then
$c_{r, p}\left\|h_{j}\right\|_{L^{2}\left(\Omega,(-\rho)^{r}\right)}^{2} \leq\left\|P^{\Omega_{r}^{p}}\left(\phi F_{j}\right)\right\|_{L^{2}\left(\Omega_{r}^{p}\right)}^{2} \leq\left\|\phi F_{j}\right\|_{L^{2}\left(\Omega_{r}^{p}\right)}^{2}=c_{r, p}\left\|\phi f_{j}\right\|_{L^{2}\left(\Omega,(-\rho)^{r}\right)}^{2}<\infty$
for each j. Hence, $h_{j} \in A^{2}\left(\Omega,(-\rho)^{r}\right)$ and $\left(I-P^{\Omega, r}\right) h_{j}=0$ for all j. We get equality between the last terms above because F_{j} and ϕ are independent of w. Now

$$
\begin{aligned}
\left(I-P^{\Omega, r}\right) g_{j} & =\left(I-P^{\Omega, r}\right)\left(\phi f_{j}-P^{\Omega_{r}^{p}}\left(\phi F_{j}\right)(\cdot, 0)\right) \\
& =\left(I-P^{\Omega, r}\right)\left(\phi f_{j}\right)-\left(I-P^{\Omega, r}\right)\left(h_{j}\right)=H_{\phi}^{\Omega, r} f_{j}
\end{aligned}
$$

Therefore, the sequence $\left\{H_{\phi}^{\Omega, r} f_{j}\right\}$ is convergent in $L^{2}\left(\Omega,(-\rho)^{r}\right)$.

Lemma 12. Let r be a nonnegative real number and Ω be a C^{2}-smooth bounded pseudoconvex domain in \mathbb{C}^{n} with a defining function ρ. Assume that $\phi \in C(\bar{\Omega})$ such that $\phi(z)=0$ if z is a strongly pseudoconvex point in $b \Omega$. Then T_{ϕ}^{r} is compact about strongly pseudoconvex points on $A^{2}\left(\Omega,(-\rho)^{r}\right)$.

Proof. Let $\left\{f_{j}\right\}$ be a sequence in $A^{2}\left(\Omega,(-\rho)^{r}\right)$ that (without loss of generality) converges to 0 weakly about strongly pseudoconvex points. Then $f_{j} \rightarrow 0$ weakly as $j \rightarrow \infty$ and there is a neighborhood U of weakly pseudoconvex points in $b \Omega$ such that

$$
\left\|f_{j}\right\|_{L^{2}\left(U \cap \Omega,(-\rho)^{r}\right)} \rightarrow 0 \text { as } j \rightarrow \infty .
$$

Using the uniform boundedness principle and the fact that $f_{j} \rightarrow 0$ weakly we conclude that the sequence $\left\{f_{j}\right\}$ is bounded in $A^{2}\left(\Omega,(-\rho)^{r}\right)$. Furthermore, Cauchy estimates together with Montel's theorem (and the fact that $f_{j} \rightarrow 0$ weakly) imply that $\left\{f_{j}\right\}$ converges to zero uniformly on compact subsets of Ω. Using the fact that $\phi=0$ on strongly pseudoconvex points, one can show that $\phi f_{j} \rightarrow 0$ in $A^{2}\left(\Omega,(-\rho)^{r}\right)$. Therefore, $T_{\phi}^{r} f_{j} \rightarrow 0$ in $A^{2}\left(\Omega,(-\rho)^{r}\right)$. That is, T_{ϕ}^{r} is compact about strongly pseudoconvex points on $A^{2}\left(\Omega,(-\rho)^{r}\right)$.

Let Ω be a domain in \mathbb{C}^{n}. Then $z \in b \Omega$ is said to have a holomorphic (plurisubharmonic) peak function if there exists a holomorphic (plurisubharmonic) f that is continuous on $\bar{\Omega}$ such that $f(z)=1$ and $|f(w)|<1$ (or $f(w)<1$ if f is plurisubharmonic) for $w \in \bar{\Omega} \backslash\{z\}$.

Next we show that any Hankel operator with a symbol continuous on the closure of the domain is compact about strongly pseudoconvex points.
Proposition 13. Letr be a nonnegative real number, Ω be a C^{2}-smooth bounded pseudoconvex domain in \mathbb{C}^{n} with a defining function ρ, and $\phi \in C(\bar{\Omega})$. Then

$$
H_{\phi}^{r}: A^{2}\left(\Omega,(-\rho)^{r}\right) \rightarrow L^{2}\left(\Omega,(-\rho)^{r}\right)
$$

is compact about strongly pseudoconvex points.
Proof. We will prove more (see Corollary 14 below). First of all, for any $\phi \in C(\bar{\Omega})$ there exists $\left\{\phi_{j}\right\} \subset C^{1}(\bar{\Omega})$ such that $\phi_{j} \rightarrow \phi$ uniformly on $\bar{\Omega}$ as $j \rightarrow \infty$. Furthermore, $\left\{H_{\phi_{j}}^{r}\right\}$ converges to H_{ϕ}^{r} in the operator norm and, by Proposition 7, if $H_{\phi_{j}}^{r}$ is compact about strongly pseudoconvex points for every j then so is H_{ϕ}^{r}. Therefore, for the rest of the proof we will assume that $\phi \in C^{1}(\bar{\Omega})$. Secondly, the proof for $r=0$ does not require the inflation argument in the next paragraph and hence it is easier than the case $r>0$. Since both proofs are similar, except for the inflation argument, in the rest of the proof, we will assume that $r>0$.

