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SPARK DEFICIENT GABOR FRAMES

ROMANOS-DIOGENES MALIKIOSIS

The theory of Gabor frames of functions defined on finite abelian groups
was initially developed in order to better understand the properties of Ga-
bor frames of functions defined over the reals. However, during the last
twenty years the topic has acquired an interest of its own. One of the funda-
mental questions asked in this finite setting is on the existence of full spark
Gabor frames. In a previous paper, we proved the existence of such frames
when the underlying group is finite cyclic, and constructed some examples.
In this paper, we resolve the noncyclic case; in particular, we show that there
can be no full spark Gabor frames of windows defined on finite abelian
noncyclic groups. We also prove that all eigenvectors of certain unitary
matrices in the Clifford group in odd dimensions generate spark deficient
Gabor frames. Finally, similarities between the uncertainty principles con-
cerning the finite-dimensional Fourier transform and the short-time Fourier
transform are discussed.

1. Introduction

The Gabor frame of a function f ∈ L2(R) is the set of all time-frequency translates
of f , that is, the set of all functions of the form e2π i xy f (x− t), for y, t ∈R, and it is
a fundamental concept in time-frequency analysis and frame theory [Pfander 2013].
The function f usually represents a signal, t the time delay, and the pointwise mul-
tiplication by e2π i xy is the frequency “shift”. Through sampling and periodization
[Christensen 2003], one passes to the finite version of a Gabor frame, namely the
shift-frequency translates of a complex function defined on a finite cyclic group.
Even though finite-dimensional Gabor frames were studied in order to analyze the
properties of continuous signals, they later developed an interest of their own.

Up to multiplication by roots of unity, a finite-dimensional Gabor frame is the
same as a Weyl–Heisenberg orbit, and this terminology is much more prevalent in
mathematical physics and quantum information theory. A conjecture by Zauner
[1999] states that for every dimension N there are vectors (called “fiducials”) whose
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WH orbit is equiangular. This means that the expression |〈u, v〉| is constant for every
pair of distinct vectors u, v within this orbit. This is also known as the SIC-POVM
problem which has attracted a lot of attention lately due to the vast connections to
scientific areas such as quantum cryptography [Renes 2005], quantum tomography
[Scott 2006], and algebraic number theory, especially Hilbert’s 12th problem for
real quadratic fields [Appleby et al. 2013; 2015; 2016; 2017]. Such a WH orbit
would then produce the maximal possible number of vectors in CN that are pairwise
equiangular, namely N 2 [Strohmer and Heath 2003]. Yet another terminology that
appears for this phenomenon is maximal equiangular tight frame (or maximal ETF
for short) [Fickus 2009], which is a special case of the packing problem in the
setting of projective spaces. The interest in algebraic construction of families of
ETFs has also increased due to applications to signal processing [Fickus et al. 2012;
Iverson et al. 2016; Jasper et al. 2014].

A conjecture by Heil, Ramanathan, and Topiwala [Heil et al. 1996] states that
any finite set of a Gabor frame of a nonzero f ∈ L2(R) is linearly independent, and
it is still open. Similar questions can be raised when the function f is defined on
a finite abelian group G. In this case, the Gabor frame consists of |G|2 elements
in a |G|-dimensional space, so it is not possible that they are linearly independent.
Instead, we require that any selection of |G| vectors is linearly independent, which
is the definition of the full spark property.

Definition 1.1. Let
U = {u1, . . . , uM} ⊆ CN

with M ≥ N. The set U is called full spark when every selection of N vectors from
U is linearly independent; otherwise, U is called spark deficient.

The discrete analogue of the HRT conjecture claims that the Gabor frame of
f ∈ CG is full spark for almost all f , when G is cyclic [Lawrence et al. 2005].
This problem has been completely solved by the author [Malikiosis 2015]. While
the techniques utilized to attack the HRT conjecture are analytic in nature, various
algebraic techniques are needed for the discrete counterpart, such as Chebotarev’s
theorem on Fourier minors. The idea of the proof is as follows: consider f as
a column vector in CN, where |G| = N, and consider the N × N 2 matrix whose
columns are precisely the elements of the Gabor frame of f , denoted by V f . The
Gabor frame generated by f is then full spark if and only if every N × N minor of
V f is nonzero. Every such minor is a homogeneous polynomial on the coordinates
of f ; the basic ingredient of the proof is to show that there is a monomial appearing
with nonzero coefficient in every such minor. For the case where N is a prime, this
was accomplished in [Lawrence et al. 2005] through Chebotarev’s theorem, which
asserts that every minor of the N × N discrete Fourier matrix is nonzero. For the
case where N is composite, a probabilistic argument by the author [Malikiosis 2015]
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was used in order to show the existence of monomials with nonzero coefficient in
every minor. Furthermore, the author proved that almost every f ∈ CG generates
a full spark Gabor frame, and explicitly constructed such frames, while previous
proofs were only existential.

For noncyclic groups, it was previously only known that full spark Gabor frames
do not exist for functions defined on the Klein group, Z/2Z×Z/2Z [Pfander 2013].
We shall extend this argument to any finite abelian noncyclic group, in the following
way: first, we show that the full spark property is hereditary with respect to the
group. Therefore, in order to show that no full spark Gabor frame exists, it suffices
to restrict our attention to groups of the form Z/pZ×Z/pZ, for p odd prime. Thus
is proved the first main result of this paper:

Theorem 1.2. Let G be a finite abelian, noncyclic group. Then, for any f ∈ CG,
the Gabor frame generated by f is spark deficient.

In relation to the SIC-POVM problem we will revisit the cyclic case and prove
that all eigenvectors of Clifford unitaries whose (projective) order is not coprime to
the dimension N, for N odd, generate spark deficient Gabor frames, extending some
results in [Dang et al. 2013]. This shows that there is not in principle any relation
between these two basic properties of a Gabor frame, namely equiangularity and
the full spark property.

