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We give an irreducible decomposition of the so-called local representations
(Bai, Bonahon and Liu, 2007) of the quantum Teichmüller space Tq(6),
where6 is a punctured surface of genus g> 0 and q is an N-th root of unity
with N odd. As an application, we construct a family of representations of
the Kauffman bracket skein algebra of the closed surface 6.
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1. Introduction

Let 6 be the surface obtained by removing s > 0 points v1, . . . , vs from the
closed oriented surface 6 of genus g > 0. Denote by T (6) the Teichmüller space
of 6, that is roughly speaking, the space of complete hyperbolic metrics on 6.
Given λ an ideal triangulation of 6 (that is a triangulation of the closed surface 6
whose vertices are exactly the vi ), Thurston [1986] constructed a parametrization
of T (6) by associating a strictly positive real number to each edge λi of the ideal
triangulation, i ∈ {1, . . . , n}, where n = 6g− 6+ 3s is the number of edges of λ.
These coordinates are called the shear coordinates associated to λ. In this coordinate
system, the coefficients of the Weil–Petersson form on T (6) depend only on the
combinatorics of λ and are easy to compute.

For a parameter q ∈ C∗, Chekhov and Fock [1999] defined the quantum Teich-
müller space Tq(6) of 6, which is a deformation quantization of the Poisson
algebra of a certain class of functions over T (6); see also [Kashaev 1998] for a
slightly different version and [Guo and Liu 2009] for a relation between the two.
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This algebraic object is obtained by gluing together a collection of noncommutative
algebras Tq(λ), called Chekhov–Fock algebras, canonically associated to each ideal
triangulation of 6. A representation of Tq(6) is then a family of representations
{ρλ : Tq(λ)→ End(V )}λ∈3(6), where 3(6) is the space of all ideal triangulations
of6, and ρλ and ρλ′ satisfy compatibility conditions whenever λ 6=λ′. For λ∈3(6),
the representation ρλ is an avatar of the representation of Tq(6) and carries almost
all the information.

When q is a primitive N-th root of unity, Tq(λ) admits finite-dimensional repre-
sentations. In this paper, we will consider the case that N is odd. The irreducible rep-
resentations of Tq(λ) were studied in [Bonahon and Liu 2007], where it was shown
that an irreducible representation of Tq(λ) is classified (up to isomorphism) by a
weight xi ∈C∗ assigned to each edge λi , a choice of N-th root pj =

(
xkj1

1 · · · x
kjn
n
)1/N

associated to each puncture vj (where kji is the number of times a small simple loop
around vj intersects λi ) and an N-th root c = (x1 . . . xn)

1/N. Such a representation
has dimension N 3g−3+s .

Bai, Bonahon, and Liu [Bai et al. 2007] introduced another type of representations
of Tq(λ), called local representations, which are well behaved under cut and paste.
A local representation of Tq(λ) is defined by an embedding into the tensorial
product of triangle algebras (see definitions below). Isomorphism classes of local
representations of Tq(λ) are classified by a weight xi ∈C∗ associated to each edge λi

and a choice of an N-th root c= (x1 . . . xn)
1/N. Such a representation has dimension

N 4g−4+2s .
It follows that a local representation of Tq(λ) is not irreducible. In this paper,

we address the question of the decomposition of a local representation into its
irreducible components. We prove:

Main Theorem. Let λ be an ideal triangulation of 6 and ρ be a local representa-
tion of Tq(λ) classified by weight x j ∈ C∗ associated to each edge λj and a choice
of N-th root c = (x1 . . . xn)

1/N. Then we have the decomposition

ρ =
⊕
i∈I

ρ(i).

Here, ρ(i) is an irreducible representation classified by the same x j , an N-th root
p(i)j = (x

kj1
1 · · · x

kjn
n )1/N associated to each puncture, and the same c. Moreover, I is

a finite set such that, given a choice of an N-th root pj = (x
kj1
1 · · · x

kjn
n )1/N for each

puncture, there exists exactly N g elements i ∈ I with p(i)j = pj for all j ∈ {1, . . . , s}.

It is proved by Bai [2007] that if λ and λ′ are two different triangulations of the
square related by a diagonal switch, then the intertwining operators associated to
two isomorphic representations ρ : Tq(λ)→ End(V ) and ρ ′ : Tq(λ

′)→ End(V ′)
correspond to the 6 j -symbols defined by Kashaev [1995]. These 6 j -symbols relate
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hyperbolic geometry and quantum invariants and gave birth to the famous volume
conjecture; see [Murakami 2011] for an overview.

In particular, Baseilhac and Benedetti [2005] used these 6 j -symbols to construct
a (2+ 1)-dimensional topological quantum field theory (TQFT) on manifolds with
PSL(2,C)-character. Our result thus provides a decomposition of the vector spaces
arising in the TQFT.

As an application, we adapt the construction of Bonahon and Wong [2015] to
local representations of the balanced Chekhov–Fock algebra and obtain a family of
representations of the Kauffman bracket skein algebra SA(6) of the closed surface6.
The vector space associated to this family of representations is canonically associated
to an ideal triangulation λ. In particular, it makes the computations very explicit. It
also behaves well under cut and paste.

In Section 2, we recall the definition of the Chekhov–Fock algebra, the quantum
Teichmüller space, the triangle algebra and the local representations. In Section 3,
we prove the Main Theorem. Finally, in Section 4, we explain the connections
between quantum Teichmüller theory, skein theory and construct a new family of
representations of SA(6).

2. Chekhov–Fock algebra and representations of Tq(6)

In this section, we define the Chekhov–Fock algebra Tq(λ) associated to an ideal
triangulation λ, describe its representations and recall the definition of the quantum
Teichmüller space. Most results come from [Bonahon and Liu 2007; Bai et al.
2007].

In all this paper, for an integer n ∈ N, set Zn := Z/nZ and denote by U(N ) the
group of N-th roots of unity.

2.1. The Chekhov–Fock algebra. In this subsection, q is a formal parameter and
6 is allowed to have boundary components with punctures on the boundary (and
every boundary component has at least one puncture).

Let λ be an ideal triangulation of 6. We denote by λ1, . . . , λn the edges of λ.
The Fock’s matrix associated to λ is the skew-symmetric n× n matrix with integer
coefficients ηλ = (σi j )i, j=1,...n defined by

σi j = ai j − a j i

where ai j is the number of angular sector delimited by λi and λj in the faces of λ
with λi coming before λj counterclockwise.

