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MONOTONICITY AND RADIAL SYMMETRY RESULTS FOR
SCHRÖDINGER SYSTEMS WITH FRACTIONAL DIFFUSION

JING LI

We consider a nonlinear Schrödinger system with fractional diffusion
(−1)α/2u(x)+ A(x)u(x)= v p(x) in �,
(−1)β/2v(x)+ B(x)v(x)= uq(x) in �,
u(x)≥ 0, v(x)≥ 0 in �,
u(x)= v(x)= 0 on �C,

where � is an unbounded parabolic domain. We first establish a narrow
region principle. Using this principle and a direct method of moving planes,
we obtain the monotonicity of nonnegative solutions and the Liouville-type
result for the nonlinear Schrödinger system with fractional diffusion. We
also obtain the radially symmetric result of positive solutions for the system
in the unit ball when A(x) and B(x) are constants.

1. Introduction

We are interested in the following nonlinear Schrödinger system with fractional
diffusion:

(1-1)


(−1)α/2u(x)+ A(x)u(x)= v p(x) in �,
(−1)β/2v(x)+ B(x)v(x)= uq(x) in �,
u(x)≥ 0, v(x)≥ 0 in �,
u(x)= v(x)= 0 on �C ,

where α, β ∈ (0, 2), p, q > 1, A(x) and B(x) are bounded from below and � is an
unbounded parabolic domain in Rn defined by

�= {x = (x ′, xn) ∈ Rn
| xn > |x ′|2, x ′ = (x1, x2, . . . , xn−1)}.
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Here, (−1)α/2 and (−1)β/2 are nonlocal pseudodifferential operators defined by

(−1)α/2u(x)= Cn,αP.V .
∫

Rn

u(x)− u(y)
|x − y|n+α

dy,(1-2)

(−1)β/2v(x)= Cn,β P.V .
∫

Rn

v(x)− v(y)
|x − y|n+β

dy,(1-3)

where P.V . stands for the Cauchy principal value, and Cn,α , Cn,β are normalization
positive constants. Let

F = Lα ∩C1,1
loc (�), G = Lβ ∩C1,1

loc (�),

where

Lα =
{

u | u ∈ L1
loc,

∫
Rn

|u(x)|
1+ |x |n+α

dx <∞
}
,

and

Lβ =
{
v | v ∈ L1

loc,

∫
Rn

|v(x)|
1+ |x |n+β

dx <∞
}
.

For u ∈ F, v ∈ G, the integral on the left-hand side of the equations in (1-1) is well
defined (see [Chen et al. 2017b]).

Linear and nonlinear equations and systems involving the fractional Laplacian
have received growing attention in recent years. It can be used to model diverse
physical phenomena, such as turbulence and water waves, molecular dynamics, and
pseudorelativistic boson stars (see [Bouchaud and Georges 1990], [Caffarelli and
Vasseur 2010], [Constantin 2006], [Tarasov and Zaslavsky 2006]). The operator
(−1)α/2 can also be used in mathematical finance (see [Applebaum 2009], [Bertoin
1996]). But they are still much less understood than nonfractional counterparts.

When α = β = 2, A(x)= B(x)= 0, (1-1) becomes the classical Lane–Emden
system:

(1-4)
{
−1u = v p,

−1v = uq .

When 1/(p+1)+1/(q+1) > (n−2)/n, the system (1-4) has no positive radial so-
lutions in all dimension (see [Mitidieri 1996]). D. G. de Figueiredo and P. L. Felmer
[1994] studied a Liouville type theorem for (1-4) by introducing superharmonic
functions when n ≥ 3. The main tool they used is the method of moving planes.
For n = 3, J. Serrin and H. Zou [1996] proved that the system (1-4) has no positive
solutions when 1/(p+1)+1/(q+1)> (n−2)/n under assumption that (u, v) has at
most polynomial growth at infinity. After Serrin’s work, there are some interesting
works about Lane–Emden systems and related Schrödinger systems on whole space
and half space; see [Montaru and Souplet 2014; Poláčik et al. 2007; Souplet 2009].
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For classical semilinear elliptic system, the symmetry and monotonicity of
positive solutions have been widely studied (see [Busca and Sirakov 2000; Chen
and Li 2010; Liu and Ma 2012; 2013; Ma and Liu 2010]). A powerful tool to
obtain these properties of such equations and systems is the method of moving
planes, which was introduced by Alexandrov [1962]. Serrin [1971] and Gidas,
Ni, Nirenberg [Gidas et al. 1979; 1981] adapted this method in partial differential
equations and made great contributions to improving this method.

