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THREE-DIMENSIONAL SOL MANIFOLDS
AND COMPLEX KLEINIAN GROUPS

WALDEMAR BARRERA, RENE GARCIA-LARA AND JUAN NAVARRETE

We give a topological description of the quotient space �(G)/G, in the case
when G ⊂ PSL(3, C) is a discrete subgroup acting on P2

C
and the maxi-

mum number of complex projective lines in general position contained in
the Kulkarni limit set 3(G)= P2

C
\�(G) is equal to 4. Moreover, we give a

topological description of the quotient space �(G)/G in the case when G is
a lattice of the Heisenberg group.

1. Introduction

Complex Kleinian groups were introduced by José Seade and Alberto Verjovsky
[2001]. A complex Kleinian group G is a subgroup of PSL(n+1,C) acting properly
and discontinuously on a nonempty G-invariant open subset of Pn

C
. We remark that

complex Kleinian groups are discrete subgroups of PSL(n+ 1,C) but the converse
is not necessarily true; for example, the group PSL(3,Z) is a discrete subgroup of
PSL(3,C) which is not a complex Kleinian group. See [Barrera et al. 2014].

There is no standard definition of limit set for a complex Kleinian group, we use
the following three notions: Kulkarni limit set, Myrberg limit set, or the complement
of a maximal region of discontinuity which are discussed in detail in [Barrera et al.
2016]. However by some additional hypotheses on the action of G on the projective
plane, all these concepts of limit set are equivalent; see [Barrera et al. 2011a]. In
the classical theory of Kleinian groups, there is a theorem which states that discrete
infinite subgroups contain one, two, or infinity points in its limit set. On the other
hand, Angel Cano and José Seade show that every infinite discrete subgroup of
PSL(3,C) has a complex projective line contained in its limit set (see [Cano and
Seade 2014]), in consequence, the limit set of infinite subgroups of PSL(3,C) is an
uncountable subset of P2

C
.

Thus, it is natural to say that G ⊂ PSL(3,C) is an elementary complex Kleinian
group whenever its limit set contains a finite number of complex projective lines;
see [Cano et al. 2013]. There is another kind of group whose limit set contains

MSC2010: primary 32F45, 37F30, 32Q45; secondary 22E40, 37F45.
Keywords: Kleinian groups, projective complex plane, discrete groups, limit set.

1

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2018.294-1
http://dx.doi.org/10.2140/pjm.2018.294.1


2 WALDEMAR BARRERA, RENE GARCIA-LARA AND JUAN NAVARRETE

infinitely many complex projective lines but only finitely many in general position.
We call these groups elementary complex Kleinian groups of type II.

In [Barrera et al. 2011b], the authors give an algebraic characterization of those
complex Kleinian groups such that the maximum number of complex projective
lines in general position contained in its Kulkarni limit set is equal to 4. In this
article we describe the topology of the quotient space of these groups. In fact, we
prove the following theorem:

Theorem 1.1. Let G ⊂ PSL(3,C) be a torsion-free complex Kleinian group, such
that the maximum number of complex projective lines in general position contained
in its Kulkarni limit set is equal to 4, then:

(i) The group G is isomorphic to a lattice of the group Sol (see Section 2F ).

(ii) If �0 is a G-invariant connected component of the Kulkarni discontinuity
region of G, then �0/G is diffeomorphic to (Sol/G)×R.

Corollary 1.2. There is a countable number of nonisomorphic complex Kleinian
groups such that the maximum number of complex projective lines in general
position contained in its Kulkarni limit set is equal to 4.

Corollary 1.3. Under the hypotheses of Theorem 1.1, �0/G is a fiber bundle with
base S1 and fiber T2

×R.

Theorem 1.4. If G is a lattice on the three-dimensional real Heisenberg group H,
then there exists a G-invariant open set �⊂ P2

C
such that �/G is diffeomorphic to

(H/G)×R.

This article is organized in the following way: In Section 2 we include some
basic preliminaries about complex Kleinian groups, and a brief survey on complex
Kleinian groups, such that the maximum number of complex lines contained in
their Kulkarni limit set is equal to 4 [Barrera et al. 2011b]. In Section 3 we give an
explicit smooth foliation of the bidisc H×H where the leaves are diffeomorphic
copies of Sol. In Section 4, we study the geometry of the leaves and we show that
the bidisc H×H is diffeomorphic to Sol×R. Moreover this diffeomorphism is
G-equivariant, where G denotes an hyperbolic toral group. In Section 5 we do
some explicit computations to determine the Riemannian metrics of the leaves. For
each leaf we obtain an isometric embedding of the group Sol to H×H. Finally,
we give a proof of Theorem 1.1.

Corollaries 1.2 and 1.3 are a consequence of Theorem 1.1 and [de la Harpe
2000, Proposition 30]. In Section 6 we give a proof of Theorem 1.4, the procedure
is similar to the proof of Theorem 1.1, except that we have not a G-equivariant
diffeomorphism between C×H and H×R. However the proof can be done because
the natural action of G on C×H translated to H×R is the classical action on the
first factor of G on H, and it is the trivial action on the second factor.
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2. Preliminaries

The purpose of this section is to provide some definitions and results about complex
Kleinian groups that will be helpful to the reader. For more details see [Cano et al.
2013; Barrera et al. 2011b; 2011a].

2A. Projective geometry. We recall that the complex projective plane P2
C

is defined
as the orbit space of the usual scalar multiplication action of the Lie group C∗ in
C3
\ {0} and it is denoted by

P2
C := (C

3
\ {0})/C∗.

This is a compact connected complex 2-dimensional manifold. Let [ ] :C3
\{0}→P2

C

be the quotient map. If β={e1, e2, e3} is the standard basis of C3, we write [e j ]= e j ,
for j = 1, 2, 3, and if z = (z1, z2, z3) ∈ C3

\ {0} then we write [z] = [z1 : z2 : z3].
Also, `⊂ P2

C
is said to be a complex line if [`]−1

∪{0} is a complex linear subspace
of dimension 2. Given two distinct points [z], [w] ∈ P2

C
, there is a unique complex

projective line passing through [z] and [w]. This kind of complex projective line is
called a line, for short, and it is denoted by

←−−→
[z], [w]. Consider the action of C∗ on

GL(3,C) given by the usual scalar multiplication, then

PGL(3,C)= GL(3,C)/C∗

is a Lie group whose elements are called projective transformations. Letting
[[ ]] :GL(3,C)→PGL(3,C) be the quotient map, g∈PGL(3,C) and g ∈GL(3,C),
we say that g is a lift of g if [[g]] = g. One can show that PGL(3,C) is a
Lie group which acts transitively, effectively and by biholomorphisms on P2

C
by

[[g]]([w])= [g(w)], where w ∈ C3
\ {0} and g ∈ GL(3,C).

We could have considered the action of the cube roots of unity {1, ω, ω2
} ⊂ C∗

on SL(3,C) given by the usual scalar multiplication, then

PSL(3,C)= SL(3,C)/{1, ω, ω2
} ∼= PGL(3,C).

We denote by M3×3(C) the space of all 3×3 matrices with entries in C equipped
with the standard topology. The quotient space

End(3,C) := (M3×3(C) \ {0})/C∗

is called the space of pseudoprojective maps of P2
C

and it is naturally identified
with the projective space P8

C
. Since GL(3,C) is an open, dense, C∗-invariant

set of M3×3(C) \ {0}, we get that the space of pseudoprojective maps of P2
C

is a
compactification of PGL(3,C) (or PSL(3,C)). As in the case of projective maps, if
s is an element in M3×3(C)\{0}, then [s] denotes the equivalence class of the matrix
s in the space of pseudoprojective maps of P2

C
. Also, we say that s ∈M3×3(C)\{0}

is a lift of the pseudoprojective map S whenever [s] = S.
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Let S be an element in (M3×3(C)\{0})/C∗ and s a lift to M3×3(C)\{0} of S. The
matrix s induces a nonzero linear transformation s :C3

→C3, which is not necessarily
invertible. Let Ker(s)( C3 be its kernel and let Ker(S) denote its projectivization
to P2

C
, taking into account that Ker(S) :=∅ whenever Ker(s)= {(0, 0, 0)}.

2B. Discontinuous actions on P2
C

.

Definition 2.1. Let G⊂PSL(3,C) be a group. We say that G is a complex Kleinian
group if it acts properly and discontinuously on an open nonempty G-invariant set
U ⊂ P2

C
, meaning that for each pair of compact subsets C, D ⊂U, the set

{g ∈ G : g(C)∩ D 6=∅}
is finite.

One of the main difficulties in deciding whether a group G is Kleinian complex
is to find an open set verifying the definition above. In order to give an answer to
this problem we study two mathematical concepts: the equicontinuity set of G and
the Kulkarni discontinuity region of G. Now, we discuss each of these concepts.

2C. The equicontinuity set. The concept of equicontinuity has long been studied
in mathematics. For convenience to the reader, we include the definition and notation
that we use in this work.

Definition 2.2. The equicontinuity set for a family F of endomorphisms of P2
C

,
denoted Eq(F), is defined as the set of points z ∈ P2

C
for which there is an open

neighborhood U of z such that { f |U : f ∈ F} is a normal family.

This modern approach and ideas on this concept were studied by Angel Cano
in his Ph.D thesis. However, thanks to a reference by Ravi Kulkarni to works of
Myrberg, we found that some of these results had already been discovered, in an
arcane mathematical language. However, it is fair to acknowledge Angel Cano for
rediscovering these results and applying them successfully to the theory of complex
Kleinian groups.

Definition 2.3. Let G ⊂ PSL(3,C) be a discrete group. If

G ′ = {S is a pseudoprojective map of P2
C : S is a cluster point of G},

then the Myrberg limit set (see [Myrberg 1925]) is defined as the set

3Myr(G)=
⋃

S∈G ′
Ker(S).

Myrberg [1925] shows that G acts properly and discontinuously on P2
C
\3Myr(G).

Theorem 2.4 [Barrera et al. 2011a]. If G ⊂ PSL(3,C) is a discrete group, then:

(i) The group G acts properly and discontinuously on Eq(G).
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(ii) The equicontinuity set of G satisfies:

Eq(G)= P2
C \3Myr(G)

(iii) If U is an open G-invariant subset such that P2
C
\U contains at least three

complex lines in general position, then U ⊂ Eq(G).

2D. Kulkarni discontinuity region. Kulkarni [1978] defined a limit set for groups
of homeomorphisms acting on a locally compact Hausdorff space. For the reader’s
convenience, we explain this construction in the context of projective spaces.

Definition 2.5. Let G ⊂ PSL(3,C) be a subgroup.

• The set L0(G) is defined as the closure of the set of points in P2
C

with infinite
isotropy group.

• The set L1(G) is defined as the closure of the set of cluster points of the orbit
Gz, where z runs over P2

C
\ L0(G).

• The set L2(G) is defined as the closure of the set of cluster points of the family
of compact sets {g(K ) : g ∈ G}, where K runs over all the compact subsets of

P2
C \ (L0(G)∪ L1(G)).

The Kulkarni limit set of G is defined as

3Kul(G)= L0(G)∪ L1(G)∪ L2(G).

The Kulkarni discontinuity region of G is defined as:

�(G)= P2
C \3Kul(G).

Kulkarni [1978] proves that G acts properly and discontinuously on the set�(G).
However, �(G) is not necessarily the maximal open subset of P2

C
where G acts

properly and discontinuously.
We notice that the Kulkarni limit set is a generalization of the classical limit set

for a discrete subgroup of hyperbolic isometries acting on the sphere at infinity of
hyperbolic space. In general, it is very hard to give an explicit computation of the
Kulkarni limit set. In [Navarrete 2006; 2008], we can find these computations for
the cyclic subgroups of PSL(3,C) and for discrete subgroups of PU(2, 1) acting
on the complex projective plane P2

C
.

We could define the limit set as the complement of a maximal open set where the
group acts properly and discontinuously, but in general there is no canonical way
to build this G-invariant open set. On the other hand, when we ensure the existence
of this maximal open set, this notion of limit set has good properties. See [Barrera
et al. 2014].
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2E. Four lines complex Kleinian groups. This section is devoted to complex
Kleinian groups of PSL(3,C) such that the maximum number of complex pro-
jective lines in general position contained in its Kulkarni limit set is equal to 4.
For simplicity we call groups of this kind four lines complex Kleinian groups. In
[Barrera et al. 2011b], the authors give an algebraic characterization of four lines
complex Kleinian groups. For the reader’s convenience, we reproduce briefly the
main ideas and the notation used there.

Letting A∈SL(2,Z), with |tr(A)|>2, we define the following discrete subgroup
of PSL(3,C), called hyperbolic toral group.

G A =

{(
Ak b
0 1

)
: b ∈ M(2× 1,Z), k ∈ Z

}
,

The group G A is a four lines complex Kleinian group and moreover if G is a
four lines complex Kleinian group, then there exists a hyperbolic toral group G A

such that [G : G A] ≤ 8.
It is possible to conjugate the group G A to a group, still denoted by G A, where

each element is of the form λk 0 ny0+mx0

0 λ−k nx0+mz0

0 0 1


where k, m and n run over Z and λ is one of the eigenvalues of A. At this point it is
not hard to see that the Kulkarni discontinuity region consists of four disjoint copies
of H±×H±, where H+ is the upper half plane and H− is the lower half plane.

2F. The Sol geometries. Sol is one of the eight geometries defined by William
Thurston in his famous program of geometrization of compact three manifolds. The
group Sol is defined as the space R3

= R2
×R equipped with the group operation((

x1

y1

)
, t1

)
·

((
x2

y2

)
, t2

)
=

((
x1+ et1 x2

y1+ e−t1 y2

)
, t1+ t2

)
.

In fact, it is a Lie group and it is equipped with the left-invariant Riemannian
metric: ds2

= e2t dx2
+e−2t dy2

+dt2. An interesting fact about the Sol geometries
is given by the following theorem of [de la Harpe 2000], which we state for
convenience:

Proposition 2.6. Let A, B in GL(2,Z) be two matrices with traces of absolute
value strictly larger than 2. The semidirect products Z2 oA Z, and Z2 oB Z consid-
ered as the matrix groups{(

Ak b
0 1

)
: b ∈ M(2× 1,Z), k ∈ Z

}
,
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Bk b
0 1

)
: b ∈ M(2× 1,Z), k ∈ Z

}
are isomorphic if and only if A is conjugate in GL(2,Z) to B or B−1, and they are
quasi-isometric in all cases.

The quotient spaces Sol/(Z2 oA Z) are examples of compact three manifolds
where the topological type is determined by the fundamental group. For more
details about this subject see [Scott 1983; Thurston 1997; de la Harpe 2000].

3. Foliation of H×H by Sol

In [Barrera et al. 2011b], the authors introduce the concept of hyperbolic toral
groups. These groups are matrix groups where the elements are given byλk 0 ny0+mx0

0 λ−k nx0+mz0

0 0 1

,
where λ is a fixed real number, |λ| 6= 1 and k, n, m run over Z. It is not hard
to check this group is isomorphic to Z2 oA Z. Moreover, a continuous version
of this group is given in the following way. Let A ∈ SL(2,Z) be a hyperbolic
automorphism with Jordan form

A =
(
λ 0
0 λ−1

)
and consider the set of matrices of the formλt 0 x

0 λ−t y
0 0 1

,
where t , x , y run over R. It is not hard to check that this group is isomorphic to
Sol= R2 oR. For convenience for our computations we use this representation of
the Lie group Sol. In the sequel, we will use the product metric in H×H, where
we endow each copy of H with a metric homothetic to the hyperbolic metric by a
factor of 1

2 :
dx2

1 + dy2
1

2y2
1
+

dx2
2 + dy2

2

2y2
2

.

Proposition 3.1. Let z1, z2 ∈ H. We define a natural action of Sol in H×H byλt 0 x
0 λ−t y
0 0 1

z1

z2

1

=
 λt z1+ x
λ−t z2+ y

1

.
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The natural action of the group Sol on H×H satisfies the following:

(i) The action is free.

(ii) For each z = (z1, z2) ∈ H × H the function fz : Sol→ H × H defined by
fz(g)= gz is a smooth embedding.

(iii) If {e1, e2, e3, e4} is the canonical basis of R4, then

X = y1e2+ y2e4

is one of the two normal unitary vector fields to the embedding fz(Sol) in
H×H, which therefore is a smooth vector field globally defined.

Proof. (i) Let z = (z1, z2) ∈ H×H, and assume that γ ∈ Sol is such that γ · z = z.
Let zk = xk + iyk , where k = 1, 2. Taking imaginary parts in the action, we get

λt y1 = y1, λ−t y2 = y2,

so λt
= λ−t

= 1, because imaginary parts can not be null. Taking real parts, we
obtain x1+ x = x1 and x2+ y = x2, then x = y = 0.

(ii) From the definition of the action, it is clear that fz is smooth in t, x, y, which
parametrizes Sol. By straightforward computations, we have that d fz has the
Jacobian matrix given by

[d fz] =


ln(λ) λt x1 1 0
ln(λ) λt y1 0 0

− ln(λ) λ−t x2 0 1
− ln(λ) λ−t y2 0 0

.
Since y1 > 0, the Jacobian matrix has rank 3. Therefore, fz in an immersion.

If zk = xy+ iyk , and z′ = (x ′1, y′1, x ′2, y′2) ∈H×H, define t such that λt
= y′1/y1,

and (x ′, y′) such that (
x ′

y′

)
=

x ′1−
y′1x1
y1

x ′2−
y′2 y2

y′1

.
These values for (t, x ′, y′) define a mapping F, from H×H to R3 ∼= Sol, such

that F ◦ fz = Id. Note that F is a left continuous inverse for fz , and hence, fz is an
homeomorphism.

(iii) The given formula for the product metric implies that X is unitary. By the form
of the Jacobian matrix, the tangent space to the leaf passing through z = (z1, z2) ∈

H×H is spanned by the vectors, e1, e3, λ
t x1e1+ λ

t y1e2− λ
−t x2e3− λ

−t y2e4.
A straightforward computation shows that X = λt y1e2+ λ

−t y2e4 is orthogonal
to the spanning tangent vectors. Finally, the result is obtained by taking t = 0. �
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By this theorem, if we vary z, we obtain a foliation fz(Sol) of H×H by copies
of Sol. We proceed to show that this foliation is globally rectifiable, in the sense
that it induces a diffeomorphism to R3

× R, such that the hyperplanes R3
× {t}

correspond to the leaves, and are diffeomorphic to Sol. For details on the theory of
foliations, the reader can consult [Candel and Conlon 2000].

4. Geometry of the leaves

In the previous section, we described how Sol induces a foliation in the space H×H

and gave an explicit formula for a smooth vector field X, normal to any leaf of the
foliation in a product metric, which is homothetic to the canonical metric in each
hyperbolic factor. In this section, we study the dynamics of the integral curves for
this normal field. Let

ψ(t)= (z1(t), z2(t))

be an integral curve of the field, where zk = xk+iyk is as before. From the definition
of X, it follows that the integral curves satisfy the set of equations

ẋk = 0, ẏk = yk .

These equations can be readily solved to get constant solutions in the real part
of each copy of the hyperbolic, and exponentials in the imaginary parts. The flow
of the normal field defines a one-parameter family of diffeomorphisms in H×H,
denoted by ψt(z1, z2), where

ψt(z1, z2)= (x1, et y1, x2, et y2), t ∈ R,

and it satisfies the following:

Proposition 4.1. (i) The flow ψt rules H×H by geodesics.

(ii) The action of fz is equivariant with the action induced by the flow, that is,

ψs ◦ fz = fψs(z).

Proof. (i) Both curves

(x1, et y1) and (x2, et y2)

correspond to a parametrization of a vertical geodesic in H with respect to the
hyperbolic metric. Since the metric we consider is homothetic to the standard
hyperbolic metric, with a constant factor, these parametrizations correspond to
geodesics with respect to this metric as well. Since the metric in H×H is a product,
the result follows (see [Gallot et al. 2004]).

(ii) ψs ◦ fz(t, x, y)= (λt x1+ x, λt es y1, λ
−t x2+ y, λ−t es y2),

which is the same expression obtained calculating fψs(z). �
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Observe that if we reparametrize the presentation of Sol we have used so far by
the change of coordinates

(t ′, x ′, y′) 7→
( t ′

ln(λ)
, x ′, y′

)
,

we recover the original description of the group as given in [Scott 1983], and that
under this reparametrization, we can analyze the geometry of the foliation in simpler
terms, i.e., we can and will assume that

ψs ◦ fz(t, x, y)=
(
et x1+ x, et+s y1, e−t x2+ y, e−t+s y2

)
in order to analyze the metric properties of the foliation.

Proposition 4.2. Let z = (iy1, iy2). Consider the leaf fz : Sol→ H×H, then the
pullback metric is

dt2
+

e−2t

2y2
1

dx2
+

e2t

2y2
2

dy2.

In particular, if y1 = y2 = 1/
√

2, fz is an isometric embedding of Sol into H×H.

Proof. We have
fz(t, x, y)= (x, et y1, y, e−t y2).

Therefore, the Jacobian matrix is
0 1 0

et y1 0 0
0 0 1

−e−t y2 0 0

 .
Applying the product metric to the basis vectors et y1e2− e−t y2e4, e1, e3 we get
the result. �

In the sequel, unless otherwise established, z0 will denote the special point
1/
√

2 (i, i).

Corollary 4.3. The leaves fψs(z0) : Sol→ H×H can be identified with Sol, up to
a homothety in the direction spanned by the x, y coordinates.

Proof. We have

ψs ◦ fz0(t, x, y)=
(

x, 1
√

2
et+s, y, 1

√
2

e−t+s
)
.

If we pullback the induced metric to Sol, we get

dt2
+ e−2(t+s)dx2

+ e2(t−s)dy2.

Define Fs : Sol→ Sol by Fs(t, x, y) = (t, es x, es y). Another pullback with Fs

turns the induced metric into the standard metric in Sol. �
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Proposition 4.4. The foliation is globally rectifiable: there is a diffeomorphism
9 :R3

×R→H×H, such that each hyperplane R3
×{c} is diffeomorphic to a leaf.

Proof. Sol is diffeomorphic to R3 in a natural way. Any γ ∈ Sol is uniquely
determined by a triplet (t, x, y). Define 9 : R3

×R→ H×H by 9(t, x, y, s) =
ψs ◦ fz0(γ ). The function9 is injective because the action is free. Given z′ ∈H×H,
there is a leaf going through it, and since ψs(z0) traverses all the leaves, there exists
a number s, such that ψ−s(z′) is in the leaf passing through z0. Let γ ∈Sol be such
that ψ−s(z′)= fz0(γ ). Therefore,

z′ = ψs ◦ fz0(γ ),

which implies that 9 is also surjective. Finally, the Jacobian of 9 is

[d9] =


0 1 0 0

et+s/
√

2 0 0 et+s/
√

2
0 0 1 0

−e−t+s/
√

2 0 0 e−t+s/
√

2

,
which is nondegenerated. By the inverse function theorem, 9 is a diffeomorphism.
The last claim follows from the fact that ψs maps leaves onto leaves. �

Corollary 4.5. The previous diffeomorphism can be modified, such that it not only
maps the foliation to a Cartesian product globally, but also maps each leaf in the
foliation isometrically to Sol.

Proof. The pullback of the metric in H×H with the previous diffeomorphism is

dt2
+ e−2(t+s)dx2

+ e2(t−s)dy2
+ ds2,

which is analogous to the expression in Corollary 4.3. Let

9̃(t, x, y, s)=9(t, es x, es y, s).

9̃ is a leaf-preserving diffeomorphism such that, for fixed s, it isometrically maps
Sol into the leaf R3

×{s}. �

5. Extrinsic geometry

Proposition 5.1. Integral curves of the normal field X are geodesics.

Proof. We previously found that the integral curves of the field are given by
γ (t)= (x1, et y1, x2, et y2). Let φ(t) be a smooth curve in H with the homothetic
metric. Then,

‖φ̇(t)‖2 =
ẋ2
+ ẏ2

2y2 ,
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which is half the standard hyperbolic square length [Gallot et al. 2004]. Therefore,
a curve minimizes hyperbolic arc length if and only if it minimizes the homothetic
metric arc length, i.e., geodesics in both cases are the same. It is a well known fact
that the vertical curves (xk, et yk) are geodesics in hyperbolic space. Finally, since
γ can be projected in two geodesics and the metric is a product, γ is a geodesic in
H×H (see 3.15 in [Gallot et al. 2004]). �

Proposition 5.2. There are isometries in H×H acting transitively and sending
leaves onto leaves.

Proof. We work in the R3
×R picture with the 9̃ isometry. By straightforward

calculations we have that the mappings

(t, x, y, s) 7→ (t + t ′, et ′+s′x + x ′, e−t ′+s′ y+ y′, s+ s ′)

are isometries. The first claim comes from the fact that given a pair of points
(tk, xk, yk, sk), there exists exactly one such isometry sending one onto another. That
this isometry sends leaves onto leaves is obvious, since under this diffeomorphism,
they correspond to hypersurfaces where s is constant. �

We aim to calculate the distance between any pair of leaves. Recall that in any
metric space, the distance from a point p to a set S 6=∅ is given by the expression

d(p, S)= inf{d(p, x) : x ∈ S}.

See [Munkres 2000] for details.

Proposition 5.3. The separation between two leaves in H×H is constant. Moreover,
if leaves are parametrized with the normal field affine parameter, then leaves’
separation is given by the difference |s− s ′| between the parameters corresponding
to any leaf.

Proof. A point in a leaf can be parametrized as(
x,

es+t
√

2
, y,

es−t
√

2

)
,

where x, y, t are arbitrary, and s is the parameter corresponding to the leaf. Given
a second point in another leaf, say,(

x ′, es′+t ′/
√

2, y′, es′−t ′/
√

2
)
,

and since the metric is a product, we can find a geodesic minimizing the arc length in
H×H, such that, in each factor H, the distance is also minimized [Gallot et al. 2004].
On the other hand, the metric we use in each factor of H×H is half the hyperbolic
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distance, for which a well-known formula gives us the distance [Anderson 2005].
Let ρk denote the distance in each factor with our metric, then,

cosh
(√

2ρ1
)
= 1+

2(x − x ′)2+ (es+t
− es′+t ′)2

2es+t es′+t ′ ,

cosh
(√

2ρ2
)
= 1+

2(y− y′)2+ (es−t
− es′−t ′)2

2es−t es′−t ′ ,

where the
√

2 factor within the hyperbolic cosine is due to the factor relating the
standard hyperbolic metric with ours. The previous expression shows that, in order
to get the minimum distance, x ′ must be equal to x and y′ to y. Simplifying the
previous expressions for such values of x ′ and y′, we find

cosh
(√

2ρ1
)
= cosh(s− s ′+ t − t ′),

cosh
(√

2ρ2
)
= cosh(s− s ′+ t ′− t).

Therefore,

ρ1 =
|s− s ′+ t − t ′|

√
2

, ρ2 =
|s− s ′+ t ′− t |

√
2

,

and the distance in the product metric is given by
√
ρ2

1 + ρ
2
2 . In order for this

distance to be a minimum, a short analysis shows that one must take t ′ = t , and the
statement follows. �

Proposition 5.4. The principal curvatures of each leaf are−1 with multiplicity two,
and 0. The principal directions are determined by the integral curves of the vectors
∂x , ∂y , ∂t respectively.

Proof. Recall the principal curvatures and directions for an orientable submanifold
M are determined by the shape operator, S, which, in codimension 1, can be
regarded as the mapping T M→ T M given by vx 7→ ∇vx X, where X is the normal
field to the manifold, compatible with orientation (see [Spivak 1979, Chapter 1]).
Here, the principal directions and curvatures are the shape operator eigenvectors,
and eigenvalues. Consider a leaf embedded in H×H,(

x, e−t−s
√

2
, y, et−s
√

2

)
,

with normal field X = x2∂2 + x4∂4, where x2 = e−t−s/
√

2 and x4 = et−s/
√

2.
A calculation shows that

∇X =−dx1⊗ ∂1− dx3⊗ ∂3,

i.e., the shape operator is diagonal, once expressed in the base for the tangent space
to the leaf, spanned by the coordinate vectors ∂1, ∂3, and the vector −x2∂2+ x4∂4,
with eigenvalues {−1,−1, 0} counted with multiplicity. �
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5A. Proof of Theorem 1.1. Let G be a complex Kleinian group with a maximum
of four lines in general position contained in its limit set, then G acts properly and
discontinuously in four disjoint copies of H×H. Without loss of generality we can
assume that H×H is G-invariant. By Proposition 3.1, if

ψ : Sol×R→ H×H

is a G-equivariant diffeomorphism, then (H×H)/G is diffeomorphic to (Sol/G)×R.
We notice the topological type is perfectly determined by the group G. In fact,
the group G is the fundamental group of the manifold (H×H)/G. We remember
the Kulkarni discontinuity region is equal to four disjoint copies of H×H, hence
�/G is equal to four disjoint copies of (H×H)/G. We remark that if G represents
a lattice of the Lie group Sol, then Sol/G is a compact 3 manifold. This last
statement implies in some sense that Sol/G is the compact heart of (H×H)/G.

6. The Heisenberg group

Given a symplectic vector space, V, with symplectic form ω, recall the Heisenberg
group, H, is the space V ×R, with the product operation given by

(v, t) ∗ (w, s)= (v+w, t + s+ω(v,w)).

An account of this group in the context of complex hyperbolic geometry can be
found in [Cano et al. 2013]. If V is of dimension 2, and {∂p, ∂q} is a symplectic
base for V, that is, ω(∂p, ∂q)= 1, a well-known fact from Lie group theory is that
there is a faithful representation H→ SL(3,R) [Binz and Pods 2008], given by

(p∂p+q∂q t)→

1 p t + 1
2 pq

0 1 q
0 0 1

.
We will use this representation and identify H with a subgroup of SL(3,R). There-
fore, we will identify H with R3, with group structure,

(a, b, c) ∗ (a′, b′, c′)= (a+ a′, b+ b′, c+ c′+ ab′),

which corresponds to the matrix product1 a c
0 1 b
0 0 1

1 a′ c′

0 1 b′

0 0 1

 .
With these identifications, there is a natural left action H	 C×H:1 a c

0 1 b
0 0 1

 z
w

1

=
z+ aw+ c

w+ b
1

,
which we will denote by (a, b, c) ∗ (z, w).
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Proposition 6.1. The action of H in C×H is free.

Proof. If (a, b, c) ∗ (z, w)= (z, w), then

z+ aw+ c = z,

w+ b = w.

From this linear system, one deduces that a = b = c = 0. �

Proposition 6.2. For fixed (z, w) ∈ C×H, the orbit h ∈H 7→ h ∗ (z, w) defines a
differentiable embedding H ↪→ C×H.

Proof. The map is injective, since the action is free. Let w = p+ qi , the Jacobian
matrix of the mapping in (a, b, c) ∈H is given by

p 0 1
q 0 0
0 1 0
0 0 0

.
Since the Jacobian has rank 3, the action defines a local diffeomorphism, and hence
an embedding. �

Therefore, the action of H defines a foliation of C×H, in analogy with the
foliation of H×H generated by Sol.

Proposition 6.3. Consider C×H as a subset of R4, but with the product metric
of the euclidean metric in C and the hyperbolic metric in H. If e1, . . . , e4 denote
the canonical coordinates in R4, and (p, q) denotes the coordinates in H, then the
vector field X = qe4 is unitary and orthogonal to any leaf of the foliation generated
by H.

Proof. From Theorem 2.4, the vector fields pe1+ qe2, e3, e1 generate the tangent
space to the orbit of (z, w)∈C×H, where w= p+qi . Since the metric is a product,
X is orthogonal to pe1+ qe2 and e1. Moreover, the metric in H is conformal to
the euclidean, and therefore X is orthogonal to e3. Finally, qe4 is unitary in the
hyperbolic metric. �

Corollary 6.4. Let (z, w)∈C×H, z= x+ yi and w= p+qi . The integral curves
of X are geodesics.

Proof. The integral curves of X are constant in the first factor, and vertical straight
lines in the hyperbolic factor. �

Although in this case, the action induced by the normal field X is not equivariant,
we can describe in a precise way the quotients (C×H)/0, where 0 is a discrete
subgroup of H. Moreover, if 0 acts properly discontinuously in C×H, it has to act
in the same way in Heisenberg, because the slices H×{qi} are preserved. This is a
general property of Lie groups that we prove in the following lemma.



16 WALDEMAR BARRERA, RENE GARCIA-LARA AND JUAN NAVARRETE

Lemma 6.5. Let X and Y be two locally compact spaces. If 0 	 X × Y, and the
action of g ∈ 0 can be decomposed as g · (x, y) = (g · x, y) then 0 acts properly
discontinuously in X if and only if it acts properly discontinuously in X × Y.

Proof. Let K ⊂ X be a compact set. Fix y ∈ Y. With the product topology, K ×{y}
is a compact set in X × Y. One can easily verify the equality

{g ∈ 0 : g · K ∩ K 6=∅} =
{
g ∈ 0 : g× 1 · K ×{y} ∩ K ×{y} 6=∅

}
.

If 0 acts properly discontinuously in X × Y, the previous equality implies that it
acts properly discontinuously in X. On the other hand, if K ⊂ X × Y is compact,
the product topology together with the local compacity implies that we can find
an open set U × V, with U ∈ X and V ∈ Y, such that U is compact in X, V is
compact in Y, and K ⊂U × V. We have the contention

{g ∈ 0 : gK ∩ K 6=∅} ⊂
{
g ∈ 0 : g · l(U × V )∩U × V 6=∅

}
Take g∈0 and (x, y)∈U×V , such that g·(x, y)∈U×V . Since g·(x, y)= (g·x, y),
it follows that g · x ∈U . Therefore, the second set in the previous contention is at
the same time contained in

{g ∈ 0 : g ·U ∩U 6=∅}.

If 0 acts properly discontinuously in X, this set has to be finite, and the same must
be true for the set of intersections in X ×Y, that is, 0 acts properly discontinuously
in X. �

Proposition 6.6. C×H is diffeomorphic to H×R, where, up to diffeomorphism,
H acts on the first factor only.

Proof. Let γ = (a, b, c) ∈H and take (0, qi) ∈ C×H. We can describe the orbits
γ · (0, qi) explicitly: 1 a c

0 1 b
0 0 1

 ·
 0

qi
1

=
aqi + c

qi + b
1

.
Therefore, there is exactly one (0, qi) in each orbit of the group action. Define

9 :H×R→ C×H as
9(γ, q)= γ · (0, qi).

It can be shown that 9 is bijective. It is a diffeomorphism, since an explicit
computation shows that d9 maps the canonical vectors T(γ,q)H × R ∼= R4

→

Tγ ·(0,qi)C×H∼= R4:

{∂1, . . . , ∂4} 7→ {q∂2, ∂3, ∂1, a∂2+ ∂4}.

The last assertion follows since the action is associative, i.e., γ ′ · (γ · (0, qi))=
(γ ′ ·γ ) ·(0, qi), and therefore, preserves the imaginary part on the second factor. �
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6A. Proof of Theorem 1.4. The proof is analogous to that of Theorem 1.1, the only
difference is that we need the technical Lemma 6.5. A consequence of Theorem 1.4
is the following corollary:

Corollary 6.7. If 0 <H is a discrete subgroup acting properly and discontinuously
in C×H, up to diffeomorphism, (C×H)/0 ∼= (H/0)×R, and the quotient H/0
is a manifold whose fundamental group is π1(H/0)∼= 0.

Example 6.8. Let HZ <H be the discrete subgroup of Heisenberg matrices with
integer coefficients. It can be shown that the unit cube KC = [0, 1]3 ⊂ H is a
fundamental region for the action of HZ [Lukyanenko 2014]. The quotient HZ \H
is an example of a nilmanifold, whose fundamental group is

HZ
∼= 〈m, n, k : [m, n] = k4

〉;

see [Lukyanenko 2014]. In view of the previous results, HZ acts properly and
discontinuously in C×H, and the quotient (C×H)/HZ is a product of a nilmanifold
times R, whose fundamental group has the previous presentation.
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ON PERIODIC POINTS OF
SYMPLECTOMORPHISMS ON SURFACES

MARTA BATORÉO

We construct a symplectic flow on a surface of genus g ≥ 2, 6g≥2, with
exactly 2g − 2 hyperbolic fixed points and no other periodic orbits. More-
over, we prove that a (strongly nondegenerate) symplectomorphism of 6g≥2

isotopic to the identity has infinitely many periodic points if there exists
a fixed point with nonzero mean index. From this result, we obtain two
corollaries, namely that such a symplectomorphism of 6g≥2 with an elliptic
fixed point or with strictly more than 2g −2 fixed points has infinitely many
periodic points provided that the flux of the isotopy is “irrational”.

1. Introduction and main results

In this paper, we construct a symplectic flow ψ t on a closed surface with genus
g ≥ 2, 6g≥2, having exactly 2g− 2 hyperbolic fixed points and no other periodic
points. This is a genuine flow and it satisfies an “irrationality” condition on its flux;
see property (1-1). This construction yields the computation of the Floer–Novikov
homology when (1-1) holds. With this information and assuming (1-1), we prove
that a (strongly nondegenerate) symplectomorphism φ on 6g≥2 (connected to the
identity by an isotopy φt ) possessing a fixed point with nonzero mean index has
infinitely many periodic points. As a consequence of this result, we see that the
presence of an elliptic fixed point or of strictly more than 2g−2 fixed points implies
the existence of infinitely many periodic points.

We are interested in symplectomorphisms which are not Hamiltonian. However
our results fit in the context of a conjecture of B. Z. Gürel [2013; 2014] which
suggests that the presence of an unnecessary fixed point of a Hamiltonian dif-
feomorphism guarantees the existence of infinitely many periodic points. There,
unnecessary is viewed from a homological or geometrical perspective. The results
in [Gürel 2013; 2014] support the conjecture when the fixed point is unnecessary
from a homological viewpoint. From the geometrical perspective, the conjecture is
supported, e.g., by the result in [Ginzburg and Gürel 2014] where V. L. Ginzburg and

This work was done while the author was a postdoctoral researcher at IMPA, funded by CAPES-Brazil.
MSC2010: primary 53D40; secondary 37J10, 70H12.
Keywords: symplectomorphisms, surfaces, Floer homology.
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B. Z. Gürel prove that, for a vast class of symplectic manifolds (which includes the
complex projective spaces CPn), a Hamiltonian diffeomorphism with a hyperbolic
fixed point has infinitely many periodic points.

Furthermore, the conjecture by Gürel is a variant of a conjecture by H. Hofer and
E. Zehnder [1994, page 263] claiming that “every Hamiltonian map on a compact
symplectic manifold (M, ω) possessing more fixed points than necessarily required
by the V. Arnold conjecture possesses always infinitely many periodic points”.
For instance, the conjecture in [Hofer and Zehnder 1994] on CPn claims that a
nondegenerate Hamiltonian diffeomorphism has infinitely many periodic points if
it fixes more than n+1 points. This was motivated by the result of J. Franks [1988]
stating that an area-preserving diffeomorphism on S2 with more than two fixed
points has infinitely many periodic points (see also [Franks 1992; 1996; Le Calvez
1999; Bramham and Hofer 2012; Collier et al. 2012; Kerman 2012] for symplectic
topological proofs).

Recall that a Hamiltonian diffeomorphism on a closed surface with genus g ≥ 1
always has infinitely many periodic points. This statement was conjectured to hold
on the torus by C. Conley in a lecture given on April 6th 1984, in the University of
Wisconsin. This was later proved in [Hingston 2009] and it has been generalized to a
vast class of symplectic manifolds; see Ginzburg’s proof [2010] and, e.g., [Ginzburg
and Gürel 2012; Hein 2012; Ginzburg et al. 2015] for more contributions.

The background discussed so far concerns Hamiltonian diffeomorphisms. For
symplectomorphisms which need not be Hamiltonian, H. V. Lê and K. Ono [1995]
proved a version of Arnold’s conjecture for nondegenerate symplectomorphisms. A
lower bound for the number of fixed points of a symplectomorphism is given by the
sum of the Betti numbers of the Novikov homology of a closed 1-form representing
the cohomology class given by the flux of an isotopy connecting the identity to the
symplectomorphism. Observe that this lower bound may be zero as in the case of
the 2-torus. Moreover, when the flux of the isotopy is zero, the Novikov homology
associated to the flux is the ordinary homology of M and, in this case, i.e., when the
symplectomorphism is Hamiltonian, this is the statement of Arnold’s conjecture.

There is also an analogue of the result by Ginzburg and Gürel [2014] which
claims that if a symplectomorphism (satisfying some conditions on its flux) has
a hyperbolic fixed point, then there are infinitely many periodic points. If the
hyperbolic fixed point corresponds to a contractible periodic orbit, the result is
proved in [Batoréo 2015] for some class of manifolds which includes, for instance,
the product of CPn with a 2m-dimensional torus, CPn

× T2m, with m ≤ n (or
CPn
× P2m, with P2m a symplectically aspherical 2m-manifold). The case when

the hyperbolic periodic orbit is noncontractible was proved in [Batoréo 2017] and
it holds, for example, on the product spaces CPn

×6g≥2. We point out that the
existence of infinitely many periodic points is guaranteed by the presence of a
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hyperbolic fixed point on CPn and on CPn
×6g≥2. However, such a result does

not hold on 6g≥2.
In fact, Theorem 1.1 and the construction of Section 3A give a symplectomor-

phism with finitely many hyperbolic fixed points and no other periodic points; see
[Katok and Hasselblatt 1995, Exercise 14.6.1]. The number of fixed points of this
symplectomorphism is exactly 2g− 2, which is the lower bound for the number of
fixed points of a diffeomorphism given by the Lefschetz fixed point theorem. We
prove the presence of infinitely many periodic points of a (strongly nondegenerate)
symplectomorphism on 6g≥2 (with an “irrationality” assumption on its flux) pro-
vided the existence of a fixed point with nonzero mean index (see Theorem 1.4).
Such a condition is satisfied if the fixed point is elliptic (see Theorem 1.3) or if the
number of fixed points is strictly greater than 2g− 2 (see Theorem 1.5).

In Sections 1A and 1B, we state the main theorems of this paper. The theorems
in Section 1A refer to the existence of the symplectomorphism with exactly 2g− 2
fixed points and no other periodic points (Theorem 1.1) and to the computation of
the Floer–Novikov homology of symplectomorphisms satisfying condition (1-1)
(Theorem 1.2). In Section 1B, we state the theorems which give sufficient conditions
for the existence of infinitely many periodic points of symplectomorphisms with flux
as in (1-1) (Theorems 1.3–1.5). The remaining sections are organized as follows:
in Section 2, we present the definitions and known results used in the statements
and proofs of our theorems, in Section 3, we prove the results stated in Section 1A
and, in Section 4, we prove the theorems stated in Section 1B.

1A. Existence of a symplectomorphism with exactly 2g − 2 hyperbolic fixed
points and no other periodic points. Consider a closed surface 6 with genus g
greater than or equal to 2 and a symplectic form ω on 6. The first cohomology
group H 1(6;R) of the surface 6 can be identified with R2g and hence the image of
[φt ] ∈ S̃ymp0(6, ω) under the flux homomorphism (see Section 2B) can be viewed
as a 2g-tuple,

(u1, v1, . . . , ug, vg) ∈ R2g,

where S̃ymp0(6, ω) is the universal covering of the identity component of the group
of symplectomorphisms on 6. Moreover, the kernel of the flux homomorphism
is given by the universal covering of the group of Hamiltonian diffeomorphisms,
H̃am(6, ω). We recall that the flux homomorphism

Flux : S̃ymp0(6, ω)→ H 1(6,R); [φt ] 7→

[ ∫ 1

0
ω(X t , ·) dt

]
descends to a homomorphism

Flux : Symp0(6, ω)→ H 1(6,R); φ 7→

[ ∫ 1

0
ω(X t , ·) dt

]
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since 6 is atoroidal (see Section 2B). If a symplectomorphism φ satisfies

(1-1) Flux(φ)= (u1, v1, . . . , ug, vg)

with ui 6= 0 and
vi

ui
∈ R \Q, for all i = 1, . . . , g,

we say that it satisfies the flux condition.

Remark 1. If φ satisfies the flux condition (1-1), then φk also satisfies the flux
condition (for all k ∈ N).

Our first main result is the following:

Theorem 1.1. Given (u1, v1, . . . , ug, vg) ∈ R2g such that

ui 6= 0 and vi/ui ∈ R \Q, i = 1, . . . , g,

there exists a symplectic flow

ψ t
(u1,v1,...,ug,vg)

:6→6

with no periodic orbits other than (exactly) 2g− 2 hyperbolic fixed points and

Flux(ψ t
(u1,v1,...,ug,vg)

|t∈[0,1] )= (u1, v1, . . . , ug, vg).

Denote by HFN∗(φ) the Floer–Novikov homology of a symplectomorphism
φ of 6 isotopic to the identity (see Section 2D for the definition). Using the
construction of the (genuine) flow ψ t

(u1,v1,...,ug,vg)
given by the previous theorem,

we compute HFN∗(φ) for nondegenerate symplectomorphisms φ satisfying (1-1)
(see Theorem 1.2). In the following theorem, one can take any ring (e.g., Z or Q)
as the ground ring F. In this paper, for the sake of simplicity, all complexes and
homology groups are defined over the ground field F= Z2.

Theorem 1.2. Let φ ∈ Symp0(6, ω) be nondegenerate and satisfying the flux
condition (1-1). Then the Floer–Novikov homology of φ is given by

HFNr (φ)=

{
F2g−2

⊗3θ if r = 0,
0 if r 6= 0.

(1-2)

We point out that Lê and Ono [1995, Theorem 8.1] proved that, for a certain
class of symplectic manifolds, if the flux of the isotopy is sufficiently small, then
the Floer–Novikov homology of the isotopy may be computed by the Novikov
homology of a closed 1-form representing the flux of the isotopy. Namely, on6, [Lê
and Ono 1995, Theorem 8.1] states that there exists ε>0 such that if ‖θ‖C1 <ε, then

HFN∗(φ)' H N∗+1(θ),

where [θ ] = Flux(φ). In Theorem 1.2, in contrast, the flux of φ is not assumed to
be small.
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We will now compute the Novikov homology of θ when [θ ] = Flux(φ) =
(u1, v1, . . . , ug, vg) with u1, v1, . . . , ug, vg ∈ R rationally independent. Consider
the homomorphism π1(6)→ R defined by

γ 7→

∫
γ

θ(1-3)

which we also denote by [θ ]. Since u1, v1, . . . , ug, vg are rationally independent, the
kernel ker([θ ]) is the commutator [π1(6), π1(6)] of the fundamental group π1(6).
Let π : 6̃→6 be the covering space associated to the homomorphism [θ ], i.e., 6̃
is the maximal free abelian covering of 6. Then there exists a function f : 6̃→ R

such that π∗θ = d f . We recall that the Novikov complex of θ is defined in the same
way as the Morse complex of f ; see, e.g., [Lê and Ono 1995], namely Section 6
and Appendix C, and [Ono 2006].

As mentioned in the example of [Lê and Ono 1995, Section 7], the Betti numbers
of 6̃ are 0, 2g− 2 and 0. Hence, by [Lê and Ono 1995, Theorem 8.1], for ‖θ‖C1

sufficiently small,

HFN∗(φ)'
{

F2g−2
⊗3θ if ∗ = 0,

0 if ∗ 6= 0,

which coincides with the computations in Theorem 1.2.
Notice that, when u1, v1, . . . , ug, vg ∈ R are rationally independent, the sum of

the Betti numbers of the Novikov homology of θ , with [θ ] = (u1, v1, . . . , ug, vg),
is 2g − 2 (regardless of whether ‖θ‖ is sufficiently small or not) and hence the
lower bound given by the main theorem in [Lê and Ono 1995, page 156] is attained
by the symplectic flow given by Theorem 1.1.

Remark 2. We observe that:

(1) Due to conventions on the indices, the Floer–Novikov homology in this paper
is the Floer–Novikov homology considered in [Lê and Ono 1995] with the
degree shifted by n = 1.

(2) On 6, the Novikov rings 3θ,ω and 3θ in [Lê and Ono 1995] are isomorphic
and hence

Nov∗(θ)⊗3θ 3θ,ω ' Nov∗(θ).

(3) ε > 0 is taken small enough so that the conditions in [Ono 2006, Definition 3.9]
are satisfied. See also [Ono 2006, Theorem 3.12].

Remark 3 (noncontractible orbits). In this paper, the Floer–Novikov homology
is defined for contractible periodic orbits (as in [Ono 2006]), unless explicitly
stated otherwise. If the fixed points of the symplectomorphisms correspond to
noncontractible periodic orbits, take the Floer–Novikov homology for noncon-
tractible periodic orbits defined in [Burghelea and Haller 2001]. In that case, the
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Floer–Novikov homology of a nondegenerate φ ∈ Symp0(6, ω) satisfying (1-1) is
HFN∗(φ, ζ )= 0, where ζ is a nontrivial free homotopy class of loops in 6. See
Remark 17.

1B. Existence of infinitely many periodic points. Consider a strongly nondegen-
erate symplectomorphism φ (see page 27 for the definition) on a closed surface 6
(with genus g ≥ 2) satisfying the flux condition (1-1). The following theorem gives
a condition under which φ has infinitely many periodic points.

Theorem 1.3. Let φ∈Symp0(6, ω) be strongly nondegenerate. Suppose φ satisfies
the flux condition (1-1) and that φ has an elliptic fixed point. Then φ has infinitely
many periodic points.

Remark 4. If x0 corresponds to a noncontractible periodic orbit, Theorem 1.3
remains valid. See Remark 18.

Theorem 1.3 follows from a more general result:

Theorem 1.4. Let φ∈Symp0(6, ω) be strongly nondegenerate. Suppose φ satisfies
the flux condition (1-1) and that φ has a fixed point x0 such that its mean index
1(x0) is not zero. Then φ has infinitely many periodic points.

In Section 4, we prove, more precisely, that if φ has finitely many fixed points,
then every large prime is a simple period, i.e., a period of a simple (noniterated)
orbit. (In particular, the number of simple periods less than or equal to k is of order
at least k/ log(k).) One of the main tools used in the proof of this theorem is Floer–
Novikov homology and the proof relies on Theorem 1.2. Another consequence of
Theorem 1.4 is Theorem 1.5, which gives a sufficient condition on the number of
fixed points of φ for the existence of infinitely many periodic points of φ.

Theorem 1.5. Let φ ∈ Symp0(6, ω) be strongly nondegenerate and suppose it
satisfies the flux condition (1-1). If the number of fixed points of φ is (strictly)
greater than 2g− 2, then φ has infinitely many periodic points.

2. Preliminaries

Consider a closed surface 6 with genus g ≥ 2 and a symplectic structure ω on 6.
In this section, we follow [Burghelea and Haller 2001; Ginzburg and Gürel 2015;
Lê and Ono 1995; Ono 2006; Salamon and Zehnder 1992].

2A. A covering space of the space of contractible loops. Let L6 be the space of
contractible loops in 6 and �6 be the space of based contractible loops in 6. The
map ev : L6→6 defined by x 7→ x(0) is a fibration with fiber �6 (see, e.g., [Hu
1959, page 83] for the details). It induces a long exact sequence on the homotopy
groups and part of it is given by

π1(�6)→ π1(L6)→ π1(6).
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Since this fibration admits a section consisting of constant loops,

π1(L6)∼= π1(�6)⊕π1(6).

With the identification π1(�6)≡ π2(6) (see, e.g., [Adams 1978, pages 5–7] for
the details) and since π2(6)= 0, we have

π1(L6)∼= π1(6).

Let θ be a closed 1-form on 6 and consider the homomorphism

[θ ] : π1(L6)→ R(2-1)

induced by the homomorphism [θ ] : π1(6)→ R defined by (1-3). Moreover, take
the covering π : 6̃→ 6 associated with ker([θ ]) 6 π1(6). When ker([θ ]) = 0,
6̃ is the universal covering of 6. Choose a function f : 6̃→R such that d f =π∗θ .

Denote by L̃6 the covering space of L6 associated with ker([θ ]) 6 π1(L6).
The deck transformation group of p : L̃6→ L6 is

0 :=
π1(L6)
ker([θ ])

∼=
π1(6)

ker([θ ])
.(2-2)

Following [Ono 2006], an element of the covering space L̃6 can be described
as an equivalence class (for a relation ∼) of a loop x̃ in 6̃ where the relation ∼ is
defined by x̃ ∼ ỹ if

π ◦ x̃ = π ◦ ỹ(2-3)

and

f (x̃(o))= f (ỹ(o))(2-4)

where o is the base point of S1, i.e., 1 ∈ ∂D2
⊂ C. We observe that conditions

(2-3) and (2-4) are equivalent to x̃ = ỹ and, hence, L̃6 is in fact the space L6̃ of
contractible loops in 6̃.

Remark 5. The homomorphisms Iω and Ic1 defined by [Ono 2006] are identically
zero when M =6, since π2(6)= 0. Moreover, the homomorphism Iη from that
paper is the map [θ ] in (2-1).

2B. Symplectomorphisms and periodic orbits. We denote by Symp(6, ω) the
group of symplectomorphisms of (6, ω) and by Symp0(6, ω) the component
of the identity in Symp(6, ω).

Let φ ∈ Symp0(6, ω) and consider φt a symplectic isotopy connecting the
identity φ0 = id to φ1 = φ and define a vector field X t by

d
dt
φt = X t ◦φt .
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The flux homomorphism is defined on the universal covering S̃ymp0(6, ω) of
Symp0(6, ω) by

Flux : S̃ymp0(6, ω)→ H 1(6;R); [φt ] 7→

[∫ 1

0
ω(X t , ·) dt

]
.

This homomorphism is surjective, its kernel is given by H̃am(6, ω), i.e., the
universal covering of the group of Hamiltonian diffeomorphisms (see [McDuff and
Salamon 1995]) and, when g≥2, (see [Kȩdra 2000]) it descends to a homomorphism

Flux : Symp0(6, ω)→ H 1(6,R); φ 7→

[∫ 1

0
ω(X t , ·) dt

]
.

Remark 6 [McDuff and Salamon 1995, pages 316–317]. Under the usual iden-
tification of H 1(6;R) with Hom(π1(6),R), the cohomology class Flux([φt ])

corresponds to the homomorphism

π1(6)→ R; γ 7→

∫ 1

0

∫ 1

0
ω(X t(γ (s)), γ̇ (s)) ds dt,

for γ : S1
= R/Z→6. Geometrically, the value of Flux([φt ]) on the loop γ is the

symplectic area swept by the path γ under the isotopy φt .

Denote by θ a closed 1-form such that Flux([φ])= [θ ] ∈ H 1(6;R).
Lê and Ono [1995, Lemma 2.1] proved that {φt } can be deformed through

symplectic isotopies (keeping the end points fixed) so that the cohomology classes
[ω(X ′t , ·)], for all t ∈ [0, 1], and Flux([φ′t ]) = [θ ] are the same (where X ′t is the
vector field associated with the deformed symplectic isotopies φ′t ). Namely, each
element in S̃ymp0(6, ω) admits a representative symplectic isotopy generated by
a smooth path of closed 1-forms θt on 6 whose cohomology class is identically
equal to the flux, i.e.,

−ω(X ′t , ·)= θ + dht =: θt

for some Hamiltonian ht :6→ R, t ∈ S1, that is 1-periodic in time.
The fixed points of φ = φ1 are in one-to-one correspondence with 1-periodic

solutions of the differential equation

ẋ(t)= Xθt (t, x(t)),(2-5)

where Xθt is defined by ω(Xθt , ·)=−θt . From now on we denote the vector field
Xθt also by X t .

A 1-periodic solution x of (2-5) is called nondegenerate if 1 is not an eigenvalue
of the linearized return map dφx(0) : Tx(0)6→ Tx(0)6. If all 1-periodic orbits of
X t are nondegenerate, then the associated symplectomorphism φ is called nonde-
generate and if all periodic orbits of X t are nondegenerate then φ is called strongly
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nondegenerate . Moreover, if all periodic orbits of X t are nondegenerate, then the
set P(θt) of 1-periodic solutions of (2-5) is finite.

The set P(θt) coincides with the zero set of the closed 1-form defined on the
space of contractible loops on 6, L6, by

α{φt }(x, ξ)=
∫ 1

0
ω(ẋ − X t , ξ) dt

=

∫ 1

0
ω(ẋ, ξ)+ θt(x(t))(ξ) dt

=

∫ 1

0
ω(ẋ, ξ) dt +

∫ 1

0
(θ + dht)(ξ) dt

where x ∈ L6 and ξ ∈ TxL6 (i.e., ξ is a tangent vector field along the loop x or,
equivalently, ξ(t) ∈ Tx(t)6).

A primitive function of the pull-back of the 1-form α{φt } to the covering space
L̃6 (defined in Section 2A) is given by

A{φt }(x̃) := −
∫

D2
v∗ω+

∫ 1

0
( f + ht ◦π)(x̃(t)) dt

where v : D2
→6 is some disc in 6 with π ◦ x̃ = v|∂D2 . Notice that the right-hand

side is independent of the choice of the disc v.

2C. The mean index and the Conley–Zehnder index. For every continuous path
8 : [0, 1] → Sp(2) of 2× 2 symplectic matrices such that 8(0) = Id, the mean
index 1(8) measures, roughly speaking, the total rotation angle swept by certain
eigenvalues on the unit circle. We describe this index (and the Conley–Zehnder
index) explicitly.

Let A be a symplectic matrix in Sp(2). Then it has two eigenvalues λ1 and λ2

such that either λi ∈ S1
⊂C or λi ∈R\ {−1, 1}, where i = 1, 2, and λ1λ2 = 1. We

denote the spectrum of A, i.e., the set of eigenvalues of A, by σ(A).
If 1 6∈ σ(A), we say A is nondegenerate. We distinguish two cases of nondegen-

erate matrices:

• The eigenvalues are real (σ(A)⊂R\ {−1,+1}). Then 0<λ1 < 1<λ2 = λ
−1
1

or λ1 <−1< λ2 = λ
−1
1 < 0. In this case, A is called hyperbolic.

• The eigenvalues are on the unit circle (σ(A) ⊂ S1
\ {1}) in which case A is

called elliptic.

Set

ρ(A)=


eiν if A is conjugate to a rotation by an angle ν ∈ (−π, π),
1 if σ(A)⊂ R>0,

−1 if σ(A)⊂ R<0.
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This function ρ : Sp(2)→ S1 is continuous, invariant by conjugation and equal
to detC :U (1)→ S1 on U (1). When

A =
[
−1 0
0 −1

]
,

we have ρ(A)=−1. Then, given a path8 : [0, 1]→ Sp(2), there is a continuous
function η(·) such that ρ(8(t)) = eiη(t) measuring the rotation of certain unit
eigenvalues and the mean index of 8 is defined by

1(8) :=
η(1)− η(0)

π
.

Denote the set of nondegenerate matrices in Sp(2) by Sp(2)∗. This set has two
connected components

Sp(2)+ := {A ∈ Sp(2)∗ : det(A− I ) > 0}

and
Sp(2)− := {A ∈ Sp(2)∗ : det(A− I ) < 0}.

Remark 7. The set Sp(2)+ consists of matrices in Sp(2)∗ which are elliptic or
hyperbolic with negative eigenvalues and Sp(2)− is the set of matrices in Sp(2)∗

which are hyperbolic with positive eigenvalues.

Define the matrices

W+ :=
[
−1 0
0 −1

]
∈ Sp(2)+ and W− :=

[
1/2 0
0 2

]
∈ Sp(2)−.

For A∈ Sp(2)∗, consider a path9A : [0, 1]→ Sp(2)∗ connecting A∈ Sp(2)± to W±.
Then, the Conley–Zehnder index of 8 with 8(1) ∈ Sp(2)∗ is, by definition,

µCZ(8) :=1(8#98(1)) ∈ Z,

where 8#98(1) is the concatenation of the paths 8 and 98(1) in Sp(2).
The mean index and the Conley–Zehnder index of 8 satisfy the relation

0 6= |1{φt }(8)−µCZ(8)|< 1

when 8(1) is nondegenerate. We recall some properties of the indices where we
assume 8(1) ∈ Sp(2)∗ and −1 6∈ σ(8(1)); see Remark 8.

Result 1. • If 8(1) is elliptic, then 1(8) 6= 0.

• If 8(1) is hyperbolic then 1(8) ∈ Z. Equivalently, if 1(8) ∈ R \ Z, then
8(1) is elliptic.

Result 2. If 8(1) is elliptic, then µCZ(8) is an odd integer. Equivalently, if µCZ(8)

is an even integer, then 8(1) is hyperbolic.
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Result 3. If 8(1) is hyperbolic, then 1(8)= µCZ(8). Moreover, the eigenvalues
of 8(1) are positive if and only if µCZ(8) is even.

Remark 8. In the main theorems of this paper, we assume that 8(1) is strongly
nondegenerate and, hence, −1 6∈ σ(8(1)).

For every x ∈ P(θt), there is a well-defined mean index and, when x is nonde-
generate, the Conley–Zehnder index of x is also well-defined. In fact, for x̃ ∈ L̃6,
there is a well-defined, up to homotopy, C-vector bundle trivialization of x∗T6,
and the linearized flow along x ∈ P(θt),

dφt : Tx(0)6→ Tx(t)6,

can be viewed as a symplectic path,

8 : [0, 1] → Sp(2).(2-6)

Then the mean index 1φt is defined by

1{φt }(x̃) :=1(8)

and the Conley–Zehnder index µCZ is defined, for nondegenerate orbits x , by

µCZ(x̃) := µCZ(8).