Definition 2.1. The Chekhov–Fock algebra of λ is the algebra Tq(λ) freely gener-
ated by the elements X±1

i , i ∈ {1, . . . , n}, subject to the relations

X i X j = q2σi j X j X i .
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Figure 1. The triangle T .

The following example is of first importance.

Example 2.2. Let T be a disk with three punctures v1, v2, v3 on the boundary. The
boundary arcs between the punctures provides a natural triangulation λ of T (see
Figure 1).

The triangle algebra is T := Tq(λ). It is generated by X±1
i , i = 1, 2, 3, subject

to the relations
X i X i+1 = q2 X i+1 X i , i ∈ Z3.

The algebraic structure of the Chekhov–Fock algebra is fairly simple. In particu-
lar, it is a quantum torus [Goodearl and Warfield 2004].

Given a monomial X = X k1
1 . . . X kn

n ∈ Tq(λ) for a multi-index k= (k1, . . . , kn) ∈

Zn , we define the Weyl ordering of X to be the monomial

[X ] := q−
∑

i< j σi j X k1
1 . . . X kn

n .

The advantage of the Weyl ordering is its independence with respect to the order of
the terms. In particular, for any permutation σ : {1, . . . , n} → {1, . . . , n}, we have[

X k1
1 . . . X kn

n
]
=
[
X kσ(1)
σ(1) . . . X kσ(n)

σ(n)

]
.

For a multi-index k= (k1, . . . , kn) ∈ Zn , we define Xk := [X
k1
1 . . . X kn

n ] ∈ Tq(λ).

2.2. Finite-dimensional representations of Tq(λ). When the parameter q is a root
of unity, the structure of the Chekhov–Fock algebra is drastically different. In
particular, Tq(λ) admits finite dimensional representations that we describe here.

In this subsection, q ∈ C∗ is a primitive N-th root of unity with N odd, 6 has
no boundary component and λ is an ideal triangulation of 6 with edges labeled
λ1, . . . , λn .

Definition 2.3. For each puncture vj , the puncture invariant Pj = [X
k j1
1 . . . X k jn

n ] ∈

Tq(λ) is the monomial associated to the multi-index k j = (k j1, . . . , k jn )∈Nn , where
k ji is the minimum number of intersections between the edge λi and a closed simple
loop around vj .
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The puncture invariants are of main importance in the representation theory of
the Chekhov–Fock algebra. In particular:

Proposition 2.4 [Bonahon and Liu 2007, Proposition 15]. The center of Tq(λ) is
generated by:

• X N
i for each i ∈ {1, . . . , n}.

• The puncture invariant Pj associated to each puncture vj ∈ {v1, . . . , vs}.

• The element H := [X1 . . . Xn].

Note that [P1 . . . Ps] = [H 2
].

A representation of Tq(λ) is a morphism ρ : Tq(λ)→End(V ) where V is a vector
space. Such a representation is finite-dimensional when V is finite-dimensional and
ρ is called irreducible when there is no proper linear subspace W ⊂ V preserved
by ρ

(
Tq(λ)

)
. Two representations ρ : Tq(λ)→ End(V ) and ρ ′ : Tq(λ)→ End(V ′)

are isomorphic if there exists a linear isomorphism L : V → V ′ such that

ρ ′(X)= L ◦ ρ(X) ◦ L−1 for X ∈ Tq(λ).

Theorem 2.5 [Bonahon and Liu 2007, Theorems 20 and 21]. Up to isomorphism,
any irreducible representation

ρ : Tq(λ)→ End(V )

is determined by its restriction to the center of Tq(λ) and is classified by a nonzero
complex number xi associated to each edges λi , a choice of an N-th root pj =(
xk j1

1 . . . xk jn
n
)1/N for each puncture vj (where the k jk ∈{1, 2} are as in Definition 2.3)

and a choice of a square root c = (p0 . . . ps)
1/2.

Such a representation is characterized by

• ρ(X N
i )= xi IdV ,

• ρ(Pj )= pj IdV ,

• ρ(H)= c IdV .

Moreover, such a representation has dimension N 3g−3+s .

Let us come back to Example 2.2. Recall that the triangle algebra T is the algebra
generated by X±1

i , i ∈ Z3, with relations X i X i+1 = q2 X i+1 X i .
The center of T is generated by X N

i and H = q−1 X1 X2 X3. One easily checks
that irreducible representations of T have dimension N and are classified (up to
isomorphism) by a choice of weight xi ∈ C∗ associated to each edge λi and a
central charge, that is a choice of an N-th root c= (x1x2x3)

1/N ; see [Bai et al. 2007,
Lemma 2] for more details.
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More precisely, let V be the complex vector space generated by {e1, . . . , eN }

and let ρ be an irreducible representation of T classified by x1, x2, x3 ∈ C∗ and
c = (x1x2x3)

1/N. Then, up to isomorphism, the action of T on V is defined by

ρ(X1)ei = x ′1q2i ei , ρ(X2)ei = x ′2ei+1, ρ(X3)ei = x ′3q1−2i ei−1,

where x ′i is an N-th root of xi such that x ′1x ′2x ′3 = c. Note that, up to isomorphism,
ρ is independent of the choice of the N-th root x ′i with x ′1x ′2x ′3 = c.

The following lemma will be useful in the next section. Recall that U(N ) is the
group of N-th roots of unity.

Lemma 2.6. Let ρ : T → End(V ) be the representation of the triangle algebra
classified by x1 = x2 = x3 = 1 and c ∈ U(N ). For each i ∈ Z3 and N-th root
ζ ∈ U(N ), the eigenspace of ρ(X i ) of eigenvalue ζ is one-dimensional.

Proof. We use the explicit form of the representation ρ in V = span{e1, . . . , eN }

described above. Set x ′1 = x ′2 = 1, x ′3 = c and ζ = q2k for some k ∈ {0, . . . , N − 1}.
For i = 1, one checks that the eigenspace of ρ(X1) associated to ζ is generated

by ek .
For i = 2, the vector αk :=

∑
i∈ZN

q−2ki ei satisfies ρ(X2)αk = q2kαk and
{α1, . . . , αk} form a basis of V . So the eigenspace of ρ(X2) associated to the
eigenvalue ζ is generated by αk .