Let $z_{0} \in b \Omega$ be a strongly pseudoconvex point. Then, by Corollary 10 , the domain $B\left(\left(z_{0}, 0\right), \varepsilon\right) \cap \Omega_{r}^{p}$ is pseudoconvex for small ε. Let $\varepsilon>0$ be such that
$X_{0}=b \Omega \cap \overline{B\left(z_{0}, \varepsilon\right)} \subset \mathbb{C}^{n}$ consists of strongly pseudoconvex points. Let us define

$$
\begin{aligned}
Y & =b \Omega_{r}^{p} \cap \overline{B\left(\left(z_{0}, 0\right), \varepsilon\right)} \cap\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{p}: w_{k}=0 \text { for some } 1 \leq k \leq p\right\}, \\
X_{j} & =b \Omega_{r}^{p} \cap \overline{B\left(\left(z_{0}, 0\right), \varepsilon\right)} \cap\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{p}:\left|w_{k}\right| \geq 1 / j \text { for all } 1 \leq k \leq p\right\},
\end{aligned}
$$

for $j=1,2,3, \ldots$ Then X_{0} is B-regular as any point in X_{0} has a holomorphic (hence plurisubharmonic) peak function on $\Omega \subset \mathbb{C}^{n}$. The same function (by extending it trivially) is also a plurisubharmonic peak function on $\Omega_{r}^{p} \subset \mathbb{C}^{n+p}$. Hence, $X_{0} \times\{0\}$ is B-regular as a compact set in \mathbb{C}^{n+p}. Furthermore, Lemma 9 implies that we can shrink ε, if necessary, so that X_{j} 's are composed of strongly pseudoconvex points for $j \geq 1$. Hence, X_{j} is B-regular for every $j=0,1,2, \ldots$.

Next we will apply a similar idea to Y in lower dimensions. Let us define $Y_{1}=\bigcup_{m=1}^{p} Y_{1}^{m}$ where

$$
Y_{1}^{m}=b \Omega_{r}^{p} \cap \overline{B\left(\left(z_{0}, 0\right), \varepsilon\right)} \cap\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{p}: w_{k}=0 \text { for } k \neq m\right\} .
$$

We can write Y_{1}^{m} as the union of $X_{0} \times\{0\}$ together with the compact sets

$$
b \Omega_{r}^{p} \cap \overline{B\left(\left(z_{0}, 0\right), \varepsilon\right)} \cap\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{p}:\left|w_{m}\right| \geq 1 / j, w_{k}=0 \text { for } k \neq m\right\}
$$

for $j=1,2,3, \ldots$ However, we can think of the sets above as subsets in $\mathbb{C}^{n} \times \mathbb{C}$ and (by Lemma 9) they are composed of strongly pseudoconvex points. Hence, they are B-regular. Then [Sibony 1987, Proposition 1.9] implies that each Y_{1}^{m} is B-regular as it is a countable union of B-regular sets. Hence, applying Sibony's proposition again, we conclude that Y_{1} is B-regular. Similarly, we can define $Y_{2} \subset Y$ as a countable union of compact sets where all but at most two w_{k} are equal to 0 . Using the same reasoning above adopted for Y_{2} we can conclude that Y_{2} is B-regular. In a similar fashion, we can define Y_{l} for $1 \leq l \leq p-1$ and prove that all of them are B-regular. Hence $Y=\left(\bigcup_{l=1}^{p} Y_{l}\right) \cup\left(X_{0} \times\{0\}\right)$ is B-regular. Then

$$
b\left(\Omega_{r}^{p} \cap B\left(\left(z_{0}, 0\right), \varepsilon\right)\right) \subset Y \cup\left(\bigcup_{j=1}^{\infty} X_{j}\right) \cup\left(X_{0} \times\{0\}\right) \cup b B\left(\left(z_{0}, 0\right), \varepsilon\right)
$$

is B-regular (satisfies property (P) in Catlin's terminology) and, therefore, the $\bar{\partial}$-Neumann operator on $\Omega_{r}^{p} \cap B\left(\left(z_{0}, 0\right), \varepsilon\right)$ is compact [Straube 2010, Theorem 4.8; Catlin 1984]. Then $H_{\phi}^{\Omega_{r}^{p} \cap B\left(\left(z_{0}, 0\right), \varepsilon\right)}$ is compact (see [Straube 2010, Proposition 4.1]) and Lemma 11 implies that $H_{\phi}^{\Omega \cap B\left(\left(z_{0}, 0\right), \varepsilon\right), r}$ is compact.

Next we will use local compact solution operators to show that H_{ϕ}^{r} is compact about strongly pseudoconvex points. Let $\left\{f_{j}\right\} \subset A^{2}\left(\Omega,(-\rho)^{r}\right)$ be a sequence weakly convergent about strongly pseudoconvex points. Then there exists an open neighborhood U of the set of weakly pseudoconvex points in $b \Omega$ such that
(i) $\left\{f_{j}\right\}$ is weakly convergent,
(ii) $\left\|f_{j}-f_{k}\right\|_{L^{2}\left(U \cap \Omega,(-\rho)^{r}\right)} \rightarrow 0$ as $j, k \rightarrow \infty$.

Let us choose $\left\{p_{k}: k=1, \ldots, m\right\} \subset b \Omega \backslash U$ and $\varepsilon_{k}>0$ (for $k=1, \ldots, m$) such that
(i) $b \Omega \backslash U \subset \bigcup_{k=1}^{m} B\left(p_{k}, \varepsilon_{k}\right)$,
(ii) $H_{\phi}^{k, r}=H_{\phi}^{B\left(p_{k}, \varepsilon_{k}\right) \cap \Omega, r}$ is compact on $A^{2}\left(B\left(p_{k}, \varepsilon_{k}\right) \cap \Omega,(-\rho)^{r}\right)$ for $k=1, \ldots, m$.

Let us choose a strongly pseudoconvex domain $\Omega_{-1} \Subset \Omega$ and smooth cut-off functions $\chi_{-1} \in C_{0}^{\infty}\left(\Omega_{-1}\right), \chi_{0} \in C_{0}^{\infty}(U)$, and $\chi_{k} \in C_{0}^{\infty}\left(B\left(p_{k}, \varepsilon\right)\right)$ for $k=1, \ldots, m$ such that $\sum_{k=-1}^{m} \chi_{k} \equiv 1$ on $\bar{\Omega}$.

