
Pacific
Journal of
Mathematics

ORDERED GROUPS AS A TENSOR CATEGORY

DALE ROLFSEN

Volume 294 No. 1 May 2018





PACIFIC JOURNAL OF MATHEMATICS
Vol. 294, No. 1, 2018

dx.doi.org/10.2140/pjm.2018.294.181

ORDERED GROUPS AS A TENSOR CATEGORY

DALE ROLFSEN

It is a classical theorem that the free product of ordered groups is orderable.
In this note we show that, using a method of G. Bergman, an ordering of
the free product can be constructed in a functorial manner, in the category
of ordered groups and order-preserving homomorphisms. With this functor
interpreted as a tensor product this category becomes a tensor (or monoidal)
category. Moreover, if O(G) denotes the space of orderings of the group G
with the natural topology, then for fixed groups F and G our construction can
be considered a function O(F)×O(G)→O(F∗G). We show that this function
is continuous and injective. Similar results hold for left-ordered groups.

1. Introduction

An ordered group (G, <) is a group G together with a strict total ordering < of its
elements such that x < y implies xz < yz and zx < zy for all x, y, z ∈ G. If such
an ordering exists, G is said to be orderable. If (F, <F ) and (G, <G) are ordered
groups, a homomorphism φ : F → G is said to be order-preserving (relative to
<F , <G) if for all x, y ∈ F we have x <F y =⇒ φ(x) <G φ(y). In this case the
reverse implication follows, and φ is necessarily injective.

A theorem of Vinogradov [1949] asserts that if F and G are orderable groups,
then the free product F ∗ G (sometimes called the coproduct, as in [Bergman
1990]) is orderable. Other proofs of this can be found in [Johnson 1968; Passman
1977; Bergman 1990], and a generalization in [Chiswell 2012]. A proof given
in [Botto Mura and Rhemtulla 1977] was unfortunately found to have a gap, as
discussed in [Holland and Medvedev 1994; Chiswell 2014]. Yet another proof, in
[Révész 1987], was also shown to have a gap [Medvedev 1991].

Here we show that a version of the construction in [Bergman 1990] is functorial
in the following sense. Suppose (Fi , <Fi ), i = 0, 1, are ordered groups. We will
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construct an ordering≺ of F0∗F1, so that (F0∗F1,≺) is an ordered group, and write

F((F0, <F0), (F1, <F1)) := (F0 ∗ F1,≺).

Theorem 1 shows that F is a (bi)functor in the category C of ordered groups and
order-preserving homomorphisms. We will show in Section 5 that this functor gives
C the structure of a tensor, or monoidal, category.

Theorem 1. Suppose that (Fi , <Fi ), i = 0, 1, are ordered groups. Then the ordered
group (F0 ∗ F1,≺F )= F((F0, <F0), (F1, <F1)) has the following properties:

(1) ≺F extends the given orderings of Fi as subgroups of F0 ∗ F1.

(2) If (Gi , <Gi ), i = 0, 1, are ordered groups and

(G0 ∗G1,≺G)= F((G0, <G0), (G1, <G1))

and if φi : Fi → Gi , i = 0, 1, are homomorphisms which preserve the given
orderings of Fi and Gi , then the homomorphism φ0 ∗φ1 : F0 ∗ F1→ G0 ∗G1

is order-preserving, relative to ≺F ,≺G .

In Section 8, Theorem 1 will be extended to free products of an arbitrary, possibly
infinite, collection of ordered groups. We will typically use multiplicative notation
for groups and use 1 to denote the identity element, though additive groups are also
considered, with 0 as identity element. We may also use 1 to denote the unit of a
ring (all rings we consider are assumed to have a unit), as well as the natural number.

Many of our results could have been proven using the original construction
of Vinogradov. Like Bergman’s, his proof involves embedding a free product of
groups into a ring of matrices. Vinogradov’s matrices are infinite dimensional upper
triangular matrices, whereas Bergman’s are 2× 2 matrices with polynomial entries,
a useful simplification.