For i = 3, we use the fact that ρ(q−1 X1 X2 X3)= c IdV , where c ∈ U(N ). �

An ideal triangulation of 6 is composed by m faces T1, . . . , Tm . Each face T j

determines a triangle algebra T j whose generators are associated to the three edges
of T j . It provides a canonical embedding ι of Tq(λ) into T1⊗ · · ·⊗ Tm defined on
the generators as follows:

• ι(X i )= X ji ⊗ Xki if λi belongs to two distinct triangles T j and Tk and X ji ∈

T j , Xki ∈ Tk are the generators associated to the edge λi ∈ T j and λi ∈ Tk

respectively.

• ι(X i ) = [X ji1 X ji2 ] if λi corresponds to two sides of the same face T j and
X ji1 , X i j2

∈ T j are the associated generators.

Definition 2.7. A local representation of Tq(λ) is a representation which factorizes
as (ρ1 ⊗ · · · ⊗ ρm) ◦ ι where ρi : Ti → Vi is an irreducible representation of the
triangle algebra Ti and ι : Tq(λ)→ T1⊗ · · ·⊗ Tm is defined as above.

In particular, a local representation has dimension N m where m = 4g−4+2s is
the number of faces of the triangulation.

Local representations were first introduced by Bai et al. [2007].

Theorem 2.8 [Bai et al. 2007, Proposition 6]. Up to isomorphism, a local repre-
sentation

ρ : Tq(λ)→ End(V )
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Figure 2. Flip of triangulation.

is classified by a nonzero complex number xi associated to the edge λi and a choice
of an N-th root c = (x1 . . . xn)

1/N. Such a representation satisfies

• ρ(X N
i )= xi IdV ,

• ρ(H)= c IdV .

Local representations have certain advantages over irreducible representations.
First of all, these representations behave very well under cut and paste, so one can
use them to construct invariant of 3-manifolds; see [Baseilhac and Benedetti 2005].
Also, the vector space associated to a local representation decomposes as a tensor
product of vector spaces and each generator X i ∈ Tq(λ) associated to an edge λi

only acts on the vector spaces associated to triangle adjacent to the edge λi (that is
why these representations are called local).

2.3. Quantum Teichmüller space and its representations. The quantum Teich-
müller space is obtained by gluing together a family of (division algebras of)
Chekhov–Fock algebras indexed by the set of ideal triangulations of 6.

The simplex of ideal triangulations. Let 3(6) be the set of ideal triangulations of
6. We say that two triangulations λ, λ′ ∈3(6) differ by a flip if λ and λ′ coincide
everywhere except in a square made of two adjacent triangles where they differ as
in Figure 2.

The graph of ideal triangulations is the graph whose set of vertices is 3(6) and
two vertices λ, λ′ ∈3(6) are connected by an edge if and only if λ and λ′ differ
by a flip.

The simplex of ideal triangulations is obtained from the graph of ideal triangula-
tions by gluing a 2-simplex on each cycle corresponding to the pentagon relation
(see Figure 3).

Proposition 2.9 [Penner 1993]. The simplex of ideal triangulations is connected
and simply connected. Namely, any two different ideal triangulations are connected
by a sequence of flips and two sequences between two ideal triangulations differ by
a sequence of pentagon relations.

Coordinate change. The Chekhov–Fock algebra Tq(λ) associated to an ideal tri-
angulation λ ∈3(6) satisfies the Ore condition; see [Goodearl and Warfield 2004].
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Figure 3. Pentagon relation.

In particular, Tq(λ) has a well-defined division algebra T̂q(λ) consisting of rational
fractions satisfying some noncommutativity relations.

Let λ, λ′ ∈3(6) be two ideal triangulations related by a flip. Chekhov and Fock
[1999] constructed coordinates change isomorphisms

9
q
λλ′ : T̂q(λ

′)→ T̂q(λ).

These coordinates change satisfy the pentagon relation. In particular, using the
result of Penner, they extend uniquely to coordinates change 9q

λλ′ : T̂q(λ
′)→ T̂q(λ)

for any two different ideal triangulations λ, λ′ ∈3(6).
It was proved in [Liu 2009] that these coordinates change are the unique ones

satisfying some natural relations, as for instance 9q
λλ′′ = 9

q
λλ′ ◦ 9

q
λ′λ′′ for any

λ, λ′, λ′′ ∈ 3(6). Moreover, when q = 1, these maps reduce to the classical
coordinates change in Teichmüller theory; see [loc. cit.] for more details.

Definition 2.10. The quantum Teichmüller space of 6 is defined by

Tq(6) :=
⊔

λ∈3(6)

T̂q(λ)/∼,

where xλ ∈ T̂q(λ)∼ xλ′ ∈ T̂q(λ
′) if and only if xλ =9

q
λλ′(xλ′).

Note that, as Since each coordinate change9q
λλ′ is an algebra isomorphism, Tq(6)

inherits an algebra structure, and the T̂q(λ) can be thought as “global coordinates”
on Tq(6).
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Representations. A natural definition for a finite dimensional representation of
Tq(6) would be a family of finite dimensional representations

{ρλ : T̂q(λ)→ End(Vλ)}λ∈3(6)

such that for each pair λ, λ′ ∈3(6), the representations ρλ′ and ρλ◦9
q
λ,λ′ of T̂q(λ

′)

are isomorphic (as representations).
However, as pointed out in [Bai et al. 2007, Section 4.2], when Vλ is finite-

dimensional, there is no morphism T̂q(λ)→ End(Vλ). In fact, T̂q(λ) is infinite-
dimensional as a vector space while End(Vλ) is finite-dimensional and so, such a
homomorphism ρλ would have nonzero kernel. In particular, there would exists
elements x ∈ T̂q(λ) such that ρλ(x)= 0 and so, ρλ(x−1) would make no sense.

This motivates the following definition:

Definition 2.11. A local representation (respectively an irreducible representation)
of Tq(6) is a family of representations

{ρλ : Tq(λ)→ End(Vλ)}λ∈3(6)

such that for each λ, λ′ ∈ 3(6), ρλ is a local representation (respectively an
irreducible representation) of Tq(λ), and ρλ′ is isomorphic to ρλ ◦9

q
λλ′ whenever

ρλ ◦9
q
λλ′ makes sense.