Let $H_{\phi}^{-1, r}=H_{\phi}^{\Omega_{-1}, r}, H_{\phi}^{0, r}=H_{\phi}^{U \cap \Omega, r}$, and $g_{j}=\sum_{k=-1}^{m} \chi_{k} H_{\phi}^{k, r} f_{j}$. We note that $H_{\phi}^{-1, r}$ is compact as $\Omega_{-1} \Subset \Omega$ is strongly pseudoconvex (and $\rho<0$ on the closure of $\left.\Omega_{-1}\right) ;\left\{H_{\phi}^{0, r} f_{j}\right\}$ is convergent as $\left\{f_{j}\right\}$ is convergent in $L^{2}\left(U \cap \Omega,(-\rho)^{r}\right)$; and by the previous part of this proof, $H_{\phi}^{k, r}$ is compact for each $k=1, \ldots, m$. Therefore, $\left\{g_{j}\right\}$ is convergent in $L^{2}\left(\Omega,(-\rho)^{r}\right)$. Furthermore,

$$
\bar{\partial} g_{j}=f_{j} \bar{\partial} \phi+\sum_{k=-1}^{m}\left(\bar{\partial} \chi_{k}\right) H_{\phi}^{k, r} f_{j}
$$

Then $\left\{\sum_{k=-1}^{m}\left(\bar{\partial} \chi_{k}\right) H_{\phi}^{k, r} f_{j}\right\}$ is a convergent sequence of $\bar{\partial}$-closed $(0,1)$-forms as both $\bar{\partial} g_{j}$ and $f_{j} \bar{\partial} \phi$ are $\bar{\partial}$-closed. Let $Z^{r}: L_{(0,1)}^{2}\left(\Omega,(-\rho)^{r}\right) \rightarrow L^{2}\left(\Omega,(-\rho)^{r}\right)$ be a bounded linear solution operator to $\bar{\partial}$ (see [Hörmander 1965]). Let

$$
h_{j}=g_{j}-Z^{r} \sum_{k=-1}^{m}\left(\bar{\partial} \chi_{k}\right) H_{\phi}^{k, r} f_{j}
$$

Then $\left\{h_{j}\right\}$ is convergent and $\bar{\partial} h_{j}=f_{j} \bar{\partial} \phi$. So by taking projection on the orthogonal complement of $A^{2}\left(\Omega,(-\rho)^{r}\right)$ we get $\left(I-P^{r}\right) h_{j}=H_{\phi}^{r} f_{j}$. Therefore, $\left\{H_{\phi}^{r} f_{j}\right\}$ is convergent.

Using the proof of the proposition above we get the following corollary.
Corollary 14. Let r be a nonnegative real number and Ω be a C^{2}-smooth bounded pseudoconvex domain in \mathbb{C}^{n} with a defining function ρ. Assume that Ω satisfies property (P) of Catlin (or B-regularity of Sibony). Then
(i) $\bar{\partial}$ has a compact solution operator on $K_{(0,1)}^{2}\left(\Omega,(-\rho)^{r}\right)$, the weighted $\bar{\partial}$-closed $(0,1)$-forms,
(ii) $H_{\phi}^{r}: A^{2}\left(\Omega,(-\rho)^{r}\right) \rightarrow L^{2}\left(\Omega,(-\rho)^{r}\right)$ is compact for all $\phi \in C(\bar{\Omega})$.

Proof. Since (ii) follows from (i), we will only prove (i). By a theorem of Diederich and Fornæss [1977], there exists a C^{2}-smooth defining function ρ_{1} and $0<\eta \leq 1$ such that $-\left(-\rho_{1}\right)^{\eta}$ is a strictly plurisubharmonic exhaustion function for Ω. Since ρ_{1} and ρ are comparable on $\bar{\Omega}$ it is enough to prove that $\bar{\partial}$ has a compact solution operator on $K_{(0,1)}^{2}\left(\Omega,\left(-\rho_{1}\right)^{r}\right)$.

Let $s=r / \eta \geq 0$ and q be an integer such that $s \leq q$. We define

$$
\Omega_{s}^{q}=\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{q}:-\left(-\rho_{1}(z)\right)^{\eta}+\lambda(w)<0\right\}
$$

where $\lambda(w)=\left|w_{1}\right|^{2 q / s}+\cdots+\left|w_{q}\right|^{2 q / s}$. Then $-\left(-\rho_{1}\right)^{\eta}+\lambda$ is a bounded C^{2}-smooth plurisubharmonic function and Ω_{s}^{q} is pseudoconvex. Furthermore, the first part of the proof of Proposition 13 shows that Ω_{s}^{q} satisfies property (P).

Let $\left\{f_{j}\right\}$ be a bounded sequence in $K_{(0,1)}^{2}\left(\Omega,\left(-\rho_{1}\right)^{r}\right)$. Then $\left\{F_{j}\right\}$ is a bounded sequence in $K_{(0,1)}^{2}\left(\Omega_{s}^{q}\right)$. As shown in the first part of this proof, Ω_{s}^{q} is a bounded (not necessarily C^{2}-smooth) pseudoconvex domain with property (P). Then $\left\{\bar{\partial}^{*} N^{\Omega_{s}^{q}} F_{j}\right\}$ has a convergent subsequence in $L^{2}\left(\Omega_{s}^{q}\right)$ where $N^{\Omega_{s}^{q}}$ is the $\bar{\partial}$-Neumann operator on $L_{(0,1)}^{2}\left(\Omega_{s}^{q}\right)$. By the proof of Proposition 8 and the fact that $\bar{\partial}^{*} N^{\Omega_{s}^{q}} F_{j}$ is holomorphic in w, we conclude that $\bar{\partial}^{*} N^{\Omega_{s}^{q}} F_{j}(\cdot, 0) \in L^{2}\left(\Omega,\left(-\rho_{1}\right)^{r}\right)$. Further, $\bar{\partial} \bar{\partial} * N^{\Omega_{s}^{q}} F_{j}(\cdot, 0)=f_{j}$ for all j and $\left\{\bar{\partial}^{*} N^{\Omega_{s}^{q}} F_{j}(\cdot, 0)\right\}$ has a convergent subsequence in $L^{2}\left(\Omega,\left(-\rho_{1}\right)^{r}\right)$. Therefore, $\bar{\partial}$ has a compact solution operator $R \bar{\partial}^{*} N \Omega_{s}^{q} E$ on $K_{(0,1)}^{2}\left(\Omega,\left(-\rho_{1}\right)^{r}\right)$ where E is the trivial extension operator and R is the restriction from Ω_{s}^{q} onto Ω.