Since 6 is aspherical, the indices are independent of the lift x̃ of x and we write

1{φt }(x) and µCZ(x)

for the mean index and the Conley–Zehnder index of x , respectively.
These indices satisfy the properties

1
{φk

t }
(xk)= k1{φt }(x)(2-7)

and
|1{φt }(x)−µCZ(x)|< 1 (when x is nondegenerate).(2-8)

Furthermore, we say that a nondegenerate periodic orbit x ∈ P(θt) is elliptic, or
hyperbolic, if the endpoint of the associated symplectic path as in (2-6) is elliptic,
or hyperbolic, respectively. Moreover, the stated results hold for a periodic orbit
x if they are satisfied by the corresponding symplectic path 8, as in (2-6). For
instance, the claim for orbits corresponding to the first part of Result 1 enunciates
that if x is an elliptic orbit for φ, then its mean index is not zero.

Remark 9 (noncontractible orbits). Let ζ be a free homotopy class of maps S1
→6.

Fix a reference loop z in ζ and a trivialization of T M along z. They give rise to
a well defined, up to homotopy, C-vector bundle trivialization of x∗T M for every
x ∈ Lζ M and, for a 1-periodic orbit of φ, the linearized flow along x ,

dφt : Tx(0)M→ Tx(t)M,
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can be viewed as a symplectic path 8 : [0, 1] → Sp(2n). Consider the abelian
principal covering L̃ζ6 with structure group

0ζ :=
π1(Lζ6)
ker([θ ])

,

where [θ ] : π1(Lζ6)→ R. The mean index and the Conley–Zehnder index are de-
fined as above and, since 6 is atoroidal, in this case the indices are also independent
of the lifts.

2D. The Floer–Novikov homology. In this section, we revisit the definition of the
Floer–Novikov homology for contractible nondegenerate periodic orbits.

Consider a smooth almost complex structure J on 6 compatible with ω, i.e.,
such that

g(X, Y ) := ω(X, JY )

defines a Riemannian metric on 6. We will denote by J the set of almost complex
structures compatible with ω. Choose J ∈ J and let g̃ denote the induced weak
Riemannian metric on L6 given by

g̃(Xx , Yx)=

∫
S1

g(Xx(t), Yx(t)) dt,

where Xx and Yx are vector fields along x . A gradient flow line is a mapping
u : R× S1

→6 satisfying

∂su(s, t)+ J
(
∂t u(s, t)− X t(u(s, t))

)
= 0.(2-9)

The maps u : R→ L6 which satisfy (2-9) with boundary conditions

lim
s→±∞

ũ(s, t)= x̃±(t),(2-10)

for some lift ũ :R→ L̃6 of u, can be seen as connecting orbits between x̃− and x̃+.
We denote by M(x̃−, x̃+) the space of finite energy solutions of (2-9) and (2-10).
The energy of a connecting orbit in this space is given by

E(u) :=
∫

R×S1
|∂su|2gdsdt =A{φt }(x̃+)−A{φt }(x̃−)

when x− and x+ are nondegenerate. The space M(x̃−, x̃+) is a smooth manifold of
dimension µCZ(x+)−µCZ(x−). It admits a natural R-action given by reparametriza-
tion. For nondegenerate x, y ∈ P(θt) such that

µCZ(x)−µCZ(y)= 1,

we have that M(x̃, ỹ)/R is finite and set

n2(x̃, ỹ) := #M(x̃, ỹ)/R modulo 2.
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Denote by Pk the set of elements x̃ ∈ L̃6 such that x ∈P(θt) andµCZ(x)= k. Con-
sider the chain complex where the k-th chain group Ck consists of all formal sums∑

ξx̃ · x̃

with x̃ ∈ Pk, ξx̃ ∈ Z2 and such that, for all c ∈ R, the set

{x̃ | ξx̃ 6= 0, A{φt }(x̃) > c}

is finite. Denote by
3θ =3(0, [θ ], F)

the Novikov ring associated with the group 0 (defined in (2-2)) and the weighting
homomorphism [θ ] (defined in (2-1)) with values in the field F=Z2; see [Hofer and
Salamon 1995, Section 4]. The chain group Ck is a torsion-free module over the al-
gebra3θ . The rank of this module is the number of elements of Pk ; see [Lê and Ono
1995, Lemma 4.2]. For a generator x̃ in Ck , the boundary operator ∂k is defined as

∂k(x̃)=
∑

µCZ(ỹ)=k−1

n2(x̃, ỹ)ỹ.

Since ∂k is invariant under the action of 0, we extend ∂k as a 3θ -linear map from
Ck to Ck−1. The boundary operator ∂ satisfies ∂2

= 0. The homology groups

HFNk({φt }, J )=
ker ∂k

im ∂k+1

are called the Floer–Novikov homology groups and they are graded 3θ -modules.
Moreover, this homology is invariant under exact deformations of the closed

form θt (see [Lê and Ono 1995, Theorem 4.3]) and hence two paths with the same
flux have isomorphic associated Floer–Novikov homology groups.

Remark 10 (Floer–Novikov homology for noncontractible orbits). As mentioned
in the introduction, the Floer–Novikov homology is defined for orbits which lie in
some free homotopy class ζ . Here, we refer the reader to [Burghelea and Haller
2001] for the details and point out that the Conley–Zehnder index defined in that
paper when ζ = 0 may result in a shift of the standard grading of the Floer–Novikov
homology by an even integer; see [Burghelea and Haller 2001, Remark 3.4].

3. Proofs of Theorems 1.1 and 1.2

In this section, we construct a flowψ t with exactly 2g−2 hyperbolic fixed points and
no other periodic orbits on a surface 6 with genus g ≥ 2. This proves Theorem 1.1,
and yields the Floer–Novikov homology of a symplectomorphism satisfying prop-
erty (1-1) and hence also establishes Theorem 1.2.
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Figure 1. Torus: [0, 1]× [0, 1].

3A. Construction of a symplectic flow with exactly 2g−2 hyperbolic fixed points
and no other periodic orbits. We start with the case when 6 is a surface of genus
g = 2. The construction has three steps.

In the first step, take two 2-tori T1 and T2 and the linear flow φt
i on each torus

Ti (i = 1, 2):

φt
i (xi , yi )= (tui xi , tvi yi ) with ui 6= 0 and

vi

ui
∈ R \Q, i = 1, 2.

Here xi , yi are the coordinates on Ti = R2/Z2, i = 1, 2.
Representing each torus by a square [0, 1]× [0, 1], where the sides {0}× [0, 1]

and [0, 1] × {0} are identified with {1}× [0, 1] and [0, 1] × {1}, respectively (see
Figure 1), consider a square R1 in T1 such that two parallel sides are segments of a
linear flow line (of φt

1) with length ε > 0 and a square L2 in T2 where two parallel
sides are segments of a linear flow line (of φt

2) with length ε > 0 (see Remark 11).
In Figure 2, there are three pictures. The two on the left refer to torus T1. The first
one represents a flow line of φt

1 (with slope v1/u1) and the second one shows the
square R1 where two of its sides are segments of the represented flow line. The
picture on the right refers to the torus T2 where a flow line of φt

2 (with slope v2/u2)
is represented together with the square L2.

Remark 11. In the current case, where g= 2, ε is small enough so that the squares
R1 and L2 are inside the square [0, 1]× [0, 1]. See Remark 16 for the general case.

Remark 12. In order to distinguish the boundaries of the squares from the interiors
of the squares, we denote by R1 and L2 their boundaries and by R̊1 and L̊2 their
interiors.

In the second step, consider a surface P obtained by a homotopy between a
circle (of radius ε/4) and a square (with side length equal to ε) and a surface U

L2R1

Figure 2. Tori T1 (left) and T2 (right) and linear flow lines.
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z

x y

Figure 3. Surface U.

defined piecewise, in the middle, by a (horizontal) cylinder with radius ε/4 together
with a surface P at each end (with circles identified) as shown in Figure 3. For
(x, y, z) ∈U, we have −ε/2≤ x, z ≤ ε/2 and −1≤ y ≤ 1. The boundary of U is
the disjoint union of two squares SL and SR which lie in the planes {y =−1} and
{y=1}, respectively. Let H :U→[−ε/2, ε/2]⊂R be a smooth function defined by

H(x, y, z)= (1−β(y))yz+β(y)z, for (x, y, z) ∈U,(3-1)

where β : [−1, 1] → [0, 1] is a smooth function which is 0 when y is in (−c, c),
1 when y is in [−1,−1+ d)∪ (1− d, 1] and strictly monotone in (−1+ d,−c)∪
(c, 1− d) with 0< c < 1− d, d < 0. (See Figure 4 and Remark 14 for the choice
of the real numbers c and d.)

The Hamiltonian flow lines of H are depicted in Figure 5. The picture on the left
shows the Hamiltonian flow lines in U when y is near −1, in the middle are the
Hamiltonian flow lines in U when y is near 0 and on the right are the Hamiltonian
flow lines in U when y is near 1.

Remark 13. Here, “y is near −1” means that y ∈ [−1,−1+ d). Similarly, “y is
near 0” means y ∈ (−c, c) and “y is near 1” means y ∈ (1− d, 1].

1

11− dc−c−1 −1+ d

Figure 4. Function β.
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z

Figure 5. Flow lines of the Hamiltonian H on the surface U.

In the last step,

• cut off R̊1 from T1 and L̊2 from T2,

• identify R1 with SL so that the sides of R1 given by segments of a flow line
correspond to the sides of SL determined by z =±ε/2 (see Figure 6), and

• identify L2 with SR so that the sides of L2 given by segments of a flow line
correspond to the sides of SR determined by z =±ε/2.

This construction yields a closed surface 6 of genus 2 with a symplectic flow
ψ t
:6→6 which coincides with

• the linear flow φt
1 on T1 \ R̊1,

• the linear flow φt
2 on T2 \ L̊2,

• the Hamiltonian flow of H on U.

Each flow line of ψ t lies entirely either

(1) on the circle U ∩ {y = 0},

(2) on T1 \ R̊1 ∪ (U ∩ {y < 0})=: V−, or

(3) on T2 \ L̊2 ∪ (U ∩ {y > 0})=: V+.

We observe that a flow line of ψ t does not intersect both V− and V+. In (1), ψ t has
two hyperbolic fixed points and no other periodic orbits. In (2), ψ t has no periodic
orbits. In fact, by construction, when a flow line of ψ t given by φt

1 reaches R1, it
will either

• stay on U and converge to one of the hyperbolic fixed points, or

• cross R1 again after some time and continue in the same flow line of φt
1 when

exiting T1 \ R̊1 (since at SL the Hamiltonian is given by the height function).

This property together with the fact that φt
1 is an irrational linear flow imply the

nonexistence of (long) periodic orbits of ψ t on V−. Case (3) is similar to (2) and
there are no periodic orbits of ψ t on V+.

Remark 14. In the function β, the real numbers c and d are selected so that
c< 0.5< 1−d and c and 1−d are close enough so that the flow ψ t has the above
properties. For instance, we may choose c = d = 0.4.
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R1

T1 U

SL

SR

Figure 6. Identification of R1 with SL.

Therefore, we have obtained a symplectic flow on 6 with exactly two hyperbolic
fixed points, no other periodic orbits. Let us see that the flux of this symplectic
flow is given by (u1, v1, u2, v2).

Recall that the fundamental group π1(6) of a surface of genus 2 is given by
the group

〈a1, b1, a2, b2 | [a1, b1][a2, b2] = 1〉

with generators a1, b1, a2, b2 and relation [a1, b1][a2, b2] = 1, where [a, b] =
aba−1b−1 is the commutator of a and b. Consider the following loops in 6:

• γ1, such that [γ1] = [a1] in π1(6) and it corresponds to a vertical line in T1

such that ψ t
◦ γ1 does not intersect R̊1 ∪ R1 for all t ∈ [0, 1],

• γ2, such that [γ2] = [b1] in π1(6) and it corresponds to a horizontal line in T1

such that ψ t
◦ γ2 does not intersect R̊1 ∪ R1 for all t ∈ [0, 1],

• γ3, such that [γ3] = [a2] in π1(6) and it corresponds to a vertical line in T2

such that ψ t
◦ γ3 does not intersect L̊2 ∪ L2 for all t ∈ [0, 1], and

• γ4, such that [γ4] = [b2] in π1(6) and it corresponds to a horizontal line in T2

such that ψ t
◦ γ4 does not intersect L̊2 ∪ L2 for all t ∈ [0, 1].

Remark 15. We may have to take ε > 0 (in the definitions of the squares R1 and
L2) sufficiently small so that the above conditions on the loops γi are satisfied.

The area swept by γi (i = 1, 2) under ψ1
(u1,v1,u2,v2)

is the area swept by γi under
φt

1 and hence it is u1 when i = 1 and v1 when i = 2. The area swept by γi (i = 3, 4)
under ψ1

(u1,v1,u2,v2)
is the area swept by γi under φt

2 and hence it is u2 when i = 3 and
v2 when i = 4. Therefore, the flux of the symplectic flow ψ t

(u1,v1,u2,v2)
(t ∈ [0, 1])

is (u1, v1, u2, v2); recall Remark 6.
The general case, where 6 is a surface of genus g ≥ 2, is similar to the case

where g = 2. Take g copies of 2-tori, T1, . . . ,Tg, and the linear flow on each Ti :

φt
i (xi , yi )= (tui xi , tvi yi ) with ui 6= 0 and

vi

ui
∈ R \Q, i = 1, . . . , g.
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Lg

T1

L2 R2

T2 U2 TgU1 Ug−1

R1

Figure 7. Construction of the surface with genus g.

On each torus Ti (viewed as a square, as above), consider two squares Ri and
L i such that

• R̊g ∪ Rg =∅ and L̊1 ∪ L1 =∅,

• R̊i ∪ Ri and L̊ i ∪ L i are disjoint,

• two parallel sides of Ri are segments of a flow line of φt
i in Ti (i 6= g),

• two parallel sides of L i are segments of a flow line of φt
i in Ti (i 6= 1), and

• the length of the sides of each square is ε.

Remark 16. In the general case, where g ≥ 2, ε is small enough so that

(R̊i ∪ Ri )∪̇(L̊ i ∪ L i )

is inside the square [0, 1]× [0, 1].

Let Ui , with i = 1, . . . , g− 1 be g− 1 copies of the surface U and the corre-
sponding functions Hi :Ui → [−ε/2, ε/2] ⊂ R defined as in (3-1). Much as in the
case where g = 2, we denote the boundary components of Ui by SL

i and SR
i . For

each i = 1, . . . , g (see Figure 7),

• cut off R̊i and L̊ i from Ti ,

• identify Ri with SL
i so that the sides of Ri given by segments of a flow line

correspond to the sides of SL
i determined by z =±ε/2, and

• identify L i with SR
i so that the sides of L i given by segments of a flow line

correspond to the sides of SR
i determined by z =±ε/2.

We have thus obtained a closed surface 6 with genus g ≥ 2 and a symplectic
flow on 6

ψ t
(u1,v1,...,ug,vg)

:6→6

which coincides with

• the linear flow φt
i on Ti \ (R̊i ∪ L̊ i ), i = 1, . . . , g,

• the Hamiltonian flow of Hi on Ui , i = 1, . . . , g− 1.

Arguing as in the case g = 2, we obtain Theorem 1.1.
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3B. The Floer–Novikov homology of symplectomorphisms satisfying the flux
condition (1-1). Consider φ ∈ Symp0(6, ω) such that

Flux(φ)= (u1, v1, . . . , ug, vg) with ui 6= 0 and
vi

ui
6∈Q for all i = 1, . . . , g.

Then Flux(φ)= Flux(ψ t
(u1,v1,...,ug,vg)|t∈[0,1] ), where ψ t

(u1,v1,...,ug,vg)
is the sym-

plectic flow constructed in Section 3A with flux equal to (u1, v1, . . . , ug, vg).
The symplectic flow ψ t

(u1,v1,...,ug,vg)
has 2g−2 hyperbolic fixed points. Then the

mean index and the Conley–Zehnder index of the fixed points are 0. Since there
are no other periodic orbits, we have that C0 is the only nontrivial group of the
(Floer–Novikov) chain complex and it is generated by 2g− 2 fixed points. Hence,
the Floer–Novikov homology of

ψ = ψ1
(u1,v1,...,ug,vg)

is given by

HFNr (ψ)=

{
F2g−2

⊗3θ if r = 0,
0 if r 6= 0.

Since Flux(φ)= Flux(ψ t
(u1,v1,...,ug,vg)

|t∈[0,1] ), Theorem 1.2 follows by the com-
ment on page 31 after the definition of the Floer–Novikov homology.

Remark 17 (the noncontractible case of Theorem 1.2). Since ψ t
(u1,v1,...,ug,vg)

has no
noncontractible periodic orbits, the Floer–Novikov homology for noncontractible
orbits of a strongly nondegenerate φ is HFN∗(φ, ζ ) = 0 for any nontrivial free
homotopy class of loops ζ .

4. Proofs of Theorems 1.3–1.5

4A. Proofs of Theorems 1.3 and 1.4. Theorem 1.3 follows from Theorem 1.4 and
the first case of Result 1. Let us then prove Theorem 1.4.

Assume φ has finitely many fixed points. Let S be the finite set of fixed points y
of φ such that 1{φt }(y) 6=1{φt }(x0). If S 6=∅, then define

τ0 :=min{k > 1 : k|1{φt }(x0)−1{φt }(y)|> 3 for all y ∈ S},

otherwise take τ0 := 2.
The proof goes by contradiction. Let τ be a prime integer greater than τ0 such

that all τ -periodic points are iterations of fixed points. We show that, with these
assumptions, xτ0 , the τ -th iteration of x0, contributes nontrivially to the Floer–
Novikov homology in degree µ := µCZ(xτ0 ) 6= 0 which contradicts Theorem 1.2.

If xτ0 connects to yτ, some τ -th iteration of a fixed point y of φ, by a solution of
the Floer–Novikov Equation (2-9), then

(4-1) |µCZ(xτ0 )−µCZ(yτ )| = 1.
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If y ∈ S, then

τ |1{φt }(x0)−1{φt }(y)|> 3(4-2)

and we obtain the following contradiction:

1= |µCZ(xτ0 )−µCZ(yτ )| ≥ τ |1{φt }(x0)−1{φt }(y)| − 2> 1,

where the first inequality follows from (2-7) and (2-8) and the last inequality follows
from (4-2). If y 6∈ S, then1{φt }(x

τ
0 )=1{φt }(y

τ ) by (2-7) and µCZ(xτ0 )=µCZ(yτ ) by
(2-8) which contradicts (4-1). Hence, xτ0 is not connected to any yτ which implies
that HFNµ(φ

τ ) 6= 0 where µ := µCZ(xτ0 ).
If µ were 0, then xτ0 would be hyperbolic (by Result 2). Then we would have that

1{φτt }(x
τ
0 )= µCZ(xτ0 )= 0 (by Result 3) which implies, by (2-7), that 1{φt }(x0)= 0.

This contradicts our assumption on x0. Therefore, µ 6= 0 and we obtained the
wanted contradiction. �

Remark 18 (the noncontractible cases of Theorems 1.3 and 1.4).
• In Theorem 1.3, the result still holds true if the elliptic periodic orbit correspond-

ing to x0 is noncontractible. In this case, we choose τ as above, fix the free homotopy
class τζ , where ζ is the free homotopy class of the loop corresponding to x0,
consider xτ0 as the reference loop in τζ and work with the (noncontractible) Floer–
Novikov homology HFN(φτ , τζ ). (Recall Remarks 9 and 10.) By Theorem 1.2
and Remark 10, the Floer–Novikov homology HFN∗(φτ , τζ ) is 0 when ∗ is an odd
integer. Since x0 is elliptic, its Conley–Zehnder index µCZ(x0) is odd (by Result 2).
Moreover, using the above argument, xτ0 is not connected to any yτ which implies
that xτ0 contributes nontrivially to the Floer–Novikov homology in some odd degree.
If the Conley–Zehnder index µCZ(xτ0 ) were even, then xτ0 would be hyperbolic and
µCZ(xτ0 )=1(x

τ
0 )= τ1(x0) would be even. Since τ is odd, the mean index 1(x0)

would also be even and, by (2-8), the Conley–Zehnder index µCZ(x0) = 1(x0)

would be even. Hence x0 would be hyperbolic contradicting the hypothesis on x0.
The result then follows.

• In Theorem 1.4, if the fixed point x0 with nonzero mean index corresponds
to a noncontractible periodic orbit with nontrivial homotopy class ζ and its τ -th
iterations, with τ a prime integer, lie in nontrivial homotopy classes τζ , then φ has
infinitely many periodic points. These points correspond to periodic orbits which
lie in the free homotopy classes formed by iterations of the orbit corresponding
to x0. In this case, the proof is essentially the same as in the contractible case. (The
last paragraph is not needed.) Recall Remark 17.

4B. Proof of Theorem 1.5. Suppose the number of fixed points of φ is greater than
2g−2. By (1-2), there exist 2g−2 fixed points x1, . . . , x2g−2 of φ which contribute
nontrivially to the Floer–Novikov homology of φ. If there exists j ∈ {1, . . . , 2g−2}
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such that 1{φt }(x j ) 6= 0, then, by Theorem 1.4, the result follows. If not, then
1{φt }(xi ) = 0 for all i = 1, . . . , 2g − 2. Take a fixed point x such that x 6= xi

(i = 1, . . . , 2g− 2). Either µCZ(x)= 0, µCZ(x)= 1 or µCZ(x)= 2.
Let us first consider the case µCZ(x)= 0. By (1-2), there exists y ∈C1 such that y

is connected to x by a solution of the Floer–Novikov equation (2-9). Then, either y
is elliptic or y is hyperbolic. If y is elliptic, the result follows by Theorem 1.3. If y is
hyperbolic, then 1{φt }(y)= µCZ(y)= 1 6= 0 and the result follows by Theorem 1.4.

Assume now µCZ(x)= 1. Then, the result follows by the same argument used
for y in the previous step.

Finally, assume µCZ(x)= 2. Then, by (2-8), we have that 1{φt }(x) 6= 0 and the
result follows by Theorem 1.4. �
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MIXING PROPERTIES FOR HOM-SHIFTS AND THE
DISTANCE BETWEEN WALKS ON ASSOCIATED GRAPHS

NISHANT CHANDGOTIA AND BRIAN MARCUS

Let H be a finite connected undirected graph and H2
walk be the graph of

bi-infinite walks on H; two such walks {xi }i∈Z and { yi }i∈Z are said to be
adjacent if xi is adjacent to yi for all i ∈ Z. We consider the question: Given
a graph H, when is the diameter (with respect to the graph metric) of H2

walk
finite? Such questions arise while studying mixing properties of hom-shifts
(shift spaces which arise as the space of graph homomorphisms from the
Cayley graph of Zd with respect to the standard generators to H) and are
the subject of this paper.

1. Introduction

Let A be a finite set called the alphabet. A shape is a finite subset of Zd and a pattern
is a function from a shape to the alphabet A. Given a finite set of patterns F called
a forbidden list, a shift of finite type (SFT) XF ⊂AZd

is the set of configurations in
which patterns from F and their translates do not appear. There is a natural topology
on XF coming from the product of the discrete topology on A making it a compact
metrisable space; Zd acts on it by translation of configurations making it a dynamical
system. The study of SFTs for d ≥ 2 is rife with numerous undecidability issues. It
is not even decidable if an SFT is nonempty [Berger 1966]. It follows immediately
that most nontrivial properties of SFTs are undecidable (Proposition 3.2). In this
paper we study an important class of SFTs called hom-shifts, for which, a priori,
many such issues do not arise.

By Zd we will mean both the group and its Cayley graph with respect to standard
generators. Given any SFT, XF , we can assume by a standard recoding argument
that XF is in fact a nearest neighbour SFT (possibly for a different alphabet A),
meaning F consists of patterns on edges and vertices of Zd. Let Hom(G,H) denote
the set of all graph homomorphisms from G to H. An SFT X is called a hom-shift if
X =Hom(Zd ,H) for some graph H; it is denoted by Xd

H. Alternatively, a hom-shift
can be described as a nearest neighbour SFT which is “symmetric” and “isotropic”,
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that is, if v,w∈A are forbidden to sit next to each other in some coordinate direction,
then they are forbidden to sit next to each other in all coordinate directions. It
follows that a hom-shift Xd

H is nonempty if and only if H has at least one edge. An
introduction to SFTs and hom-shifts can be found in Section 2.

Many important SFTs arise as hom-shifts like the hard square shift and the
n-coloured chessboard. In this paper we study certain mixing properties of hom-
shifts: topological mixing, block-gluing and strong irreducibility and relate them to
some natural questions in graph theory. The mixing conditions studied in this paper
are introduced in Section 3. For further background consider [Boyle et al. 2010].

An SFT X is said to be topologically mixing (or just mixing) if any two patterns
appearing in X can coappear in a configuration in X provided the corresponding
shapes are far enough apart (the distance depending on the patterns). Clearly, a
hom-shift Xd

H is not mixing if H is bipartite; the pattern on any partite class of
Zd is mapped into a partite class of H. It turns out that this is essentially the only
obstruction. We prove in Proposition 3.1 that a hom-shift Xd

H is mixing if and
only if H is a connected undirected graph which is not bipartite; further if H is
bipartite then it still satisfies a similar mixing condition but we may need to translate
one of the two patterns by a unit coordinate vector. In the heart of the analysis is
the following simple idea: we say that two finite walks, {vi }

n
i=1 and {wi }

n
i=1, are

adjacent if vi is adjacent to wi for all i . We show that for all n and finite connected
graphs H, the graph of finite walks of length n is connected.

However we find that the diameter of the graph of finite walks on a graph H of
length n might increase with n. Whether the diameter remains bounded or not relates
to another important mixing property called the phased block-gluing property: we
say that an SFT X is block-gluing if there is an n ∈ N such that any two patterns
on rectangular shapes in X can coexist in a configuration in X provided that they
are separated by distance n. Strong irreducibility (SI) is a similar (though a much
stronger) mixing property where there is no restriction on the shape of the patterns.

Again we observe that if the graph H is bipartite then Xd
H is neither block-gluing

nor SI. To remedy the situation we introduce the phased block-gluing and the
phased SI properties in Section 4 which are similar to the usual block-gluing and SI
properties but there is a fixed finite set S⊂Zd by elements of which we are allowed
to translate one of the two patterns. We prove in Propositions 4.1 and 4.2 that if H
is not bipartite then if Xd

H is phased block-gluing it is block-gluing, and if Xd
H is

phased SI then it is SI. Further if H is bipartite and Xd
H is phased block-gluing or

phased SI then the set S can be chosen to be the origin and any of the coordinate
unit vectors. This is done by relating the mixing conditions with some natural graph
theoretic questions.

The study of the phased block-gluing property for the d-dimensional shift space
Xd
H relates to a natural graph structure on Xd−1

H , namely, x, y ∈ Xd−1
H are said to
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be adjacent if xEi is adjacent to yEi for all Ei in Zd−1. Denote the graph thus obtained
by Hd

walk. In Proposition 4.1 we prove that Xd
H is phased block-gluing if and only

if the diameter of Hd
walk is finite.

It can be proved using the ideas of graph folding in [Nowakowski and Winkler
1983; Brightwell and Winkler 2000] that if H is a tree then the space Xd

H is phased SI.
This turns out to be a characterisation for the phased SI property for a large class
of graphs: a graph is called four-cycle free if it is connected, it has no self-loops
and the four-cycle, C4, is not a subgraph. In Section 5 we prove for four-cycle
free graphs H that Xd

H is phased block-gluing/phased SI if and only if H is a tree.
Surprisingly the proof goes via lifts to the universal cover of the graph; in fact
following [Wrochna 2015] we prove the results for a more general class of graphs
called the four-cycle hom-free graphs (defined in Section 5). In Section 5A we
discuss why this characterisation fails when the four-cycle hom-free restriction is
removed. The paper concludes with a long list of open questions (Section 6).

Let us summarise. Results regarding decidability among hom-shifts and shifts
of finite type are Proposition 2.2, Corollary 2.3 and Proposition 3.2; in Sections 6A
and 6G we mention some related open questions. In the proof of Proposition 3.1
and in Proposition 4.1 we reformulate transitivity, mixing and block-gluing in terms
of walks on graphs. Proposition 3.1 gives necessary and sufficient conditions for
transitivity and mixing. Section 5 discusses the mixing properties for hom-shifts
where the corresponding graph is four-cycle hom-free.

We end the introduction with the question which is the cornerstone for this line
of research; this we are unable to address. For a more detailed discussion, look at
Section 6A.

Question. Is it decidable whether a hom-shift is SI/block-gluing?

2. SFTs and hom-shifts

Let A be a finite set which we refer to as the alphabet with the discrete topology;
we give the set AZd

the product topology making it a compact metrizable space. By
Zd we will mean both the Cayley graph of Zd with respect to standard generators
and the group. The elements of AZd

are called configurations while elements of
AB for some finite set B are called patterns. Given a configuration x , let xEi := x(Ei)
and given a pattern a ∈AB and Ei ∈ B, let aEi := a(Ei).

There is a natural action of Zd on AZd
: for all Ei ∈ Zd let

σ
Ei
:AZd

→AZd
given by

(
σ
Ei (x)

)
Ej := xEi+Ej

denote the shift-action. A shift space is a closed set of configurations X ⊂AZd
which

is invariant under the shift-action, meaning σ Ei (X)= X for all Ei ∈ Zd. Alternatively,
it can also be defined using forbidden patterns: a set of configurations X is a shift
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space if and only if there is a set of patterns F such that

X = XF :=
{

x ∈AZd
: patterns from F do not appear in any shift of x

}
.

Look at [Lind and Marcus 1995, Chapter 6] for the proof of the equivalence when
d = 1; the proof is similar in higher dimensions. In a similar fashion the shift map
extends to patterns:

σ
Ei
:AF
→AF−Ei given by

(
σ
Ei (a)

)
Ej := xEi+Ej for F ⊂ Zd and Ej ∈ F −Ei .

Let E0 be the origin and {Eed
1 , Ee

d
2 , . . . , Ee

d
d } denote the standard generators of Zd. We

drop the superscript when it is obvious from the context. Given a, b ∈A we denote
by 〈a, b〉i ∈A{E0,Eei } the pattern

〈a, b〉i
E0
:= a, 〈a, b〉i

Eei
= b.

Let us look at a few examples:

(1) Let A= {0, 1} and F = {〈1, 1〉i : 1≤ i ≤ d}. Then

XF =
{

x ∈ {0, 1}Z
d
: no two appearances of 1 in x are adjacent

}
.

This is called the hard square shift.

(2) Let A= {1, 2, . . . , n} and F = {〈 j, j〉i : 1≤ i ≤ d, 1≤ j ≤ n}. Then

XF =
{

x ∈ {1, 2, . . . , n}Z
d
: adjacent symbols in x are distinct

}
.

This is called the n-coloured chessboard.

(3) Let d = 1, A= {0, 1} and F = {102i−11 : i ∈ Z}. Then

XF =
{

x ∈ {0, 1}Z : the separation between successive 1s is even
}
.

This is called the even shift.

Note that in the hard square shift the forbidden list F consists of d elements
while in the even shift the forbidden list F consists of infinitely many elements. It
can in fact be proven that F cannot be chosen finite for the even shift.

A shift space X is called a shift of finite type (SFT) if there exists a finite set of
forbidden patterns F such that X = XF . Thus the hard square shift is an SFT while
the even shift is not an SFT. Further if F can be chosen to be a set of patterns on
edges and vertices of Zd then X is called a nearest neighbour shift of finite type.
Any SFT can be “recoded” into a nearest neighbour SFT: Given shift spaces X
and Y, a continuous map f : X→ Y which commutes with the shift-action, that is,
f ◦ σ Ei = σ Ei◦ f is called a sliding block code. A factor map is a sliding block code

which is surjective while a conjugacy is a sliding block code which is bijective.
The inverse of a conjugacy is also a conjugacy; thus conjugacies determine an
equivalence relation. Any shift space conjugate to an SFT is also an SFT. Further



MIXING PROPERTIES FOR HOM-SHIFTS AND THE DISTANCE BETWEEN WALKS 45

0 1

Figure 1. Graph for the hard square shift.

given an SFT, X, a simple construction gives us a nearest neighbour SFT, Y , which
is conjugate to X [Schmidt 1998].

A periodic configuration is a configuration x ∈AZd
such that there exists some

n ∈ N such that σ nEei (x) = x for all 1 ≤ i ≤ d. Some fundamental properties of
nearest neighbour SFTs are undecidable for d ≥ 2; for instance there is no algorithm
to decide, given a finite set F , whether XF is nonempty [Berger 1966; Robinson
1971]. Let us review a few salient features of the proof: Fix d ≥ 2. Given a Turing
machine T there is a finite alphabet AT and a finite forbidden list FT such that Xd

FT

is nonempty if and only if T does not halt starting on the empty input. Since the
halting problem for Turing machines is undecidable, the nonemptiness problem for
SFTs (and hence nearest neighbour SFTs) is also undecidable. Further Xd

FT
has no

periodic configurations; this shall be useful later.
All the graphs H in this paper are undirected, without multiple edges and have

no isolated vertices.
X ⊂ AZd

is called a hom-shift if there exists a finite undirected graph H such
that X = Hom(Zd ,H). Alternatively, these are exactly the nearest neighbour SFTs
which are symmetric and isotropic, meaning nearest neighbour SFTs which are
invariant under the automorphism group of Zd (as a graph). These correspond
to vertex shifts in d = 1 defined by an undirected graph [Lind and Marcus 1995,
Chapter 2].

For an undirected graph H (finite or not) we denote

Xd
H := Hom(Zd ,H).

Clearly Xd
H is nonempty if and only if H is nonempty. Let Kn denote the complete

graph on n vertices {1, 2, 3, . . . , n}. Then Xd
Kn

is the n-coloured chessboard. If H
is the graph given by Figure 1 then Xd

H is the hard square shift.
We shall frequently use the cartesian product on graphs: Given graphs H1 =

(V1, E1) and H2 = (V2, E2), H1�H2 is the graph with vertex set V1 × V2 where
(v1, v2) ∼H1�H2 (w1, w2) if and only if v1 = w1 and v2 ∼H w2 or v1 ∼H w1 and
v2 = w2. By � r

j=1H j we mean the graph H1�H2� · · ·�Hr .
For a shift space X ⊂AZd

, the language for X is given by

L(X) := {a ∈AB
: N ⊂ Zd is finite and there exists x ∈ X such that x |B = a}.

These are called the set of globally allowed patterns in X. On the other hand, if
the shift space X is given by a forbidden list F, then a pattern a is called locally
allowed if no element of F appears in the shifts of a. For shifts of finite type, it
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is not decidable whether a locally allowed pattern is globally allowed [Robinson
1971]. For hom-shifts, it is in fact decidable; this follows from Proposition 2.1.

A shape is a finite subset of Zd. For a shape A⊂Zd we write LA(X) :=L(X)∩AA.
We will often denote an element a ∈AA by 〈a〉A instead to emphasise the domain
of the pattern. By a rectangular shape A⊂ Zd we mean that A=� d

j=1 I j for some
finite intervals I j ⊂ Z. A rectangular pattern in X is a pattern in LA(X) for some
rectangular shape A. The following proposition implies that periodic configurations
are dense in hom-shifts.

Proposition 2.1 (extension of (possibly infinite) rectangular patterns). Let H be
an undirected graph and A = � d

t=1 It where the It are intervals in Z. Then for
all homomorphisms a ∈ Hom(A,H) there exists a configuration x ∈ Xd

H such that
x |A = a. If A is a finite set then x can be chosen to be periodic.

Here is the idea: Let us first observe this for a finite A. If any of the side-lengths
of A is 1 then we extend it to a pattern ã on a bigger rectangular shape by “stacking
shifts” of the pattern a. Then we reflect the pattern obtained about its faces to obtain
a pattern b on a still bigger rectangular shape and finally tile Zd by this new pattern
to obtain a periodic configuration. Some of the details are provided in part (2) of
the proof of [Chandgotia 2017, Lemma 8.2]. Although the proof there is for the
case when H is a tree, it carries forward without any change to our context.

Now if A is an (infinite) rectangular shape then by compactness of shift spaces
and a standard limiting argument (taking a sequence of rectangular patterns which
approximate the given pattern and considering the corresponding sequence of
configurations extending them), the result for finite rectangular patterns implies the
proposition.

In the following, by a given nearest neighbour SFT X, we mean a given finite
list of patterns F on edges and vertices of Zd such that X = XF .

Proposition 2.2. Fix d ≥ 2. Let C be a set of SFTs for which periodic points are
dense for all X ∈ C. It is undecidable whether an SFT is conjugate to some X ∈ C.

Proof. Let X ∈ C. Recall the properties of the SFT XFT , which was constructed
given a Turing machine T. We can assume (possibly after a change in alphabet
for X ) that the underlying alphabets for X and XFT are disjoint for all Turing
machines T. Then X ∪XFT is a nearest neighbour SFT for every Turing machine T ;
since the XFT do not have periodic points, periodic points are dense in X ∪ XFT if
and only if XFT is empty.

We claim that this implies X ∪ XFT is conjugate to a member of C if and only if
XFT is empty. Clearly, if XFT is empty then X ∪ XFT ∈ C. Now suppose XFT is
not empty. Since it does not have periodic points, periodic points are not dense in
X ∪ XFT and hence it cannot be conjugate to a member of C.
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Thus it is undecidable whether X ∪ XFT is conjugate to an element of C proving,
more generally, that it is undecidable whether a nearest neighbour SFT is conjugate
to an element of C. �

Corollary 2.3. It is undecidable whether a shift space X is conjugate to a hom-shift
for d ≥ 2.

This follows immediately from Propositions 2.1 and 2.2.

3. Some mixing conditions for hom-shifts

In this section we introduce some topological mixing conditions for shift spaces
in d ≥ 2. This introduction will be far from comprehensive; for more background
consider [Boyle et al. 2010].

Given A, B ⊂ Zd let

d∞(A, B) := min
Ei∈A, Ej∈B

|Ei − Ej |∞ where | · |∞ is the l∞ norm on Rd .

A shift space X is topologically mixing or just mixing if for all 〈a〉A, 〈b〉B ∈L(X)
there exists n ∈N such that for all Ei ∈Zd, |Ei |∞≥ n there is x ∈ X satisfying x |A = a
and σ Ei (x)|B = b. A shift space X is transitive if for all 〈a〉A, 〈b〉B ∈ L(X) there
exists x ∈ X and Ei ∈ Zd such that x |A = a and σ Ei (x)|B = b.

In this section we shall prove the following result:

Proposition 3.1. Let d ≥ 2 and H be a finite undirected graph. Then Xd
H is

transitive if and only if H is connected. Further it is mixing if and only if H is
connected and not bipartite.

Before we proceed with the proof, we shall consider a few more standard mixing
conditions. A stronger mixing property which is also the main theme of this paper
is the block-gluing property: a shift space X is said to be block-gluing if there
exists an n ∈N such that for all rectangular patterns 〈a〉A, 〈b〉B ∈ L(X) satisfying
d∞(A, B) ≥ n there exists x ∈ X such that x |A = a and x |B = b. A still stronger
mixing condition is the following: a shift space X is called strongly irreducible (SI)
if there exists n ∈ N such that for all 〈a〉A, 〈b〉B ∈ L(X) satisfying d∞(A, B)≥ n
there exists x ∈ X such that x |A = a and x |B = b.

The hard square shift X is SI for n=2: given shapes A, B such that d∞(A, B)≥2
and a ∈ LA(X), b ∈ LB(X), then x ∈ X given by

xEi :=


aEi if Ei ∈ A,
bEi if Ei ∈ B,
0 otherwise

satisfies x |A = a and x |B = b. We will give a large class of examples in this paper
of hom-shifts which are block-gluing and of hom-shifts which are mixing but not



48 NISHANT CHANDGOTIA AND BRIAN MARCUS

block-gluing (Theorem 5.3). We will also give an example of a hom-shift which is
(phased) block-gluing but not (phased) SI in Section 5A; the phased properties are
introduced in Section 4.

Proposition 3.2. Let d ≥ 2. It is undecidable whether an SFT is transitive/mixing/
block-gluing/SI.

The proof is very similar to the proof of Proposition 2.2. Let X be the hard
square shift and consider for every Turing machine T the SFT, XFT (with alphabet
disjoint from {0, 1}); it is undecidable whether XFT is empty. Further X ∪ XFT is
transitive/mixing/block-gluing/SI if and only if XFT is empty; thus the proposition
follows.

Now let us return to Proposition 3.1. Suppose H is not connected. Let H =
H1∪H2 where H1 and H2 are disjoint. Then Xd

H = Xd
H1
∪ Xd

H2
where Xd

H1
and Xd

H2

are nonempty shift spaces over disjoint alphabets proving that Xd
H is not transitive.

Also if H is bipartite then Xd
H is not mixing since for a given x ∈ Xd

H and all even
vertices Ei ∈ Zd, the xEi belong to the same partite class.

To prove the other direction we will use some auxiliary constructions; the idea
used for the proof of this proposition will be useful later as well.

A walk p in a graph H is a (finite, infinite or bi-infinite) sequence of vertices
{pi } in H satisfying pi ∼H pi+1 for all i . A walk of length k is a finite walk
p = (p0, p1, . . . , pk); let |p| denote the length of p. Denote by [i, j] the induced
subgraph of Z on {i, i + 1, . . . , j}. For every n ∈ Z+ and d ≥ 2 let

Bd−1
n :=� d−1

j=1 [−n, n],

that is, the l∞ ball of radius n in Zd−1. Consider the graph

Hd
n,walk :=

(
Hom(Bd−1

n ,H), Ed
n,walk

)
where

Ed
n,walk :=

{
(x, y) : xEi ∼H yEi for all Ei ∈ Bd−1

n
}
.

As with homotopies in algebraic topology, there is a walk from p to q in Hd
n,walk

of length k if and only if there is a graph homomorphism a : Bd−1
n �[0, k] →H

such that aEi,0 = pEi and aEi,k = qEi for all Ei ∈ Bd−1
n . We will use this correspondence

frequently throughout the paper. Connectivity of the graph Hd
n,walk is related to the

transitivity/mixing property via the following lemma:

Lemma 3.3. Let d ≥ 2 and H be a finite undirected graph. If Hd
n,walk is connected

for all n ∈ Z+ then Xd
H is transitive. Further if Hd

n,walk is connected and not
bipartite for all n ∈ Z+ then Xd

H is mixing.

Proof. Let A, B ⊂ Zd be finite sets and 〈a〉A, 〈b〉B ∈ L(Xd
H) be given and suppose

Hd
n,walk is connected. We need to prove that there exists some Ei ∈ Zd such that
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x |A = a and (σ Ei (x))|B = b. By shifting the patterns if necessary and extending
them to Bd

n for some large enough n > 1 we can assume A = B = Bd
n . By the

hypothesis we know that Hd
n,walk is connected so there is a walk of length k for some

k ∈ N from a|Bd−1
n �{n} to b|Bd−1

n �{−n}; here the graphs Bd−1
n �{−n} and Bd−1

n �{n}
are identified with Bd−1

n . As observed earlier, this gives us a homomorphism
c : Bd−1

n �[n, n+ k] → H such that cEi,n = aEi,n and cEi,n+k = bEi,−n . “Pasting
together” the configurations a and b to c we get a homomorphism

l : Bd−1
n �[−n, 3n+ k] →H

with l|Bd
n
= a and

l|Bd
n+(2n+k)Eed = (σ

−(2n+k)Eed (b)).

By Proposition 2.1 we see that Xd
H is transitive.

For mixing, assume that Hd
n,walk is connected and not bipartite. As before, let

〈a〉Bd
n
, 〈b〉Bd

n
∈ L(Xd

H). Choose an integer k such that for all a′, b′ ∈Hd
n,walk there

is a walk from a′ to b′ of length r for all r ≥ k. Let Ei = (i1, i2, . . . , id) such
that |Ei |∞ ≥ k + 2n; without the loss of generality assume id ≥ k + 2n. Extend
a and b periodically to get extensions ã, b̃ on Zd−1�[−n, n]. There is a walk in
Hd

n,walk from ã|Bd−1
n �{n} to (σ−Ei (b̃))|Bd−1

n �{−n+id }
of length id − 2n; thus we obtain

a homomorphism l ′ : Bd−1
n �[−n, n+ id ] →H such that

l ′|Bd
n
= ã|Bd

n
and l ′|Bd−1

n �[−n+id ,n+id ]
= (σ−

Ei (b̃))|Bd−1
n �[−n+id ,n+id ]

.

By periodically extending l ′ we get a homomorphism l̃ : Zd−1�[−n, n+ id ] →H
such that

l̃|Zd−1�[−n,n] = ã and (σ
Ei (l̃))|Zd−1�[−n,n] = b̃.

By Proposition 2.1 the proof is complete. �

Proof of Proposition 3.1. Fix d ≥ 2. We have already shown that if H is not
connected then Xd

H is not transitive. Let H be a connected graph. By Lemma 3.3
we need to prove that the graph Hd

n,walk is connected for all n∈Z+. When n=0, then
Bd

n consists of a single vertex; the connectivity of Hd
0,walk is exactly the connectivity

of the graph H. Now fix n ≥ 1. The argument will follow by induction on d.

Base case: Let p, q ∈H2
n,walk. Consider a walk r (say of length k) in H from pn

to q−n . Let s : [−n, 3n+ k] →H be the walk “joining” p, r and q; formally, let

si :=


pi if i ∈ [−n, n],
ri−n if i ∈ [n, n+ k],
qi−2n−k if i ∈ [n+ k, 3n+ k].

By “stacking together the shifts” of the pattern s we get a walk in H2
n,walk from

p to q; formally, let pi
∈ H2

n,walk be given by pi
t := si+t for t ∈ [−n, n] and
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i ∈ [0, 2n+ k]. Then p0
= p, p2n+k

= q and

pi
t = si+t ∼H si+t+1 = pi+1

t ,

proving that pi
∼H2

n,walk
pi+1.

The induction step: Let’s assume the conclusion for some d≥2. Let p, q ∈Hd+1
n,walk.

By the induction hypothesis there exists a walk r0, r1, . . . , r k in Hd
n,walk from

p|[−n,n]d−1�{n} to q|[−n,n]d−1�{−n} for some k. Let

s : [−n, n]d−1�[−n, 3n+ k] →H

be a graph homomorphism obtained by “joining” p, r0, r1, . . . , r k and q; formally,
let

s Ej,i :=


p Ej,i if i ∈ [−n, n],

r i−n
Ej

if i ∈ [n, n+ k],

q Ej,i−2n−k if i ∈ [n+ k, 3n+ k],

for all Ej ∈ [−n, n]d−1. As in the base case, by “stacking together the shifts” of the
pattern s we get a walk from p to q in Hd+1

n,walk. This proves that Xd
H is transitive.

If H is bipartite with partite classes V1, V2 and x ∈ Xd
H then xE0 ∈ V1 if and only

if xEi ∈ V1 for all even vertices Ei ∈ Zd ; thus Xd
H isn’t mixing. For the other direction

assume that H is connected and not bipartite. By the first part of the proof the
graph Hd

n,walk is connected. Further since H is not bipartite it has an odd cycle.
Thus one obtains an odd cycle in Hd

n,walk for all n; hence it is also not bipartite. By
Lemma 3.3, the proof is complete. �

Observe that the proof of Proposition 3.1 gives us a bound on the diameter in
the graph metric of Hd+1

n,walk given the diameter of Hd
n,walk. Specifically

(3-1) diam(Hd+1
n,walk)≤ 2n+ diam(Hd

n,walk)

for all d ≥ 0; here H0
n,walk is interpreted as the graph H. We are interested in cases

where diam(Hd+1
n,walk) is uniformly bounded for all n.

The following corollary follows from arguments in the proofs of Lemma 3.3 and
Proposition 3.1.

Corollary 3.4. Let H be a finite undirected graph. The following are equivalent:

(1) H is connected.

(2) Xd
H is transitive for some d ∈ N.

(3) Xd
H is transitive for all d ∈ N.

(4) Hd
n,walk is connected for all n and d.

(5) Hd
n,walk is connected for some n and d.
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Let H be a bipartite connected graph with partite classes V1, V2. Then Xd
H =

X1 ∪ X2 where
X i := {x ∈ Xd

H : xE0 ∈ Vi }.

To prove that if H is connected and not bipartite then Xd
H is mixing, note that

the only place we used the fact that the graph H is not bipartite is to conclude
that Hd

n,walk is also not bipartite. If H is connected and bipartite then Hd
n,walk is

also connected and bipartite; there exists K ∈ N such that for any k > K and
p, q ∈Hd

n,walk there is a walk from p to q of length either k or k + 1. It follows
that X1 and X2 are mixing SFTs for the (2Z)d action. So we have the following
proposition:

Corollary 3.5. If H is a bipartite connected graph then Xd
H is a disjoint union of

two conjugate mixing SFTs with respect to the (2Z)d action.

This is reminiscent of the case for d = 1, where if X is an irreducible SFT of
period p then it can be written as a disjoint union of p conjugate mixing SFTs with
respect to the pZ action; see [Lind and Marcus 1995, Exercise 4.5.6]. We shall
state similar conclusions in Corollary 4.3 for some stronger mixing properties. We
remark that the group (2Z)d (which is of index 2d in Zd) can be replaced by any
subgroup contained in the same partite class as E0 in these results. However for the
ease of notation and understanding, we will work with the group (2Z)d instead.

4. The phased block-gluing and SI property for hom-shifts

From here on the graph H is connected unless stated otherwise. The graph metric
on H is denoted by dH. The block-gluing property is too restrictive: if H is bipartite
then Xd

H is not even mixing. With this in view, we define the following:
A shift space X is said to be phased block-gluing if there exists an n ∈ N and a

finite set S ⊂ Zd such that for all rectangular patterns 〈a〉A, 〈b〉B ∈ L(X) satisfying
d∞(A, B) ≥ n there exists x ∈ X such that x |A = a and σ Ei (x)|B = b for some
Ei ∈ S. The set S will be called a gluing set of X and n will be called a gluing
distance. Observe that although the phased block-gluing property is defined for finite
rectangular patterns 〈a〉A, 〈b〉B , it immediately applies (by using the compactness
of shift spaces) to infinite rectangular patterns as well.

From here on fix d ≥ 2 unless mentioned otherwise. We will now construct
some auxiliary graphs which will be useful in the study of the phased block-gluing
property. Let Hd

walk = (X
d−1
H , Ed

walk) be the graph where

Ed
walk =

{
(x, y) : xEi ∼H yEi for all Ei ∈ Zd−1}.

Given symbols v,w we denote by (v,w)∞,d−1
∈ {v,w}Z

d−1
the checkerboard

configuration given by
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(v,w)
∞,d−1
Ei

:=

{
v if Ei is in the same partite class as E0,
w otherwise.

Similarly v∞,d−1 is the constant configuration given by

v
∞,d−1
Ei

:= v for all Ei ∈ Zd−1.

Let us look at a few examples.

(1) If H is a graph with a single edge and vertices v,w then Xd−1
H consists only

of the two checkerboard patterns (v,w)∞,d−1 and (w, v)∞,d−1 which are
connected to each other in Hd

walk.

(2) Let H be the graph in Figure 1 (the graph for the hard square shift). Since
0, 1∼H 0, for all x ∈ Xd−1

H ,
x ∼Hd

walk
0∞,d−1.

In general, if H is a graph with a vertex ? such that ?∼H v for all v∈H (in other
words, if the hom-shift Xd−1

H has a so-called safe symbol) then x ∼Hd
walk
?∞,d−1

for all x ∈ Xd−1
H .

The usual graph metric on Hd
walk is denoted by dwH. Further we say dwH(x, y) :=∞

if there is no finite walk from x to y. The diameter of Hd
walk is denoted by

diam(Hd
walk) := sup

x,y∈Hd
walk

dwH(x, y).

The diameter of the graph Hd
walk measures the maximum distance required to

transition between two configurations in Xd−1
H . Recall the graphs Hd

n,walk. They
may be thought to “approximate” the graph Hd

walk; in fact it follows easily that

diam(Hd
walk)=∞ if and only if lim

n→∞
diam(Hd

n,walk)=∞.

The proof is left to the reader. Look also at Section 6C.
As mentioned previously with respect to the graphs Hd

n,walk, there is a correspon-
dence between walks x = p0, p1, . . . , pk

= y in Hd
walk from x to y of length k and

x̃ ∈ Hom(Zd−1�[0, k],H) satisfying x̃Ei,0 = xEi and x̃Ei,k = yEi . We will use this and
similar correspondences throughout the paper.

While the graphs Hd
n,walk were useful in analysing the mixing and transitivity of

the hom-shifts Xd
H (as in Proposition 3.1), the graph Hd

walk relates to the phased
block-gluing property by the following proposition:

Proposition 4.1. Let H be a finite, undirected graph. Then:

(1) Xd
H is block-gluing if and only if there exists an n ∈ N such that for all

x, y ∈ Xd−1
H there exists a walk of length n in Hd

walk starting at x and ending
at y.

(2) Xd
H is phased block-gluing if and only if diam(Hd

walk) <∞.
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(3) If H is bipartite and Xd
H is phased block-gluing then the gluing set can be

chosen to be {0, Eei } for all 1≤ i ≤ d.

(4) If H is not bipartite and Xd
H is phased block-gluing then Xd

H is block-gluing.

Proof of Proposition 4.1(1). Suppose that Xd
H is block-gluing with gluing distance n.

Let x, y ∈ Xd−1
H . We can identify them as elements of Hom(Zd−1�{0},H) and

Hom(Zd−1�{n},H) respectively. By the block-gluing property there exists z ∈ Xd
H

for which z|Zd−1�{0} = x and z|Zd−1�{n} = y. Equivalently we have found a walk of
length n in Hd

walk from x to y.
Conversely suppose that for all x, y ∈ Xd−1

H there exists a walk of length n starting
at x and ending at y. Since we can always lengthen such a walk by revisiting a
configuration adjacent to y, it follows that for all x, y ∈ Xd−1

H , m ≥ n, there is a
walk of length m from x to y.

We would like to prove that Xd
H is block-gluing with block-gluing distance n. Let

〈a〉A, 〈b〉B be two rectangular patterns in Xd
H such that d∞(A, B)= m. Using the

symmetry and isotropy in hom-shifts and translating the patterns (if necessary), by
Proposition 2.1 we can assume A⊂Zd−1�[−r, r ] and B⊂Zd−1�[m+r,m+r+k]
for some r, k ∈ N. Consider

ỹ ∈ Hom(Zd−1�[−r, r ],H) and z̃ ∈ Hom(Zd−1�[m+ r,m+ r + k],H)

such that ỹ|A = a and z̃|B = b. Then there exists a walk p0, p1, . . . , pm from
ỹ|Zd−1�{r} to z̃|Zd−1�{m+r} in Hd

walk. Hence we get a homomorphism

x̃ ∈ Hom(Zd−1�[−r,m+ r + k],H)

such that x̃ |Zd−1�[−r,r ] = ỹ and x̃ |Zd−1�[m+r,m+r+k] = z̃. By Proposition 2.1 there
exists x ∈ Xd

H such that x |A = a and x |B = b. �

In the following proof, by | · |1 we mean the l1 metric on Rd.

Proof of Proposition 4.1(2). Suppose that Xd
H is phased block-gluing with gluing

distance n and gluing set S. Choose m ≥ n large enough such that m > |Ei |1 for all
Ei ∈ S. Let x, y ∈ Xd−1

H be given. As before we identify x and y as configurations in
Hom(Zd−1�{0}) and Hom(Zd−1�{m}) respectively. By the phased block-gluing
property there exists z ∈ Xd

H such that z|Zd−1�{0} = x and σ Ei (z)|Zd−1�{m} = y for
some Ei ∈ S. Write Ei = (Ei f , id) where Ei f

∈ Zd−1. Then

z Ej,m+id
= yEj−Ei f for all Ej ∈ Zd−1.

Thus we have obtained a walk from x to σ−Ei
f
(y) in Hd

walk of length m + id . By
using the fact that z′ ∼Hd

walk
σ
Ee d−1

j (z′) for all 1≤ j ≤ d − 1 and z′ ∈ Xd−1
H we get a

walk from σ−
Ei f
(y) to y of length | −Ei f

|1. Thus

diam(Hd
walk)≤max

Ei∈S
(m+ |Ei |1).
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Now let us prove the converse. Suppose diam(Hd
walk) < n <∞. Let 1≤ j ≤ d,

S={E0, Eed
j } and let 〈a〉A, 〈b〉B ∈L(Xd

H) be rectangular patterns such that d∞(A, B)=
m ≥ n+ 1. We can assume A ⊂ Zd−1�[−r, r ] and B ⊂ Zd−1�[m+ r,m+ r + k]
for some r, k ∈ N. Consider

ỹ ∈ Hom(Zd−1�[−r, r ],H) and z̃ ∈ Hom(Zd−1�[m+ r,m+ r + k],H)

such that ỹ|A = a and z̃|B = b. There is a walk of length either m− 1 or m from
ỹ|Zd−1�{r} to z̃|Zd−1�{m+r} since there is always a walk of length 2 from any vertex
in Hd

walk to itself.

Case 1: A walk of length m is found. We get x̃ ∈ Hom(Zd−1�[−r,m+ r + k],H)
such that x̃ |Zd−1�[−r,r ] = ỹ and x̃ |Zd−1�[m+r,m+r+k] = z̃. By Proposition 2.1 there
exists x ∈ Xd

H such that x |A = a and x |B = b.

Case 2: A walk of length m− 1 is found. This is similar to the previous case; just
replace the pattern z̃ by σ−Ee

d
j (z̃). �

Proof of Proposition 4.1(3). Note that we have proved that the phased block-
gluing property for Xd

H implies that diam(Hd
walk) <∞ and that diam(Hd

walk) <∞

implies that Xd
H has the phased block-gluing property where the gluing set S can

be chosen to be {E0, Eei } for 1≤ i ≤ d . Thus, if Xd
H is phased block-gluing then the

gluing set S can be chosen to be {E0, Eei } for 1≤ i ≤ d . �

Proof of Proposition 4.1(4). Suppose H is a finite, undirected graph which is not
bipartite and Xd

H is phased block-gluing. If H is a single vertex with a self-loop
then Hd

walk is a single configuration with a self-loop as well; there is nothing to
prove. If H is not a single vertex with a self-loop then since H is not bipartite there
exist cycles of even and odd length in H and (hence) in Hd

walk. Thus the graph
Hd

walk is aperiodic.
Moreover since Xd

H is phased block-gluing, from Proposition 4.1(2) we know
that Hd

walk has finite diameter. Since Hd
walk is aperiodic and has finite diameter,

from standard arguments (see [Durrett 2010, Lemma 6.6.3]) one can prove that the
adjacency matrix of the graph Hd

walk is primitive, meaning, there exists m ∈N such
that for every x, y ∈ Xd−1

H there exists a walk of length m from x to y in Hd
walk. By

Proposition 4.1(1), the proof is complete. �

In exactly the same way, the phased SI property can also be defined: a shift space
X is said to be phased SI if there exists an n ∈ N and a finite set S ⊂ Zd such that
for all patterns 〈a〉A, 〈b〉B ∈ L(X) satisfying d∞(A, B)≥ n there exists x ∈ X such
that x |A = a and σ Ei (x)|B = b for some Ei ∈ S. S will be called an SI gluing set of
X and n will be called an SI gluing distance.

Proposition 4.2. Let H be a finite, undirected graph. Then:
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(1) If H is bipartite and Xd
H is phased SI, the SI gluing set can be chosen to be

{E0, Eei } for all 1≤ i ≤ d.

(2) If H is not bipartite and Xd
H is phased SI then it is SI.

Since the arguments for the proof of this proposition are similar to those in
the proof of Proposition 4.1, we will not repeat them here. Roughly speaking, in
Proposition 4.1 we obtained the result by translating the question into one about
walks on the auxiliary graphs Hd

walk. For SI we can use the following simple
equivalence instead: Given a set A ⊂ Zd let

∂r A = {Ei ∈ Zd
\ A : |Ei − Ej |1 ≤ r for some Ej ∈ A}.

A nearest neighbour SFT X is SI if and only if there is an N ∈N such that for all
n ≥ N, finite A ⊂ Zd and 〈a〉A, 〈b〉∂n A\∂n−1 A ∈ L(X), there exists x ∈ X such that
x |A = a and x |∂n A\∂n−1 A = b.

As in Corollary 3.5 we can also conclude:

Corollary 4.3. Let H be a bipartite finite undirected graph. If Xd
H is phased block-

gluing/phased SI then Xd
H is a union of two disjoint conjugate SFTs with respect to

the (2Z)d action which are block-gluing/SI respectively.

This follows from the fact that for a phased block-gluing/phased SI hom-shift,
the gluing set/SI gluing set can be chosen to be {0, Eei } for all 1≤ i ≤ d . The proof
is left to the reader.

We will need the following “monotonicity” result:

Proposition 4.4. Let H be a finite undirected graph and d1 < d2. If Xd1
H is not

phased block-gluing/phased SI then Xd2
H is not phased block-gluing/phased SI.