Lastly, we investigate a possible connection between uncertainty principles with
respect to the discrete and short-time Fourier transforms. Uncertainty principles
provide a measure of localization of signals whose various transforms (e.g., Fourier)
are well-localized. When these signals are defined over a finite abelian group,
localization is usually measured by the size of the support, leading to classical
and new versions of uncertainty principles with respect to the Fourier transform
[Meshulam 2006; Tao 2005]. This sort of principle appears in applications to sparse
signal recovery, and sparse matrix identification [Candès et al. 2006; Krahmer et al.
2008; Pfander 2007], among others.

The paper is organized as follows: in Section 2, we will give the definitions and
the necessary background related to the results of this paper. In Section 3, we will
prove that full spark Gabor frames do not exist over finite abelian noncyclic groups.
Section 4 revisits the cyclic case, where we find some special vectors that generate
spark deficient Gabor frames, and Section 5 deals with uncertainty principles.

2. Background

2A. Notation. Throughout this note, G will denote a finite abelian group written
additively, and CG will denote the set of all complex valued functions defined
on G. An element f ∈CG will interchangeably be viewed as a vector in CN, where
N = |G|, and as a function f :G→C. CN is equipped with an inner product 〈· , ·〉,



162 ROMANOS-DIOGENES MALIKIOSIS

defined as follows:

〈x, y〉 =
N∑

i=1

xi yi ,

for x = (x1, . . . , xN ), y = (y1, . . . , yN ). Only in Section 4B will we use the
bra-ket notation, 〈x |y〉, with the caution that complex conjugation is taken on the
coordinates of x . We remind that |x〉 denotes a column vector in CN, and 〈x | is its
conjugate transpose; hence |x〉〈x | is the 1-dimensional projector onto |x〉.

Furthermore, we decided to use Z/NZ for the ring of residues mod N, and
reserve Zp for the ring of p-adic integers. Similarly, Qp denotes the field of p-adic
rational numbers.

For any f ∈ CN denote by f̂ the (unnormalized) Fourier transform of f ; that is,
f̂ =WN f , where WN = (ω

i j )N−1
i, j=0, the character table of Z/NZ, with ω = e2π i/N,

and finally, let ‖ f ‖0 denote the cardinality of the support of f .
Two operators U and V on CN will be equal up to a phase if U = eiθV ; this will

also be denoted as
U .
= V .

The projective order of an operator U is then defined to be the smallest nonnegative
integer m for which U m .

= I . Finally, the conjugate transpose of U is denoted by U∗.

2B. Definitions. For any x ∈G and ξ ∈ Ĝ, define the operators Tx ,Mξ :C
G
→CG,

with Tx f (g) = f (g− x) and Mξ f (g) = ξ(g) f (g), for any f ∈ CG, g ∈ G. The
Tx are called translation operators, and the Mξ modulation operators. For any
λ = (x, ξ) ∈ G × Ĝ the operators π(λ) = MξTx are called time-frequency shift
operators. We have

MξTx = ξ(x)Tx Mξ ,

or, in other words, Mξ and Tx commute up to a phase. From this fact we get a
faithful projective representation

ρ : G× Ĝ→ PGL(CG),

which is also irreducible [Feichtinger et al. 2009; Pfander 2013].
For a subset 3⊆ G× Ĝ and f ∈ CG

\ {0}, the set

( f,3)= {π(λ) f |λ ∈3}

is called a Gabor system; if it spans CG, it is called a Gabor frame. This certainly
happens when 3=G× Ĝ due to the irreducibility of ρ; in this case, it is also called
a Weyl–Heisenberg orbit.

Definition 2.1. A set 8 of M vectors in CN is called a frame if it spans CN. In this
case, we must have M ≥ N. The spark of 8, denoted by sp(8), is the size of the
smallest linearly dependent subset of 8.
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A frame 8 is full spark if and only if every set of N elements of 8 is a basis, or
equivalently sp(8)= N+1, otherwise it is spark deficient. Other definitions are also
found in literature; for example, in this case we also say that the vectors of 8 are in
general linear position, or also that 8 possesses the Haar property [Pfander 2013].

Definition 2.2. For a window ϕ ∈ CG, |G| = N, let Vϕ denote the N × N 2 matrix
whose columns are the shift-frequency translates of ϕ, also called the synthesis
operator. The operator V ∗ϕ : C

G
→ CG×Ĝ is called the analysis operator, or the

short-time Fourier transform with window ϕ, defined by

V ∗ϕ f = (〈 f,MξTxϕ〉)(x,ξ)∈G×Ĝ .

The term “window” makes much more sense in the continuous setting, whence
it originated. In signal processing, one analyzes a signal f ∈ L2(R) by integrating
against elements of a frame (e.g., Gabor frames, wavelets, etc.) generated by a
well-localized function ϕ. Typical examples of well-localized functions include
functions supported on an interval (thus examining the given function on a small
window of time), or with very fast decay, such as Gaussian functions; it should be
emphasized that Gabor himself first applied Gabor frames on Gaussian window
functions [Gabor 1946; Pfander 2013].

This term carries on to the discrete setting as well, however, we should note that
the terms “window”, “vector”, and “function” (defined over a finite abelian group)
are interchangeable in what follows.

2C. Gabor systems of |G| = N vectors. The Gabor system ( f,3) with |3| = N
is linearly independent if and only if the determinant of the matrix whose columns
consist of the coordinates of the vectors π(λ) f , λ ∈ 3, is nonzero. This matrix
is denoted by D3, and is well-defined up to permutation of its columns. The
determinant is denoted by P3 = det(D3), and is well-defined up to a sign, so it
makes sense to ask whether P3 is nonzero or not.

The most important property of P3, however, is the fact that it is a homogeneous
polynomial of degree N in N variables, when the coordinates of f are viewed as
independent variables. So, the existence of an element f such that ( f,3) is linearly
independent happens precisely when P3 is a nonzero polynomial. Investigating the
properties of these polynomials P3 sheds light on the existence of Gabor frames in
general linear position.

