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MULTIPLICATION OF DISTRIBUTIONS AND
A NONLINEAR MODEL IN ELASTODYNAMICS

C. O. R. SARRICO

We consider the system ut +(u2/2)x = σx, σt +uσx = k2ux , where k is a real
number and the unknowns u(x, t) and σ(x, t) belong to convenient spaces
of distributions. For this simplified model from elastodynamics, a rigorous
solution concept defined in the setting of a distributional product is used.
The explicit solution of a Riemann problem and the possible emergence of
a δ shock wave are established. For initial conditions containing a Dirac
measure, a δ′ shock wave solution is also presented.

1. Introduction and main results

Let us consider the system

ut +
( 1

2 u2)
x= σx ,(1)

σt + uσx= k2ux ,(2)

where t ∈R is the time variable, x ∈R is the one-dimensional space variable, u(x, t)
and σ(x, t) are the unknowns state variables and k > 0 is a real number.

This strictly hyperbolic system in nonconservative form arises in a simplified
model from elastodynamics where u is the velocity, σ is the stress and k is the speed
of propagation of the elastic waves. Several aspects of this model were already
studied by J. J. Cauret, J. F. Colombeau, A. Y. Le Roux, and K. T. Joseph in the
setting of Colombeau generalized functions. For details, see [Cauret et al. 1989;
Colombeau and LeRoux 1988; Joseph 1997]. When initial data are smooth, it is
well-known that global solutions do not exist because discontinuities in u and σ
appear in finite time. Meanwhile, when u and σ are discontinuous, products of
distributions arise which make no sense in the classic theory of distributions.

Different concepts of solution can be found in the literature: the week asymptotic
method [Danilov and Mitrovic 2008; Danilov and Shelkovich 2005a; 2005b], the
measure theoretic method [Bouchut and James 1999; Brenier and Grenier 1998;
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Chen and Liu 2003; Huang 2005], the use of smooth function nets and weighted
measures spaces [Keyfitz and Kranzer 1995], split delta functions [Nedeljkov
2002; Nedeljkov and Oberguggenberger 2008], Colombeau generalized functions
[Cauret et al. 1989; Colombeau and LeRoux 1988; Joseph 1997; Nedeljkov 2004],
and others. We will adopt a solution concept which is a consistent extension
of the classical solution concept and is defined within the setting of a theory of
distributional products. In our framework, the product of distributions is always
a distribution that is not defined by approximation processes. Our products depend
upon the choice of a certain function α that encodes the indeterminacy inherent
to such products. We stress that this indeterminacy is not in general avoidable
and in many situations it also has a physical meaning. Concerning this point
let us mention [Bressan and Rampazzo 1988; Colombeau and LeRoux 1988;
Dal Maso et al. 1995; Sarrico 2003]. Naturally the existence and the solutions
of differential equations or systems containing such products may depend (or
not) on α. We call such solutions α-solutions. The possibility of its physical
occurrence depends on the physical system. Sometimes we cannot previously
know the behavior of the physical system, possibly due to features that were
not considered in the formulation of the model with the goal of simplifying it.
Thus, the mathematical indeterminacy sometimes observed may have this ori-
gin. In the present paper, however, the α-solutions when they exist are indepen-
dent of α.

First, we consider for system (1)–(2) the initial conditions

u(x, 0)= a1+ (a2− a1)H(x),(3)

σ(x, 0)= b1+ (b2− b1)H(x),(4)

where a1, a2, b1, b2 ∈ R and H stands for the Heaviside function. We will compute
all α-solutions of this problem within the space W of pairs of distributions (u,σ)
of the form

u(x, t)= u1+ (u2− u1)H(x − V t)+ g(t)δ(x − V t),(5)

σ(x, t)= σ1+ (σ2− σ1)H(x − V t),(6)

where δ stands for the Dirac measure concentrated at the origin, u1, u2, σ1, σ2, V ∈R,
and g : R→ R is a C1-function. If b1 = b2 there exists α-solutions in W if and
only if a1 = a2 and we will see, in the space W , the arising of the α-solution
corresponding to the constant states,

u(x, t)= a1,(7)

σ(x, t)= b1.(8)
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If b1 6= b2 there exists an α-solution in W if and only if a1 6= a2 with the possible
arising of the traveling wave

u(x, t)= a1+ (a2− a1)H(x − V t),(9)

σ(x, t)= b1+ (b2− b1)H(x − V t),(10)

which propagates with speed V = (a1 + a2)/2− (b2 − b1)/(a2 − a1). These α-
solutions depend neither on α nor on the constant k > 0!

From a mathematical point of view, this situation leads us to consider the in-
teresting case k = 0 in which the eigenvalues of the system (1)–(2), λ1 = u − k
and λ2 = u+ k coincide and the system loses the strict hyperbolicity. In this case,
assuming certain conditions to be specified later, we will see the possible emergence
(in the same space W ) of a delta shock wave with the form (5). Thus, the space
of functions is not sufficient to contain all possible α-solutions of the Riemann
problem (1)–(4) with k = 0.