Let us see this for the phased block-gluing property; the proof for the phased SI
property uses similar ideas. Suppose that Xd1

H is not phased block-gluing. Fix n ∈N.
By Proposition 4.1 we know that diam(Hd1

walk)=∞. Thus there exist x, y ∈ Xd1−1
H

such that dwH(x, y) ≥ n. By Proposition 2.1 there exist x1, y1
∈ Xd2−1

H such that
x1
(Ei,E0)
= xEi and y1

(Ei,E0)
= yEi for all Ei ∈ Zd1−1. Now given a walk (if it exists),

x1, x2, . . . , xk
= y1,

from x1 to y1 in Hd2
walk,

x1
|Zd1−1�{E0}, x2

|Zd1−1�{E0}, . . . , xk
|Zd1−1�{E0}

is a walk in Hd1
walk (up to identification of Zd1−1�{E0} with Zd1−1). Hence

dwH(x
1, y1)≥ n.

Since n was arbitrary we have proven that diam(Hd2
walk)=∞ proving that Xd2

H is
not phased block-gluing.
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We end this section with a few minor structural remarks. Let Cn denote the n-
cycle with vertices {0, 1, 2, . . . , n−1}. The phased SI/phased block-gluing property
for transitive hom-shifts is not stable under containment: For instance we will prove
that X2

C3
is not phased block-gluing in Theorem 5.3. However X2

Edge and X2
K4

are
both phased SI [Briceño 2014] where Edge is the induced subgraph on a pair of
vertices in C3 and C3 is isomorphic to an induced subgraph of K4. The mixing
properties are however preserved under certain products:

The tensor product of graphs H1 = (V1, E1) and H2 = (V2, E2), denoted by
H1 ×H2, is the graph with vertex set V1 × V2 and (v1, v2) ∼H1×H2 (w1, w2) if
v1 ∼H1 w1 and v2 ∼H2 w2.

Proposition 4.5. Let H1 and H2 be graphs such that Xd
H1

and Xd
H2

are phased
SI/phased block-gluing. Let H be a connected component of H1×H2. Then Xd

H is
also phased SI/phased block-gluing.

We understand the case of the cartesian product to a much lesser extent and it
might be of interest for future work.

Proof. There are three separate cases to consider: neither H1 nor H2 is bipartite,
exactly one of H1 and H2 is bipartite and finally both H1 and H2 are bipartite. The
proofs for the three cases are similar given the following well known observations: If
H1 and H2 are connected graphs which are not bipartite then H1×H2 is connected
and bipartite. If exactly one of H1 and H2 is bipartite and both are connected
then H1×H2 is also bipartite and connected. If both H1 and H2 are bipartite and
connected then H1×H2 has two graph components, both are connected bipartite
graphs.

Since these three cases are very similar we shall only prove the theorem for
the case where both H1 and H2 are not bipartite. Let Xd

H1
and Xd

H2
be phased

SI (and hence SI given Proposition 4.2). Let (x1, y1), (x2, y2) ∈ Xd
H1×H2

. Let n
be the maximum of the SI gluing distances for Xd

H1
and Xd

H2
. Let A, B ⊂ Zd

such that they are separated by distance n. Then there exists (x, y) ∈ Xd
H1×H2

such that x |A = x1
|A, x |B = x2

|B , y|A = y1
|A and y|B = y2

|B . The proof for the
block-gluing property follows the same idea; we need to restrict to rectangular
shapes A and B. �

Finally we observe that the lack of the block-gluing property is equivalent to the
graph Hd

walk being disconnected:

Proposition 4.6. Let H be a finite undirected graph. Then diam(Hd
walk)=∞ if and

only if Hd
walk is disconnected.

Proof. We will prove the proposition in the case when H is not bipartite; the proof
for the bipartite case is similar and left to the reader. Let diam(Hd

walk)=∞. Then
either Hd

walk is disconnected or for all n∈N there exist configurations xn, yn
∈ Xd−1

H
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such that dwH(x
n, yn) ≥ n. By choosing a large enough subpattern from these

configurations it follows that there exists kn ∈ N and an, bn
∈ Hd

kn,walk such that
the shortest walk from an to bn is of length greater than or equal to n. Since H
is not bipartite, by Proposition 3.1, the hom-shift Xd

H is mixing. Thus there exist
x, y ∈ Xd−1

H such that there exists Ein ∈ Zd−1 satisfying

σ
Ein (x)|Bd−1

kn
= an, σ

Ein (y)|Bd−1
kn
= bn for all n ∈ N.

It follows that dwH(x, y)=∞ implying that Hd
walk is disconnected.

For the other direction, if Hd
walk is disconnected then its diameter is infinite; this

follows from the definition of the diameter. �

5. Phased mixing properties for four-cycle hom-free graphs

We say that an undirected graph H is a four-cycle hom-free graph if for all graph
homomorphisms f : C4→H either f (0)= f (2) or f (1)= f (3). Let us begin by
unravelling the definition.

Proposition 5.1. An undirected graph H is four-cycle hom-free if and only if C4 is
not a subgraph of H and if v ∈H has a self-loop then w1, w2 ∼H v and w1, w2 6= v

implies w1 6∼H w2.

Proof. Let us see the forward direction; the arguments for the backward direction
are similar in nature and left to the reader. Suppose H is four-cycle hom-free. Since
there exists no graph homomorphism f ∈ Hom(C4,H) which is an embedding,
the graph C4 is not a subgraph of H. Now suppose the vertex v ∈ H has a self-
loop, w1, w2 ∼H v and w1, w2 6= v. Consider the map f ′ : C4 → H given by
f ′(0) = f ′(1) := v, f ′(2) := w1, f ′(3) := w2; it is a graph homomorphism if
and only if w1 ∼H w2. But for the map f ′, f ′(0) 6= f ′(2) and f ′(1) 6= f ′(3).
Thus by the four-cycle hom-free property of H it follows that f ′ is not a graph
homomorphism from where it follows that w1 6∼H w2. �

It follows from Proposition 5.1 that a graph H without self-loops is four-cycle
hom-free if and only if it is a four-cycle free graph in the sense of [Chandgotia
2017], that is, C4 is not a subgraph of H. It was observed in [Chandgotia 2017] that
a homomorphism from Zd to H can be lifted to the universal cover Huni (defined
below). This includes graphs H which are trees and cycles Cn for n 6=4. A particular
case is that of n = 3; Xd

C3
is the space of proper 3-colourings of Zd.

This condition was studied in [Wrochna 2015] in the context of reconfiguration
problems; we remark that the so-called fundamental groupoid in that paper is
intimately related to the universal cover of H. If H= C3 then the lifts correspond
to the so-called height functions [Lieb 1967].
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In addition it follows from Proposition 5.1 that the graph for the hard square
shift (Figure 1) satisfies the hypothesis. For trees with loops, we refer to [Briceño
and Pavlov 2017, Proposition 8.1 and its corollaries] for related results.

In this section we describe a procedure for deciding the mixing conditions of Xd
H

for a four-cycle-hom-free graph. For this we require a notion of folding in graphs:
We say that a vertex v folds into w if NH(v) ⊂ NH(w). In this case H \ {v} is
called a fold of the graph H. A graph is called stiff if it does not have any nontrivial
folds. Starting with a finite graph H we can obtain a stiff graph by a sequence of
folds; stiff graphs thus obtained are the same up to graph isomorphism [Brightwell
and Winkler 2000, Theorem 4.4]. A graph H is called dismantlable if there exists
a sequence of graphs H = H1,H2, . . . ,Hn such that Hi+1 is a fold of the graph
Hi for every i and Hn is a vertex with or without self-loop. If H is a connected
dismantlable graph which is not an isolated vertex then it follows that the stiff graph
obtained by successive folds of H is a vertex with a self-loop. A graph H is called
bipartite-dismantlable if there exists a sequence of graphs H = H1,H2, . . . ,Hn

such that Hi+1 is a fold of the graph Hi for every i and Hn is either a single edge
or a single vertex with a self-loop. Graph folding was introduced in [Nowakowski
and Winkler 1983] to study cop-win graphs; later in [Brightwell and Winkler 2000]
it was observed that folding preserves a lot of properties of the graphs. Since a fold
of a graph H is bipartite if and only if H is bipartite it follows that if a graph H is
bipartite-dismantlable, then it is dismantlable if and only if H is not bipartite.

The following proposition essentially follows from arguments similar to those in
the proof of [Brightwell and Winkler 2000, Theorem 4.1] and we omit them here:

Proposition 5.2. Let H be a bipartite-dismantlable graph. Then Xd
H is phased SI.

If H is bipartite-dismantlable and Xd
H is SI then H is dismantlable.

We can now state the main result of this section.

Theorem 5.3. Let H be a four-cycle hom-free graph. The following are equivalent:

(a) Xd
H is phased SI.

(b) Xd
H is phased block-gluing.

(c) H is bipartite-dismantlable.

The four-cycle hom-free condition is necessary for these equivalences; we will
discuss this further after the proof of Theorem 5.3.

Since phased SI is stronger than phased block-gluing, clearly (a) implies (b) and
by Proposition 5.2, (c) implies (a). To complete the proof of the theorem we need
to prove (b) implies (c). For this we need to introduce the universal cover. For more
details, look at [Chandgotia 2017; Angluin 1980; Stallings 1983].

A graph homomorphism φ :H′→H is called a graph covering if it is surjective
and for all v ∈ H, the restricted map φ|NH′ (v) is bijective onto NH(φ(v)); the



MIXING PROPERTIES FOR HOM-SHIFTS AND THE DISTANCE BETWEEN WALKS 59

induced map from Xd
H′ to Xd

H is denoted by φ̃. There is some subtlety here.
Undirected graphs H can be viewed as 1-CW-complexes where the vertices form
0-cells and the edges form the 1-cells of the complex. If H has no self-loops, then
clearly the condition for a map φ : H′→ H to be a graph covering implies that
it is a topological covering as well. However a topological covering space of a
graph H viewed as a 1-CW-complex may be different from the covering graph of
H when H has a self-loop. For instance, let H be a graph with a single vertex and
a self-loop and H′ be a graph with exactly one edge connecting two vertices; H′ is
a covering graph of H however H is homeomorphic to S1 as a CW-complex and its
only covering spaces are itself and R; neither of these are homeomorphic to H′.

To avoid confusion, by a covering space of H we mean the usual topological
covering space of H and by a covering graph of H we mean it in the sense as
defined above; these two notions coincide if H has no self-loops.

A universal covering graph of H, denoted by Huni is a covering graph of H which
is a tree; this is unique up to graph isomorphism. Alternatively it can be defined
as the connected covering graph (Huni, φuni) satisfying the following (universal)
property: given a covering graph map φ : H′→ H there exists a covering graph
map φ′ : Huni → H′ such that φ ◦ φ′ = φuni. There is an explicit construction
of these graphs: A nonbacktracking walk in a graph H is a finite walk in which
subsequent steps do not use the same edge, that is, walks p1, p2, . . . , pn such
that (pi , pi+1) 6= (pi+2, pi+1). Fix a vertex v ∈ H. Huni is the graph where the
vertex set is the set of nonbacktracking walks in H starting at the vertex v and two
nonbacktracking walks p and q are adjacent in the graph if one extends the other
by a single step. Choosing a different starting vertex v gives us a graph isomorphic
to Huni. It is a tree and the covering graph map φuni :Huni→H is given by

φuni(p) := terminal vertex of p.

Let us look at a few examples. Nonbacktracking walks in a tree cannot visit
the same vertex twice and there is a unique nonbacktracking walk joining two
distinct vertices. Hence the universal cover of a tree H is isomorphic to H. The
nonbacktracking walks in the graph Cn starting at 0 are the finite prefixes of the
periodic walks

0, 1, 2, 3, . . . , n− 1, 0, 1, . . . , and 0, n− 1, n− 2, . . . , 1, 0, n− 1, . . . .

Thus the universal covering graph of Cn is Z and the covering graph map is
(mod n) : Z→ Cn .

Another important class of examples are the barbell graphs Barn for n > 2 with
vertices {1, 2, 3, . . . , n} and, as seen in (Figure 2), edges

{(1, 1), (1, 2), (2, 3), . . . , (n− 1, n), (n, n)}.
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1 2 3 4

Figure 2. Barbell graph for n = 4.

The nonbacktracking walks on Barn starting at 1 are the finite prefixes of the periodic
walks

(1, 1, 2, 3, . . . , n− 1, n, n, n− 1, n− 2, . . . , 2, 1, 1, . . .) and

(1, 2, 3, . . . , n− 1, n, n, n− 1, n− 2, . . . , 2, 1, 1, . . .),

proving that (Barn)uni = Z. Thus though the cycles Cn and the barbells Barn seem
unrelated a priori, their universal covers are the same. By Proposition 5.5 it will
follow that the corresponding hom-shifts are related to each other. The fact that
Barn does not satisfy the block-gluing property has been essentially observed in
[Briceño and Pavlov 2017].

Let H be the graph for the hard square shift (given by Figure 1). The nonback-
tracking walks starting at the vertex 1 are (1), (1, 0), (1, 0, 0) and (1, 0, 0, 1). Thus
Huni is isomorphic to the graph in Figure 3.

The universal covers of a graph are so-called normal covers [Hatcher 2002,
Chapter 1]:

Proposition 5.4. Let H be a finite undirected graph. For all v′, v′′ ∈Huni satisfying
φuni(v

′) = φuni(v
′′) there is an automorphism ψ of Huni such that φuni ◦ψ = φuni

and ψ(v′)= v′′.

A lift of a configuration x ∈ Xd
H is a configuration x ′∈ Xd

Huni
such that φ̃uni(x ′)= x .

Proposition 5.5. Let H be a four-cycle hom-free graph. For all homomorphisms
x ∈ Xd−1

H , there exists a unique lift x ′ ∈ Xd−1
Huni

up to a choice of x ′
E0
. Further the

induced map φ̃uni is a graph covering map from (Huni)
d
walk to Hd

walk.

The proof of the first part of the proposition can be found in [Chandgotia 2017,
Proposition 6.2]; the proof there is for four-cycle free graphs but it carries over for
four-cycle hom-free graphs. For the second part, the same approach works with the
added observation that x ∼Hd

walk
y if and only if the configuration z :Zd−1�[0, 1]→

H given by

zEi,t :=
{

xEi if t = 0,
yEi if t = 1

is a graph homomorphism.
The proposition has immediate consequences for the phased block-gluing prop-

erty:

Corollary 5.6. Let H be a four-cycle hom-free graph. Then diam(Hd
walk) <∞ if

and only if Huni is finite.
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0 0′

1 1′

Figure 3. Graph for the lift of the hard square shift.

The proof shows diam(Hd
walk)<∞ for some d≥2 if and only if diam(Hd

walk)<∞

for all d ≥ 2; look also at Section 6D.

Proof. Suppose Huni is a finite graph (and hence a finite tree). By Proposition 5.2
and Proposition 4.1(2) we get that diam((Huni)

d
walk) <∞. Let x, y ∈ Xd−1

H and
x ′, y′ be lifts of x, y in Huni. There is a finite walk from x ′ to y′ in (Huni)

d
walk. By

applying the induced map φ̃uni to each step of the walk we get a walk of the same
length from x to y in Hd

walk. Thus diam(Hd
walk)≤ diam((Huni)

d
walk) <∞.

Now suppose that Huni is an infinite graph (and hence an infinite tree). By
Proposition 4.4 it is sufficient to prove that diam(H2

walk)=∞. Consider x ′ ∈ X1
Huni

such that x ′|N does not visit the same vertex twice; since Huni is a bounded degree
infinite graph such an x ′ exists. Let x := φ̃uni(x ′) and consider y := (v,w)∞,1 for
some edge v ∼H w. Suppose that there is a walk from x to (v,w)∞,1 in H2

walk. By
Proposition 5.5 it lifts to a unique walk from x ′ to y′ = (v′, w′)∞,1 in (Huni)

2
walk

for some v′, w′ ∈Huni.
Let i0 ∈N be such that dHuni(x

′

i0
, v′) :=mini∈N dHuni(x

′

i , v
′)=: t . Since Huni is a

tree it follows that dHuni(x
′

i0
, x ′i )= i − i0 for all i ≥ i0 and in fact

dHuni(x
′

i , v
′)= i − i0+ t

for all for all i ≥ i0. Therefore,

dwHuni
(x ′, (v′, w′)∞,1)=∞

which leads to a contradiction and completes the proof. �

Proof of Theorem 5.3. Let H be a four-cycle hom-free graph.We are left to prove
that (b) implies (c). By Corollary 5.6 it is sufficient to prove that if Huni is finite
then H is bipartite-dismantlable.

Now suppose that Huni is a finite tree and hence is bipartite-dismantlable. We
want to prove that H is bipartite-dismantlable. Suppose v′ folds into w′ in Huni, that
is, NHuni(v

′)⊂ NHuni(w
′). Let v := φuni(v

′) and w := φuni(w
′). By Proposition 5.4

it follows that for all v′′ ∈Huni satisfying φuni(v
′′)= v there is an automorphism ψ

of Huni for which φuni ◦ψ = φuni and ψ(v′)= v′′. Thus for w′′ := ψ(w′) we have
that φuni(w

′′)= w and v′′ folds into w′′. Since v′ and w′ have common neighbours
and φuni is a covering map it follows that v 6= w; in fact that v folds into w. By
folding all v′′ which satisfy φuni(v

′′) = v we get (H \ {v})uni. The proof can be
completed by induction on |H|. �
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5A. Why is the four-cycle hom-free condition necessary? Some of the implica-
tions of Theorem 5.3 fail without the four-cycle hom-free assumption. We know
that (a) implies (b) for all shift spaces and by Proposition 5.2, (c) implies (a). Let
us see why the other implications do not hold:

(1) Neither (a) nor (b) implies (c): Here we see why the phased SI property in
hom-shifts does not imply that the corresponding graph is bipartite-dismantlable.
Let Kn denote the complete graph with n vertices, 1, 2, . . . , n. It is mentioned
in [Briceño 2014] that Xd

Kn
is SI for n ≥ 2d + 1; note that there is no folding

possible in Kn and hence it is not bipartite-dismantlable (except for n = 2). Yet
Xd

Kn
is block-gluing for n ≥ 4 and d ∈ N; this is proved in Proposition 5.7. The

argument given here is by Ronnie Pavlov; similar arguments appear in [Schmidt
1995, Section 4.4].

A vertex in Zd−1 is called even if it is in the same partite class as E0 and odd
otherwise.

Proposition 5.7. For n ≥ 4, diam((Kn)
d
walk)≤ 4.

By Proposition 4.1 this implies that Xd
Kn

is block-gluing for n ≥ 4.

Proof. Let x ∈ Xd−1
Kn

. Let y ∈ Xd−1
Kn

be a homomorphism given by

yEi =


1 if Ei is even and xEi 6= 1,
2 if Ei is even and xEi = 1,
3 if Ei is odd and xEi 6= 3,
4 if Ei is odd and xEi = 3.

Clearly x ∼Hd
walk

y and y ∼Hd
walk
(3, 1)∞,d−1 (which is the checkerboard pattern of

3s and 1s which has value 3 at entry E0). Therefore dwKn
(x, (3, 1)∞,d−1)≤ 2. Hence

diam((Kn)
d
walk)≤ 4. �

(2) (b) does not imply (a): Here we show the existence of a hom-shift which is
phased block-gluing but not phased SI. It was mentioned to the authors by Raimundo
Briceño (2014) that X3

K4
is not phased SI (while by Proposition 5.7 it is phased

block-gluing). Here we shall give another example; this will be an instance of a
large class of hom-shifts with the phased block-gluing property (Section 6B). Let
H be the graph given by Figure 4. We will prove that Xd

H is phased block-gluing
for all d ≥ 2 but not phased SI even for d = 2. Let us first observe why is X2

H not
phased SI. Fix n ∈ N and let L be the shape given by

L := {(i, 0), (n, i) : 0≤ i ≤ n}.

Let x ∈ X2
H be given by

x( j,k) := j + k(mod 6).

Observe that for all i ∈ Z, i + 1(mod 6) is the unique vertex in H adjacent to
both i (mod 6) and i + 2(mod 6). It follows that x( j+1,k) is the unique vertex
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Figure 4. On the left: Graph H for a hom-shift which is phased
block-gluing but not phased SI. On the right: A graph homomor-
phism f :H→H such that f (v)∼H v and f 3(H) is a single edge.

adjacent to x( j,k) and x( j+1,k+1) for all ( j, k) ∈ Z2 which implies that if y ∈ X2
H is

a configuration such that x |L = y|L then x |[0,n]�[0,n] = y|[0,n]�[0,n]. Thus X2
H is not

phased SI.
Now we will prove that Xd

H is phased block-gluing for all d ≥ 2. Consider the
map f :H→H given by Figure 4 and d ≥ 2: For all v ∈H, f (v) is defined to be
the head of the arrow starting at v. Observe that f is a graph homomorphism such
that f (v)∼H v for all v ∈H and f 3(H) is the edge joining vertices 4′ and 6. Thus
for all x ∈ Xd−1

H , f ◦ x ∼Hd
walk

x and f 3
◦ x is either (4′, 6)∞,d−1 or (6, 4′)∞,d−1

proving
dwH(x, (4

′, 6)∞,d−1)≤ 4

and hence diam(Hd
walk)≤ 8.

6. Further directions

6A. Decidability of the fixed block-gluing distance.

Question. Fix n ∈ N and d ≥ 2. Is there an algorithm to decide, for undirected
graphs H, whether diam(Hd

walk)= n?

Let us see how such an algorithm may be constructed for certain dimensions.
Fix n ∈ N and a graph H. Recall, as in Section 3 the graph H2

n,walk for which
the vertices are homomorphisms from [−n, n] to H; two such homomorphisms
x, y are adjacent if xi ∼H yi for all i . Consider the (d−1)-dimensional hom-shift
constructed using this graph: Xd−1

H2
n,walk

. This makes notation onerous so we denote
these shift spaces by Xd−1

H,n . Let

Xd−1
H,TB :=

{
(x, y) ∈ Xd−1

H × Xd−1
H : there is a walk of even length from xE0 to yE0

}
.

Observe that if H is not bipartite then Xd−1
H,TB = Xd−1

H × Xd−1
H ; if it is bipartite then

we further require that x E0 and y E0 are in the same partite class. There is a natural
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map πd−1
H,n : X

d−1
H,n → Xd−1

H,TB given by πd−1
H,n (z) := (x, y) where

xEi := zEi (n), yEi := zEi (−n).

This construction is related with the phased block-gluing property via the following
proposition:

Proposition 6.1. Let H be an undirected graph. Then Xd
H is phased block-gluing

for some block-gluing distance 2n if and only if the map πd−1
H,n is surjective.

Proof. By the proof of Proposition 4.1, Xd
H is phased block-gluing for distance 2n

if and only if for all x, y ∈ Xd−1
H there exists a walk either from x to y or from x to

σ Ee1(y) of length 2n; equivalently, for all x, y ∈ Xd−1
H there exists z ∈ Xd−1

H,n such
that either πd−1

H,n (z)= (x, y) or πd−1
H,n (z)= (x, σ

Ee1(y)). Consider a pair

(x ′, y′) ∈ Xd−1
H,TB.

The distance between x ′ and y′ is even. Thus,

πd−1
H,n (z

′) 6= (x, σ Ee1(y))

for z′ ∈ Xd−1
H,n , and there exists z′′ ∈ Xd−1

H,n such that πd−1
H,n (z

′′)= (x, y), completing
the proof. �

Theorem 6.2. It is decidable whether a hom-shift in two dimensions is block-gluing
for distance n.

Recall, a shift space is called a sofic shift if it is the image of an SFT under a
sliding block-code.

Proof. We will verify this only in the case when n is even; for odd n, the proof is
similar. By Proposition 6.1 it is equivalent to verify that

Image(π1
H,n/2)= X1

H,TB.

Now X1
H,TB is an SFT (and hence sofic) and Image(π1

H,n/2) is sofic; there are
well-known algorithms to decide whether two sofic shifts are the same; [Lind and
Marcus 1995, Theorem 3.4.13]. This proves that it is decidable whether a hom-shift
in two dimensions is block-gluing for block-gluing distance n. �

Since it is undecidable whether a higher dimensional SFT is nonempty it au-
tomatically follows that it is undecidable whether two (d − 1)-dimensional sofic
shifts are equal for d ≥ 3. However even for d = 2 we do not know the answer to
the following questions:

Question. Fix n ∈N. Is it decidable whether the SI gluing distance for a hom-shift
is less than or equal to n?

Question. Is the phased block-gluing/phased SI property decidable for hom-shifts?
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1′′ 2′′

3′4′′
1′2′
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Figure 5. A cover of K4 on the left and its collapsing map on
the right.

6B. The gluing property for general boards G. Our construction of the graph
Hd

walk was motivated by the study of the block-gluing property. The question of
whether diam(Hd

walk) <∞ can be viewed as a certain “reconfiguration” problem. A
natural extension of the question is the following: Let G be a connected undirected
graph without self-loops. Consider the graph

HG
walk := (Hom(G,H), EG

walk) where EG
walk := {(x, y) : xi ∼H yi for all i ∈ G}.

Question. For which graphs H is diam(HG
walk) <∞ for all undirected graphs G?

For a reconfiguration problem of a similar nature, a characterisation was given in
[Brightwell and Winkler 2000]: We say that Hom(G,H) satisfies the pivot property
if for all x, y ∈ Hom(G,H) which differ only at finitely many sites there exists a
sequence x = x1, x2, . . . , xn

= y ∈ Hom(G,H) such that x i , x i+1 differ at most
at one site. Brightwell and Winkler proved that the pivot property is satisfied by
Hom(G,H) for all graphs G if and only if H is dismantlable. We wonder if a
characterisation of similar nature exists in our case as well. In the following we
provide a large class of graphs H for which diam(HG

walk) <∞ for all connected
undirected graphs G.

We say that H is collapsible if there exists a graph homomorphism f :H→H
such that f (v)∼H v for all v ∈H and there exists n ∈N such that f n(H) is either an
edge or a vertex with a self-loop; f is called a collapsing map. If H is a collapsible
graph, diam(HG

walk) <∞ for all graphs G (see Section 5A(2)).
While one may feel that the proof that diam((Kn)

d
walk) <∞ for all n ≥ 4 in

Proposition 5.7 is of a very different nature from that for the collapsible graphs, it
can be shown that they are intimately related. Consider the covering graph map
φ : H→ K4 given by φ(v′) = φ(v′′) = v for all v ∈ [1, 4] where H is as shown
in Figure 5. As in Proposition 5.5, it is easy to see that for all homomorphisms
x ∈ Xd−1

K4
, there exists a unique lift x ′ ∈ Xd−1

H up to a choice of x ′
E0
. Further the

induced map φ̃ is a graph covering map from (H)dwalk to (K4)
d
walk. One can thereby

conclude diam(Hd
walk) < ∞ if and only if diam((K4)

d
walk) < ∞. But the map

f :H→H given by Figure 5 is a collapsing map proving diam((K4)
d
walk) <∞.
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6C. The growth rate of the diameter of Hd
n,walk . We write that a sequence an is

equal to 2(n) if there exists c,C > 0 such that cn ≤ an ≤ Cn.

Conjecture. If H is a finite undirected graph, diam(Hd
walk) = ∞ if and only if

diam(Hd
n,walk)=2(n).

This was also conjectured by Ronnie Pavlov and Michael Schraudner, who
showed that this is true in several examples (personal communication from Raimundo
Briceño, 2015). From (3-1) we get a natural upper bound on the diameter:

diam(Hd
n,walk)≤ diam(H)+ 2n(d − 1).

If H is a four-cycle hom-free graph and d≥2 then it can be proved diam(Hd
walk)=∞

if and only if diam(Hd
n,walk)=2(n). We will prove the conjecture in the case when

H is a four-cycle hom-free graph.
Suppose that diam(Hd

n,walk)=2(n). Since diam(Hd
n,walk) is increasing in n and

converges to diam(Hd
walk), it follows that diam(Hd

walk)=∞.
For the other direction assume that diam(Hd

walk)=∞. Since diam(Hd
n,walk) is

increasing in d, it is sufficient to prove that diam(Hd
n,walk)=2(n) for d = 2. By

Corollary 5.6, Huni is infinite. As in the proof of the corollary, let x ′ ∈ X1
Huni

be
such that x ′|N does not visit the same vertex twice and let x := φ̃uni(x ′). Then
dHuni(x

′

i , x ′j )= |i − j | for all i, j ∈ N implying that for all vertices v′ ∈Huni, there
exists i ∈ [0, 2n] such that dHuni(xi , v

′)≥ n. This implies that the shortest walk in
Hd

n,walk from x |[0,2n] to (v,w)∞,1|[0,2n] for all edges v ∼H w is of length at least n.
This proves that diam(H2

n,walk)=2(n).

6D. Dependence on dimension.

Problem. Construct a graph H for which diam(H2
walk) <∞ but diam(H3

walk)=∞.

In this paper we mention two large collections of graphs where diam(Hd
walk)<∞

for all d: bipartite-dismantlable graphs (as in Section 5) and collapsible graphs (as
in Section 6B). However in all such examples, we find that diam(Hd

walk) <∞ for
all d. To find examples for the problem above, we would have to find a way to
prove that diam(H2

walk) <∞ in a fundamentally different way.
By Proposition 4.1, the problem stated above is equivalent to the problem of

finding a graph H for which X2
H is block-gluing but X3

H is not block-gluing. We
note that the answer to the analogue of this problem for SI is known: X2

K4
is SI

[Briceño 2014] but X3
K4

is not SI (personal communication, 2014).

6E. Block-gluing for periodic points.

Problem. Construct a graph H such that dwH(x, y) < ∞ for all periodic points
x, y ∈ Xd−1

H but diam(Hd
walk)=∞.
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If diam(Hd
walk)=∞, by Proposition 4.6 there exists some x, y ∈ Xd−1

H such that
dwH(x, y)=∞, however it is not clear if x, y can be chosen periodic. Such periodic
points can be chosen if H is four-cycle free: By Corollary 5.6, Huni is infinite and
H is not a tree. Let

u0, u1, . . . , uk−1, uk = u0

be a simple cycle in H for some k > 2. Consider x ∈ X2
H given by xi := ui (mod k)

for all i ∈ Z; x is periodic. Let x ′ ∈ X1
Huni

be any lift of x . Since xi 6= xi+2 for all
i ∈ Z it follows that x ′i 6= x ′i+2 for all i ∈ Z; because Huni is a tree, this implies that
x ′ does not visit the same vertex twice. As in the proof of Corollary 5.6 it follows
that dwH(x, (v,w)

∞,1)=∞ for all v ∼H w.

6F. Measures of maximal entropy and Markov chains on H2
walk . Given a shift

space X and b ∈ LB(X) for some B ⊂ Z2, denote by

[b]B := {x ∈ X : x |B = b}

the corresponding cylinder set. One of the motivations for studying the graph Hd
walk

is also to understand the measures of maximal entropy on the space Xd
H. Let us

talk about the case d = 2. There is a natural correspondence between stochastic
processes ν on H2

walk and probability measures µ on X2
H given by

ν
(
X i

j = ai, j for (i, j) ∈ B
)
:= µ([a]B) for B ⊂ Z2 finite and a ∈ LB(X2

H).

For this subsection the necessary background for measures of maximal entropy
can be gathered from [Ruelle 2004; Burton and Steif 1994] and for Markov chains
from [Durrett 2010, Chapter 6]. Let H be a finite undirected graph and µ be an
ergodic measure of maximal entropy for X2

H. Consider the Markov chain ν on
H2

walk obtained by the “Markovisation” of µ (look also at [Bowen 2008, Chapter 1]):
Let π be the probability measure on X1

H given by marginalising µ to the vertical
line {0}�Z. Consider the probability (also called Markov) kernel on (H2

walk,B),
κ : X1

walk×B→ [0, 1] given by

κ(x, [y]−n,n) := µ
(
X(1,i) = yi for i ∈ [−n, n]|X(0,i) = xi for i ∈ Z

)
;

it is well defined for π -almost every x .
Since µ is a shift-invariant probability measure it follows that π is a stationary

measure for the kernel κ . It can be proved that the measure µ̃ on X2
H corresponding

to the Markov chain ν is also a measure of maximal entropy.

Conjecture. Let H be a finite undirected graph and µ be an ergodic measure of
maximal entropy on X2

H. Then the stochastic process on H2
walk corresponding to µ

is a Markov chain.

A study of random walks on the graph (C3)
2
n,walk can be found in [Boissard et al.

2015].
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6G. When is an SFT conjugate to a hom-shift?

Question. Let d = 1. Is it decidable whether an SFT is conjugate to a hom-shift?

For d ≥ 2 we have already observed in Corollary 2.3 that it is undecidable
whether an SFT is conjugate to a hom-shift.
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SIMULTANEOUS CONSTRUCTION OF HYPERBOLIC
ISOMETRIES

MATT CLAY AND CAGLAR UYANIK

Given isometric actions by a group G on finitely many δ-hyperbolic metric
spaces, we provide a sufficient condition that guarantees the existence of a sin-
gle element in G that is hyperbolic for each action. As an application we prove
a conjecture of Handel and Mosher regarding relatively fully irreducible sub-
groups and elements in the outer automorphism group of a free group.

1. Introduction

A δ-hyperbolic space is a geodesic metric space where geodesic triangles are
δ-slim: the δ-neighborhood of any two sides of a geodesic triangle contains the
third side. Such spaces were introduced by Gromov [1987] as a coarse notion of
negative curvature for geodesic metric spaces and since then have evolved into an
indispensable tool in geometric group theory.

There is a classification of isometries of δ-hyperbolic metric spaces analogous
to the classification of isometries of hyperbolic space Hn into elliptic, hyperbolic
and parabolic. Of these, hyperbolic isometries have the best dynamical properties
and are often the most desired. For example, typically they can be used to produce
free subgroups in a group acting on a δ-hyperbolic space [Gromov 1987, 5.3B];
see also [Bridson and Haefliger 1999, III.0.3.20]. Another application is to show
that a certain element does not have fixed points in its action on some set. Indeed,
if the set naturally sits inside a δ-hyperbolic metric space and the given element
acts as a hyperbolic isometry then it has no fixed points (in a strong sense). This
strategy has been successfully employed for the curve complex of a surface and for
the free factor complex of a free group by several authors [Clay et al. 2012; Clay
and Pettet 2012; Dowdall and Taylor 2018; Fujiwara 2015; Gültepe 2017; Horbez
2016; Mangahas 2013; Taylor 2014].
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We consider the situation of a group acting on finitely many δ-hyperbolic spaces
and produce a sufficient condition that guarantees the existence of a single element
in the group that is a hyperbolic isometry for each of the spaces. Of course, a
necessary condition is that for each of the spaces there is some element of the group
that is a hyperbolic isometry. Thus we are concerned with when we may reverse
the quantifiers: ∀∃ ∃∀. Our main result is the following theorem.

Theorem 5.1. Suppose that {X i }i=1,...,n is a collection of δ-hyperbolic spaces, G
is a group and for each i = 1, . . . , n there is a homomorphism ρi : G→ Isom(X i )

such that

(1) there is an element fi ∈ G such that ρi ( fi ) is hyperbolic; and

(2) for each g ∈ G, either ρi (g) has a periodic orbit or is hyperbolic.

Then there is an f ∈ G such that ρi ( f ) is hyperbolic for all i = 1, . . . , n.

Remark 1.1. Since the completion of this paper we have been alerted to the fact that
Theorem 5.1 should follow from random walk techniques developed in [Björklund
and Hartnick 2011; Maher and Tiozzo 2016]. Here we provide an elementary and
constructive proof.

Essentially, we assume that there are no parabolic isometries and that elliptic
isometries are relatively tame.

As an application of our main theorem we prove a conjecture of Handel and
Mosher which involves exactly the same type of quantifier reversing: ∀∃ ∃∀.
Consider a finitely generated subgroup H< IAN (Z/3) < Out(FN ) and a maximal
H-invariant filtration of FN , the free group of rank N, by free factor systems,

∅= F0 @ F1 @ · · ·@ Fm = {[FN ]}

(see Section 6). Handel and Mosher [2013a, Theorem D] prove that for each multi-
edge extension Fi−1 @ Fi there exists some ϕi ∈H that is irreducible with respect
to Fi−1 @ Fi . They conjecture that there exists a single ϕ ∈H that is irreducible
with respect to each multi-edge extension Fi−1 @ Fi . We show that this is indeed
the case.

Theorem 6.6. For each finitely generated subgroup H < IAN (Z/3) < Out(FN )

and each maximal H-invariant filtration by free factor systems,

∅= F0 @ F1 @ · · ·@ Fm = {[FN ]},

there is an element ϕ ∈H such that for each i = 1, . . . ,m such that Fi−1 @ Fi is a
multi-edge extension, ϕ is irreducible with respect to Fi−1 @ Fi .

Our paper is organized as follows. Section 2 contains background on δ-hyperbolic
spaces and their isometries. In Section 3 we generalize a construction from [Clay
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and Pettet 2012] that is useful in constructing hyperbolic isometries. This result
is Theorem 3.1. We examine certain cases that will arise in the proof of the main
theorem to see how to apply Theorem 3.1 in Section 4. The proof of Theorem 5.1
constitutes Section 5. The application to Out(FN ) appears in Section 6.

2. Background on δ-hyperbolic spaces

In this section we recall basic notions and facts about δ-hyperbolic spaces, their
isometries and their boundaries. The reader familiar with these topics can safely
skip this section, with the exception of Definition 2.8. References for this section
are [Alonso et al. 1991; Bridson and Haefliger 1999; Kapovich and Benakli 2002].

2A. δ-hyperbolic spaces. We recall the definition of a δ-hyperbolic space given in
the Introduction.

Definition 2.1. Let (X, d) be a geodesic metric space. A geodesic triangle with
sides α, β and γ is δ-slim if for each x ∈ α, there is some y ∈ β ∪ γ such that
d(x, y) ≤ δ. The space X is said to be δ-hyperbolic if every geodesic triangle is
δ-slim.

There are several equivalent definitions that we will use in the sequel. The first
of these is insize. Let 1 be the geodesic triangle with vertices x , y and z and sides
α from y to z, β from z to x and γ from x to y. There exist unique points α̂ ∈ α,
β̂ ∈ β and γ̂ ∈ γ , called the internal points of 1, such that

d(x, β̂)= d(x, γ̂ ), d(y, γ̂ )= d(y, α̂) and d(z, α̂)= d(z, β̂).

The insize of 1 is the diameter of the set {α̂, β̂, γ̂ }.
Another notion makes use of the so-called Gromov product:

(2-1) (x . y)w = 1
2(d(x, w)+ d(w, y)− d(x, y)).

The Gromov product is said to be δ-hyperbolic (with respect to w ∈ X ) if for all
x, y, z ∈ X ,

(x . z)w ≥min{(x . y)w, (y . z)w}− δ.

Proposition 2.2 [Alonso et al. 1991, Proposition 2.1; Bridson and Haefliger 1999,
III.H.1.17 and III.H.1.22]. The following are equivalent for a geodesic metric
space X :

(1) There is a δ1 ≥ 0 such that every geodesic triangle in X is δ1-slim, i.e., X is
δ1-hyperbolic.

(2) There is a δ2 ≥ 0 such that every geodesic triangle in X has insize at most δ2.

(3) There is a δ3 ≥ 0 such that for some (equivalently any) w ∈ X, the Gromov
product is δ3-hyperbolic.
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Henceforth, when we say X is a δ-hyperbolic space we assume that δ is large
enough to satisfy each of the above conditions.

2B. Boundaries. There is a useful notion of a boundary for a δ-hyperbolic space
that plays the role of the “sphere at infinity” for Hn. This space is defined using
equivalence classes of certain sequences of points in X and the Gromov product.
Fix a basepoint w ∈ X.

Definition 2.3. We say a sequence (xn)⊆ X converges to infinity if (xi . x j )w→∞

as i, j→∞. Two such sequences (xn), (yn) are equivalent if (xi . y j )w→∞ as
i, j →∞. The boundary of X , denoted ∂X, is the set of equivalence classes of
sequences (xn)⊆ X that converge to infinity.

One can show that the notion of “converges to infinity” and the subsequent
equivalence relation do not depend on the choice of basepoint w ∈ X [Kapovich and
Benakli 2002]. The definition of the Gromov product in (2-1) extends to boundary
points x̂, ŷ ∈ ∂X by

(x̂ . ŷ)w = inf{lim inf
n

(xn . yn)w},

where the infimum is over sequences (xn) ∈ x̂ , (yn) ∈ ŷ. If y ∈ X then we set

(x̂ . y)w = inf{lim inf
n

(xn . y)w},

where the infimum is over sequences (xn) ∈ x̂ . For x ∈ X, the Gromov product
(x . ŷ)w is defined analogously. Let X = X ∪ ∂X.

We will make use of the following properties of the Gromov product on X .

Proposition 2.4 [Alonso et al. 1991, Lemma 4.6; Bridson and Haefliger 1999,
III.H.3.17]. Let X be a δ-hyperbolic space.

(1) If x, y ∈ X then (x . y)w =∞⇐⇒ x = y ∈ ∂X.

(2) If x̂ ∈ ∂X and (xn)⊆ X then (x̂ . xn)w→∞ as n→∞⇐⇒ (xn) ∈ x̂ .

(3) If x̂, ŷ ∈ ∂X and (xn) ∈ x̂ , (yn) ∈ ŷ then

(x̂ . ŷ)w ≤ lim inf
n

(xn . yn)w ≤ (x̂ . ŷ)w − 2δ.

(4) If x, y, z ∈ X then
(x . z)w ≥min{(x . y)w, (y . z)w}− δ.

Proposition 2.5 [Alonso et al. 1991, Proposition 4.8]. The following collection of
subsets of X forms a basis for a topology:

(1) B(x, r)= {y ∈ X | d(x, y) < r} for each x ∈ X and r > 0.

(2) N (x̂, k)= {y ∈ X | (x̂ . y)w > k} for each x̂ ∈ ∂X and k > 0.

2C. Isometries. As mentioned in the Introduction, there is a classification of
isometries of a δ-hyperbolic space X into elliptic, parabolic and hyperbolic; see
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[Gromov 1987, 8.1.B]. We will not make use of parabolic isometries and so do not
give the definition here.

Definition 2.6. An isometry f ∈ Isom(X) is elliptic if for any x ∈ X, the set
{ f nx | n ∈ Z} has bounded diameter.

An isometry f ∈ Isom(X) is hyperbolic if for any x ∈ X there is a t > 0 such that

t |m− n| ≤ d( f m x, f nx)

for all m, n ∈ Z. In this case, one can show the sequence ( f nx)⊆ X converges to
infinity and the equivalence class it defines in ∂X is independent of x ∈ X. This
point in ∂X is called the attracting fixed point of f . The repelling fixed point of f
is the attracting fixed point of f −1 and is represented by the sequence ( f −nx)⊆ X.

The action of a hyperbolic isometry f ∈ Isom(X) on X has “North-South
dynamics.”

Proposition 2.7 [Gromov 1987, 8.1.G]. Suppose that f ∈ Isom(X) is a hyperbolic
isometry and that U+,U− ⊂ X are disjoint neighborhoods of the attracting and
repelling fixed points of f respectively. There exists an N ≥ 1 such that for n ≥ N :

f n(X −U−)⊆U+ and f −n(X −U+)⊆U−.

We will make use of the following definition.

Definition 2.8. Suppose X is a δ-hyperbolic space and f, g ∈ Isom(X) are hyper-
bolic isometries. Let A+, A− be the attracting and repelling fixed points of f in
∂X and let B+ and B− be the attracting and repelling fixed points of g in ∂X. We
say f and g are independent if

{A+, A−} ∩ {B+, B−} =∅.

Hyperbolic isometries that are not independent are said to be dependent.

3. A recipe for hyperbolic isometries

In this section we prove the principal tool used in the proof of the main result of this
article, producing a single element in the given group that is hyperbolic for each
action. The idea is to start with elements f and g that are hyperbolic for different
actions and then combine them into a single element f agb that is hyperbolic for both
actions. A theorem of Clay and Pettet shows that if g does not send the attracting
fixed point of f to the repelling fixed point, then f ag is hyperbolic in the first
action for large enough a. We can reverse the roles to get that f gb is hyperbolic in
the second action for large enough b. In order to simultaneously work with powers
for both f and g, we need a uniform version of this result. That is the content of
the next theorem, which generalizes [Clay and Pettet 2012, Theorem 4.1].
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Theorem 3.1. Suppose X is a δ-hyperbolic space and f ∈ Isom(X) is a hyperbolic
isometry with attracting and repelling fixed points A+ and A− respectively. Fix
disjoint neighborhoods U+ and U− in X for A+ and A− respectively. Then there is
an M ≥ 1 such that if m ≥ M and g ∈ Isom(X) then f m g is a hyperbolic isometry
whenever gU+ ∩U− =∅.

The proof follows along the lines of [Clay and Pettet 2012, Theorem 4.1]. In the
following two lemmas we assume the hypotheses of Theorem 3.1. The first lemma
is obvious in the hypothesis of [Clay and Pettet 2012, Theorem 4.1] but requires a
proof in this setting.

Lemma 3.2. Given a point x ∈U+ ∩ X , there are constants t > 0 and C ≥ 0 such
that if g ∈ Isom(X) is such that gU+ ∩U− = ∅ then d(x, f m gx) ≥ mt − C for
all m ≥ 0.

Proof. Let A = { f nx | n ∈ Z} and for z ∈ X let

dz = inf{d(x ′, z) | x ′ ∈ A}.

As f is a hyperbolic isometry, there is a constant τ ≥ 1 such that
1
τ
|m− n| ≤ d( f m x, f n x)≤ τ |m− n|.

This shows that for any z ∈ X the set πz = {x ′ ∈ A | d(x ′, z)= dz} is nonempty and
finite.

Claim 1. There is a constant D ≥ 0 such that for any z ∈ X and xz ∈ πz ,

d(x, z)≥ d(x, xz)+ d(xz, z)− D.

Proof of Claim 1. Fix a point xz ∈ πz and geodesics α from xz to x , β from z to
xz and γ from z to x . Let 1 be the geodesic triangle formed with these segments
and α̂ ∈ α, β̂ ∈ β and γ̂ ∈ γ be the internal points of 1. These points satisfy the
equalities

d(z, β̂)= d(z, γ̂ )= a,

d(x, γ̂ )= d(x, α̂)= b,

d(xz, α̂)=d(xz, β̂)= c.

As the insize of geodesic triangles is bounded by δ in a δ-hyperbolic space, we have
that d(α̂, β̂), d(β̂, γ̂ ), d(γ̂ , α̂) ≤ δ. By the Morse lemma [Bridson and Haefliger
1999, III.H.1.7], there is a constant R, only depending on τ and δ, and a point y ∈ A
such that d(α̂, y)≤ R. Thus we have

d(z, y)≤ d(z, β̂)+ d(β̂, α̂)+ d(α̂, y)≤ a+ δ+ R.

As xz ∈ πz , we have
a+ c = d(xz, z)≤ d(z, y)≤ a+ δ+ R,
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and so c ≤ δ+ R. Letting D = 2δ+ 2R we compute

d(x, z)= a+ b = (b+ c)+ (a+ c)− 2c

≥ d(x, xz)+ d(xz, z)− D. �

Claim 2. There is a constant M0 ∈ Z such that if z /∈ U− and f m x ∈ πz then
m ≥ M0.

Proof of Claim 2. Let xz = f m x ∈ πz and without loss of generality assume
that m ≤ 0. Using the constant D from Claim 1 we have:

(xz . z)x = 1
2(d(x, xz)+ d(x, z)− d(xz, z))

≥ d(x, xz)− D/2.

Suppose that i ≤ m and let α be a geodesic from f i x to x . The Morse lemma
implies that there is a y ∈ α such that d(xz, y)≤ R. Therefore,

d(x, xz)+ d(xz, f i x)≤ d(x, y)+ d(y, f i x)+ 2R

= d(x, f i x)+ 2R.

Hence for such i we have:

(xz . f i x)x = 1
2(d(x, xz)+ d(x, f i x)− d(xz, f i x))

≥ d(x, xz)− R.

This shows that (xz . A−)x ≥ d(x, xz)− R− 2δ and so for K =max{D/2, R+ 2δ}
we have

(z . A−)x ≥min{(xz . z)x , (xz . A−)x}− δ ≥ d(x, xz)− K − δ.

As z /∈U−, the Gromov product (z . A−)x is bounded independently of z and hence
d(x, xz) is also bounded. �

Now we will finish the proof of the lemma. Fix a point xg ∈ πgx . Clearly we
have f m xg ∈ π f m gx for m ≥ 0. As gx /∈U−, by Claim 2 we have xg = f M0+nx for
some n ≥ 0 and therefore,

d(x, f m xg)= d(x, f M0+n+m x)≥ d(x, f m+nx)− d(x, f M0 x)

≥
1
τ

m− τ |M0|.

As f m xg ∈ π f m gx , Claim 1 implies

d(x, f m gx)≥ d(x, f m xg)+ d( f m xg, f m gx)− D

≥
1
τ

m− (τ |M0| + D).

Since the constants τ , D and M0 only depend on f , x and the open neighborhoods
U+ and U−, the lemma is proven. �
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The next lemma replaces Lemma 4.3 in [Clay and Pettet 2012] and its proof is a
small modification of the proof there.

Lemma 3.3. Fix x ∈ X ∩U+ and for m ≥ 0 let αm be a geodesic connecting x
to f m gx. Then there is an ε≥ 0 and M1≥ 0 such that for m≥M1 the concatenation
of the geodesics αm · f m gαm is a (1, ε)-quasigeodesic.

Proof. Let dm = d(x, f m gx).
As gU+ ∩ U− = ∅ we have U+ ∩ g−1U− = ∅ and so the Gromov product

(g−1 f −m x . f m x)x is bounded independent of g and m ≥M1 for some constant M1.
Indeed, by Proposition 2.5 there is a k≥0 such that N (A+, k)⊆U+ and M1≥0 such
that f −m x ∈U− and f m x ∈N (A+, k+2δ) for m≥M1. Thus, (A+ . g−1 f −m x)x ≤k
and so (g−1 f −m x . f m x)x ≤ k+ δ as

min{(A+ . f m x)x , (g−1 f −m x . f m x)x}− δ ≤ (A+ . g−1 f −m x)x ≤ k,

for m ≥ M1.
By making M1 larger, we can assume that for m ≥ M1 we have

f m(X −U−)⊆ N (A+, k+ 4δ),

by Proposition 2.7. Since gx, x /∈U−, we have f m gx, f m x ∈ N (A+, k+ 4δ) and
so ( f m xg . f m x)x ≥ k+ 3δ. Hence (g−1 f −m x . f m gx)x ≤ k+ 2δ as

min{(g−1 f −m x . f m gx)x , ( f m gx . f m x)x} − δ ≤ (g−1 f −m x . f m x)x ≤ k + δ.

Therefore for C = k+ 2δ and m ≥ M1 we have:

d(x, f m g f m gx)= d(g−1 f −m x, g f m x)

≥ d(g−1 f −m x, x)+ d(x, f m gx)− 2C

= 2dm − 2C.

The proof now proceeds exactly as that of Lemma 4.3 in [Clay and Pettet 2012]. �

Proof of Theorem 3.1. Using Lemmas 3.2 and 3.3, the proof of Theorem 3.1
proceeds exactly like that of Theorem 4.1 in [Clay and Pettet 2012]. We repeat the
argument here.

Fix x ∈ U+ ∩ X, and let t > 0 and C ≥ 0 be the constants from Lemma 3.2,
and ε > 0 and M1 ≥ 0 be the constants from Lemma 3.3. For m ≥ M1 we set
Lm = d(x, f m gx)≥mt−C . As in Lemma 3.3, let αm : [0, Lm]→ X be a geodesic
connecting x to f m gx , and let βm = αm · f m gαm . Then define a path γ :R→ X by:

γ = · · · ( f m g)−1βm

⋃
αm

βm

⋃
f m gαm

f m gβm

⋃
( f m g)2αm

( f m g)2βm · · ·

See Figure 1.
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( f m g)−1βm

βm

( f m g)−1x f m gx ( f m g)3x ( f m g)5x

x ( f m g)2x ( f m g)4x

Figure 1. The path γ in the proof of Theorem 3.1.

By Lemma 3.3, γ is an Lm-local (1, ε)-quasigeodesic and hence for m large
enough, γ is a (λ′, ε′)-quasigeodesic from some λ′ ≥ 1 and ε′ ≥ 0; see [Bridson and
Haefliger 1999, III.H.1.7 and III.H.1.13] or [Clay and Pettet 2012, Theorem 4.4].

Let N be such that t = 1
λ′

Lm N − ε′ > 0. Then for any k 6= ` ∈ Z we have

d(( f m g)Nk x, ( f m g)N`x)≥ 1
λ′

Lm N |k− `| − ε′ ≥ t |k− `|.

Thus ( f m g)N is hyperbolic and therefore so is f m g. �

We conclude this section with an application of Theorem 3.1 to dependent
hyperbolic isometries; [Clay and Pettet 2012, Theorem 4.1] would suffice as well.

Proposition 3.4. Suppose X is a δ-hyperbolic space and f, g ∈ Isom(X) are de-
pendent hyperbolic isometries. There is an N ≥ 0 such that if n ≥ N then f gn is
hyperbolic.

Proof. Let A+, A−, B+, B− ∈ ∂X be the attracting and repelling fixed points for
f and g, respectively. Then f B+ 6= B− as one of these points is fixed by f . Thus
there are neighborhoods V+ and V− for B+ and B−, respectively, in X such that
f V+∩V− =∅. Let N be the constant from Theorem 3.1 applied to this setup after
interchanging the roles of f and g. Hence gn f , and therefore also its conjugate f gn ,
are hyperbolic when n ≥ N. �

4. Finding neighborhoods

We now need to understand when we can find neighborhoods satisfying the hy-
potheses of Theorem 3.1 for all powers (or, at least, many powers) of a given g.
There are two cases that we examine: first when g has a fixed point and second
when g is hyperbolic.

Proposition 4.1. Suppose X is a δ-hyperbolic space and f ∈ Isom(X) is a hyper-
bolic isometry with attracting and repelling fixed points A+ and A− in ∂X. Suppose
g ∈ Isom(X) has a fixed point and consider a sequence of elements (gk)k∈N ⊆ 〈g〉.
Then either

(1) there are disjoint neighborhoods U+ and U− of A+ and A−, respectively, and
a constant M ≥ 1 such that if k ≥ M then gkU+ ∩U− =∅; or
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(2) there is a subsequence (gkn ) so that gkn A+→ A−.

Further, if g A− = A− then (1) holds.

Proof. Let p ∈ X be such that gp = p. Thus gk p = p for all k ∈ N.
Fix a system of decreasing disjoint neighborhoods U k

−
of A− and U k

+
of A+

indexed by the natural numbers so that:

(x . A+)p ≥ k+ δ, for x ∈U k
+
, and

(x . A−)p ≥ k+ δ, for x ∈U k
−
.

This implies that for any two points x, x ′ ∈U k
+

we have that

(x . x ′)p ≥min{(x . A+)p, (x ′ . A+)p}− δ ≥ k.

Likewise for any two points y, y′ ∈U k
−

we have (y . y′)p ≥ k.
For each n ∈ N, define

In = {k ∈ N | gkU n
+
∩U n
−
6=∅}.

If In is a finite set for some n, then (1) holds for the neighborhoods U− =U n
−

and
U+ =U n

+
where M =max In + 1.

Otherwise, there is a strictly increasing sequence (kn)n∈N such that kn ∈ In .
Hence, for each n ∈ N, there is an element xn ∈ U n

+
such that gkn xn ∈ U n

−
. In

particular,

(4-1) (gkn xn . A−)p ≥ n+ δ.

On the other hand, since xn ∈U n
+

and gkn fixes the point p, we have

(gkn xn . gkn A+)p = (gkn xn . gkn A+)gkn p

= (xn . A+)p ≥ n+ δ.(4-2)

Combining (4-1) and (4-2), we get (gkn A+ . A−)p ≥ n for any n ∈ N. Hence (2)
holds.

Now suppose that g A− = A−. As A+ 6= A−, there is a constant D ≥ 0 such that
( f −k p . f k p)p ≤ D for all k ∈N. For any n ∈Z, we have ( f −k p . gn f −k p)p→∞

as k →∞. In particular, for each n ∈ Z, there is a constant Kn ≥ 0 such that
( f −k p . gn f −k p)p ≥ D+ δ for k ≥ Kn . Therefore (gn f −k p . f k p)p ≤ D+ δ for
k ≥ Kn as:

( f −k p . f k p)p ≥min{( f −k p . gn f −k p)p, (gn f −k p . f k p)p}− δ.

As gp = p, we have ( f −k p . gn f k p)p = (g−n f −k p . f k p)p and so we see that
( f −k p . gn f k p)p ≤ D + δ for k ≥ K−n . This shows that (2) cannot hold if
g A− = A−. �



SIMULTANEOUS CONSTRUCTION OF HYPERBOLIC ISOMETRIES 81

Proposition 4.2. Suppose X is a δ-hyperbolic space and f, g ∈ Isom(X) are inde-
pendent hyperbolic isometries. There are disjoint neighborhoods U+ and U− of A+
and A− and an N ≥ 1 such that if k ≥ N then gkU+ ∩U− =∅.

Proof. Let A+, A−, B+, B− ∈ ∂X be the attracting and repelling fixed points for f
and g, respectively. As f and g are independent, the set {A−, A+, B−, B+} consists
of four distinct points. Take mutually disjoint open neighborhoods U−,U+, V−, V+
of A−, A+, B−, B+, respectively. The North-South dynamics of the action of g
on X implies that there exists an N ≥ 1 such that gk(X − V−)⊂ V+ for all k ≥ N.
In particular, gkU+ ⊆ V+ and since V+ ∩U− = ∅ we see that gkU+ ∩U− = ∅
for k ≥ N. �

5. Simultaneously producing hyperbolic isometries

We can now apply the above propositions via a careful induction to prove the main
result.

Theorem 5.1. Suppose that {X i }i=1,...,n is a collection of δ-hyperbolic spaces, G
is a group and for each i = 1, . . . , n there is a homomorphism ρi : G→ Isom(X i )

such that

(1) there is an element fi ∈ G such that ρi ( fi ) is hyperbolic; and

(2) for each g ∈ G, either ρi (g) has a periodic orbit or is hyperbolic.

Then there is an f ∈ G such that ρi ( f ) is hyperbolic for all i = 1, . . . , n.

Proof. We will prove this by induction. The case n = 1 obviously holds by
hypothesis.

For n≥2, by induction there is an f ∈G such that for i=1, . . . , n−1 the isometry
ρi ( f ) ∈ Isom(X i ) is hyperbolic. For i = 1, . . . , n − 1, let Ai

+
, Ai
−
∈ ∂X i be the

attracting and repelling fixed points of the hyperbolic isometry ρi ( f ). By hypothesis,
there is a g ∈ G so that ρn(g) ∈ Isom(Xn) is hyperbolic. Let B+, B− ∈ ∂Xn be the
attracting and repelling fixed points of the hyperbolic isometry ρn(g). Our goal is
to find a, b ∈ N so that ρi ( f agb) is hyperbolic for each i = 1, . . . , n.

We begin with some simplifications. If ρn( f )∈ Isom(Xn) is hyperbolic then there
is nothing to prove, so assume that ρn( f ) has a periodic orbit, and so after replacing
f by a power we have that f has a fixed point. By replacing g with a power if
necessary, we can assume that for i = 1, . . . , n− 1 the isometry ρi (g) is either the
identity or has infinite order. In fact, we can assume that ρi (g) has infinite order.
Indeed, if ρi (g) is the identity, then for all a, b ∈ N we have ρi ( f agb) = ρi ( f a),
which is hyperbolic by the inductive hypothesis. Hence any powers for f and g
that work for all other indices between 1 and n− 1 necessarily work for this index
i as well. Again, by replacing g with a power if necessary, we can assume that for
each i = 1, . . . , n−1 either ρi (g)Ai

−
= Ai

−
or ρi (gb)Ai

−
6= Ai

−
for each b ∈Z−{0}.
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Finally, replacing g with a further power necessary, we can assume that for each
i = 1, . . . , n−1 if ρi (g) is not hyperbolic, then it has a fixed point. Analogously, by
replacing f with a power if necessary, we can assume that the isometry ρn( f ) has
infinite order and that either ρn( f )B− = B− or ρn( f a)B− 6= B− for a ∈ Z−{0}.

There are various scenarios depending on the dynamics of the isometries ρi (g)
and ρn( f ).

Let E ⊆ {1, . . . , n− 1} be the subset where the isometry ρi (g) has a fixed point.
Let H = {1, . . . , n− 1}− E ; this is of course the subset where ρi (g) is hyperbolic.
For i ∈ H, let Bi

+
, Bi
−
∈ ∂X i be the attracting and repelling fixed points of the

hyperbolic isometry ρi (g). We further identify the subset H ′ ⊆ H where ρi ( f ) and
ρi (g) are independent.

We first deal with the spaces where ρi (g) is hyperbolic. To this end, fix i ∈ H.
If i ∈H ′, then by Proposition 4.2 there are disjoint neighborhoods U i

+
,U i
−
⊂ X i of

Ai
+

and Ai
−

, respectively, and an Ni so that for k ≥ Ni we have ρi (gk)U i
+
∩U i
−
=∅.

Applying Theorem 3.1 with the neighborhoods U+ and U−, there is an Mi so that
for a ≥ Mi and b ≥ Ni the element ρi ( f agb) is hyperbolic.