A first crucial observation regarding linear independence, comes from the fol-
lowing:

Proposition 2.3. There is a full spark Gabor frame defined over G, if and only if ,
for every 3⊆ G× Ĝ with |3| = N there is an f ∈ CG such that ( f,3) is linearly
independent. Moreover, either all windows ϕ ∈ CG generate spark deficient Gabor
frames, or almost all windows generate full spark Gabor frames.
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Proof. One direction follows from definition: if ( f,G × Ĝ) is full spark, then
obviously every Gabor system ( f,3) is linearly independent, for |3| = N. On the
other hand, if for every 3⊆ G× Ĝ with |3| = N there is some f ∈ CG such that
( f,3) is linearly independent, this means that all such polynomials P3 are nonzero.
The zero set of every such polynomial is of Lebesgue measure zero, and since they
are finitely many, this yields that almost any f ∈ CG avoids the zero set of these
polynomials, hence ( f,G× Ĝ) is full spark.

For the second part, we observe that if at least one of the polynomials P3 is zero,
then all Gabor frames defined over G are spark deficient. Otherwise, as we have
already shown, almost all Gabor frames are full spark. �

2D. The Weyl–Heisenberg and Clifford groups. We restrict our attention to cyclic
groups G = Z/NZ of odd order, for convenience, as the results of this subsection
will only be used towards the construction of spark deficient Gabor frames over
cyclic groups. The group generated by the translation and modulation operators is

{ωk MbT a
| a, b, k ∈ Z/NZ},

where ω= e2π i/N, T = T1 (see Section 2B) and M is the operator with the property
M f (g)=ωg f (g) for all g ∈Z/NZ and f ∈CN, and is called the Weyl–Heisenberg
group of G. Sometimes these representatives over the center are considered [Appleby
2005; Dang et al. 2013; Zauner 1999]:

Dλ = τ
λ1λ2 T λ1 Mλ2,

where λ= (λ1, λ2) ∈ (Z/NZ)2, τ = ω(N+1)/2.
It is known that all irreducible projective representations of (Z/NZ)2 of di-

mension N are unitarily equivalent to ρ [Weyl 1931] (see also [Feichtinger et al.
2009, Proposition 3.2]). The normalizer of the Weyl–Heisenberg group in the
group of unitary matrices in N dimensions is called the Clifford group, denoted
by C(N ). The quotient of C(N ) by the Weyl–Heisenberg group is isomorphic to
SL(2,Z/NZ), hence ρ can be extended to a faithful irreducible projective repre-
sentation of (Z/NZ)2 oSL(2,Z/NZ), which we shall also denote by ρ, abusing
notation. Restricting this representation to the right factor, SL(2,Z/NZ), we get
a projective representation F 7→UF , for F ∈ SL(2,Z/NZ). The unitary matrices
UF act on the Weyl–Heisenberg group by conjugation:

UF DλU∗F = DFλ.

More precisely, the following is true:

Theorem 2.4 [Appleby 2005, Theorem 1, N odd]. There is a unique isomorphism

f : (Z/NZ)2 oSL(2,Z/NZ)→ C(N )/I (N )
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with the property U DλU∗ = ω[ϕ,Fλ]DFλ for any U ∈ f (ϕ, F), where I (N ) is the
center of C(N ), and [ϕ,χ ] = ϕ2χ1−ϕ1χ2.

This yields the following theorem:

Theorem 2.5. For N odd, there is a unique faithful irreducible projective represen-
tation of (Z/NZ)2 oSL(2,Z/NZ) of dimension N, up to unitary equivalence.

Proof. Let ρ be the standard representation of (Z/NZ)2 o SL(2,Z/NZ) defined
in the beginning of this subsection, and let ρ̃ denote another representation of
dimension N with the same properties. By Weyl’s theorem [Feichtinger et al. 2009;
Weyl 1931], we may assume without loss of generality that

ρ|(Z/NZ)2 = ρ̃|(Z/NZ)2 .

Since the image of SL(2,Z/NZ) acts by conjugation on the image of (Z/NZ)2,
the image of ρ̃ will also be contained in C(N ). According to Theorem 2.4, for any
F ∈ SL(2,Z/NZ), ρ(F) and ρ̃(F) should differ by an element of ρ((Z/NZ)2),
that is

ρ̃(F) .= DϕUF .

We will investigate the possibilities of ϕ when F = S or T, the generators of
SL(2,Z/NZ),

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
,

which satisfy S2
= (ST )3 =−I, as well as when F =−I. Assume therefore, that

ρ̃(T ) .= DχUT , ρ̃(S) .= DψUS, ρ̃(−I ) .= DµU−I .

Since ρ̃(S)2 .= ρ̃(−I ), we must have

ρ̃(−I ) .= DµU−I
.
= (DψUS)

2
= Dψ+SψU−I ,

hence
µ= (I + S)ψ .

On the other hand, ρ̃(−T ) .= ρ̃(−I )ρ̃(T ) .= ρ̃(T )ρ̃(−I ), whence

Dχ+TµU−T
.
= ρ̃(T )ρ̃(−I ) .= ρ̃(−I )ρ̃(T ) .= Dµ−χU−T ,

therefore
2χ = (I − T )µ,

thus
2χ = (I − T )(I + S)ψ .

Now, let
λ=−(I − S)−1ψ =−2−1(I + S)ψ,

so that
χ =−(I − T )λ, ψ =−(I − S)λ.
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Then,
Dλ(DχUT )D∗λ

.
= Dλ+χ−TλUT =UT

and
Dλ(DψUS)D∗λ

.
= Dλ+ψ−SλUS =US,

while obviously DλDϕD∗λ
.
= Dϕ , thus proving that

Dλρ̃(ϕ, F)D∗λ
.
= ρ(ϕ, F),

for all (ϕ, F) ∈ SL(2,Z/NZ)o (Z/NZ)2, or in other words, ρ and ρ̃ are unitarily
equivalent, completing the proof. �

Another way to obtain such a representation is the following: let

N = pr1
1 · · · p

rs
s

be the prime factorization of N. By the Chinese remainder theorem we obtain

(Z/NZ)2 oSL(2,Z/NZ)∼=

s∏
i=1

(Z/pri
i Z)2 oSL(2,Z/pri

i Z),

and let

SL(2,Z/NZ) 3 F 7→ (Fi )1≤i≤s ∈

s∏
i=1

SL(2,Z/pri
i Z)

be the natural map according to the isomorphism above; that is, Fi is the matrix
obtained by reducing the entries of F mod pri

i . Assuming that Vi ∼= Cp
ri
i is the faith-

ful irreducible projective representation of (Z/pri
i Z)2 o SL(2,Z/pri

i Z) constructed
as above, then we also see that V1 ⊗ V2 ⊗ · · · ⊗ Vs is also a faithful irreducible
representation of (Z/NZ)2 o SL(2,Z/NZ) (see [Serre 1977, Theorem 10]), and
hence unitarily equivalent to the standard one. This shows that UF is, up to unitary
equivalence, equal to the Kronecker product of the UFi , thus

(2-1) Tr UF =

s∏
i=1

Tr UFi ,

a fact also pointed out in [Dang et al. 2013].