Next, for the system (1)–(2), still with k = 0, we consider the initial conditions

u(x, 0)= a,(11)

σ(x, 0)= b+m δ(x),(12)

where a, b,m ∈R and m 6= 0. We will see the possible emergence of the α-solution,

u(x, t)= a+mt δ′(x − at),(13)

σ(x, t)= b+m δ(x − at),(14)

containing a δ wave and a δ′ shock wave, both with speed a. This result is obtained
within the space Z of pairs of distributions (u, σ ) of the form

u(x, t)= u1+ f (t) δ′[x − γ (t)],

σ (x, t)= σ1+ p δ[x − γ (t)],

where u1, σ1, p ∈R and f, γ :R→ R are C1-functions. Hence, the problem (1)–(2)
with initial conditions (11) and (12) with k = 0 also evolves to a situation more
singular then the initial one and the measure space is no longer sufficient to contain
all its possible α-solutions. It is also a remarkable fact that, in the space Z , all those
α-solutions, when they exist, are independent of α.

Regarding δ′-waves, we must remember that they were first introduced by E. Yu.
Panov and V. M. Shelkovich for certain systems of conservation laws [Panov and
Shelkovich 2006; Shelkovich 2006]. The results show that these systems subjected
to piecewise continuous initial data may develop not only δ-waves, but also δ′-waves
[Sarrico 2012b; Shelkovich 2007; 2008].

Let us summarize the contents of this paper. In Section 2 a survey of the main
ideas and formulas for multiplying distributions is presented. In Section 3 we define
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the concept of α-solution for the system (1)–(2). In Sections 4, 5 and 6 we justify
rigorously all we have said in the beginning of this introduction.

2. Products of distributions

Let C∞ be the space of indefinitely differentiable real or complex-valued functions
defined on RN , N ∈{1, 2, 3, . . .}, and D the subspace of C∞ consisting of those func-
tions with compact support. Let D′ be the space of Schwartz distributions and L(D)
the space of continuous linear maps φ : D→ D, where we suppose D is endowed
with the usual topology. We will sketch the main ideas of our distributional product
(the reader can look at (18), (22) and (24) as definitions, if he prefers to skip this pre-
sentation). For proofs and other details concerning this product see [Sarrico 1988].

First, we define a product Tφ ∈ D′ for T ∈ D′ and φ ∈ L(D) by

〈Tφ, ξ〉 = 〈T, φ(ξ)〉,

for all ξ ∈D; this makes D′ a right L(D)-module. Next, we define an epimorphism
ζ̃ : L(D)→ D′, where the image of φ is the distribution ζ̃ (φ) given by

〈ζ̃ (φ), ξ〉 =

∫
φ(ξ),

for all ξ ∈D (when the domain of the integral is not specified we assume it to be RN );
given S∈D′, we say that φ is a representative operator of S if ζ̃ (φ)= S. For instance,
if β ∈ C∞ is seen as a distribution, the operator φβ ∈ L(D) defined by φβ(ξ)= βξ ,
for all ξ ∈ D, is a representative operator of β because, for all ξ ∈ D, we have

〈ζ̃ (φβ), ξ〉 =

∫
φβ(ξ)=

∫
βξ = 〈β, ξ〉.

For this reason ζ̃ (φβ)= β. If T ∈ D′, we also have

〈Tφβ, ξ〉 = 〈T, φβ(ξ)〉 = 〈T, βξ〉 = 〈Tβ, ξ〉,

for all ξ ∈ D. Hence,
Tβ = Tφβ .

Thus, given T, S ∈ D′, we are tempted to define a natural product by setting
TS := Tφ, where φ ∈ L(D) is a representative operator of S, i.e., φ is such that
ζ̃ (φ)= S. Unfortunately, this product is not well defined, because TS depends on
the representative φ ∈ L(D) of S ∈ D′.

This difficulty can be overcome, if we fix α ∈ D with
∫
α = 1 and define

sα : L(D)→L(D) by

(15) [(sαφ)(ξ)](y)=
∫
φ[(τyα̌)ξ ],
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for all ξ ∈D and all y ∈RN , where τyα̌ is given by (τyα̌)(x)= α̌(x− y)= α(y−x)
for all x ∈ RN . It can be proved that for each α ∈ D with

∫
α = 1, sα(φ) ∈ L(D),

sα is linear, sα ◦ sα = sα (sα is a projector of L(D)), ker sα = ker ζ̃ , and ζ̃ ◦ sα = ζ̃ .
Now, for each α ∈D, we can define a general α-product�

α
of T ∈D′ with S ∈D′

by setting

(16) T �
α

S := T (sαφ),

where φ∈ L(D) is a representative operator of S∈D′. This α-product is independent
of the representative φ of S, because if φ and ψ are such that ζ̃ (φ) = ζ̃ (ψ) = S,
then φ−ψ ∈ ker ζ̃ = ker sα. Hence,

T (sαφ)− T (sαψ)= T [sα(φ−ψ)] = 0.