If i ∈ H−H ′ then, by Proposition 3.4, for each a ∈N there is a constant Ci (a)≥0
such that the isometry ρi ( f agb) is hyperbolic if b ≥ Ci (a).

To create a uniform statement in the sequel, for i /∈ H ′ (including i ∈ E), set
Ci (a)= 0 for all a ∈ N. Also, set Mi = Ni = 0 for i ∈ H − H ′.

Summarizing the situation so far, we let M0 = max{Mi | i ∈ H} and N0 =

max{Ni | i ∈ H}. Then, at this point, we know that if i ∈ H, a ≥M0 and b ≥ N0

then the element ρi ( f agb) is hyperbolic so long as b ≥ Ci (a).
Next we deal with the spaces where ρi (g) has a fixed point. To this end, fix i ∈ E .
Let E ′ ⊆ E be the subset where condition (1) of Proposition 4.1 holds using

ρi (gk) = ρi (gN0+k). The analysis here is similar to the case when i ∈ H ′. By
assumption, for i ∈ E ′, there are disjoint neighborhoods U i

+
,U i
−
⊂ X i of Ai

+

and Ai
−

, respectively, and an Ni so that for k ≥ Ni we have ρi (gk)U i
+
∩U i
−
= ∅.

Applying Theorem 3.1 with the neighborhoods U i
+

and U i
−

, there is an Mi so that
for a ≥ Mi the element ρi ( f agb) is hyperbolic if b ≥ Ni .

To summarize again, let M1=max{Mi | i ∈H∪E ′} and N1=max{Ni | i ∈H∪E ′}.
Then at this point, if i ∈ H ∪ E ′, a ≥M1 and b ≥ N1 then the element ρi ( f agb) is
hyperbolic so long as b ≥ Ci (a).

It remains to deal with E−E ′; enumerate this set by {i1, . . . , i`}. As condition (1)
of Proposition 4.1 does not hold for ρi1(gk)= ρi1(g

N0+k) acting on X i1 , there is a
subsequence (gkn )⊆ (gN0+k) such that ρi1(g

kn )Ai1
+→ Ai1

−. By iteratively passing
to subsequences of (gkn ), we can assume that for all i ∈ E− E ′, either the sequence
of points (ρi (gkn )Ai

+
)⊆ ∂X i converges or is discrete.

Notice that for i ∈ E − E ′, the final statement of Proposition 4.1 implies that
ρi (g)Ai

−
6= Ai

−
. Coupling this with one of our earlier simplifications, we have
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that ρi (gb)Ai
−
6= Ai

−
for all b ∈ Z− {0}. Hence, there is a K ∈ N such that for

any i ∈ E − E ′ the sequence (gK+kn ) either satisfies ρi (gK+kn )Ai
+
→ pi 6= Ai

−
,

or (ρi (gK+kn )Ai
+
) ⊂ ∂X i is discrete. Indeed, suppose ρi (gkn )Ai

+
→ pi (nothing

new is being claimed in the discrete case). If pi is not in {ρi (gk)Ai
−
}k∈Z, then

neither is ρi (gK )pi for any K ∈ N so ρi (gK+kn )Ai
+
→ ρi (gK )pi 6= Ai

−
. Else, if

pi = ρi (gKi )Ai
−

, then for K 6= −Ki we have

ρi (gK+kn )Ai
+
→ ρi (gK+Ki )Ai

−
6= Ai

−
.

So by taking K ∈ N to avoid the finitely many such −Ki we see that the claim
holds. Without loss of generality, we can assume that K ≥ N1.

Hence for each i ∈ E − E ′, by Proposition 4.1, there are disjoint neighborhoods
U i
+
,U i
−
⊂ X of Ai

+
and Ai

−
, respectively, and an Ni so that for n ≥ Ni we have

ρi (gK+kn )U i
+
∩U i
−
=∅. Applying Theorem 3.1 with the neighborhoods U i

+
and U i

−
,

there is an Mi so that for a ≥ Mi the element ρi ( f agK+kn ) is hyperbolic if n ≥ Ni .
Putting all of this together, let M2 = max{Mi | 1 ≤ i ≤ n − 1} and let N2 =

max{Ni | i ∈ E − E ′}. Thus for all i = 1, . . . , n− 1, if a ≥M2, and n ≥ N2 then
ρi ( f agK+kn ) is hyperbolic so long as K + kn ≥ Ci (a). (Notice K + kn ≥ K ≥ N1

by assumption.)
We now work with the action on the space Xn . Interchanging the roles of f

and g and arguing as above using Proposition 4.1 to the sequence of isometries
(ρn( f `)) we obtain a subsequence ( f `m )⊆ ( f `) and constants M3 and N3 so that
ρn( f `m gb) is hyperbolic if m ≥M3 and b ≥ N3.

Fix some m ≥M3 large enough so that a = `m ≥M2 and let

C=max{Ci (a) | 1≤ i ≤ n− 1}.

Now for n ≥ N2 large enough so that b = K + kn ≥ max{C,N3} we have that
ρi ( f agb) is hyperbolic for i = 1, . . . , n as desired. �

6. Application to Out(FN)

Let FN be a free group of rank N ≥ 2. A free factor system of FN is a finite
collection A = {[A1], [A2], . . . , [AK ]} of conjugacy classes of subgroups of FN ,
such that there exists a free factorization

FN = A1 ∗ · · · ∗ AK ∗ B,

where B is a (possibly trivial) subgroup, called a cofactor. There is a natural partial
ordering among the free factor systems: AvB if for each [A] ∈A there is a [B] ∈B
such that g Ag−1 < B for some g ∈ FN . In this case, we say that A is contained in
B or B is an extension of A.

Recall, the reduced rank of a subgroup A < FN is defined as

rk(A)=min{0, rk(A)− 1}.
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We extend this to a free factor system by addition:

rk(A)=
K∑

k=1

rk(Ak),

where A = {[A1], [A2], . . . , [AK ]}. An extension A v B is called a multi-edge
extension if rk(B)≥ rk(A)+ 2.

The group Out(FN ) naturally acts on the set of free factor systems as follows.
Given A= {[A1], [A2], . . . , [AK ]}, and ϕ ∈ Out(FN ) choose a representative 8 ∈
Aut(FN ) of ϕ, a realization FN = A1 ∗ · · · ∗ AK ∗ B of A and define ϕ(A) to
be the free factor system {[8(A1)], . . . , [8(AK )]}. Given a free factor system
A consider the subgroup Out(FN ;A) of Out(FN ) that stabilizes the free factor
system A. The group Out(FN ;A) is called the outer automorphism group of FN

relative to A, or the relative outer automorphism group if the free factor system A is
clear from context. If A= {[A]}, there is a well-defined restriction homomorphism
Out(FN ;A)→Out(A), which we denote by ϕ 7→ ϕ |A [Handel and Mosher 2013b,
Fact 1.4].

For a subgroup H< Out(FN ) and H-invariant free factor systems F1 v F2, we
say that H is irreducible with respect to the extension F1vF2 if for any H-invariant
free factor system F such that F1vF vF2, it follows that either F =F1 or F =F2.
We sometimes say that H is relatively irreducible if the extension is clear from the
context. The subgroup H is relatively fully irreducible if each finite index subgroup
H′ <H is relatively irreducible. For an individual element ϕ ∈ Out(FN ), we say
that ϕ is relatively (fully) irreducible if the cyclic subgroup 〈ϕ〉 is relatively (fully)
irreducible.

In close analogy with Ivanov’s classification [1992] of subgroups of mapping
class groups, in a series of papers Handel and Mosher gave a classification of finitely
generated subgroups of Out(FN ) [2013a; 2013b; 2013c; 2013d; 2013e].

Theorem 6.1 [Handel and Mosher 2013a, Theorem D]. For each finitely generated
subgroup H< IAN (Z/3) < Out(FN ), each maximal H-invariant filtration by free
factor systems

∅= F0 @ F1 @ · · ·@ Fm = {[FN ]},

and each i = 1, . . . ,m such that Fi−1 @ Fi is a multi-edge extension, there exists
ϕ ∈H which is irreducible with respect to Fi−1 @ Fi .

Here, IAN (Z/3) is the finite index subgroup of Out(FN ) which is the kernel of
the natural surjection

p : Out(FN )→ H 1(FN ,Z/3)∼= GL(N ,Z/3).

For elements in IAN (Z/3), irreducibility is equivalent to full irreducibility hence in
the above statement we can also conclude that ϕ is fully irreducible [Handel and
Mosher 2013a, Theorem B].
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Handel and Mosher conjecture that there is a single ϕ ∈ H which is (fully)
irreducible for each multi-edge extension Fi−1 @ Fi [Handel and Mosher 2013a,
Remark following Theorem D]. The goal of this section is to prove this conjecture.
Invoking theorems of Handel–Mosher and Horbez–Guirardel, this is (essentially) an
immediate application of Theorem 5.1. We state the setup and their theorems now.

Definition 6.2. Let A be a free factor system of FN . The complex of free factor
systems of FN relative to A, denoted FF(FN ;A), is the geometric realization of the
partial ordering v restricted to proper free factor systems that properly contain A.

If A={[A1],[A2],...,[AK ]} is a free factor system for FN , its depth is defined as:

DFF (A)= (2N − 1)−
K∑

k=1

(2 rk(Ak)− 1).

The free factor system A is nonexceptional if DFF (A)≥ 3.

Theorem 6.3 [Handel and Mosher 2014, Theorem 1.2]. For any nonexceptional free
factor system A of FN , the complex FF(FN ;A) is positive-dimensional, connected
and δ-hyperbolic.

Although the group Out(FN ) does not act on FF(FN ;A), the natural subgroup
Out(FN ;A) associated to the free factor system A acts on FF(FN ;A) by simplicial
isometries. In a companion paper Handel and Mosher characterize the elements of
Out(FN ;A) that act as a hyperbolic isometry of FF(FN ;A):
Theorem 6.4 [Handel and Mosher ≥ 2018]. For any nonexceptional free factor
system A of FN , ϕ ∈ Out(FN ;A) acts as a hyperbolic isometry on FF(FN ;A) if
and only if ϕ is fully irreducible with respect to A@ {[FN ]}.

Remark 6.5. An alternative proof of Theorem 6.4 is given by Guirardel and Horbez
[2017] using the description of the boundary of the relative free factor complex.
Further, with a slight modification of the definition of the relative free factor complex,
both Handel and Mosher and Guirardel and Horbez can additionally prove that
the theorem holds for the only remaining multi-edge configuration which is when
A= {[A1], [A2], [A3]} and FN = A1∗ A2∗ A3. Yet another proof of Theorem 6.4 is
given by Radhika Gupta [2016] using dynamics on relative outer space and relative
currents.

We are now ready to prove our application:

Theorem 6.6. For each finitely generated subgroup H < IAN (Z/3) < Out(FN )

and each maximal H-invariant filtration by free factor systems

∅= F0 @ F1 @ · · ·@ Fm = {[FN ]},

there is an element ϕ ∈H such that for each i = 1, . . . ,m such that Fi−1 @ Fi is a
multi-edge extension, ϕ is irreducible with respect to Fi−1 @ Fi .
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Proof. Let I be the subset of indices i such that Fi−1@Fi is a multi-edge extension.
Given i ∈ I, since H< IAN (Z/3), each component of Fi−1 and Fi is H-invariant

[Handel and Mosher 2013c, Lemma 4.2]. Moreover, by the argument at the be-
ginning of Section 2.1 in [Handel and Mosher 2013e], since H is irreducible
with respect to Fi−1 @ Fi (this follows from maximality of the filtration) there is
precisely one component [Bi ] ∈ Fi that is not a component of Fi−1. Let Âi be
the maximal subset of Fi−1 such that Âi @ {[Bi ]}. Notice that this extension is
again multi-edge, indeed rk(Bi )− rk(Âi )= rk(Fi )− rk(Fi−1). The system Âi can
be represented by {[Ai,1], . . . , [Ai,Ki ]} where Ai,k < Bi for each k. Let Ai be the
free factor system in the subgroup Bi consisting of the conjugacy classes in Bi of
the subgroups Ai,k . Then a given ϕ ∈H is irreducible with respect to Âi @ {[Bi ]},
equivalently Fi−1 @ Fi as the remaining components are the same, if and only if
the restriction ϕ |Bi∈ Out(Bi ;Ai ) is irreducible relative to Ai .

For i ∈ I, let X i = FF(Bi ;Ai ) and consider the action homomorphism

ρi :H→ Isom(X i )

defined by ρi (ϕ)= ϕ |Bi . These spaces are δ-hyperbolic for some δ by Theorem 6.3,
and by the above discussion and Theorem 6.4, ρi (ϕ) is a hyperbolic isometry if
ϕ ∈ H is irreducible with respect to Fi−1 @ Fi . If ρi (ϕ) is not irreducible with
respect to Fi−1@Fi , then ρi (ϕ) fixes a point in X i . By Theorem 6.1, for each i ∈ I,
there exists some ϕi ∈H that is irreducible with respect to Fi−1 @ Fi and hence
ρi (ϕi ) is a hyperbolic isometry.

We are now in the model situation of Theorem 5.1. We conclude that there is a
ϕ ∈H such that ρi (ϕ) is a hyperbolic isometry for all i ∈ I. By the above discussion,
this means that ϕ is (fully) irreducible with respect to Fi−1 @ Fi for each i ∈ I as
desired. �
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A LOCAL WEIGHTED AXLER–ZHENG THEOREM IN Cn

ŽELJKO ČUČKOVIĆ, SÖNMEZ ŞAHUTOĞLU AND YUNUS E. ZEYTUNCU

The well-known Axler–Zheng theorem characterizes compactness of finite
sums of finite products of Toeplitz operators on the unit disk in terms of
the Berezin transform of these operators. Subsequently this theorem was
generalized to other domains and appeared in different forms, including do-
mains in Cn on which the ∂-Neumann operator N is compact. In this work
we remove the assumption on N, and we study weighted Bergman spaces
on smooth bounded pseudoconvex domains. We prove a local version of the
Axler–Zheng theorem characterizing compactness of Toeplitz operators in
the algebra generated by symbols continuous up to the boundary in terms
of the behavior of the Berezin transform at strongly pseudoconvex points.
We employ a Forelli–Rudin type inflation method to handle the weights.

1. Introduction

1.1. History. In the theory of Bergman space operators on the open unit disk D, the
Axler–Zheng theorem [1998] provides an important characterization of compactness
of a large class of operators in terms of their Berezin transforms. Specifically this
theorem states that if S is a finite sum of finite products of Toeplitz operators on the
Bergman space A2(D) whose symbols are in L∞(D), then S is compact if and only
if BS(z), the Berezin transform of S, tends to 0 as |z| → 1. This theorem has been
extended by Suárez [2007] to include all operators in the Toeplitz algebra in the unit
ball in Cn. Engliš [1999] extended the Axler–Zheng theorem to irreducible bounded
symmetric domains and the unit polydisk. Mitkovski, Suárez and Wick [Mitkovski
et al. 2013] proved a weighted version of Suárez’s result on the unit ball in Cn.
Using the techniques of several complex variables, Čučković and Şahutoğlu [2013]
proved a version of the Axler–Zheng theorem on smooth bounded pseudoconvex
domains on which the ∂-Neumann operator is compact. The use of the ∂ techniques
required that the operators in their theorem belong to the algebra T (�) which is
the norm closed algebra generated by {Tφ : φ ∈ C(�)}. Recently, Kreutzer [2014]
generalized Čučković and Şahutoğlu’s result in a more abstract setting.
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Our aim is to extend the previous result of Čučković and Şahutoğlu in two ways:
Firstly, we want to remove the hypothesis of the compactness of the ∂-Neumann
operator on �. We also want to consider weighted Bergman spaces. Our main
theorem gives a local version of the Axler–Zheng theorem for a wide class of
domains in Cn. The novelty of our approach is to use the inflation of the domain
argument pioneered by Forelli and Rudin [1974] and Ligocka [1989]. The second
important ingredient is the B-regularity of the inflated domain which will give us
the compactness of ∂ , thus replacing the assumption on the compactness of the
∂-Neumann operator. As a corollary we obtain a weighted version of the Axler–
Zheng theorem for strongly pseudoconvex domains, which itself is a new result.

1.2. Preliminaries. Let � be a C1-smooth bounded pseudoconvex domain in Cn

with a defining function ρ. We denote the boundary of � by b�. Let L2(�, (−ρ)r )

denote the square integrable functions on � with respect to the measure (−ρ)r dV
where dV denotes the Lebesgue measure, r ≥ 0, and

A2(�, (−ρ)r )= { f ∈ L2(�, (−ρ)r ) : f is holomorphic}.

Since A2(�, (−ρ)r ) is a closed subspace of L2(�, (−ρ)r ), a bounded orthogonal
projection,

Pr : L2(�, (−ρ)r )→ A2(�, (−ρ)r ),

(called Bergman projection) exists. Pr is an integral operator of the form

Pr ( f )(z)=
∫
�

K r (z, ζ ) f (ξ)(−ρ)r dV

for f ∈ L2(�, (−ρ)r ). The integral kernel K r (z, ξ) is called the Bergman kernel
and the normalized Bergman kernel kr

z (ξ) is defined as

kr
z (ξ)=

K r (ξ, z)
√

K r (z, z)
.

When r = 0 we drop the superscript r ; that is, K = K� denotes the unweighted
Bergman kernel and kz denotes the unweighted normalized Bergman kernel. For a
bounded operator T on A2(�, (−ρ)r ), the Berezin transform Br T of T is defined as

Br T (z)= 〈T kr
z , kr

z 〉r ,

where 〈· , ·〉r is the inner product on A2(�, (−ρ)r ).
For φ ∈ L∞(�), the weighted Toeplitz operator T r

φ and the weighted Hankel
operator H r

φ are defined as
T r
φ = Pr Mφ,

H r
φ = (I − Pr )Mφ,

where Mφ : A2(�, (−ρ)r )→ L2(�, (−ρ)r ) denotes the multiplication by φ.
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We use T (�, (−ρ)r ) to denote the norm closed subalgebra of bounded linear
operators on A2(�, (−ρ)r ) generated by the set of Toeplitz operators

{T r
φ : φ ∈ C(�)}.

For φ ∈ L∞ we define Brφ = Br Tφ .
In this paper we look at weighted Hankel and Toeplitz operators on various

domains and various weighted spaces. Whenever we need to clarify where these
operators are defined, we will use appropriate subscripts and superscripts. In
particular, when we need to emphasize the underlying domain we will write
P�, K�(z, ξ), H�

φ , and T�
φ , where the Bergman spaces are unweighted. When we

have weighted spaces and we need to indicate the domain and the weight we will
write P�,r, K r

�(z, ξ), H�,r
φ , and T�,r

φ .

1.3. Main result. We start with the following two definitions that capture the local
structure of the main theorem. To motivate the following definition, if f j → f
weakly in A2(�) then for any point p ∈ b� and r > 0 one can show that f j → f
weakly in A2(�∩B(p, r))where B(p, r) is the open ball centered at p with radius r .

Definition 1. Let r ≥ 0 and � be a C2-smooth bounded pseudoconvex domain in
Cn with a defining function ρ. Furthermore, let { f j } ⊂ A2(�, (−ρ)r ) be a sequence
and f ∈ A2(�, (−ρ)r ). We say that { f j } converges to f weakly about strongly
pseudoconvex points if:

(i) f j → f weakly in A2(�, (−ρ)r ) as j→∞.

(ii) When 0�, the set of the weakly pseudoconvex points in b�, is nonempty, there
exists an open neighborhood U of 0� such that ‖ f j − f ‖L2(U∩�,(−ρ)r )→ 0 as
j→∞.

We note that on strongly pseudoconvex domains, sequences converging weakly
about strongly pseudoconvex points and weakly convergent sequences coincide.

Definition 2. Let r , �, and ρ be as above. Furthermore, let T : A2(�, (−ρ)r )→

A2(�, (−ρ)r ) be a bounded linear operator. We say that T is compact about
strongly pseudoconvex points if T f j → T f in A2(�, (−ρ)r ) whenever f j → f
weakly about strongly pseudoconvex points.

Remark 3. As shown in Proposition 13 below, it is interesting that any Hankel
operator with a symbol continuous on the closure of the domain is compact about
strongly pseudoconvex points.

With the help of these two definitions, we state our main result as follows.

Theorem 4. Let r be a nonnegative real number, � be a C2-smooth bounded
pseudoconvex domain in Cn with a defining function ρ, and T ∈ T (�, (−ρ)r ).
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Then T is compact about strongly pseudoconvex points on A2(�, (−ρ)r ) if and
only if limz→p Br T (z)= 0 for any strongly pseudoconvex point p ∈ b�.

If � is a strongly pseudoconvex domain then we have the following corollary.

Corollary 5. Let r be a nonnegative real number, � be a C2-smooth bounded
strongly pseudoconvex domain in Cn with a defining function ρ, and T be an
element of T (�, (−ρ)r ). Then T is compact on A2(�, (−ρ)r ) if and only if
limz→p Br T (z)= 0 for any p ∈ b�.

Remark 6. In the case of the unit ball Bn in Cn and ρ(z)= |z|2− 1, we partially
recover [Mitkovski et al. 2013, Theorem 1.1]. Unlike the arguments on the unit
ball, the proof of Corollary 5 does not require any explicit form for the weight or
the weighted Bergman kernel.

2. Proof of Theorem 4

In this section, before we prove Theorem 4, we present some propositions and
lemmas that encapsulate the technical details of the proof.

Proposition 7. Let � be a C2-smooth bounded pseudoconvex domain in Cn and
{T j } be a sequence of operators compact about strongly pseudoconvex points
that converges to T in the operator norm. Then T is compact about strongly
pseudoconvex points.

Proof. Let { f j } be a sequence in A2(�, (−ρ)r ) that converges to 0 weakly about
strongly pseudoconvex points. Since f j → 0 weakly there exists C > 0 such that

sup{‖ f j‖ : j = 1, 2, 3, . . .} ≤ C.

Then for any k we have

‖T f j‖ ≤ ‖(T − Tk) f j‖+‖Tk f j‖ ≤ C‖T − Tk‖+‖Tk f j‖.

Let ε > 0 be given. Since T j → T in the operator norm, we choose kε such that
‖T − Tkε‖ ≤ ε. Then

lim sup
j→∞

‖T f j‖ ≤ Cε+ lim sup
j→∞

‖Tkε f j‖ ≤ Cε.

Since ε > 0 was arbitrary, we conclude that T f j → 0. That is, T is compact about
strongly pseudoconvex points. �

One of the key ideas in the proof is to use an inflated domain over� to understand
the weighted Bergman spaces. For this purpose, unless stated otherwise, for the
rest of the paper, � will be a bounded pseudoconvex domain in Cn with C2-smooth
boundary, ρ will be a defining function for �, and

(1) �p
r =

{
(z, w) ∈ Cn

×Cp
: z ∈� and ρ(z)+ |w1|

2p/r
+ · · ·+ |wp|

2p/r < 0
}
,
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where p is a positive integer and r is a real number such that 0 < r ≤ p. For a
function f ∈ A2(�, (−ρ)r ), we let F(z, w) = f (z) be the trivial extension of f
to �p

r . It easily follows from an iterated integral argument that F ∈ A2(�
p
r ).

The following proposition is interesting in its own right as it gives a relationship
between the Bergman kernels of the inflated domain and base.

Proposition 8. Using the notation above,

K r
�(z, ξ)= cp,r K�

p
r
(z, 0; ξ, 0),

where cp,r =
∫
|w̃1|

2p/r
+···+|w̃p |

2p/r<1 dV (w̃) and K r
�(z, ξ) is the weighted Bergman

kernel of � with weight (−ρ)r.

Proof. We will follow a standard inflation argument (see, for instance, [Forelli
and Rudin 1974; Ligocka 1989]). Since �p

r is a Hartogs domain with base �, the
Bergman kernel of �p

r can be written as

K�
p
r
(z, w; ξ, η)= K�

p
r
(z, 0; ξ, 0)+

∑
|J |≥1

K J (z, ξ)w JηJ ,

where J is a multiindex with nonnegative entries. Then for f ∈ A2(�, (−ρ)r ) and
z ∈� we have (F below is the trivial extension of f )

(2) f (z)=
∫
�

p
r

K�
p
r
(z, 0; ξ, 0)F(ξ, η) dV (ξ, η)

+

∑
|J |≥1

∫
�

p
r

K J (z, ξ)w JηJ F(ξ, η) dV (ξ, η).

However, the integrals under the sum on the right-hand side above all vanish.
Using the change of variables w̃ j = w j/(−ρ(z))r/2p, one can compute that∫

|w1|2p/r+···+|wp |2p/r<−ρ(z)
dV (w)= (−ρ(z))r

∫
|w̃1|2p/r+···+|w̃p|2p/r<1

dV (w̃).(3)

We denote

cp,r =

∫
|w̃1|2p/r+···+|w̃p|2p/r<1

dV (w̃).(4)

Then using (2), (3), and (4) we get

f (z)=
∫
�

p
r

K�
p
r
(z, 0; ξ, 0)F(ξ, η) dV (ξ, η)

= cp,r

∫
�

K�
p
r
(z, 0; ξ, 0) f (ξ)(−ρ(ξ))r dV (ξ).

Therefore, cp,r K�
p
r
(z, 0; ξ, 0)= K r

�(z, ξ). �
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For a C2-smooth function ρ around a point P ∈ Cn, X = (x1, . . . , xn) ∈ Cn , and
Y = (y1, . . . , yn) ∈ Cn, we define the complex Hessian of ρ at P as

Hρ(P; X, Y )=
n∑

j,k=1

∂2ρ(P)
∂z j∂zk

x j yk .

Furthermore, we use the notation Hρ(P; X)= Hρ(P; X, X).

Lemma 9. Let � be a C2-smooth bounded pseudoconvex domain in Cn, z0 ∈ b�
be a strongly pseudoconvex point, and �p

r be defined as in (1). Then there exists
s > 0 such that (z, w) ∈ b�p

r is strongly pseudoconvex for |z− z0|< s and wk 6= 0
for all 1≤ k ≤ p.

Proof. Let ρ̃(z, w) = ρ(z)+ λ(w) where λ(w) = |w1|
2p/r
+ · · · + |wp|

2p/r and
p ≥ r an integer. Then ρ̃ is a C2-smooth function. Assume that Q = (z, w) ∈ b�p

r

is near z0 and X is a complex tangential vector to b�p
r at Q. Then X can be written

as X = Xn+X p where Xn and X p are the components of X in the z andw variables,
respectively. Then

Hρ̃(Q; X)= Hρ(z; Xn)+ Hρ̃(Q; Xn, X p)+ Hρ̃(Q; X p, Xn)+ Hλ(w; X p).

However, Hρ̃(Q; Xn, X p) = Hρ̃(Q; X p, Xn) = 0 as z and w are decoupled in ρ̃.
Then

Hρ̃(Q; X)= Hρ(z; Xn)+ Hλ(w; X p).

Let π denote the projection from a neighborhood of b� in Cn onto b�. Then
Xn = X t + Xν where X t is a tangential vector to b� at π z and Xν is a vector
complex normal to b� at π z. Then

Hρ(z; Xn)= Hρ(z; X t)+ Hρ(z; X t , Xν)+ Hρ(z; Xν, X t)+ Hρ(z; Xν).

We note that the complex Hessian Hρ changes continuously and w→ 0 as z→ z0

(here we assume (z, w) ∈ b�p
r ). Furthermore, Xν→ 0 as z→ z0 (as the complex

normal to b� at z0 is parallel to the complex normal to b�p
r at (z0, 0)). Then, using

the fact that z0 is a strongly pseudoconvex point, we conclude that there exists s > 0
so that

Hρ(z; Xn)≥
Hρ(π z; X t)

2
> 0

for |z− z0| < s and X t 6= 0. Also Hλ(w; X p) > 0 whenever X p 6= 0 and wk 6= 0
for all k as λ is strictly plurisubharmonic whenever wk 6= 0 for all k. Therefore,
Hρ̃(Q; X) > 0 for Q = (z, w)∈ b�p

r such that |z− z0|< s and wk 6= 0 for all k. �

The following corollary follows from the previous lemma together with the fact
that �p

r has C2-smooth boundary for 0< r ≤ p.
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Corollary 10. Let� be a C2-smooth bounded pseudoconvex domain in Cn, z0∈b�
be a strongly pseudoconvex point, and �p

r be defined as in (1). Then there exists
ε > 0 such that B((z0, 0), ε)∩�p

r is pseudoconvex.

Next we will prove some statements about compactness of single Toeplitz and
Hankel operators.

Lemma 11. Let φ ∈ L∞(�), { f j } be a bounded sequence in A2(�, (−ρ)r ) and
Fj be the trivial extension of f j to �p

r for each j where �p
r is defined as in (1).

Assume that {H�
p
r

φ Fj } is convergent in L2(�
p
r ). Then {H�,r

φ f j } is convergent in
L2(�, (−ρ)r ).

Proof. We will abuse the notation and denote the trivial extension of φ to �p
r by φ.

We assume that {H�
p
r

φ Fj } is convergent (and hence Cauchy). Let

G j (z, w)= (H
�

p
r

φ Fj )(z, w)

and g j (z)= G j (z, 0). Then G j is holomorphic in w because

∂G j

∂wk
=

∂

∂wk
(I − P�

p
r )(Fjφ)=

∂(Fjφ)

∂wk
= 0

for all j and 1 ≤ k ≤ p. We note that ∂(Fjφ)/∂wk = 0 as Fjφ is independent
of wk . Then |G j (z, w)−Gk(z, w)|2 is subharmonic in w and using the mean value
property for subharmonic functions together with (3) and (4) one can show that

|g j (z)− gk(z)|2

≤
1

cp,r (−ρ(z))r

∫
|w1|2p/r+···+|wp|2p/r<−ρ(z)

|G j (z, w)−Gk(z, w)|2 dV (w)

for j = 1, 2, . . . and z ∈�. By integrating over � we get

cp,r‖g j − gk‖
2
L2
(0,1)(�,(−ρ)

r )
≤ ‖G j −Gk‖

2
L2
(0,1)(�

p
r )

for j, k= 1, 2, . . . . Then {g j } is a Cauchy sequence in L2
(0,1)(�, (−ρ)

r ) (and hence
convergent) because ‖G j −Gk‖L2

(0,1)(�
p
r )
→ 0 as j, k→∞.

Let h j (z)= P�
p
r (φFj )(z, 0). Then

cr,p‖h j‖
2
L2(�,(−ρ)r )

≤‖P�
p
r (φFj )‖

2
L2(�

p
r )
≤‖φFj‖

2
L2(�

p
r )
=cr,p‖φ f j‖

2
L2(�,(−ρ)r )

<∞

for each j. Hence, h j ∈ A2(�, (−ρ)r ) and (I − P�,r )h j = 0 for all j. We get
equality between the last terms above because Fj and φ are independent of w. Now

(I − P�,r )g j = (I − P�,r )(φ f j − P�
p
r (φFj )( · , 0))

= (I − P�,r )(φ f j )− (I − P�,r )(h j )= H�,r
φ f j .

Therefore, the sequence {H�,r
φ f j } is convergent in L2(�, (−ρ)r ). �
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Lemma 12. Let r be a nonnegative real number and � be a C2-smooth bounded
pseudoconvex domain in Cn with a defining function ρ. Assume that φ ∈ C(�) such
that φ(z)= 0 if z is a strongly pseudoconvex point in b�. Then T r

φ is compact about
strongly pseudoconvex points on A2(�, (−ρ)r ).

Proof. Let { f j } be a sequence in A2(�, (−ρ)r ) that (without loss of generality)
converges to 0 weakly about strongly pseudoconvex points. Then f j → 0 weakly
as j→∞ and there is a neighborhood U of weakly pseudoconvex points in b�
such that

‖ f j‖L2(U∩�,(−ρ)r )→ 0 as j→∞.

Using the uniform boundedness principle and the fact that f j → 0 weakly we
conclude that the sequence { f j } is bounded in A2(�, (−ρ)r ). Furthermore, Cauchy
estimates together with Montel’s theorem (and the fact that f j → 0 weakly) imply
that { f j } converges to zero uniformly on compact subsets of �. Using the fact that
φ=0 on strongly pseudoconvex points, one can show that φ f j→0 in A2(�, (−ρ)r ).
Therefore, T r

φ f j → 0 in A2(�, (−ρ)r ). That is, T r
φ is compact about strongly

pseudoconvex points on A2(�, (−ρ)r ). �

Let � be a domain in Cn. Then z ∈ b� is said to have a holomorphic (plurisub-
harmonic) peak function if there exists a holomorphic (plurisubharmonic) f that
is continuous on � such that f (z) = 1 and | f (w)| < 1 (or f (w) < 1 if f is
plurisubharmonic) for w ∈� \ {z}.

Next we show that any Hankel operator with a symbol continuous on the closure
of the domain is compact about strongly pseudoconvex points.

Proposition 13. Let r be a nonnegative real number, � be a C2-smooth bounded
pseudoconvex domain in Cn with a defining function ρ, and φ ∈ C(�). Then

H r
φ : A2(�, (−ρ)r )→ L2(�, (−ρ)r )

is compact about strongly pseudoconvex points.

Proof. We will prove more (see Corollary 14 below). First of all, for any φ ∈ C(�)
there exists {φ j }⊂C1(�) such that φ j→φ uniformly on� as j→∞. Furthermore,
{H r

φ j
} converges to H r

φ in the operator norm and, by Proposition 7, if H r
φ j

is compact
about strongly pseudoconvex points for every j then so is H r

φ. Therefore, for the
rest of the proof we will assume that φ ∈ C1(�). Secondly, the proof for r = 0
does not require the inflation argument in the next paragraph and hence it is easier
than the case r > 0. Since both proofs are similar, except for the inflation argument,
in the rest of the proof, we will assume that r > 0.

Let z0 ∈ b� be a strongly pseudoconvex point. Then, by Corollary 10, the
domain B((z0, 0), ε) ∩�p

r is pseudoconvex for small ε. Let ε > 0 be such that
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X0 = b�∩ B(z0, ε)⊂ Cn consists of strongly pseudoconvex points. Let us define

Y = b�p
r ∩ B((z0, 0), ε)∩ {(z, w) ∈ Cn

×Cp
: wk = 0 for some 1≤ k ≤ p},

X j = b�p
r ∩ B((z0, 0), ε)∩ {(z, w) ∈ Cn

×Cp
: |wk | ≥ 1/j for all 1≤ k ≤ p},

for j = 1, 2, 3, . . . . Then X0 is B-regular as any point in X0 has a holomorphic
(hence plurisubharmonic) peak function on�⊂Cn. The same function (by extending
it trivially) is also a plurisubharmonic peak function on�p

r ⊂Cn+p. Hence, X0×{0}
is B-regular as a compact set in Cn+p. Furthermore, Lemma 9 implies that we can
shrink ε, if necessary, so that X j ’s are composed of strongly pseudoconvex points
for j ≥ 1. Hence, X j is B-regular for every j = 0, 1, 2, . . . .

Next we will apply a similar idea to Y in lower dimensions. Let us define
Y1 =

⋃p
m=1 Y m

1 where

Y m
1 = b�p

r ∩ B((z0, 0), ε)∩ {(z, w) ∈ Cn
×Cp

: wk = 0 for k 6= m}.

We can write Y m
1 as the union of X0×{0} together with the compact sets

b�p
r ∩ B((z0, 0), ε)∩ {(z, w) ∈ Cn

×Cp
: |wm | ≥ 1/j, wk = 0 for k 6= m}

for j = 1, 2, 3, . . . . However, we can think of the sets above as subsets in Cn
×C

and (by Lemma 9) they are composed of strongly pseudoconvex points. Hence,
they are B-regular. Then [Sibony 1987, Proposition 1.9] implies that each Y m

1 is
B-regular as it is a countable union of B-regular sets. Hence, applying Sibony’s
proposition again, we conclude that Y1 is B-regular. Similarly, we can define Y2⊂ Y
as a countable union of compact sets where all but at most two wk are equal to 0.
Using the same reasoning above adopted for Y2 we can conclude that Y2 is B-regular.
In a similar fashion, we can define Yl for 1≤ l ≤ p− 1 and prove that all of them
are B-regular. Hence Y =

(⋃p
l=1 Yl

)
∪ (X0×{0}) is B-regular. Then

b(�p
r ∩ B((z0, 0), ε))⊂ Y ∪

(⋃∞

j=1
X j

)
∪ (X0×{0})∪ bB((z0, 0), ε)

is B-regular (satisfies property (P) in Catlin’s terminology) and, therefore, the
∂-Neumann operator on �p

r ∩ B((z0, 0), ε) is compact [Straube 2010, Theorem 4.8;
Catlin 1984]. Then H�

p
r ∩B((z0,0),ε)

φ is compact (see [Straube 2010, Proposition 4.1])
and Lemma 11 implies that H�∩B((z0,0),ε),r

φ is compact.
Next we will use local compact solution operators to show that H r

φ is compact
about strongly pseudoconvex points. Let { f j } ⊂ A2(�, (−ρ)r ) be a sequence
weakly convergent about strongly pseudoconvex points. Then there exists an open
neighborhood U of the set of weakly pseudoconvex points in b� such that

(i) { f j } is weakly convergent,

(ii) ‖ f j − fk‖L2(U∩�,(−ρ)r )→ 0 as j, k→∞.
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Let us choose {pk : k = 1, . . . ,m} ⊂ b�\U and εk > 0 (for k = 1, . . . ,m) such that

(i) b� \U ⊂
⋃m

k=1 B(pk, εk),

(ii) H k,r
φ =H B(pk ,εk)∩�,r

φ is compact on A2(B(pk, εk)∩�, (−ρ)
r ) for k=1, . . . ,m.

Let us choose a strongly pseudoconvex domain �−1 b� and smooth cut-off func-
tions χ−1 ∈ C∞0 (�−1), χ0 ∈ C∞0 (U ), and χk ∈ C∞0 (B(pk, ε)) for k = 1, . . . ,m
such that

∑m
k=−1 χk ≡ 1 on �.

Let H−1,r
φ = H�−1,r

φ , H 0,r
φ = HU∩�,r

φ , and g j =
∑m

k=−1 χk H k,r
φ f j . We note that

H−1,r
φ is compact as �−1 b� is strongly pseudoconvex (and ρ < 0 on the closure

of �−1); {H 0,r
φ f j } is convergent as { f j } is convergent in L2(U ∩�, (−ρ)r ); and by

the previous part of this proof, H k,r
φ is compact for each k = 1, . . . ,m. Therefore,

{g j } is convergent in L2(�, (−ρ)r ). Furthermore,

∂g j = f j∂φ+
∑m

k=−1
(∂χk)H

k,r
φ f j .

Then
{∑m

k=−1(∂χk)H
k,r
φ f j

}
is a convergent sequence of ∂-closed (0, 1)-forms as

both ∂g j and f j∂φ are ∂-closed. Let Z r
: L2

(0,1)(�, (−ρ)
r )→ L2(�, (−ρ)r ) be a

bounded linear solution operator to ∂ (see [Hörmander 1965]). Let

h j = g j − Z r
∑m

k=−1
(∂χk)H

k,r
φ f j .

Then {h j } is convergent and ∂h j = f j∂φ. So by taking projection on the orthogonal
complement of A2(�, (−ρ)r ) we get (I − Pr )h j = H r

φ f j . Therefore, {H r
φ f j } is

convergent. �

Using the proof of the proposition above we get the following corollary.

Corollary 14. Let r be a nonnegative real number and � be a C2-smooth bounded
pseudoconvex domain in Cn with a defining function ρ. Assume that � satisfies
property (P) of Catlin (or B-regularity of Sibony). Then

(i) ∂ has a compact solution operator on K 2
(0,1)(�, (−ρ)

r ), the weighted ∂-closed
(0, 1)-forms,

(ii) H r
φ : A2(�, (−ρ)r )→ L2(�, (−ρ)r ) is compact for all φ ∈ C(�).

Proof. Since (ii) follows from (i), we will only prove (i). By a theorem of Diederich
and Fornæss [1977], there exists a C2-smooth defining function ρ1 and 0< η ≤ 1
such that −(−ρ1)

η is a strictly plurisubharmonic exhaustion function for �. Since
ρ1 and ρ are comparable on � it is enough to prove that ∂ has a compact solution
operator on K 2

(0,1)(�, (−ρ1)
r ).

Let s = r/η ≥ 0 and q be an integer such that s ≤ q . We define

�q
s =

{
(z, w) ∈ Cn

×Cq
: −(−ρ1(z))η+ λ(w) < 0

}
,
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where λ(w)= |w1|
2q/s
+· · ·+|wq |

2q/s. Then−(−ρ1)
η
+λ is a bounded C2-smooth

plurisubharmonic function and �q
s is pseudoconvex. Furthermore, the first part of

the proof of Proposition 13 shows that �q
s satisfies property (P).

Let { f j } be a bounded sequence in K 2
(0,1)(�, (−ρ1)

r ). Then {Fj } is a bounded
sequence in K 2

(0,1)(�
q
s ). As shown in the first part of this proof,�q

s is a bounded (not
necessarily C2-smooth) pseudoconvex domain with property (P). Then {∂∗N�

q
s Fj }

has a convergent subsequence in L2(�
q
s ) where N�

q
s is the ∂-Neumann opera-

tor on L2
(0,1)(�

q
s ). By the proof of Proposition 8 and the fact that ∂∗N�

q
s Fj is

holomorphic in w, we conclude that ∂∗N�
q
s Fj ( · , 0) ∈ L2(�, (−ρ1)

r ). Further,
∂∂∗N�

q
s Fj ( · , 0)= f j for all j and {∂∗N�

q
s Fj ( · , 0)} has a convergent subsequence

in L2(�, (−ρ1)
r ). Therefore, ∂ has a compact solution operator R∂∗N�

q
s E on

K 2
(0,1)(�, (−ρ1)

r ) where E is the trivial extension operator and R is the restriction
from �

q
s onto �. �

The following lemma is essentially contained in the proof of [Arazy and Engliš
2001, Proposition 1.3]. We present it here for the convenience of the reader.

Lemma 15. Let r be a nonnegative real number, � be a bounded domain in Cn,
and φ ∈ C(�). Assume that z0 ∈ b� has a holomorphic peak function. Then

lim
z→z0

Br T r
φ (z)= φ(z0).

Proof. First, we prove that for any neighborhood U of z0,

(5)
∫
�\U
|kr

z (w)|
2(−ρ(w))r dV (w)→ 0 as z→ z0.

Indeed, for given U and ε > 0 first we choose a holomorphic peak function g such
that |g(w)| ≤ ε for all w ∈�\U. This can be simply done by taking a high enough
power of the holomorphic peak function g. Then we choose δ > 0 such that if
|z− z0|< δ and z ∈� then |g(z)|> 1− ε. In this case,∫

U
|kr

z (w)|
2(−ρ(w))r dV (w)≥

∫
U
|g(w)||kr

z (w)|
2(−ρ(w))r dV (w)

≥

∣∣∣∣∫
�

g(w)|kr
z (w)|

2(−ρ(w))r dV (w)
∣∣∣∣

−

∣∣∣∣∫
�\U

g(w)|kr
z (w)|

2(−ρ(w))r dV (w)
∣∣∣∣

≥|g(z)| −
∫
�\U
|g(w)||kr

z (w)|
2(−ρ(w))r dV (w)

≥1− ε− ε
∫
�\U
|kr

z (w)|
2(−ρ(w))r dV (w)

≥1− 2ε,
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whenever |z− z0| < δ. This implies that for a given neighborhood U and ε > 0,
there exists δ > 0 such that if |z− z0|< δ then∫

�\U
|kr

z (w)|
2(−ρ(w))r dV (w)≤ ε.

This gives (5).
Now for ε>0, we choose a neighborhood U of z such that |φ(w)−φ(z0)|≤ε for

all w ∈U. Then for this neighborhood U and the same ε we choose δ > 0 such that
if |z− z0|< δ then

∫
�\U |k

r
z (w)|

2(−ρ(w))r dV (w)≤ ε/(1+2‖φ‖L∞). In this case,

|Br T r
φ (z)−φ(z0)| ≤

∫
�

|φ(w)−φ(z0)||kr
z (w)|

2(−ρ(w))r dV (w)

=

∫
U
|φ(w)−φ(z0)||kr

z (w)|
2(−ρ(w))r dV (w)

+

∫
�\U
|φ(w)−φ(z0)||kr

z (w)|
2(−ρ(w))r dV (w)

≤ε

∫
U
|kr

z (w)|
2(−ρ(w))r dV (w)

+ 2‖φ‖L∞

∫
�\U
|kr

z (w)|
2(−ρ(w))r dV (w)

≤ε+ ε = 2ε.

This indeed concludes limz→z0 Br T r
φ (z)= φ(z0). �

We note that on any bounded domain, we have (see [Čučković and Şahutoğlu
2014, Lemma 1])

T r
φ2

T r
φ1
= T r

φ2φ1
− H r∗

φ2
H r
φ1
.

Using the fact above inductively one can prove the following lemma.

Lemma 16. Let r be a nonnegative real number and � be a C1-smooth bounded
domain in Cn with a defining function ρ. Suppose φ1, . . . , φm ∈ L∞(�). Then

T r
φm

T r
φm−1
· · · T r

φ2
T r
φ1
= T r

φmφm−1···φ2φ1
− T r

φm
T r
φm−1
· · · T r

φ3
H r∗
φ2

H r
φ1

−T r
φm

T r
φm−1
· · · T r

φ4
H r∗
φ3

H r
φ2φ1
− · · ·− H r∗

φm
H r
φm−1···φ2φ1

= T r
φmφm−1···φ2φ1

+ Sr ,

where Sr is a finite sum of finite products of operators and each product starts with
a Hankel operator.

Therefore, if the symbols φ1, . . . , φm are continuous on � we can write

(6) T r
φ · · · T

r
φm
= T r

φ1···φm
+ Sr,
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where Sr is a finite sum of finite products of operators such that each product starts
with a Hankel operator with symbol continuous on �.

We state the lemma below for general weights µ(z) (not only the ones of the form
(−ρ)k) that are nonnegative (can vanish on the boundary) and continuous on �.
The weights of this form are called admissible weights (see [Pasternak-Winiarski
1990]) and the corresponding weighted Bergman projections and kernels are well
defined. We say two weights µ1 and µ2 are comparable if there exists c > 0 such
that c−1µ1 < µ2 < cµ1 on �.

Lemma 17. Let � be a domain in Cn and µ1 and µ2 be comparable admissible
weights. Let kµj

z be the normalized Bergman kernel corresponding to µj for
j = 1, 2, and z0 ∈ b�. Then kµ1

z → 0 weakly as z → z0 if and only if kµ2
z → 0

weakly as z→ z0.

Proof. It is enough to show one direction. So we will show that if kµ1
z → 0 weakly

as z→ z0 then kµ2
z → 0 weakly as z→ z0. Since µ1 and µ2 are equivalent measures

we have A2(�, dµ1)= A2(�, dµ2) and there exists C > 1 such that

‖ f ‖µ1

C
≤ ‖ f ‖µ2 ≤ C‖ f ‖µ1

for all f ∈ A2(�, dµ1). We remind the reader that for z ∈� we have

Kµj (z, z)= sup{| f (z)|2 : ‖ f ‖µj ≤ 1},

where Kµj is the Bergman kernel corresponding to µj . Then Kµ1 and Kµ2 are
equivalent on the diagonal in the sense that there exists D = C2 > 1 such that

Kµ1(z, z)
D

≤ Kµ2(z, z)≤ DKµ1(z, z).

Now we assume that kµ1
z → 0 weakly as z→ z0. Let us fix f ∈ A2(�, dµ1). Then

we have
f (z)√

Kµ1(z, z)
= 〈 f, kµ1

z 〉µ1 → 0 as z→ z0.

Then
〈 f, kµ2

z 〉µ2 =
f (z)√

Kµ2(z, z)
→ 0 as z→ z0.

Therefore, we showed that if kµ1
z → 0 weakly as z → z0 then kµ2

z → 0 weakly
as z→ z0. �

Let � be a pseudoconvex domain in Cn and z0 ∈ b�. Then we call z0 a bumping
point if for any δ > 0 there exists a pseudoconvex domain �1 such that {z0} ∪�⊂

�1 ⊂�∪ B(z0, δ).
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Lemma 18. Let r be a nonnegative real number, � be a bounded pseudoconvex
domain in Cn with Lipschitz boundary, and z0 ∈ b� be a bumping point. Then
kr

z → 0 weakly as z→ z0.

Proof. By Lemma 17, without loss of generality, we assume that ρ denotes the
negative distance to the boundary of �.

Let us fix f ∈ A2(�, (−ρ)r ) and choose r1, r2 > 0 so that 0< r1 < r2 and the
outward unit vector ν is transversal to B(z0, 2r2)∩b�. Since z0 is a bumping point
we choose a bounded pseudoconvex domain �1 such that

{z0} ∪�⊂�1 ⊂�∪ B(z0, r1).

So even though �1 contains a small neighborhood of z0, we have

� \ B(z0, r1)=�1 \ B(z0, r1).

Let us choose χ ∈ C∞0 (B(z0, r2)) such that χ ≡ 1 on a neighborhood of B(z0, r1).
For ε > 0 small we define fε(z)= f (z− εν) and gε = (1−χ) f +χ fε. Then

(i) fε ∈ A2(�∩ B(z0, r2), (−ρ)
r ) and fε→ f in L2(�∩ B(z0, r2), (−ρ)

r ),

(ii) gε|�∩B(z0,r2) is C∞-smooth and gε→ f in L2(�, (−ρ)r ) as ε→ 0.

Let ρ1 and Supp(∂χ) denote the negative distance to the boundary of �1 and
the support of ∂χ , respectively. Then Supp(∂χ) ∩� = Supp(∂χ) ∩�1 and −ρ
and −ρ1 are equivalent on the support of ∂χ . We note that gε is well defined on �
and not on �1. However, ∂gε = 0 on �∩ B(z0, r1) as ∂χ = 0 on B(z0, r1) for all
small ε > 0. Hence ∂gε can be extended trivially to be defined on �1 as a ∂-closed
(0, 1)-form on �1. Then there exists C > 0 such that

‖∂gε‖L2(�1,(−ρ1)r )≤C‖ f − fε‖L2(�∩B(z0,r2),(−ρ)r )‖∂χ‖L∞(B(z0,r2))→ 0 as ε→ 0.

Next we will use Hörmander’s theorem [1965] with the plurisubharmonic expo-
nential weight −r log(−ρ1). We note that − log(−ρ1) is plurisubharmonic because
�1 is pseudoconvex. Then using Hörmander’s theorem we get a constant c�1 > 0
(depending on �1) and hε ∈ L2(�1) such that ∂hε = ∂gε and

‖hε‖L2(�1,(−ρ1)r ) ≤ c�1‖∂gε‖L2(�1,(−ρ1)r ).

Furthermore, since ∂ is elliptic on the interior and ∂gε is C∞-smooth on �1, we
have hε ∈ C∞(�1).

We define f̃n = g1/n − h1/n on �. We note that while ∂gε is even defined on all
of �1, gε and, hence, f̃1/n in general, are not. Then we have

(i) f̃n ∈ A2(�, (−ρ)r ) and f̃n→ f in A2(�, (−ρ)r ),

(ii) f̃n|�∩B(z0,r1) ∈ C∞(�∩ B(z0, r1)).
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So { f̃n} is a sequence converging to f and each member of the sequence is smooth
up to the boundary of � on a neighborhood of z0.

Finally, we will show weak convergence of kr
z to 0 as z→ z0.

|〈 f, kr
z 〉A2(�,(−ρ)r )| ≤|〈 f − f̃n, kr

z 〉A2(�,(−ρ)r )| + |〈 f̃n, kr
z 〉A2(�,(−ρ)r )|

≤‖ f − f̃n‖L2(�,(−ρ)r )+
| f̃n(z)|
√

Kr (z, z)
.

The first term on the right-hand side can be made arbitrarily small for large enough n,
because ‖ f − f̃n‖L2(�,(−ρ)r )→ 0 as n→∞. So for δ > 0 given we choose nδ so
that ‖ f − f̃nδ‖L2(�,(−ρ)r ) ≤ δ. Then since f̃nδ is C∞-smooth on �∩ B(z0, r1) (and
Kr (z, z)→∞ as z→ z0), we conclude that | f̃nδ (z)|/

√
Kr (z, z)→ 0 as z→ z0.

Hence, lim supz→z0
|〈 f, kr

z 〉| ≤ δ for arbitrary δ > 0. Therefore, kr
z → 0 weakly

as z→ z0. �

Now we are ready to prove Theorem 4.

Proof of Theorem 4. In the case r = 0, the proof of the theorem simplifies greatly
as inflation and the related techniques are unnecessary. So we will prove the more
difficult case, r > 0.

First we assume that T is compact about strongly pseudoconvex points. Let
�

p
r be defined as in (1) and z0 ∈ b� be a strongly pseudoconvex point. Since

small C2-perturbations of strongly pseudoconvex points stay pseudoconvex, z0 is
a bumping point for �. Then Lemma 18 implies that kr

z → 0 weakly as z→ z0.
Furthermore, there exists an open neighborhood U of z0 such that weakly pseu-
doconvex points are contained in b� \ U ; and, as in the proof of (5), one can
show that

‖kr
z‖L2(�\U ,(−ρ)r )→ 0 as z→ z0.

Therefore, {kr
z } converges to 0 weakly about strongly pseudoconvex points as z→ z0.

Moreover, since T is compact about strongly pseudoconvex points (such opera-
tors map sequences of holomorphic functions weakly convergent about strongly
pseudoconvex points to convergent sequences) we conclude that

Br T (z)= 〈T kr
z , kr

z 〉A2(�,(−ρ)r )→ 0

as z→ z0.
Next we prove the other direction. As a first step we assume that T is a finite sum

of finite products of Toeplitz operators on A2(�, (−ρ)r ) with symbols continuous
on �. Furthermore, we assume that

lim
z→z0

Br T (z)= 0

for any strongly pseudoconvex point z0 ∈ b�.
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Lemma 16 implies that

T = T r
φ + Sr,(7)

where φ ∈C(�) and Sr is a sum of operators that start with a Hankel operator with
symbol continuous on �.

Lemma 15 implies that

lim
z→z0

Br T r
φ (z)= φ(z0)(8)

as strongly pseudoconvex points have holomorphic peak functions (see [Range
1986, Theorem 1.13 in Ch VI]).

By Proposition 13, the operator H r
ψ is compact about strongly pseudoconvex

points for any ψ ∈C(�). Then H r
ψkr

z→ 0 as z→ z0 for any ψ ∈C(�) because, as
proven in the first part of this proof, kr

z → 0 weakly about strongly pseudoconvex
points as z→ z0. Hence, Br Sr (z)→ 0 as z→ z0. Combining this with (7) and (8)
we can conclude that

φ(z0)= lim
z→z0

Br T (z)= 0.

Since z0 was an arbitrary strongly pseudoconvex point, we have φ = 0 on all the
strongly pseudoconvex boundary points. Then Lemma 12 and the fact that Sr is
compact about strongly pseudoconvex points imply that T is compact about strongly
pseudoconvex points.

Finally, we assume T ∈ T (�, (−ρ)r ). Then, using Lemma 16, for every ε > 0
there exists φε ∈ C(�) and an operator Sr

ε , compact about strongly pseudoconvex
points, such that

‖T + T r
φε
+ Sr

ε‖ ≤ ε.

Then for z ∈� we have

|Br T (z)+ Br T r
φε
(z)+ Br Sr

ε (z)| = |〈T kr
z + T r

φε
kr

z + Sr
εkr

z , kr
z 〉r |

≤ ‖T + T r
φε
+ Sr

ε‖

≤ ε.

Since Br Sr
ε (z) → 0 and Br T r

φε
(z) → φε(z0) as z → z0 (and we assume that

Br T (z) → 0 as z → z0), we have |φε(z0)| ≤ ε. That is, |φε| is less than or
equal to ε on strongly pseudoconvex points of �. We choose ψε ∈ C(�) such that
ψε = 0 on strongly pseudoconvex boundary points of � and

sup{|ψε(z)−φε(z)| : z ∈�} ≤ 2ε.

Then Lemma 12 implies that T r
ψε

is compact about strongly pseudoconvex points and

‖T r
φε
− T r

ψε
‖ ≤ 2ε.
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Hence
‖T + T r

ψε
+ Sr

ε‖ ≤ ‖T + T r
φε
+ Sr

ε‖+‖T
r
ψε
− T r

φε
‖ ≤ 3ε.

Therefore, T is in the norm closure of the compact about strongly pseudoconvex
points operators. Finally, Proposition 7 implies that T is compact about strongly
pseudoconvex points. �
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MONOTONICITY AND RADIAL SYMMETRY RESULTS FOR
SCHRÖDINGER SYSTEMS WITH FRACTIONAL DIFFUSION

JING LI

We consider a nonlinear Schrödinger system with fractional diffusion
(−1)α/2u(x)+ A(x)u(x)= v p(x) in �,
(−1)β/2v(x)+ B(x)v(x)= uq(x) in �,
u(x)≥ 0, v(x)≥ 0 in �,
u(x)= v(x)= 0 on �C,

where � is an unbounded parabolic domain. We first establish a narrow
region principle. Using this principle and a direct method of moving planes,
we obtain the monotonicity of nonnegative solutions and the Liouville-type
result for the nonlinear Schrödinger system with fractional diffusion. We
also obtain the radially symmetric result of positive solutions for the system
in the unit ball when A(x) and B(x) are constants.

1. Introduction

We are interested in the following nonlinear Schrödinger system with fractional
diffusion:

(1-1)


(−1)α/2u(x)+ A(x)u(x)= v p(x) in �,
(−1)β/2v(x)+ B(x)v(x)= uq(x) in �,
u(x)≥ 0, v(x)≥ 0 in �,
u(x)= v(x)= 0 on �C ,

where α, β ∈ (0, 2), p, q > 1, A(x) and B(x) are bounded from below and � is an
unbounded parabolic domain in Rn defined by

�= {x = (x ′, xn) ∈ Rn
| xn > |x ′|2, x ′ = (x1, x2, . . . , xn−1)}.

The research is supported by the National Natural Science Foundation of China (No. 11271111 and
No. 11601131).
MSC2010: 35J60.
Keywords: fractional Schrödinger system, narrow region principle, direct method of moving planes,

monotonicity, radially symmetric.
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Here, (−1)α/2 and (−1)β/2 are nonlocal pseudodifferential operators defined by

(−1)α/2u(x)= Cn,αP.V .
∫

Rn

u(x)− u(y)
|x − y|n+α

dy,(1-2)

(−1)β/2v(x)= Cn,β P.V .
∫

Rn

v(x)− v(y)
|x − y|n+β

dy,(1-3)

where P.V . stands for the Cauchy principal value, and Cn,α , Cn,β are normalization
positive constants. Let

F = Lα ∩C1,1
loc (�), G = Lβ ∩C1,1

loc (�),

where

Lα =
{

u | u ∈ L1
loc,

∫
Rn

|u(x)|
1+ |x |n+α

dx <∞
}
,

and

Lβ =
{
v | v ∈ L1

loc,

∫
Rn

|v(x)|
1+ |x |n+β

dx <∞
}
.

For u ∈ F, v ∈ G, the integral on the left-hand side of the equations in (1-1) is well
defined (see [Chen et al. 2017b]).

Linear and nonlinear equations and systems involving the fractional Laplacian
have received growing attention in recent years. It can be used to model diverse
physical phenomena, such as turbulence and water waves, molecular dynamics, and
pseudorelativistic boson stars (see [Bouchaud and Georges 1990], [Caffarelli and
Vasseur 2010], [Constantin 2006], [Tarasov and Zaslavsky 2006]). The operator
(−1)α/2 can also be used in mathematical finance (see [Applebaum 2009], [Bertoin
1996]). But they are still much less understood than nonfractional counterparts.

When α = β = 2, A(x)= B(x)= 0, (1-1) becomes the classical Lane–Emden
system:

(1-4)
{
−1u = v p,

−1v = uq .

When 1/(p+1)+1/(q+1) > (n−2)/n, the system (1-4) has no positive radial so-
lutions in all dimension (see [Mitidieri 1996]). D. G. de Figueiredo and P. L. Felmer
[1994] studied a Liouville type theorem for (1-4) by introducing superharmonic
functions when n ≥ 3. The main tool they used is the method of moving planes.
For n = 3, J. Serrin and H. Zou [1996] proved that the system (1-4) has no positive
solutions when 1/(p+1)+1/(q+1)> (n−2)/n under assumption that (u, v) has at
most polynomial growth at infinity. After Serrin’s work, there are some interesting
works about Lane–Emden systems and related Schrödinger systems on whole space
and half space; see [Montaru and Souplet 2014; Poláčik et al. 2007; Souplet 2009].
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For classical semilinear elliptic system, the symmetry and monotonicity of
positive solutions have been widely studied (see [Busca and Sirakov 2000; Chen
and Li 2010; Liu and Ma 2012; 2013; Ma and Liu 2010]). A powerful tool to
obtain these properties of such equations and systems is the method of moving
planes, which was introduced by Alexandrov [1962]. Serrin [1971] and Gidas,
Ni, Nirenberg [Gidas et al. 1979; 1981] adapted this method in partial differential
equations and made great contributions to improving this method.