2. Embedding free products in matrix rings

We use an observation of Bergman which generalizes the fact that the matrices
( 1

0
t
1

)
and

( 1
t

0
1

)
freely generate a free subgroup of the multiplicative group of invertible

2× 2 matrices with entries in the polynomial ring Z[t].
Consider a ring R without zero divisors and let F and G be multiplicative groups

of nonzero elements of R. Let M2(R[t]) be the ring of 2× 2 matrices with entries
in the polynomial ring R[t]. Then one can embed F in M2(R[t]) by f 7→

( f
0

0
1

)
.

But we can conjugate that by
( 1

0
t
1

)
to get a different embedding which has a highest

degree in the upper right corner when f 6= 1:

ρ( f )=
(

1 −t
0 1

)(
f 0
0 1

)(
1 t
0 1

)
=

(
f ( f − 1)t
0 1

)
.
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Similarly we embed G by

ρ(g)=
(

1 0
(g− 1)t g

)
.

This then defines a multiplicative homomorphism ρ : F ∗G→ M2(R[t]), which
Bergman observes to be a faithful representation.

Proposition 2 [Bergman 1990, Corollary 12]. With the assumptions stated in the
preceding paragraph, ρ : F ∗G→ M2(R[t]) is injective.

Proof. Here is a sketch of a proof using a ping-pong argument. Let

fk gk fk−1 · · · g2 f1g1 6= 1

be a reduced word in F ∗ G, with fi ∈ F, gi ∈ G nonidentity elements (except
possibly for i ∈ {1, k}). Assume that g1 6= 1, the other case with g1= 1, f1 6= 1 being
similar. We need to show that the product of matrices ρ( fk)ρ(gk) · · · ρ( f1)ρ(g1) is
not the identity matrix. Consider the set V of column vectors

( A(t)
B(t)

)
with entries in

R[t] and partition that set into three parts V =V1tV2tV3 according to their degrees
as polynomials. Take V1 to be the set of such pairs with deg A(t) > deg B(t), V2

the set with deg A(t) < deg B(t) and V3 the set with equal degree.
Apply ρ( fk)ρ(gk) · · · ρ( f1)ρ(g1) (on the left) to the vector

( 1
1

)
∈ V3 and note

that ρ(g1) sends
(1

1

)
to
( 1

g1+(g1−1)t

)
which belongs to V2. Then ρ( f1) sends this

result into V1, which is then sent to V2 by ρ(g2), and so on. The end result, after
multiplying all the matrices, will be in V1 or V2, not V3, and so the product cannot
be the identity matrix. �

3. Constructing the ordering ≺

Suppose we are given two ordered groups, (F0, <F0) and (F1, <F1). To embed
them in a ring, we take R to be the integral group ring of their direct product: R =
Z(F0× F1). It is well known that integral group rings of orderable groups have no
zero divisors (see, for example, [Botto Mura and Rhemtulla 1977] p. 155), so R has
no zero divisors. Define a multiplicative homomorphism ρ : F0∗F1→M2(R[t]) by

ρ( f0)=

(
f0

0
( f0− 1)t

1

)
ρ( f1)=

(
1

( f1− 1)t
0
f1

)
, fi ∈ Fi .

By Proposition 2, ρ is faithful; it defines an isomorphism of F0 ∗ F1 onto a
multiplicative subgroup of M2(R[t]).

We now turn to the task of defining the ordering, choosing a specific recipe
among many described in [Bergman 1990]. First we order F0×F1 lexicographically,
defining ( f0, f1) < ( f ′0, f ′1) if f0 <F0 f ′0 or else f0 = f ′0 and f1 <F1 f ′1. Then the
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group ring R = Z(F0 × F1) becomes an ordered ring1 by declaring a nonzero
element to be positive if the coefficient of the largest term (in the ordering < of
F0× F1) is a positive integer.

Note that as a ring element, f0 ∈ F0, which can be considered an abbreviation
of 1( f0, 1) ∈ R, is considered positive even if f0 <F0 1 and it would be called
“negative” as a group element. In particular, the diagonal elements of the matrices
displayed above are all positive.