Since φ in (16) satisfies ζ̃ (φ)= S, we have
∫
φ(ξ)= 〈S, ξ〉 for all ξ ∈ D, and

by (15)

[(sαφ)(ξ)](y)= 〈S, (τyα̌)ξ〉 = 〈Sξ, τyα̌〉 = (Sξ ∗α)(y),

for all y ∈ RN , which means that (sαφ)(ξ)= Sξ ∗α. Therefore, for all ξ ∈ D,

〈T �
α

S, ξ〉 = 〈T (sαφ), ξ〉 = 〈T, (sαφ)(ξ)〉 = 〈T, Sξ ∗α〉

= [T ∗ (Sξ ∗α)̌ ](0)= [(Sξ )̌ ∗ (T ∗ α̌)](0)= 〈(T ∗ α̌)S, ξ〉,

and we obtain an easier formula for the general product (16):

(17) T �
α

S = (T ∗ α̌)S.

In general, this α-product is neither commutative nor associative but it is bilinear
and satisfies the Leibniz rule written in the form

Dk(T �
α

S)= (Dk T )�
α

S+ T �
α
(Dk S),

where Dk is the usual k-partial derivative operator in distributional sense (k =
1, 2, . . . , N ).

Recall that the usual Schwartz products of distributions are not associative and
the commutative property is a convention inherent to the definition of such products
(see the classical monograph of Schwartz [1966, pp. 117, 118 and 121] where
these products are defined). Unfortunately, the α-product (17), in general, is not
consistent with the classical Schwartz products of distributions with functions.

In order to obtain consistency with the usual product of a distribution with a
C∞-function, we are going to introduce some definitions and single out a certain
subspace Hα of L(D).
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An operator φ ∈ L(D) is said to vanish on an open set �⊂ RN , if and only if
φ(ξ) = 0 for all ξ ∈ D with support contained in �. The support of an operator
φ ∈ L(D) will be defined as the complement of the largest open set in which φ
vanishes.

Let N be the set of operators φ ∈ L(D) whose support has Lebesgue measure
zero, and ρ(C∞) the set of operators φ ∈ L(D) defined by φ(ξ) = βξ for all
ξ ∈ D, with β ∈ C∞. For each α ∈ D, with

∫
α = 1, let us consider the space

Hα = ρ(C∞)⊕ sα(N )⊂ L(D). It can be proved that ζα := ζ̃ |Hα : Hα→C∞⊕D′µ
is an isomorphism (D′µ stands for the space of distributions whose support has
Lebesgue measure zero). Therefore, if T ∈ D′ and S = β + f ∈ C∞⊕D′µ, a new
α-product, α̇ , can be defined by Tα̇S := Tφα , where for each α, φα = ζ−1

α (S) ∈ Hα .
Hence,

Tα̇S = T ζ−1
α (S)= T [ζ−1

α (β + f )]

= T [ζ−1
α (β)+ ζ−1

α ( f )] = Tβ + T �
α

f = Tβ + (T ∗ α̌) f,

and putting α instead of α̌ (to simplify), we get

(18) Tα̇S = Tβ + (T ∗α) f.

Thus, the referred consistency is obtained when the C∞-function is placed at the
right-hand side; if S ∈ C∞, then f = 0, S = β, and Tα̇S = Tβ.

The α-product (18) can be easily extended for T ∈D′p and S=β+ f ∈C p
⊕D′µ,

where p ∈ {0, 1, 2, . . . ,∞}, D′p is the space of distributions of order ≤ p in the
sense of Schwartz (D′∞ means D′), Tβ is the Schwartz product of a D′p-distribution
with a C p-function, and (T ∗ α) f is the usual product of a C∞-function with a
distribution. This extension is clearly consistent with all Schwartz products of D′p-
distributions with C p-functions, if the C p-functions are placed at the right-hand
side. It also keeps the bilinearity and satisfies the Leibniz rule written in the form

Dk(Tα̇S)= (Dk T )α̇S+ Tα̇(Dk S),

clearly under certain natural conditions; for T ∈ D′p, we must suppose S ∈
C p+1

⊕D′µ. Moreover, these products are invariant by translations, that is,

τa(Tα̇S)= (τaT )α̇(τa S),

where τa stands for the usual translation operator in distributional sense. These
products are also invariant for the action of any group of linear transformations
h : RN

→ RN with |det h| = 1, that leave α invariant.
Thus, for each α ∈D with

∫
α= 1, formula (18) allows us to evaluate the product

of T ∈ D′p with S ∈ C p
⊕D′µ; therefore, we have obtained a family of products,

one for each α.
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From now on, we always consider the dimension N = 1. For instance, if β is a
continuous function we have for each α, by applying (18),

δα̇β = δα̇(β + 0)= δβ + (δ ∗α)0= β(0)δ,

βα̇δ = βα̇(0+ δ)= β0+ (β ∗α)δ = [(β ∗α)(0)]δ,

δα̇δ = δα̇(0+ δ)= δ0+ (δ ∗α)δ = αδ = α(0)δ,(19)

Hα̇δ = (H ∗α)δ =
(∫

+∞

−∞

α(−τ)H(τ ) dτ
)
δ =

(∫ 0

−∞

α

)
δ,(20)

(Dδ)α̇(Dδ)= [(Dδ) ∗α]Dδ = α′(0)Dδ−α′′(0)δ.(21)

For each α, the support of the α-product (18) satisfies supp(Tα̇S)⊂ supp S, as for
usual functions, but it may happen that supp(Tα̇S) 6⊂ supp T .