3. Gabor frames over noncyclic groups

First we show that the full spark property is hereditary.

Lemma 3.1. Let G be a finite abelian group and H a subgroup, such that no
windows defined on H generate full spark Gabor frames. Then, there exist no
windows defined on G that generate full spark Gabor frames.



SPARK DEFICIENT GABOR FRAMES 167

Proof. By hypothesis, there exists a set of pairs (hi , ξi )∈ H× Ĥ , 1≤ i ≤ |H |, such
that the vectors Mξi Thiϕ are linearly dependent for any choice of ϕ ∈ CH. Now,
extend the characters ξi to G in all possible ways. In this way, we obtain pairs in
G× Ĝ of the form (h, ξ), where h = hi and ξ |H = ξi , for some i ; the number of
these pairs is exactly |G|, as there are |G/H | ways to extend a character of H to a
character of G.

Next, consider an arbitrary window ψ ∈ CG. Since the vectors Mξi Thiψ |H are
linearly dependent on CH, there is a nonzero vector f ∈ CH such that all inner
products 〈Mξi ThiψH , f 〉 equal 0. Denote by F the unique window of CG for which
we have F |H = f and supp(F)⊆ H (also a nonzero window). Then, for all i and
ξ ∈ Ĝ with ξ |H = ξi we have

〈MξThiψ, F〉 =
∑
g∈G

ξ(g)ψ(g− hi )F(g)

=

∑
h∈H

ξi (h)ψ(h− hi ) f (h)= 〈Mξi ThiψH , f 〉 = 0,

which shows that these |G| pairs (h, ξ) ∈ G × Ĝ always give linearly dependent
vectors, as desired. �

Since we wish to prove that there exist no windows over any finite abelian
noncyclic group that generate full spark Gabor frames, it suffices to do so for groups
of the form Z/pZ×Z/pZ, for p prime, due to the fundamental theorem of finite
abelian groups; if such a group is noncyclic, then it must have a subgroup of this
form. Thus, Theorem 1.2 follows directly from Theorem 3.3, which establishes the
result for groups of the form Z/pZ×Z/pZ.

When p = 2, this has already been proven, therefore by Lemma 3.1 we know
that any window defined on a group containing a copy of the Klein group as a
subgroup cannot generate a full spark Gabor frame. We provide an alternative proof
of this statement, more in line with the proof of Lemma 3.1, which also gives us an
estimate on the minimum value of ‖V ∗ϕ f ‖0.

Theorem 3.2. Let G be a finite abelian group that has a subgroup isomorphic to
the Klein-four group. Then, there are no Gabor frames ( f,G× Ĝ) in general linear
position; furthermore, we have

min ‖V ∗ϕ f ‖0 ≤ N 2
− 3N/2.

Proof. Let K be the subgroup of G isomorphic to the Klein-four group. For f ∈CG

define f satisfying f (g)= f (g) for all g ∈ G, and define on CG an inner product
given by

〈 f, h〉 =
∑
g∈G

f (g)h(g).
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By standard character theory, there are three nontrivial characters on K, and each
one of them extends to N/4 characters on G, where N = |G|. In total, there are
3N/4 characters on G whose restriction on K is nontrivial.

Let ξ be such a character, and let f ∈ CG
\ {0} be arbitrary. Let a ∈ K be such

that ξ(a)=−1; there are two such elements of K, and so we consider the Gabor
system consisting of time-frequency translates of the form

MξTa f, ξ nontrivial on K, a ∈ K with ξ(a)=−1.

This system has 3N/2 > N elements; we will show that each one of them is
orthogonal to f , and therefore the full Gabor frame ( f,G× Ĝ) cannot be in general
linear position. Indeed,

〈MξTa f, f 〉 =
∑
g∈G

ξ(g) f (g− a) f (g)

=

∑
g∈G

ξ(g+ a) f (g) f (g+ a)

=

∑
g∈G

ξ(g)ξ(a) f (g− a) f (g)

=−

∑
g∈G

ξ(g) f (g− a) f (g)

=−〈MξTa f, f 〉,

so 〈MξTa f, f 〉= 0. This also shows that ‖V f f ‖0≤ N 2
−3N/2, proving the second

part of the theorem. �

Theorem 3.3. There are no full spark Gabor frames over G = Z/pZ×Z/pZ, for
p prime.

Proof. The case p = 2 has already been proven, so we may assume that p is odd.
As in the previous two proofs, we consider an arbitrary window z ∈ CG, and then
try to find a nonzero vector that is orthogonal to at least |G| = p2 shift-frequency
translates of z. In order to find this desirable set of translates, we arrange the
coordinates of z in an array; here, we identify Z/pZ×Z/pZ with the finite field Fq ,
q = p2, and θ ∈ Fq \ Fp:

(3-1)


z0 zθ · · · z−θ
z1 zθ+1 · · · z−θ+1
...

...
. . .

...
z−1 zθ−1 · · · z−θ−1

 .
We denote this p× p matrix by Z . The column vectors in CFp from left to right
are denoted by Z0, Zθ , . . . , Z−θ , respectively, and similarly, the row vectors by
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Z ′0, Z ′1, . . . , Z ′p−1. Next, consider the vector x ∈ CFq whose matrix representation
is precisely X = (adj Z)∗, where adj Z denotes the adjugate matrix of Z ; we denote
its columns by X0, Xθ , . . . , X−θ and its rows by X ′0, X ′1, . . . , X ′p−1. The vector
x could be zero, however this happens for a set of Lebesgue measure zero. In
particular, x is zero precisely when all the (p− 1)× (p− 1) minors of Z are zero,
but all of them are nonzero polynomials on the coordinates of z, which shows that
for almost all choices of z, x is nonzero. If we prove that the Gabor frames with
windows z possessing that property are spark deficient, then by Proposition 2.3 we
get that all Gabor frames over G = Z/pZ×Z/pZ are spark deficient.