As we know, the fractional Laplacian is nonlocal; that is, it is not differentiable
pointwise, but is globally integrable with respect to a singular kernel. The nonlocality
causes the main difficulty in studying corresponding problems. To circumvent this
difficulty, Caffarelli and Silvestre [2007] introduced the extension method that
reduced this nonlocal problem in Rn into a local one in Rn+1

+ through constructing
a Dirichlet to Neumann operator of a degenerate elliptic equation. This extension
method has been applied successfully to study equations involving the fractional
Laplacian, and a series of fruitful results have been obtained; see [Brändle et al.
2013; Chen and Zhu 2016].

Due to technical restrictions, they have to assume α ≥ 1. It seems that this
condition cannot be weakened if one wants to carry out the method of moving planes
on the extended equation. Actually, the case 0<α< 1 can be treated by considering
the corresponding integral equation. Using the method of moving planes (or spheres)
in integral forms [Chen and Li 2009; Chen et al. 2005a; 2005b; 2006; 2015; Fall
and Weth 2016; Fang and Zhang 2013; Li and Ma 2008; Ma and Chen 2008; Ma
and Zhao 2008, one can obtain the radial symmetry properties of the fractional
Laplacian equation. For the fractional Laplacian system, here we mention the work
by Zhuo, Chen, Cui and Yuan [Zhuo et al. 2016]. They considered the system

(1-5) (−1)α/2ui (x)= fi (u1(x),u2(x),...,um(x)), x ∈ Rn, i = 1,2,...,m.

By establishing the equivalence between (1-5) and its corresponding integral system,
the authors obtained the symmetry result and the nonexistence of positive solutions.

Either by extension or by integral equations, one needs to impose extra conditions
on the solutions. Can one carry out the method of moving planes directly on frac-
tional equation? The answer was provided in [Jarohs and Weth 2016] by Jarohs and
Weth. They introduced antisymmetric maximum principles and applied them to carry
out the method of moving planes directly on nonlocal problems to show the symme-
try of solutions. However, their maximum principles only apply to bounded regions.

Recently, Chen, Li and Li [Chen et al. 2017b] developed a direct method of
moving planes to study the fractional Laplacian, which worked directly on the
nonlocal operator. The key ingredients of this method are the antisymmetric
properties. They used this property to develop some techniques needed in the
direct method of moving planes in the whole space Rn and the upper half space Rn

+
,
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such as the narrow region principle, decay at infinity. The direct method of moving
planes is very useful. This method has been applied to fully nonlinear fractional
order-equations and systems in [Chen et al. 2017a]. In [Cheng et al. 2017], the
authors considered the symmetry and monotonicity properties for positive solutions
of fractional Laplacian equations by the direct method. Using the spirit of direct
method of moving planes in [Chen et al. 2017b], Cai and Mei [2017] studied
the fractional Lane–Emden system in Rn and obtain the symmetry properties and
Liouville-type result of positive solutions. Liu and Ma [2016] studied symmetry
properties of the general fractional Laplacian system:

(1-6)


(−1)α/2u(x))= f (u, v) in Rn,

(−1)α/2v(x)= g(u, v) in Rn,

u(x)≥ 0, v(x)≥ 0 in Rn

under a strong decay condition on the solutions at infinity.
The goal of this paper is to generalize the direct method of moving planes

to the Schrödinger system. We first establish the narrow region principle for
Schrödinger systems with fractional diffusion. We write x = (x ′, xn) ∈ Rn with
x ′ = (x1, x2, . . . , xn−1). Assume A(x) and B(x) are independent of xn , that is,

A(x)= A(x ′), B(x)= B(x ′).
Let

Tλ = {x ∈ Rn
| xn = λ, λ ∈ R, λ > 0}

be the moving plane and denote

Hλ = {x ∈ Rn
| xn < λ}, 6λ = {x ∈� | 0< xn < λ}.

For each point x = (x ′, xn)∈6λ, let xλ= (x ′, 2λ− xn) be the reflection point about
the plane Tλ. Denote

Uλ(x)= u(xλ)− u(x)= uλ(x)− u(x), Vλ(x)= v(xλ)− v(x)= vλ(x)− v(x).

It follows that for x ∈6λ,

(1-7)

(−1)α/2Uλ(x)= (−1)α/2uλ(x)− (−1)α/2u(x)

= pξ p−1(x)Vλ(x)− A(x ′)Uλ(x),

and

(1-8)

(−1)β/2Vλ(x)= (−1)β/2vλ(x)− (−1)β/2v(x)

= qηq−1(x)Uλ(x)− B(x ′)Vλ(x),

where ξ(x) is between vλ(x) and v(x) and η(x) is between uλ(x) and u(x). It is
obvious that Uλ(x) and Vλ(x) satisfy the antisymmetry property:

(1-9) Uλ(xλ)=−Uλ(x), Vλ(xλ)=−Vλ(x), x ∈ Hλ.
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Lemma 1.1 (narrow region principle). Let (u, v)∈ F×G be a nonnegative solution
of system (1-1) with 0 < α, β < 2. Assume that 1 < p, q < ∞, A(x) = A(x ′)
and B(x) = B(x ′) are bounded from below in �, where x = (x ′, xn) ∈ �, x ′ =
(x1, x2, . . . , xn−1). Then for all systems (1-7) and (1-8) and for sufficiently small δ,

(i) if there exists x∗1 ∈ 6λ,δ = {x ∈ 6λ | λ− δ < xn < λ} satisfying Uλ(x∗1 ) =
minx∈6λ Uλ(x) < 0, then

Vλ(x∗1 ) <Uλ(x∗1 ) < 0;

(ii) if there exists x∗2 ∈ 6λ,δ = {x ∈ 6λ | λ− δ < xn < λ} satisfying Vλ(x∗2 ) =
minx∈6λ Vλ(x) < 0, then

Uλ(x∗2 ) < Vλ(x∗2 ) < 0.

Based on Lemma 1.1, we can obtain the following result.

Theorem 1.2. Let (u, v) ∈ F ×G be a nonnegative solution of system (1-1) with
0 < α, β < 2. If 1 < p, q <∞, A(x) = A(x ′) and B(x) = B(x ′) are bounded
from below in �, where x = (x ′, xn) ∈ �, x ′ = (x1, x2, . . . , xn−1). Then (u, v) is
monotonically increasing in xn .

When α = β = 2, this result is contained in the series papers of Berestycki, Caf-
farelli and Nirenberg [Berestycki and Nirenberg 1992; Berestycki et al. 1993; 1996;
1997] and they have used the classical method of moving planes. Hence our result
by using the direct method of moving planes due to [Chen et al. 2017b] and [Jarohs
and Weth 2016] can be considered as an extension of theirs to the nonlocal system.

As an immediate application, we obtain the following Liouville type result.

Corollary 1.3. Let (u, v) ∈ F ×G be a nonnegative solution of system (1-1) with
0 < α, β < 2. Assume that 1 < p, q <∞, A(x) = A(x ′) and B(x) = B(x ′) are
bounded from below in �, where x = (x ′, xn) ∈�, x ′ = (x1, x2, . . . , xn−1). If

(1-10) lim
x→∞

u(x)= 0, lim
x→∞

v(x)= 0,

Then u ≡ 0, v ≡ 0.

We consider the system (1-1) when A(x)= A and B(x)= B, where A, B are two
constants in the unit ball B1(0) and obtain the radial symmetry and monotonicity
of positive solutions.

Theorem 1.4. Assume (u, v) ∈ Lα ∩C1,1
loc (B1(0))× Lβ ∩C1,1

loc (B1(0)) is a positive
solution of the following system

(1-11)


(−1)α/2u(x)+ Au(x)= v p(x) in B1(0),
(−1)β/2v(x)+ Bv(x)= uq(x) in B1(0),
u(x)≥ 0, v(x)≥ 0 in B1(0),
u(x)= v(x)= 0 on BC

1 (0),
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with 0<α, β < 2 and 1< p, q <∞. Then each positive solution (u(x), v(x)) must
be radially symmetric and monotone decreasing about the origin.

The paper is organized as follows. Section 2 is devoted to proving Lemma 1.1,
the narrow region principle for (1-1). In Section 3, we study the monotonicity
of positive solutions of (1-1) in � and prove Theorem 1.2. Finally, the proof of
Theorem 1.4 will be presented in Section 4. Note that in the following, C will be a
positive constant which can be different from line to line.

2. Preliminaries

In this section, we will prove Lemma 1.1, which plays an important role in the
proof of Theorem 1.2 and Theorem 1.4.

Proof. (i) Without loss of generality, let

x∗1 ∈6λ,δ and Uλ(x∗1 )= min
x∈6λ

Uλ(x) < 0.

It follows that

(−1)α/2Uλ(x∗1 )= Cn,αP.V .
∫

Rn

Uλ(x∗1 )−Uλ(y)
|x∗1−y|n+α

dy

= Cn,αP.V .
(∫

Hλ

Uλ(x∗1 )−Uλ(y)
|x∗1−y|n+α

dy+
∫

Rn\Hλ

Uλ(x∗1 )−Uλ(y)
|x∗1−y|n+α

dy
)

= Cn,αP.V .
(∫

Hλ

Uλ(x∗1 )−Uλ(y)
|x∗1−y|n+α

dy+
∫

Hλ

Uλ(x∗1 )−Uλ(yλ)
|x∗1−yλ|n+α

dy
)
.

Note that |x∗1 − y| ≤ |x∗1 − yλ| when x∗1 , y ∈ 6λ, and using the antisymmetry of
Uλ(x), we have

(−1)α/2Uλ(x∗1 )≤ Cn,αP.V .
(∫

Hλ

Uλ(x∗1 )−Uλ(y)
|x∗1 − yλ|n+α

dy+
∫

Hλ

Uλ(x∗1 )+Uλ(y)
|x∗1 − yλ|n+α

dy
)

= Cn,αP.V .
∫

Hλ

2Uλ(x∗1 )
|x∗1 − yλ|n+α

dy.

Let D = B2δ(x∗1 )∩ Hλ. Then we obtain

(2-1)
∫

Hλ

1
|x∗1− yλ|n+α

dy≥
∫

D

1
|x∗1− yλ|n+α

dy≥C
∫

B2δ(x∗1 )

1
|x∗1− yλ|n+α

dy≥
C
δα
.

Thus,

(−1)α/2Uλ(x∗1 )≤
CUλ(x∗1 )
δα

< 0.

According to (1-7), we get

pξ p−1(x∗1 )Vλ(x
∗

1 )− A(x∗1 )Uλ(x∗1 )= (−1)
α/2Uλ(x∗1 )≤

C
δα

Uλ(x∗1 ) < 0.
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Note that A(x) = A(x ′) is bounded from below and ξ(x) is between vλ(x) and
v(x), v(x) ∈ G = Lβ ∩C1,1

loc (�), hence, for δ sufficiently small, we have

(2-2) Vλ(x∗1 ) <
A(x∗1 )+

C
δα

pv p−1(x∗1 )
Uλ(x∗1 ) <Uλ(x∗1 ) < 0.

(ii) If there exists x∗2 ∈6λ,δ = {x ∈6λ | λ− δ < xn < λ} such that

Vλ(x∗2 )= min
x∈6λ

Vλ(x) < 0,

similarly to the proof of (i), we can obtain

(2-3) (−1)β/2Vλ(x∗2 )≤
CVλ(x∗2 )
δβ

< 0.

Note that B(x) is bounded from below and u(x) ∈ F = Lα ∩C1,1
loc (�), hence, for δ

sufficiently small, according to (1-8), we have

(2-4) Uλ(x∗2 ) <
B(x∗2 )+

C
δβ

quq−1(x∗2 )
Vλ(x∗2 ) < Vλ(x∗2 ) < 0.

Thus we have completed the proof of Lemma 1.1. �

3. The proof of Theorem 1.2

In this section, we will carry out the direct method of moving planes on the solution
(u(x), v(x)) along xn direction to prove Theorem 1.2.

Proof. The proof of Theorem 1.2 is divided into two steps.

Step 1: We show that for λ > 0 sufficiently close to zero,

(3-1) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈6λ.

If (3-1) does not hold, then there exists a point x∗1 ∈ 6λ such that Uλ(x∗1 ) < 0.
Without loss of generality, we assume

Uλ(x∗1 )= min
x∈6λ

Uλ(x) < 0.

By Lemma 1.1, for λ > 0 sufficiently close to zero,

(3-2) Vλ(x∗1 ) <
A(x∗1 )+

C
λα

pv p−1(x∗1 )
Uλ(x∗1 ) < 0.

Note that Vλ(x) = 0 for x ∈ Tλ and Vλ(x) ≥ 0 for x ∈ ∂6λ, hence, there exists
x∗2 ∈6λ such that

Vλ(x∗2 )= min
x∈6λ

Vλ(x) < 0.
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Similarly to the proof of Lemma 1.1, for λ > 0 sufficiently close to zero, we have

(3-3) Uλ(x∗2 ) <
B(x∗2 )+

C
λβ

quq−1(x∗2 )
Vλ(x∗2 ).

Therefore, together with (3-2) and (3-3), we get

(3-4)

Vλ(x∗1 ) <
A(x∗1 )+

C
λα

pv p−1(x∗1 )
Uλ(x∗1 )≤

A(x∗1 )+
C
λα

pv p−1(x∗1 )
Uλ(x∗2 )

<

(
A(x∗1 )+

C
λα

)
pv p−1(x∗1 )

(
B(x∗2 )+

C
λβ

)
quq−1(x∗2 )

Vλ(x∗2 )

≤

(
A(x∗1 )+

C
λα

)
pv p−1(x∗1 )

(
B(x∗2 )+

C
λβ

)
quq−1(x∗2 )

Vλ(x∗1 ).

Because A(x)= A(x ′) and B(x)= B(x ′) are bounded from below and Vλ(x∗1 ) < 0,
therefore, (3-4) is a contradiction for λ > 0 sufficiently close to zero and the proof
of Step 1 is completed.

Step 1 provides a starting point. We start from such a small λ and move the
plane Tλ up continuously in the direction of xn-axis to its limiting position as long
as (3-1) holds. Define

(3-5) λ0 = sup{λ > 0 |Uµ(x)≥ 0, Vµ(x)≥ 0, x ∈6µ;µ≤ λ}.

Step 2: We prove

(3-6) λ0 =+∞.

Before proceeding further, we investigate some properties of Uλ0(x) and Vλ0(x)
for x ∈6λ0 .

Proposition 3.1. If Uλ0(x)≡ 0, then Vλ0(x)≡ 0. If Vλ0(x)≡ 0, then Uλ0(x)≡ 0.

Proof. If Uλ0(x)≡ 0, then (1-7) becomes

0= (−1)α/2Uλ0(x)= pξ p−1(x)Vλ0(x),

Obviously, we get Vλ0(x)≡ 0. �

Proposition 3.2. If Uλ0(x) 6≡ 0 or Vλ0(x) 6≡ 0, then Uλ0(x) > 0 and Vλ0(x) > 0 for
all x ∈6λ0 .



MONOTONICITY AND RADIAL SYMMETRY FOR SCHRÖDINGER SYSTEMS 115

Proof. Since we know that Uλ0(x)≥ 0, x ∈6λ0 . If Uλ0(x) > 0 does not hold, we
assume that there exists some point x̃ ∈6λ0 such that Uλ0(x̃)= 0.

(3-7)

(−1)α/2Uλ0(x̃)= Cn,αP.V .
∫

Rn

Uλ0(x̃)−Uλ0(y)
|x̃− y|n+α

dy

= Cn,αP.V .
(∫

Hλ0

−Uλ0(y)
|x̃− y|n+α

dy+
∫

Rn\Hλ0

−Uλ0(y)
|x̃− y|n+α

dy
)

= Cn,αP.V .
(∫

Hλ0

−Uλ0(y)
|x̃− y|n+α

dy+
∫

Hλ0

−Uλ0(y
λ)

|x̃− yλ|n+α
dy
)

= Cn,αP.V .
∫

Hλ0

(
1

|x̃− yλ|n+α
−

1
|x̃− y|n+α

)
Uλ0(y)dy.

Note that |x̃ − yλ|> |x̃ − y|, hence,

(3-8) (−1)α/2Uλ0(x̃) < 0.

On the other hand, according to (1-7),

(3-9) (−1)α/2Uλ0(x̃)= pξ p−1(x̃)Vλ0(x̃)− A(x̃)Uλ0(x̃)= pξ p−1(x̃)Vλ0(x̃)≥ 0.

Evidently, this is contradictory to (3-8). Consequently, we obtain Uλ0(x) > 0 for
all x ∈6λ0 . Then by Proposition 3.1, we get Vλ0(x) 6≡ 0. Similarly to above, we
obtain Vλ0(x) > 0 for all x ∈6λ0 , completing the proof. �

Now, we start to prove (3-6). If λ0 <+∞, we will show

(3-10) Uλ0(x)≡ 0, x ∈6λ0 .

Then by Proposition 3.1, Vλ0(x)≡ 0, x ∈6λ0 . Thus, we obtain

u(x ′, 2λ0)= u(x ′, 0),(3-11)

v(x ′, 2λ0)= v(x ′, 0).(3-12)

But the left-hand side of (3-11) is positive, and the right-hand side of (3-11) is equal
to zero. This is contradictory. The same holds for v(x). Hence, (3-6) holds.

In the following, we will prove (3-10). If Uλ0(x) 6≡ 0, x ∈6λ0 , by Proposition 3.2,
we have Uλ0(x) > 0, Vλ0(x) > 0, x ∈ 6λ0 . Hence, for small δ > 0, there exists a
positive constant c0 such that

Uλ0(x)≥ c0 > 0, Vλ0(x)≥ c0 > 0, x ∈6λ0−δ.

Since Uλ(x) and Uλ(x) depends on λ continuously, there exists ε > 0 and ε < δ
such that for all λ ∈ (λ0, λ0+ ε),

(3-13) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈6λ0−δ.
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When x ∈6λ \6λ0−δ , we also have Uλ(x)≥ 0, Vλ(x)≥ 0. If not, without loss
of generality, we assume that there exists a point x̄1 ∈6λ \6λ0−δ such that

Uλ(x̄1)= min
x∈6λ\6λ0−δ

Uλ(x) < 0.

According to Lemma 1.1,

Vλ(x̄1) <
A(x̄1)+

C
(δ+ε)α

pv p−1(x̄1)
Uλ(x̄1) < 0.

Hence, there exists x̄2 ∈6λ \6λ0−δ such that

Vλ(x̄2)= min
x∈6λ\6λ0−δ

Vλ(x) < 0.

By Lemma 1.1 again,

Uλ(x̄2) <
B(x̄2)+

C
(δ+ε)β

quq−1(x̄2)
Vλ(x̄2) < 0.

Similarly to (3-4),

Uλ(x̄2) <

(
A(x̄1)+

C
(δ+ε)α

)
pv p−1(x̄1)

(
B(x̄2)+

C
(δ+ε)β

)
quq−1(x̄2)

Uλ(x̄2).

Since A(x) = A(x ′) and B(x) = B(x ′) are bounded from below and Uλ(x̄2) < 0,
this is contradictory for δ and ε sufficiently small. Therefore, we obtain

(3-14) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈6λ \6λ0−δ.

Combining (3-13) and (3-14), we get that for λ ∈ (λ0, λ0+ ε),

(3-15) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈6λ.

(3-15) indicates that the plane Tλ0 can be moved up further. We have reached a
contradiction with the definition of λ0. Hence, we must have Uλ0(x)≡ 0.

We have shown that λ0 = +∞ and Uλ0(x) ≥ 0, Vλ0(x) ≥ 0. It indicates that
u(x) and v(x) are monotonically increasing in xn , which completes the proof of
Theorem 1.2. �

Proof of Corollary 1.3. We have shown that u(x) and v(x) are monotonically
increasing in xn . In terms of u(0)= v(0)= 0 and the condition (1-10), we derive

u(x)≡ 0, v(x)≡ 0 in �.

Thus we have completed the proof. �
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4. The proof of Theorem 1.4

In this section, we will apply Lemma 1.1 to prove Theorem 1.4. We consider the
case A(x) = A and B(x) = B in system (1-1), where A, B are constants. In this
case, (1-1) becomes (1-11).

Choose any direction to be the x1 direction. We write x = (x1, x ′) ∈ Rn with
x ′ = (x2, x3, . . . , xn). Let

T̂λ = {x ∈ Rn
| x1 = λ, λ ∈ R, λ >−1}

be the moving planes and denote

Ĥλ = {x ∈ Rn
| x1 < λ}, 6̂λ = {x ∈ B1(0) | −1< x1 < λ}.

For each point x = (x1, x ′)∈ 6̂λ, let xλ= (2λ− x1, x ′) be the reflection point about
the plane T̂λ and Uλ(x), Vλ(x) defined as before. Then it follows that for x ∈ 6̂λ,

(4-1) (−1)α/2Uλ(x)= pξ p−1(x)Vλ(x)− AUλ(x),

and

(4-2) (−1)β/2Vλ(x)= qηq−1(x)Uλ(x)− BVλ(x),

where ξ(x) is between vλ(x) and v(x) and η(x) is between uλ(x) and u(x).

Proof of Theorem 1.4. Step 1: We show that for λ >−1 sufficiently close to −1,

(4-3) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈ 6̂λ.

The proof is almost the same as Step 1 in the proof of Theorem 1.2.
Step 1 provides a starting point. We start from such a small λ and move the

plane T̂λ continuously in the direction of x1-axis to its limiting position as long as
(4-3) holds.

Step 2: Define

(4-4) λ0 = sup{λ >−1 |Uµ(x)≥ 0, Vµ(x)≥ 0, x ∈ 6̂µ;µ≤ λ}.

We will prove

(4-5) λ0 = 0.

If λ0 < 0, we will show that the plane T̂λ can be moved further right. That is,
there exists ε > 0 such that for all λ ∈ (λ0, λ0+ ε),

(4-6) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈ 6̂λ.

This is a contradiction with the definition of λ0. Hence, we must have λ0 = 0.
The proof of (4-6) is composed of two parts.
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(a): We show that for ε > 0, δ > 0 and ε < δ, when λ ∈ (λ0, λ0+ ε),

(4-7) Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈ 6̂λ0−δ.

We know that
Uλ0(x)≥ 0, Vλ0(x)≥ 0, x ∈ 6̂λ0 .

In fact, if λ0 < 0, we must have

Uλ0(x) > 0, Vλ0(x) > 0, x ∈ 6̂λ0 .

If Uλ0(x) > 0 does not hold, we assume that there exists some point x̃ ∈ 6̂λ0 such
that Uλ0(x̃)= 0.

(−1)α/2Uλ0(x̃)= Cn,αP.V .
∫

Rn

Uλ0(x̃)−Uλ0(y)
|x̃ − y|n+α

dy

= Cn,αP.V .
∫

Ĥλ0

−Uλ0(y)
|x̃ − y|n+α

dy+
∫

Rn\Ĥλ0

−Uλ0(y)
|x̃ − y|n+α

dy

= Cn,αP.V .
∫

Ĥλ0

−Uλ0(y)
|x̃ − y|n+α

dy+
∫

Ĥλ0

−Uλ0(y
λ)

|x̃ − yλ|n+α
dy

= Cn,αP.V .
∫

Ĥλ0

(
1

|x̃ − yλ|n+α
−

1
|x̃ − y|n+α

)
Uλ0(y) dy.

Note that |x̃ − yλ|> |x̃ − y|, hence,

(4-8) (−1)α/2Uλ0(x̃) < 0.

On the other hand, according to (4-1),

(−1)α/2Uλ0(x̃)= pξ p−1(x̃)Vλ(x̃)− AUλ(x̃)= pξ p−1(x̃)Vλ(x̃)≥ 0.

This is contradictory to (4-8). Consequently, we obtain Uλ0(x) > 0 for all x ∈ 6̂λ0 .
Similarly, we can show Vλ0(x) > 0 for all x ∈ 6̂λ0 . Hence, for small δ > 0, there
exists a positive constant c0 such that

Uλ0(x)≥ c0 > 0, Vλ0(x)≥ c0 > 0, x ∈ 6̂λ0−δ.

Since Uλ(x) and Vλ(x) depend on λ continuously, there exists ε > 0 with ε < δ
such that for all λ ∈ (λ0, λ0+ ε),

Uλ(x)≥ 0, Vλ(x)≥ 0, x ∈ 6̂λ0−δ.

(b): Using Lemma 1.1 and similarly to the proof of (3-14), we get

(4-9) Uλ(x)≥ 0, , Vλ(x)≥ 0 x ∈ 6̂λ \ 6̂λ0−δ.
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Together with (a) and (b), we prove (4-6) is true for all λ ∈ (λ0, λ0+ ε). Thus, we
obtain λ0 = 0 and Uλ0(x)≥ 0, Vλ0(x)≥ 0, x ∈ 6̂λ0 .

Similarly, we move the plane Tλ from 1 to the left and show that

Uλ0(x)≤ 0, Vλ0(x)≤ 0, x ∈ 6̂λ0 .

Then we obtain that

λ0 = 0 and Uλ0(x)≡ 0, Vλ0(x)≡ 0, x ∈ 6̂λ0 .

This indicates that u(x) and v(x) are symmetric about T0. Since the x1 direction
can be chosen arbitrarily, we have actually shown that u(x) and v(x) are radially
symmetric about the origin. Thus, we have completed the proof of Theorem 1.4. �
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MODULI SPACES OF STABLE PAIRS

YINBANG LIN

We construct a moduli space of stable pairs over a smooth projective variety,
parametrizing morphisms from a fixed coherent sheaf to a varying sheaf
of fixed topological type, subject to a stability condition. This generalizes
the notion used by Pandharipande and Thomas, following Le Potier, where
the fixed sheaf is the structure sheaf of the variety. We then describe the
relevant deformation and obstruction theories. We also show the existence
of the virtual fundamental class in special cases.
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1. Introduction

The past couple of decades of research have highlighted the importance of moduli
spaces of decorated sheaves, which are sheaves with additional structure, such as
one or more sections. Moduli spaces of rank two vector bundles with a section on
a Riemann surface X ,

E→ X and α : OX → E,

were used in [Thaddeus 1994] to deduce an important invariant of the moduli space
of sheaves, the Verlinde number. More recently, Pandharipande and Thomas [2009;
2010] studied stable pairs (E, α), where E is a sheaf with dimension 1 support,
on a Calabi–Yau threefold. They showed that invariants of this moduli space are
closely related to the Gromov–Witten invariants of the Calabi–Yau threefold.
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We would like to broaden our perspective and replace the structure sheaf by a
general coherent sheaf. Subject to a stability condition, we would like to parametrize
morphisms of coherent sheaves,

α : E0→ E,

where E0 is a fixed coherent sheaf. We will denote such a morphism as a pair

(E, α).

Let us set up the problem. We will work over an algebraically closed field k
of characteristic 0. We denote by X a smooth projective variety of dimension n,
with a fixed polarization OX (1). We fix a coherent sheaf E0 on X . Let P be a fixed
polynomial of degree d ≤ n. Let δ ∈ Q[m] be 0 or a polynomial with a positive
leading coefficient; this will play the role of parameter for stability conditions.

When δ is large, i.e., deg δ≥deg P, a pair (E, α), such that the Hilbert polynomial
of E equals P, is stable if E is pure and the support of cokerα has dimension
strictly smaller than d. This is the most significant case geometrically. In this
case, the moduli space of stable pairs is closely related to Grothendieck’s Quot
scheme. But intersection theory on the moduli space of stable pairs is expected to
be more tractable than that on the Quot scheme. This is because we impose the
purity condition on the sheaves underlying stable pairs, which allows us to avoid
some large dimensional components.

The moduli space of stable pairs in the large δ case is expected to have interesting
applications to the enumerative geometry of higher rank sheaves on a surface X .
In particular, a potential application is towards the strange duality conjecture. The
conjecture over curves was proved [Belkale 2008; Marian and Oprea 2007] by
studying intersection theory on related Grassmannians and Quot schemes. It is
reasonable to expect that a similar method using the moduli space of stable pairs
will work for the surface case.

The study of stable pairs by Pandharipande and Thomas was built on Le Potier’s
work [1993] on coherent systems. The moduli space of coherent systems was also
used to study the Donaldson numbers of the moduli space of sheaves [He 1998].
A coherent system on X is a pair (0, E), where E is a coherent sheaf and 0 ⊂
H 0(X, E) is a subspace of global sections. A pair (E, α :OX→ E) can be viewed as
a coherent system (k〈α〉, E). However, when OX is replaced by, for example, O⊕2

X ,
the pair can no longer be viewed as a coherent system, because the map

H 0(α) : k⊕2
→ H 0(E)

may not be injective. Aside from this issue, there is yet another difference between
pairs and coherent systems: while the morphism α is part of the data of the pair,
the coherent system only remembers the image of H 0(α). Consequently, when one
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tries to parametrize α : E0→ E for general E0, Le Potier’s construction does not
automatically apply. But the main ingredients of constructing the moduli space
remain the same: Grothendieck’s Quot scheme [1961b] and Mumford’s geometric
invariant theory [Mumford et al. 1994].

Theorem 1.1 (existence of moduli spaces). For the moduli functor SE0(P, δ) of
S-equivalence classes of δ-semistable pairs, there exists a projective coarse moduli
space SE0(P, δ). The moduli functor Ss

E0
(P, δ) of equivalence classes of δ-stable

pairs is represented by an open subscheme Ss
E0
(P, δ) of SE0(P, δ).

Deformation-obstruction theory of stable pairs is very similar to that of the Quot
scheme. For a quotient q : E0 � F, let G = ker q, then we have a short exact
sequence,

0→ G→ E0→ F→ 0.

The deformation space and the obstruction space are Hom(G, F) and Ext1(G, F).
Notice that G is quasi-isomorphic to the cochain complex J • = {E0→ F}, and
the deformation space and the obstruction space of this quotient are isomorphic to
Hom(J •, F) and Ext1(J •, F), respectively.

The deformation-obstruction problem of stable pairs has a similar answer. Let
Ar tk be the category of local Artinian k-algebras with residue field k. Let A, B ∈
ObAr tk and

0→ K → B σ
−→ A→ 0

be a small extension, i.e., mB K = 0. Suppose (E, α) is a stable pair. Let I • denote
the following cochain complex concentrating at degree 0 and 1:

I • = {E0
α
−→ E}.

Theorem 1.2 (deformation-obstruction). Suppose αA : E0⊗k A→ E A is a morphism
over X A = X ×Spec k Spec A extending α, where E A is a coherent sheaf flat over A.
There is a class,

ob(αA, σ ) ∈ Ext1(I •, E ⊗ K ),

such that there exists a flat extension of αA over X B if and only if ob(αA, σ )= 0. If
extensions exist, the space of extensions is a torsor under

Hom(I •, E ⊗ K ).

In some special cases, Exti (I •, E) 6= 0 only when i = 0, 1. In these cases, we
will demonstrate the existence of the virtual fundamental class, which is important
for the study of intersection theory on the moduli spaces.

Theorem 1.3 (virtual fundamental class). Suppose X is a surface, E0 is torsion-
free, deg P = 1, and deg δ ≥ 1. Then the moduli space SE0(P, δ) of stable pairs
admits a virtual fundamental class.
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The virtual fundamental class can be used to define invariants of the surface.
Kool and Thomas [2014a; 2014b] studied stable pairs invariants with E0 ∼= OX on
surfaces, using the reduced obstruction theory, which is necessary. We will address
the intersection theory of the moduli space of stable pairs on a surface in future work.

After this project was completed, we learned about the article [Wandel 2015]
where the stability condition for pairs had been defined. When deg δ < deg P,
Theorem 1.1 of this paper had been stated as the main theorem, Theorem 3.8, in
[Wandel 2015]. In the large δ case,

deg δ ≥ deg P,

the linearized ample line bundle needs to be chosen differently, as in (4-4), for
the GIT construction. In this paper, the construction of the moduli space focuses
on the large δ case, which is geometrically important but has not been treated in
[Wandel 2015]. The construction is carried out from a basic level. For example,
Lemma 3.5 is shown for characterizing stability in terms of global sections instead
of Hilbert polynomials. As preparation, Section 2 introduces the notion of stable
pair and states basic properties of pairs. Section 3 studies the boundedness of the
family of stable pairs. Proofs of statements that have been proved in [Wandel 2015]
are omitted. This paper also contains, in Section 5, the deformation-obstruction
theory, captured by Theorem 1.2, which holds for all δ’s, small or large. Section 6
shows the existence of the virtual fundamental class in special geometries (see
Theorem 1.3). Section 7 gives examples of smooth moduli spaces and calculates
their topological Euler characteristics.

We recently learned that the stable pair moduli space for deg δ ≥ deg P was
also previously studied in [Kollár 2008], where it appears as the moduli space of
quotient husks. The author constructed it as a bounded proper separated algebraic
space, and used it to study an analogue of the flattening decomposition theorem for
reflexive hulls. The current paper settles affirmatively the question raised in [Kollár
2008] regarding the projectivity of the space.

We finally note that once it is constructed for deg δ < deg P, the moduli space
is available in an indirect way for deg δ ≥ deg P as well. This follows from two
facts: the set of critical values1 is finite and the largest critical polynomial δmax has
degree < deg P. Let δ′ be of degree deg P − 1 and larger than δmax. Then, for any
δ with deg δ ≥ deg P, we have SE0(P, δ)∼= SE0(P, δ

′). Although this observation
is not made in [Wandel 2015], the author proves the set of critical δ’s is finite.

This indirect argument does not, however, yield the linearized ample line bundle
for SE0(P, δ) with deg δ ≥ deg P. For stability polynomials δ′ with deg δ′ < deg P,
the linearization depends directly on δ′; the highest critical polynomial δmax cannot

1A critical value is a value such that as δ crosses over it, the moduli space SE0(P, δ) changes.
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be determined explicitly, however, since the boundedness which underlies the
finiteness of the set of critical stability values is itself not explicit.

For some applications, it is nevertheless important to know the line bundle
explicitly. A natural problem to study next is that of wall-crossing formulas, using
Thaddeus’ master space [Thaddeus 1996; Mochizuki 2009]. The construction of
the master space requires the linearized ample line bundle. So, it is important to
construct the moduli space directly via GIT and obtain the ample line bundle. We
will address the problem of wall-crossing formulas in future work.

2. Basic properties of stable pairs

2A. Preliminaries on coherent sheaves. For a coherent sheaf E on (X,OX (1)),
we denote by PE its Hilbert polynomial . Recall that we can write the Hilbert
polynomial in the form

PE(m)=
d∑

i=0

ai (E)
mi

i !
,

where d is the dimension of the support of E , which we simply write as dim E , and
ai (E) ∈Q. We denote by

r(E)= ad(E)

the multiplicity of E . The reduced Hilbert polynomial is

pE =
PE

r(E)
.

The slope of E is

µ(E)=
ad−1(E)
ad(E)

.

A coherent sheaf E is pure if there is no subsheaf with lower dimensional support.
It is semistable (respectively, slope-semistable) if it is pure and there is no subsheaf
with larger reduced Hilbert polynomial (respectively, slope). For a pure sheaf, there
is a Harder–Narasimhan filtration with respect to the slope

0 $ E1 $ E2 $ · · ·$ El = E,

where Et+1/Et is slope semistable and µ(Et/Et−1)>µ(Et+1/Et), for t ∈ [1, l−1].
We shall denote µmax(E)= µ(E1) and µmin(E)= µ(El/El−1).

To construct the moduli space via GIT, the first step is to prove a boundedness
result. For our convenience, we group a sequence of boundedness results here.

Theorem 2.1 (Grothendieck). Suppose F is a pure coherent OX -module of dimen-
sion d. Then:

(i) The slopes of nonzero coherent subsheaves are bounded above.
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(ii) The family of subsheaves F ′ ⊂ F with slopes bounded below, such that the
quotient F/F ′ is pure and of dimension d, is bounded.

We can also make a statement similar to the second assertion about the bounded-
ness of quotients. For the proof of this basic theorem, see [Grothendieck 1961b,
Lemma 2.5].

Let Y be the scheme-theoretic support of a pure sheaf E of dimension d and
multiplicity r . We include the following results discussed in [Le Potier 1993].

Lemma 2.2. The degree of Y is no larger than r2.

Proof. This is clear from an equivalent definition of multiplicity [Le Potier 1993,
Definition 2.1]. �

Lemma 2.3. The minimum slope µmin(OY ) is bounded below by a constant deter-
mined by n, r , and d.

Proof. See [Le Potier 1993, Lemma 2.12]. �

The following statement is crucial to our proof of boundedness.

Theorem 2.4 [Simpson 1994, Theorem 1.1]. Let C be a rational constant. The
family of pure coherent sheaves E with Hilbert polynomial PE = P, such that
µmax(E)≤ C , is bounded.

Bounding µmax from above is equivalent to bounding µmin from below, because
the Hilbert polynomial is additive in a short exact sequence.

We will also need the following statement.

Lemma 2.5 [Simpson 1994, Corollary 1.7]. Suppose F is a slope semistable sheaf
of dimension d, multiplicity r and slope µ. There is a constant C depending on r
and d such that2

h0(F)
r
≤

1
d!

(
[µ+C]+

)d
.

2B. Stable pairs. Let E0 be a coherent sheaf on X. Let P be a polynomial of
degree d , and δ be 0 or a polynomial with a positive leading coefficient.

Definition 2.6. A pair (E, α) (of type P) on X consists of a coherent sheaf E with
Hilbert polynomial P and a morphism α : E0→ E . A subpair (E ′, α′) consists of
a coherent subsheaf E ′ ⊂ E and a morphism α′ : E0→ E ′, such that{

ι ◦α′ = α if E ′ ⊃ imα,

α′ = 0 otherwise.

Here, ι denotes the inclusion E ′ ↪→ E . A quotient pair (E ′′, α′′) consists of a
coherent quotient sheaf q : E→ E ′′ and a morphism α′′ = q ◦α : E0→ E ′′.

2
[x]+ =max{0, x}.
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We say a pair (E, α) has dimension d if dim E = d .
A morphism φ : (E, α)→ (F, β) of pairs is a morphism of sheaves φ : E→ F

such that there is a constant b ∈ k, where φ ◦α = bβ. By this definition, subpairs
and quotient pairs can be viewed as morphisms. For simplicity, we shall use the
notation φ for both the morphism of pairs and that of their underlying sheaves.

A short exact sequence of pairs,

0→ (E ′, α′) ι
−→ (E, α) q

−→ (E ′′, α′′)→ 0,

consists of a short exact sequence of sheaves, 0→ E ′→ E→ E ′′→ 0, such that
(E ′, α′) is a subpair and (E ′′, α′′) the corresponding quotient pair. More precisely,
α′′ = q ◦α if α′ = 0, and α′′ = 0 if ι ◦α′ = α.

The Hilbert polynomial of a pair (E, α) is

P(E,α) = PE + ε(α)δ

and the reduced Hilbert polynomial of the pair is

p(E,α) = pE +
ε(α)δ

r(E)
.

Here,

ε(α)=

{
1 if α 6= 0,
0 otherwise.

Clearly, the Hilbert polynomial is additive in a short exact sequence of pairs.

Definition 2.7. A pair (E, α) is δ-stable if

(i) E is pure;

(ii) p(E ′,α′) < p(E,α) for every proper subpair (E ′, α′).

Semistability is defined similarly, replacing the strong inequality by the correspond-
ing weak inequality.

Assuming purity, the second condition is equivalent to that for every proper
quotient pair (E ′′, α′′) of dimension d , p(E ′′,α′′) > p(E,α).

Convention. In the rest of this paper, if stability is characterized by a strong
inequality, semistability can be characterized by the corresponding weak inequality.
So, in such a case, we will only make the statement for stability.

When the context is clear, we will omit δ and only say a pair is stable or
semistable.

Clearly, a pair (E, 0) is (semi)stable if and only if E is (semi)stable as a coherent
sheaf. We will call a pair (E, α) nondegenerate if α 6= 0. We are primarily interested
in nondegenerate semistable pairs, which we are going to parametrize.
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A family of pairs parametrized by a scheme T is a morphism of sheaves

αT : π
∗

X E0→ E

over T × X, such that E is flat over T. Here, πX is the projection T × X → X.
Two families αT : π

∗

X E0→ E and βT : π
∗

X E0→ F are equivalent if there is an
isomorphism

ψ : E →F such that ψ ◦αT = βT .

In the large δ regime, semistable pairs have some special features.

Lemma 2.8. When deg δ ≥ deg P, there is no nondegenerate strictly semistable
pair, i.e., every nondegenerate semistable pair is stable.

Proof. Suppose (G, α′) is a subpair of a semistable (E, α), such that p(G,α′)= p(E,α),
that is,

pG +
ε(α′)δ

r(G)
= pE +

δ

r(E)
.

Consider the leading coefficients. Because deg δ ≥ d, we have ε(α′) = 1 and
r(G) = r(E). Thus, pE = pG . Therefore, PE = PG , which implies that G = E .
Hence, (G, α′)= (E, α). We have shown that (E, α) is not strictly semistable. �

We also have a reinterpretation of the stability condition.

Lemma 2.9. Suppose E is a pure coherent sheaf with Hilbert polynomial PE = P
and multiplicity r(E)= r . If deg δ ≥ d = deg P, then a pair (E, α) is stable if and
only if for every proper subpair (G, α′),

PG

2r(G)− ε(α′)
<

P
2r − ε(α)

.

Proof. When deg δ ≥ d, for any proper subpair (G, α′), the inequality

pG + ε(α
′)

δ

r(G)
< pE + ε(α)

δ

r

is equivalent to

(2-1)
ε(α′)

r(G)
≤
ε(α)

r
, and in case of equality, pG < pE .

The latter can be easily seen to be equivalent to

r(G)
2r(G)− ε(α′)

≤
r

2r − ε(α)
, and in case of equality, pG < pE .

This last condition is equivalent to the inequality in the statement. �

Moreover, there is a geometric characterization of stability.
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Lemma 2.10. If deg δ ≥ deg P, then (E, α) is stable if and only if E is pure and
dim cokerα < deg P.

This is essentially [Wandel 2015, Proposition 1.12]. The author stated the result
for the case where deg δ ≥ dim X while his argument actually showed the same
result under a weaker assumption deg δ ≥ deg P.

Pairs share some similar properties of sheaves.

Lemma 2.11. Suppose φ : (E, α)→ (F, β) is a nonzero morphism of pairs.

(i) Suppose (E, α) and (F, β) are δ-semistable pairs of dimension d. Then
p(E,α) ≤ p(F,β).

(ii) If (E, α) and (F, β) are δ-stable with the same reduced Hilbert polynomial, φ
induces an isomorphism between E and F. In particular, End((E, α))∼= k for
a stable pair (E, α).

Proof. (i) Let α′′ be φ ◦ α : E0 → imφ. Then (imφ, α′′) is a quotient pair of
(E, α) and a subpair of (F, β). Thus,

(2-2) p(E,α) ≤ p(imφ,α′′) ≤ p(F,β).

(ii) Suppose not, then kerφ 6= 0 or imφ 6= F. We also have the inequalities (2-2).
But two equalities do not hold simultaneously, which contradicts the fact that the
two stable pairs have the same reduced Hilbert polynomial. Therefore, kerφ = 0
and imφ = F. Thus, φ is an isomorphism of coherent sheaves. Clearly, the inverse
also provides an inverse of pairs. In particular, End((E, α)) is a finite-dimensional
associative division algebra over the algebraically closed field k, and hence is k. �

The second part of the lemma is essentially [Wandel 2015, Lemma 1.6].

Proposition 2.12 (Harder–Narasimhan filtration). Let (E, α) be a pair where E is
pure of dimension d. Then there is a unique filtration by subpairs

0 $ (G1, α1)$ (G2, α2)$ · · ·$ (Gl, αl)= (E, α)

with gri = (Gi , αi )/(Gi−1, αi−1) such that

(i) gri is δ-semistable of dimension d for all i ;

(ii) pgri
> pgri+1

for all i .

We call this filtration the Harder–Narasimhan filtration of the pair.

The proof is similar to the proof of the existence and uniqueness of the Harder–
Narasimhan filtration of a pure sheaf [Shatz 1977, Theorem 1].

Evidently, in the filtration, there is only one nonzero αi . In the case where
deg δ ≥ d , only α1 is nonzero.
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Proposition 2.13 (Jordan–Hölder filtration). Let (E, α) be a semistable pair. There
is a filtration

0 $ (F1, α1)$ (F2, α2)$ · · ·$ (Fl, αl)= (E, α),

such that each factor gri = (Fi , αi )/(Fi−1, αi−1) is stable with reduced Hilbert
polynomial p(E,α). Moreover, gr(E, α)=⊕i gri does not depend on the filtration.

Proof. Since we have Lemma 2.11, the proof proceeds the same way as the argument
for Jordan–Hölder filtrations of a semistable sheaf, see, e.g., [Huybrechts and Lehn
1997, Proposition 1.5.2]. �

Two semistable pairs are S-equivalent, if they have isomorphic Jordan–Hölder
factors.

Let
SE0(P, δ) : Sch/k→ Set

denote the moduli functor of S-equivalent nondegenerate semistable pairs of type P.
Let

Ss
E0
(P, δ)

denote the moduli functor of equivalence classes of nondegenerate stable pairs.

3. Boundedness

In order to construct the moduli space via GIT, we first need to prove that the family
of semistable pairs is bounded. As mentioned in the introduction, the case where
deg δ < deg P has been treated in [Wandel 2015]. So, in this section and the next,
we will focus on the case

deg δ ≥ deg P.

We will show boundedness using Theorem 2.4, by studying the µmin’s of sheaves
underlying semistable pairs.

Lemma 3.1. Fix the Hilbert polynomial P. Assume deg δ ≥ deg P. Suppose (E, α)
is a pair, which is semistable for some δ, with PE = P. Then, µmin(E) is bounded
below by a constant depending on P and X.

Proof. Let (E, α) be a semistable pair. By Lemma 2.10,

(3-1) dim cokerα < d.

Choose an m large enough such that E0(−m) is generated by global sections. Let
Y be the scheme-theoretic support of E . The morphism α factors through E0|Y .
We have the sequence of morphisms

H 0(E0(m))⊗OY (−m)� E0|Y → E � grs E,
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where the last morphism is the surjection from E onto the last factor of the Harder–
Narasimhan filtration with respect to the slope. By (3-1), the composition is nonzero.
Therefore,

µmin(E)= µ(grs E)≥ µmin(H 0(E0(m))⊗OY (−m))

= µmin(OY (−m))= µmin(OY )−m,

where the last term is bounded below, by Lemma 2.3. Thus, µmin(E) is bounded
below by a constant, which depends on X and P. �

Remark 3.2. The lemma also holds for deg δ < deg P. Moreover, the constant can
be chosen to be independent of δ.

Combining Lemma 3.1 and Theorem 2.4, we obtain the following boundedness
result.

Proposition 3.3. Fix the Hilbert polynomial P. The family

{E |(E, α) is a semistable pair of type P with respect to some δ}

of coherent sheaves on X is bounded.

For a bounded family of pure pairs, the family of factors of their Harder–
Narasimhan filtrations is bounded:

Lemma 3.4. Suppose 8 : π∗X E0 → E over T × X is a flat family of pure pairs
over X parametrized by a finite type scheme T. For a closed point t ∈ T, let
E (t)= E |Spec k(t)×X and 8(t) be the corresponding morphism. Then, the family of
the Harder–Narasimhan factors of (E (t),8(t)), for all t ∈ T, is bounded.

The following proof is very similar to the proof of the corresponding statement
about the boundedness of Harder–Narasimhan factors of pure sheaves [Huybrechts
and Lehn 1997, Theorem 2.3.2]. We do not assume deg δ ≥ deg P in this proof.

Proof. We can assume T to be integral. Define A as the set of 2-tuples (P ′′, ε′′),
such that there is a point t ∈ T and a pure quotient q : E (t)� E ′′ with Hilbert
polynomial PE ′′ = P ′′ and ε′′ = ε(q ◦8(t)), which destabilizes (E (t),8(t)):

p′′+
ε′′δ

r ′′
< p+

ε(8(s))δ
r

.

Here, p and p′′ denote the corresponding reduced Hilbert polynomials, and r
and r ′′ denote the multiplicities. From this inequality, we know that µ(E ′′) is
bounded above by a constant determined by P and δ. Therefore, A is a finite set by
Theorem 2.1.

If this set is empty, then all pairs are semistable. Then, we are done. Otherwise,
we define a total order � on A as:

(P1, ε1)� (P2, ε2)
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if p1+ ε1δ/r1 ≤ p2+ ε2δ/r2, and in the case of equality, P1 ≥ P2. Let us consider
whether there is a (P−, ε−), which is minimal with respect to the total order �
and satisfies the condition that for a generic point t ∈ T, there is a pure quotient
q : E (t)→ F with

(3-2) PF = P− and ε(q ◦8(t))= ε−.

If there is no such (P−, ε−), then generically, say over the open subscheme
U ⊂ T, pairs are already semistable.

If there is such a (P−, ε−), let U ⊂ T be the open family having quotients
satisfying the condition (3-2). The minimal Harder–Narasimhan factors of pairs in
U are parametrized by a subscheme of QuotP−(E ). To parametrize all the Harder–
Narasimhan factors of pairs parametrized by U, we can iterate the above process
for the kernel, which is flat, of the universal quotient over QuotP−(E ). This process
will terminate due to multiplicity.

Then, we can run the same algorithm for pairs parametrized by irreducible
components of the complement T \U. Because T is noetherian, the process will
terminate.

We have thus parametrized the Harder–Narasimhan factors by a finite sequence
of Quot schemes. �

The following statement enables us to handle the semistability condition via
spaces of global sections, instead of Hilbert polynomials.

Lemma 3.5. Fix P and δ with deg δ ≥ deg P. Then there is an m0 ∈ Z>0, such that
for any integer m ≥ m0 and any pair (E, α), where E is pure with PE = P and
multiplicity r(E)= r , the following assertions are equivalent.

i) The pair (E, α) is stable.

ii) PE(m) ≤ h0(E(m)), and for any proper subpair (G, α′) where G is of
multiplicity r(G),

h0(G(m))
2r(G)− ε(α′)

<
h0(E(m))
2r − ε(α)

.

iii) For any proper quotient pair (F, α′′) where F is of dimension d and multi-
plicity r(F),

h0(F(m))
2r(F)− ε(α′′)

>
P(m)

2r − ε(α)
.

The proof is modified from that of a similar statement in [Le Potier 1993].

Proof. The proof will proceed as follows: i)⇒ ii)⇒ iii)⇒ i). The integer m0 will
be determined in the course of the proof, nonexplicitly.
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i)⇒ ii) The family of sheaves underlying semistable pairs with a fixed Hilbert
polynomial is bounded. Thus, there is m0 ∈ N such that for any integer m ≥ m0,
we have H i (E(m))= 0 for all i > 0. In particular, P(m)= h0(E(m)).

In the course of proving the boundedness, we also proved thatµmax(E) is bounded
above, say µmax(E)≤µ. For a proper subpair (G, α′) of multiplicity r(G), consider
the Harder–Narasimhan filtration of G with respect to the slope. Let us denote the
multiplicity and the slope of the i-th grading by r ′i and µ′i. Then, we have µ′i ≤ µ.
Notice that r ′i is positive and bounded above by r , which implies that there are only
finitely many possible r ′i ’s and µ′i ’s. Let ν = µmin(G). By Lemma 2.5 and an easy
calculation, we can find a constant B depending on r and d, such that3

h0(G(m))
r(G)

≤
1
d!

((
1− 1

r

)(
[µ+m+ B]+

)d
+

1
r
(
[ν+m+ B]+

)d
)
.(3-3)

Choose a constant A > 0, which is larger than all roots of P. Replace m0 by
max{m0, A}. Then

h0(E(m))= P(m)≥ r
d!
(m− A)d , for all m ≥ m0.

Suppose ν0 is an integer such that

B+µ
(

1− 1
r

)
+
ν0
r <−A.

Enlarging m0 if necessary, we have

(3-4) 1
d!

((
1−1

r

)(
[µ+m+B]+

)d
+

1
r
(
[ν0+m+B]+

)d)
<

P(m)
r
, for all m≥m0,

by considering the first and the second leading coefficients.
Thus, when m ≥ m0 and ν ≤ ν0, combining (3-3) and (3-4), we get

(3-5) h0(G(m)) <
r(G)

r
h0(E(m))≤

2r(G)− ε(α′)
2r − ε(α)

h0(E(m)).

The last weak inequality is a consequence of (2-1).
We are left to consider the case where ν > ν0. First, notice that we can assume

E/G to be pure. If not, consider the saturation of G in E , namely, the smallest
G ⊃ G, such that E/G is pure. If we can prove the inequality in ii) for G, then it’s
also true for G, since r(G)=r(G) and h0(G(m))≤h0(G(m)). Sinceµ(G)≥ν>ν0,
the family of such G is bounded, by Theorem 2.1. So, there are only finitely many
Hilbert polynomials of the form PG for such G. Moreover, we can enlarge m0

again, if necessary, such that for m ≥ m0, PG(m)= h0(G(m)) and

PG

2r(G)− ε(α′)
<

P
2r − ε(α)

⇐⇒
PG(m)

2r(G)− ε(α′)
<

P(m)
2r − ε(α)

.

3To obtain this inequality, one can also see [Huybrechts and Lehn 1997, Corollary 3.3.8].
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Therefore, by Lemma 2.9 and (3-5),

h0(G(m))
2r(G)− ε(α′)

<
h0(E(m))
2r − ε(α)

.

ii)⇒ iii) From a proper quotient pair (F, α′′), we can get a short exact sequence

0→ (G, α′)→ (E, α)→ (F, α′′)→ 0.

We thus obtain an exact sequence

(3-6) 0→ H 0(G(m))→ H 0(E(m))→ H 0(F(m)).

Therefore, h0(F(m)) ≥ h0(E(m))− h0(G(m)). Notice that r(E) = r(G)+ r(F)
and ε(α)= ε(α′)+ ε(α′′). Thus,

h0(F(m))
2r(F)− ε(α′′)

≥
h0(E(m))− h0(G(m))

(2r − ε(α))− (2r(G)− ε(α′))
>

h0(E(m))
2r − ε(α)

≥
P(m)

2r − ε(α)
.

iii) ⇒ i) Take the Harder–Narasimhan filtration of E with respect to the slope.
Suppose F is the last factor, then µ(F)=µmin(E), denoted as µ′′. By Lemma 2.5,

(3-7)
h0(F(m))

r(F)
≤

1
d!

(
[µ′′+m+C]+

)d
.

Let (F, α′′) be the induced quotient pair. If ε(α′′) 6= 0, then (E, α) is stable, since
in the Harder–Narasimhan filtration, only the first morphism is nonzero. So, assume
ε(α′′)= 0. Then

P(m)
r

<
2P(m)

2r − ε(α)
<

h0(F(m))
2r(F)

≤
1
d!

(
[µ′′+m+C]+

)d
.

If m ≥ m0, the preceding inequality with P(m)/r ≥ (m − A)d/d! implies that
m − A ≤ µ′′+m +C . Therefore, µmin(E) = µ′′ ≥ −A−C . Thus, the family of
coherent sheaves satisfying the third condition for some m ≥ m0 is bounded.

Let grs = (grs E, grs α) denote the last Harder–Narasimhan factor of the pair
(E, α). Then

h0(grs E(m))
2r(grs E)− ε(grs α)

>
P(m)
2r − 1

.

By Lemma 3.4, enlarging m0 if necessary, we can assume that, for all m ≥ m0,

(i) h0(grs E(m))= Pgrs E(m);

(ii)
Pgrs E(m)

2r(grs E)− ε(grs α)
>

P(m)
2r − 1

⇐⇒
Pgrs

2r(grs E)− ε(grs α)
>

P
2r − 1

.

Therefore, ε(gri α)/r(grs E) ≥ 1/r , which implies ε(grs α) = 1. Thus, s = 1,
which means (E, α) is semistable, and thus stable. �
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Replacing the strong inequalities by weak inequalities, we conclude that the
lemma is also true.

4. Construction of the moduli space

Fix the smooth projective variety (X,OX (1)), the coherent sheaf E0, the Hilbert
polynomial P, and the stability condition δ.

By the boundedness results proven in the last section, there is an N ∈ Z such
that for any integer m > N, the following conditions are satisfied:

(i) E0(m) is globally generated.

(ii) E(m) is globally generated and has no higher cohomology for every E ap-
pearing in a δ-semistable pair (Proposition 3.3). Similar results hold for their
Harder–Narasimhan factors (Lemma 3.4).

(iii) The three assertions in Lemma 3.5 are equivalent.

Fix such an m and let V be a vector space such that

dim V = P(m).

Suppose (E, α) is a semistable pair, then E can be viewed as a quotient

q : V ⊗OX (−m)� E .

Another datum of the pair is the morphism α. It gives rise to a linear map

σ : H 0(E0(m))→ H 0(E(m))∼= V .

Thus, a semistable pair gives rise to the following diagram:

K0 H 0(E0(m))⊗OX (−m) E0

V ⊗OX (−m) E

ι ev

σ α

q

Here, ι is the kernel of the evaluation map ev. Conversely, we can obtain a pair
from a quotient q and a linear map σ as long as q ◦σ ◦ ι= 0. Also notice that σ = 0
if and only if α = 0.

We will study the following spaces:

P= P(Hom(H 0(E0(m)), V ))= Proj(H 0(E0(m))⊗ V∨),

Q = QuotP
X (V ⊗OX (−m)).

The second space is Grothendieck’s Quot scheme, parametrizing quotients of
V⊗OX (−m)with Hilbert polynomial P. This is motivated by a similar construction
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in [Huybrechts and Lehn 1995a; 1995b]. Spaces P and Q are fine moduli spaces,
with the following universal families:

H 0(E0(m))⊗OP→ V ⊗OP(1),(4-1)

V ⊗OX (−m)→ E .(4-2)

Let
Z ⊂ P× Q

be the locally closed subscheme of points ξ = ([σ ], [q]) such that

(i) q ◦ σ ◦ ι= 0;

(ii) E is pure;

(iii) the quotient q induces an isomorphism of vector spaces V −→∼ H 0(E(m)).

There is a natural SL(V )-action on P× Q:(
[σ ], [q]

)
.g =

(
[g−1
◦ σ ], [q ◦ g]

)
,

for g ∈ SL(V ) and ([σ ], [q]) ∈ P× Q. It can be easily checked that this indeed
defines a right action. It is clear that Z is invariant under this action. The closure Z
of Z ⊂ P× Q is invariant as well.

For a very large l, there is an SL(V )-equivariant embedding,

Q = QuotP
X (V ⊗OX (−m)) ↪→ Grass(V ⊗ H 0(OX (l −m)), P(l)),

[q : V ⊗OX (−m)� E] 7→ [H 0(q(l)) : V ⊗ H 0(OX (l −m))� H 0(E(l))].

The standard very ample line bundle on the Grassmannian is SL(V )-linearized. Let
OQ(1) be its pullback to Q. The line bundle OP(1) is also SL(V )-linearized. Thus,
for positive integers n1 and n2, the following line bundle is SL(V )-linearized:

L = OP(n1)�OQ(n2).

We are going to construct the moduli space by taking the GIT quotient of Z ,
eliminating the extra information coming from identifying V and H 0(E(m)). A
key step is to relate the δ-stability condition to the GIT-stability condition with
respect to L , which will occupy a large part of this section.

An application of the Hilbert–Mumford criterion shows the following lemma. It
is very similar to [Wandel 2015, Proposition 4.3]. For the proof of the lemma, see
[Lin 2016, Lemma 12].

Lemma 4.1. For l very large, let ξ = ([σ ], [q]) ∈ Z be a point with associated
morphism α : E0→ E. Then the following two conditions are equivalent:

(i) ξ is GIT-stable with respect to L.
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(ii) For any nontrivial proper subspace W $ V, let G = q(W ⊗OX (−m)). Then

(4-3) PG(l) >
n1

n2

(
εW (σ )−

dim W
dim V

)
+ P(l)dim W

dim V
.

Here, εW (σ ) is either 1 or 0 depending on whether W contains im σ or not.

GIT-semistability can also be characterized by the corresponding weak inequality.
Now, let

(4-4)
n1

n2
=

P(l)
2r

.

We fix an l such that

(i) Lemma 4.1 holds;

(ii) (4-3) holds if and only if it holds as an inequality of polynomials in l:

(4-5) PG >
n1

n2

(
εW (σ )−

dim W
dim V

)
+ P dim W

dim V
.

We can ask for the second condition because the family of such G’s is bounded.
In defining Z , we required the quotient to be pure. When we take the closure,

we may include quotients which are not pure. But the following statement imposes
restrictions.

Corollary 4.2. If ([σ ], [q])∈ Z is GIT-semistable, then H 0(q(m)) :V→H 0(E(m))
is injective and for any coherent subsheaf G ⊂ E such that dim G ≤ d − 1,
H 0(G(m))= 0.

Proof. Let W be the kernel of H 0(q(m)) : V → H 0(E(m)), then for the image G
we have

G = q(W ⊗OX (−m))= 0.

The inequality (4-5) forces dim W to be zero, otherwise the right-hand side of the
inequality is a positive polynomial while the left-hand side is 0.

Suppose G ⊂ E such that dim G ≤ d − 1. If we let W = H 0(G(m)), then
q(W ⊗OX (−m))⊂ G. By the inequality (4-5), we have dim W = 0, otherwise the
right-hand side will be a positive polynomial of degree no less than d, while the
left hand side is of degree ≤ d − 1. �

We are ready to relate the δ-stability condition to the GIT-stability condition.

Proposition 4.3. Let ([σ ], [q]) be in Z and (E, α) be the corresponding pair. The
following two assertions are equivalent:

(i) ([σ ], [q]) is GIT-(semi)stable with respect to L.