It is also possible to multiply many other distributions preserving the consistency
with all Schwartz products of distributions with functions. For instance, using the
Leibniz formula to extend the α-products, it is possible to write

(22) Tα̇S = Tw+ (T ∗α) f,

with T ∈ D′−1 and S = w+ f ∈ L1
loc ⊕D′µ, where D′−1 stands for the space of

distributions T ∈ D′ such that DT ∈ D′0 and Tw is the usual pointwise product of
T ∈D′−1 with w ∈ L1

loc. Recall that, locally, T can be read as a function of bounded
variation (see [Sarrico 2012a, §2] for details). For instance, since H ∈ D′−1 and
H = H + 0 ∈ L1

loc⊕D′µ, we have

(23) Hα̇H = H H + (H ∗α)0= H.

because H ∈ D′−1 and H = H + 0 ∈ L1
loc⊕D′µ. More generally, if T ∈ D′−1 and

S ∈ L1
loc, then Tα̇S = TS; actually, using (22) we can write

Tα̇S = Tα̇(S+ 0)= TS+ (T ∗α)0= TS.

Thus, in distributional sense, the α-products of functions that, locally, are of
bounded variation coincide with the usual pointwise product of these functions
considered as a distribution. We stress that in (18) or (22) the convolution T ∗α is
not to be understood as an approximation of T . Those formulas are exact.

Another useful extension that will be applied is given by the formula

(24) Tα̇S = D(Yα̇S)− Yα̇(DS),

for T ∈D′0∩D′µ and S, DS ∈ L1
loc⊕D

′
c, where D′c⊂D′µ is the space of distributions

whose support is at most countable, and Y ∈D′−1 is such that DY = T (the products
Yα̇S and Yα̇(DS) are supposed to be computed by (18) or (22)). The value of Tα̇S
given by (24) is independent of the choice of Y ∈ D′−1 such that DY = T (see
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[Sarrico 2012a, p. 1004] for the proof). For instance, by (24) and (20) we have, for
any α,

(25) δα̇H = D(Hα̇H)−Hα̇(DH)= DH−Hα̇δ= δ−
(∫ 0

−∞

α

)
δ=

(∫
+∞

0
α

)
δ,

so that

(26) Hα̇δ+ δα̇H = δ

for any α. The products (18), (22), and (24) are compatible; that is, if an α-product
can be computed by two of them, the result is the same.

3. The α-solution concept for the system (1)–(2)

Let I be an interval of R with more than one point and let F(I ) be the space of
continuously differentiable maps ũ : I → D′ in the sense of the usual topology
of D′. For t ∈ I the notation [ũ(t)](x) is sometimes used to emphasize that the
distribution ũ(t) acts on functions ξ ∈ D which depend on x .

Let 6(I ) be the space of functions u : R×I → C such that

(a) for each t ∈ I , u(x, t) ∈ L1
loc(R),

(b) ũ : I → D′, defined by [ũ(t)](x)= u(x, t) is in F(I ).

The natural injection u 7→ ũ of 6(I ) into F(I ) allows us to identify any function
of 6(I ) with a certain map in F(I ). Since C1(R×I ) ⊂ 6(I ), we can write the
inclusions

C1(R×I )⊂6(I )⊂ F(I ).

Consequently, the identification u 7→ ũ allows us to write the system (1)–(2) as
follows

dũ
dt
(t)+ 1

2 D[ũ(t)α̇ũ(t)] = Dσ̃ (t),(27)

dσ̃
dt
(t)+ ũ(t)α̇Dσ̃ (t)= k2 Dũ(t).(28)

Definition 1. Given α, the pair (ũ, σ̃ ) ∈ F(I )×F(I ) will be called an α-solution
for the system (27)–(28) on I , if the α-products that appear in this system are well
defined and both equations are satisfied for all t ∈ I .

We have the following results:

Theorem 2. If (u, σ ) is a classical solution of (1)–(2) on R×I then, for any α, the
pair (ũ, σ̃ ) ∈ F(I )×F(I ) defined by [ũ(t)](x) = u(x, t), [σ̃ (t)](x) = σ(x, t), is
an α-solution of (27)–(28) on I .
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Note that by a classical solution of (1)–(2) on R× I , we mean a pair of C1-
functions (u(x, t), σ (x, t)) that satisfies (1)–(2) on R× I .

Theorem 3. If u, σ : R×I → C are C1-functions and, for a certain α, the pair
(ũ, σ̃ ) ∈ F(I ) × F(I ) defined by [ũ(t)](x) = u(x, t), [σ̃ (t)](x) = σ(x, t) is an
α-solution of (27)–(28) on I , then the pair (u, σ ) is a classical solution of (1)–(2)
on R×I .