We say that ρλ ◦9
q
λλ′ makes sense, if for each Laurent polynomial X ′ ∈ Tq(λ

′),

9λλ′(X ′)= P Q−1
= Q′−1 P ′ ∈ T̂q(λ), for some P, Q, P ′, Q′ ∈ Tq(λ).

In that case, we define

ρλ ◦9λλ′(X ′) := ρλ(P)ρλ(Q)−1
= ρλ(Q′)−1ρλ(P ′).

Proposition 2.12 [Bai et al. 2007, Proposition 10]. Let λ, λ′ ∈3(6) be two ideal
triangulations of 6. Then there exists a rational map

ϕλλ′ : C
n
→ Cn

such that a local representation ρ ′ : Tq(λ
′)→ End(Vλ′) classified by (x ′1, . . . , x ′n)

and c′ =
(
x ′1 . . . x

′
n
)1/N is isomorphic to ρλ ◦9λλ′ (whenever it makes sense) where

ρλ : Tq(λ) → End(Vλ) is a local representation classified by (x1, . . . , xn) and
c = (x1 . . . xn)

1/N if and only if c = c′ and

(x ′1, . . . , x ′n)= ϕλλ′(x1, . . . , xn).

Remark 2.13. The analogue is also proved in [Bonahon and Liu 2007] for irre-
ducible representations. In particular, the rational maps ϕλλ′ are the same.
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It turns out that the rational maps ϕλλ′ correspond to the coordinates change of
the shear-bend coordinates on the character variety χ

(
6,SL(2,C)

)
.

As a result, isomorphism classes of local (respectively irreducible) representa-
tions of Tq(6) are classified, up to finitely many choices, by the character variety
χ
(
6,SL(2,C)

)
; see [loc. cit.] for more details.

3. Decomposition of local representations

In this section, we prove the Main Theorem. Let ρ : Tq(λ)→ End(V ) be the local
representation classified by the nonzero complex number xi associated to each
edge and the central charge c. Given a puncture invariant Pj = [X

k j1
1 . . . X k jn

n ] (see
Proposition 2.4) associated to the puncture vj , the representation ρ satisfies

ρ(P N
j )= xk j1

1 . . . xk jn
n IdV .

It follows that if pj is an eigenvalue of Pj , then pN
j = xk j1

1 . . . xk jn
n .

Notation.
• Given pj ∈ C∗ so that pN

j = xk j1
1 . . . xk jn

n , we denote by

Vpj (Pj ) := {x ∈ V : ρ(Pj )x = pj x}

the associated eigenspace.

• Given p= (p1, . . . , ps) so that for each j , pN
j = xk j1

1 . . . xk jn
n , set

Vp := {x ∈ V : ρ(Pj )x = pj x, j = 1, . . . , s} =
s⋂

j=1

Vpj (Pj ).

The proof of the Main Theorem will follow the next proposition:

Proposition 3.1. There exists an ideal triangulation λ0 ∈3(6) such that for each
p as above, Vp has dimension N 4g−3+s .

Proof. The dimension of Vp does not depend on the numbers xi ∈C∗ characterizing
ρ. In this proof, we will consider all the xi equal to 1, which implies that the
eigenvalues of ρ(Pi ) are root of unity.

Consider the one punctured surface 6′ :=6 ∪ {v1, . . . , vs−1}. As g > 0, there
exists an ideal triangulation λ′ of 6′. Let T be a triangle of the triangulation λ′ and
consider the triangulation of T \ {v1, . . . , vs−1} as in Figure 4.

The union of the triangulation λ′ and the one of T gives an ideal triangulation
λ0 of 6.

Consider a local representation ρ : Tq(λ0)→ End(V ). The decomposition of the
ideal triangulation λ0 gives the nice decomposition

V =W ⊗W ′,
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v1

v2

vs
T0

T1 T'1

T's −2Ts −2

Ts −1 T's −1
vs −1

vs

vs

Figure 4. Triangulation of T ∪ {v1, . . . , vs}.

where W ′ is the vector space corresponding to the triangles of the triangulation λ′

(except the triangle T ), and W corresponds to the triangles of T .
In particular, as the triangulation λ′ contains 4g−2 triangles, dim(W ′)= N 4g−3

(remember that we do not consider the vector space associated to T ), and dim W =
N 2s−1.

The interest of the triangulation λ0 is clear: the puncture invariant Pi associated
to the puncture vi 6= vs acts as the identity on W ′, so the eigenspaces of ρ(Pi ) has
the form E ⊗W ′ where E ⊂W is an eigenspace of the restriction of ρ(Pi ) on W .
It motivates the following notation:

Notation.

• The vector space W decomposes as

W =W 0
⊗ · · ·⊗W s−1,

where W 0 is associated to T0 and W j to T j and T ′j for j = 1, . . . , s− 1.

• Given a root of unity pk ∈ U(N ), set

W j
pk
(Pk) := {x ∈W j

: ρ(Pk)x = pk x}.

• For p= (p1, . . . , ps−1) ∈ U(N )s−1, set

W j
p = {x ∈W j

: ρ(Pk)x = pk x, k = 1, . . . , s− 1} =
s−1⋂
k=1

W j
pk
(Pk).

• Finally, set

W p = {x ∈W : ρ(Pk)x = pk x, k = 1, . . . , s− 1}.
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X

X'

Y

Z Z'

Y'

Tj T'j

vj +1

vj

Figure 5. The generators of T j and T ′j .

Lemma 3.2. Using the above notation, and given p ∈ U(N )s−1, we have the
following:

(1) dim W 0
p =

{
1 if p= (p1, 1, . . . , 1),
0 otherwise.

(2) For j ∈ {1, . . . , s− 2},

dim W j
p =

{
1 if p= (1, . . . , 1, pj , p j+1, 1, . . . , 1),
0 otherwise.

(3) dim W s−1
p =

{
N if p= (1, . . . , 1, ps−1),

0 otherwise.

Proof. (1) If k 6= 1, vk is not a vertex of T0. It follows that Pk acts on W 0 by the
identity; so if pk 6= 1, W 0

p = {0}.
Now, if pk = 1 for all k 6= 1, then W 0

p is the eigenspace of the action on W 0 of
the edge opposite to v1. By Lemma 2.6, it is one-dimensional.