(ii) (E, α) is (semi)stable and q induces an isomorphism V −→∼ H 0(E(m)).

Recall that when deg δ ≥ deg P, there are no strictly semistable pairs.
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Proof. First, assume that a point ([σ ], [q]) ∈ Z is GIT-semistable. Denote the
quotient by

q : V ⊗O(−m)→ E .

Then by Corollary 4.2, we know that the induced linear map V → H 0(E(m)) is in-
jective. The sheaf E can be deformed to a pure sheaf since ([σ ], [q]) is in the closure
of Z . By [Huybrechts and Lehn 1997, Proposition 4.4.2], there is an exact sequence,

0→ Td−1(E)→ E φ
−→ F,

where Td−1(E) is the maximal dimension d − 1 subsheaf of E and such that
PF = PE = P. According to Corollary 4.2, the exact sequence provides an injective
linear map,

H 0(E(m)) ↪→ H 0(F(m)).

For any dimension d quotient π : F � F ′′, let G be the kernel of π ◦φ,

0→ G→ E π◦φ
−−→ F ′′→ 0.

Let W = V ∩ H 0(G(m)). Then we have

(4-6) h0(F ′′(m))≥ h0(E(m))− h0(G(m))≥ dim V − dim W.

Let r ′′ = r(F ′′). Let’s consider the leading coefficients of the two sides of (4-3),
viewed as polynomials in l. (This is where the argument diverges, depending on
the degree of δ. Here, we focus on the case where deg δ ≥ d .) Then

(2r(G)− εW (σ )) dim V ≥ (2r − 1) dim W.(4-7)

Combining ((4-6), (4-7)), we have

h0(F ′′(m))
2r ′′− ε(π ◦φ ◦α)

≥
dim V
2r − 1

·
2r ′′− (1− εW (σ ))

2r ′′− ε(π ◦φ ◦α)
≥

P(m)
2r − 1

.

To prove the second inequality, notice that, when ε(π ◦ φ ◦ α) = 0, imα ⊂ G.
Therefore im σ ⊂ H 0(G(m)). Thus, im σ ⊂W.

According to Lemma 3.5, the pair (F, φ ◦ α) is semistable. Therefore, by our
choice of m, h0(F(m))= P(m). We have the following commutative diagram:

V ⊗OX (−m) H 0(E(m))⊗OX (−m) ev H 0(F(m))⊗OX (−m) ev

E F

∼

q

∼

φ

So, φ is surjective. Since they have the same Hilbert polynomial, it is an
isomorphism. Therefore, (E, α) is a semistable pair.
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Next, we assume that (E, α) is semistable, thus stable, and q(m) induces an
isomorphism between global sections. For any nontrivial proper subspace W $V, let

G = q(W ⊗O(−m))

and (G, α′) the corresponding subpair. If (G, α′) = (E, α), the inequality in
Lemma 4.1 holds. Assume that (G, α′) is a proper subpair. According to Lemma 3.5,
we have

h0(G(m))
2r(G)− ε(α′)

<
h0(E(m))

2r − 1
.

From the commutative diagram

W H 0(G(m))

V H 0(E(m))
∼=

we know that dim W ≤ h0(G(m)). Thus,

dim W
2r(G)− ε(α′)

<
h0(E(m))

2r − 1
.

Therefore,

r(G) > 1
2
ε(α′)−

1
2
·

dim W
dim V

+ r
dim W
dim V

,

which implies the inequality in Lemma 4.1, since ε(α′)≥ εW (σ ). Hence, ([σ ], [q])
is GIT-stable. �

We still need the following lemma, which will help us identify closed orbits. A
pair is polystable if it is isomorphic to a direct sum of stable pairs, degenerate or
not, with the same reduced Hilbert polynomial.

Lemma 4.4. The closures of orbits of two points, ([σ1], [R1]) and ([σ2], [R2]), in
Z ss intersect if and only if their associated semistable pairs (E1, α1) and (E2, α2)

have the same Jordan–Hölder factors. The orbit of a point ([σ ], [q]) is closed if
and only if the associated pair (E, α) is polystable.

The proof is similar to that of [Huybrechts and Lehn 1997, Theorem 4.3.3], using
the following lemma on semicontinuity.

Lemma 4.5 (semicontinuity). Suppose (F , α) and (G , β) over XT = T × X are
two flat families of pairs, with Hilbert polynomials PF and PG , parametrized by a
scheme T of finite type over k. Then, the following function is semicontinuous:

t 7→ dimk Hom{t}×X ((Ft , αt), (Gt , βt)).

The proof is modified from that of [Huybrechts and Lehn 1995a, Lemma 3.4].
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Proof. The space Hom((Ft , αt), (Gt , βt)) is related to the pullback in the diagram

Ct k

Hom(Ft ,Gt) Hom(E0,Gt)

·βt

◦αt

in the sense that it satisfies the equality

dim Hom((Ft , αt), (Gt , βt))= dim Ct − 1+ ε(βt).

By our flatness assumption, βt is either always zero or never zero. Thus, it is enough
to show that Ct is a fiber of a common coherent OT -module, as t varies. Since the
question is local on T, assume T = Spec A, where A is a k-algebra.

It is shown in the proof of [Huybrechts and Lehn 1995a, Lemma 3.4] that there
is a bounded-above complex M •

E0
of finite type free A-modules, such that for any

A-module M,

(4-8) hi (M •

E0
⊗A M)∼= ExtiXT

(π∗X E0,G ⊗A M).

Similarly, there is such an M •

F that

(4-9) hi (M •

F ⊗A M)∼= ExtiXT
(F ,G ⊗A M).

The morphism α induces a morphism of complexes, which is still denoted as
α : M •

F → M •

E0
. The morphism β induces a morphism β : A→ M •

E0
. Thus, there

is a morphism,
ψ = (α,−β) : M •

F ⊕ A→ M •

E0
.

Then the mapping cone C(ψ) fits in the distinguished triangle

C(ψ)[−1] → M •

F ⊕ A→ M •

E0
→ C(ψ).

Taking the long exact sequence, we have

0→ h−1(C(ψ))→ HomXT (F ,G )⊕ A→ HomXT (π
∗

X E0,G )→ · · · .

Thus, we have the following fiber diagram:

h−1(C(ψ)) A

HomXT (F ,G ) HomXT (π
∗

X E0,G )

β

α

Therefore, together with (4-8) and (4-9) and the isomorphism ExtiXT
(F ,G ⊗ k(t))∼=

ExtiX t
(Ft ,Gt), we know Ct ∼= h−1(C(ψ))⊗ k(t). �

We can now prove the existence of the moduli space.
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Proof of Theorem 1.1. Let

S = SE0(P, δ)= Z ss � SL(V )

be the GIT quotient. This is a projective scheme. We will show that this is the
coarse moduli space of S-equivalence classes of semistable pairs.

Suppose we are given a family of semistable pairs parametrized by T :

β : π∗X E0→F .

Let π be the projection from T × X onto T. Let m be chosen as before, then
π∗(F (m)) is locally free of rank P(m)=dim V and we obtain a morphism over T :

π∗(β(m)) : π∗(π∗X E0(m))→ π∗(F (m)).

Therefore, there is an open affine cover T =
⋃

Ti , such that π∗(F (m))|Ti is free of
rank P(m) over each Ti . Choose an isomorphism over Ti :

ωi : V ⊗OTi → π∗(F (m))|Ti .

Then ω−1
i ◦π∗(β(m)) induces a morphism Ti → P. Also, the quotient

ev ◦π∗(ωi ) : V ⊗OX (−m)
∼=
−→π∗π∗(F (m))⊗OX (−m)� F

over Ti × X induces a morphism Ti → Q. Thus, they induce a morphism fi :

Ti → P× Q. By the definition of Z and Proposition 4.3, fi factors through Z ss.
Therefore, we obtain unambiguously a morphism,

fβ : T → S.

Thus, we have a natural transformation,

S = SE0(P, δ)→Mor(−, S).

Suppose there is a natural transformation,

(4-10) S→Mor(−, N ).

Let T = Z ss. Universal families (4-1) and (4-2) induce

H 0(E0(m))⊗OX (−m)→ V ⊗OP(1)⊗OX (−m)� E ⊗OP(1).

Over T, the composition induces a family,

(4-11) π∗X E0→ E ⊗OP(1),

and thus an element in S(T ). This in turn produces a map T = Z ss
→ N. Because

(4-10) is a natural transformation, this map is SL(V )-equivariant, with the action
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on N being trivial. According to properties of a quotient, the map factors uniquely
through S. Therefore, we have the following commutative diagram of functors:

S Mor(−, S)

Mor(−, N )

Moreover, closed points in S are in bijection with S-equivalence classes of semistable
pairs, according to Lemma 4.4. Thus, S is the coarse moduli space.

Let us consider the open set Z s
⊂ Z ss of stable points. The geometric quotient

Z s
→ Z s/SL(V )= Ss

E0
(P, δ)= Ss

provides a quasiprojective scheme parametrizing equivalence classes of stable pairs.
We shall prove this quotient to be a principal PGL(V )-bundle. It is enough to show
that the stabilizers are products of the identity matrix and roots of unity.

Suppose a point ([σ ], [q]) ∈ Z s gives rise to a stable pair α : E0 → E and
([σ ], [q]) is fixed by g ∈ SL(V ), that is, [σ ] = [g−1

◦ σ ] [q] = [q ◦ g]. Then there
is a scalar a ∈ k×, such that g−1

◦σ = aσ , and there is an isomorphism φ : E→ E ,
such that φ ◦ q = q ◦ g. Therefore,

φ ◦α ◦ ev= aα ◦ ev : H 0(E0(m))⊗OX (−m)→ E .

So, φ ◦α = aα. Thus, φ is a multiplication by a nonzero scalar, by Lemma 2.11.
In the diagram

V
H0(q(m))
−−−−−→ H 0(E(m))

g
y yH0(φ(m))

V
H0(q(m))
−−−−−→ H 0(E(m))

the horizontal arrows are isomorphisms and the right vertical arrow is a multiplica-
tion by a nonzero scalar. Therefore, g is also a multiplication by a nonzero scalar.
Because g lies in SL(V ), it is the product of a root of unity and the identity matrix.

In the family (4-11), E ⊗OP(1) is SL(V )-equivariant. Although the actions of
the center of SL(V ) on OP(1) and E are not trivial, its action on E ⊗OP(1) is. Thus,
E ⊗OP(1) is PGL(V )-equivariant. Therefore, the restriction of (4-11) to Z s

× X
descends to Ss

× X to give a universal family of pairs. Hence, Ss represents the
functor Ss

E0
(P, δ). �

Remark 4.6. The construction above can be carried out in the relative case. By
[Grothendieck 1961b, Lemma 2.5], the boundedness result still holds. According to
[Seshadri 1977], the GIT construction works in the relative setting. More concretely,
let T be a k-scheme of finite type, X → T a flat projective morphism, and E0 a
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coherent OX -module flat over T. Then, there is a relative moduli space of δ-
semistable pairs SE0(P, δ) which is projective over T. There is an open subscheme
Ss

E0
(P, δ)⊂ SE0(P, δ) parametrizing stable pairs. Moreover, fibers SE0(P, δ)t over

closed points are moduli spaces of semistable pairs on X t .

5. Deformation and obstruction theories

This section is devoted to the proof of Theorem 1.2, following [Huybrechts and
Lehn 1997; Inaba 2002]. In Section 5A, we will outline the construction of the
obstruction class and identify the deformation space. In Section 5B, we will fill in
the proofs.

5A. Constructions. Suppose (E, α) is a stable pair and

0→ K → B σ
−→ A→ 0

is a short exact sequence, where A, B ∈ Ar tk are local Artinian k-algebras with
residue field k, such that mB K = 0. Suppose

αA : E0⊗ A→ E A

over
X A = X ×Spec A

is a (flat) extension of (E, α). Let

I •A = {E0⊗ A→ E A}

denote the complex positioned at 0 and 1. We would like to extend (E A, αA) to a
pair (EB, αB) over X B . This is similar to deforming a sheaf or a perfect complex.
But we need to fix E0.

We take two locally free resolutions P• −→∼ E0 and Q•A −→
∼ E A and lift αA

to a morphism of complexes α•A : P• ⊗ A→ Q•A. Then, we have the following
commutative diagram:

· · · P−1
⊗ A P0

⊗ A E0⊗ A 0

· · · Q−1
A Q0

A E A 0

d−2
P ⊗A d−1

P ⊗A

α−1
A α0

A αA

d−2
Q A

d−1
Q A

where

(5-1) P i
= V i

⊗OX (−mi ) and Qi
A =W i

⊗OX A(−ni ).

Here, V i and W i are vector spaces and mi , ni ∈ N. Then, Q• = Q•A ⊗A k is a
resolution of E , because E A is flat over A.
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We can view the morphism αA as a morphism between complexes concentrated at
degree 0, then I •A can be viewed as a mapping cone I •A ∼=C(αA)[−1] ∼=C(α•A)[−1].
For the sake of notation, we write down the mapping cone explicitly:

· · · → P−1
⊗ A⊕ Q−2

A
d−2

A
−→ P0

⊗ A⊕ Q−1
A

d−1
A
−→ Q0

A→ 0,

where

(5-2) d i
A =

(
−d i+1

P ⊗ A 0
αi+1

A d i
Q A

)
.

We lift d i
Q A

to d i
Q B

, getting a sequence (Qi
B, d i

Q B
)i≤0, where

Qi
B =W i

⊗OX B (−ni ).

We also lift αi
A : P

i
⊗ A→ Qi

A to αi
B : P

i
⊗ B→ Qi

B . We then obtain a sequence

(5-3) (P i+1
⊗ B⊕ Qi

B, d i
B)i≤0,

where d i
B is similar to d i

A in (5-2). This is not necessarily a complex:

(5-4) d i
B ◦ d i−1

B =

(
0 0

−αi+1
B ◦ (d

i
P ⊗ B)+ d i

Q B
◦αi

B d i
Q B
◦ d i−1

Q B

)
may not vanish. But when it is a complex, (Q•B, d•Q B

) forms a complex and
α•B : P

•
⊗ B→ Q•B is a morphism of complexes. Thus,

H 0(α•B) : E0⊗ B→ H 0(Q•B, d•Q B
)

provides a flat extension of αA, according to Lemma 5.1, which will be stated and
proved in the next subsection.

The lower row of (5-4) constitutes a map

(5-5) P•[1]⊗ B⊕ Q•B→ Q•B[2].

When restricted to X A, it becomes zero. Moreover, mB K = 0. The map above
induces a map4

(5-6) (ω•P , ω
•

Q) : C(α
•)→ Q•B[2]⊗B K ∼= Q•[2]⊗k K .

We claim that (ω•P , ω
•

Q) is a morphism of complexes, which will be proven, see
Lemma 5.3. This induces a class, which will be shown to be the obstruction class

(5-7) ob(αA, σ )= [(ω
•

P , ω
•

Q)] ∈ HomK (X)(C(α•), Q•[2]⊗k K ).

4The argument used to deduce (5-6) from (5-5) will be applied repeatedly.
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To identify HomK (X)(C(α•), Q•[2]⊗ K ) with Ext1(I •, E ⊗ K ) in the theorem,
we only need to take (5-1) to be very negative such that H i (X, E(m j )) = 0 and
H i (X, E(n j ))= 0, for all i > 0 and j ≤ 0. Then

Ext1(I •, E ⊗ K )∼= HomK (X)(C(α•), E[2]⊗ K )∼= HomK (X)(C(α•), Q•[2]⊗ K ).

Suppose we have two extensions αB : E0⊗ B→ EB and βB : E0⊗ B→ FB ,
which arise from the following liftings:

{d i
EB
: Qi

B→ Qi+1
B , αi

B : P
i
⊗ B→ Qi

B},

{d i
FB
: Qi

B→ Qi+1
B , β i

B : P
i
⊗ B→ Qi

B}.

The differences d i
EB
− d i

FB
and αi

B −β
i
B induce a morphism of complexes

(5-8) ( f •P , f •Q) : C(α
•)→ Q•[1]⊗ K .

This induces a class

v = [( f •P , f •Q)] ∈ HomK (X)(C(α•), Q•[1]⊗ K )∼= Ext1(I •, E ⊗ K ).

Conversely, given αB and ( f •P , f •Q), we can produce another extension βB .
Moreover, αB and βB are equivalent if and only if v = 0.

5B. Proofs. In this subsection, we fill in the proofs of several claims we made
in Section 5A. We will assume the independence of choices in 5B1 and provide
proofs of independence in 5B2. To simplify the notation, we will sometimes omit
the superscripts in maps between complexes, such as α• and αi.

5B1. Obstruction classes. We first show that ob(αA, σ ) defined in (5-7) is an
obstruction class.

Suppose an extension (EB, αB) exists. The definition of ob(αA, σ ) does not
depend on the choice of the resolution Q•A. We can assume (EB, αB) arises by
lifting d i

Q A
and αi

A, making Q•B into a complex and α•B a morphism of complexes.
Then, (ω•P , ω

•

Q)= 0. Thus, ob(αA, σ )= 0.
Conversely, suppose ob(αA, σ )= 0. It is enough to show that (ω•P , ω

•

Q)= 0, after
possible modifications of the liftings. The vanishing of ob(αA, σ ) is equivalent to
(ω•P , ω

•

Q) being homotopic to 0. Let (g•P , g•Q) be a homotopy. By abuse of notation,
let ι denote inclusions

ι : Qi
B ⊗ K ↪→ Qi

B .

Similarly, π denotes the corresponding quotients,

π : P i
⊗ B � P i and π : Qi

B � Qi .

We can replace αB and dQ B by

αB − ι ◦ gP ◦π and dQ B − ι ◦ gQ ◦π,

then the new (ω•P , ω
•

Q) is zero.
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The following well-known lemma is central to our argument. For completeness,
we give a proof here.

Lemma 5.1. Let (Q•A, d•Q A
) be a sequence of the form Qi

A
∼= W i

⊗ OX A(−ni ),
i ≤ 0, such that

(Q•A, d•Q)⊗A k ∼= (Q•, d•)

is a resolution of E. If (Q•A, d•Q A
) is a complex, then it is exact except at the 0-th

place and the cohomology H 0(Q•A, d•Q A
) is an extension of E flat over A.

Proof. There is a short exact sequence of complexes

0→ Q•A⊗A mA→ Q•A→ Q•→ 0.

First, let n be the least integer such that mn
A= 0. We shall show that for 0≤ i ≤ n,

Q•A⊗ A/mi
A is exact except at the 0-th place, by induction on i decreasingly. Tensor

Q•A over A with the short exact sequence

0→mn−1
A →mn−2

A →mn−2
A /mn−1

A → 0,

whose last term is a direct sum of copies of k. On the other hand, Q•A⊗mn−1
A
∼=

Q• ⊗k m
n−1
A . We deduce that the complexes Q•A ⊗mn−1

A and Q•A ⊗mn−2
A /mn−1

A
are exact except at the 0-th places. So, from the associated long exact sequence,
Q•A⊗mn−2

A is also exact except at the 0-th place. Inductively, we can prove this
for Q•A.

Next, let E A= H 0(Q•A, d•Q A
). We shall show that E A⊗A/mi

A is flat for 1≤ i ≤n,
by induction on i .

Of course E A ⊗A A/mA ∼= E is flat over A/mA ∼= k. Tensor the short exact
sequence

(5-9) 0→mA/m
2
A→ A/m2

A→ A/mA→ 0

by Q•A over A. Since the ideal mA/m
2
A is square-zero, we have the short exact

sequence of complexes

0→ Q•⊗k mA/m
2
A→ Q•A⊗A A/m2

A→ Q•→ 0.

The associated long exact sequence degenerates to

(5-10) 0→ E ⊗mA/m
2
A→ E A⊗ A/m2

A→ E→ 0.

Therefore, E A⊗A A/m2
A is flat over A/m2

A, according to Lemma 5.2. Replacing
(5-9) by

0→m2
A/m

3
A→ A/m3

A→ A/m2
A→ 0,

we can repeat this argument. Inductively, we can prove E A is flat over A.
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Similar to obtaining (5-10), we also have the short exact sequence

0→ E A⊗mA→ E A→ E→ 0.

So, E A is an extension of E flat over A. �

For the reader’s convenience, we include the following basic lemma about flatness.
For a proof, see [Hartshorne 2010, Proposition 2.2].

Lemma 5.2. Let B→ A be a surjective homomorphism of Noetherian rings whose
kernel K is square zero. Then a B-module M ′ is flat over B if and only if M =
M ′⊗B A is flat over A and the natural map M ⊗A K → M ′ is injective.

Lemma 5.3. The map (5-6) is a morphism of complexes.

Proof. We have two equalities

(5-11) −αB ◦ dP ⊗ B+ dQ B ◦αB = ι ◦ωP ◦π and dQ B ◦ dQ B = ι ◦ωQ ◦π.

The map (5-6) is indeed a morphism: one can show that

ι ◦

(
dQ ⊗ K ◦ (ωP , ωQ)− (ωP , ωQ)

(
−dP 0
α dQ

))
◦π = 0.

Because ι is injective and π is surjective, (ωP , ωQ) commutes with differentials.5 �

5B2. Obstructions: independence of choices. We now show that ob(αA, σ ) is
independent of various choices we have made: α•A, α•B , d•Q B

, and Q•A.
To start, if we choose a different lifting α•A of αA, then (ω•P , ω

•

Q) only differs by
a homotopy.

We next show that the morphism (ω•P , ω
•

Q) is independent of liftings αB and
dQ B , modulo homotopy.

Let α′B and d ′Q B
be different liftings, giving rise to (ω′•P , ω

′•

Q). The differences
αB −α

′

B and dQ B − d ′Q B
induce a map, which will be shown to be a homotopy,

(h•P , h•Q) : P
•
[1]⊕ Q•→ Q•[1]⊗k K .

We have the following equalities:

(5-12) ι ◦ h P ◦π = αB −α
′

B and ι ◦ hQ ◦π = dQ B − d ′Q B
.

Combining (5-11) and (5-12), we obtain

ωP −ω
′

P =−h P ◦ dP + dQ ⊗ K ◦ h P + hQ ◦α,

ωQ −ω
′

Q = dQ ⊗ K ◦ hQ + hQ ◦ dQ .

5The trick using ι and π will be applied repeatedly.
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Therefore,

(ωP , ωQ)− (ω
′

P , ω
′

Q)= dQ ⊗ K ◦ (h P , hQ)+ (h P , hQ)

(
−dP 0
α dQ

)
,

which means (ω•P , ω
•

Q) and (ω′•P , ω
′•

Q) are homotopic.
Finally, we show the independence of Q•A.
Let (R•A, d•RA

) be another very negative resolution of the form:

Ri
A =W i ′

⊗OX A(−n′i ).

Then, there is a lifting of the identity map q•A : Q
•

A→ R•A, unique up to homotopy.
Let

β•A = q•A ◦α
•

A : P
•
⊗ A→ R•A.

Moreover, there is a morphism

diag(id, q•A) : C(α
•

A)→ C(β•A).

Lift q•A and β•A to q•B : Q
•

B→ R•B and β•B : P
•
⊗ B→ R•B . Then, we have a map of

sequences
diag(id, q•B) : P

•
[1]⊗ B⊕ Q•B→ P•[1]⊗ B⊕ R•B .

This fits in the following square, which is not necessarily commutative,

(5-13)

P•[1]⊗ B⊕ Q•B Q•B[2]

P•[1]⊗ B⊕ R•B R•B[2]

diag(id,q•B) q•B

Here, the two horizontal maps are defined as in (5-5). The square above induces

P•[1]⊕ Q• Q•[2]⊗ K

P•[1]⊕ R• R•[2]⊗ K

(ω•P ,ω
•

Q)

diag(id,q•) q•

(ω•P ,ω
•

R)

To show that ob(αA, σ ) is independent of the resolution, it is enough to show
that the two compositions in the square above differ by a homotopy. This is because,
if they differ by a homotopy, two classes [(ω•P , ω

•

Q)] and [(ω•P , ω
•

R)] are identified
via the isomorphism

HomK (X)(C(α•), Q•[2]⊗ K )∼= HomK (X)(C(β•), R•[2]⊗ K ).

Indeed, the difference dRB ◦ qB − qB ◦ dQ B and βB − qB ◦αB induce maps

τ • : Q•→ R•[1]⊗ K and υ• : P•→ Q•⊗ K .
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There are the following equalities:

dRB ◦ qB − qB ◦ dQ B = ι ◦ τ ◦π and βB − qB ◦αB = ι ◦ υ ◦π.(5-14)

Combining (5-11) and (5-14), we know that the difference of two compositions
in (5-13) is

ι ◦
(
(ωP , ωR) ◦ diag(id, q)− q ◦ (ωP , ωQ)

)
◦π

= ι ◦

(
(υ, τ ) ◦

(
−dP 0
α dQ

)
+ dR ⊗ K ◦ (υ, τ )

)
◦π.

Thus, (υ•, τ •) is a homotopy.

5B3. Deformations. Assume that the obstruction class ob(αA, σ ) vanishes.
Suppose there are two extensions:

αB : E0⊗ B→ EB and βB : E0⊗ B→ FB .

Resolve EB and FB by two very negative complex with identical terms but different
differentials: (Q•B, d•EB

) and (Q•B, d•FB
). Then, lift αB and βB :

P•⊗ B E0⊗ B

(Q•B, d•EB
) EB

α•B

∼

αB

∼

and

P•⊗ B E0⊗ B

(Q•B, d•FB
) FB

β•B

∼

βB

∼

The differences d i
EB
− d i

FB
and αi

B −β
i
B induce maps

f i
Q : Q

i
→ Qi+1

⊗ K and f i
P : P

i
→ Qi

⊗ K .

One can show that these provide a morphism of complexes

(5-15) ( f •P , f •Q) : C(α
•)→ Q•[1]⊗ K .

Thus, they induce a class v defined by

v = [( f •P , f •Q)] ∈ Ext1(I •, E ⊗ K ).

Conversely, if we are given an extension (EB, αB) and a class v represented by
( fP , fQ), then

βB = αB − ι ◦ fP ◦π and dFB = dEB − ι ◦ fQ ◦π

produce a morphism of complexes P•⊗B→ (Q•B, d•FB
). This induces an extension

of (E A, αA):
(FB, βB)= (H 0(Q•B, d•FB

), H 0(β•B)).
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If we choose a different resolution R•B and define ( f •P , f •R) similarly as in (5-8),
then [( f •P , f •Q)] and [( f •P , f •R)] are identified under the isomorphism

HomK (X)(P•[1]⊕ Q•, Q•[1]⊗ K )∼= HomK (X)(P•[1]⊕ R•, R•[1]⊗ K ).

So, v is independent of the resolution Q•B .
We next show that the difference of two equivalent extensions gives a zero class v.

Indeed, suppose αB and βB are equivalent, then by Lemma 2.11, there is a constant
z ∈ B such that βB = zαB . Denote the image of z in k as z̄. We have proven that v
is independent of resolutions. So, for our convenience, we take the same resolution
Q•B for EB and FB , and take β• = zα•. Then f •Q = 0. Furthermore, f •P in (5-8) is
homotopic to zero via homotopy

(0, 1− z̄) : P i+1
⊕ Qi

→ Qi
⊗ K .

Thus, the associated v = 0.
It remains to prove that if (h•P , h•Q) is a homotopy between ( f •P , f •Q) and zero,

then αB and βB are equivalent. One can actually check:

(i) id−ι ◦ hQ ◦π : (Q•B, d•EB
)→ (Q•B, d•FB

) is a morphism of complexes.

(ii) (id−ι ◦ hQ ◦π) ◦αB = βB − dFB ◦ ι ◦ h P ◦π − ι ◦ h P ◦π ◦ dP ⊗ B.

Hence, there is a morphism φ commuting two families of stable pairs αB and βB .
Therefore, by Lemma 2.11, this is an isomorphism.

6. Stable pairs on surfaces

In this section, we assume that (X,OX (1)) is a smooth projective surface, E0 is
torsion-free, P and δ are of degree 1. We shall demonstrate that in these cases, the
moduli space of stable pairs admits a virtual fundamental class, proving Theorem 1.3.

To show the existence of the virtual fundamental class, it suffices to show that the
obstruction theory is perfect [Behrend and Fantechi 1997; Li and Tian 1998]. That
is, there is a two-term complex of locally free sheaves resolving the deformation
and obstruction sheaves. In order to do this, we essentially need to show that there
are no higher obstructions, which is guaranteed by the following lemma.

Lemma 6.1. Fix a stable pair (E, α). Let I • denote the complex {E0
α
−→ E}

positioned at 0 and 1. Then

Exti (I •, E)= 0, unless i = 0, 1.

Proof. The stable pair fits into an exact sequence

0→ K → E0→ E→ Q→ 0,

which can be written as a distinguished triangle

K → I •→ Q[−1] → K [1].
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Notice that K is torsion-free and Q is 0-dimensional. Apply the functor Hom(−, E)
to this triangle. The associated long exact sequence is

0→ Hom(Q, E)→ Ext−1(I •, E)→ 0→ · · ·
→ 0→ Ext2(I •, E)→ Ext2(K , E)→0.

Since Q is 0-dimensional and E is pure, Hom(Q, E)=0. Thus, Ext−1(I •, E)=0.
The kernel K is torsion-free, so Ext2(K , E)∼= Hom(E, K ⊗ωX )

∨
= 0. Therefore,

Ext2(I •, E)= 0. �

Using this lemma, the expected dimension of the moduli space can be easily
calculated via Hirzebruch–Riemann–Roch, knowing invariants of E0.

Now, let
I• = {π∗X E0

α̃
−→ E}

be the universal pair, according to Theorem 1.1. By Theorem 1.2, the deformation
sheaf and the obstruction sheaf are calculated by

Rπ∗RHom(I•, E).

Take a finite complex P• of locally free sheaves resolving E and a finite complex
Q• of very negative locally free sheaves resolving I•. Take a finite, very negative
locally free resolution A• of (Q•)∨⊗ P•. Then

(6-1) Rπ∗RHom(I•, E)∼= Rπ∗RHom(Q•, P•)∼= Rπ∗A•.

Denote this complex on the moduli space as B•. By Grothendieck–Verdier duality
[Hartshorne 1966; Conrad 2000],

B• = Rπ∗A• ∼= Rπ∗RHom(A•∨⊗ωX , ωX )

∼= RHom(Rπ∗(A•∨⊗ωX )[−2],O).

Moreover, notice that

Rπ∗(A•∨⊗ωX )= π∗(A•∨⊗ωX )

is a complex of locally free sheaves, due to the negativity of A j ’s. Thus, B• is a
complex of locally free sheaves as well. Denote the differentials as d i ’s.

Next, we show that B• can be truncated to degree 0 and 1. The cohomologies of
B• concentrate at degree 0 and 1, by Lemma 6.1. Suppose Bi for an i ≥ 2 is the last
term that is nonzero. Both Bi and Bi−1 are locally free, then ker d i−1 is also locally
free. Replace Bi by zero and Bi−1 by ker d i−1. We get a new complex of locally
free sheaves, which is quasi-isomorphic to B•. Inductively, we can trim B• down to
degree 1. On the other side, suppose B j for a j < 0 is the first term that is nonzero.
Then, d j is injective fiberwise. Therefore, coker d j is flat [Grothendieck 1961a,
(10.2.4), Chapter 0], thus locally free. Hence, we can replace B j−1 by zero and B j
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by coker d j to get a new complex of locally free sheaves. Inductively, B• becomes
a complex concentrated in degree 0 and 1, with cohomologies the deformation
sheaf and the obstruction sheaf. Namely, we have the following exact sequence on
SE0(P, δ):

0→ De f → B0
→ B1

→Obs→ 0,

where B0 and B1 are locally free.
Therefore, the moduli space admits a virtual fundamental class.

7. Examples

In this section, we study examples of moduli spaces of dimension 1 stable pairs over
K3 surfaces. Let (X,OX (1)) be a polarized K3 surface, P be a Hilbert polynomial
of degree 1, and δ be a positive polynomial of degree larger than 1. Let E0 be a
fixed coherent sheaf over X. Then a pair (E, α), such that PE = P, is stable if E is
pure and cokerα has dimension 0, by Lemma 2.10.

Let H = c1(O(1)) ∈ H2(X,Z). Suppose the schematic support of E , which is a
curve, has arithmetic genus h. There are two discrete invariants of E6:

(7-1) βh = c1(E) ∈ H2(X,Z) and χ(E)= 1− h+ d.

They are related to the Hilbert polynomial by

PE(m)= (βh .H)m+ 1− h+ d.

So, with the Hilbert polynomial fixed, there are only finitely many possible βh’s.
The moduli space decomposes as a disjoint union:

SE0(P, δ)=
∐
βh

SE0(βh, 1− h+ d),

where SE0(βh, 1− h+ d) denote the moduli space of stable pairs satisfying (7-1).
Let Ch be a representative in the class βh ; then the linear system |Ch| is isomor-

phic to Ph. Let
Ch ⊂ |Ch| × X

be the universal curve.
When E0 ∼= OX , by [Pandharipande and Thomas 2010, Proposition B.8],

SOX (βh, 1− h+ d)∼= C[d]h ,

where C[d]h is the relative Hilbert scheme of points. If there is an ample line bundle
H such that

(7-2) Ch .H =min{L .H | L ∈ Pic(X), L .H > 0},

6There is a slight abuse of notation concerning β and d , but this is unlikely to cause confusion.
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then SOX (βh, 1− h+ d) is a smooth scheme of dimension h+ d, see [Kawai and
Yoshioka 2000, Lemmas 5.117 and 5.175] or [Pandharipande and Thomas 2010,
Proposition C.2].

The moduli space is not smooth in general for a higher rank E0. For example,
assume E0 ∼= O⊕2

X and the stable pair (E, α : O⊕2
X → E) maps a summand OX to 0.

Then, the deformation space of this stable pair is isomorphic to

Hom(OX → E, E)⊕ H 0(E).

The dimension of Hom(OX → E, E) is h+ d, while h0(E) may vary as E varies.
But when d is large, we do expect the moduli space to be smooth for higher rank E0.

Proposition 7.1. Suppose βh is irreducible, i.e., βh is not a sum of two curve classes,
and d > 2h−2. Then the moduli space SO⊕r

X
(βh, 1− h+d) is smooth of dimension

rd + (r − 2)(1− h)+ 1.

Proof. Apply the functor Hom(−, E) to

I •→ O⊕r
X → E→ I •[1].

According to Lemma 6.1, the associated long exact sequence is

0→ Hom(E, E)→ H 0(X, E)⊕r
→ Hom(I •, E)→

Ext1(E, E)→ H 1(X, E)⊕r
→ Ext1(I •, E)→ Ext2(E, E)→ 0.

Since βh is irreducible, E is stable. Therefore, ext2(E, E) = hom(E, E) = 1.
When d> 2h−2, by Serre duality, h1(X, E)= h1(C, E)= 0 where C is the support
of E . Thus, the tangent space Hom(I •, E) has constant dimension χ(I •, E)+ 1=
rd + (r − 2)(1− h)+ 1. �

For every h ≥ 0, there exists a K3 surface Xh and a curve class βh ∈ H2(Xh,Z),
such that βh .βh = 2h − 2 and (7-2) is satisfied, see [Kawai and Yoshioka 2000,
Remark 5.110]. For each h ≥ 0, we fix such Xh and βh .

Kawai and Yoshioka [2000, Corollary 5.85] calculated the generating series of
topological Euler characteristics of the moduli spaces.

Theorem 7.2 (Kawai–Yoshioka). For 0 < |q| < |y| < 1, the generating series of
topological Euler characteristics is

∞∑
h=0

∞∑
d=0

χtop
(
SOXh

(βh, 1− h+ d)
)
qh−1 y1−h+d

=

((
y−1/2

− y1/2)2q
∞∏

n=1

(
1− qn)20(1− qn y

)2(1− qn y−1)2
)−1

.
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Next, we consider stable pairs over Xh of the form

α : Lh→ E,

where Lh is a line bundle with the first Chern class c1(Lh)= lβh . Such a stable pair
is equivalent to OX → E⊗ L−1

h . Notice that c1(E⊗ L−1
h )= βh and χ(E⊗ L−1

h )=

1− h+ d − 2l(h− 1). Therefore,

SLh (βh, 1− h+ d)∼= SOX (βh, 1− h+ d − 2l(h− 1)).

If α 6= 0, then d ≥ 2l(h− 1). The generating series is

∞∑
h=0

∞∑
d=2l(h−1)

χtop
(
SLh (βh, 1− h+ d)

)
qh−1 yd+1−h

=

∞∑
h=0

∞∑
d=0

χtop
(
SOX (βh, 1− h+ d)

)
(qy2l)h−1 yd+1−h

=

((
y−

1
2 − y

1
2
)2qy2l

∞∏
n=1

(
1− qn y2nl)20(1− qn y2nl+1)2(1− qn y2nl−1)2

)−1

.

Now, we consider stable pairs over Xh of the form

α :
⊕

i

L i,h→ E,

where L i,h is a line bundle with c1(L i,h)= liβh . The proof of Proposition 7.1 can
also show that the moduli space is smooth when d is large compared to li and h. Let
Gm act on direct summands with distinct weights; then there is a natural Gm-action
on the moduli space S⊕L i,h

Xh
(βh, 1− h+ d). A morphism ⊕L i,h→ E is fixed under

the action if and only if exactly one summand L i,h is mapped to E nontrivially.
Thus, we have the following the fixed loci:

S⊕L i,h (βh, 1− h+ d)Gm ∼=

∐
i

SL i,h (βh, 1− h+ d).

When α 6= 0, d ≥min{2li (h− 1)}. To calculate the Euler characteristics, we can
use the localization formula, even when the moduli space is not smooth [Lawson
and Yau 1987]. Then,∑

h

∑
d

χtop
(
S⊕L i,h (βh, 1− h+ d)

)
qh−1 yd+1−h

=

∑
i

(
(y−

1
2 − y

1
2 )2qy2li

∞∏
n=1

(1− qn y2nli )20(1− qn y2nli+1)2(1− qn y2nli−1)2
)−1

.
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SPARK DEFICIENT GABOR FRAMES

ROMANOS-DIOGENES MALIKIOSIS

The theory of Gabor frames of functions defined on finite abelian groups
was initially developed in order to better understand the properties of Ga-
bor frames of functions defined over the reals. However, during the last
twenty years the topic has acquired an interest of its own. One of the funda-
mental questions asked in this finite setting is on the existence of full spark
Gabor frames. In a previous paper, we proved the existence of such frames
when the underlying group is finite cyclic, and constructed some examples.
In this paper, we resolve the noncyclic case; in particular, we show that there
can be no full spark Gabor frames of windows defined on finite abelian
noncyclic groups. We also prove that all eigenvectors of certain unitary
matrices in the Clifford group in odd dimensions generate spark deficient
Gabor frames. Finally, similarities between the uncertainty principles con-
cerning the finite-dimensional Fourier transform and the short-time Fourier
transform are discussed.

1. Introduction

The Gabor frame of a function f ∈ L2(R) is the set of all time-frequency translates
of f , that is, the set of all functions of the form e2π i xy f (x− t), for y, t ∈R, and it is
a fundamental concept in time-frequency analysis and frame theory [Pfander 2013].
The function f usually represents a signal, t the time delay, and the pointwise mul-
tiplication by e2π i xy is the frequency “shift”. Through sampling and periodization
[Christensen 2003], one passes to the finite version of a Gabor frame, namely the
shift-frequency translates of a complex function defined on a finite cyclic group.
Even though finite-dimensional Gabor frames were studied in order to analyze the
properties of continuous signals, they later developed an interest of their own.

Up to multiplication by roots of unity, a finite-dimensional Gabor frame is the
same as a Weyl–Heisenberg orbit, and this terminology is much more prevalent in
mathematical physics and quantum information theory. A conjecture by Zauner
[1999] states that for every dimension N there are vectors (called “fiducials”) whose

The author is supported by a Postdoctoral Fellowship from Humboldt Foundation.
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WH orbit is equiangular. This means that the expression |〈u, v〉| is constant for every
pair of distinct vectors u, v within this orbit. This is also known as the SIC-POVM
problem which has attracted a lot of attention lately due to the vast connections to
scientific areas such as quantum cryptography [Renes 2005], quantum tomography
[Scott 2006], and algebraic number theory, especially Hilbert’s 12th problem for
real quadratic fields [Appleby et al. 2013; 2015; 2016; 2017]. Such a WH orbit
would then produce the maximal possible number of vectors in CN that are pairwise
equiangular, namely N 2 [Strohmer and Heath 2003]. Yet another terminology that
appears for this phenomenon is maximal equiangular tight frame (or maximal ETF
for short) [Fickus 2009], which is a special case of the packing problem in the
setting of projective spaces. The interest in algebraic construction of families of
ETFs has also increased due to applications to signal processing [Fickus et al. 2012;
Iverson et al. 2016; Jasper et al. 2014].

A conjecture by Heil, Ramanathan, and Topiwala [Heil et al. 1996] states that
any finite set of a Gabor frame of a nonzero f ∈ L2(R) is linearly independent, and
it is still open. Similar questions can be raised when the function f is defined on
a finite abelian group G. In this case, the Gabor frame consists of |G|2 elements
in a |G|-dimensional space, so it is not possible that they are linearly independent.
Instead, we require that any selection of |G| vectors is linearly independent, which
is the definition of the full spark property.

Definition 1.1. Let
U = {u1, . . . , uM} ⊆ CN

with M ≥ N. The set U is called full spark when every selection of N vectors from
U is linearly independent; otherwise, U is called spark deficient.

The discrete analogue of the HRT conjecture claims that the Gabor frame of
f ∈ CG is full spark for almost all f , when G is cyclic [Lawrence et al. 2005].
This problem has been completely solved by the author [Malikiosis 2015]. While
the techniques utilized to attack the HRT conjecture are analytic in nature, various
algebraic techniques are needed for the discrete counterpart, such as Chebotarev’s
theorem on Fourier minors. The idea of the proof is as follows: consider f as
a column vector in CN, where |G| = N, and consider the N × N 2 matrix whose
columns are precisely the elements of the Gabor frame of f , denoted by V f . The
Gabor frame generated by f is then full spark if and only if every N × N minor of
V f is nonzero. Every such minor is a homogeneous polynomial on the coordinates
of f ; the basic ingredient of the proof is to show that there is a monomial appearing
with nonzero coefficient in every such minor. For the case where N is a prime, this
was accomplished in [Lawrence et al. 2005] through Chebotarev’s theorem, which
asserts that every minor of the N × N discrete Fourier matrix is nonzero. For the
case where N is composite, a probabilistic argument by the author [Malikiosis 2015]
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was used in order to show the existence of monomials with nonzero coefficient in
every minor. Furthermore, the author proved that almost every f ∈ CG generates
a full spark Gabor frame, and explicitly constructed such frames, while previous
proofs were only existential.

For noncyclic groups, it was previously only known that full spark Gabor frames
do not exist for functions defined on the Klein group, Z/2Z×Z/2Z [Pfander 2013].
We shall extend this argument to any finite abelian noncyclic group, in the following
way: first, we show that the full spark property is hereditary with respect to the
group. Therefore, in order to show that no full spark Gabor frame exists, it suffices
to restrict our attention to groups of the form Z/pZ×Z/pZ, for p odd prime. Thus
is proved the first main result of this paper:

Theorem 1.2. Let G be a finite abelian, noncyclic group. Then, for any f ∈ CG,
the Gabor frame generated by f is spark deficient.

In relation to the SIC-POVM problem we will revisit the cyclic case and prove
that all eigenvectors of Clifford unitaries whose (projective) order is not coprime to
the dimension N, for N odd, generate spark deficient Gabor frames, extending some
results in [Dang et al. 2013]. This shows that there is not in principle any relation
between these two basic properties of a Gabor frame, namely equiangularity and
the full spark property.

Lastly, we investigate a possible connection between uncertainty principles with
respect to the discrete and short-time Fourier transforms. Uncertainty principles
provide a measure of localization of signals whose various transforms (e.g., Fourier)
are well-localized. When these signals are defined over a finite abelian group,
localization is usually measured by the size of the support, leading to classical
and new versions of uncertainty principles with respect to the Fourier transform
[Meshulam 2006; Tao 2005]. This sort of principle appears in applications to sparse
signal recovery, and sparse matrix identification [Candès et al. 2006; Krahmer et al.
2008; Pfander 2007], among others.

The paper is organized as follows: in Section 2, we will give the definitions and
the necessary background related to the results of this paper. In Section 3, we will
prove that full spark Gabor frames do not exist over finite abelian noncyclic groups.
Section 4 revisits the cyclic case, where we find some special vectors that generate
spark deficient Gabor frames, and Section 5 deals with uncertainty principles.

2. Background

2A. Notation. Throughout this note, G will denote a finite abelian group written
additively, and CG will denote the set of all complex valued functions defined
on G. An element f ∈CG will interchangeably be viewed as a vector in CN, where
N = |G|, and as a function f :G→C. CN is equipped with an inner product 〈· , ·〉,
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defined as follows:

〈x, y〉 =
N∑

i=1

xi yi ,

for x = (x1, . . . , xN ), y = (y1, . . . , yN ). Only in Section 4B will we use the
bra-ket notation, 〈x |y〉, with the caution that complex conjugation is taken on the
coordinates of x . We remind that |x〉 denotes a column vector in CN, and 〈x | is its
conjugate transpose; hence |x〉〈x | is the 1-dimensional projector onto |x〉.

Furthermore, we decided to use Z/NZ for the ring of residues mod N, and
reserve Zp for the ring of p-adic integers. Similarly, Qp denotes the field of p-adic
rational numbers.

For any f ∈ CN denote by f̂ the (unnormalized) Fourier transform of f ; that is,
f̂ =WN f , where WN = (ω

i j )N−1
i, j=0, the character table of Z/NZ, with ω = e2π i/N,

and finally, let ‖ f ‖0 denote the cardinality of the support of f .
Two operators U and V on CN will be equal up to a phase if U = eiθV ; this will

also be denoted as
U .
= V .

The projective order of an operator U is then defined to be the smallest nonnegative
integer m for which U m .

= I . Finally, the conjugate transpose of U is denoted by U∗.

2B. Definitions. For any x ∈G and ξ ∈ Ĝ, define the operators Tx ,Mξ :C
G
→CG,

with Tx f (g) = f (g− x) and Mξ f (g) = ξ(g) f (g), for any f ∈ CG, g ∈ G. The
Tx are called translation operators, and the Mξ modulation operators. For any
λ = (x, ξ) ∈ G × Ĝ the operators π(λ) = MξTx are called time-frequency shift
operators. We have

MξTx = ξ(x)Tx Mξ ,

or, in other words, Mξ and Tx commute up to a phase. From this fact we get a
faithful projective representation

ρ : G× Ĝ→ PGL(CG),

which is also irreducible [Feichtinger et al. 2009; Pfander 2013].
For a subset 3⊆ G× Ĝ and f ∈ CG

\ {0}, the set

( f,3)= {π(λ) f |λ ∈3}

is called a Gabor system; if it spans CG, it is called a Gabor frame. This certainly
happens when 3=G× Ĝ due to the irreducibility of ρ; in this case, it is also called
a Weyl–Heisenberg orbit.

Definition 2.1. A set 8 of M vectors in CN is called a frame if it spans CN. In this
case, we must have M ≥ N. The spark of 8, denoted by sp(8), is the size of the
smallest linearly dependent subset of 8.
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A frame 8 is full spark if and only if every set of N elements of 8 is a basis, or
equivalently sp(8)= N+1, otherwise it is spark deficient. Other definitions are also
found in literature; for example, in this case we also say that the vectors of 8 are in
general linear position, or also that 8 possesses the Haar property [Pfander 2013].

Definition 2.2. For a window ϕ ∈ CG, |G| = N, let Vϕ denote the N × N 2 matrix
whose columns are the shift-frequency translates of ϕ, also called the synthesis
operator. The operator V ∗ϕ : C

G
→ CG×Ĝ is called the analysis operator, or the

short-time Fourier transform with window ϕ, defined by

V ∗ϕ f = (〈 f,MξTxϕ〉)(x,ξ)∈G×Ĝ .

The term “window” makes much more sense in the continuous setting, whence
it originated. In signal processing, one analyzes a signal f ∈ L2(R) by integrating
against elements of a frame (e.g., Gabor frames, wavelets, etc.) generated by a
well-localized function ϕ. Typical examples of well-localized functions include
functions supported on an interval (thus examining the given function on a small
window of time), or with very fast decay, such as Gaussian functions; it should be
emphasized that Gabor himself first applied Gabor frames on Gaussian window
functions [Gabor 1946; Pfander 2013].

This term carries on to the discrete setting as well, however, we should note that
the terms “window”, “vector”, and “function” (defined over a finite abelian group)
are interchangeable in what follows.

2C. Gabor systems of |G| = N vectors. The Gabor system ( f,3) with |3| = N
is linearly independent if and only if the determinant of the matrix whose columns
consist of the coordinates of the vectors π(λ) f , λ ∈ 3, is nonzero. This matrix
is denoted by D3, and is well-defined up to permutation of its columns. The
determinant is denoted by P3 = det(D3), and is well-defined up to a sign, so it
makes sense to ask whether P3 is nonzero or not.

The most important property of P3, however, is the fact that it is a homogeneous
polynomial of degree N in N variables, when the coordinates of f are viewed as
independent variables. So, the existence of an element f such that ( f,3) is linearly
independent happens precisely when P3 is a nonzero polynomial. Investigating the
properties of these polynomials P3 sheds light on the existence of Gabor frames in
general linear position.

A first crucial observation regarding linear independence, comes from the fol-
lowing:

Proposition 2.3. There is a full spark Gabor frame defined over G, if and only if ,
for every 3⊆ G× Ĝ with |3| = N there is an f ∈ CG such that ( f,3) is linearly
independent. Moreover, either all windows ϕ ∈ CG generate spark deficient Gabor
frames, or almost all windows generate full spark Gabor frames.
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Proof. One direction follows from definition: if ( f,G × Ĝ) is full spark, then
obviously every Gabor system ( f,3) is linearly independent, for |3| = N. On the
other hand, if for every 3⊆ G× Ĝ with |3| = N there is some f ∈ CG such that
( f,3) is linearly independent, this means that all such polynomials P3 are nonzero.
The zero set of every such polynomial is of Lebesgue measure zero, and since they
are finitely many, this yields that almost any f ∈ CG avoids the zero set of these
polynomials, hence ( f,G× Ĝ) is full spark.

For the second part, we observe that if at least one of the polynomials P3 is zero,
then all Gabor frames defined over G are spark deficient. Otherwise, as we have
already shown, almost all Gabor frames are full spark. �

2D. The Weyl–Heisenberg and Clifford groups. We restrict our attention to cyclic
groups G = Z/NZ of odd order, for convenience, as the results of this subsection
will only be used towards the construction of spark deficient Gabor frames over
cyclic groups. The group generated by the translation and modulation operators is

{ωk MbT a
| a, b, k ∈ Z/NZ},

where ω= e2π i/N, T = T1 (see Section 2B) and M is the operator with the property
M f (g)=ωg f (g) for all g ∈Z/NZ and f ∈CN, and is called the Weyl–Heisenberg
group of G. Sometimes these representatives over the center are considered [Appleby
2005; Dang et al. 2013; Zauner 1999]:

Dλ = τ
λ1λ2 T λ1 Mλ2,

where λ= (λ1, λ2) ∈ (Z/NZ)2, τ = ω(N+1)/2.
It is known that all irreducible projective representations of (Z/NZ)2 of di-

mension N are unitarily equivalent to ρ [Weyl 1931] (see also [Feichtinger et al.
2009, Proposition 3.2]). The normalizer of the Weyl–Heisenberg group in the
group of unitary matrices in N dimensions is called the Clifford group, denoted
by C(N ). The quotient of C(N ) by the Weyl–Heisenberg group is isomorphic to
SL(2,Z/NZ), hence ρ can be extended to a faithful irreducible projective repre-
sentation of (Z/NZ)2 oSL(2,Z/NZ), which we shall also denote by ρ, abusing
notation. Restricting this representation to the right factor, SL(2,Z/NZ), we get
a projective representation F 7→UF , for F ∈ SL(2,Z/NZ). The unitary matrices
UF act on the Weyl–Heisenberg group by conjugation:

UF DλU∗F = DFλ.

More precisely, the following is true:

Theorem 2.4 [Appleby 2005, Theorem 1, N odd]. There is a unique isomorphism

f : (Z/NZ)2 oSL(2,Z/NZ)→ C(N )/I (N )
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with the property U DλU∗ = ω[ϕ,Fλ]DFλ for any U ∈ f (ϕ, F), where I (N ) is the
center of C(N ), and [ϕ,χ ] = ϕ2χ1−ϕ1χ2.

This yields the following theorem:

Theorem 2.5. For N odd, there is a unique faithful irreducible projective represen-
tation of (Z/NZ)2 oSL(2,Z/NZ) of dimension N, up to unitary equivalence.

Proof. Let ρ be the standard representation of (Z/NZ)2 o SL(2,Z/NZ) defined
in the beginning of this subsection, and let ρ̃ denote another representation of
dimension N with the same properties. By Weyl’s theorem [Feichtinger et al. 2009;
Weyl 1931], we may assume without loss of generality that

ρ|(Z/NZ)2 = ρ̃|(Z/NZ)2 .

Since the image of SL(2,Z/NZ) acts by conjugation on the image of (Z/NZ)2,
the image of ρ̃ will also be contained in C(N ). According to Theorem 2.4, for any
F ∈ SL(2,Z/NZ), ρ(F) and ρ̃(F) should differ by an element of ρ((Z/NZ)2),
that is

ρ̃(F) .= DϕUF .

We will investigate the possibilities of ϕ when F = S or T, the generators of
SL(2,Z/NZ),

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
,

which satisfy S2
= (ST )3 =−I, as well as when F =−I. Assume therefore, that

ρ̃(T ) .= DχUT , ρ̃(S) .= DψUS, ρ̃(−I ) .= DµU−I .

Since ρ̃(S)2 .= ρ̃(−I ), we must have

ρ̃(−I ) .= DµU−I
.
= (DψUS)

2
= Dψ+SψU−I ,

hence
µ= (I + S)ψ .

On the other hand, ρ̃(−T ) .= ρ̃(−I )ρ̃(T ) .= ρ̃(T )ρ̃(−I ), whence

Dχ+TµU−T
.
= ρ̃(T )ρ̃(−I ) .= ρ̃(−I )ρ̃(T ) .= Dµ−χU−T ,

therefore
2χ = (I − T )µ,

thus
2χ = (I − T )(I + S)ψ .

Now, let
λ=−(I − S)−1ψ =−2−1(I + S)ψ,

so that
χ =−(I − T )λ, ψ =−(I − S)λ.
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Then,
Dλ(DχUT )D∗λ

.
= Dλ+χ−TλUT =UT

and
Dλ(DψUS)D∗λ

.
= Dλ+ψ−SλUS =US,

while obviously DλDϕD∗λ
.
= Dϕ , thus proving that

Dλρ̃(ϕ, F)D∗λ
.
= ρ(ϕ, F),

for all (ϕ, F) ∈ SL(2,Z/NZ)o (Z/NZ)2, or in other words, ρ and ρ̃ are unitarily
equivalent, completing the proof. �

Another way to obtain such a representation is the following: let

N = pr1
1 · · · p

rs
s

be the prime factorization of N. By the Chinese remainder theorem we obtain

(Z/NZ)2 oSL(2,Z/NZ)∼=

s∏
i=1

(Z/pri
i Z)2 oSL(2,Z/pri

i Z),

and let

SL(2,Z/NZ) 3 F 7→ (Fi )1≤i≤s ∈

s∏
i=1

SL(2,Z/pri
i Z)

be the natural map according to the isomorphism above; that is, Fi is the matrix
obtained by reducing the entries of F mod pri

i . Assuming that Vi ∼= Cp
ri
i is the faith-

ful irreducible projective representation of (Z/pri
i Z)2 o SL(2,Z/pri

i Z) constructed
as above, then we also see that V1 ⊗ V2 ⊗ · · · ⊗ Vs is also a faithful irreducible
representation of (Z/NZ)2 o SL(2,Z/NZ) (see [Serre 1977, Theorem 10]), and
hence unitarily equivalent to the standard one. This shows that UF is, up to unitary
equivalence, equal to the Kronecker product of the UFi , thus

(2-1) Tr UF =

s∏
i=1

Tr UFi ,

a fact also pointed out in [Dang et al. 2013].

3. Gabor frames over noncyclic groups

First we show that the full spark property is hereditary.

Lemma 3.1. Let G be a finite abelian group and H a subgroup, such that no
windows defined on H generate full spark Gabor frames. Then, there exist no
windows defined on G that generate full spark Gabor frames.
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Proof. By hypothesis, there exists a set of pairs (hi , ξi )∈ H× Ĥ , 1≤ i ≤ |H |, such
that the vectors Mξi Thiϕ are linearly dependent for any choice of ϕ ∈ CH. Now,
extend the characters ξi to G in all possible ways. In this way, we obtain pairs in
G× Ĝ of the form (h, ξ), where h = hi and ξ |H = ξi , for some i ; the number of
these pairs is exactly |G|, as there are |G/H | ways to extend a character of H to a
character of G.

Next, consider an arbitrary window ψ ∈ CG. Since the vectors Mξi Thiψ |H are
linearly dependent on CH, there is a nonzero vector f ∈ CH such that all inner
products 〈Mξi ThiψH , f 〉 equal 0. Denote by F the unique window of CG for which
we have F |H = f and supp(F)⊆ H (also a nonzero window). Then, for all i and
ξ ∈ Ĝ with ξ |H = ξi we have

〈MξThiψ, F〉 =
∑
g∈G

ξ(g)ψ(g− hi )F(g)

=

∑
h∈H

ξi (h)ψ(h− hi ) f (h)= 〈Mξi ThiψH , f 〉 = 0,

which shows that these |G| pairs (h, ξ) ∈ G × Ĝ always give linearly dependent
vectors, as desired. �

Since we wish to prove that there exist no windows over any finite abelian
noncyclic group that generate full spark Gabor frames, it suffices to do so for groups
of the form Z/pZ×Z/pZ, for p prime, due to the fundamental theorem of finite
abelian groups; if such a group is noncyclic, then it must have a subgroup of this
form. Thus, Theorem 1.2 follows directly from Theorem 3.3, which establishes the
result for groups of the form Z/pZ×Z/pZ.

When p = 2, this has already been proven, therefore by Lemma 3.1 we know
that any window defined on a group containing a copy of the Klein group as a
subgroup cannot generate a full spark Gabor frame. We provide an alternative proof
of this statement, more in line with the proof of Lemma 3.1, which also gives us an
estimate on the minimum value of ‖V ∗ϕ f ‖0.

Theorem 3.2. Let G be a finite abelian group that has a subgroup isomorphic to
the Klein-four group. Then, there are no Gabor frames ( f,G× Ĝ) in general linear
position; furthermore, we have

min ‖V ∗ϕ f ‖0 ≤ N 2
− 3N/2.

Proof. Let K be the subgroup of G isomorphic to the Klein-four group. For f ∈CG

define f satisfying f (g)= f (g) for all g ∈ G, and define on CG an inner product
given by

〈 f, h〉 =
∑
g∈G

f (g)h(g).



168 ROMANOS-DIOGENES MALIKIOSIS

By standard character theory, there are three nontrivial characters on K, and each
one of them extends to N/4 characters on G, where N = |G|. In total, there are
3N/4 characters on G whose restriction on K is nontrivial.

Let ξ be such a character, and let f ∈ CG
\ {0} be arbitrary. Let a ∈ K be such

that ξ(a)=−1; there are two such elements of K, and so we consider the Gabor
system consisting of time-frequency translates of the form

MξTa f, ξ nontrivial on K, a ∈ K with ξ(a)=−1.

This system has 3N/2 > N elements; we will show that each one of them is
orthogonal to f , and therefore the full Gabor frame ( f,G× Ĝ) cannot be in general
linear position. Indeed,

〈MξTa f, f 〉 =
∑
g∈G

ξ(g) f (g− a) f (g)

=

∑
g∈G

ξ(g+ a) f (g) f (g+ a)

=

∑
g∈G

ξ(g)ξ(a) f (g− a) f (g)

=−

∑
g∈G

ξ(g) f (g− a) f (g)

=−〈MξTa f, f 〉,

so 〈MξTa f, f 〉= 0. This also shows that ‖V f f ‖0≤ N 2
−3N/2, proving the second

part of the theorem. �

Theorem 3.3. There are no full spark Gabor frames over G = Z/pZ×Z/pZ, for
p prime.

Proof. The case p = 2 has already been proven, so we may assume that p is odd.
As in the previous two proofs, we consider an arbitrary window z ∈ CG, and then
try to find a nonzero vector that is orthogonal to at least |G| = p2 shift-frequency
translates of z. In order to find this desirable set of translates, we arrange the
coordinates of z in an array; here, we identify Z/pZ×Z/pZ with the finite field Fq ,
q = p2, and θ ∈ Fq \ Fp:

(3-1)


z0 zθ · · · z−θ
z1 zθ+1 · · · z−θ+1
...

...
. . .