Bergman then orders M2(R) as follows. Choose “an arbitrary order among
the four ‘positions’ in a 2× 2 matrix, and call a nonzero element of this module
‘positive’ if in the first position in which a nonzero coefficient occurs, the coefficient
is in fact positive.” To be definite, we will choose the 1, 1 position to be first, the 2, 2
position to be second, and the off-diagonal positions ordered third and fourth in
some fixed way. Now to order the matrix ring of polynomials, call an element M of
M2(R[t]) positive if it satisfies the following. Expand M = M0+M1t+· · ·+Mk tk,
where each Mi belongs to M2(R). Let n ≥ 0 be the least integer such that tn has
nonzero coefficient and say M is positive if and only if the first nonzero entry of
Mn is positive in the ordered ring R.

Bergman points out that “the orderings of the positions can be the same for all n,
but need not — there is a lot of freedom here.” But we will use the same ordering
of the positions, as described, throughout.

Finally, define an ordering of F0 ∗ F1 by declaring that x ≺ y if and only if
ρ(y)− ρ(x) is positive in M2(R[t]).

4. Proof of Theorem 1 and further properties of ≺

First we’ll argue that (F0 ∗ F1,≺) is an ordered group. Clearly ≺ is a strict total
ordering. To check invariance under multiplication, first note that every element
of ρ(F0 ∗ F1) in M2(R[t]), when expanded in powers of t , has constant term a
diagonal matrix with positive entries. (See the proof of Proposition 4 below to be
more precise.) The product of such a matrix, on either side, with a positive matrix
in M2(R[t]) will again be positive. Thus, if x, y, z ∈ F0 ∗ F1, one has x ≺ y ⇐⇒
ρ(y)−ρ(x) is positive ⇐⇒ ρ(z)(ρ(y)−ρ(x))= ρ(zy)−ρ(zx) is positive ⇐⇒
zx ≺ zy. Right invariance is proved similarly.

Next we will show that the ordering ≺ extends the given orderings <F0 and
<F1 . Suppose f0, f ′0 ∈ F0 and f0 <F0 f ′0. Then the difference between their images
in M2(R[t]) is the matrix

( f ′0− f0
0
∗

0

)
, and noting that f ′0 − f0 is positive in R we

conclude f0 ≺ f ′0. A similar argument shows that ≺ also extends <F1 .

1We understand an ordered ring (R, <) to be an ordered group as an additive group, for which the
positive cone P = {r ∈ R | 0< r} is also closed under multiplication.
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This establishes the first part of Theorem 1. To prove the second part, note that
φ0× φ1 preserves the lexicographic orderings <F , <G of F0× F1 and G0×G1,
respectively. A homomorphism of groups naturally extends to a ring homomorphism
of the integral group rings, and we see that if the group homomorphism preserves
given orderings of the groups, then its extension takes “positive” elements of the
group ring to positive elements. Then φ0 × φ1 defines a ring homomorphism
RF → RG , where RF = Z(F0 × F1) and RG = Z(G0 ×G1), which we will call
φ0×φ1 again. This extends to a ring homomorphism RF [t] → RG[t], and further
induces an additive homomorphism M2(RF [t])→M2(RG[t]), which we will again
call φ0×φ1.

The diagram
F0 ∗ F1

ρ
−−−→ M2(RF [t])

φ0∗φ1

y φ0×φ1

y
G0 ∗G1

ρ
−−−→ M2(RG[t])

is commutative (we have used the same symbol ρ for different maps, but defined
analogously), and as already mentioned, φ0× φ1 takes positive matrix entries to
positive matrix entries. We now argue that φ0 ∗ φ1 is order-preserving, relative
to ≺F ,≺G . Suppose x, y ∈ F0 ∗ F1 and x ≺F y. Then ρ(y)−ρ(x) is positive, and
therefore φ0×φ1(ρ(y)−ρ(x)) is positive in M2(RG[t]). But φ0×φ1(ρ(y)−ρ(x))=
φ0×φ1(ρ(y))−φ0×φ1(ρ(x))= ρ(φ0 ∗φ1(y))− ρ(φ0 ∗φ1(x)), and since this is
positive, we conclude that φ0 ∗φ1(x)≺G φ0 ∗φ1(y). �

Corollary 3. If (F, <F ) and (G, <G) are ordered groups, then the ordered group
(F ∗G,≺) :=F((F, <F ), (G, <G)) has the properties that ≺ extends the orderings
of F and G, and for any automorphisms φ : F→ F and ψ :G→G which preserve
the given orderings, the automorphism φ ∗ ψ : F ∗ G → F ∗ G preserves the
ordering ≺.

Following the terminology used in [Botto Mura and Rhemtulla 1977], we will
call a homomorphism φ : F→G of ordered groups (F, <F ) and (G, <G) an order-
homomorphism (relative to the given orderings) if x ≤F y implies φ(x)≤G φ(y) for
all x, y ∈ F. Note that order-preserving homomorphisms are order-homomorphisms,
and that order-homomorphisms need not be injective. Indeed, the order-preserving
homomorphisms are exactly the order-homomorphisms which are injective. For
example, using the lexicographic ordering of the direct product, the inclusions
F→ F×G and G→ F×G are order-preserving, while the projection F×G→ F
is an order-homomorphism. But the projection F ×G→ G will not be an order-
homomorphism, if the groups are nontrivial.

We’ll see that our construction of ≺ has similar properties. First note that
Theorem 1(1) implies that the natural inclusion homomorphisms F→ F ∗G and
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G→ F∗G are order-preserving. There are also canonical maps F∗G→ F, obtained
by killing elements of G, and similarly F∗G→G. They combine to define a canoni-
cal homomorphism α : F∗G→ F×G. Specifically, if f1g1 f2 · · · fk gk is an element
of F ∗G, with fi ∈ F and gi ∈ G, then α( f1g1 f2 · · · fk gk)= ( f1 · · · fk, g1 · · · gk).

Proposition 4. Suppose that (F, <F ) and (G, <G) are ordered groups. Then the
canonical homomorphism α : F ∗G→ F ×G is an order-homomorphism, relative
to the lexicographic ordering of F ×G and the ordering ≺ for F ∗G.

Proof. If x ∈ F ∗G has image α(x)= ( f, g) ∈ F ×G, we observe that its image
under the representation ρ : F ∗G→ M2(R[t]) may be written

ρ(x)=
(

f 0
0 g

)
+ terms of positive degree.

The conclusion follows from our convention for ordering M2(R[t]). �

A subset C ⊂ G of an ordered group (G, <G) is said to be convex if the
inequalities c <G g <G c′, with c, c′ ∈ C imply that g ∈ C . For example, it is
easy to see that if (F, <F ) and (G, <G) are ordered groups and φ : F→ G is an
order-homomorphism, then the kernel K of φ is a convex subgroup of F.

Corollary 5. The kernel of the homomorphism α : F ∗ G → F × G is convex,
relative to the ordering ≺ of F ∗G.

The kernel of α : F ∗ G → F × G is known to be a free subgroup of F ∗ G,
freely generated by commutators of the form f g f −1g−1, where 1 6= f ∈ F and
1 6= g ∈ G.

Corollary 6. If F ∗G is ordered by ≺, the canonical homomorphism F ∗G→ F
is an order-homomorphism, but F ∗G→ G will not be an order-homomorphism, if
the groups are nontrivial.

Indeed, if f <F f ′ in F while g′ <G g in G, we have, as elements of F ∗G, the
inequality f g≺ f ′g′. If the canonical map F∗G→G were an order-homomorphism,
we’d conclude g <G g′, a contradiction. The asymmetry exposed by this corollary
cannot be corrected, as the following observation shows. We note that, by the same
proof, the proposition also applies to direct products.

Proposition 7. If F and G are nontrivial ordered groups, then there is no ordering
of F∗G for which both of the canonical homomorphisms F∗G→ F and F∗G→G
are order-homomorphisms.