(2) Fix j ∈ {1, . . . , s− 2}. For k /∈ { j, j + 1}, vk is neither a vertex of T j nor of T ′j .

Hence Pj acts on W j as the identity, and if pk 6= 1, then W j
p = {0}.

Take pk = 1 for all k /∈ { j, j + 1} and denote by X±1, Y±1, Z±1 (respectively
X ′±1

, Y ′±1
, Z ′±1) the generators of the triangle algebras T j (respectively T ′j ) asso-

ciated to the triangles T j (respectively T ′ j ) as in Figure 5. Set also W j
= V j

⊗V ′ j

where V j (respectively V ′ j ) is the vector space associated to the representation of
the triangle algebra T j (respectively T ′j ).

Denote by c j , c′j ∈U(N ) the central charges of the restriction of the representation
to T j and T ′j respectively. Then ρ(Pj ) acts on V j

:= span{e0, . . . , eN−1} like c j Z−1

and on V ′ j = span{e′0, . . . , e′N−1} like c′j Z ′−1. In the same way, ρ(Pj+1) acts on
V j like c j Y−1 and on V ′j like c′j Y

′−1.
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Using the same action as in Example 2.2 and writing

cj = q p, c′j = q p′,

we get
ρ(Pj )ek = q2k−1+pek+1, ρ(Pj )e′l = q1−2l+p′el+1

It follows that the action of Pj on W j is given by

Pjεk,l = q2(k−l)+p+p′εk+1,l+1 where εk,l := ek ⊗ e′l ∈W j .

In the same way, one sees that the action of Pj+1 on W j is given by

Pj+1εk,l = q p+p′εk−1,l−1.

Now, for m, n ∈ ZN, set αm,n :=

N−1∑
k=0

q2kmεk,k+n , an easy calculation shows that

Pjαm,n = q−2(m+n)+p+p′αm,n, Pj+1αm,n = q2m+p+p′αm,n.

It follows that {αn,m : n,m ∈ZN } is a base of W j and, for all pj , p j+1 ∈U(N ), there
exists a unique couple (m, n)∈Z2

N with pj = q−2(m+n)+p+p′ and p j+1= q2m+p+p′ .
Therefore, dim W j

p = 1 if and only if pk = 1 for all k 6= j, j + 1.

(3) If k 6= s−1, then vk is neither a vertex of Ts−1 nor a vertex of T ′s−1, so if pk 6= 1,
then W s

h = {0}.
Suppose that pk = 1 for all k ∈ {1, . . . , s− 2}, then

W s−1
p ⊃

⊕
pa pb=ps−1

V s−1
pa
(Ps−1)⊗ V ′s−1

pb
(Ps−1),

where V s
pa
(Ps−1) is the eigenspace associated to the eigenvalue pa of the action

of ρ(Ps−1) on the vector space associated to the triangle Ts−1, and V ′s−1
pb

(Ps−1) is
defined in an analogous way.

The direct sum contains N terms of dimension one, hence dim(W s−1
p )≥ N. On

the other hand, we have
dim(W s−1)= N 2

and also
dim(W s−1)=

∑
p∈U(N )s−1

dim(W s−1
p )≥ N × N .

This implies that W s−1
p has exactly dimension N for p= (1, . . . , 1, ps−1). �

The proof of Proposition 3.1 follows from the following elementary remark:
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Remark 3.3. For all j ∈ {0, . . . , s− 1}, given pj ∈ U(N )s−1 and a nonzero vector
x j ∈W j

pj , the vector x0⊗· · ·⊗ xs−1 is in W p where p= p0 p1 . . . ps−1 is obtained
by taking the product on each component.

We thus have the inclusion

(1) W p ⊃
⊕

p= p0... ps−1

W 0
p0
⊗ · · ·⊗W s−1

ps−1
.

Writing pj =
(

p( j)
0 , . . . , p( j)

s−1

)
and p = (p1, . . . , ps), one notes that from

Lemma 3.2, the only nonzero terms in the direct sum of (1) are the pj satisfying

(2)

p(0)1 p(1)1 = p1,

p(1)2 p(2)2 = p2,

...

p(s−2)
s−1 p(s−1)

s−1 = ps−1

There exists exactly N s−1 different choices for the pj satisfying relations (2).
Moreover, for each choice of pj satisfying (2), the vector space W 0

p0
⊗· · ·⊗W s−1

ps−1

has dimension N. It follows that for each p ∈ U(N )s−1,

dim W p ≥ N s .

On the other hand,

dim W = N 2s−1
=

∑
p∈U(N )s−1

dim W p,

hence each W p has exactly dimension N s .
Finally, as the puncture invariants act as the identity on the vector space W ′, the

intersection of the eigenspaces of the ρ(Pj ) for all j = 1, . . . , s− 1 has the form
W p⊗W ′ for some p∈U(N )s−1 and has dimension N 4g−3+s . As the representation
ρ has fixed central charge c,

ρ([P1 P2 . . . Ps])= ρ([H 2
])= c2 IdV .

It follows that the action of ρ(Ps) on V can be easily expressed as a function of
the action of the ρ(Pj ) for j = 1, . . . , s− 1, and we get the result. �

Proposition 3.1 implies the decomposition of the Main Theorem for the triangu-
lation λ0. Since the dimension of the eigenspaces depends continuously on the xi ,
we get the decomposition for all value of xi ∈ C∗.

Indeed, consider the local representation

ρ : Tq(λ0)→ End(V )
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classified by a nonzero complex number xi associated to each edge and central
charge c. Let ρ(i) : Tq(λ0)→ End(V (i)) be an irreducible factor.

In particular,
ρ(i)(X N

i )= ρ(X
N
i )|V (i) = xi IdV (i),

ρ(i)(H)= ρ(H)|V (i) = c IdV (i),

so a necessary condition for ρ(i) to be an irreducible factor is that it is classified by
the same xi and same central charge c.

For each puncture vj , denote by p(i)j the N-th root of xk j1
1 . . . xk jn

n so that

ρ(i)(Pj )= p(i)j IdV (i) .