The following lemma is essentially contained in the proof of [Arazy and Engliš 2001, Proposition 1.3]. We present it here for the convenience of the reader.
Lemma 15. Let r be a nonnegative real number, Ω be a bounded domain in \mathbb{C}^{n}, and $\phi \in C(\bar{\Omega})$. Assume that $z_{0} \in b \Omega$ has a holomorphic peak function. Then

$$
\lim _{z \rightarrow z_{0}} B_{r} T_{\phi}^{r}(z)=\phi\left(z_{0}\right)
$$

Proof. First, we prove that for any neighborhood U of z_{0},

$$
\begin{equation*}
\int_{\Omega \backslash U}\left|k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) \rightarrow 0 \quad \text { as } z \rightarrow z_{0} \tag{5}
\end{equation*}
$$

Indeed, for given U and $\varepsilon>0$ first we choose a holomorphic peak function g such that $|g(w)| \leq \varepsilon$ for all $w \in \Omega \backslash U$. This can be simply done by taking a high enough power of the holomorphic peak function g. Then we choose $\delta>0$ such that if $\left|z-z_{0}\right|<\delta$ and $z \in \Omega$ then $|g(z)|>1-\varepsilon$. In this case,

$$
\begin{aligned}
\int_{U}\left|k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) & \geq \int_{U}|g(w)|\left|k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) \\
& \geq\left.\left|\int_{\Omega} g(w)\right| k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) \mid \\
& -\left.\left|\int_{\Omega \backslash U} g(w)\right| k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) \mid \\
& \geq|g(z)|-\int_{\Omega \backslash U}|g(w)|\left|k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) \\
& \geq 1-\varepsilon-\varepsilon \int_{\Omega \backslash U}\left|k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) \\
& \geq 1-2 \varepsilon
\end{aligned}
$$

whenever $\left|z-z_{0}\right|<\delta$. This implies that for a given neighborhood U and $\varepsilon>0$, there exists $\delta>0$ such that if $\left|z-z_{0}\right|<\delta$ then

$$
\int_{\Omega \backslash U}\left|k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) \leq \varepsilon
$$

This gives (5).
Now for $\varepsilon>0$, we choose a neighborhood U of z such that $\left|\phi(w)-\phi\left(z_{0}\right)\right| \leq \varepsilon$ for all $w \in U$. Then for this neighborhood U and the same ε we choose $\delta>0$ such that if $\left|z-z_{0}\right|<\delta$ then $\int_{\Omega \backslash U}\left|k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) \leq \varepsilon /\left(1+2\|\phi\|_{L^{\infty}}\right)$. In this case,

$$
\begin{aligned}
&\left|B_{r} T_{\phi}^{r}(z)-\phi\left(z_{0}\right)\right| \leq \int_{\Omega}\left|\phi(w)-\phi\left(z_{0}\right)\right|\left|k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) \\
&= \int_{U}\left|\phi(w)-\phi\left(z_{0}\right)\right|\left|k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) \\
& \quad+\int_{\Omega \backslash U}\left|\phi(w)-\phi\left(z_{0}\right)\right|\left|k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) \\
& \leq \varepsilon \int_{U}\left|k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) \\
& \quad+2\|\phi\|_{L^{\infty}} \int_{\Omega \backslash U}\left|k_{z}^{r}(w)\right|^{2}(-\rho(w))^{r} d V(w) \\
& \leq \varepsilon+\varepsilon=2 \varepsilon .
\end{aligned}
$$

This indeed concludes $\lim _{z \rightarrow z_{0}} B_{r} T_{\phi}^{r}(z)=\phi\left(z_{0}\right)$.
We note that on any bounded domain, we have (see [Čučković and Şahutoğlu 2014, Lemma 1])

$$
T_{\phi_{2}}^{r} T_{\phi_{1}}^{r}=T_{\phi_{2} \phi_{1}}^{r}-H_{\bar{\phi}_{2}}^{r *} H_{\phi_{1}}^{r} .
$$

Using the fact above inductively one can prove the following lemma.
Lemma 16. Let r be a nonnegative real number and Ω be a C^{1}-smooth bounded domain in \mathbb{C}^{n} with a defining function ρ. Suppose $\phi_{1}, \ldots, \phi_{m} \in L^{\infty}(\Omega)$. Then

$$
\begin{aligned}
T_{\phi_{m}}^{r} T_{\phi_{m-1}}^{r} \cdots T_{\phi_{2}}^{r} T_{\phi_{1}}^{r}= & T_{\phi_{m} \phi_{m-1} \cdots \phi_{2} \phi_{1}}^{r}-T_{\phi_{m}}^{r} T_{\phi_{m-1}}^{r} \cdots T_{\phi_{3}}^{r} H_{\bar{\phi}_{2}}^{r *} H_{\phi_{1}}^{r} \\
& \quad-T_{\phi_{m}}^{r} T_{\phi_{m-1}}^{r} \cdots T_{\phi_{4}}^{r} H_{\bar{\phi}_{3}}^{r *} H_{\phi_{2} \phi_{1}}^{r}-\cdots-H_{\phi_{m}}^{r *} H_{\phi_{m-1} \cdots \phi_{2} \phi_{1}}^{r} \\
= & T_{\phi_{m-1} \cdots \phi_{2} \phi_{1}}^{r}+S^{r},
\end{aligned}
$$

where S^{r} is a finite sum of finite products of operators and each product starts with a Hankel operator.

Therefore, if the symbols $\phi_{1}, \ldots, \phi_{m}$ are continuous on $\bar{\Omega}$ we can write

$$
\begin{equation*}
T_{\phi}^{r} \cdots T_{\phi_{m}}^{r}=T_{\phi_{1} \cdots \phi_{m}}^{r}+S^{r}, \tag{6}
\end{equation*}
$$

where S^{r} is a finite sum of finite products of operators such that each product starts with a Hankel operator with symbol continuous on $\bar{\Omega}$.

We state the lemma below for general weights $\mu(z)$ (not only the ones of the form $(-\rho)^{k}$) that are nonnegative (can vanish on the boundary) and continuous on Ω. The weights of this form are called admissible weights (see [Pasternak-Winiarski 1990]) and the corresponding weighted Bergman projections and kernels are well defined. We say two weights μ_{1} and μ_{2} are comparable if there exists $c>0$ such that $c^{-1} \mu_{1}<\mu_{2}<c \mu_{1}$ on Ω.