Proof. As above, choose f, f ′ ∈ F and g, g′ ∈ G such that f <F f ′ and g′ <G g.
Suppose < is an ordering of F ∗ G for which the canonical homomorphisms
F ∗ G → F and F ∗ G → G are order-homomorphisms, and compare f g with
f ′g′. If f g < f ′g′, then applying the map F ∗ G → F implies that f ≤F f ′, a
contradiction. Similarly, f g > f ′g′ implies the contradiction g ≥G g′. �
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5. Structure as a tensor category

Recall that C denotes the category of ordered groups and order-preserving homo-
morphisms, and that F : C×C→ C is a bifunctor. Let us rename F as follows, for
ordered groups (F0, <F0) and (F1, <F1):

(F0, <F0)⊗ (F1, <F1) := F((F0, <F0), (F1, <F1))= (F0 ∗ F1,≺)

It is well known that the category of groups under free product is a tensor
category, with unit the trivial group; see [Mac Lane 1998, p. 161], or the definition
given in [Wikipedia 2017]. I am grateful to Christian Kassel for suggesting the
following to me.

Theorem 8. With the bifunctor ⊗ the category C is a tensor category, in other
words, a monoidal category.

For ordered groups (F0, <F0), (F1, <F1), (F2, <F2), we have the isomorphism
of groups

F0 ∗ (F1 ∗ F2)∼= (F0 ∗ F1) ∗ F2.

We need to check that the orderings constructed on both sides of this equivalence
are the same under the isomorphism, in other words the isomorphism is order-
preserving. But this follows from the observation that the lexicographic orderings
on the direct products F0× (F1× F2) and (F0× F1)× F2, used in the respective
orderings of F0 ∗ (F1 ∗ F2) and (F0 ∗ F1) ∗ F2, both reduce to the lexicographic
ordering of triples.

Similarly, the coherence relations involved in tensor categories follow from the
observation that for ordered groups (Fi , <Fi ), 0≤ i ≤ 3, our orderings of the groups

(F0 ∗ F1) ∗ (F2 ∗ F3), (F0 ∗ (F1 ∗ F2)) ∗ F3, F0 ∗ ((F1 ∗ F2) ∗ F3),

(F0 ∗ F1) ∗ (F2 ∗ F3), and F0 ∗ (F1 ∗ (F2 ∗ F3))

are identical (under their natural isomorphisms).

6. An application to braid groups

The original motivation for this study is the following application to the theory of
braids. The braid group Bn acts by automorphisms on the free group Fn , as observed
by Artin [1925; 1947]. Free groups are orderable, and we may call a braid “order-
preserving” if its image under the (faithful) Artin representation Bn → Aut(Fn)

preserves some ordering of Fn; see [Kin and Rolfsen 2016]. In that paper it is noted
that a braid is order-preserving if and only if the complement of the link in S3

consisting of the braid’s closure, plus the braid axis, has orderable fundamental
group. It is used to show, for example, that of the two minimal volume orientable
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α β α β

Figure 1. α ∈ Bm (left), β ∈ Bn (center), α⊗β ∈ Bm+n (right).

hyperbolic 2-cusped 3-manifolds, one has an orderable fundamental group, while
the group of the other is not orderable (although it is left-orderable).

Multiplication of braids is by concatenation, and the product of two order-
preserving braids need not be order-preserving, as observed in [Kin and Rolfsen
2016]. There is also a tensor product operation ⊗ : Bm × Bn→ Bm+n which forms
an m+ n strand braid α⊗β from an m-braid α and an n-braid β by placing them
side by side with no crossing between the strands of α and those of β, as in Figure 1.
See for example [Kassel and Turaev 2008, p. 69].

It is easy to see from the definition of Artin’s representation that the automor-
phism of Fm+n ∼= Fm ∗ Fn corresponding to α ⊗ β is just the free product of the
automorphisms corresponding to α and β.

Corollary 9. The tensor product α⊗β of braids is order-preserving if and only if
both α and β are order-preserving braids.