As we know, the fractional Laplacian is nonlocal; that is, it is not differentiable
pointwise, but is globally integrable with respect to a singular kernel. The nonlocality
causes the main difficulty in studying corresponding problems. To circumvent this
difficulty, Caffarelli and Silvestre [2007] introduced the extension method that
reduced this nonlocal problem in Rn into a local one in Rn+1

+ through constructing
a Dirichlet to Neumann operator of a degenerate elliptic equation. This extension
method has been applied successfully to study equations involving the fractional
Laplacian, and a series of fruitful results have been obtained; see [Brändle et al.
2013; Chen and Zhu 2016].

Due to technical restrictions, they have to assume α ≥ 1. It seems that this
condition cannot be weakened if one wants to carry out the method of moving planes
on the extended equation. Actually, the case 0<α< 1 can be treated by considering
the corresponding integral equation. Using the method of moving planes (or spheres)
in integral forms [Chen and Li 2009; Chen et al. 2005a; 2005b; 2006; 2015; Fall
and Weth 2016; Fang and Zhang 2013; Li and Ma 2008; Ma and Chen 2008; Ma
and Zhao 2008, one can obtain the radial symmetry properties of the fractional
Laplacian equation. For the fractional Laplacian system, here we mention the work
by Zhuo, Chen, Cui and Yuan [Zhuo et al. 2016]. They considered the system

(1-5) (−1)α/2ui (x)= fi (u1(x),u2(x),...,um(x)), x ∈ Rn, i = 1,2,...,m.

By establishing the equivalence between (1-5) and its corresponding integral system,
the authors obtained the symmetry result and the nonexistence of positive solutions.

Either by extension or by integral equations, one needs to impose extra conditions
on the solutions. Can one carry out the method of moving planes directly on frac-
tional equation? The answer was provided in [Jarohs and Weth 2016] by Jarohs and
Weth. They introduced antisymmetric maximum principles and applied them to carry
out the method of moving planes directly on nonlocal problems to show the symme-
try of solutions. However, their maximum principles only apply to bounded regions.

Recently, Chen, Li and Li [Chen et al. 2017b] developed a direct method of
moving planes to study the fractional Laplacian, which worked directly on the
nonlocal operator. The key ingredients of this method are the antisymmetric
properties. They used this property to develop some techniques needed in the
direct method of moving planes in the whole space Rn and the upper half space Rn

+
,
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such as the narrow region principle, decay at infinity. The direct method of moving
planes is very useful. This method has been applied to fully nonlinear fractional
order-equations and systems in [Chen et al. 2017a]. In [Cheng et al. 2017], the
authors considered the symmetry and monotonicity properties for positive solutions
of fractional Laplacian equations by the direct method. Using the spirit of direct
method of moving planes in [Chen et al. 2017b], Cai and Mei [2017] studied
the fractional Lane–Emden system in Rn and obtain the symmetry properties and
Liouville-type result of positive solutions. Liu and Ma [2016] studied symmetry
properties of the general fractional Laplacian system:

(1-6)


(−1)α/2u(x))= f (u, v) in Rn,

(−1)α/2v(x)= g(u, v) in Rn,

u(x)≥ 0, v(x)≥ 0 in Rn

under a strong decay condition on the solutions at infinity.
The goal of this paper is to generalize the direct method of moving planes

to the Schrödinger system. We first establish the narrow region principle for
Schrödinger systems with fractional diffusion. We write x = (x ′, xn) ∈ Rn with
x ′ = (x1, x2, . . . , xn−1). Assume A(x) and B(x) are independent of xn , that is,

A(x)= A(x ′), B(x)= B(x ′).
Let

Tλ = {x ∈ Rn
| xn = λ, λ ∈ R, λ > 0}

be the moving plane and denote

Hλ = {x ∈ Rn
| xn < λ}, 6λ = {x ∈� | 0< xn < λ}.

For each point x = (x ′, xn)∈6λ, let xλ= (x ′, 2λ− xn) be the reflection point about
the plane Tλ. Denote

Uλ(x)= u(xλ)− u(x)= uλ(x)− u(x), Vλ(x)= v(xλ)− v(x)= vλ(x)− v(x).