For the proof it is enough to observe that any C1-function u(x, t) can be read as
a continuously differentiable function ũ ∈ F(I ) defined by [ũ(t)](x)= u(x, t) and
to use the consistency of the α-products with the classical Schwartz products.

Replacing ũ(t)α̇Dσ̃ (t) by Dσ̃ (t)α̇ũ(t) in (28), we get

(29)
dσ̃
dt
(t)+ Dσ̃ (t)α̇ũ(t)= k2 Dũ(t),

which is not equivalent to (28) since our α-products are not, in general, commutative.
However, all we have said for the systems (1)–(2) and (27)–(28) is also valid for the
systems formed by (1) and (2) and by (27) and (29). Taking advantage of this situa-
tion, we introduce a definition that further extends the concept of a classical solution:

Definition 4. Given α, we define as an α-solution for the system (1)–(2) on I any
α-solution of the system formed by (27) and (28) or by (27) and (29) on I .

As a consequence, an α-solution (ũ, σ̃ ) in this sense, read as an usual distribu-
tional solution (u, σ ), affords a consistent extension of the concept of a classical
solution for the system (1)–(2). Thus, and for short, we also call (u, σ ) an α-solution
of (1)–(2).

4. The Riemann problem (1)–(4) with k > 0

Let us consider the system (1)–(2) with k > 0. We also consider (x, t) ∈R×R (we
could also take R×[0,+∞[) and the unknowns u(x, t) and σ(x, t) submitted to
the initial conditions (3) and (4). When we read this problem in F(R) having in
mind the identification u 7→ ũ, we must replace the system (1)–(2) by the system
(27)–(28) and the conditions (3)–(4) by the following ones:

ũ(0)= a1+ (a2− a1)H,(30)

σ̃ (0)= b1+ (b2− b1)H.(31)

We will give, explicitly, all α-solutions for this problem which belong to a set W̃
defined as follows: (ũ, σ̃ ) ∈ W̃ if and only if ũ, σ̃ ∈ F(R) and there exist real
numbers u1, u2, σ1, σ2, V and a C1-function g : R→ R such that

ũ(t)= u1+ (u2− u1)τV t H + g(t)τV tδ,(32)

σ̃ (t)= σ1+ (σ2− σ1)τV t H.(33)
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Theorem 5. Let us consider the problem (27)–(28) with the initial conditions
(30)–(31) with k > 0.

(I) If b1 = b2, there exists an α-solution in W̃ if and only if a1 = a2; moreover, for
any α, the α-solution is unique in W̃ and is given by

ũ(t)= a1,(34)

σ̃ (t)= b1;(35)

(II) If b1 6= b2 there exists an α-solution in W̃ if and only if a1 6= a2 and we choose
α such that

(36)
∫ 0

−∞

α =
1
2
−

b2− b1

(a2− a1)2
+

k2

b2− b1
;

moreover, for any α satisfying this condition, the α-solution is unique in W̃
and is given by the traveling wave

ũ(t)= a1+ (a2− a1)τV t H,(37)

σ̃ (t)= b1+ (b2− b1)τV t H,(38)

with speed

V =
a1+ a2

2
−

b2− b1

a2− a1
.

As we can see all of these α-solutions, when they exist, are independent of α.

Proof. Let us suppose (ũ, ṽ) ∈ W̃ . Then we have (32) and (33), and by (30) and
(31) we can write

u1+ (u2− u1)H + g(0)δ = a1+ (a2− a1)H,

σ1+ (σ2− σ1)H = b1+ (b2− b1)H,

which implies g(0) = 0. Then, by restriction to the interval ]−∞, 0[, we have
u1 = a1 and σ1 = b1. As a consequence, we also have u2 = a2 and σ2 = b2. Thus,
from (32) and (33) it follows that

ũ(t)= a1+ (a2− a1)τV t H + g(t)τV tδ,(39)

σ̃ (t)= b1+ (b2− b1)τV t H,(40)
and so

dũ
dt
(t)=−V (a2− a1)τV t δ+ g′(t)τV t δ− V g(t)τV t Dδ,

dσ̃
dt
(t)=−V (b2− b1)τV t δ.

By applying the bilinearity of the α-products, the results (23), (20), (25), (19), and
the already mentioned translation property, we have
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(41) ũ(t)α̇ũ(t)= a2
1 + 2a1(a2− a1)τV t H + 2a1g(t)τV tδ

+ (a2− a1)
2τV t H + (a2− a1)g(t)

(∫ 0
−∞

α
)
τV tδ

+ (a2− a1)g(t)
(∫
+∞

0 α
)
τV tδ+ g2(t)α(0)τV tδ.