We have
det Z · I = Z T X = Z X T.

The (a, b) entry of Z T X is 〈Zaθ , Xbθ 〉, and similarly for Z X T is 〈Z ′a, X ′b〉. We
thus obtain

(3-2) 〈Zaθ , Xbθ 〉 = 〈Z ′a, X ′b〉 = δab det Z ,

for every a, b ∈ Fp, where δab is the usual Kronecker delta. Then, for every a ∈ θF∗p
and ξ ∈ F̂q with ξ |Fp = 1Fp , we get, due to (3-2),

〈MξTaz, x〉 =
∑
b∈Fp

ξ(bθ)〈Zbθ−a, Xbθ 〉 = 0.

This number of shift-frequency translates is p(p− 1), and we have just established
that x is orthogonal to all of them. Furthermore, if a∈F∗p and ξ ∈ F̂q with ξ |Fp =1θFp ,
we also get, due to (3-2),

〈MξTaz, x〉 =
∑
b∈Fp

ξ(b)〈Z ′b−a, X ′b〉 = 0.

So far we have 2p(p − 1) > p2 translates of z orthogonal to x , so this already
takes care of the spark deficiency of any Gabor frame over G. We will find more
translates orthogonal to x ; let’s put a = 0 and ξ ∈ F̂q with ξ |Fp = 1Fp , but ξ 6= 1Fq .
Then, again by (3-2), we have

〈Mξ z, x〉 =
∑
b∈Fp

ξ(bθ)〈Zbθ , Xbθ 〉 = det Z
∑
b∈Fp

ξ(bθ)= 0,

since ξ |θFp 6= 1θFp . This number of pairs is exactly p− 1.
Next, we still consider a= 0, but ξ ∈ F̂q satisfies with ξ |Fp 6= 1Fp and ξ |θFp = 1θFp .

Then,
〈Mξ z, x〉 =

∑
b∈Fp

ξ(b)〈Z ′b, X ′b〉 = det Z
∑
b∈Fp

ξ(b)= 0,

by (3-2), thus giving us another p− 1 orthogonal shift-frequency translates of z
orthogonal to x . In total, there are 2(p+ 1)(p− 1)= 2p2

− 2 such translates, thus
concluding the proof. �
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4. Spark deficient Gabor frames over cyclic groups

Here we revisit the cyclic case. As has already been proven by the author [Malikiosis
2015], almost all windows generate full spark Gabor frames, so the spark deficient
Gabor frames are generated by exceptional vectors. When the order of the group is
an odd, square-free integer, then all eigenvectors of certain unitaries belonging to
the Clifford group generate spark deficient Gabor frames [Dang et al. 2013]. The
motivation behind this result in [Dang et al. 2013] was to establish a connection
between equiangularity of a Gabor frame (SIC-POVM existence) and full spark,
if any. In three dimensions, the family of SIC-POVMs generated by vectors of
the form (0, 1,−eiθ ) is always spark deficient, and Lane Hughston [2007] first
established a connection between the linear dependencies that arise from this SIC-
POVM for θ = 0 or 2π/9 and the inflection points of an elliptic curve. In general,
it was proven in [Dang et al. 2013] that when N is an odd, square-free integer
divisible by 3, all eigenvectors of the Zauner unitary matrix generate spark deficient
Gabor frames. Zauner’s conjecture [1999] states that an eigenvector of this matrix
generates a SIC-POVM, i.e., a maximal equiangular tight frame. If it is true, then
for all odd, square-free dimensions, this equiangular tight frame is not full spark.
This is another example that showcases the difference between a nice algebraic
property of a Gabor frame (full spark) and a nice geometric one (equiangularity).
For unit norm tight frames in general, this is further explained in [King 2015];
see also [Fickus et al. 2012; Jasper et al. 2014] where an infinite family of spark
deficient equiangular tight frames is constructed, of arbitrarily high dimension.

When N is not divisible by 3, it is not known whether this SIC-POVM is also
full spark or not. For example, it is full spark when N = 8. The first construction
of a full spark Gabor frame in eight dimensions was given in [Dang et al. 2013].1

Concerning the eigenvectors of other Clifford unitaries, they also generate spark
deficient Gabor frames as long as the (projective) order of the matrix divides N.
We will extend the results of [Dang et al. 2013, Section 7], “Generalization to other
symplectic unitaries”, to all odd dimensions N and unitaries whose order is not
coprime to N.

Theorem 4.1. Let N be an odd integer. Then, any eigenvector of the unitary UF

generates a spark deficient Gabor frame, where F ∈ SL(2,Z/NZ) and

gcd(ord(F), N ) > 1.

This is a direct consequence of the following theorem from [Dang et al. 2013],
slightly rephrased in order to accommodate the terminology of this paper, with the
simple observation that if ord(F)= n and gcd(n, N )= d > 1, then the eigenvectors

1Explicit construction of a full spark Gabor frame in every dimension was later shown by the
author [Malikiosis 2015].
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of UF are also eigenvectors of eiθU n/d
F = eiθUFn/d (the phase eiθ is arbitrary), while

ord(Fn/d)= d > 1, thus ord(Fn/d) divides N.
We call x ∈ (Z/NZ)2 F-full, if the vectors x, F x, . . . , Fn−1x are all distinct,

where F ∈ SL(2,Z/NZ) and n = ord(F).

Theorem 4.2 [Dang et al. 2013, Theorem 5, odd version]. Let N be an odd positive
integer and F ∈ SL(2,Z/NZ), and let n = ord(F). Suppose

(1) n > 1,

(2) n divides N,

(3) Tr UF 6= 0,

(4) there exist N distinct points in (Z/NZ)2 that are F-full.

Then all eigenvectors of UF generate spark deficient Gabor frames.