It follows that p(i)s = c2
(

p(i)1 . . . p(i)s−1

)−1 and V (i)
⊂ Vp where p=

(
p(i)1 , . . . , p(i)s−1

)
with

Vp =
{

x ∈ V : ρ(Pj )x = p(i)j x, j = 1, . . . , s− 1
}
.

Finally, as dim Vp = N 4g−3+s and the dimension of an irreducible representation
of Tq(λ0) has dimension N 3g−3+s , Vp contains exactly N g irreducible factors
classified by the same xi , same central charge c and N-the root p(i)j associated to
the puncture vj .

Proof in the general case. Recall that, given another ideal triangulation λ ∈3(6),
the “transition maps” ϕλ0λ : C

n
→ Cn defined in Section 2.3 are rational, hence

defined on a Zariski open set of Cn .
Now, consider a local representation

ρ : Tq(λ)→ End(Vλ),

classified by a number xi ∈ C∗ associated to each edge and central charge c.
If there exists (y1, . . . , yn) ∈ Cn so that ϕλ0λ(y1, . . . , yn)= (x1, . . . , xn) (which

is a generic condition), then it follows from Section 2.3 that ρλ is isomorphic to
ρλ0 : Tq(λ0)→ End(Vλ0). It means that there exists an isomorphism

Lλ0λ : Vλ→ Vλ0,

so that for each X ∈ Tq(λ) we have

ρλ0(9
q
λ0λ
(X))= Lλ0λ ◦ ρλ(X) ◦ L−1

λ0λ
.

Here 9q
λ0λ
: T̂q(λ)→ T̂q(λ0) are the coordinates change defined in Section 2.3.

As ρλ0 is a local representation of Tq(λ0), there exists an irreducible decomposi-
tion of ρλ0 given by the decomposition

Vλ0 =

⊕
i∈I

V i
λ0
.
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In particular, each i ∈ I, V i
λ0

is stable by ρλ0 and has dimension N 3g−3+s .
For each i ∈ I, set V i

λ := L(−1)
λ0λ

(V i
λ0
). One easily gets that each V i

λ is stable by
ρλ(Tq(λ)), and has dimension N 3g−3+s . In this way we get a decomposition of ρλ
into irreducible factors given by the decomposition

Vλ =
⊕
i∈I

V i
λ .

Finally, if ρλ is classified by the parameters (x1, . . . , xn) which are not in the
image of ϕλ0λ, one can deform continuously (x1, . . . , xn) to get the previous de-
composition and, as the decomposition does not depend of the parameters, get the
result for ρλ.

4. Representations of the skein algebra

In this section, we use the Main Theorem to construct a nice family of representation
of the Kauffman bracket skein algebra SA(6) of the closed surface 6 = 6 ∪
{v1, . . . , vs}. This is done by adapting the construction of Bonahon and Wong
[2015] to the case of local representations.

In Section 4.1, we describe the balanced Chekhov–Fock algebra Zω(λ) associated
to an ideal triagulation λ of 6 and characterize its irreducible representations. Then,
in Section 4.2, we introduce the local representations of Zω(λ) and extend the
Main Theorem to decompose these local representations into irreducible factors.
Finally, in Section 4.3, we use the previous decomposition to construct a family of
representations of SA(6).

4.1. Balanced Chekhov–Fock algebra. Let q be a primitive N-th root of unity
with N odd and let ω be the unique fourth root of q which is also a primitive N-th
root of unity. Namely, if q = e2iπ k

N with N and k coprime, then there is a unique
l ∈ Z4 so that k+ l N ∈ 4Z, and ω = e2iπ k

4N ei lπ
2 .

Let λ be an ideal triangulation of 6 whose edges are (λ1, . . . , λn). In order
to avoid confusion, we will denote by X i the generators of Tq(λ) and by Zi the
generators of Tω(λ).

A multi-index k ∈ Zn is called λ-balanced (or balanced) if for each triangle of
the triangulation whose edges are j1, j2, j3 we have

k j1 + k j2 + k j3 ∈ 2Z.

A monomial Z ∈ Tω(λ) is balanced if Z is a scalar multiple of Zk where k ∈ Zn is
balanced. (Here Zk is defined as in Section 2.1).

Definition 4.1. The balanced Chekhov–Fock algebra Zω(λ) is the subalgebra of
Tω(λ) generated (as a vector space) by balanced monomials.
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e1

e2

λ2

λ1

λ3

e3

Figure 6. Train track.

In particular, the image of the map

i : Tq(λ) → Tω(λ)
X i 7→ Z2

i

lies in Zω(λ) so we will consider Tq(λ) as a subalgebra of Zω(λ).
The ideal triangulation λ defines canonically a train track τλ on 6 which looks

like in Figure 6 on each triangle of the triangulation. Note that τλ has a switch on
each edge of λ.

We denote by W(τλ,Z) the abelian group of integer weight systems on τλ.
Namely, an element α ∈W(τλ,Z) is a map that associates to each edge e of τλ
an integer α(e) in such a way that at each switch, the sum of the weights of the
incoming edges equals the sum of the weights of the outgoing edges.

A weight system α ∈W(τλ,Z) on τλ is a map that associates an integer to any
edge of the train track in such a way that the sum of weights of the incoming edges
equals the sum of weights of the outgoing edges. Given α ∈W(τλ,Z) and an edge
λi ∈ λ, the sum of the weights of the edges incoming to λi is an integer. It thus
define a map

ϕ :W(τλ,Z)→ Zn

whose image is exactly the set of balanced multi-index. Thus, given an integer
weight system α ∈W(τλ,Z), we define Zα ∈ Zω(λ) to be Zϕ(α) = [Z

α1
1 . . . Zαn

n ]

where ϕ(α) = (α1, . . . , αn) ∈ Zn . In particular, one gets the noncommutativity
relations

ZαZβ = ω4�(α,β)Zβ Zα,

where� :W(τλ,Z)×W(τλ,Z)→Z is the Thurston intersection form; see [Bonahon
and Wong 2012, Section 2] for more details.