Since
∫ 0
−∞

α+
∫
+∞

0 α = 1, we also have

D[ũ(t)α̇ũ(t)] = (a2
2 − a2

1)τV tδ+ [2a1g(t)+ (a2− a1)g(t)+ g2(t)α(0)]τV t Dδ,

D[σ̃ (t)] = (b2− b1)τV tδ,

D[ũ(t)] = (a2− a1)τV tδ+ g(t)τV t Dδ,

and

(42) ũ(t)α̇D[σ̃ (t)]

=
[
a1(b2− b1)+ (a2− a1)(b2− b1)

∫ 0
−∞
α+ (b2− b1)g(t)α(0)

]
τV tδ.

Thus, (27)–(28) turn out to be

0=
[
−V (a2− a1)+ g′(t)+ 1

2(a
2
2 − a2

1)− (b2− b1)
]
τV tδ

+
[
−V g(t)+ 12(a1+ a2)g(t)+ 1

2(α(0))g
2(t)

]
τV t Dδ,

0=
[
−V (b2− b1)+ a1(b2− b1)+ (a2− a1)(b2− b1)

∫ 0
−∞

α

+ (b2− b1)g(t)α(0)− k2(a2− a1)
]
τV tδ− k2g(t)τV t Dδ.

Hence, for all t ∈ R we have

0=−V (a2− a1)+ g′(t)+ 1
2(a

2
2 − a2

1)− (b2− b1),(43)

0= g(t)
[
−V + 1

2(a1+ a2)+
1
2(α(0))g(t)

]
,(44)

0=−V (b2− b1)+ a1(b2− b1)+ (a2− a1)(b2− b1)
∫ 0
−∞

α(45)

+ (b2− b1)g(t)α(0)− k2(a2− a1),

0= k2g(t).(46)

From (46) we conclude that g = 0, (44) is satisfied, and from (43) and (45) we have

0=−V (a2− a1)+
1
2(a

2
2 − a2

1)− (b2− b1),(47)

0=−V (b2− b1)+ a1(b2− b1)+ (a2− a1)(b2− b1)
∫ 0
−∞

α− k2(a2− a1).(48)

Now, if b1 = b2, by (48) we have a1 = a2, (47) is satisfied and (I) follows from
(39) and (40). If b1 6= b2, from (48) we have

(49) V = a1+ (a2− a1)

∫ 0

−∞

α− k2 a2− a1

b2− b1
,
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and from (47) we can write

(50) −a1(a2−a1)− (a2−a1)
2
∫ 0

−∞

α+k2 (a2− a1)
2

b2− b1
+

a2
2 − a2

1

2
− (b2−b1)= 0.

Then it follows that a1 6= a2, because if a1 = a2 we would have b1 = b2 which is
a contradiction. As a consequence, from (50) we have∫ 0

−∞

α =
1
2
−

b2− b1

(a2− a1)2
+

k2

b2− b1
,

from (49) we have

V =
a1+ a2

2
−

b2− b1

a2− a1
,

and (II) follows from (39) and (40). �

If in (28) we replace ũ(t)α̇D[σ̃ (t)] by D[σ̃ (t)]α̇ũ(t) we obtain for the value
D[σ̃ (t)]α̇ũ(t) the same value as ũ(t)α̇D[σ̃ (t)], with

∫
+∞

0 α instead of
∫ 0
−∞

α (now
we must apply (25) instead of (20)). Hence, for the problem formed by the system
(27) and (29) with initial conditions (30)–(31) we must replace Theorem 5 by
another theorem where the only difference is at (36), where

∫ 0
−∞

α must be replaced
by
∫
+∞

0 α!
As a consequence of Definition 4 these considerations allows us to conclude that

the α-solutions of the problem (1)–(4) with k > 0, which belong to W , can be read
as stated in the introduction (see (7), (8), (9) and (10)).

5. The Riemann problem (1)–(4) with k = 0

In this extreme case we will see, in the same space of solutions W , the possible
emergence of a δ shock wave.

Theorem 6. Let us consider the problem (27)–(28) with initial conditions (30)–(31)
with k = 0.

(I) If b1 = b2 and a1 = a2 there exists an α-solution in W̃ for any α; moreover,
for any α, this α-solution is unique in W and is given by

ũ(t)= a1, σ̃ (t)= b1.

(II) If b1 = b2 and a1 6= a2 there exists an α-solution in W̃ for any α; moreover,
for any α, the α-solution is unique in W̃ and is given by

ũ(t)= a1+ (a2− a1)τV t H,(51)

σ̃ (t)= b1,(52)

with V = 1
2(a1+ a2).
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(III) If b1 6= b2 and a1 = a2 there exists an α-solution in W̃ if and only if we
choose α such that α(0)= 0; moreover, for any α satisfying this condition, the
α-solution is unique in W̃ and is given by

ũ(t)= a1+ (b2− b1)tτa1tδ,(53)

σ̃ (t)= b1+ (b2− b1)τa1t H.(54)

(IV) If b1 6= b2 and a1 6= a2 there exists an α-solution in W̃ if and only if we choose
α such that

(55)
∫ 0

−∞

α =
1
2
−

b2− b1

(a2− a1)2
,

or we choose α such that

(56) α(0)= 0;

moreover, for any α satisfying (55), the α-solution is unique in W̃ and is
given by

ũ(t)= a1+ (a2− a1)τV t H,(57)

σ̃ (t)= b1+ (b2− b1)τV t H,(58)

with V = (a1+a2)/2− (b2−b1)/(a2−a1); also for any α satisfying (56), the
α-solution is unique in W̃ and is given by

ũ(t)= a1+ (a2− a1)τV t H + (b2− b1)tτV tδ,(59)

σ̃ (t)= b1+ (b2− b1)τV t H,(60)

with V = 1
2(a1+ a2). As we can see, all of these α-solutions, when they exist,

are independent of α.