Conditions (3) and (4) always hold when N is odd, as the following two lemmata
show; this was proven in [Dang et al. 2013] for N odd square-free.2

Lemma 4.3. Let N be an odd positive integer. Let F ∈ SL(2,Z/NZ) be arbitrary.
Then the number of F-full points in (Z/NZ)2 is ≥ Nϕ(N ), where ϕ is Euler’s
function.

Lemma 4.4. Let N be an odd positive integer. Then |Tr(UF )| ≥ 1 for all F ∈
SL(2,Z/NZ).

We will dedicate the rest of this section to the proofs of these two lemmata. For
basic facts about the field of p-adic numbers, Qp and its algebraic extensions, we
refer the reader to [Cassels 1986; Neukirch 1999].

4A. Proof of Lemma 4.3. Let F ∈ SL(2,Z/NZ) and Fi ∈ SL(2,Z/pri
i Z) be the

reduction of F mod pri
i , 1 ≤ i ≤ s, and similarly, with x ∈ (Z/NZ)2 and xi ∈

SL(2,Z/pri
i Z). It is not hard to show that if each xi is Fi -full, then x is F-full, a

fact also shown in [Dang et al. 2013]. By multiplicativity of the Euler function, it
suffices to consider N = pr, a power of an odd prime.

The case r = 1 was treated in [Dang et al. 2013]. The technique was to find the
Jordan canonical form of F, considering a quadratic extension of the field Z/pZ if
necessary (i.e., Fp2); then we can control the powers of F and can count the points
in (Z/pZ)2 that are F-full.

When r > 1, Z/NZ is no longer a field, so the Jordan canonical form does not
always exist, but as we shall see below, in these exceptional cases, the order of F is
equal to pm or 2pm, for some m ≤ r , so we only need to enumerate the points in
(Z/NZ)2 that are fixed by F pm−1

or F2pm−1
accordingly, and as it turns out, this is

an easy task.

2See Lemmata 7 and 8 in [Dang et al. 2013].
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It would be convenient to consider an arbitrary lift of the matrix

F =
(

a b
c d

)
to a matrix in F̃ ∈ SL(2,Zp); since F ∈ SL(2,Z/NZ), then at least one of the
entries a, b, c, d , is not divisible by p, say a. Then, lift a, b, c, arbitrarily, to ã, b̃, c̃,
and put d̃ = ã−1(1+ b̃c̃). We also put t =Tr(F), t̃ =Tr(F̃), 1= t2

−4, 1̃= t̃2
−4,

the discriminants of the characteristic polynomials of F, F̃ , respectively. Finally,
we put

λ=
t +

√
1̃

2
,

and the other root of the characteristic polynomial is λ−1. We distinguish the
following cases:

Case I: p -1. Here, λ 6≡ λ−1 mod p; otherwise, we would have

1≡ (λ+ λ−1)2− 4≡ λ2
+ λ−2

− 2≡ 0 mod p.

We reduce the entries of F mod p. Since λ 6≡ λ−1 mod p, F is diagonalizable in
Z/pZ when (1/p)= 1 or in a quadratic extension, namely Fp2 , when (1/p)=−1.
In both cases, we consider the field K =Qp(

√

1̃ ), whose ring of integers is
OK = Zp[

√

1̃ ] and the unique prime ideal is pOK = pZp[
√

1̃ ]. This extension is
unramified, as p - 1, hence the degree of the extension is equal to the degree of
the extension of the residue fields. Therefore, the residue field of K is Fp when
(1/p)= 1 and Fp2 otherwise.

So, there is a nonsingular matrix X with entries in the residue field of K such that

(4-1) F X ≡ X
(
λ 0
0 λ−1

)
mod pOK ,

the congruence meaning that we consider each entry mod pOK . We can lift
X =

( x
y

z
w

)
to a 2×2 matrix with entries in OK , such that (4-1) becomes an equality

in OK (and holds mod N, in particular). Indeed, if b is not divisible by p, then
we lift x, z arbitrarily, and then put y = b̃−1(λ− ãx), w = b̃−1(λ− ãz), and a
similar lift is possible if c is not divisible by p. If both b and c are divisible by p,
then F mod p is diagonal, therefore F ≡

(
λ
0

0
λ−1

)
or
(
λ−1

0
0
λ

)
mod p. Without loss

of generality, we may assume that the first congruence holds. Lift x, w, arbitrarily,
and then put y = (λ− λ−1)−1c̃x , and z = (λ−1

− λ)−1b̃w. We notice that since
p - det(X), then X−1

∈ GL(2,OK ); we conclude that in all cases where p -1, F
is equivalent to a diagonal matrix, with entries perhaps in a larger ring. It is evident
that in this case, the number of F-full points is N 2

−1, since p -λ, and λ 6≡ 1 mod p.
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Case II: p | 1. Reducing the matrix F mod p, we obtain a double eigenvalue,
equal to ±1. Then, the Jordan canonical form of F is(

±1 β

0 ±1

)
,

where β = 0 or β = 1. It is clear that F p
≡ ±I mod p and F2p

≡ I mod p, or
F2p
≡ I + p A mod p2, for some matrix A. Raising both sides to the p-th power,

we obtain F2p2
≡ I + p2 A mod p3, and proceeding inductively we can show that

F2pr−1
= I + N

p
A,

hence F2N
= I. This shows that the order of F is either pm or 2pm, for some m ≤ r .

Suppose first that the order of F is pm , m ≥ 1; then, an element of (Z/NZ)2

is F-full, if and only if it is not fixed by F pm−1
(this follows from the fact that

the cardinality of the orbit of any element under a group, divides the order of the
group), and the latter is equivalent to the condition that this element is F pm−1

-full.
Therefore, we can reduce to the case where m = 1, that is, the order of F is p.
Since the number of F-full points is the same in the conjugacy class of F, we may
further assume that F reduced mod p is equal to(

±1 β

0 ±1

)
.

Now, let k be the smallest positive integer for which we have

F ≡
(

1 β

0 1

)
+ pk−1 D mod pk

for some matrix D 6≡ O mod p, where O is the zero matrix. We have 2≤ k ≤ r+1.
If β = 0, then k = r ; if k < r , then

F p
≡ I + pk D mod pk+1,

hence F p
6= I, a contradiction. Similarly, if k = r + 1, then F = I, which is also

a contradiction. So, F = I + N
p D. A vector x =

( x1
x2

)
∈ (Z/NZ)2 is fixed by F if

and only if

Dx ≡ 0 mod p.