Definition 4.2. A twisted homomorphism is a map ζ :W(τλ,Z)→ C∗ such that
for every α, β ∈W(τλ,Z),

ζ(α+β)= (−1)�(α,β)ζ(α)ζ(β).
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Finally, note that each puncture vj defines a integer weight system η j ∈W(τλ,Z)

as follow. The connected component D j of 6 \ τλ containing vj is bounded by a
finite number of edges of τλ. For an edge e of τλ, define η j (e) ∈ {0, 1, 2} to be the
number of times e lies in the boundary of D j . In particular,

Z2
η j
= i(Pj )

where Pj ∈ Tq(λ) is the puncture invariant associated to vj and i : Tq(λ)→ Zω(λ)
is defined above.

Irreducible representations of Zω(λ) were classified in [Bonahon and Wong
2015]. They proved:

Proposition 4.3 [Bonahon and Wong 2012, Proposition 14]. Up to isomorphism,
an irreducible representation ρ : Zω(λ)→ End(V ) has dimension N 3g−3+s and is
classified by a twisted homomorphism ζ :W(τλ,Z)→ C∗ and a choice of an N-th
root h j = ζ(η j )

1/N for each puncture vj . Such a representation satisfies:

• ρ(Z N
α )= ζ(α) IdV for all α ∈W(τλ,Z).

• ρ(η j )= ζ(η j ) IdV for all j ∈ {1, . . . , s}.

4.2. Local representations of Zω(λ). Here, we introduce the notion of local rep-
resentation of the balanced Chekhov–Fock algebra Zω(λ) associated to an ideal
triangulation λ. We then extend the Main Theorem to give a decomposition of local
representations of Zω(λ) into its irreducible components.

Since by our choice ω is also a primitive N-th root of unity, there is a map

Tω(λ)→
⊗

Ti∈F(λ)

Tω(Ti )

as introduced in Section 2.2, where F(λ) is the set of faces of λ and Tω(Ti ) is the
triangle algebra associated to the face Ti . It is clear that this map restricts to a
morphism

ι : Zω(λ)→
⊗

Ti∈F(λ)

Zω(Ti ).

Here, Zω(Ti ) is the balanced triangle algebra associated to the face Ti .

Definition 4.4. A local representation of the balanced Chekhov–Fock algebra
Zω(λ) is a representation ρ :Zω(λ)→End(V ) that can be written as (ρ1⊗· · ·⊗ρm)◦ι

where each ρi is an irreducible representation of Zω(Ti ).

In order to classify local representations of Zω(λ), we first have to understand
the irreducible representations of the balanced triangle algebra Zω(T ). Let τ be
the train track in T with edges e1, e2, e3 as in Figure 6 and denote by W(τ,Z) The
group of integer weight systems on τ .
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Lemma 4.5. Up to isomorphism, an irreducible representation of the balanced tri-
angle algebra Zω(T ) has dimension N and is classified by a twisted homomorphism
ζ :W(τ,Z)→ C∗ together with a choice of an N-th root C =

(
ζ(µ)

)1/N where
µ ∈W(τ,Z) is such that µ(ei )= 1 for all i ∈ Z3. Such a representation satisfies

• ρ(Z N
α )= ζ(α) IdV .

• ρ(Zµ)= C IdV .

Proof. The group W(τ,Z) is generated by {α1, α2, α3} where

αi (e j )= δi j , i, j ∈ Z3.

It follows that the balanced triangle algebra Zω(T ) is generated by Z±1
α1
, Z±1

α2
and

Z±1
α3

and the relations are

Zα1 Zαi+1 = ω
−2 Zαi+1 Zαi , i ∈ Z3.

If we denote by Zi the generator of Tω(T ) associated to the edge λi (so for instance
Zα1 = [Z2 Z3]), the map

9 : Zω(T )→ Tω(T ), Zαi 7→ Z−1
i

is an isomorphism of algebras such that 9(Zµ)= H−1 where H = [Z1 Z2 Z3].
In particular, an irreducible representation ρ of Zω(λ) has the form ρ = ρ ◦9

where ρ is an irreducible representation of Tω(T ).
Using the result of Section 2.2 and the fact that a twisted homomorphism of

W(τ,Z) is fully determined by its value on the αi , we get the result. �

Let τi be the restriction of the train track τλ to the triangle Ti of the triangulation λ.
A twisted homomorphism ζ :W(τλ,Z)→C∗ induces a twisted homomorphism ζi :

W(τi ,Z)→C∗ for each triangle Ti of the triangulation λ. In particular, the following
proposition is a straightforward extension of [Bai et al. 2007, Proposition 6]:

Proposition 4.6. A local representation ρ : Zω(λ) → End(V ) has dimension
N 4g−4+2s and is classified (up to isomorphism) by a twisted homomorphism ζ :

W(τλ,Z)→ C∗ and a choice of an N-th root C = ζ(µ)1/N where µ(e)= 1 for all
edge e of τλ. Such a representation satisfies:

• ρ(Z N
α )= ζ(α) IdV .

• ρ(Zµ)= C IdV .

Finally, the Main Theorem implies the following:

Theorem 4.7. Let ρ : Zω(λ)→ End(V ) be the (isomorphism class of ) represen-
tation classified by the twisted homomorphism ζ :W(τλ,Z)→ C∗ and the choice
of an N-th root C = ζ(µ)1/N (where µ is defined as above). Then ρ =

⊕
i∈I ρ

(i)

where each ρ(i) is irreducible, classified by the same twisted homomorphism ζ and
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N-th root h(i)k =
(
ζ(ηk)

)1/N with h(i)1 . . . h(i)s = C (here, the ηk are defined as in
Section 4.1).

Moreover, for each choice of an N-th root hk =
(
ζ(ηk)

)1/N for each k ∈
{1, . . . , s}, there are exactly N g indices i ∈ I such that h(i)k = hk for all k.