It follows that for x ∈6λ,

(1-7)

(−1)α/2Uλ(x)= (−1)α/2uλ(x)− (−1)α/2u(x)

= pξ p−1(x)Vλ(x)− A(x ′)Uλ(x),

and

(1-8)

(−1)β/2Vλ(x)= (−1)β/2vλ(x)− (−1)β/2v(x)

= qηq−1(x)Uλ(x)− B(x ′)Vλ(x),

where ξ(x) is between vλ(x) and v(x) and η(x) is between uλ(x) and u(x). It is
obvious that Uλ(x) and Vλ(x) satisfy the antisymmetry property:

(1-9) Uλ(xλ)=−Uλ(x), Vλ(xλ)=−Vλ(x), x ∈ Hλ.
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Lemma 1.1 (narrow region principle). Let (u, v)∈ F×G be a nonnegative solution
of system (1-1) with 0 < α, β < 2. Assume that 1 < p, q < ∞, A(x) = A(x ′)
and B(x) = B(x ′) are bounded from below in �, where x = (x ′, xn) ∈ �, x ′ =
(x1, x2, . . . , xn−1). Then for all systems (1-7) and (1-8) and for sufficiently small δ,

(i) if there exists x∗1 ∈ 6λ,δ = {x ∈ 6λ | λ− δ < xn < λ} satisfying Uλ(x∗1 ) =
minx∈6λ Uλ(x) < 0, then

Vλ(x∗1 ) <Uλ(x∗1 ) < 0;

(ii) if there exists x∗2 ∈ 6λ,δ = {x ∈ 6λ | λ− δ < xn < λ} satisfying Vλ(x∗2 ) =
minx∈6λ Vλ(x) < 0, then

Uλ(x∗2 ) < Vλ(x∗2 ) < 0.

Based on Lemma 1.1, we can obtain the following result.

Theorem 1.2. Let (u, v) ∈ F ×G be a nonnegative solution of system (1-1) with
0 < α, β < 2. If 1 < p, q <∞, A(x) = A(x ′) and B(x) = B(x ′) are bounded
from below in �, where x = (x ′, xn) ∈ �, x ′ = (x1, x2, . . . , xn−1). Then (u, v) is
monotonically increasing in xn .

When α = β = 2, this result is contained in the series papers of Berestycki, Caf-
farelli and Nirenberg [Berestycki and Nirenberg 1992; Berestycki et al. 1993; 1996;
1997] and they have used the classical method of moving planes. Hence our result
by using the direct method of moving planes due to [Chen et al. 2017b] and [Jarohs
and Weth 2016] can be considered as an extension of theirs to the nonlocal system.

As an immediate application, we obtain the following Liouville type result.

Corollary 1.3. Let (u, v) ∈ F ×G be a nonnegative solution of system (1-1) with
0 < α, β < 2. Assume that 1 < p, q <∞, A(x) = A(x ′) and B(x) = B(x ′) are
bounded from below in �, where x = (x ′, xn) ∈�, x ′ = (x1, x2, . . . , xn−1). If

(1-10) lim
x→∞

u(x)= 0, lim
x→∞

v(x)= 0,

Then u ≡ 0, v ≡ 0.

We consider the system (1-1) when A(x)= A and B(x)= B, where A, B are two
constants in the unit ball B1(0) and obtain the radial symmetry and monotonicity
of positive solutions.

Theorem 1.4. Assume (u, v) ∈ Lα ∩C1,1
loc (B1(0))× Lβ ∩C1,1

loc (B1(0)) is a positive
solution of the following system

(1-11)


(−1)α/2u(x)+ Au(x)= v p(x) in B1(0),
(−1)β/2v(x)+ Bv(x)= uq(x) in B1(0),
u(x)≥ 0, v(x)≥ 0 in B1(0),
u(x)= v(x)= 0 on BC

1 (0),
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with 0<α, β < 2 and 1< p, q <∞. Then each positive solution (u(x), v(x)) must
be radially symmetric and monotone decreasing about the origin.

The paper is organized as follows. Section 2 is devoted to proving Lemma 1.1,
the narrow region principle for (1-1). In Section 3, we study the monotonicity
of positive solutions of (1-1) in � and prove Theorem 1.2. Finally, the proof of
Theorem 1.4 will be presented in Section 4. Note that in the following, C will be a
positive constant which can be different from line to line.