The set of such vectors reduced mod p form a proper vector subspace of (Z/pZ)2,
so there are at most p of them. Then, the number of all the possible lifts of these
vectors mod N is at most p2(r−1)

· p = p2r−1. Therefore, the number of F-full
vectors in this case is at least p2r

− p2r−1
= Nϕ(N ).
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If β = 1, then

F p
≡

(
1 p
0 1

)
+ pk−1

∑
κ+µ=p−1

(
1 κ

0 1

)
D
(

1 µ

0 1

)
mod pk .

We put

D =
(

d1 d2

d3 d4

)
and compute the above sum mod p:∑

κ+µ=p−1

(
1 κ

0 1

)
D
(

1 µ

0 1

)
=

∑
κ+µ=p−1

(
d1+ κd3 µd1+ κµd3+ d2+ κd4

d3 µd3+ d4

)
≡ O mod p

since ∑
κ+µ=p−1

1 = p,

∑
κ+µ=p−1

κ =
∑

κ+µ=p−1

µ= p ·
p− 1

2
,

∑
κ+µ=p−1

κµ= p ·
(
(p− 1)2

2
−
(p− 1)(2p− 1)

6

)
.

But then, F p
6≡ I mod pk , a contradiction if k≤ r ; if k= r+1, then F p

=
( 1

0
p
1

)
6= I .

We conclude that if the order of F is p and r ≥ 2, then β = 0 (the case β 6= 0 can
only occur when r = 1, but this was treated in [Dang et al. 2013]).

Next, suppose that the order of F is 2pm. Then, a vector is F-full if and only if
it is not fixed by F pm

or F2pm−1
. But F pm

=−I, which only fixes the zero vector,
so we only need to exclude the vectors fixed by F2pm−1

; however, this matrix has
order p, so the above analysis applied to F2pm−1

yields the fact that the number of
F-full points is at least Nϕ(N ).

4B. Proof of Lemma 4.4. The trace Tr(UF ) is a quadratic Gauss sum [Appleby
2005]; we will use the following lemma by Turaev [1998, Lemma 1] which gives
the absolute value of such a sum over an arbitrary finite abelian group G. Moreover,
by (2-1) we may assume that N is a power of an odd prime, p.

Let’s fix some notation first; q : G→Q/Z denotes an arbitrary quadratic form
on the finite abelian group G. Such a function is a quadratic form if the expression
bq(x, y)= q(x+ y)−q(x)−q(y) is bilinear (we do not require homogeneity). The
Gauss sum 0(G, q) is defined to be

1
|G|1/2

∑
x∈G

e2π iq(x).
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Lastly, for easy reference to the explicit formulae for the unitary matrices UF given
in [Appleby 2005], we decided to use the bra-ket notation; the set of (column)
vectors

|0〉, |1〉, . . . , |N − 1〉,

is the standard basis of CN, and 〈ϕ| is the conjugate transpose of |ϕ〉.

Lemma 4.5 [Turaev 1998, Lemma 1]. Let B be the kernel of the homomorphism
G→ Hom(G,Q/Z) adjoint to the pairing bq. If q(B) 6= 0, then 0(G, q) = 0. If
q(B)= 0, then |0(G, q)| = |B|1/2.

If p - b, then the matrix F is called prime, and from the explicit formulae of
[Appleby 2005, Lemmas 2 and 4], we get

UF =
eiθ
√

N

N−1∑
r,s=0

τ b−1(as2
−2rs+dr2)

|r〉〈s|,

where θ is an arbitrary phase, and b−1 the inverse of b mod N, hence

Tr(UF )=
eiθ
√

N

N−1∑
r=0

τ b−1(t−2)r2
.

where τ =−eπ i/N and t = a+ d = Tr(F). Putting G = Z/NZ and

q(r)=
b−1(t − 2)(N + 1)

2N
r2,

we get Tr(UF )= eiθ0(G, q). The function q is a well-defined quadratic form on G;
indeed, r2

≡ r ′ 2 mod 2N , when r ≡ r ′ mod N, when N is odd. The associated
bilinear pairing is

bq(r, s)=
b−1(t − 2)(N + 1)

N
rs,

and r ∈ B if and only if bq(r, 1)= 0, or equivalently, if

b−1(t − 2)r ≡ 0 mod N .

So, if r ∈ B is arbitrary, then N divides b−1(t − 2)r2, and therefore 2N divides
b−1(t −2)(N +1)r2, which shows that q(r)= 0. This proves that q(B)= 0, hence
|0(G, q)| = |B|1/2 ≥ 1 and |Tr(UF )| ≥ 1.

Now, assume that p | b; then p - d (otherwise det(F) would be divisible by p)
and we can write F as a product of two prime matrices, as follows:

F = F1 F2 =

(
0 −1
1 0

)(
c d
−a −b

)
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and by [Appleby 2005, Lemma 4], we have UF =UF1UF2 , where

UF1 =
eiθ1

√
N

N−1∑
u,v=0

τ 2uv
|u〉〈v|

and

UF2 =
eiθ2

√
N

N−1∑
v,w=0

τ d−1(cw2
−2vw−bv2)

|v〉〈w|,

where θ1, θ2 are arbitrary phases, hence

UF =
eiθ

N

N−1∑
u,w=0

N−1∑
v=0

τ 2uv+d−1(cw2
−2vw−bv2)

|u〉〈w|

and

Tr(UF )=
eiθ

N

N−1∑
u,v=0

τ cd−1u2
+2(1−d−1)uv−bd−1v2

,

where θ = θ1+ θ2. So, if we put G = (Z/NZ)2 and q : G→ Q/Z the quadratic
form

q(u, v)= N+1
2N

(cd−1u2
+ 2(1− d−1)uv− bd−1v2)

then Tr(UF )= eiθ0(G, q). The associated bilinear form is

bq((u, v), (r, s))= N+1
N

(u v)A
(

r
s

)
where

A =
(

cd−1 1− d−1

1− d−1
−bd−1

)
.