Proof. Let us suppose (ũ, σ̃ ) ∈ W̃ . Then, we have (32), (33) and as we have seen
in the proof of Theorem 5 we have g(0) = 0, u1 = a1, u2 = a2, σ1 = b1, σ2 = b2

and also (39) and (40). From (27) and (28) we have (43)–(46) with k = 0, which
means that for all t ∈ R we can write

0= V (a2−a1)+g′(t)+ 1
2(a

2
2−a2

1)−(b2−b1),(61)

0= g(t)
[
−V+ 1

2(a1+a2)+
1
2α(0)g(t)

]
,(62)

0=−V (b2−b1)+a1(b2−b1)+(a2−a1)(b2−b1)
∫ 0
−∞

α+(b2−b1)g(t)α(0).(63)

(I) Suppose b1 = b2 and a1 = a2. Then (63) is satisfied and from (61) we have
g′(t)= 0, which means that g(t)= 0 and (62) is also satisfied. Then from (39) and
(40) we have ũ(t)= a1 and σ̃ (t)= b1 and (I) follows.
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(II) Suppose b1 = b2 and a1 6= a2. Then (63) is satisfied and from (61) we have

g′(t)= V (a2− a1)−
1
2(a

2
2 − a2

1),

which means that

(64) g(t)=
[
V (a2− a1)−

1
2(a

2
2 − a2

1)
]
t.

Then, from (62) we conclude that V = 1
2(a1+ a2) and by (64) g(t)= 0 follows for

all t . Then, from (39) and (40), we conclude that ũ(t)= a1+ (a2− a1)τV t H and
σ̃ (t)= b1 and (II) follows.

(III) Suppose b1 6= b2 and a1 = a2. Then by (61) we have g′(t)= b2− b1 which
means that g(t)= (b2− b1)t , and (62) turns out to be

t
[
−V + a1+

1
2α(0)(b2− b1)t

]
= 0,

which implies, for any t 6= 0,

V = a1+
1
2α(0)(b2− b1)t.

Thus, once V is constant, we have α(0)= 0, V = a1 and (63) is satisfied and (III)
follows.

(IV) Suppose b1 6= b2 and a1 6= a2. Then by (61) we have

V =
g′(t)

a2− a1
+

a1+ a2

2
−

b2− b1

a2−a1
,

and once V is constant we conclude that g′(t)= c (constant), g(t)= ct , and

(65) V =
c

a2− a1
+

a1+ a2

2
−

b2− b1

a2−a1
.

If c = 0 we have g(t)= 0 and

V =
a1+ a2

2
−

b2− b1

a2−a1
.

As a consequence, (62) is satisfied and (63) turns out to be

−(b2− b1)
a2+ a1

2
+
(b2− b1)

2

a2− a1
+ a1(b2− b1)+ (a2− a1)(b2− b1)

∫ 0
−∞

α = 0,

which is possible if and only if∫ 0

−∞

α =
1
2
−

b2− b1

(a2− a1)2
.
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If c 6= 0 we have from (65) and (62),

ct
[
−

c
a2− a1

−
a1+ a2

2
+

b2− b1

a2− a1
+

a1+ a2

2
+
α(0)

2
ct
]
= 0,

and for all t 6= 0 we will have

α(0)
2

ct −
c

a2− a1
+

b2− b1

a2− a1
= 0,

which is possible if and only if α(0)= 0 and c = b2− b1 which, by (65), implies
V = 1

2(a1+ a2) and g(t)= (b2− b1)t . Hence, (IV) follows. �

Thus, concerning the problem formed by the system (27) and (29) with initial
conditions (30)–(31), Theorem 6 must be substituted with another theorem where
the only difference is at (55), where

∫ 0
−∞

α must change to
∫
+∞

0 α!
As a consequence of Definition 4 we can conclude that the α-solutions of the

problem (1)–(4) with k = 0, can be described as in the introduction.

6. The arising of a δ′ shock wave

For the system (1)–(2) with k = 0 let us consider the initial conditions (11) and (12).
Let us define the space Z̃ by the condition (ũ, σ̃ ) ∈ Z̃ if and only if ũ, σ̃ ∈ F(R)
and there exist real numbers u1, σ1, p and C1-functions f, γ : R→ R such that

ũ(t)= u1+ f (t)τγ (t)Dδ,(66)

σ̃ (t)= σ1+ pτγ (t)δ.(67)

Now, the initial conditions (11) and (12) correspond in F(R) to the conditions

ũ(0)= a,(68)

σ̃ (0)= b+mδ,(69)

with m 6= 0. We will see the possible emergence of a δ′ shock wave for problem
(1)–(2) with initial conditions (11) and (12).