2. Preliminaries

In this section, we will prove Lemma 1.1, which plays an important role in the
proof of Theorem 1.2 and Theorem 1.4.

Proof. (i) Without loss of generality, let

x∗1 ∈6λ,δ and Uλ(x∗1 )= min
x∈6λ

Uλ(x) < 0.

It follows that

(−1)α/2Uλ(x∗1 )= Cn,αP.V .
∫

Rn

Uλ(x∗1 )−Uλ(y)
|x∗1−y|n+α

dy

= Cn,αP.V .
(∫

Hλ

Uλ(x∗1 )−Uλ(y)
|x∗1−y|n+α

dy+
∫

Rn\Hλ

Uλ(x∗1 )−Uλ(y)
|x∗1−y|n+α

dy
)

= Cn,αP.V .
(∫

Hλ

Uλ(x∗1 )−Uλ(y)
|x∗1−y|n+α

dy+
∫

Hλ

Uλ(x∗1 )−Uλ(yλ)
|x∗1−yλ|n+α

dy
)
.

Note that |x∗1 − y| ≤ |x∗1 − yλ| when x∗1 , y ∈ 6λ, and using the antisymmetry of
Uλ(x), we have

(−1)α/2Uλ(x∗1 )≤ Cn,αP.V .
(∫

Hλ

Uλ(x∗1 )−Uλ(y)
|x∗1 − yλ|n+α

dy+
∫

Hλ

Uλ(x∗1 )+Uλ(y)
|x∗1 − yλ|n+α

dy
)

= Cn,αP.V .
∫

Hλ

2Uλ(x∗1 )
|x∗1 − yλ|n+α

dy.

Let D = B2δ(x∗1 )∩ Hλ. Then we obtain

(2-1)
∫

Hλ

1
|x∗1− yλ|n+α

dy≥
∫

D

1
|x∗1− yλ|n+α

dy≥C
∫

B2δ(x∗1 )

1
|x∗1− yλ|n+α

dy≥
C
δα
.

Thus,

(−1)α/2Uλ(x∗1 )≤
CUλ(x∗1 )
δα

< 0.

According to (1-7), we get

pξ p−1(x∗1 )Vλ(x
∗

1 )− A(x∗1 )Uλ(x∗1 )= (−1)
α/2Uλ(x∗1 )≤

C
δα

Uλ(x∗1 ) < 0.
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Note that A(x) = A(x ′) is bounded from below and ξ(x) is between vλ(x) and
v(x), v(x) ∈ G = Lβ ∩C1,1

loc (�), hence, for δ sufficiently small, we have

(2-2) Vλ(x∗1 ) <
A(x∗1 )+

C
δα

pv p−1(x∗1 )
Uλ(x∗1 ) <Uλ(x∗1 ) < 0.

(ii) If there exists x∗2 ∈6λ,δ = {x ∈6λ | λ− δ < xn < λ} such that

Vλ(x∗2 )= min
x∈6λ

Vλ(x) < 0,

similarly to the proof of (i), we can obtain

(2-3) (−1)β/2Vλ(x∗2 )≤
CVλ(x∗2 )
δβ

< 0.

Note that B(x) is bounded from below and u(x) ∈ F = Lα ∩C1,1
loc (�), hence, for δ

sufficiently small, according to (1-8), we have

(2-4) Uλ(x∗2 ) <
B(x∗2 )+

C
δβ

quq−1(x∗2 )
Vλ(x∗2 ) < Vλ(x∗2 ) < 0.

Thus we have completed the proof of Lemma 1.1. �

3. The proof of Theorem 1.2

In this section, we will carry out the direct method of moving planes on the solution
(u(x), v(x)) along xn direction to prove Theorem 1.2.

Proof. The proof of Theorem 1.2 is divided into two steps.

Step 1: We show that for λ > 0 sufficiently close to zero,

(3-1) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈6λ.

If (3-1) does not hold, then there exists a point x∗1 ∈ 6λ such that Uλ(x∗1 ) < 0.
Without loss of generality, we assume

Uλ(x∗1 )= min
x∈6λ

Uλ(x) < 0.

By Lemma 1.1, for λ > 0 sufficiently close to zero,

(3-2) Vλ(x∗1 ) <
A(x∗1 )+

C
λα

pv p−1(x∗1 )
Uλ(x∗1 ) < 0.