Proof. One direction follows from Corollary 3. For if α and β preserve some
orderings of Fm and Fn respectively, then α⊗β preserves the corresponding ordering
≺ of Fm ∗ Fn ∼= Fm+n . On the other hand, suppose α⊗β preserves an ordering of
Fm+n ∼= Fm ∗ Fn . Considering Fm and Fn as the natural subgroups of Fm ∗ Fn , we
see that the action of α⊗β leaves each of these subgroups invariant. Therefore the
ordering of Fm+n preserved by α⊗β restricts to each of the subgroups making the
action of the braids α and β order-preserving. �

We note the multiple use of the tensor product symbol. Indeed, let us say that
the ordered free group (Fn, <) represents the braid β ∈ Bn if the automorphism of
Fn corresponding to β under the Artin representation preserves the ordering <. We
have observed the following.

Proposition 10. If (Fm, <) represents α ∈ Bm and (Fn, <
′) represents β ∈ Bn , then

(Fm, <)⊗ (Fn, <
′) represents α⊗β ∈ Bm+n .

7. Continuity

The goal of this section is to establish that our construction is continuous in an
appropriate sense. If O(G) denotes the set of all (two-sided invariant) orderings of
the group G, there is a natural topology on O(G), defined below. Given orderable
groups F and G, the construction defined in Section 3 can be considered a function
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whose input is a pair of orderings <F and <G and the output is an ordering ≺
of F ∗G, in other words a function

O(F)× O(G)→ O(F ∗G).

We’ll see that it is both continuous and injective.

7.1. The space of orderings. The set of orderings O(G) of the group G is endowed
with a natural topology, as detailed by Sikora [2004]. See also [Dabkowska et al.
2007; Navas 2010]. Consider a specific ordering <G of G, and choose a finite
number of inequalities among elements of G which are satisfied using <G . Then
a basic neighborhood of <G consists of all orderings of G for which all those
inequalities remain true. Neighborhoods of this type form a basis for the topology
we are considering. Equivalently, a neighborhood of <G is defined by choosing
some finite set of elements of G which are positive (greater than the identity)
using <G . Then take the neighborhood to consist of all orderings of G under which
that finite set remains positive.

It is known, and not difficult to show, that O(G) is compact and totally discon-
nected. An isolated point of O(G) is an ordering which is “finitely determined” in
the sense that it is the only ordering of G for which some finite set of inequalities
holds. Sikora [2004] showed that for n ≥ 2, O(Zn) has no isolated points, and is
homeomorphic with the Cantor set. Whether O(Fn) has isolated points, for the free
group Fn , n ≥ 2, is an open question at the time of writing.

7.2. Continuity of lexicographic ordering of direct products. As a warmup to
our main result, we consider the lexicographic ordering of direct products F×G of
ordered groups, as discussed in Section 3 (similar results would hold for the reverse
lexicographic ordering). It may be considered a function

L : O(F)× O(G)→ O(F ×G).

Proposition 11. L is continuous and injective.

Proof. We may assume both F and G are nontrivial groups; otherwise there is
nothing to prove. For injectivity, suppose <F and <′F are orderings of F and that
<G and <′G are orderings of G. Consider <= L(<F , <G) and <′ = L(<′F , <

′

G).
If <F and <′F are distinct, there must be an element f ∈ F with 1<F f but f <′F 1.
Then we have, for any g ∈ G, that 1< ( f, g) and ( f, g) <′ 1. It follows that < and
<′ are distinct. Similarly, if <G and <′G are different, then one can find an element
(1, g) ∈ F ∗G with (1, g) having different signs relative to the orderings < and <′.
This establishes injectivity.

To establish continuity, note that a basic neighborhood N< of < in O(F ×G)
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is defined by choosing some finite set of positive elements:

( f1, g1), . . . , ( fk, gk), (1, gk+1), . . . (1, gk+l).

Here we have

1<F f1, . . . , 1<F fk and 1<G gk+1, . . . , 1<G gk+l,

whereas some of the list g1, . . . , gk may be negative in the ordering <G . Possibly
k = 0 or l = 0.