Lemma 17. Let Ω be a domain in \mathbb{C}^{n} and μ_{1} and μ_{2} be comparable admissible weights. Let $k_{z}^{\mu_{j}}$ be the normalized Bergman kernel corresponding to μ_{j} for $j=1,2$, and $z_{0} \in b \Omega$. Then $k_{z}^{\mu_{1}} \rightarrow 0$ weakly as $z \rightarrow z_{0}$ if and only if $k_{z}^{\mu_{2}} \rightarrow 0$ weakly as $z \rightarrow z_{0}$.
Proof. It is enough to show one direction. So we will show that if $k_{z}^{\mu_{1}} \rightarrow 0$ weakly as $z \rightarrow z_{0}$ then $k_{z}^{\mu_{2}} \rightarrow 0$ weakly as $z \rightarrow z_{0}$. Since μ_{1} and μ_{2} are equivalent measures we have $A^{2}\left(\Omega, d \mu_{1}\right)=A^{2}\left(\Omega, d \mu_{2}\right)$ and there exists $C>1$ such that

$$
\frac{\|f\|_{\mu_{1}}}{C} \leq\|f\|_{\mu_{2}} \leq C\|f\|_{\mu_{1}}
$$

for all $f \in A^{2}\left(\Omega, d \mu_{1}\right)$. We remind the reader that for $z \in \Omega$ we have

$$
K_{\mu_{j}}(z, z)=\sup \left\{|f(z)|^{2}:\|f\|_{\mu_{j}} \leq 1\right\},
$$

where $K_{\mu_{j}}$ is the Bergman kernel corresponding to μ_{j}. Then $K_{\mu_{1}}$ and $K_{\mu_{2}}$ are equivalent on the diagonal in the sense that there exists $D=C^{2}>1$ such that

$$
\frac{K_{\mu_{1}}(z, z)}{D} \leq K_{\mu_{2}}(z, z) \leq D K_{\mu_{1}}(z, z)
$$

Now we assume that $k_{z}^{\mu_{1}} \rightarrow 0$ weakly as $z \rightarrow z_{0}$. Let us fix $f \in A^{2}\left(\Omega, d \mu_{1}\right)$. Then we have

$$
\frac{f(z)}{\sqrt{K_{\mu_{1}}(z, z)}}=\left\langle f, k_{z}^{\mu_{1}}\right\rangle_{\mu_{1}} \rightarrow 0 \quad \text { as } z \rightarrow z .
$$

Then

$$
\left\langle f, k_{z}^{\mu_{2}}\right\rangle_{\mu_{2}}=\frac{f(z)}{\sqrt{K_{\mu_{2}}(z, z)}} \rightarrow 0 \quad \text { as } z \rightarrow z_{0} .
$$

Therefore, we showed that if $k_{z}^{\mu_{1}} \rightarrow 0$ weakly as $z \rightarrow z_{0}$ then $k_{z}^{\mu_{2}} \rightarrow 0$ weakly as $z \rightarrow z_{0}$.

Let Ω be a pseudoconvex domain in \mathbb{C}^{n} and $z_{0} \in b \Omega$. Then we call z_{0} a bumping point if for any $\delta>0$ there exists a pseudoconvex domain Ω_{1} such that $\left\{z_{0}\right\} \cup \Omega \subset$ $\Omega_{1} \subset \Omega \cup B\left(z_{0}, \delta\right)$.

Lemma 18. Let r be a nonnegative real number, Ω be a bounded pseudoconvex domain in \mathbb{C}^{n} with Lipschitz boundary, and $z_{0} \in b \Omega$ be a bumping point. Then $k_{z}^{r} \rightarrow 0$ weakly as $z \rightarrow z_{0}$.

Proof. By Lemma 17, without loss of generality, we assume that ρ denotes the negative distance to the boundary of Ω.

Let us fix $f \in A^{2}\left(\Omega,(-\rho)^{r}\right)$ and choose $r_{1}, r_{2}>0$ so that $0<r_{1}<r_{2}$ and the outward unit vector v is transversal to $B\left(z_{0}, 2 r_{2}\right) \cap b \Omega$. Since z_{0} is a bumping point we choose a bounded pseudoconvex domain Ω_{1} such that

$$
\left\{z_{0}\right\} \cup \Omega \subset \Omega_{1} \subset \Omega \cup B\left(z_{0}, r_{1}\right) .
$$

So even though Ω_{1} contains a small neighborhood of z_{0}, we have

$$
\Omega \backslash B\left(z_{0}, r_{1}\right)=\Omega_{1} \backslash B\left(z_{0}, r_{1}\right) .
$$

Let us choose $\chi \in C_{0}^{\infty}\left(B\left(z_{0}, r_{2}\right)\right)$ such that $\chi \equiv 1$ on a neighborhood of $\overline{B\left(z_{0}, r_{1}\right)}$. For $\varepsilon>0$ small we define $f_{\varepsilon}(z)=f(z-\varepsilon \nu)$ and $g_{\varepsilon}=(1-\chi) f+\chi f_{\varepsilon}$. Then
(i) $f_{\varepsilon} \in A^{2}\left(\Omega \cap B\left(z_{0}, r_{2}\right),(-\rho)^{r}\right)$ and $f_{\varepsilon} \rightarrow f$ in $L^{2}\left(\Omega \cap B\left(z_{0}, r_{2}\right),(-\rho)^{r}\right)$, (ii) $\left.g_{\varepsilon}\right|_{\Omega \cap B\left(z_{0}, r_{2}\right)}$ is C^{∞}-smooth and $g_{\varepsilon} \rightarrow f$ in $L^{2}\left(\Omega,(-\rho)^{r}\right)$ as $\varepsilon \rightarrow 0$.