Note that Vλ(x) = 0 for x ∈ Tλ and Vλ(x) ≥ 0 for x ∈ ∂6λ, hence, there exists
x∗2 ∈6λ such that

Vλ(x∗2 )= min
x∈6λ

Vλ(x) < 0.
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Similarly to the proof of Lemma 1.1, for λ > 0 sufficiently close to zero, we have

(3-3) Uλ(x∗2 ) <
B(x∗2 )+

C
λβ

quq−1(x∗2 )
Vλ(x∗2 ).

Therefore, together with (3-2) and (3-3), we get

(3-4)

Vλ(x∗1 ) <
A(x∗1 )+

C
λα

pv p−1(x∗1 )
Uλ(x∗1 )≤

A(x∗1 )+
C
λα

pv p−1(x∗1 )
Uλ(x∗2 )

<

(
A(x∗1 )+

C
λα

)
pv p−1(x∗1 )

(
B(x∗2 )+

C
λβ

)
quq−1(x∗2 )

Vλ(x∗2 )

≤

(
A(x∗1 )+

C
λα

)
pv p−1(x∗1 )

(
B(x∗2 )+

C
λβ

)
quq−1(x∗2 )

Vλ(x∗1 ).

Because A(x)= A(x ′) and B(x)= B(x ′) are bounded from below and Vλ(x∗1 ) < 0,
therefore, (3-4) is a contradiction for λ > 0 sufficiently close to zero and the proof
of Step 1 is completed.

Step 1 provides a starting point. We start from such a small λ and move the
plane Tλ up continuously in the direction of xn-axis to its limiting position as long
as (3-1) holds. Define

(3-5) λ0 = sup{λ > 0 |Uµ(x)≥ 0, Vµ(x)≥ 0, x ∈6µ;µ≤ λ}.

Step 2: We prove

(3-6) λ0 =+∞.

Before proceeding further, we investigate some properties of Uλ0(x) and Vλ0(x)
for x ∈6λ0 .

Proposition 3.1. If Uλ0(x)≡ 0, then Vλ0(x)≡ 0. If Vλ0(x)≡ 0, then Uλ0(x)≡ 0.

Proof. If Uλ0(x)≡ 0, then (1-7) becomes

0= (−1)α/2Uλ0(x)= pξ p−1(x)Vλ0(x),

Obviously, we get Vλ0(x)≡ 0. �

Proposition 3.2. If Uλ0(x) 6≡ 0 or Vλ0(x) 6≡ 0, then Uλ0(x) > 0 and Vλ0(x) > 0 for
all x ∈6λ0 .
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Proof. Since we know that Uλ0(x)≥ 0, x ∈6λ0 . If Uλ0(x) > 0 does not hold, we
assume that there exists some point x̃ ∈6λ0 such that Uλ0(x̃)= 0.

(3-7)

(−1)α/2Uλ0(x̃)= Cn,αP.V .
∫

Rn

Uλ0(x̃)−Uλ0(y)
|x̃− y|n+α

dy

= Cn,αP.V .
(∫

Hλ0

−Uλ0(y)
|x̃− y|n+α

dy+
∫

Rn\Hλ0

−Uλ0(y)
|x̃− y|n+α

dy
)

= Cn,αP.V .
(∫

Hλ0

−Uλ0(y)
|x̃− y|n+α

dy+
∫

Hλ0

−Uλ0(y
λ)

|x̃− yλ|n+α
dy
)

= Cn,αP.V .
∫

Hλ0

(
1

|x̃− yλ|n+α
−

1
|x̃− y|n+α

)
Uλ0(y)dy.

Note that |x̃ − yλ|> |x̃ − y|, hence,

(3-8) (−1)α/2Uλ0(x̃) < 0.

On the other hand, according to (1-7),

(3-9) (−1)α/2Uλ0(x̃)= pξ p−1(x̃)Vλ0(x̃)− A(x̃)Uλ0(x̃)= pξ p−1(x̃)Vλ0(x̃)≥ 0.

Evidently, this is contradictory to (3-8). Consequently, we obtain Uλ0(x) > 0 for
all x ∈6λ0 . Then by Proposition 3.1, we get Vλ0(x) 6≡ 0. Similarly to above, we
obtain Vλ0(x) > 0 for all x ∈6λ0 , completing the proof. �

Now, we start to prove (3-6). If λ0 <+∞, we will show

(3-10) Uλ0(x)≡ 0, x ∈6λ0 .