Proof. Let ρ be a local representation of Zω(λ) classified by ζ and C . In particular,
ρ induces a local representation ρ := ρ ◦ i of Tq(λ), where i : Tq(λ) ↪→ Zω(λ).
The local representation ρ is classified by the weight ζ(βi ) for all edges λi , where
βi ∈W(τλ,Z) is defined by Zβi = Z2

i = i(X i ).
Let Pj ∈ Tq(λ) be the puncture invariant associated to the puncture vj . The

image of Pj in Zω(λ) is Z2
η j

. We claim that the eigenspaces of ρ(Pj ) correspond
to the eigenspaces of ρ(Zη j ). In fact, if Vh j (Zη j ) is the eigenspace of ρ(Zη j )

corresponding to the eigenvalue h j =
(
ζ(η j )

)1/N, then one has the inclusion

Vh j (Zη j )⊂ Vpj (Pj ),

where Vpj (Pj ) is the eigenspace of ρ(Pj )= ρ(Z2
η j
) corresponding to the eigenvalue

pj = h2
j . Because there are only N different possible eigenvalues of ρ(Zη j ), a

dimension counting argument shows the equality.
Now, we apply the Main Theorem and get that, for each choice of (h1, . . . , hs)

where h j =
(
ζ(Zη j )

)1/N, the intersection Vh1(Zη1)∩ · · · ∩ Vhs (Zηs ) has dimension
N 4g−3+s and hence is made of N g copies of the irreducible representation of Zω(λ)
classified by ζ and h1, . . . , hs . �

Bonahon and Wong [2012, Section 3] associate a character rζ ∈ χ
(
6,SL(2,C)

)
to a twisted homomorphism ζ :W(τλ,Z)→ C∗ (here χ

(
6,SL(2,C)

)
is the alge-

braic quotient of Hom
(
π1(6),SL2(C)

)
by the action of SL2(C) by conjugation). In

particular, the (irreducible or local) representations of the balanced Chekhov–Fock
algebra associated to an ideal triangulation λ of 6 are classified, up to finitely many
choice, by a Zariski open set in χ

(
6,SL(2,C)

)
.

Note that, if rζ is the character associated to the twisted homomorphism ζ , the
holonomy of rζ around a puncture vj is parabolic exactly when ζ(η j )= 1.

4.3. Representations of SA(6). We explain here how Theorem 4.7 gives rise to a
new family of representations of the Kauffman bracket skein algebra of the closed
surface 6 =6 ∪ {v1, . . . , vs}.

Skein algebra. Given an oriented 3-manifold M , and a nonzero complex number
A ∈ C∗, consider the complex vector space V (M) freely generated by isotopy
classes of framed links in M . The skein module SA(M) of M is the quotient of
V (M) by the Kauffman bracket skein relations as defined in Figure 7.

Namely, we identify three different links when differ by the previous relation in
an open ball and agree everywhere else.
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Figure 7. Kauffman bracket skein relations.

Given a framed link K ⊂ M , we denote by [K ] its image in the skein module
SA(M).

When M =6×[0, 1] for a surface6, the skein module SA(M)=SA(6) inherits
an algebra structure given by superposition of links. Namely, given two framed
links K1 and K2 in 6× [0, 1], the product [K1] · [K2] is defined to be the image
of K1 ∪ K2 in SA(6), where K1 ∪ K2 is given by the superposition of K1 on top
of K2 where we rescaled so that K1 ⊂ 6 × [0, 1

2 ] and K2 ⊂ 6 × [
1
2 , 1]. We call

SA(6) with the product · the Kauffman bracket skein algebra of S.
Finite-dimensional representations of the skein algebra SA(6) are of main im-

portance as they appear naturally in topological quantum field theory (TQFT). For
example, the Witten–Reshetekin–Turaev TQFT [Blanchet et al. 1995; Turaev 1994].

Classical shadow and quantum trace. Let µ : SA(6)→End(V ) be an irreducible
representation of the Kauffman bracket skein algebra of 6.

Bonahon and Wong [2016] (see also [Lê 2015a] for a simpler proof) proved
that if A is a primitive N-th root of −1, the N-th Chebyshev polynomial TN

of the first kind of any skein [K ] ∈ SA(6) is a central element in SA(6). In
particular, the precomposition of ρ by TN maps each skein [K ] to a multiple of the
identity in End(V ). This multiple of the identity can be interpreted as an element
rµ ∈ χ

(
6,SL2(C)

)
in the SL(2,C) character variety of 6. This character is called

the classical shadow of the representation µ.
When A=ω−2 (so A is a primitive N-th root of−1) and λ is an ideal triangulation

of 6, Bonahon and Wong [2011] (see also [Lê 2015b] for a more conceptual proof)
constructed a quantum trace map

trλω : SA(6)→ Zω(λ),

which turns out to be an injective algebra homomorphism.
In particular, by precomposing irreducible representations of Zω(λ) by the quan-

tum trace, Bonahon and Wong [2012] obtained a family of irreducible representa-
tions of the Kauffman bracket skein algebra of S indexed by a Zariski open subset
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of the character variety χ
(
6,SL2(C)

)
. Moreover, taking the classical shadow of

such an irreducible representation recovers the character.

Representations of SA(6). The inclusion6 ↪→6 gives an algebra homomorphism

ι : SA(6)→ SA(6).

Let r ∈χ
(
6,SL(2,C)

)
be a character obtained from a character r ′∈χ

(
6,SL(2,C)

)
(namely, the holonomy of r around each puncture is trivial). If ζ :W(τλ,Z)→ C∗

is the twisted homomorphism associated to r , then ζ(η j )= 1 for each puncture vj .
Denote by

ρ : Zω(λ)→ End(V )

the local representation of Zω(λ) classified by ζ and the N-th root C = ((−ω4)s)1/N.
Let E ⊂ V be the intersection of the eigenspaces of ρ(Zηk ) for k ∈ {1, . . . , s}
corresponding to the eigenvalue −ω4.

By Theorem 4.7, the vector space E is stable by ρ
(
Zω(λ)

)
, so we get an induced

representation ρ ′ : Zω(λ)→ End(E). Note that ρ ′ is made of N g copies of the
irreducible representation of Zω(λ) classified by ζ and puncture invariant −ω4.

Proposition 4.8. There is a proper linear subspace F⊂ E such that the composition

µ : SA(6)
ι
→ SA(6)

ρ
→ End(F)

induces a representation of SA(6). The classical shadow of each irreducible factor
of µ is same. Finally, the dimension of F is at least N 4g−3 when g > 1 and at least
N 2 when g = 1.

Proof. This is a direct consequence of the construction of Bonahon and Wong
[2015]. In fact, using the decomposition of ρ into irreducible parts and considering
the total off-diagonal kernel of each irreducible factor (see [op. cit., Section 4.2]),
one gets the result. �

The vector space F is canonically associated to the triangulation λ, which makes
the family of representations described above easier to handle for computations.
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