Theorem 7. The problem (27)–(28) with k = 0 and initial conditions (68) and
(69) has α-solutions in Z̃ if and only if we choose α such that α′(0)= α′′(0)= 0;
moreover, for all α satisfying this condition, the α-solution is unique in Z̃ and is
given by

ũ(t)= a+mtτat Dδ,(70)

σ̃ (t)= b+mτatδ.(71)

As we can see, when it exists, this α-solution is also independent of α.



210 C. O. R. SARRICO

Proof. Let us suppose (ũ, σ̃ ) ∈ Z̃ . Then we have (66) and (67) and by (68) and (69)
we have

u1+ f (0)τγ (0)Dδ = a,(72)

σ1+ pτγ (0)δ = b+mδ.(73)

From (72) we conclude that f (0) = 0 and u1 = a. From (73) we conclude that
σ1 = b and so, since m 6= 0, we have γ (0)= 0 and p =m. Thus, we can write (66)
and (67) in the form

ũ(t)= a+ f (t)τγ (t)Dδ,(74)

σ̃ (t)= b+mτγ (t)δ.(75)

As a consequence, we have

dũ
dt
(t)= f ′(t)τγ (t)Dδ− γ ′(t) f (t)τγ (t)D2δ,

and using (21), we also have

ũ(t)α̇ũ(t)= a2
+ 2a f (t)τγ (t)Dδ+ f 2(t)τγ (t)[α′(0)Dδ−α′′(0)δ],

1
2 D[ũ(t)α̇ũ(t)] = − 1

2α
′′(0) f 2(t)τγ (t)Dδ+

[
a f (t)+ 1

2α
′(0) f 2(t)

]
τγ (t)D2δ,

Dσ̃ (t)= mτγ (t)Dδ,

dσ̃
dt
(t)=−mγ ′(t)τγ (t)Dδ,

ũ(t)α̇Dσ̃ (t)=−mα′′(0) f (t)τγ (t)δ+ [ma+m f (t)α′(0)]τγ (t)Dδ.

Then, (27)–(28) with k = 0 turns out to be

0=
[

f ′(t)− 1
2α
′′(0) f 2(t)−m

]
τγ (t)Dδ

+
[
−γ ′(t) f (t)+ a f (t)+ 1

2α
′(0) f 2(t)

]
τγ (t)D2δ,

0=−mα′′(0) f (t)τγ (t)δ+ [−mγ ′(t)+ma+m f (t)α′(0)]τγ (t)Dδ.

Hence, for all t ∈ R, we have

0= f ′(t)− 1
2α
′′(0) f 2(t)−m,(76)

0= f (t)
[
−γ ′(t)+ a+ 1

2α
′(0) f (t)

]
,(77)

0= α′′(0) f (t),(78)

0=−γ ′(t)+ a+ f (t)α′(0).(79)

Now, we must note that α′′(0)= 0 follows immediately because by (78) if α′′(0) 6= 0,
we will have f = 0 and by (76) we will also have m = 0, which is impossible. Thus,
by (76) we have f (t)=mt and from (79) it follows that γ ′(t)= a+α′(0)mt . Then
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by (77) we conclude that t2α′(0) = 0 for all t ∈ R, and α′(0) = 0 follows which
means that γ ′(t) = a and so, γ (t) = at . Finally (70) and (71) follow from (74)
and (75). The theorem is proved. �

If in (28) we replace ũ(t)α̇Dσ̃ (t) by Dσ̃ (t)α̇ũ(t) we arrive exactly at the same
theorem because in this case we simply have ũ(t)α̇Dσ̃ (t) = Dσ̃ (t)α̇ũ(t). Hence,
by Definition 4 we conclude that the α-solutions of the problem (1)–(2) with k = 0,
when subjected to the initial conditions (11) and (12) can be read as we said in the
introduction (see (13) and (14)).
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107Monotonicity and radial symmetry results for Schrödinger systems with
fractional diffusion

JING LI

123Moduli spaces of stable pairs
YINBANG LIN

159Spark deficient Gabor frames
ROMANOS-DIOGENES MALIKIOSIS

181Ordered groups as a tensor category
DALE ROLFSEN

195Multiplication of distributions and a nonlinear model in elastodynamics
C. O. R. SARRICO

213Some Ambrose- and Galloway-type theorems via Bakry–Émery and modified
Ricci curvatures

HOMARE TADANO

233Irreducible decomposition for local representations of quantum Teichmüller
space

JÉRÉMY TOULISSE

0030-8730(201805)294:1;1-T

Pacific
JournalofM

athem
atics

2018
Vol.294,N

o.1


	1. Introduction and main results
	2. Products of distributions
	3. The -solution concept for the system on.on–on.tw
	4. The Riemann problem on.on–on.fo with k>0
	5. The Riemann problem on.on–on.fo with k=0
	6. The arising of a  shock wave
	Acknowledgments
	References
	
	