Then by Proposition 3.1, Vλ0(x)≡ 0, x ∈6λ0 . Thus, we obtain

u(x ′, 2λ0)= u(x ′, 0),(3-11)

v(x ′, 2λ0)= v(x ′, 0).(3-12)

But the left-hand side of (3-11) is positive, and the right-hand side of (3-11) is equal
to zero. This is contradictory. The same holds for v(x). Hence, (3-6) holds.

In the following, we will prove (3-10). If Uλ0(x) 6≡ 0, x ∈6λ0 , by Proposition 3.2,
we have Uλ0(x) > 0, Vλ0(x) > 0, x ∈ 6λ0 . Hence, for small δ > 0, there exists a
positive constant c0 such that

Uλ0(x)≥ c0 > 0, Vλ0(x)≥ c0 > 0, x ∈6λ0−δ.

Since Uλ(x) and Uλ(x) depends on λ continuously, there exists ε > 0 and ε < δ
such that for all λ ∈ (λ0, λ0+ ε),

(3-13) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈6λ0−δ.
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When x ∈6λ \6λ0−δ , we also have Uλ(x)≥ 0, Vλ(x)≥ 0. If not, without loss
of generality, we assume that there exists a point x̄1 ∈6λ \6λ0−δ such that

Uλ(x̄1)= min
x∈6λ\6λ0−δ

Uλ(x) < 0.

According to Lemma 1.1,

Vλ(x̄1) <
A(x̄1)+

C
(δ+ε)α

pv p−1(x̄1)
Uλ(x̄1) < 0.

Hence, there exists x̄2 ∈6λ \6λ0−δ such that

Vλ(x̄2)= min
x∈6λ\6λ0−δ

Vλ(x) < 0.

By Lemma 1.1 again,

Uλ(x̄2) <
B(x̄2)+

C
(δ+ε)β

quq−1(x̄2)
Vλ(x̄2) < 0.

Similarly to (3-4),

Uλ(x̄2) <

(
A(x̄1)+

C
(δ+ε)α

)
pv p−1(x̄1)

(
B(x̄2)+

C
(δ+ε)β

)
quq−1(x̄2)

Uλ(x̄2).

Since A(x) = A(x ′) and B(x) = B(x ′) are bounded from below and Uλ(x̄2) < 0,
this is contradictory for δ and ε sufficiently small. Therefore, we obtain

(3-14) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈6λ \6λ0−δ.

Combining (3-13) and (3-14), we get that for λ ∈ (λ0, λ0+ ε),

(3-15) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈6λ.

(3-15) indicates that the plane Tλ0 can be moved up further. We have reached a
contradiction with the definition of λ0. Hence, we must have Uλ0(x)≡ 0.

We have shown that λ0 = +∞ and Uλ0(x) ≥ 0, Vλ0(x) ≥ 0. It indicates that
u(x) and v(x) are monotonically increasing in xn , which completes the proof of
Theorem 1.2. �

Proof of Corollary 1.3. We have shown that u(x) and v(x) are monotonically
increasing in xn . In terms of u(0)= v(0)= 0 and the condition (1-10), we derive

u(x)≡ 0, v(x)≡ 0 in �.

Thus we have completed the proof. �
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4. The proof of Theorem 1.4

In this section, we will apply Lemma 1.1 to prove Theorem 1.4. We consider the
case A(x) = A and B(x) = B in system (1-1), where A, B are constants. In this
case, (1-1) becomes (1-11).

Choose any direction to be the x1 direction. We write x = (x1, x ′) ∈ Rn with
x ′ = (x2, x3, . . . , xn). Let

T̂λ = {x ∈ Rn
| x1 = λ, λ ∈ R, λ >−1}

be the moving planes and denote

Ĥλ = {x ∈ Rn
| x1 < λ}, 6̂λ = {x ∈ B1(0) | −1< x1 < λ}.

For each point x = (x1, x ′)∈ 6̂λ, let xλ= (2λ− x1, x ′) be the reflection point about
the plane T̂λ and Uλ(x), Vλ(x) defined as before. Then it follows that for x ∈ 6̂λ,

(4-1) (−1)α/2Uλ(x)= pξ p−1(x)Vλ(x)− AUλ(x),

and

(4-2) (−1)β/2Vλ(x)= qηq−1(x)Uλ(x)− BVλ(x),

where ξ(x) is between vλ(x) and v(x) and η(x) is between uλ(x) and u(x).