Continuity will be established if we can find neighborhoods N<F of<F in O(F)
and N<G of <G in O(G) so that L(N<F ×N<G )⊂N<. But this is straightforward:
take N<F to be the set of all orderings of F for which f1, . . . , fk are positive, and
N<G the set of all orderings of G under which gk+1, . . . , gk+l are positive. �

7.3. Continuity of the ordering of free products. Recalling the construction in
Section 3, we defined a function of ordered groups:

F((F, <F ), (G, <G))= (F ∗G,≺).

By abuse of notation, if F and G are fixed, but orderings thereof are variable,
we may write

F(<F , <G)=≺ .

Then we have a function of spaces of orderings:

F : O(F)× O(G)→ O(F ∗G).

Theorem 12. F is continuous and injective.

Proof. One may prove injectivity as in Proposition 11; we leave the details to the
reader. Note also that we proved continuity of the map L by showing that any
finite set of inequalities in F × G would be implied (under L) by finitely many
inequalities in F and in G.

We will argue similarly in this case; we’ll try to avoid excessive notation and
sketch the ideas. Suppose <F and <G are given orderings of F and G, respectively,
and that ≺= F(<F , <G) is the corresponding ordering of the free product F ∗G.
A neighborhood N≺ of ≺ in the space O(F ∗G) consists of all orderings of F ∗G
for which all members of some finite set x1, . . . , xk of elements of F∗G are positive,
where 1 ≺ xi for i = 1, . . . , k. But note that 1 ≺ xi is equivalent to the matrix
ρ(xi )− ρ(1) being positive in M2(Z(F × G)[t]), and this is positive if the first
nonzero entry of that matrix, expanded in powers of t , is positive. That entry, an
element of Z(F ×G), is positive if the coefficient of its greatest group element,
say ( fi , gi ), is a positive integer. But the condition that ( fi , gi ) is the greatest
group element appearing in that entry is equivalent to a finite number of inequalities
in F × G, using the lexicographic ordering. This in turn, as in Proposition 11,
is implied by a finite number of inequalities in F and G which are in particular
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satisfied using the orderings <F and <G . Using the open neighborhoods N<F of
<F and N<G of <G defined by those inequalities, we see F(N<F ,N<G ) ⊂ N≺,
which establishes continuity of F. �

Suppose, in the procedure for defining ≺ in Section 3, one used some ordering
of F ×G other than the lexicographic one, but otherwise defined ≺ in the same
way. This then defines a function O(F ×G)→ O(F ∗G), which we will call M,
short for matrix construction. The proof of Theorem 12 actually shows that M is
continuous. Our specific construction F may therefore be considered a composite

O(F)× O(G) L
−→ O(F ×G) M

−→ O(F ∗G)

of two continuous functions, both injective.

8. Free product of arbitrarily many ordered groups

We now consider an arbitrary collection of ordered groups. For convenience, we
assume the groups are indexed by an ordinal number γ and denote the collection
by {(Fα, <Fα )}α<γ . So far we have been considering the case γ = 2.

Theorem 13. Let γ ≥ 2 be an ordinal. Suppose {(Fα, <Fα )}α<γ is a collection
of ordered groups and let F := ∗α<γ Fα denote the free product. Then there is an
ordering ≺F of F, so that (F,≺F ) is an ordered group, denoted

F({(Fα, <Fα )}α<γ ) := (F,≺F ),

and such that the following hold:

(1) For each α < γ the restriction of ≺F to the natural subgroup Fα of F
equals <Fα .

(2) If {(Gα, <Gα
)}α<γ is another collection of ordered groups with G := ∗α<γGα

and
(G,≺G)= F({(Gα, <Gα

)}α<γ ),

then for any collection φα : Fα→ Gα of homomorphisms defined for all α < γ
and which are order-preserving, relative to <Fα and <Gα

, the free product
homomorphism ∗α<γφα : F→ G is order-preserving, relative to ≺F and ≺G .