Now, let (u v) ∈ B be arbitrary. Then,

(u v)A ≡ (0 0) mod N ,

otherwise we would have either bq((u, v), (1, 0)) 6= 0 or bq((u, v), (0, 1)) 6= 0. In
particular, N divides bq((u, v), (u, v)), and since N is odd, 2N divides

(N + 1)(u v)A
(

u
v

)
,

which yields q(u, v)= 0. Thus, q(B)= 0, and

|Tr(UF )| = |0(G, q)| = |B|1/2 ≥ 1.



SPARK DEFICIENT GABOR FRAMES 177

5. Uncertainty principles

The full spark property of (almost all) Gabor frames of windows defined over finite
cyclic groups implies the following inequality for the short-time Fourier transform
of f :

‖V ∗ϕ f ‖0 ≥ N 2
− N + 1,

where N is the size of said group, for almost all ϕ ∈ CN and all nonzero f ∈ CN

[Krahmer et al. 2008; Malikiosis 2015; Pfander 2013]. A possible connection
between the set of pairs of the form (‖ f ‖0,

∥∥ f̂
∥∥

0), denoted by F, and the set Fϕ of
all pairs of the form

(‖ f ‖0, ‖V ∗ϕ f ‖0− N 2
+ N )

(for both sets we take f nonzero) was investigated in [Krahmer et al. 2008]. In
particular, the following problem was proposed.

Problem 5.1 [Krahmer et al. 2008]. Is it true that F = Fϕ for almost all ϕ?

When N = p a prime number, this problem was solved in the affirmative [Krahmer
et al. 2008]. One has an exact characterization of the set F [Tao 2005] and the fact
that all minors of the Gabor synthesis matrix are nonzero for all ϕ except for a set of
measure zero [Lawrence et al. 2005, Theorem 4] leads to a characterization of the
set Fϕ , and equality between F and Fϕ is easily confirmed. When N is composite,
however, there is no exact characterization for the set F, so it is more difficult to
obtain equality; this was confirmed numerically for dimensions up to 6 [Krahmer
et al. 2008]. The question is whether we can prove equality between those two sets
without using the characterization of F. We will show that one inclusion is possible,
but the other one, namely Fϕ ⊆ F , seems much harder to prove, if true.

As a final remark, we note that the spark deficiency of all Gabor frames of
windows defined over abelian, noncyclic groups, implies that equality between
F and Fϕ can never be achieved, simply because there are f ∈ CG for which
‖V ∗ϕ f ‖0 ≤ N 2

− N, as shown in the proof of Theorem 3.3.
A useful identity is the following:

(5-1) ‖V ∗ϕ f ‖0 =
N−1∑
j=0

‖T̂ jϕ · f ‖0.

Theorem 5.2. For almost all ϕ the inclusion F ⊆ Fϕ holds. In addition, this ϕ can
be taken to generate a full spark Gabor frame.

Proof. First, we may restrict our attention to ϕ generating a full spark Gabor frame,
as we already know that almost all ϕ satisfy this condition. This implies that all
coordinates of ϕ are nonzero, otherwise the frequency translates of ϕ would form a
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singular matrix. Next, for any pair (k, l)∈ F we consider fk,l ∈CN with ‖ fk,l‖0= k
and

∥∥ f̂k,l
∥∥

0 = l. We may rewrite (5-1) as

∥∥∥∥V ∗ϕ
fk,l
ϕ

∥∥∥∥
0
=

N−1∑
j=0

∥∥∥∥
∧

T jϕ

ϕ
· fk,l

∥∥∥∥
0
= ‖ f̂k,l‖0+

N−1∑
j=1

∥∥∥∥
∧

T jϕ

ϕ
· fk,l

∥∥∥∥
0

(5-2)

= l +
N−1∑
j=1

∥∥∥∥
∧

T jϕ

ϕ
· fk,l

∥∥∥∥
0
.

It suffices to show that almost all ϕ satisfy∥∥∥∥
∧

T jϕ

ϕ
· fk,l

∥∥∥∥
0
= N ,

for all (k, l) ∈ F and 1≤ j ≤ N − 1, or equivalently, it suffices to show that

8

N−1∑
g=0

ξ(g) fk,l(g)
ϕ(g− j)
ϕ(g)

6= 0,

for almost all ϕ ∈ CN, all characters ξ , (k, l) ∈ F, 1 ≤ j ≤ N − 1, where 8 is
the product of the coordinates of ϕ. But the left-hand side is a polynomial in the
coordinates of ϕ with coefficients of the form ξ(g) fk,l(g), which shows that every
such polynomial is nonzero, as the functions fk,l are not identically zero. Therefore,
ϕ has to avoid the zero set of finitely many nonzero polynomials, whose union is
of measure zero. Thus, almost all ϕ satisfy∥∥∥∥V ∗ϕ

fk,l
ϕ

∥∥∥∥
0
= N 2

− N + l,

for every (k, l) ∈ F, as desired. �
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107Monotonicity and radial symmetry results for Schrödinger systems with
fractional diffusion

JING LI

123Moduli spaces of stable pairs
YINBANG LIN

159Spark deficient Gabor frames
ROMANOS-DIOGENES MALIKIOSIS

181Ordered groups as a tensor category
DALE ROLFSEN

195Multiplication of distributions and a nonlinear model in elastodynamics
C. O. R. SARRICO

213Some Ambrose- and Galloway-type theorems via Bakry–Émery and modified
Ricci curvatures

HOMARE TADANO

233Irreducible decomposition for local representations of quantum Teichmüller
space

JÉRÉMY TOULISSE

0030-8730(201805)294:1;1-T

Pacific
JournalofM

athem
atics

2018
Vol.294,N

o.1


	1. Introduction
	2. Background
	2A. Notation
	2B. Definitions
	2C. Gabor systems of |G|=N vectors
	2D. The Weyl–Heisenberg and Clifford groups

	3. Gabor frames over noncyclic groups
	4. Spark deficient Gabor frames over cyclic groups
	4A. Proof of Lemma 4.3
	4B. Proof of Lemma 4.4

	5. Uncertainty principles
	References
	
	