Let ρ_{1} and $\operatorname{Supp}(\bar{\partial} \chi)$ denote the negative distance to the boundary of Ω_{1} and the support of $\bar{\partial} \chi$, respectively. Then $\operatorname{Supp}(\bar{\partial} \chi) \cap \Omega=\operatorname{Supp}(\bar{\partial} \chi) \cap \Omega_{1}$ and $-\rho$ and $-\rho_{1}$ are equivalent on the support of $\bar{\partial} \chi$. We note that g_{ε} is well defined on Ω and not on Ω_{1}. However, $\bar{\partial} g_{\varepsilon}=0$ on $\Omega \cap B\left(z_{0}, r_{1}\right)$ as $\bar{\partial} \chi=0$ on $B\left(z_{0}, r_{1}\right)$ for all small $\varepsilon>0$. Hence $\bar{\partial} g_{\varepsilon}$ can be extended trivially to be defined on Ω_{1} as a $\bar{\partial}$-closed $(0,1)$-form on Ω_{1}. Then there exists $C>0$ such that
$\left\|\bar{\partial} g_{\varepsilon}\right\|_{L^{2}\left(\Omega_{1},\left(-\rho_{1}\right)^{r}\right)} \leq C\left\|f-f_{\varepsilon}\right\|_{L^{2}\left(\Omega \cap B\left(z_{0}, r_{2}\right),(-\rho)^{r}\right)}\|\bar{\partial} \chi\|_{L^{\infty}\left(B\left(z_{0}, r_{2}\right)\right)} \rightarrow 0 \quad$ as $\varepsilon \rightarrow 0$.
Next we will use Hörmander's theorem [1965] with the plurisubharmonic exponential weight $-r \log \left(-\rho_{1}\right)$. We note that $-\log \left(-\rho_{1}\right)$ is plurisubharmonic because Ω_{1} is pseudoconvex. Then using Hörmander's theorem we get a constant $c_{\Omega_{1}}>0$ (depending on Ω_{1}) and $h_{\varepsilon} \in L^{2}\left(\Omega_{1}\right)$ such that $\bar{\partial} h_{\varepsilon}=\bar{\partial} g_{\varepsilon}$ and

$$
\left\|h_{\varepsilon}\right\|_{L^{2}\left(\Omega_{1},\left(-\rho_{1}\right)^{r}\right)} \leq c_{\Omega_{1}}\left\|\bar{\partial} g_{\varepsilon}\right\|_{L^{2}\left(\Omega_{1},\left(-\rho_{1}\right)^{r}\right)} .
$$

Furthermore, since $\bar{\partial}$ is elliptic on the interior and $\bar{\partial} g_{\varepsilon}$ is C^{∞}-smooth on Ω_{1}, we have $h_{\varepsilon} \in C^{\infty}\left(\Omega_{1}\right)$.

We define $\tilde{f}_{n}=g_{1 / n}-h_{1 / n}$ on Ω. We note that while $\bar{\partial} g_{\varepsilon}$ is even defined on all of $\Omega_{1}, g_{\varepsilon}$ and, hence, $\tilde{f}_{1 / n}$ in general, are not. Then we have
(i) $\tilde{f}_{n} \in A^{2}\left(\Omega,(-\rho)^{r}\right)$ and $\tilde{f}_{n} \rightarrow f$ in $A^{2}\left(\Omega,(-\rho)^{r}\right)$,
(ii) $\left.\left.\tilde{f}_{n}\right|_{\Omega \cap B\left(z_{0}, r_{1}\right)} \in C^{\infty}\left(\overline{\Omega \cap B\left(z_{0}, r_{1}\right.}\right)\right)$.

So $\left\{\tilde{f}_{n}\right\}$ is a sequence converging to f and each member of the sequence is smooth up to the boundary of Ω on a neighborhood of z_{0}.

Finally, we will show weak convergence of k_{z}^{r} to 0 as $z \rightarrow z_{0}$.

$$
\begin{aligned}
\left|\left\langle f, k_{z}^{r}\right\rangle_{A^{2}\left(\Omega,(-\rho)^{r}\right)}\right| & \leq\left|\left\langle f-\tilde{f}_{n}, k_{z}^{r}\right\rangle_{A^{2}\left(\Omega,(-\rho)^{r}\right)}\right|+\left|\left\langle\tilde{f}_{n}, k_{z}^{r}\right\rangle_{A^{2}\left(\Omega,(-\rho)^{r}\right)}\right| \\
& \leq\left\|f-\tilde{f}_{n}\right\|_{L^{2}\left(\Omega,(-\rho)^{r}\right)}+\frac{\left|\tilde{f}_{n}(z)\right|}{\sqrt{K_{r}(z, z)}} .
\end{aligned}
$$

The first term on the right-hand side can be made arbitrarily small for large enough n, because $\left\|f-\tilde{f}_{n}\right\|_{L^{2}\left(\Omega,(-\rho)^{r}\right)} \rightarrow 0$ as $n \rightarrow \infty$. So for $\delta>0$ given we choose n_{δ} so that $\left\|f-\tilde{f}_{n_{\delta}}\right\|_{L^{2}\left(\Omega,(-\rho)^{r}\right)} \leq \delta$. Then since $\tilde{f}_{n_{\delta}}$ is C^{∞}-smooth on $\overline{\Omega \cap B\left(z_{0}, r_{1}\right)}$ (and $K_{r}(z, z) \rightarrow \infty$ as $\left.z \rightarrow z_{0}\right)$, we conclude that $\left|\tilde{f}_{n_{\delta}}(z)\right| / \sqrt{K_{r}(z, z)} \rightarrow 0$ as $z \rightarrow z_{0}$. Hence, $\lim \sup _{z \rightarrow z_{0}}\left|\left\langle f, k_{z}^{r}\right\rangle\right| \leq \delta$ for arbitrary $\delta>0$. Therefore, $k_{z}^{r} \rightarrow 0$ weakly as $z \rightarrow z_{0}$.

Now we are ready to prove Theorem 4.
Proof of Theorem 4. In the case $r=0$, the proof of the theorem simplifies greatly as inflation and the related techniques are unnecessary. So we will prove the more difficult case, $r>0$.