...
z−1 zθ−1 · · · z−θ−1

 .
We denote this p× p matrix by Z . The column vectors in CFp from left to right
are denoted by Z0, Zθ , . . . , Z−θ , respectively, and similarly, the row vectors by
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Z ′0, Z ′1, . . . , Z ′p−1. Next, consider the vector x ∈ CFq whose matrix representation
is precisely X = (adj Z)∗, where adj Z denotes the adjugate matrix of Z ; we denote
its columns by X0, Xθ , . . . , X−θ and its rows by X ′0, X ′1, . . . , X ′p−1. The vector
x could be zero, however this happens for a set of Lebesgue measure zero. In
particular, x is zero precisely when all the (p− 1)× (p− 1) minors of Z are zero,
but all of them are nonzero polynomials on the coordinates of z, which shows that
for almost all choices of z, x is nonzero. If we prove that the Gabor frames with
windows z possessing that property are spark deficient, then by Proposition 2.3 we
get that all Gabor frames over G = Z/pZ×Z/pZ are spark deficient.

We have
det Z · I = Z T X = Z X T.

The (a, b) entry of Z T X is 〈Zaθ , Xbθ 〉, and similarly for Z X T is 〈Z ′a, X ′b〉. We
thus obtain

(3-2) 〈Zaθ , Xbθ 〉 = 〈Z ′a, X ′b〉 = δab det Z ,

for every a, b ∈ Fp, where δab is the usual Kronecker delta. Then, for every a ∈ θF∗p
and ξ ∈ F̂q with ξ |Fp = 1Fp , we get, due to (3-2),

〈MξTaz, x〉 =
∑
b∈Fp

ξ(bθ)〈Zbθ−a, Xbθ 〉 = 0.

This number of shift-frequency translates is p(p− 1), and we have just established
that x is orthogonal to all of them. Furthermore, if a∈F∗p and ξ ∈ F̂q with ξ |Fp =1θFp ,
we also get, due to (3-2),

〈MξTaz, x〉 =
∑
b∈Fp

ξ(b)〈Z ′b−a, X ′b〉 = 0.

So far we have 2p(p − 1) > p2 translates of z orthogonal to x , so this already
takes care of the spark deficiency of any Gabor frame over G. We will find more
translates orthogonal to x ; let’s put a = 0 and ξ ∈ F̂q with ξ |Fp = 1Fp , but ξ 6= 1Fq .
Then, again by (3-2), we have

〈Mξ z, x〉 =
∑
b∈Fp

ξ(bθ)〈Zbθ , Xbθ 〉 = det Z
∑
b∈Fp

ξ(bθ)= 0,

since ξ |θFp 6= 1θFp . This number of pairs is exactly p− 1.
Next, we still consider a= 0, but ξ ∈ F̂q satisfies with ξ |Fp 6= 1Fp and ξ |θFp = 1θFp .

Then,
〈Mξ z, x〉 =

∑
b∈Fp

ξ(b)〈Z ′b, X ′b〉 = det Z
∑
b∈Fp

ξ(b)= 0,

by (3-2), thus giving us another p− 1 orthogonal shift-frequency translates of z
orthogonal to x . In total, there are 2(p+ 1)(p− 1)= 2p2

− 2 such translates, thus
concluding the proof. �
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4. Spark deficient Gabor frames over cyclic groups

Here we revisit the cyclic case. As has already been proven by the author [Malikiosis
2015], almost all windows generate full spark Gabor frames, so the spark deficient
Gabor frames are generated by exceptional vectors. When the order of the group is
an odd, square-free integer, then all eigenvectors of certain unitaries belonging to
the Clifford group generate spark deficient Gabor frames [Dang et al. 2013]. The
motivation behind this result in [Dang et al. 2013] was to establish a connection
between equiangularity of a Gabor frame (SIC-POVM existence) and full spark,
if any. In three dimensions, the family of SIC-POVMs generated by vectors of
the form (0, 1,−eiθ ) is always spark deficient, and Lane Hughston [2007] first
established a connection between the linear dependencies that arise from this SIC-
POVM for θ = 0 or 2π/9 and the inflection points of an elliptic curve. In general,
it was proven in [Dang et al. 2013] that when N is an odd, square-free integer
divisible by 3, all eigenvectors of the Zauner unitary matrix generate spark deficient
Gabor frames. Zauner’s conjecture [1999] states that an eigenvector of this matrix
generates a SIC-POVM, i.e., a maximal equiangular tight frame. If it is true, then
for all odd, square-free dimensions, this equiangular tight frame is not full spark.
This is another example that showcases the difference between a nice algebraic
property of a Gabor frame (full spark) and a nice geometric one (equiangularity).
For unit norm tight frames in general, this is further explained in [King 2015];
see also [Fickus et al. 2012; Jasper et al. 2014] where an infinite family of spark
deficient equiangular tight frames is constructed, of arbitrarily high dimension.

When N is not divisible by 3, it is not known whether this SIC-POVM is also
full spark or not. For example, it is full spark when N = 8. The first construction
of a full spark Gabor frame in eight dimensions was given in [Dang et al. 2013].1

Concerning the eigenvectors of other Clifford unitaries, they also generate spark
deficient Gabor frames as long as the (projective) order of the matrix divides N.
We will extend the results of [Dang et al. 2013, Section 7], “Generalization to other
symplectic unitaries”, to all odd dimensions N and unitaries whose order is not
coprime to N.

Theorem 4.1. Let N be an odd integer. Then, any eigenvector of the unitary UF

generates a spark deficient Gabor frame, where F ∈ SL(2,Z/NZ) and

gcd(ord(F), N ) > 1.

This is a direct consequence of the following theorem from [Dang et al. 2013],
slightly rephrased in order to accommodate the terminology of this paper, with the
simple observation that if ord(F)= n and gcd(n, N )= d > 1, then the eigenvectors

1Explicit construction of a full spark Gabor frame in every dimension was later shown by the
author [Malikiosis 2015].
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of UF are also eigenvectors of eiθU n/d
F = eiθUFn/d (the phase eiθ is arbitrary), while

ord(Fn/d)= d > 1, thus ord(Fn/d) divides N.
We call x ∈ (Z/NZ)2 F-full, if the vectors x, F x, . . . , Fn−1x are all distinct,

where F ∈ SL(2,Z/NZ) and n = ord(F).

Theorem 4.2 [Dang et al. 2013, Theorem 5, odd version]. Let N be an odd positive
integer and F ∈ SL(2,Z/NZ), and let n = ord(F). Suppose

(1) n > 1,

(2) n divides N,

(3) Tr UF 6= 0,

(4) there exist N distinct points in (Z/NZ)2 that are F-full.

Then all eigenvectors of UF generate spark deficient Gabor frames.

Conditions (3) and (4) always hold when N is odd, as the following two lemmata
show; this was proven in [Dang et al. 2013] for N odd square-free.2

Lemma 4.3. Let N be an odd positive integer. Let F ∈ SL(2,Z/NZ) be arbitrary.
Then the number of F-full points in (Z/NZ)2 is ≥ Nϕ(N ), where ϕ is Euler’s
function.

Lemma 4.4. Let N be an odd positive integer. Then |Tr(UF )| ≥ 1 for all F ∈
SL(2,Z/NZ).

We will dedicate the rest of this section to the proofs of these two lemmata. For
basic facts about the field of p-adic numbers, Qp and its algebraic extensions, we
refer the reader to [Cassels 1986; Neukirch 1999].

4A. Proof of Lemma 4.3. Let F ∈ SL(2,Z/NZ) and Fi ∈ SL(2,Z/pri
i Z) be the

reduction of F mod pri
i , 1 ≤ i ≤ s, and similarly, with x ∈ (Z/NZ)2 and xi ∈

SL(2,Z/pri
i Z). It is not hard to show that if each xi is Fi -full, then x is F-full, a

fact also shown in [Dang et al. 2013]. By multiplicativity of the Euler function, it
suffices to consider N = pr, a power of an odd prime.

The case r = 1 was treated in [Dang et al. 2013]. The technique was to find the
Jordan canonical form of F, considering a quadratic extension of the field Z/pZ if
necessary (i.e., Fp2); then we can control the powers of F and can count the points
in (Z/pZ)2 that are F-full.

When r > 1, Z/NZ is no longer a field, so the Jordan canonical form does not
always exist, but as we shall see below, in these exceptional cases, the order of F is
equal to pm or 2pm, for some m ≤ r , so we only need to enumerate the points in
(Z/NZ)2 that are fixed by F pm−1

or F2pm−1
accordingly, and as it turns out, this is

an easy task.

2See Lemmata 7 and 8 in [Dang et al. 2013].
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It would be convenient to consider an arbitrary lift of the matrix

F =
(

a b
c d

)
to a matrix in F̃ ∈ SL(2,Zp); since F ∈ SL(2,Z/NZ), then at least one of the
entries a, b, c, d , is not divisible by p, say a. Then, lift a, b, c, arbitrarily, to ã, b̃, c̃,
and put d̃ = ã−1(1+ b̃c̃). We also put t =Tr(F), t̃ =Tr(F̃), 1= t2

−4, 1̃= t̃2
−4,

the discriminants of the characteristic polynomials of F, F̃ , respectively. Finally,
we put

λ=
t +

√
1̃

2
,

and the other root of the characteristic polynomial is λ−1. We distinguish the
following cases:

Case I: p -1. Here, λ 6≡ λ−1 mod p; otherwise, we would have

1≡ (λ+ λ−1)2− 4≡ λ2
+ λ−2

− 2≡ 0 mod p.

We reduce the entries of F mod p. Since λ 6≡ λ−1 mod p, F is diagonalizable in
Z/pZ when (1/p)= 1 or in a quadratic extension, namely Fp2 , when (1/p)=−1.
In both cases, we consider the field K =Qp(

√

1̃ ), whose ring of integers is
OK = Zp[

√

1̃ ] and the unique prime ideal is pOK = pZp[
√

1̃ ]. This extension is
unramified, as p - 1, hence the degree of the extension is equal to the degree of
the extension of the residue fields. Therefore, the residue field of K is Fp when
(1/p)= 1 and Fp2 otherwise.

So, there is a nonsingular matrix X with entries in the residue field of K such that

(4-1) F X ≡ X
(
λ 0
0 λ−1

)
mod pOK ,

the congruence meaning that we consider each entry mod pOK . We can lift
X =

( x
y

z
w

)
to a 2×2 matrix with entries in OK , such that (4-1) becomes an equality

in OK (and holds mod N, in particular). Indeed, if b is not divisible by p, then
we lift x, z arbitrarily, and then put y = b̃−1(λ− ãx), w = b̃−1(λ− ãz), and a
similar lift is possible if c is not divisible by p. If both b and c are divisible by p,
then F mod p is diagonal, therefore F ≡

(
λ
0

0
λ−1

)
or
(
λ−1

0
0
λ

)
mod p. Without loss

of generality, we may assume that the first congruence holds. Lift x, w, arbitrarily,
and then put y = (λ− λ−1)−1c̃x , and z = (λ−1

− λ)−1b̃w. We notice that since
p - det(X), then X−1

∈ GL(2,OK ); we conclude that in all cases where p -1, F
is equivalent to a diagonal matrix, with entries perhaps in a larger ring. It is evident
that in this case, the number of F-full points is N 2

−1, since p -λ, and λ 6≡ 1 mod p.
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Case II: p | 1. Reducing the matrix F mod p, we obtain a double eigenvalue,
equal to ±1. Then, the Jordan canonical form of F is(

±1 β

0 ±1

)
,

where β = 0 or β = 1. It is clear that F p
≡ ±I mod p and F2p

≡ I mod p, or
F2p
≡ I + p A mod p2, for some matrix A. Raising both sides to the p-th power,

we obtain F2p2
≡ I + p2 A mod p3, and proceeding inductively we can show that

F2pr−1
= I + N

p
A,

hence F2N
= I. This shows that the order of F is either pm or 2pm, for some m ≤ r .

Suppose first that the order of F is pm , m ≥ 1; then, an element of (Z/NZ)2

is F-full, if and only if it is not fixed by F pm−1
(this follows from the fact that

the cardinality of the orbit of any element under a group, divides the order of the
group), and the latter is equivalent to the condition that this element is F pm−1

-full.
Therefore, we can reduce to the case where m = 1, that is, the order of F is p.
Since the number of F-full points is the same in the conjugacy class of F, we may
further assume that F reduced mod p is equal to(

±1 β

0 ±1

)
.

Now, let k be the smallest positive integer for which we have

F ≡
(

1 β

0 1

)
+ pk−1 D mod pk

for some matrix D 6≡ O mod p, where O is the zero matrix. We have 2≤ k ≤ r+1.
If β = 0, then k = r ; if k < r , then

F p
≡ I + pk D mod pk+1,

hence F p
6= I, a contradiction. Similarly, if k = r + 1, then F = I, which is also

a contradiction. So, F = I + N
p D. A vector x =

( x1
x2

)
∈ (Z/NZ)2 is fixed by F if

and only if

Dx ≡ 0 mod p.

The set of such vectors reduced mod p form a proper vector subspace of (Z/pZ)2,
so there are at most p of them. Then, the number of all the possible lifts of these
vectors mod N is at most p2(r−1)

· p = p2r−1. Therefore, the number of F-full
vectors in this case is at least p2r

− p2r−1
= Nϕ(N ).
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If β = 1, then

F p
≡

(
1 p
0 1

)
+ pk−1

∑
κ+µ=p−1

(
1 κ

0 1

)
D
(

1 µ

0 1

)
mod pk .

We put

D =
(

d1 d2

d3 d4

)
and compute the above sum mod p:∑

κ+µ=p−1

(
1 κ

0 1

)
D
(

1 µ

0 1

)
=

∑
κ+µ=p−1

(
d1+ κd3 µd1+ κµd3+ d2+ κd4

d3 µd3+ d4

)
≡ O mod p

since ∑
κ+µ=p−1

1 = p,

∑
κ+µ=p−1

κ =
∑

κ+µ=p−1

µ= p ·
p− 1

2
,

∑
κ+µ=p−1

κµ= p ·
(
(p− 1)2

2
−
(p− 1)(2p− 1)

6

)
.

But then, F p
6≡ I mod pk , a contradiction if k≤ r ; if k= r+1, then F p

=
( 1

0
p
1

)
6= I .

We conclude that if the order of F is p and r ≥ 2, then β = 0 (the case β 6= 0 can
only occur when r = 1, but this was treated in [Dang et al. 2013]).

Next, suppose that the order of F is 2pm. Then, a vector is F-full if and only if
it is not fixed by F pm

or F2pm−1
. But F pm

=−I, which only fixes the zero vector,
so we only need to exclude the vectors fixed by F2pm−1

; however, this matrix has
order p, so the above analysis applied to F2pm−1

yields the fact that the number of
F-full points is at least Nϕ(N ).

4B. Proof of Lemma 4.4. The trace Tr(UF ) is a quadratic Gauss sum [Appleby
2005]; we will use the following lemma by Turaev [1998, Lemma 1] which gives
the absolute value of such a sum over an arbitrary finite abelian group G. Moreover,
by (2-1) we may assume that N is a power of an odd prime, p.

Let’s fix some notation first; q : G→Q/Z denotes an arbitrary quadratic form
on the finite abelian group G. Such a function is a quadratic form if the expression
bq(x, y)= q(x+ y)−q(x)−q(y) is bilinear (we do not require homogeneity). The
Gauss sum 0(G, q) is defined to be

1
|G|1/2

∑
x∈G

e2π iq(x).
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Lastly, for easy reference to the explicit formulae for the unitary matrices UF given
in [Appleby 2005], we decided to use the bra-ket notation; the set of (column)
vectors

|0〉, |1〉, . . . , |N − 1〉,

is the standard basis of CN, and 〈ϕ| is the conjugate transpose of |ϕ〉.

Lemma 4.5 [Turaev 1998, Lemma 1]. Let B be the kernel of the homomorphism
G→ Hom(G,Q/Z) adjoint to the pairing bq. If q(B) 6= 0, then 0(G, q) = 0. If
q(B)= 0, then |0(G, q)| = |B|1/2.

If p - b, then the matrix F is called prime, and from the explicit formulae of
[Appleby 2005, Lemmas 2 and 4], we get

UF =
eiθ
√

N

N−1∑
r,s=0

τ b−1(as2
−2rs+dr2)

|r〉〈s|,

where θ is an arbitrary phase, and b−1 the inverse of b mod N, hence

Tr(UF )=
eiθ
√

N

N−1∑
r=0

τ b−1(t−2)r2
.

where τ =−eπ i/N and t = a+ d = Tr(F). Putting G = Z/NZ and

q(r)=
b−1(t − 2)(N + 1)

2N
r2,

we get Tr(UF )= eiθ0(G, q). The function q is a well-defined quadratic form on G;
indeed, r2

≡ r ′ 2 mod 2N , when r ≡ r ′ mod N, when N is odd. The associated
bilinear pairing is

bq(r, s)=
b−1(t − 2)(N + 1)

N
rs,

and r ∈ B if and only if bq(r, 1)= 0, or equivalently, if

b−1(t − 2)r ≡ 0 mod N .

So, if r ∈ B is arbitrary, then N divides b−1(t − 2)r2, and therefore 2N divides
b−1(t −2)(N +1)r2, which shows that q(r)= 0. This proves that q(B)= 0, hence
|0(G, q)| = |B|1/2 ≥ 1 and |Tr(UF )| ≥ 1.

Now, assume that p | b; then p - d (otherwise det(F) would be divisible by p)
and we can write F as a product of two prime matrices, as follows:

F = F1 F2 =

(
0 −1
1 0

)(
c d
−a −b

)
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and by [Appleby 2005, Lemma 4], we have UF =UF1UF2 , where

UF1 =
eiθ1

√
N

N−1∑
u,v=0

τ 2uv
|u〉〈v|

and

UF2 =
eiθ2

√
N

N−1∑
v,w=0

τ d−1(cw2
−2vw−bv2)

|v〉〈w|,

where θ1, θ2 are arbitrary phases, hence

UF =
eiθ

N

N−1∑
u,w=0

N−1∑
v=0

τ 2uv+d−1(cw2
−2vw−bv2)

|u〉〈w|

and

Tr(UF )=
eiθ

N

N−1∑
u,v=0

τ cd−1u2
+2(1−d−1)uv−bd−1v2

,

where θ = θ1+ θ2. So, if we put G = (Z/NZ)2 and q : G→ Q/Z the quadratic
form

q(u, v)= N+1
2N

(cd−1u2
+ 2(1− d−1)uv− bd−1v2)

then Tr(UF )= eiθ0(G, q). The associated bilinear form is

bq((u, v), (r, s))= N+1
N

(u v)A
(

r
s

)
where

A =
(

cd−1 1− d−1

1− d−1
−bd−1

)
.

Now, let (u v) ∈ B be arbitrary. Then,

(u v)A ≡ (0 0) mod N ,

otherwise we would have either bq((u, v), (1, 0)) 6= 0 or bq((u, v), (0, 1)) 6= 0. In
particular, N divides bq((u, v), (u, v)), and since N is odd, 2N divides

(N + 1)(u v)A
(

u
v

)
,

which yields q(u, v)= 0. Thus, q(B)= 0, and

|Tr(UF )| = |0(G, q)| = |B|1/2 ≥ 1.
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5. Uncertainty principles

The full spark property of (almost all) Gabor frames of windows defined over finite
cyclic groups implies the following inequality for the short-time Fourier transform
of f :

‖V ∗ϕ f ‖0 ≥ N 2
− N + 1,

where N is the size of said group, for almost all ϕ ∈ CN and all nonzero f ∈ CN

[Krahmer et al. 2008; Malikiosis 2015; Pfander 2013]. A possible connection
between the set of pairs of the form (‖ f ‖0,

∥∥ f̂
∥∥

0), denoted by F, and the set Fϕ of
all pairs of the form

(‖ f ‖0, ‖V ∗ϕ f ‖0− N 2
+ N )

(for both sets we take f nonzero) was investigated in [Krahmer et al. 2008]. In
particular, the following problem was proposed.

Problem 5.1 [Krahmer et al. 2008]. Is it true that F = Fϕ for almost all ϕ?

When N = p a prime number, this problem was solved in the affirmative [Krahmer
et al. 2008]. One has an exact characterization of the set F [Tao 2005] and the fact
that all minors of the Gabor synthesis matrix are nonzero for all ϕ except for a set of
measure zero [Lawrence et al. 2005, Theorem 4] leads to a characterization of the
set Fϕ , and equality between F and Fϕ is easily confirmed. When N is composite,
however, there is no exact characterization for the set F, so it is more difficult to
obtain equality; this was confirmed numerically for dimensions up to 6 [Krahmer
et al. 2008]. The question is whether we can prove equality between those two sets
without using the characterization of F. We will show that one inclusion is possible,
but the other one, namely Fϕ ⊆ F , seems much harder to prove, if true.

As a final remark, we note that the spark deficiency of all Gabor frames of
windows defined over abelian, noncyclic groups, implies that equality between
F and Fϕ can never be achieved, simply because there are f ∈ CG for which
‖V ∗ϕ f ‖0 ≤ N 2

− N, as shown in the proof of Theorem 3.3.
A useful identity is the following:

(5-1) ‖V ∗ϕ f ‖0 =
N−1∑
j=0

‖T̂ jϕ · f ‖0.

Theorem 5.2. For almost all ϕ the inclusion F ⊆ Fϕ holds. In addition, this ϕ can
be taken to generate a full spark Gabor frame.

Proof. First, we may restrict our attention to ϕ generating a full spark Gabor frame,
as we already know that almost all ϕ satisfy this condition. This implies that all
coordinates of ϕ are nonzero, otherwise the frequency translates of ϕ would form a
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singular matrix. Next, for any pair (k, l)∈ F we consider fk,l ∈CN with ‖ fk,l‖0= k
and

∥∥ f̂k,l
∥∥

0 = l. We may rewrite (5-1) as

∥∥∥∥V ∗ϕ
fk,l
ϕ

∥∥∥∥
0
=

N−1∑
j=0

∥∥∥∥
∧

T jϕ

ϕ
· fk,l

∥∥∥∥
0
= ‖ f̂k,l‖0+

N−1∑
j=1

∥∥∥∥
∧

T jϕ

ϕ
· fk,l

∥∥∥∥
0

(5-2)

= l +
N−1∑
j=1

∥∥∥∥
∧

T jϕ

ϕ
· fk,l

∥∥∥∥
0
.

It suffices to show that almost all ϕ satisfy∥∥∥∥
∧

T jϕ

ϕ
· fk,l

∥∥∥∥
0
= N ,

for all (k, l) ∈ F and 1≤ j ≤ N − 1, or equivalently, it suffices to show that

8

N−1∑
g=0

ξ(g) fk,l(g)
ϕ(g− j)
ϕ(g)

6= 0,

for almost all ϕ ∈ CN, all characters ξ , (k, l) ∈ F, 1 ≤ j ≤ N − 1, where 8 is
the product of the coordinates of ϕ. But the left-hand side is a polynomial in the
coordinates of ϕ with coefficients of the form ξ(g) fk,l(g), which shows that every
such polynomial is nonzero, as the functions fk,l are not identically zero. Therefore,
ϕ has to avoid the zero set of finitely many nonzero polynomials, whose union is
of measure zero. Thus, almost all ϕ satisfy∥∥∥∥V ∗ϕ

fk,l
ϕ

∥∥∥∥
0
= N 2

− N + l,

for every (k, l) ∈ F, as desired. �
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ORDERED GROUPS AS A TENSOR CATEGORY

DALE ROLFSEN

It is a classical theorem that the free product of ordered groups is orderable.
In this note we show that, using a method of G. Bergman, an ordering of
the free product can be constructed in a functorial manner, in the category
of ordered groups and order-preserving homomorphisms. With this functor
interpreted as a tensor product this category becomes a tensor (or monoidal)
category. Moreover, if O(G) denotes the space of orderings of the group G
with the natural topology, then for fixed groups F and G our construction can
be considered a function O(F)×O(G)→O(F∗G). We show that this function
is continuous and injective. Similar results hold for left-ordered groups.

1. Introduction

An ordered group (G, <) is a group G together with a strict total ordering < of its
elements such that x < y implies xz < yz and zx < zy for all x, y, z ∈ G. If such
an ordering exists, G is said to be orderable. If (F, <F ) and (G, <G) are ordered
groups, a homomorphism φ : F → G is said to be order-preserving (relative to
<F , <G) if for all x, y ∈ F we have x <F y =⇒ φ(x) <G φ(y). In this case the
reverse implication follows, and φ is necessarily injective.

A theorem of Vinogradov [1949] asserts that if F and G are orderable groups,
then the free product F ∗ G (sometimes called the coproduct, as in [Bergman
1990]) is orderable. Other proofs of this can be found in [Johnson 1968; Passman
1977; Bergman 1990], and a generalization in [Chiswell 2012]. A proof given
in [Botto Mura and Rhemtulla 1977] was unfortunately found to have a gap, as
discussed in [Holland and Medvedev 1994; Chiswell 2014]. Yet another proof, in
[Révész 1987], was also shown to have a gap [Medvedev 1991].

Here we show that a version of the construction in [Bergman 1990] is functorial
in the following sense. Suppose (Fi , <Fi ), i = 0, 1, are ordered groups. We will

The author gratefully acknowledges the support of a grant from the Canadian Natural Sciences and
Engineering Research Council. Thanks also to George Bergman, Adam Clay and Christian Kassel for
very helpful comments on earlier versions of this paper, and to Victoria Lebed and Arnaud Mortier for
providing an English translation of [Vinogradov 1949] (arxiv 1703.05781).
MSC2010: 18D10, 20F60.
Keywords: ordered group, free product, coproduct, tensor category, monoidal category.
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construct an ordering≺ of F0∗F1, so that (F0∗F1,≺) is an ordered group, and write

F((F0, <F0), (F1, <F1)) := (F0 ∗ F1,≺).

Theorem 1 shows that F is a (bi)functor in the category C of ordered groups and
order-preserving homomorphisms. We will show in Section 5 that this functor gives
C the structure of a tensor, or monoidal, category.

Theorem 1. Suppose that (Fi , <Fi ), i = 0, 1, are ordered groups. Then the ordered
group (F0 ∗ F1,≺F )= F((F0, <F0), (F1, <F1)) has the following properties:

(1) ≺F extends the given orderings of Fi as subgroups of F0 ∗ F1.

(2) If (Gi , <Gi ), i = 0, 1, are ordered groups and

(G0 ∗G1,≺G)= F((G0, <G0), (G1, <G1))

and if φi : Fi → Gi , i = 0, 1, are homomorphisms which preserve the given
orderings of Fi and Gi , then the homomorphism φ0 ∗φ1 : F0 ∗ F1→ G0 ∗G1

is order-preserving, relative to ≺F ,≺G .

In Section 8, Theorem 1 will be extended to free products of an arbitrary, possibly
infinite, collection of ordered groups. We will typically use multiplicative notation
for groups and use 1 to denote the identity element, though additive groups are also
considered, with 0 as identity element. We may also use 1 to denote the unit of a
ring (all rings we consider are assumed to have a unit), as well as the natural number.

Many of our results could have been proven using the original construction
of Vinogradov. Like Bergman’s, his proof involves embedding a free product of
groups into a ring of matrices. Vinogradov’s matrices are infinite dimensional upper
triangular matrices, whereas Bergman’s are 2× 2 matrices with polynomial entries,
a useful simplification.

2. Embedding free products in matrix rings

We use an observation of Bergman which generalizes the fact that the matrices
( 1

0
t
1

)
and

( 1
t

0
1

)
freely generate a free subgroup of the multiplicative group of invertible

2× 2 matrices with entries in the polynomial ring Z[t].
Consider a ring R without zero divisors and let F and G be multiplicative groups

of nonzero elements of R. Let M2(R[t]) be the ring of 2× 2 matrices with entries
in the polynomial ring R[t]. Then one can embed F in M2(R[t]) by f 7→

( f
0

0
1

)
.

But we can conjugate that by
( 1

0
t
1

)
to get a different embedding which has a highest

degree in the upper right corner when f 6= 1:

ρ( f )=
(

1 −t
0 1

)(
f 0
0 1

)(
1 t
0 1

)
=

(
f ( f − 1)t
0 1

)
.



ORDERED GROUPS AS A TENSOR CATEGORY 183

Similarly we embed G by

ρ(g)=
(

1 0
(g− 1)t g

)
.

This then defines a multiplicative homomorphism ρ : F ∗G→ M2(R[t]), which
Bergman observes to be a faithful representation.

Proposition 2 [Bergman 1990, Corollary 12]. With the assumptions stated in the
preceding paragraph, ρ : F ∗G→ M2(R[t]) is injective.

Proof. Here is a sketch of a proof using a ping-pong argument. Let

fk gk fk−1 · · · g2 f1g1 6= 1

be a reduced word in F ∗ G, with fi ∈ F, gi ∈ G nonidentity elements (except
possibly for i ∈ {1, k}). Assume that g1 6= 1, the other case with g1= 1, f1 6= 1 being
similar. We need to show that the product of matrices ρ( fk)ρ(gk) · · · ρ( f1)ρ(g1) is
not the identity matrix. Consider the set V of column vectors

( A(t)
B(t)

)
with entries in

R[t] and partition that set into three parts V =V1tV2tV3 according to their degrees
as polynomials. Take V1 to be the set of such pairs with deg A(t) > deg B(t), V2

the set with deg A(t) < deg B(t) and V3 the set with equal degree.
Apply ρ( fk)ρ(gk) · · · ρ( f1)ρ(g1) (on the left) to the vector

( 1
1

)
∈ V3 and note

that ρ(g1) sends
(1

1

)
to
( 1

g1+(g1−1)t

)
which belongs to V2. Then ρ( f1) sends this

result into V1, which is then sent to V2 by ρ(g2), and so on. The end result, after
multiplying all the matrices, will be in V1 or V2, not V3, and so the product cannot
be the identity matrix. �

3. Constructing the ordering ≺

Suppose we are given two ordered groups, (F0, <F0) and (F1, <F1). To embed
them in a ring, we take R to be the integral group ring of their direct product: R =
Z(F0× F1). It is well known that integral group rings of orderable groups have no
zero divisors (see, for example, [Botto Mura and Rhemtulla 1977] p. 155), so R has
no zero divisors. Define a multiplicative homomorphism ρ : F0∗F1→M2(R[t]) by

ρ( f0)=

(
f0

0
( f0− 1)t

1

)
ρ( f1)=

(
1

( f1− 1)t
0
f1

)
, fi ∈ Fi .

By Proposition 2, ρ is faithful; it defines an isomorphism of F0 ∗ F1 onto a
multiplicative subgroup of M2(R[t]).

We now turn to the task of defining the ordering, choosing a specific recipe
among many described in [Bergman 1990]. First we order F0×F1 lexicographically,
defining ( f0, f1) < ( f ′0, f ′1) if f0 <F0 f ′0 or else f0 = f ′0 and f1 <F1 f ′1. Then the
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group ring R = Z(F0 × F1) becomes an ordered ring1 by declaring a nonzero
element to be positive if the coefficient of the largest term (in the ordering < of
F0× F1) is a positive integer.

Note that as a ring element, f0 ∈ F0, which can be considered an abbreviation
of 1( f0, 1) ∈ R, is considered positive even if f0 <F0 1 and it would be called
“negative” as a group element. In particular, the diagonal elements of the matrices
displayed above are all positive.

Bergman then orders M2(R) as follows. Choose “an arbitrary order among
the four ‘positions’ in a 2× 2 matrix, and call a nonzero element of this module
‘positive’ if in the first position in which a nonzero coefficient occurs, the coefficient
is in fact positive.” To be definite, we will choose the 1, 1 position to be first, the 2, 2
position to be second, and the off-diagonal positions ordered third and fourth in
some fixed way. Now to order the matrix ring of polynomials, call an element M of
M2(R[t]) positive if it satisfies the following. Expand M = M0+M1t+· · ·+Mk tk,
where each Mi belongs to M2(R). Let n ≥ 0 be the least integer such that tn has
nonzero coefficient and say M is positive if and only if the first nonzero entry of
Mn is positive in the ordered ring R.

Bergman points out that “the orderings of the positions can be the same for all n,
but need not — there is a lot of freedom here.” But we will use the same ordering
of the positions, as described, throughout.

Finally, define an ordering of F0 ∗ F1 by declaring that x ≺ y if and only if
ρ(y)− ρ(x) is positive in M2(R[t]).

4. Proof of Theorem 1 and further properties of ≺

First we’ll argue that (F0 ∗ F1,≺) is an ordered group. Clearly ≺ is a strict total
ordering. To check invariance under multiplication, first note that every element
of ρ(F0 ∗ F1) in M2(R[t]), when expanded in powers of t , has constant term a
diagonal matrix with positive entries. (See the proof of Proposition 4 below to be
more precise.) The product of such a matrix, on either side, with a positive matrix
in M2(R[t]) will again be positive. Thus, if x, y, z ∈ F0 ∗ F1, one has x ≺ y ⇐⇒
ρ(y)−ρ(x) is positive ⇐⇒ ρ(z)(ρ(y)−ρ(x))= ρ(zy)−ρ(zx) is positive ⇐⇒
zx ≺ zy. Right invariance is proved similarly.

Next we will show that the ordering ≺ extends the given orderings <F0 and
<F1 . Suppose f0, f ′0 ∈ F0 and f0 <F0 f ′0. Then the difference between their images
in M2(R[t]) is the matrix

( f ′0− f0
0
∗

0

)
, and noting that f ′0 − f0 is positive in R we

conclude f0 ≺ f ′0. A similar argument shows that ≺ also extends <F1 .

1We understand an ordered ring (R, <) to be an ordered group as an additive group, for which the
positive cone P = {r ∈ R | 0< r} is also closed under multiplication.
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This establishes the first part of Theorem 1. To prove the second part, note that
φ0× φ1 preserves the lexicographic orderings <F , <G of F0× F1 and G0×G1,
respectively. A homomorphism of groups naturally extends to a ring homomorphism
of the integral group rings, and we see that if the group homomorphism preserves
given orderings of the groups, then its extension takes “positive” elements of the
group ring to positive elements. Then φ0 × φ1 defines a ring homomorphism
RF → RG , where RF = Z(F0 × F1) and RG = Z(G0 ×G1), which we will call
φ0×φ1 again. This extends to a ring homomorphism RF [t] → RG[t], and further
induces an additive homomorphism M2(RF [t])→M2(RG[t]), which we will again
call φ0×φ1.

The diagram
F0 ∗ F1

ρ
−−−→ M2(RF [t])

φ0∗φ1

y φ0×φ1

y
G0 ∗G1

ρ
−−−→ M2(RG[t])

is commutative (we have used the same symbol ρ for different maps, but defined
analogously), and as already mentioned, φ0× φ1 takes positive matrix entries to
positive matrix entries. We now argue that φ0 ∗ φ1 is order-preserving, relative
to ≺F ,≺G . Suppose x, y ∈ F0 ∗ F1 and x ≺F y. Then ρ(y)−ρ(x) is positive, and
therefore φ0×φ1(ρ(y)−ρ(x)) is positive in M2(RG[t]). But φ0×φ1(ρ(y)−ρ(x))=
φ0×φ1(ρ(y))−φ0×φ1(ρ(x))= ρ(φ0 ∗φ1(y))− ρ(φ0 ∗φ1(x)), and since this is
positive, we conclude that φ0 ∗φ1(x)≺G φ0 ∗φ1(y). �

Corollary 3. If (F, <F ) and (G, <G) are ordered groups, then the ordered group
(F ∗G,≺) :=F((F, <F ), (G, <G)) has the properties that ≺ extends the orderings
of F and G, and for any automorphisms φ : F→ F and ψ :G→G which preserve
the given orderings, the automorphism φ ∗ ψ : F ∗ G → F ∗ G preserves the
ordering ≺.

Following the terminology used in [Botto Mura and Rhemtulla 1977], we will
call a homomorphism φ : F→G of ordered groups (F, <F ) and (G, <G) an order-
homomorphism (relative to the given orderings) if x ≤F y implies φ(x)≤G φ(y) for
all x, y ∈ F. Note that order-preserving homomorphisms are order-homomorphisms,
and that order-homomorphisms need not be injective. Indeed, the order-preserving
homomorphisms are exactly the order-homomorphisms which are injective. For
example, using the lexicographic ordering of the direct product, the inclusions
F→ F×G and G→ F×G are order-preserving, while the projection F×G→ F
is an order-homomorphism. But the projection F ×G→ G will not be an order-
homomorphism, if the groups are nontrivial.

We’ll see that our construction of ≺ has similar properties. First note that
Theorem 1(1) implies that the natural inclusion homomorphisms F→ F ∗G and
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G→ F∗G are order-preserving. There are also canonical maps F∗G→ F, obtained
by killing elements of G, and similarly F∗G→G. They combine to define a canoni-
cal homomorphism α : F∗G→ F×G. Specifically, if f1g1 f2 · · · fk gk is an element
of F ∗G, with fi ∈ F and gi ∈ G, then α( f1g1 f2 · · · fk gk)= ( f1 · · · fk, g1 · · · gk).

Proposition 4. Suppose that (F, <F ) and (G, <G) are ordered groups. Then the
canonical homomorphism α : F ∗G→ F ×G is an order-homomorphism, relative
to the lexicographic ordering of F ×G and the ordering ≺ for F ∗G.

Proof. If x ∈ F ∗G has image α(x)= ( f, g) ∈ F ×G, we observe that its image
under the representation ρ : F ∗G→ M2(R[t]) may be written

ρ(x)=
(

f 0
0 g

)
+ terms of positive degree.

The conclusion follows from our convention for ordering M2(R[t]). �

A subset C ⊂ G of an ordered group (G, <G) is said to be convex if the
inequalities c <G g <G c′, with c, c′ ∈ C imply that g ∈ C . For example, it is
easy to see that if (F, <F ) and (G, <G) are ordered groups and φ : F→ G is an
order-homomorphism, then the kernel K of φ is a convex subgroup of F.

Corollary 5. The kernel of the homomorphism α : F ∗ G → F × G is convex,
relative to the ordering ≺ of F ∗G.

The kernel of α : F ∗ G → F × G is known to be a free subgroup of F ∗ G,
freely generated by commutators of the form f g f −1g−1, where 1 6= f ∈ F and
1 6= g ∈ G.

Corollary 6. If F ∗G is ordered by ≺, the canonical homomorphism F ∗G→ F
is an order-homomorphism, but F ∗G→ G will not be an order-homomorphism, if
the groups are nontrivial.

Indeed, if f <F f ′ in F while g′ <G g in G, we have, as elements of F ∗G, the
inequality f g≺ f ′g′. If the canonical map F∗G→G were an order-homomorphism,
we’d conclude g <G g′, a contradiction. The asymmetry exposed by this corollary
cannot be corrected, as the following observation shows. We note that, by the same
proof, the proposition also applies to direct products.

Proposition 7. If F and G are nontrivial ordered groups, then there is no ordering
of F∗G for which both of the canonical homomorphisms F∗G→ F and F∗G→G
are order-homomorphisms.

Proof. As above, choose f, f ′ ∈ F and g, g′ ∈ G such that f <F f ′ and g′ <G g.
Suppose < is an ordering of F ∗ G for which the canonical homomorphisms
F ∗ G → F and F ∗ G → G are order-homomorphisms, and compare f g with
f ′g′. If f g < f ′g′, then applying the map F ∗ G → F implies that f ≤F f ′, a
contradiction. Similarly, f g > f ′g′ implies the contradiction g ≥G g′. �
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5. Structure as a tensor category

Recall that C denotes the category of ordered groups and order-preserving homo-
morphisms, and that F : C×C→ C is a bifunctor. Let us rename F as follows, for
ordered groups (F0, <F0) and (F1, <F1):

(F0, <F0)⊗ (F1, <F1) := F((F0, <F0), (F1, <F1))= (F0 ∗ F1,≺)

It is well known that the category of groups under free product is a tensor
category, with unit the trivial group; see [Mac Lane 1998, p. 161], or the definition
given in [Wikipedia 2017]. I am grateful to Christian Kassel for suggesting the
following to me.

Theorem 8. With the bifunctor ⊗ the category C is a tensor category, in other
words, a monoidal category.

For ordered groups (F0, <F0), (F1, <F1), (F2, <F2), we have the isomorphism
of groups

F0 ∗ (F1 ∗ F2)∼= (F0 ∗ F1) ∗ F2.

We need to check that the orderings constructed on both sides of this equivalence
are the same under the isomorphism, in other words the isomorphism is order-
preserving. But this follows from the observation that the lexicographic orderings
on the direct products F0× (F1× F2) and (F0× F1)× F2, used in the respective
orderings of F0 ∗ (F1 ∗ F2) and (F0 ∗ F1) ∗ F2, both reduce to the lexicographic
ordering of triples.

Similarly, the coherence relations involved in tensor categories follow from the
observation that for ordered groups (Fi , <Fi ), 0≤ i ≤ 3, our orderings of the groups

(F0 ∗ F1) ∗ (F2 ∗ F3), (F0 ∗ (F1 ∗ F2)) ∗ F3, F0 ∗ ((F1 ∗ F2) ∗ F3),

(F0 ∗ F1) ∗ (F2 ∗ F3), and F0 ∗ (F1 ∗ (F2 ∗ F3))

are identical (under their natural isomorphisms).

6. An application to braid groups

The original motivation for this study is the following application to the theory of
braids. The braid group Bn acts by automorphisms on the free group Fn , as observed
by Artin [1925; 1947]. Free groups are orderable, and we may call a braid “order-
preserving” if its image under the (faithful) Artin representation Bn → Aut(Fn)

preserves some ordering of Fn; see [Kin and Rolfsen 2016]. In that paper it is noted
that a braid is order-preserving if and only if the complement of the link in S3

consisting of the braid’s closure, plus the braid axis, has orderable fundamental
group. It is used to show, for example, that of the two minimal volume orientable
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α β α β

Figure 1. α ∈ Bm (left), β ∈ Bn (center), α⊗β ∈ Bm+n (right).

hyperbolic 2-cusped 3-manifolds, one has an orderable fundamental group, while
the group of the other is not orderable (although it is left-orderable).

Multiplication of braids is by concatenation, and the product of two order-
preserving braids need not be order-preserving, as observed in [Kin and Rolfsen
2016]. There is also a tensor product operation ⊗ : Bm × Bn→ Bm+n which forms
an m+ n strand braid α⊗β from an m-braid α and an n-braid β by placing them
side by side with no crossing between the strands of α and those of β, as in Figure 1.
See for example [Kassel and Turaev 2008, p. 69].

It is easy to see from the definition of Artin’s representation that the automor-
phism of Fm+n ∼= Fm ∗ Fn corresponding to α ⊗ β is just the free product of the
automorphisms corresponding to α and β.

Corollary 9. The tensor product α⊗β of braids is order-preserving if and only if
both α and β are order-preserving braids.

Proof. One direction follows from Corollary 3. For if α and β preserve some
orderings of Fm and Fn respectively, then α⊗β preserves the corresponding ordering
≺ of Fm ∗ Fn ∼= Fm+n . On the other hand, suppose α⊗β preserves an ordering of
Fm+n ∼= Fm ∗ Fn . Considering Fm and Fn as the natural subgroups of Fm ∗ Fn , we
see that the action of α⊗β leaves each of these subgroups invariant. Therefore the
ordering of Fm+n preserved by α⊗β restricts to each of the subgroups making the
action of the braids α and β order-preserving. �

We note the multiple use of the tensor product symbol. Indeed, let us say that
the ordered free group (Fn, <) represents the braid β ∈ Bn if the automorphism of
Fn corresponding to β under the Artin representation preserves the ordering <. We
have observed the following.

Proposition 10. If (Fm, <) represents α ∈ Bm and (Fn, <
′) represents β ∈ Bn , then

(Fm, <)⊗ (Fn, <
′) represents α⊗β ∈ Bm+n .

7. Continuity

The goal of this section is to establish that our construction is continuous in an
appropriate sense. If O(G) denotes the set of all (two-sided invariant) orderings of
the group G, there is a natural topology on O(G), defined below. Given orderable
groups F and G, the construction defined in Section 3 can be considered a function
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whose input is a pair of orderings <F and <G and the output is an ordering ≺
of F ∗G, in other words a function

O(F)× O(G)→ O(F ∗G).

We’ll see that it is both continuous and injective.

7.1. The space of orderings. The set of orderings O(G) of the group G is endowed
with a natural topology, as detailed by Sikora [2004]. See also [Dabkowska et al.
2007; Navas 2010]. Consider a specific ordering <G of G, and choose a finite
number of inequalities among elements of G which are satisfied using <G . Then
a basic neighborhood of <G consists of all orderings of G for which all those
inequalities remain true. Neighborhoods of this type form a basis for the topology
we are considering. Equivalently, a neighborhood of <G is defined by choosing
some finite set of elements of G which are positive (greater than the identity)
using <G . Then take the neighborhood to consist of all orderings of G under which
that finite set remains positive.

It is known, and not difficult to show, that O(G) is compact and totally discon-
nected. An isolated point of O(G) is an ordering which is “finitely determined” in
the sense that it is the only ordering of G for which some finite set of inequalities
holds. Sikora [2004] showed that for n ≥ 2, O(Zn) has no isolated points, and is
homeomorphic with the Cantor set. Whether O(Fn) has isolated points, for the free
group Fn , n ≥ 2, is an open question at the time of writing.

7.2. Continuity of lexicographic ordering of direct products. As a warmup to
our main result, we consider the lexicographic ordering of direct products F×G of
ordered groups, as discussed in Section 3 (similar results would hold for the reverse
lexicographic ordering). It may be considered a function

L : O(F)× O(G)→ O(F ×G).

Proposition 11. L is continuous and injective.

Proof. We may assume both F and G are nontrivial groups; otherwise there is
nothing to prove. For injectivity, suppose <F and <′F are orderings of F and that
<G and <′G are orderings of G. Consider <= L(<F , <G) and <′ = L(<′F , <

′

G).
If <F and <′F are distinct, there must be an element f ∈ F with 1<F f but f <′F 1.
Then we have, for any g ∈ G, that 1< ( f, g) and ( f, g) <′ 1. It follows that < and
<′ are distinct. Similarly, if <G and <′G are different, then one can find an element
(1, g) ∈ F ∗G with (1, g) having different signs relative to the orderings < and <′.
This establishes injectivity.

To establish continuity, note that a basic neighborhood N< of < in O(F ×G)
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is defined by choosing some finite set of positive elements:

( f1, g1), . . . , ( fk, gk), (1, gk+1), . . . (1, gk+l).

Here we have

1<F f1, . . . , 1<F fk and 1<G gk+1, . . . , 1<G gk+l,

whereas some of the list g1, . . . , gk may be negative in the ordering <G . Possibly
k = 0 or l = 0.

Continuity will be established if we can find neighborhoods N<F of<F in O(F)
and N<G of <G in O(G) so that L(N<F ×N<G )⊂N<. But this is straightforward:
take N<F to be the set of all orderings of F for which f1, . . . , fk are positive, and
N<G the set of all orderings of G under which gk+1, . . . , gk+l are positive. �

7.3. Continuity of the ordering of free products. Recalling the construction in
Section 3, we defined a function of ordered groups:

F((F, <F ), (G, <G))= (F ∗G,≺).

By abuse of notation, if F and G are fixed, but orderings thereof are variable,
we may write

F(<F , <G)=≺ .

Then we have a function of spaces of orderings:

F : O(F)× O(G)→ O(F ∗G).

Theorem 12. F is continuous and injective.

Proof. One may prove injectivity as in Proposition 11; we leave the details to the
reader. Note also that we proved continuity of the map L by showing that any
finite set of inequalities in F × G would be implied (under L) by finitely many
inequalities in F and in G.

We will argue similarly in this case; we’ll try to avoid excessive notation and
sketch the ideas. Suppose <F and <G are given orderings of F and G, respectively,
and that ≺= F(<F , <G) is the corresponding ordering of the free product F ∗G.
A neighborhood N≺ of ≺ in the space O(F ∗G) consists of all orderings of F ∗G
for which all members of some finite set x1, . . . , xk of elements of F∗G are positive,
where 1 ≺ xi for i = 1, . . . , k. But note that 1 ≺ xi is equivalent to the matrix
ρ(xi )− ρ(1) being positive in M2(Z(F × G)[t]), and this is positive if the first
nonzero entry of that matrix, expanded in powers of t , is positive. That entry, an
element of Z(F ×G), is positive if the coefficient of its greatest group element,
say ( fi , gi ), is a positive integer. But the condition that ( fi , gi ) is the greatest
group element appearing in that entry is equivalent to a finite number of inequalities
in F × G, using the lexicographic ordering. This in turn, as in Proposition 11,
is implied by a finite number of inequalities in F and G which are in particular
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satisfied using the orderings <F and <G . Using the open neighborhoods N<F of
<F and N<G of <G defined by those inequalities, we see F(N<F ,N<G ) ⊂ N≺,
which establishes continuity of F. �

Suppose, in the procedure for defining ≺ in Section 3, one used some ordering
of F ×G other than the lexicographic one, but otherwise defined ≺ in the same
way. This then defines a function O(F ×G)→ O(F ∗G), which we will call M,
short for matrix construction. The proof of Theorem 12 actually shows that M is
continuous. Our specific construction F may therefore be considered a composite

O(F)× O(G) L
−→ O(F ×G) M

−→ O(F ∗G)

of two continuous functions, both injective.

8. Free product of arbitrarily many ordered groups

We now consider an arbitrary collection of ordered groups. For convenience, we
assume the groups are indexed by an ordinal number γ and denote the collection
by {(Fα, <Fα )}α<γ . So far we have been considering the case γ = 2.

Theorem 13. Let γ ≥ 2 be an ordinal. Suppose {(Fα, <Fα )}α<γ is a collection
of ordered groups and let F := ∗α<γ Fα denote the free product. Then there is an
ordering ≺F of F, so that (F,≺F ) is an ordered group, denoted

F({(Fα, <Fα )}α<γ ) := (F,≺F ),

and such that the following hold:

(1) For each α < γ the restriction of ≺F to the natural subgroup Fα of F
equals <Fα .

(2) If {(Gα, <Gα
)}α<γ is another collection of ordered groups with G := ∗α<γGα

and
(G,≺G)= F({(Gα, <Gα

)}α<γ ),

then for any collection φα : Fα→ Gα of homomorphisms defined for all α < γ
and which are order-preserving, relative to <Fα and <Gα

, the free product
homomorphism ∗α<γφα : F→ G is order-preserving, relative to ≺F and ≺G .

Proof. We will define the ordering of F by induction, possibly transfinite. For that
reason, we’ll call the ordering ≺γ and only later call it ≺F also. The base for the
induction, for γ = 2, is Theorem 1, taking ≺2 to be the ordering ≺ defined there.
For induction we may assume that orderings≺β have been defined for all the groups
∗α<βFα for all 1<β <γ , and that they satisfy (1) and (2) with β replacing γ . Note
that ∗α<βFα is naturally a subgroup of ∗α<γ Fα. To facilitate the induction, we’ll
prove that in addition to properties (1) and (2) of the theorem, ≺γ further satisfies:
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(3) If 1< β < γ the restriction of the ordering ≺γ to ∗α<βFα coincides with ≺β .

Again, by Theorem 1 this is satisfied for the base case γ = 2. To construct ≺γ
we consider two cases.

Case 1: γ is a successor ordinal: γ = β + 1. Since ≺β is by hypothesis already
defined, and noting that F can be naturally identified with (∗α<βFα) ∗ Fβ , we use
the functor F defined in the proof of Theorem 1 and take

(F,≺γ )∼= ((∗α<βFα) ∗ Fβ,≺γ ) := F((∗α<βFα),≺β), (Fβ, <β)).

Case 2: γ is a limit ordinal. Then the group ∗α<γ Fα is the union of its subgroups
∗α<βFα with β < γ . Thus to compare two group elements x, y in ∗α<γ Fα , choose
β < γ for which x, y ∈ ∗α<βFα and define x ≺γ y if and only if x ≺β y. By
property (3), which may be assumed for ordinals less than γ , this does not depend
on choice of β.

In either case, it is routine to verify that the ordering≺γ (also called≺F ) satisfies
the conditions (1), (2) and (3). �

9. Left-ordered groups

An ordering < of the elements of a group G is a left-ordering if for all f, g, h ∈ G
one has

g < h =⇒ f g < f h;

in this case we call (G, <) a left-ordered group. It is much easier than for the
ordered case to see that the free product of left-ordered groups is left-orderable.
For left-ordered groups (F, <F ) and (G, <G) consider the short exact sequence

1→ K → F ∗G→ F ×G→ 1,

where F ∗G→ F ×G is the canonical homomorphism. The kernel K is a free
group, which is orderable, and one can left-order F ×G, lexicographically. Since
left-orderability (unlike orderability) is always preserved under extensions, we
conclude that F ∗G is left-orderable.

On the other hand, our construction of the ordering ≺ for the free product of
ordered groups may be revised in a straightforward way to the left-ordered (or
right-ordered) situation. One must be a bit careful. For a left-ordered group (G, <)
the group ring Z(G) is not, strictly speaking, an ordered ring by our definition. For
example if we have g, g′, h ∈ G with g < g′ but gh > g′h then the ring elements
g′− g and h are positive, whereas their product g′h− gh is not positive. However
the product in the other order, hg′− hg, is necessarily positive, and more generally
a positive element of Z(G) multiplied on the left by a monomial with positive
coefficient remains positive. This is enough to establish left-invariance of ≺ in the
proof of Theorem 1.



ORDERED GROUPS AS A TENSOR CATEGORY 193

Therefore, we conclude that all the results above remain true if “ordered” is
replaced by “left-ordered” throughout. In particular, the category of left-ordered
groups and order-preserving homomorphisms is also a tensor category using our
functorial construction.

10. Concluding remarks

The ordering we construct is by no means canonical; for example other choices
of ordering the direct product, or the entries of matrices, can lead to a different
ordering of the free product which satisfies the conditions of Theorem 1, and even
defines a tensor category structure. Indeed, Corollary 6 reveals the asymmetry of
the construction. In a real sense, the first group in the free product of two groups is
treated preferentially in our construction. It could as well have been the reverse.

The argument given here does not extend to the larger category of ordered groups
and order-homomorphisms (which are not necessarily injective) as some positive
matrix entries may be mapped to zero under such a map. Extending our results to
this category seems to be an open question.

As noted in [Bergman 1990], much of this can be done in the more general setting
of ordered semigroups; see also [Johnson 1968]. We leave such generalization for
the interested reader to contemplate.
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MULTIPLICATION OF DISTRIBUTIONS AND
A NONLINEAR MODEL IN ELASTODYNAMICS

C. O. R. SARRICO

We consider the system ut +(u2/2)x = σx, σt +uσx = k2ux , where k is a real
number and the unknowns u(x, t) and σ(x, t) belong to convenient spaces
of distributions. For this simplified model from elastodynamics, a rigorous
solution concept defined in the setting of a distributional product is used.
The explicit solution of a Riemann problem and the possible emergence of
a δ shock wave are established. For initial conditions containing a Dirac
measure, a δ′ shock wave solution is also presented.

1. Introduction and main results

Let us consider the system

ut +
( 1

2 u2)
x= σx ,(1)

σt + uσx= k2ux ,(2)

where t ∈R is the time variable, x ∈R is the one-dimensional space variable, u(x, t)
and σ(x, t) are the unknowns state variables and k > 0 is a real number.

This strictly hyperbolic system in nonconservative form arises in a simplified
model from elastodynamics where u is the velocity, σ is the stress and k is the speed
of propagation of the elastic waves. Several aspects of this model were already
studied by J. J. Cauret, J. F. Colombeau, A. Y. Le Roux, and K. T. Joseph in the
setting of Colombeau generalized functions. For details, see [Cauret et al. 1989;
Colombeau and LeRoux 1988; Joseph 1997]. When initial data are smooth, it is
well-known that global solutions do not exist because discontinuities in u and σ
appear in finite time. Meanwhile, when u and σ are discontinuous, products of
distributions arise which make no sense in the classic theory of distributions.

Different concepts of solution can be found in the literature: the week asymptotic
method [Danilov and Mitrovic 2008; Danilov and Shelkovich 2005a; 2005b], the
measure theoretic method [Bouchut and James 1999; Brenier and Grenier 1998;
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strictly hyperbolic systems, δ waves, δ′ waves, Riemann problem.
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Chen and Liu 2003; Huang 2005], the use of smooth function nets and weighted
measures spaces [Keyfitz and Kranzer 1995], split delta functions [Nedeljkov
2002; Nedeljkov and Oberguggenberger 2008], Colombeau generalized functions
[Cauret et al. 1989; Colombeau and LeRoux 1988; Joseph 1997; Nedeljkov 2004],
and others. We will adopt a solution concept which is a consistent extension
of the classical solution concept and is defined within the setting of a theory of
distributional products. In our framework, the product of distributions is always
a distribution that is not defined by approximation processes. Our products depend
upon the choice of a certain function α that encodes the indeterminacy inherent
to such products. We stress that this indeterminacy is not in general avoidable
and in many situations it also has a physical meaning. Concerning this point
let us mention [Bressan and Rampazzo 1988; Colombeau and LeRoux 1988;
Dal Maso et al. 1995; Sarrico 2003]. Naturally the existence and the solutions
of differential equations or systems containing such products may depend (or
not) on α. We call such solutions α-solutions. The possibility of its physical
occurrence depends on the physical system. Sometimes we cannot previously
know the behavior of the physical system, possibly due to features that were
not considered in the formulation of the model with the goal of simplifying it.
Thus, the mathematical indeterminacy sometimes observed may have this ori-
gin. In the present paper, however, the α-solutions when they exist are indepen-
dent of α.

First, we consider for system (1)–(2) the initial conditions

u(x, 0)= a1+ (a2− a1)H(x),(3)

σ(x, 0)= b1+ (b2− b1)H(x),(4)

where a1, a2, b1, b2 ∈ R and H stands for the Heaviside function. We will compute
all α-solutions of this problem within the space W of pairs of distributions (u,σ)
of the form

u(x, t)= u1+ (u2− u1)H(x − V t)+ g(t)δ(x − V t),(5)

σ(x, t)= σ1+ (σ2− σ1)H(x − V t),(6)

where δ stands for the Dirac measure concentrated at the origin, u1, u2, σ1, σ2, V ∈R,
and g : R→ R is a C1-function. If b1 = b2 there exists α-solutions in W if and
only if a1 = a2 and we will see, in the space W , the arising of the α-solution
corresponding to the constant states,

u(x, t)= a1,(7)

σ(x, t)= b1.(8)
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If b1 6= b2 there exists an α-solution in W if and only if a1 6= a2 with the possible
arising of the traveling wave

u(x, t)= a1+ (a2− a1)H(x − V t),(9)

σ(x, t)= b1+ (b2− b1)H(x − V t),(10)

which propagates with speed V = (a1 + a2)/2− (b2 − b1)/(a2 − a1). These α-
solutions depend neither on α nor on the constant k > 0!

From a mathematical point of view, this situation leads us to consider the in-
teresting case k = 0 in which the eigenvalues of the system (1)–(2), λ1 = u − k
and λ2 = u+ k coincide and the system loses the strict hyperbolicity. In this case,
assuming certain conditions to be specified later, we will see the possible emergence
(in the same space W ) of a delta shock wave with the form (5). Thus, the space
of functions is not sufficient to contain all possible α-solutions of the Riemann
problem (1)–(4) with k = 0.

Next, for the system (1)–(2), still with k = 0, we consider the initial conditions

u(x, 0)= a,(11)

σ(x, 0)= b+m δ(x),(12)

where a, b,m ∈R and m 6= 0. We will see the possible emergence of the α-solution,

u(x, t)= a+mt δ′(x − at),(13)

σ(x, t)= b+m δ(x − at),(14)

containing a δ wave and a δ′ shock wave, both with speed a. This result is obtained
within the space Z of pairs of distributions (u, σ ) of the form

u(x, t)= u1+ f (t) δ′[x − γ (t)],

σ (x, t)= σ1+ p δ[x − γ (t)],

where u1, σ1, p ∈R and f, γ :R→ R are C1-functions. Hence, the problem (1)–(2)
with initial conditions (11) and (12) with k = 0 also evolves to a situation more
singular then the initial one and the measure space is no longer sufficient to contain
all its possible α-solutions. It is also a remarkable fact that, in the space Z , all those
α-solutions, when they exist, are independent of α.

Regarding δ′-waves, we must remember that they were first introduced by E. Yu.
Panov and V. M. Shelkovich for certain systems of conservation laws [Panov and
Shelkovich 2006; Shelkovich 2006]. The results show that these systems subjected
to piecewise continuous initial data may develop not only δ-waves, but also δ′-waves
[Sarrico 2012b; Shelkovich 2007; 2008].

Let us summarize the contents of this paper. In Section 2 a survey of the main
ideas and formulas for multiplying distributions is presented. In Section 3 we define
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the concept of α-solution for the system (1)–(2). In Sections 4, 5 and 6 we justify
rigorously all we have said in the beginning of this introduction.

2. Products of distributions

Let C∞ be the space of indefinitely differentiable real or complex-valued functions
defined on RN , N ∈{1, 2, 3, . . .}, and D the subspace of C∞ consisting of those func-
tions with compact support. Let D′ be the space of Schwartz distributions and L(D)
the space of continuous linear maps φ : D→ D, where we suppose D is endowed
with the usual topology. We will sketch the main ideas of our distributional product
(the reader can look at (18), (22) and (24) as definitions, if he prefers to skip this pre-
sentation). For proofs and other details concerning this product see [Sarrico 1988].