Proof. We will define the ordering of F by induction, possibly transfinite. For that
reason, we’ll call the ordering ≺γ and only later call it ≺F also. The base for the
induction, for γ = 2, is Theorem 1, taking ≺2 to be the ordering ≺ defined there.
For induction we may assume that orderings≺β have been defined for all the groups
∗α<βFα for all 1<β <γ , and that they satisfy (1) and (2) with β replacing γ . Note
that ∗α<βFα is naturally a subgroup of ∗α<γ Fα. To facilitate the induction, we’ll
prove that in addition to properties (1) and (2) of the theorem, ≺γ further satisfies:
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(3) If 1< β < γ the restriction of the ordering ≺γ to ∗α<βFα coincides with ≺β .

Again, by Theorem 1 this is satisfied for the base case γ = 2. To construct ≺γ
we consider two cases.

Case 1: γ is a successor ordinal: γ = β + 1. Since ≺β is by hypothesis already
defined, and noting that F can be naturally identified with (∗α<βFα) ∗ Fβ , we use
the functor F defined in the proof of Theorem 1 and take

(F,≺γ )∼= ((∗α<βFα) ∗ Fβ,≺γ ) := F((∗α<βFα),≺β), (Fβ, <β)).

Case 2: γ is a limit ordinal. Then the group ∗α<γ Fα is the union of its subgroups
∗α<βFα with β < γ . Thus to compare two group elements x, y in ∗α<γ Fα , choose
β < γ for which x, y ∈ ∗α<βFα and define x ≺γ y if and only if x ≺β y. By
property (3), which may be assumed for ordinals less than γ , this does not depend
on choice of β.

In either case, it is routine to verify that the ordering≺γ (also called≺F ) satisfies
the conditions (1), (2) and (3). �

9. Left-ordered groups

An ordering < of the elements of a group G is a left-ordering if for all f, g, h ∈ G
one has

g < h =⇒ f g < f h;

in this case we call (G, <) a left-ordered group. It is much easier than for the
ordered case to see that the free product of left-ordered groups is left-orderable.
For left-ordered groups (F, <F ) and (G, <G) consider the short exact sequence

1→ K → F ∗G→ F ×G→ 1,

where F ∗G→ F ×G is the canonical homomorphism. The kernel K is a free
group, which is orderable, and one can left-order F ×G, lexicographically. Since
left-orderability (unlike orderability) is always preserved under extensions, we
conclude that F ∗G is left-orderable.

On the other hand, our construction of the ordering ≺ for the free product of
ordered groups may be revised in a straightforward way to the left-ordered (or
right-ordered) situation. One must be a bit careful. For a left-ordered group (G, <)
the group ring Z(G) is not, strictly speaking, an ordered ring by our definition. For
example if we have g, g′, h ∈ G with g < g′ but gh > g′h then the ring elements
g′− g and h are positive, whereas their product g′h− gh is not positive. However
the product in the other order, hg′− hg, is necessarily positive, and more generally
a positive element of Z(G) multiplied on the left by a monomial with positive
coefficient remains positive. This is enough to establish left-invariance of ≺ in the
proof of Theorem 1.
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Therefore, we conclude that all the results above remain true if “ordered” is
replaced by “left-ordered” throughout. In particular, the category of left-ordered
groups and order-preserving homomorphisms is also a tensor category using our
functorial construction.

10. Concluding remarks

The ordering we construct is by no means canonical; for example other choices
of ordering the direct product, or the entries of matrices, can lead to a different
ordering of the free product which satisfies the conditions of Theorem 1, and even
defines a tensor category structure. Indeed, Corollary 6 reveals the asymmetry of
the construction. In a real sense, the first group in the free product of two groups is
treated preferentially in our construction. It could as well have been the reverse.

The argument given here does not extend to the larger category of ordered groups
and order-homomorphisms (which are not necessarily injective) as some positive
matrix entries may be mapped to zero under such a map. Extending our results to
this category seems to be an open question.

As noted in [Bergman 1990], much of this can be done in the more general setting
of ordered semigroups; see also [Johnson 1968]. We leave such generalization for
the interested reader to contemplate.
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