First we assume that T is compact about strongly pseudoconvex points. Let Ω_{r}^{p} be defined as in (1) and $z_{0} \in b \Omega$ be a strongly pseudoconvex point. Since small C^{2}-perturbations of strongly pseudoconvex points stay pseudoconvex, z_{0} is a bumping point for Ω. Then Lemma 18 implies that $k_{z}^{r} \rightarrow 0$ weakly as $z \rightarrow z_{0}$. Furthermore, there exists an open neighborhood U of z_{0} such that weakly pseudoconvex points are contained in $b \Omega \backslash \bar{U}$, and, as in the proof of (5), one can show that

$$
\left\|k_{z}^{r}\right\|_{L^{2}\left(\Omega \backslash \bar{U},(-\rho)^{r}\right)} \rightarrow 0 \text { as } z \rightarrow z 0 .
$$

Therefore, $\left\{k_{z}^{r}\right\}$ converges to 0 weakly about strongly pseudoconvex points as $z \rightarrow z_{0}$. Moreover, since T is compact about strongly pseudoconvex points (such operators map sequences of holomorphic functions weakly convergent about strongly pseudoconvex points to convergent sequences) we conclude that

$$
B_{r} T(z)=\left\langle T k_{z}^{r}, k_{z}^{r}\right\rangle_{A^{2}\left(\Omega,(-\rho)^{r}\right)} \rightarrow 0
$$

as $z \rightarrow z_{0}$.
Next we prove the other direction. As a first step we assume that T is a finite sum of finite products of Toeplitz operators on $A^{2}\left(\Omega,(-\rho)^{r}\right)$ with symbols continuous on $\bar{\Omega}$. Furthermore, we assume that

$$
\lim _{z \rightarrow z_{0}} B_{r} T(z)=0
$$

for any strongly pseudoconvex point $z_{0} \in b \Omega$.

Lemma 16 implies that

$$
\begin{equation*}
T=T_{\phi}^{r}+S^{r}, \tag{7}
\end{equation*}
$$

where $\phi \in C(\bar{\Omega})$ and S^{r} is a sum of operators that start with a Hankel operator with symbol continuous on $\bar{\Omega}$.

Lemma 15 implies that

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} B_{r} T_{\phi}^{r}(z)=\phi\left(z_{0}\right) \tag{8}
\end{equation*}
$$

as strongly pseudoconvex points have holomorphic peak functions (see [Range 1986, Theorem 1.13 in Ch VI]).

By Proposition 13, the operator H_{ψ}^{r} is compact about strongly pseudoconvex points for any $\psi \in C(\bar{\Omega})$. Then $H_{\psi}^{r} k_{z}^{r} \rightarrow 0$ as $z \rightarrow z_{0}$ for any $\psi \in C(\bar{\Omega})$ because, as proven in the first part of this proof, $k_{z}^{r} \rightarrow 0$ weakly about strongly pseudoconvex points as $z \rightarrow z_{0}$. Hence, $B_{r} S^{r}(z) \rightarrow 0$ as $z \rightarrow z_{0}$. Combining this with (7) and (8) we can conclude that

$$
\phi\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} B_{r} T(z)=0 .
$$

Since z_{0} was an arbitrary strongly pseudoconvex point, we have $\phi=0$ on all the strongly pseudoconvex boundary points. Then Lemma 12 and the fact that S^{r} is compact about strongly pseudoconvex points imply that T is compact about strongly pseudoconvex points.

Finally, we assume $T \in \mathscr{T}\left(\bar{\Omega},(-\rho)^{r}\right)$. Then, using Lemma 16 , for every $\varepsilon>0$ there exists $\phi_{\varepsilon} \in C(\bar{\Omega})$ and an operator S_{ε}^{r}, compact about strongly pseudoconvex points, such that

$$
\left\|T+T_{\phi_{\varepsilon}}^{r}+S_{\varepsilon}^{r}\right\| \leq \varepsilon
$$

Then for $z \in \Omega$ we have

$$
\begin{aligned}
\left|B_{r} T(z)+B_{r} T_{\phi_{\varepsilon}}^{r}(z)+B_{r} S_{\varepsilon}^{r}(z)\right| & =\left|\left\langle T k_{z}^{r}+T_{\phi_{\varepsilon}}^{r} z_{z}^{r}+S_{\varepsilon}^{r} k_{z}^{r}, k_{z}^{r}\right\rangle_{r}\right| \\
& \leq\left\|T+T_{\phi_{\varepsilon}}^{r}+S_{\varepsilon}^{r}\right\| \\
& \leq \varepsilon .
\end{aligned}
$$

Since $B_{r} S_{\varepsilon}^{r}(z) \rightarrow 0$ and $B_{r} T_{\phi_{\varepsilon}}^{r}(z) \rightarrow \phi_{\varepsilon}\left(z_{0}\right)$ as $z \rightarrow z_{0}$ (and we assume that $B_{r} T(z) \rightarrow 0$ as $\left.z \rightarrow z_{0}\right)$, we have $\left|\phi_{\varepsilon}\left(z_{0}\right)\right| \leq \varepsilon$. That is, $\left|\phi_{\varepsilon}\right|$ is less than or equal to ε on strongly pseudoconvex points of Ω. We choose $\psi_{\varepsilon} \in C(\bar{\Omega})$ such that $\psi_{\varepsilon}=0$ on strongly pseudoconvex boundary points of Ω and

$$
\sup \left\{\left|\psi_{\varepsilon}(z)-\phi_{\varepsilon}(z)\right|: z \in \bar{\Omega}\right\} \leq 2 \varepsilon .
$$

Then Lemma 12 implies that $T_{\psi_{\varepsilon}}^{r}$ is compact about strongly pseudoconvex points and

$$
\left\|T_{\phi_{\varepsilon}}^{r}-T_{\psi_{\varepsilon}}^{r}\right\| \leq 2 \varepsilon
$$

Hence

$$
\left\|T+T_{\psi_{\varepsilon}}^{r}+S_{\varepsilon}^{r}\right\| \leq\left\|T+T_{\phi_{\varepsilon}}^{r}+S_{\varepsilon}^{r}\right\|+\left\|T_{\psi_{\varepsilon}}^{r}-T_{\phi_{\varepsilon}}^{r}\right\| \leq 3 \varepsilon .
$$

Therefore, T is in the norm closure of the compact about strongly pseudoconvex points operators. Finally, Proposition 7 implies that T is compact about strongly pseudoconvex points.

Acknowledgements

Part of this work was done while Şahutoğlu was visiting Sabancı University. He thanks this institution for its hospitality and good working environment. We would like to thank the anonymous referee for pointing out and helping to fix some inaccuracies.