Proof of Theorem 1.4. Step 1: We show that for λ >−1 sufficiently close to −1,

(4-3) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈ 6̂λ.

The proof is almost the same as Step 1 in the proof of Theorem 1.2.
Step 1 provides a starting point. We start from such a small λ and move the

plane T̂λ continuously in the direction of x1-axis to its limiting position as long as
(4-3) holds.

Step 2: Define

(4-4) λ0 = sup{λ >−1 |Uµ(x)≥ 0, Vµ(x)≥ 0, x ∈ 6̂µ;µ≤ λ}.

We will prove

(4-5) λ0 = 0.

If λ0 < 0, we will show that the plane T̂λ can be moved further right. That is,
there exists ε > 0 such that for all λ ∈ (λ0, λ0+ ε),

(4-6) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈ 6̂λ.

This is a contradiction with the definition of λ0. Hence, we must have λ0 = 0.
The proof of (4-6) is composed of two parts.
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(a): We show that for ε > 0, δ > 0 and ε < δ, when λ ∈ (λ0, λ0+ ε),

(4-7) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈ 6̂λ0−δ.

We know that
Uλ0(x)≥ 0, Vλ0(x)≥ 0, x ∈ 6̂λ0 .

In fact, if λ0 < 0, we must have

Uλ0(x) > 0, Vλ0(x) > 0, x ∈ 6̂λ0 .

If Uλ0(x) > 0 does not hold, we assume that there exists some point x̃ ∈ 6̂λ0 such
that Uλ0(x̃)= 0.

(−1)α/2Uλ0(x̃)= Cn,αP.V .
∫

Rn

Uλ0(x̃)−Uλ0(y)
|x̃ − y|n+α

dy

= Cn,αP.V .
∫

Ĥλ0

−Uλ0(y)
|x̃ − y|n+α

dy+
∫

Rn\Ĥλ0

−Uλ0(y)
|x̃ − y|n+α

dy

= Cn,αP.V .
∫

Ĥλ0

−Uλ0(y)
|x̃ − y|n+α

dy+
∫

Ĥλ0

−Uλ0(y
λ)

|x̃ − yλ|n+α
dy

= Cn,αP.V .
∫

Ĥλ0

(
1

|x̃ − yλ|n+α
−

1
|x̃ − y|n+α

)
Uλ0(y) dy.

Note that |x̃ − yλ|> |x̃ − y|, hence,

(4-8) (−1)α/2Uλ0(x̃) < 0.

On the other hand, according to (4-1),

(−1)α/2Uλ0(x̃)= pξ p−1(x̃)Vλ(x̃)− AUλ(x̃)= pξ p−1(x̃)Vλ(x̃)≥ 0.

This is contradictory to (4-8). Consequently, we obtain Uλ0(x) > 0 for all x ∈ 6̂λ0 .
Similarly, we can show Vλ0(x) > 0 for all x ∈ 6̂λ0 . Hence, for small δ > 0, there
exists a positive constant c0 such that

Uλ0(x)≥ c0 > 0, Vλ0(x)≥ c0 > 0, x ∈ 6̂λ0−δ.

Since Uλ(x) and Vλ(x) depend on λ continuously, there exists ε > 0 with ε < δ
such that for all λ ∈ (λ0, λ0+ ε),

Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈ 6̂λ0−δ.

(b): Using Lemma 1.1 and similarly to the proof of (3-14), we get

(4-9) Uλ(x)≥ 0, , Vλ(x)≥ 0 x ∈ 6̂λ \ 6̂λ0−δ.
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Together with (a) and (b), we prove (4-6) is true for all λ ∈ (λ0, λ0+ ε). Thus, we
obtain λ0 = 0 and Uλ0(x)≥ 0, Vλ0(x)≥ 0, x ∈ 6̂λ0 .

Similarly, we move the plane Tλ from 1 to the left and show that

Uλ0(x)≤ 0, Vλ0(x)≤ 0, x ∈ 6̂λ0 .

Then we obtain that

λ0 = 0 and Uλ0(x)≡ 0, Vλ0(x)≡ 0, x ∈ 6̂λ0 .

This indicates that u(x) and v(x) are symmetric about T0. Since the x1 direction
can be chosen arbitrarily, we have actually shown that u(x) and v(x) are radially
symmetric about the origin. Thus, we have completed the proof of Theorem 1.4. �
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