References

[Arazy and Engliš 2001] J. Arazy and M. Engliš, "Iterates and the boundary behavior of the Berezin transform", Ann. Inst. Fourier (Grenoble) 51:4 (2001), 1101-1133. MR Zbl
[Axler and Zheng 1998] S. Axler and D. Zheng, "Compact operators via the Berezin transform", Indiana Univ. Math. J. 47:2 (1998), 387-400. MR Zbl
[Catlin 1984] D. W. Catlin, "Global regularity of the $\bar{\partial}$-Neumann problem", pp. 39-49 in Complex analysis of several variables (Madison, Wis., 1982), edited by Y.-T. Siu, Proc. Sympos. Pure Math. 41, Amer. Math. Soc., Providence, RI, 1984. MR Zbl
[Čučković and Şahutoğlu 2013] Ž. Čučković and S. Şahutoğlu, "Axler-Zheng type theorem on a class of domains in $\mathbb{C}^{n ",}$, Integral Equations Operator Theory 77:3 (2013), 397-405. MR
[Čučković and Şahutoğlu 2014] Ž. Čučković and S. Şahutoğlu, "Compactness of products of Hankel operators on convex Reinhardt domains in $\mathbb{C}^{2 "}$, New York J. Math. 20 (2014), 627-643. MR
[Diederich and Fornæss 1977] K. Diederich and J. E. Fornæss, "Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions", Invent. Math. 39:2 (1977), 129-141. MR Zbl
[Engliš 1999] M. Engliš, "Compact Toeplitz operators via the Berezin transform on bounded symmetric domains", Integral Equations Operator Theory 33:4 (1999), 426-455. MR Zbl
[Forelli and Rudin 1974] F. Forelli and W. Rudin, "Projections on spaces of holomorphic functions in balls", Indiana Univ. Math. J. 24 (1974), 593-602. MR Zbl
[Hörmander 1965] L. Hörmander, " L^{2} estimates and existence theorems for the $\bar{\partial}$ operator", Acta Math. 113 (1965), 89-152. MR
[Kreutzer 2014] E. Kreutzer, Toelitz extensions and Berezin transforms, master's thesis, Universität des Saarlandes, 2014, Available at https://www.math.uni-sb.de/ag/eschmeier/old/examen/.
[Ligocka 1989] E. Ligocka, "On the Forelli-Rudin construction and weighted Bergman projections", Studia Math. 94:3 (1989), 257-272. MR Zbl
[Mitkovski et al. 2013] M. Mitkovski, D. Suárez, and B. D. Wick, "The essential norm of operators on $A_{\alpha}^{p}\left(\mathbb{B}_{n}\right)$ ", Integral Equations Operator Theory 75:2 (2013), 197-233. MR Zbl
[Pasternak-Winiarski 1990] Z. Pasternak-Winiarski, "On the dependence of the reproducing kernel on the weight of integration", J. Funct. Anal. 94:1 (1990), 110-134. MR Zbl
[Range 1986] R. M. Range, Holomorphic functions and integral representations in several complex variables, Graduate Texts in Mathematics 108, Springer, 1986. MR Zbl
[Sibony 1987] N. Sibony, "Une classe de domaines pseudoconvexes", Duke Math. J. 55:2 (1987), 299-319. MR Zbl
[Straube 2010] E. J. Straube, Lectures on the \mathscr{L}^{2}-Sobolev theory of the $\bar{\partial}$-Neumann problem, ESI Lectures in Mathematics and Physics 7, European Mathematical Society (EMS), Zürich, 2010. MR Zbl
[Suárez 2007] D. Suárez, "The essential norm of operators in the Toeplitz algebra on $A^{p}\left(\mathbb{B}_{n}\right)$ ", Indiana Univ. Math. J. 56:5 (2007), 2185-2232. MR Zbl

Received April 23, 2017. Revised September 25, 2017.

ŽELJKO ČUČKOVIĆ

Department of Mathematics and Statistics
University of Toledo
Toledo, OH
United States
zeljko.cuckovic@utoledo.edu

SÖNMEZ ŞAHUTOĞLU
Department of Mathematics and Statistics
University of Toledo
Toledo, OH
United States
Current address:
SABANCI UNIVERSITY
TUZLA
ISTANBUL
Turkey
sonmez.sahutoglu@utoledo.edu

Yunus E. Zeytuncu
Department of Mathematics and Statistics
University of Michigan-Dearborn
DEARBORN, MI
United States
zeytuncu@umich.edu

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm
EDITORS
Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@ math.ucla.edu

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department
National University of Singapore
Singapore 119076
matgwt@nus.edu.sg

Sorin Popa

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu
Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics University of California
Santa Barbara, CA 93106-3080 cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

aCADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
oregon state univ.

STANFORD UNIVERSITY
univ. of british columbia
UNIV. OF CALIFORNIA, BERKELEY
univ. of California, davis
UNIV. OF CALIFORNIA, LOS ANGELES
univ. of CALIFORNIA, RIVERSIDE
univ. of CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2018 is US $\$ 475 /$ year for the electronic version, and $\$ 640 /$ year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY

- mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 294 No. $1 \quad$ May 2018

Three-dimensional Sol manifolds and complex Kleinian groups 1
Waldemar Barrera, Rene Garcia-Lara and Juan Navarrete
On periodic points of symplectomorphisms on surfaces 19
Marta Batoréo
Mixing properties for hom-shifts and the distance between walks on associated 41
graphsNishant Chandgotia and Brian Marcus
Simultaneous construction of hyperbolic isometries 71
Matt Clay and Caglar Uyanik
A local weighted Axler-Zheng theorem in \mathbb{C}^{n} 89
Željoo ČučKović, Sönmez Şahutoc̆lu and Yunus E. Zeytuncu
Monotonicity and radial symmetry results for Schrödinger systems with 107
fractional diffusion
Jing Li
Moduli spaces of stable pairs 123
Yinbang Lin
Spark deficient Gabor frames 159
Romanos-Diogenes Malikiosis
Ordered groups as a tensor category 181
Dale Rolfsen
Multiplication of distributions and a nonlinear model in elastodynamics 195
C. O. R. Sarrico
Some Ambrose- and Galloway-type theorems via Bakry-Émery and modified 213
Ricci curvatures
Homare Tadano
Irreducible decomposition for local representations of quantum Teichmüller 233space
Jérémy Toulisse

[^0]: The work of the third author was partially supported by a grant from the Simons Foundation (\#353525). MSC2010: primary 47B35; secondary 32W05.
 Keywords: Axler-Zheng theorem, Toeplitz operators, pseudoconvex domains.