First, we define a product Tφ ∈ D′ for T ∈ D′ and φ ∈ L(D) by

〈Tφ, ξ〉 = 〈T, φ(ξ)〉,

for all ξ ∈D; this makes D′ a right L(D)-module. Next, we define an epimorphism
ζ̃ : L(D)→ D′, where the image of φ is the distribution ζ̃ (φ) given by

〈ζ̃ (φ), ξ〉 =

∫
φ(ξ),

for all ξ ∈D (when the domain of the integral is not specified we assume it to be RN );
given S∈D′, we say that φ is a representative operator of S if ζ̃ (φ)= S. For instance,
if β ∈ C∞ is seen as a distribution, the operator φβ ∈ L(D) defined by φβ(ξ)= βξ ,
for all ξ ∈ D, is a representative operator of β because, for all ξ ∈ D, we have

〈ζ̃ (φβ), ξ〉 =

∫
φβ(ξ)=

∫
βξ = 〈β, ξ〉.

For this reason ζ̃ (φβ)= β. If T ∈ D′, we also have

〈Tφβ, ξ〉 = 〈T, φβ(ξ)〉 = 〈T, βξ〉 = 〈Tβ, ξ〉,

for all ξ ∈ D. Hence,
Tβ = Tφβ .

Thus, given T, S ∈ D′, we are tempted to define a natural product by setting
TS := Tφ, where φ ∈ L(D) is a representative operator of S, i.e., φ is such that
ζ̃ (φ)= S. Unfortunately, this product is not well defined, because TS depends on
the representative φ ∈ L(D) of S ∈ D′.

This difficulty can be overcome, if we fix α ∈ D with
∫
α = 1 and define

sα : L(D)→L(D) by

(15) [(sαφ)(ξ)](y)=
∫
φ[(τyα̌)ξ ],
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for all ξ ∈D and all y ∈RN , where τyα̌ is given by (τyα̌)(x)= α̌(x− y)= α(y−x)
for all x ∈ RN . It can be proved that for each α ∈ D with

∫
α = 1, sα(φ) ∈ L(D),

sα is linear, sα ◦ sα = sα (sα is a projector of L(D)), ker sα = ker ζ̃ , and ζ̃ ◦ sα = ζ̃ .
Now, for each α ∈D, we can define a general α-product�

α
of T ∈D′ with S ∈D′

by setting

(16) T �
α

S := T (sαφ),

where φ∈ L(D) is a representative operator of S∈D′. This α-product is independent
of the representative φ of S, because if φ and ψ are such that ζ̃ (φ) = ζ̃ (ψ) = S,
then φ−ψ ∈ ker ζ̃ = ker sα. Hence,

T (sαφ)− T (sαψ)= T [sα(φ−ψ)] = 0.

Since φ in (16) satisfies ζ̃ (φ)= S, we have
∫
φ(ξ)= 〈S, ξ〉 for all ξ ∈ D, and

by (15)

[(sαφ)(ξ)](y)= 〈S, (τyα̌)ξ〉 = 〈Sξ, τyα̌〉 = (Sξ ∗α)(y),

for all y ∈ RN , which means that (sαφ)(ξ)= Sξ ∗α. Therefore, for all ξ ∈ D,

〈T �
α

S, ξ〉 = 〈T (sαφ), ξ〉 = 〈T, (sαφ)(ξ)〉 = 〈T, Sξ ∗α〉

= [T ∗ (Sξ ∗α)̌ ](0)= [(Sξ )̌ ∗ (T ∗ α̌)](0)= 〈(T ∗ α̌)S, ξ〉,

and we obtain an easier formula for the general product (16):

(17) T �
α

S = (T ∗ α̌)S.

In general, this α-product is neither commutative nor associative but it is bilinear
and satisfies the Leibniz rule written in the form

Dk(T �
α

S)= (Dk T )�
α

S+ T �
α
(Dk S),

where Dk is the usual k-partial derivative operator in distributional sense (k =
1, 2, . . . , N ).

Recall that the usual Schwartz products of distributions are not associative and
the commutative property is a convention inherent to the definition of such products
(see the classical monograph of Schwartz [1966, pp. 117, 118 and 121] where
these products are defined). Unfortunately, the α-product (17), in general, is not
consistent with the classical Schwartz products of distributions with functions.

In order to obtain consistency with the usual product of a distribution with a
C∞-function, we are going to introduce some definitions and single out a certain
subspace Hα of L(D).
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An operator φ ∈ L(D) is said to vanish on an open set �⊂ RN , if and only if
φ(ξ) = 0 for all ξ ∈ D with support contained in �. The support of an operator
φ ∈ L(D) will be defined as the complement of the largest open set in which φ
vanishes.

Let N be the set of operators φ ∈ L(D) whose support has Lebesgue measure
zero, and ρ(C∞) the set of operators φ ∈ L(D) defined by φ(ξ) = βξ for all
ξ ∈ D, with β ∈ C∞. For each α ∈ D, with

∫
α = 1, let us consider the space

Hα = ρ(C∞)⊕ sα(N )⊂ L(D). It can be proved that ζα := ζ̃ |Hα : Hα→C∞⊕D′µ
is an isomorphism (D′µ stands for the space of distributions whose support has
Lebesgue measure zero). Therefore, if T ∈ D′ and S = β + f ∈ C∞⊕D′µ, a new
α-product, α̇ , can be defined by Tα̇S := Tφα , where for each α, φα = ζ−1

α (S) ∈ Hα .
Hence,

Tα̇S = T ζ−1
α (S)= T [ζ−1

α (β + f )]

= T [ζ−1
α (β)+ ζ−1

α ( f )] = Tβ + T �
α

f = Tβ + (T ∗ α̌) f,

and putting α instead of α̌ (to simplify), we get

(18) Tα̇S = Tβ + (T ∗α) f.

Thus, the referred consistency is obtained when the C∞-function is placed at the
right-hand side; if S ∈ C∞, then f = 0, S = β, and Tα̇S = Tβ.

The α-product (18) can be easily extended for T ∈D′p and S=β+ f ∈C p
⊕D′µ,

where p ∈ {0, 1, 2, . . . ,∞}, D′p is the space of distributions of order ≤ p in the
sense of Schwartz (D′∞ means D′), Tβ is the Schwartz product of a D′p-distribution
with a C p-function, and (T ∗ α) f is the usual product of a C∞-function with a
distribution. This extension is clearly consistent with all Schwartz products of D′p-
distributions with C p-functions, if the C p-functions are placed at the right-hand
side. It also keeps the bilinearity and satisfies the Leibniz rule written in the form

Dk(Tα̇S)= (Dk T )α̇S+ Tα̇(Dk S),

clearly under certain natural conditions; for T ∈ D′p, we must suppose S ∈
C p+1

⊕D′µ. Moreover, these products are invariant by translations, that is,

τa(Tα̇S)= (τaT )α̇(τa S),

where τa stands for the usual translation operator in distributional sense. These
products are also invariant for the action of any group of linear transformations
h : RN

→ RN with |det h| = 1, that leave α invariant.
Thus, for each α ∈D with

∫
α= 1, formula (18) allows us to evaluate the product

of T ∈ D′p with S ∈ C p
⊕D′µ; therefore, we have obtained a family of products,

one for each α.
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From now on, we always consider the dimension N = 1. For instance, if β is a
continuous function we have for each α, by applying (18),

δα̇β = δα̇(β + 0)= δβ + (δ ∗α)0= β(0)δ,

βα̇δ = βα̇(0+ δ)= β0+ (β ∗α)δ = [(β ∗α)(0)]δ,

δα̇δ = δα̇(0+ δ)= δ0+ (δ ∗α)δ = αδ = α(0)δ,(19)

Hα̇δ = (H ∗α)δ =
(∫

+∞

−∞

α(−τ)H(τ ) dτ
)
δ =

(∫ 0

−∞

α

)
δ,(20)

(Dδ)α̇(Dδ)= [(Dδ) ∗α]Dδ = α′(0)Dδ−α′′(0)δ.(21)

For each α, the support of the α-product (18) satisfies supp(Tα̇S)⊂ supp S, as for
usual functions, but it may happen that supp(Tα̇S) 6⊂ supp T .

It is also possible to multiply many other distributions preserving the consistency
with all Schwartz products of distributions with functions. For instance, using the
Leibniz formula to extend the α-products, it is possible to write

(22) Tα̇S = Tw+ (T ∗α) f,

with T ∈ D′−1 and S = w+ f ∈ L1
loc ⊕D′µ, where D′−1 stands for the space of

distributions T ∈ D′ such that DT ∈ D′0 and Tw is the usual pointwise product of
T ∈D′−1 with w ∈ L1

loc. Recall that, locally, T can be read as a function of bounded
variation (see [Sarrico 2012a, §2] for details). For instance, since H ∈ D′−1 and
H = H + 0 ∈ L1

loc⊕D′µ, we have

(23) Hα̇H = H H + (H ∗α)0= H.

because H ∈ D′−1 and H = H + 0 ∈ L1
loc⊕D′µ. More generally, if T ∈ D′−1 and

S ∈ L1
loc, then Tα̇S = TS; actually, using (22) we can write

Tα̇S = Tα̇(S+ 0)= TS+ (T ∗α)0= TS.

Thus, in distributional sense, the α-products of functions that, locally, are of
bounded variation coincide with the usual pointwise product of these functions
considered as a distribution. We stress that in (18) or (22) the convolution T ∗α is
not to be understood as an approximation of T . Those formulas are exact.

Another useful extension that will be applied is given by the formula

(24) Tα̇S = D(Yα̇S)− Yα̇(DS),

for T ∈D′0∩D′µ and S, DS ∈ L1
loc⊕D

′
c, where D′c⊂D′µ is the space of distributions

whose support is at most countable, and Y ∈D′−1 is such that DY = T (the products
Yα̇S and Yα̇(DS) are supposed to be computed by (18) or (22)). The value of Tα̇S
given by (24) is independent of the choice of Y ∈ D′−1 such that DY = T (see
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[Sarrico 2012a, p. 1004] for the proof). For instance, by (24) and (20) we have, for
any α,

(25) δα̇H = D(Hα̇H)−Hα̇(DH)= DH−Hα̇δ= δ−
(∫ 0

−∞

α

)
δ=

(∫
+∞

0
α

)
δ,

so that

(26) Hα̇δ+ δα̇H = δ

for any α. The products (18), (22), and (24) are compatible; that is, if an α-product
can be computed by two of them, the result is the same.

3. The α-solution concept for the system (1)–(2)

Let I be an interval of R with more than one point and let F(I ) be the space of
continuously differentiable maps ũ : I → D′ in the sense of the usual topology
of D′. For t ∈ I the notation [ũ(t)](x) is sometimes used to emphasize that the
distribution ũ(t) acts on functions ξ ∈ D which depend on x .

Let 6(I ) be the space of functions u : R×I → C such that

(a) for each t ∈ I , u(x, t) ∈ L1
loc(R),

(b) ũ : I → D′, defined by [ũ(t)](x)= u(x, t) is in F(I ).

The natural injection u 7→ ũ of 6(I ) into F(I ) allows us to identify any function
of 6(I ) with a certain map in F(I ). Since C1(R×I ) ⊂ 6(I ), we can write the
inclusions

C1(R×I )⊂6(I )⊂ F(I ).

Consequently, the identification u 7→ ũ allows us to write the system (1)–(2) as
follows

dũ
dt
(t)+ 1

2 D[ũ(t)α̇ũ(t)] = Dσ̃ (t),(27)

dσ̃
dt
(t)+ ũ(t)α̇Dσ̃ (t)= k2 Dũ(t).(28)

Definition 1. Given α, the pair (ũ, σ̃ ) ∈ F(I )×F(I ) will be called an α-solution
for the system (27)–(28) on I , if the α-products that appear in this system are well
defined and both equations are satisfied for all t ∈ I .

We have the following results:

Theorem 2. If (u, σ ) is a classical solution of (1)–(2) on R×I then, for any α, the
pair (ũ, σ̃ ) ∈ F(I )×F(I ) defined by [ũ(t)](x) = u(x, t), [σ̃ (t)](x) = σ(x, t), is
an α-solution of (27)–(28) on I .
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Note that by a classical solution of (1)–(2) on R× I , we mean a pair of C1-
functions (u(x, t), σ (x, t)) that satisfies (1)–(2) on R× I .

Theorem 3. If u, σ : R×I → C are C1-functions and, for a certain α, the pair
(ũ, σ̃ ) ∈ F(I ) × F(I ) defined by [ũ(t)](x) = u(x, t), [σ̃ (t)](x) = σ(x, t) is an
α-solution of (27)–(28) on I , then the pair (u, σ ) is a classical solution of (1)–(2)
on R×I .

For the proof it is enough to observe that any C1-function u(x, t) can be read as
a continuously differentiable function ũ ∈ F(I ) defined by [ũ(t)](x)= u(x, t) and
to use the consistency of the α-products with the classical Schwartz products.

Replacing ũ(t)α̇Dσ̃ (t) by Dσ̃ (t)α̇ũ(t) in (28), we get

(29)
dσ̃
dt
(t)+ Dσ̃ (t)α̇ũ(t)= k2 Dũ(t),

which is not equivalent to (28) since our α-products are not, in general, commutative.
However, all we have said for the systems (1)–(2) and (27)–(28) is also valid for the
systems formed by (1) and (2) and by (27) and (29). Taking advantage of this situa-
tion, we introduce a definition that further extends the concept of a classical solution:

Definition 4. Given α, we define as an α-solution for the system (1)–(2) on I any
α-solution of the system formed by (27) and (28) or by (27) and (29) on I .

As a consequence, an α-solution (ũ, σ̃ ) in this sense, read as an usual distribu-
tional solution (u, σ ), affords a consistent extension of the concept of a classical
solution for the system (1)–(2). Thus, and for short, we also call (u, σ ) an α-solution
of (1)–(2).

4. The Riemann problem (1)–(4) with k > 0

Let us consider the system (1)–(2) with k > 0. We also consider (x, t) ∈R×R (we
could also take R×[0,+∞[) and the unknowns u(x, t) and σ(x, t) submitted to
the initial conditions (3) and (4). When we read this problem in F(R) having in
mind the identification u 7→ ũ, we must replace the system (1)–(2) by the system
(27)–(28) and the conditions (3)–(4) by the following ones:

ũ(0)= a1+ (a2− a1)H,(30)

σ̃ (0)= b1+ (b2− b1)H.(31)

We will give, explicitly, all α-solutions for this problem which belong to a set W̃
defined as follows: (ũ, σ̃ ) ∈ W̃ if and only if ũ, σ̃ ∈ F(R) and there exist real
numbers u1, u2, σ1, σ2, V and a C1-function g : R→ R such that

ũ(t)= u1+ (u2− u1)τV t H + g(t)τV tδ,(32)

σ̃ (t)= σ1+ (σ2− σ1)τV t H.(33)
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Theorem 5. Let us consider the problem (27)–(28) with the initial conditions
(30)–(31) with k > 0.

(I) If b1 = b2, there exists an α-solution in W̃ if and only if a1 = a2; moreover, for
any α, the α-solution is unique in W̃ and is given by

ũ(t)= a1,(34)

σ̃ (t)= b1;(35)

(II) If b1 6= b2 there exists an α-solution in W̃ if and only if a1 6= a2 and we choose
α such that

(36)
∫ 0

−∞

α =
1
2
−

b2− b1

(a2− a1)2
+

k2

b2− b1
;

moreover, for any α satisfying this condition, the α-solution is unique in W̃
and is given by the traveling wave

ũ(t)= a1+ (a2− a1)τV t H,(37)

σ̃ (t)= b1+ (b2− b1)τV t H,(38)

with speed

V =
a1+ a2

2
−

b2− b1

a2− a1
.

As we can see all of these α-solutions, when they exist, are independent of α.

Proof. Let us suppose (ũ, ṽ) ∈ W̃ . Then we have (32) and (33), and by (30) and
(31) we can write

u1+ (u2− u1)H + g(0)δ = a1+ (a2− a1)H,

σ1+ (σ2− σ1)H = b1+ (b2− b1)H,

which implies g(0) = 0. Then, by restriction to the interval ]−∞, 0[, we have
u1 = a1 and σ1 = b1. As a consequence, we also have u2 = a2 and σ2 = b2. Thus,
from (32) and (33) it follows that

ũ(t)= a1+ (a2− a1)τV t H + g(t)τV tδ,(39)

σ̃ (t)= b1+ (b2− b1)τV t H,(40)
and so

dũ
dt
(t)=−V (a2− a1)τV t δ+ g′(t)τV t δ− V g(t)τV t Dδ,

dσ̃
dt
(t)=−V (b2− b1)τV t δ.

By applying the bilinearity of the α-products, the results (23), (20), (25), (19), and
the already mentioned translation property, we have
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(41) ũ(t)α̇ũ(t)= a2
1 + 2a1(a2− a1)τV t H + 2a1g(t)τV tδ

+ (a2− a1)
2τV t H + (a2− a1)g(t)

(∫ 0
−∞

α
)
τV tδ

+ (a2− a1)g(t)
(∫
+∞

0 α
)
τV tδ+ g2(t)α(0)τV tδ.

Since
∫ 0
−∞

α+
∫
+∞

0 α = 1, we also have

D[ũ(t)α̇ũ(t)] = (a2
2 − a2

1)τV tδ+ [2a1g(t)+ (a2− a1)g(t)+ g2(t)α(0)]τV t Dδ,

D[σ̃ (t)] = (b2− b1)τV tδ,

D[ũ(t)] = (a2− a1)τV tδ+ g(t)τV t Dδ,

and

(42) ũ(t)α̇D[σ̃ (t)]

=
[
a1(b2− b1)+ (a2− a1)(b2− b1)

∫ 0
−∞
α+ (b2− b1)g(t)α(0)

]
τV tδ.

Thus, (27)–(28) turn out to be

0=
[
−V (a2− a1)+ g′(t)+ 1

2(a
2
2 − a2

1)− (b2− b1)
]
τV tδ

+
[
−V g(t)+ 12(a1+ a2)g(t)+ 1

2(α(0))g
2(t)

]
τV t Dδ,

0=
[
−V (b2− b1)+ a1(b2− b1)+ (a2− a1)(b2− b1)

∫ 0
−∞

α

+ (b2− b1)g(t)α(0)− k2(a2− a1)
]
τV tδ− k2g(t)τV t Dδ.

Hence, for all t ∈ R we have

0=−V (a2− a1)+ g′(t)+ 1
2(a

2
2 − a2

1)− (b2− b1),(43)

0= g(t)
[
−V + 1

2(a1+ a2)+
1
2(α(0))g(t)

]
,(44)

0=−V (b2− b1)+ a1(b2− b1)+ (a2− a1)(b2− b1)
∫ 0
−∞

α(45)

+ (b2− b1)g(t)α(0)− k2(a2− a1),

0= k2g(t).(46)

From (46) we conclude that g = 0, (44) is satisfied, and from (43) and (45) we have

0=−V (a2− a1)+
1
2(a

2
2 − a2

1)− (b2− b1),(47)

0=−V (b2− b1)+ a1(b2− b1)+ (a2− a1)(b2− b1)
∫ 0
−∞

α− k2(a2− a1).(48)

Now, if b1 = b2, by (48) we have a1 = a2, (47) is satisfied and (I) follows from
(39) and (40). If b1 6= b2, from (48) we have

(49) V = a1+ (a2− a1)

∫ 0

−∞

α− k2 a2− a1

b2− b1
,
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and from (47) we can write

(50) −a1(a2−a1)− (a2−a1)
2
∫ 0

−∞

α+k2 (a2− a1)
2

b2− b1
+

a2
2 − a2

1

2
− (b2−b1)= 0.

Then it follows that a1 6= a2, because if a1 = a2 we would have b1 = b2 which is
a contradiction. As a consequence, from (50) we have∫ 0

−∞

α =
1
2
−

b2− b1

(a2− a1)2
+

k2

b2− b1
,

from (49) we have

V =
a1+ a2

2
−

b2− b1

a2− a1
,

and (II) follows from (39) and (40). �

If in (28) we replace ũ(t)α̇D[σ̃ (t)] by D[σ̃ (t)]α̇ũ(t) we obtain for the value
D[σ̃ (t)]α̇ũ(t) the same value as ũ(t)α̇D[σ̃ (t)], with

∫
+∞

0 α instead of
∫ 0
−∞

α (now
we must apply (25) instead of (20)). Hence, for the problem formed by the system
(27) and (29) with initial conditions (30)–(31) we must replace Theorem 5 by
another theorem where the only difference is at (36), where

∫ 0
−∞

α must be replaced
by
∫
+∞

0 α!
As a consequence of Definition 4 these considerations allows us to conclude that

the α-solutions of the problem (1)–(4) with k > 0, which belong to W , can be read
as stated in the introduction (see (7), (8), (9) and (10)).

5. The Riemann problem (1)–(4) with k = 0

In this extreme case we will see, in the same space of solutions W , the possible
emergence of a δ shock wave.

Theorem 6. Let us consider the problem (27)–(28) with initial conditions (30)–(31)
with k = 0.

(I) If b1 = b2 and a1 = a2 there exists an α-solution in W̃ for any α; moreover,
for any α, this α-solution is unique in W and is given by

ũ(t)= a1, σ̃ (t)= b1.

(II) If b1 = b2 and a1 6= a2 there exists an α-solution in W̃ for any α; moreover,
for any α, the α-solution is unique in W̃ and is given by

ũ(t)= a1+ (a2− a1)τV t H,(51)

σ̃ (t)= b1,(52)

with V = 1
2(a1+ a2).
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(III) If b1 6= b2 and a1 = a2 there exists an α-solution in W̃ if and only if we
choose α such that α(0)= 0; moreover, for any α satisfying this condition, the
α-solution is unique in W̃ and is given by

ũ(t)= a1+ (b2− b1)tτa1tδ,(53)

σ̃ (t)= b1+ (b2− b1)τa1t H.(54)

(IV) If b1 6= b2 and a1 6= a2 there exists an α-solution in W̃ if and only if we choose
α such that

(55)
∫ 0

−∞

α =
1
2
−

b2− b1

(a2− a1)2
,

or we choose α such that

(56) α(0)= 0;

moreover, for any α satisfying (55), the α-solution is unique in W̃ and is
given by

ũ(t)= a1+ (a2− a1)τV t H,(57)

σ̃ (t)= b1+ (b2− b1)τV t H,(58)

with V = (a1+a2)/2− (b2−b1)/(a2−a1); also for any α satisfying (56), the
α-solution is unique in W̃ and is given by

ũ(t)= a1+ (a2− a1)τV t H + (b2− b1)tτV tδ,(59)

σ̃ (t)= b1+ (b2− b1)τV t H,(60)

with V = 1
2(a1+ a2). As we can see, all of these α-solutions, when they exist,

are independent of α.

Proof. Let us suppose (ũ, σ̃ ) ∈ W̃ . Then, we have (32), (33) and as we have seen
in the proof of Theorem 5 we have g(0) = 0, u1 = a1, u2 = a2, σ1 = b1, σ2 = b2

and also (39) and (40). From (27) and (28) we have (43)–(46) with k = 0, which
means that for all t ∈ R we can write

0= V (a2−a1)+g′(t)+ 1
2(a

2
2−a2

1)−(b2−b1),(61)

0= g(t)
[
−V+ 1

2(a1+a2)+
1
2α(0)g(t)

]
,(62)

0=−V (b2−b1)+a1(b2−b1)+(a2−a1)(b2−b1)
∫ 0
−∞

α+(b2−b1)g(t)α(0).(63)

(I) Suppose b1 = b2 and a1 = a2. Then (63) is satisfied and from (61) we have
g′(t)= 0, which means that g(t)= 0 and (62) is also satisfied. Then from (39) and
(40) we have ũ(t)= a1 and σ̃ (t)= b1 and (I) follows.
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(II) Suppose b1 = b2 and a1 6= a2. Then (63) is satisfied and from (61) we have

g′(t)= V (a2− a1)−
1
2(a

2
2 − a2

1),

which means that

(64) g(t)=
[
V (a2− a1)−

1
2(a

2
2 − a2

1)
]
t.

Then, from (62) we conclude that V = 1
2(a1+ a2) and by (64) g(t)= 0 follows for

all t . Then, from (39) and (40), we conclude that ũ(t)= a1+ (a2− a1)τV t H and
σ̃ (t)= b1 and (II) follows.

(III) Suppose b1 6= b2 and a1 = a2. Then by (61) we have g′(t)= b2− b1 which
means that g(t)= (b2− b1)t , and (62) turns out to be

t
[
−V + a1+

1
2α(0)(b2− b1)t

]
= 0,

which implies, for any t 6= 0,

V = a1+
1
2α(0)(b2− b1)t.

Thus, once V is constant, we have α(0)= 0, V = a1 and (63) is satisfied and (III)
follows.

(IV) Suppose b1 6= b2 and a1 6= a2. Then by (61) we have

V =
g′(t)

a2− a1
+

a1+ a2

2
−

b2− b1

a2−a1
,

and once V is constant we conclude that g′(t)= c (constant), g(t)= ct , and

(65) V =
c

a2− a1
+

a1+ a2

2
−

b2− b1

a2−a1
.

If c = 0 we have g(t)= 0 and

V =
a1+ a2

2
−

b2− b1

a2−a1
.

As a consequence, (62) is satisfied and (63) turns out to be

−(b2− b1)
a2+ a1

2
+
(b2− b1)

2

a2− a1
+ a1(b2− b1)+ (a2− a1)(b2− b1)

∫ 0
−∞

α = 0,

which is possible if and only if∫ 0

−∞

α =
1
2
−

b2− b1

(a2− a1)2
.
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If c 6= 0 we have from (65) and (62),

ct
[
−

c
a2− a1

−
a1+ a2

2
+

b2− b1

a2− a1
+

a1+ a2

2
+
α(0)

2
ct
]
= 0,

and for all t 6= 0 we will have

α(0)
2

ct −
c

a2− a1
+

b2− b1

a2− a1
= 0,

which is possible if and only if α(0)= 0 and c = b2− b1 which, by (65), implies
V = 1

2(a1+ a2) and g(t)= (b2− b1)t . Hence, (IV) follows. �

Thus, concerning the problem formed by the system (27) and (29) with initial
conditions (30)–(31), Theorem 6 must be substituted with another theorem where
the only difference is at (55), where

∫ 0
−∞

α must change to
∫
+∞

0 α!
As a consequence of Definition 4 we can conclude that the α-solutions of the

problem (1)–(4) with k = 0, can be described as in the introduction.

6. The arising of a δ′ shock wave

For the system (1)–(2) with k = 0 let us consider the initial conditions (11) and (12).
Let us define the space Z̃ by the condition (ũ, σ̃ ) ∈ Z̃ if and only if ũ, σ̃ ∈ F(R)
and there exist real numbers u1, σ1, p and C1-functions f, γ : R→ R such that

ũ(t)= u1+ f (t)τγ (t)Dδ,(66)

σ̃ (t)= σ1+ pτγ (t)δ.(67)

Now, the initial conditions (11) and (12) correspond in F(R) to the conditions

ũ(0)= a,(68)

σ̃ (0)= b+mδ,(69)

with m 6= 0. We will see the possible emergence of a δ′ shock wave for problem
(1)–(2) with initial conditions (11) and (12).

Theorem 7. The problem (27)–(28) with k = 0 and initial conditions (68) and
(69) has α-solutions in Z̃ if and only if we choose α such that α′(0)= α′′(0)= 0;
moreover, for all α satisfying this condition, the α-solution is unique in Z̃ and is
given by

ũ(t)= a+mtτat Dδ,(70)

σ̃ (t)= b+mτatδ.(71)

As we can see, when it exists, this α-solution is also independent of α.
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Proof. Let us suppose (ũ, σ̃ ) ∈ Z̃ . Then we have (66) and (67) and by (68) and (69)
we have

u1+ f (0)τγ (0)Dδ = a,(72)

σ1+ pτγ (0)δ = b+mδ.(73)

From (72) we conclude that f (0) = 0 and u1 = a. From (73) we conclude that
σ1 = b and so, since m 6= 0, we have γ (0)= 0 and p =m. Thus, we can write (66)
and (67) in the form

ũ(t)= a+ f (t)τγ (t)Dδ,(74)

σ̃ (t)= b+mτγ (t)δ.(75)

As a consequence, we have

dũ
dt
(t)= f ′(t)τγ (t)Dδ− γ ′(t) f (t)τγ (t)D2δ,

and using (21), we also have

ũ(t)α̇ũ(t)= a2
+ 2a f (t)τγ (t)Dδ+ f 2(t)τγ (t)[α′(0)Dδ−α′′(0)δ],

1
2 D[ũ(t)α̇ũ(t)] = − 1

2α
′′(0) f 2(t)τγ (t)Dδ+

[
a f (t)+ 1

2α
′(0) f 2(t)

]
τγ (t)D2δ,

Dσ̃ (t)= mτγ (t)Dδ,

dσ̃
dt
(t)=−mγ ′(t)τγ (t)Dδ,

ũ(t)α̇Dσ̃ (t)=−mα′′(0) f (t)τγ (t)δ+ [ma+m f (t)α′(0)]τγ (t)Dδ.

Then, (27)–(28) with k = 0 turns out to be

0=
[

f ′(t)− 1
2α
′′(0) f 2(t)−m

]
τγ (t)Dδ

+
[
−γ ′(t) f (t)+ a f (t)+ 1

2α
′(0) f 2(t)

]
τγ (t)D2δ,

0=−mα′′(0) f (t)τγ (t)δ+ [−mγ ′(t)+ma+m f (t)α′(0)]τγ (t)Dδ.

Hence, for all t ∈ R, we have

0= f ′(t)− 1
2α
′′(0) f 2(t)−m,(76)

0= f (t)
[
−γ ′(t)+ a+ 1

2α
′(0) f (t)

]
,(77)

0= α′′(0) f (t),(78)

0=−γ ′(t)+ a+ f (t)α′(0).(79)

Now, we must note that α′′(0)= 0 follows immediately because by (78) if α′′(0) 6= 0,
we will have f = 0 and by (76) we will also have m = 0, which is impossible. Thus,
by (76) we have f (t)=mt and from (79) it follows that γ ′(t)= a+α′(0)mt . Then
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by (77) we conclude that t2α′(0) = 0 for all t ∈ R, and α′(0) = 0 follows which
means that γ ′(t) = a and so, γ (t) = at . Finally (70) and (71) follow from (74)
and (75). The theorem is proved. �

If in (28) we replace ũ(t)α̇Dσ̃ (t) by Dσ̃ (t)α̇ũ(t) we arrive exactly at the same
theorem because in this case we simply have ũ(t)α̇Dσ̃ (t) = Dσ̃ (t)α̇ũ(t). Hence,
by Definition 4 we conclude that the α-solutions of the problem (1)–(2) with k = 0,
when subjected to the initial conditions (11) and (12) can be read as we said in the
introduction (see (13) and (14)).
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SOME AMBROSE- AND GALLOWAY-TYPE THEOREMS
VIA BAKRY–ÉMERY AND MODIFIED RICCI CURVATURES

HOMARE TADANO

We establish some compactness theorems of Ambrose- and Galloway-type
for complete Riemannian manifolds in the context of the Bakry–Émery and
modified Ricci curvatures. Our compactness theorems generalize previous
ones obtained by Fernández-López and García-Río, Wei and Wylie, and
Limoncu, Rimoldi, and Zhang.

1. Introduction

One of the most fundamental topics in Riemannian geometry is to investigate the
relation between topology and geometric structure on Riemannian manifolds. To
give nice compactness criteria for complete Riemannian manifolds is one of the
most natural and interesting problems in Riemannian geometry. The celebrated
theorem of Myers [1941] guarantees the compactness of complete Riemannian
manifolds under some positive lower bounds on the Ricci curvature.

Theorem 1 [Myers 1941]. Let (M, g) be an n-dimensional complete Riemannian
manifold. Suppose that there exists some positive constant λ > 0 such that the Ricci
curvature satisfies Ricg > λg. Then (M, g) must be compact with finite fundamental
group. Moreover, the diameter of (M, g) has the upper bound

diam(M, g)6 π

√
n− 1
λ

.

The Myers theorem above has been widely generalized in various directions
by many authors [Ambrose 1957; Calabi 1967; Fernández-López and García-Río
2008; Galloway 1979; 1982; Limoncu 2010; 2012; Lott 2003; Mastrolia et al. 2012;
Morgan 2006; Qian 1997; Rimoldi 2011; Tadano 2016; 2017; Wei and Wylie 2009;
Wraith 2006; Zhang 2014]. The first generalization was given by Ambrose [1957],
where the positive lower bound on the Ricci curvature was replaced with an integral
condition on the Ricci curvature along some geodesics.

MSC2010: primary 53C21; secondary 53C20.
Keywords: Myers-type theorem, Ambrose-type theorem, Galloway-type theorem, smooth metric

measure space, Bakry–Émery Ricci curvature, modified Ricci curvature.

213

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2018.294-1
http://dx.doi.org/10.2140/pjm.2018.294.213


214 HOMARE TADANO

Theorem 2 [Ambrose 1957]. Let (M, g) be an n-dimensional complete Riemannian
manifold. Suppose that there exists some point p ∈ M for which every geodesic
γ : [0,+∞)→ M emanating from p satisfies∫

+∞

0
Ricg(γ̇ (s), γ̇ (s)) ds =+∞.

Then (M, g) must be compact.

On the other hand, motivated by relativistic cosmology, Galloway [1979] proved
the following compactness theorem by perturbing the positive lower bound on the
Ricci curvature by the derivative in the radial direction of some bounded function:

Theorem 3 [Galloway 1979]. Let (M, g) be an n-dimensional complete Riemann-
ian manifold. Suppose that there exist some constants λ > 0 and L > 0 such that
for every pair of points in M and minimal geodesic γ joining those points, the Ricci
curvature satisfies

Ricg(γ̇ , γ̇ )|γ (s) > λ+
dφ
ds
(s),

where φ is some smooth function of the arc length satisfying |φ|6 L along γ . Then
(M, g) must be compact. Moreover, the diameter of (M, g) has the upper bound

diam(M, g)6 π
λ

(
L +
√

L2+ (n− 1)λ
)
.

One of the most important features of the two generalizations above is that the
Ricci curvature is not required to be everywhere nonnegative.

In this paper, we shall establish some compactness theorems of Ambrose- and
Galloway-type for complete Riemannian manifolds in the context of the Bakry–
Émery and modified Ricci curvatures. To define the Bakry–Émery and modified
Ricci curvatures, we first recall the definition of a smooth metric measure space.

Definition. A smooth metric measure space is a complete Riemannian manifold
(M, g) with the weighted volume form dµ := e− f d volg, where f : M→ R is a
smooth function on M and volg denotes the Riemannian density with respect to
the metric g. For a smooth metric measure space (M, g) and a positive constant
k ∈ (0,+∞), we put

(1-1) Ric f := Ricg +Hess f and Rick
f := Ricg +Hess f − 1

k
d f ⊗ d f

and call them a Bakry–Émery Ricci curvature and a k-Bakry–Émery Ricci curvature,
respectively. We refer to f as a potential function. More generally, for a smooth
vector field V ∈ X(M) and a positive constant k ∈ (0,+∞), we define

RicV := Ricg +
1
2
LV g and Rick

V := Ricg +
1
2
LV g− 1

k
V ∗⊗ V ∗,
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where V ∗ is the metric dual of V with respect to g. We call them a modified Ricci
curvature and a k-modified Ricci curvature, respectively. We also put

(1-2) 1 f :=1g −∇ f · ∇ and 1V :=1g − V · ∇

and call them a Witten–Laplacian and a V -Laplacian, respectively. Here, 1g

denotes the Laplacian with respect to g.

Note that if f : M → R is constant in (1-1) and (1-2), then the Bakry–Émery
Ricci curvature and the Witten–Laplacian are reduced to the Ricci curvature and
the Laplacian, respectively. As in the classical case, for any smooth functions u, v
on M with compact support, we have∫

M
g(∇u,∇v) dµ=−

∫
M
(1 f u)v dµ=−

∫
M

u(1 f v) dµ.

Moreover, Bakry and Émery [1985] proved that for any smooth function u on M,

(1-3) 1
21 f |∇u|2 = |Hess u|2+Ric f (∇u,∇u)+ g(∇1 f u,∇u),

which may be regarded as a natural extension of the Bochner–Weitzenböck formula

(1-4) 1
21g|∇u|2 = |Hess u|2+Ricg(∇u,∇u)+ g(∇1gu,∇u).

Recently, the Bakry–Émery Ricci curvature and the Witten–Laplacian have
received much attention in various areas of mathematics, since they are good
substitutes for the Ricci curvature and the Laplacian respectively, allowing us
to establish many interesting results in smooth metric measure spaces, such as
eigenvalue estimates [Futaki et al. 2013], Li–Yau Harnack inequalities [Li 2005],
and comparison theorems [Wei and Wylie 2009]. In particular, Wei and Wylie
[2009] proved the following Myers-type theorem via Bakry–Émery Ricci curvature
which extends Theorem 1 to the case of smooth metric measure spaces:

Theorem 4 [Wei and Wylie 2009]. Let (M, g) be an n-dimensional complete
Riemannian manifold. Suppose that there exists some positive constant λ > 0
such that the Bakry–Émery Ricci curvature satisfies Ric f > λg. If the potential
function satisfies | f |6 H for some nonnegative constant H > 0, then (M, g) must
be compact. Moreover, the diameter of (M, g) has the upper bound

(1-5) diam(M, g)6 π

√
n− 1
λ
+

4H
√
(n− 1)λ

.

On the other hand, Fernández-López and García-Río [2008] proved that the
compactness of a complete Riemannian manifold with a positive lower bound on
the modified Ricci curvature may be characterized by an upper bound on the norm
of the vector field appearing in the modified Ricci curvature.
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Theorem 5 [Fernández-López and García-Río 2008]. Let (M, g) be an n-dimen-
sional complete Riemannian manifold. Suppose that there exists some positive
constant λ > 0 such that the modified Ricci curvature satisfies RicV > λg. Then
(M, g) is compact if and only if |V | is bounded on M.

In Theorem 5 above, no upper diameter estimate was given. By extending the
proof of Theorem 1, Limoncu [2010] gave the following Myers-type theorem with
an upper diameter estimate via modified Ricci curvature:

Theorem 6 [Limoncu 2010]. Let (M, g) be an n-dimensional complete Riemannian
manifold. Suppose that there exists some positive constant λ > 0 such that the
modified Ricci curvature satisfies RicV > λg. If the vector field satisfies |V |6 K
for some nonnegative constant K > 0, then (M, g) must be compact. Moreover, the
diameter of (M, g) has the upper bound

(1-6) diam(M, g)6 π
λ

(
K
√

2
+

√
K 2

2
+ (n− 1)λ

)
.

An interesting problem in smooth metric measure spaces is to establish Ambrose-
and Galloway-type theorems via Bakry–Émery Ricci curvature. An Ambrose-type
theorem via Bakry–Émery Ricci curvature was first established by Zhang [2014]
under the assumption that the potential function appearing in the Bakry–Émery
Ricci curvature has at most linear growth in the distance function.

Theorem 7 [Zhang 2014]. Let (M, g) be an n-dimensional complete Riemannian
manifold. Suppose that there exists some point p ∈ M for which every geodesic
γ : [0,+∞)→ M emanating from p satisfies∫

+∞

0
Ric f (γ̇ (s), γ̇ (s)) ds =+∞,

and the potential function satisfies f (x)6 δd(x, p)+α for some constants δ and α,
where d(x, p) is the distance between x and p. Then (M, g) must be compact.

More generally, we shall prove the following Ambrose-type theorem via modified
Ricci curvature which generalizes Theorem 5 above:

Theorem 8. Let (M, g) be an n-dimensional complete Riemannian manifold. Sup-
pose that there exists some point p ∈M for which every geodesic γ : [0,+∞)→M
emanating from p satisfies∫

+∞

0
RicV (γ̇ (s), γ̇ (s)) ds =+∞,

and the vector field satisfies |V |6 K for some nonnegative constant K > 0. Then
(M, g) must be compact.
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As to a Galloway-type theorem via Bakry–Émery Ricci curvature, we shall prove
the following compactness theorem by modifying the alternative proof of Theorem 4
by Limoncu [2012] and its improvement by the author [Tadano 2016]:

Theorem 9. Let (M, g) be an n-dimensional complete Riemannian manifold. Sup-
pose that there exist some constants λ > 0 and L > 0 such that for every pair of
points in M and minimal geodesic γ joining those points, the Bakry–Émery Ricci
curvature satisfies

(1-7) Ric f (γ̇ , γ̇ )|γ (s) > λ+
dφ
ds
(s),

where φ is some smooth function of the arc length satisfying |φ| 6 L along γ . If
the potential function satisfies | f |6 H for some nonnegative constant H > 0, then
(M, g) must be compact. Moreover, the diameter of (M, g) has the upper bound

diam(M, g)6 1
λ

(
2L +

√
4L2+{(n− 1)π + 8H}λπ

)
.

Remark. By taking L = 0, Theorem 9 above is reduced to the Myers-type theorem
via Bakry–Émery Ricci curvature [Tadano 2016] with the diameter estimate

(1-8) diam(M, g)6
π
√
λ

√
n− 1+

8H
π
.

Note that the estimate (1-8) above is sharper than (1-5) by Wei and Wylie [2009].

On the other hand, by modifying the proof of Theorem 6 above, we shall prove
the following Galloway-type theorem via modified Ricci curvature:

Theorem 10. Let (M, g) be an n-dimensional complete Riemannian manifold.
Suppose that there exist some constants λ > 0 and L > 0 such that for every pair
of points in M and minimal geodesic γ joining those points, the modified Ricci
curvature satisfies

(1-9) RicV (γ̇ , γ̇ )|γ (s) > λ+
dφ
ds
(s),

where φ is some smooth function of the arc length satisfying |φ|6 L along γ . If the
vector field satisfies |V | 6 K for some nonnegative constant K > 0, then (M, g)
must be compact. Moreover, the diameter of (M, g) has the upper bound

diam(M, g)6 1
λ

(
2(L + K )+

√
4(L + K )2+ (n− 1)λπ 2

)
.

Remark. By taking L=0, Theorem 10 above is reduced to the Myers-type theorem
via modified Ricci curvature [Tadano 2017] with the diameter estimate

(1-10) diam(M, g)6 1
λ

(
2K +

√
4K 2+ (n− 1)λπ 2

)
.
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Note that the estimate (1-10) above is sharper than (1-6) by Limoncu [2010].

Moreover, we shall prove the compactness of a complete Riemannian manifold
with a lower bound on the modified Ricci curvature under the condition that the
norm of the vector field appearing in the modified Ricci curvature has at most linear
growth in the distance function.

Theorem 11. Let (M, g) be an n-dimensional complete Riemannian manifold.
Suppose that there exist some constants λ > 0 and L > 0 such that for every pair
of points in M and minimal geodesic γ joining those points, the modified Ricci
curvature satisfies

(1-11) RicV (γ̇ , γ̇ )|γ (s) > λ+
dφ
ds
(s),

where φ is some smooth function of the arc length satisfying φ >−L along γ . If the
vector field satisfies |V |(x)6 δd(x, p)+α for some constants δ < λ and α, where
d(x, p) is the distance between x and p, then (M, g) must be compact.

By taking L = 0 and V = ∇ f for a smooth function f : M→ R in Theorem 11
above, we may recover the following compactness theorem due to Zhang [2014]:

Theorem 12 [Zhang 2014]. Let (M, g) be an n-dimensional complete Riemannian
manifold. Suppose that there exists some positive constant λ > 0 such that the
Bakry–Émery Ricci curvature satisfies Ric f > λg. If the potential function satisfies
f (x) 6 δ(d(x, p)+ α)2 for some constants δ < 1

2λ and α, where d(x, p) is the
distance between x and p, then (M, g) must be compact.

Remark. A typical example of smooth metric measure spaces is a Gaussian soliton
(Rn, g0), where g0 is the canonical flat metric on Rn and its potential function is
given by the function f (x) = 1

2λr2(x). Here, r = r(x) is the distance from the
origin. The Gaussian soliton satisfies

Ricg0 +Hess f = λg0.

The Gaussian soliton is an example to show that Theorem 11 is not true if δ = λ,
since the soliton is noncompact and satisfies |∇ f |(x)= λr(x).

As in the case of the Bakry–Émery and modified Ricci curvatures, we may
give some compactness theorems for complete Riemannian manifolds via k-Bakry–
Émery and k-modified Ricci curvatures. Limoncu [2010] established the following
Myers-type theorem via k-modified Ricci curvature without making any assumption
on the vector field appearing in the k-modified Ricci curvature:

Theorem 13 [Limoncu 2010]. Let (M, g) be an n-dimensional complete Riemann-
ian manifold. Suppose that there exists some positive constant λ > 0 such that the
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k-modified Ricci curvature satisfies Rick
V > λg, where k ∈ (0,+∞). Then (M, g)

must be compact. Moreover, the diameter of (M, g) has the upper bound

diam(M, g)6
π
√
λ

√
n+ k− 1.

Remark. In the case where the vector field V is replaced with the gradient of some
smooth function f :M→R, Theorem 13 above was already proved by Qian [1997].

As demonstrated by Wraith [2006], the key ingredient in proving Theorem 2 is
the Riccati inequality for the Ricci curvature

Ricg(∂r , ∂r )6−ṁ− 1
n−1

m2,

which may be derived by applying the classical Bochner–Weitzenböck formula (1-4)
to the distance function r(x)= d(x, p). Here m :=1gr . Recently, Li [2015] estab-
lished the following Bochner–Weitzenböck formula via modified Ricci curvature:

(1-12) 1
21V |∇u|2 = |Hess u|2+RicV (∇u,∇u)+ g(∇1V u,∇u).

By applying the Bochner–Weitzenböck formula (1-12) to the distance function
r(x) = d(x, p), we may derive the Riccati inequality for the k-modified Ricci
curvature

Rick
V (∂r , ∂r )6−ṁV −

(mV )
2

n+ k− 1
,

where mV :=1V r . By using this Riccati inequality, we shall prove the following
Ambrose-type theorem via k-modified Ricci curvature:

Theorem 14. Let (M, g) be an n-dimensional complete Riemannian manifold. Sup-
pose that there exists some point p ∈M for which every geodesic γ : [0,+∞)→M
emanating from p satisfies∫

+∞

0
Rick

V (γ̇ (s), γ̇ (s)) ds =+∞,

where k ∈ (0,+∞). Then (M, g) must be compact.

As to a Galloway-type theorem via k-modified Ricci curvature, we shall prove
the following compactness theorem by modifying the proof of Theorem 13 by
Limoncu [2010].

Theorem 15. Let (M, g) be an n-dimensional complete Riemannian manifold.
Suppose that there exist some constants λ > 0 and L > 0 such that for every pair
of points in M and minimal geodesic γ joining those points, the k-modified Ricci
curvature satisfies

(1-13) Rick
V (γ̇ , γ̇ )|γ (s) > λ+

dφ
ds
(s),
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where φ is some smooth function of the arc length satisfying |φ|6 L along γ and
k ∈ (0,+∞). Then (M, g) must be compact. Moreover, the diameter of (M, g) has
the upper bound

diam(M, g)6 1
λ

(
2L +

√
4L2+ (n+ k− 1)λπ 2

)
.

Remark. In the case where the vector field V is replaced with the gradient of some
smooth function f : M→ R, Theorem 15 above was already proved by Rimoldi
[2011].

This paper is organized as follows: In Section 2, after introducing our notation,
we shall prove Theorems 8, 11, and 14. Ending with Section 3, we shall prove
Theorems 9, 10, and 15.

2. Ambrose-type theorems

In this section, we shall prove Theorem 8, 11, and 14. Our proofs of these theorems
are modifications of the alternative proof of Theorem 2 by Wraith [2006] and the
proof of Theorem 7 by Zhang [2014]. Throughout this paper, we assume that (M, g)
is an n-dimensional smooth connected oriented complete Riemannian manifold
without boundary. Let X, Y, Z ∈ X(M) be three smooth vector fields on M. For
any smooth function f ∈ C∞(M), a gradient vector field and a Hessian of f are
defined by

g(∇ f, X)= d f (X) and Hess f (X, Y )= g(∇X∇ f, Y ),

respectively. A curvature and a Ricci curvature are defined by

R(X,Y )Z=∇X∇Y Z−∇Y∇X Z−∇[X,Y ]Z and Ricg(X,Y )=
n∑

i=1

g(R(ei ,X)Y,ei ),

respectively. Here, {ei }
n
i=1 is an orthonormal frame of (M, g).

2.1. Proof of Theorem 8. We shall first prove Theorem 8. In order to prove
Theorem 8, it is sufficient to show the following theorem:

Theorem 16. Let (M, g) be an n-dimensional complete noncompact Riemannian
manifold and V ∈X(M) be a smooth vector field on M satisfying |V |6 K for some
nonnegative constant K > 0. Let γ = γ (s), s > 0, be a geodesic in (M, g). If the
limit

lim
t→+∞

∫ t

0
RicV (γ̇ (s), γ̇ (s)) ds

exists, then it must take a value less than infinity.
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Proof. We shall prove this theorem by contradiction. Fix a point p ∈ M and take
a unit speed ray γ = γ (s) emanating from p satisfying γ (0)= p. For any s > 0,
let m(s) be the mean curvature of the distance sphere of radius s about p at the
point γ (s). Note that m(s) is smooth for s > 0. It is well-known that m(s) satisfies
the Riccati inequality

Ricg(γ̇ (s), γ̇ (s))6−ṁ(s)− 1
n−1

m2(s),

see [Cheeger 1991] for details. Hence, we have

RicV (γ̇ (s), γ̇ (s))6−ṁ(s)− 1
n−1

m2(s)+ 1
2
LV g(γ̇ (s), γ̇ (s)).

Since LV g(γ̇ (s), γ̇ (s))= 2γ̇ (s)g(V (γ (s)), γ̇ (s))= 2(∂/∂s)g(V (γ (s)), γ̇ (s)), by
integrating both sides of the inequality just above, for all t > 1, we obtain

(2-1)
∫ t

1
RicV (γ̇ (s), γ̇ (s)) ds 6−m(t)+m(1)−

1
n− 1

∫ t

1
m2(s) ds

+ g(V (γ (t)), γ̇ (t))− g(V (γ (1)), γ̇ (1)).

Since γ = γ (s) is a unit speed ray, the Cauchy–Schwarz inequality implies
|g(V, γ̇ )| 6 |V |. By combining this inequality and the assumption |V | 6 K in
Theorem 16, we have |g(V, γ̇ )|6 K. Hence, from (2-1) we obtain∫ t

1
RicV (γ̇ (s), γ̇ (s)) ds 6−m(t)+m(1)−

1
n− 1

∫ t

1
m2(s) ds+ 2K .

Suppose, to derive a contradiction, that

lim
t→+∞

∫ t

0
RicV (γ̇ (s), γ̇ (s)) ds =+∞.

Then we have

(2-2) lim
t→+∞

(
−m(t)−

1
n− 1

∫ t

1
m2(s) ds

)
=+∞.

In particular, we obtain
lim

t→+∞
−m(t)=+∞.

Next, we shall show that there exists a finite number T > 0 such that

(2-3) lim
t→T−0

−m(t)=+∞,

which contradicts the smoothness of m(t). First, it follows from (2-2) that there
exists t1 > 1 such that for all t > t1, we have

(2-4) −m(t)−
1

n− 1

∫ t

1
m2(s) ds > 2.
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Define a sequence {ti }+∞i=1 inductively by

ti+1 = ti + (n− 1)
( 1

2

)i−1

for all i > 1. Note that {ti }+∞i=1 is an increasing sequence converging to

T := t1+ 2(n− 1).

Lemma 17. For all t > ti , i > 1, we have

(2-5) −m(t) > 2i .

Proof of Lemma 17. By (2-4), the conclusion (2-5) is true for i = 1. Suppose that
(2-5) holds for all t > ti . Then, it follows from (2-4) and (2-5) that for all t > ti+1,

−m(t) > 2+ 1
n−1

∫ ti

1
m2(t) dt + 1

n−1

∫ ti+1

ti
m2(t) dt

>
1

n−1

∫ ti+1

ti
m2(t) dt

>
1

n−1
· (2i )2 · (n− 1) ·

(1
2

)i−1
= 2i+1.

Hence, (2-5) is true for all t > ti+1. This proves Lemma 17. �

Thanks to Lemma 17, we have (2-3) which is the desired contradiction. The
proof of Theorem 16 is completed. �

2.2. Proof of Theorem 11. Next, we shall prove Theorem 11.

Proof of Theorem 11. We shall prove this theorem by contradiction. Assume that
(M, g) is noncompact. Fix a point p ∈ M and take a unit speed ray γ = γ (s)
emanating from p satisfying γ (0) = p. For any s > 0, let m(s) be the mean
curvature of the distance sphere of radius s about p at the point γ (s). Note that
m(s) is smooth for s > 0. It follows from (2-1) and (1-11) that for all t > 1,

(2-6) −m(t)−
1

n− 1

∫ t

1
m2(s) ds+ g(V (γ (t)), γ̇ (t))> λt +φ(t)+C0

> λt − L +C0,

where C0 := −m(1)+ g(V (γ (1)), γ̇ (1))−φ(1)− λ. It follows from the Cauchy–
Schwarz inequality and the assumption |V |(x)6 δd(x, p)+α in Theorem 11 that

(2-7) g(V (γ (t)), γ̇ (t))6 |V (γ (t))|6 δt +α.

Hence, it follows from (2-6) and (2-7) that

(2-8) −m(t)−
1

n− 1

∫ t

1
m2(s) ds > (λ− δ)t − L +C0−α.
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Since λ > δ, (2-8) implies that there exists t1 > 1 such that for all t > t1, we have

−m(t)−
1

n− 1

∫ t

1
m2(s)ds > 2.

Then, by using the same argument as in the proof of Theorem 16, we may derive
the desired contradiction. The proof of Theorem 11 is completed. �

2.3. Proof of Theorem 14. Finally, we shall prove Theorem 14. In order to prove
Theorem 14, it is sufficient to show the following theorem:

Theorem 18. Let (M, g) be an n-dimensional complete noncompact Riemannian
manifold, V ∈ X(M) be a smooth vector field on M and k ∈ (0,+∞) be a positive
constant. Let γ = γ (s), s > 0, be a geodesic in (M, g). If the limit

lim
t→+∞

∫ t

0
Rick

V (γ̇ (s), γ̇ (s))ds

exists, then it must take a value less than infinity.

We shall prove Theorem 18 by using the following lemma which may be con-
sidered as an extension of the Bochner–Weitzenböck formula via modified Ricci
curvature:

Lemma 19 [Li 2015]. Let (M, g) be an n-dimensional Riemannian manifold. For
any smooth vector field V ∈ X(M) and smooth function u : M→ R, we have

(2-9) 1
21V |∇u|2 = |Hess u|2+RicV (∇u,∇u)+ g(∇1V u,∇u).

In particular, for any positive constant k ∈ (0,+∞), we obtain

(2-10) 1
2
1V |∇u|2 > 1

n+k
(1V u)2+Rick

V (∇u,∇u)+ g(∇1V u,∇u).

Remark. If the vector field V is replaced with the gradient of some function
f : M→ R, then (2-9) is reduced to the Bochner–Weitzenböck formula (1-3) via
Bakry–Émery Ricci curvature.

Proof of Lemma 19. For the reader’s convenience, we recall the proof. This proof
is based on the classical Bochner–Weitzenböck formula which asserts that for any
smooth function u : M→ R,

1
21g|∇u|2 = |Hess u|2+Ricg(∇u,∇u)+ g(∇1gu,∇u).

First, we shall prove (2-9). By definition of the V -Laplacian, we have

(2-11) 1
21V |∇u|2 = 1

21g|∇u|2− 1
2 g(V,∇|∇u|2)

= |Hessu|2+Ricg(∇u,∇u)+g(∇1gu,∇u)− 1
2 g(V,∇|∇u|2).
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The last two terms of the right-hand side become

(2-12) g(∇1gu,∇u)− 1
2 g(V,∇|∇u|2)

= g(∇(1V u+ g(V,∇u)),∇u)− V i
∇

j u∇i∇j u

= g(∇1V u,∇u)+∇ i (V j
∇j u)∇i u− V i

∇
j u∇i∇j u

= g(∇1V u,∇u)+∇ i V j
∇i u∇j u

= g(∇1V u,∇u)+∇i u∇j u
( 1

2(∇
i V j
+∇

j V i )
)

= g(∇1V u,∇u)+ 1
2LV g(∇u,∇u).

By combining (2-11) and (2-12), we obtain (2-9). Next, we shall prove (2-10). By
the Cauchy–Schwarz inequality, we have

(2-13) |Hess u|2 > 1
n
(1gu)2.

Hence, it follows from (2-9) and (2-13) that

(2-14) 1
2
1V |∇u|2 > 1

n
(1gu)2+Rick

V (∇u,∇u)+ g(∇1V u,∇u)+ 1
k

g(V,∇u)2.

Recall the elementary inequality

(a+ b)2 > 1
t

a2
−

1
t−1

b2, t > 1.

By choosing t = (n+ k)/n in the inequality just above, we obtain

(2-15) 1
n
(1gu)2 = 1

n
(1V u+ g(V,∇u))2

> 1
n

( 1
n+k

n

(1V u)2− 1
n+k

n −1
g(V,∇u)2

)
=

1
n+k

(1V u)2− 1
k

g(V,∇u)2.

By combining (2-14) and (2-15), we have (2-10). �

Now, we are in a position to prove Theorem 18.

Proof of Theorem 18. We shall prove this theorem by contradiction. Fix a point
p ∈ M and take a unit speed ray γ = γ (s) emanating from p satisfying γ (0)= p.
Let r(x) = d(x, p) be the distance between x and p. By applying the inequality
(2-10) to the distance function, we have

Rick
V (γ̇ (s), γ̇ (s))6−ṁV (s)−

1
n+k−1

m2
V (s),
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where mV (s) := (1V r)(γ (s)). Note that mV (s) is smooth for s > 0. Suppose, to
derive a contradiction, that

lim
t→+∞

∫ t

0
Rick

V (γ̇ (s), γ̇ (s))ds =+∞.

Then we have

(2-16) lim
t→+∞

(
−mV (t)−

1
n+ k− 1

∫ t

1
m2

V (s) ds
)
=+∞.

In particular, we obtain
lim

t→+∞
−mV (t)=+∞.

Next, we shall show that there exists a finite number T > 0 such that

(2-17) lim
t→T−0

−mV (t)=+∞,

which contradicts the smoothness of mV (t). First, it follows from (2-16) that there
exists t1 > 1 such that for all t > t1, we have

−mV (t)−
1

n+ k− 1

∫ t

1
m2

V (s) ds > 2.

Define a sequence {ti }+∞i=1 inductively by

ti+1 = ti + (n+ k− 1)
( 1

2

)i−1

for all i > 1. Note that {ti }+∞i=1 is an increasing sequence converging to

T := t1+ 2(n+ k− 1).

Then, by using the same argument as in the proof of Lemma 17, we may prove the
following lemma:

Lemma 20. For all t > ti , i > 1, we have

−mV (t) > 2i .

Thanks to Lemma 20, we have (2-17) which is the desired contradiction. The
proof of Theorem 18 is completed. �

3. Galloway-type theorems

In this section, we shall prove Theorems 9, 10, and 15. Our proofs of these theorems
are based on modifications of the improvement of Theorem 4 by the author [Tadano
2016] and the proofs of Theorems 6 and 13 by Limoncu [2010; 2012]. In order
to prove these theorems, we shall use the index form of a unit speed-minimizing
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geodesic segment. We refer the reader to the books [Lee 1997; Petersen 1998] for
basic facts about this topic.

3.1. Proof of Theorem 9. We shall first prove Theorem 9.

Proof of Theorem 9. Take two arbitrary points p, q ∈ M. Since M is complete,
there exists a unit speed-minimizing geodesic segment γ from p to q of length `.
Let {e1 = γ̇ , e2, . . . , en} be a parallel orthonormal frame along γ . Recall that for
any smooth function h ∈ C∞([0, `]) satisfying h(0)= h(`)= 0, we have

(3-1)
n∑

i=2

I (hei , hei )=

∫ `

0
((n− 1)ḣ2

− h2 Ricg(γ̇ , γ̇ )) dt,

where I ( · , · ) denotes the index form of γ . By using the assumption (1-7) in the
integral expression (3-1), we obtain

(3-2)
n∑

i=2

I (hei , hei )6
∫ `

0

(
(n− 1)ḣ2

− λh2
+ h2 Hess f (γ̇ , γ̇ )− h2 dφ

dt

)
dt.

On the geodesic segment γ (t), we have

(3-3) h2 Hess f (γ̇ , γ̇ )= h2g(∇γ̇∇ f, γ̇ )= h2γ̇ (g(∇ f, γ̇ ))= h2 d
dt
(g(∇ f, γ̇ ))

=−2hḣg(∇ f, γ̇ )+ d
dt
(h2g(∇ f, γ̇ ))

= 2 f d
dt
(hḣ)− 2 d

dt
( f hḣ)+ d

dt
(h2g(∇ f, γ̇ )),

where in the last equality we have used g(∇ f, γ̇ ) = d f/dt(γ (t)). Hence, by
integrating both sides of (3-3), we obtain

(3-4)
∫ `

0
h2 Hess f (γ̇ , γ̇ ) dt =

∫ `

0
2 f

d
dt
(hḣ) dt − 2

[
f hḣ

]`
0
+

[
h2g(∇ f, γ̇ )

]`
0

= 2
∫ `

0
f

d
dt
(hḣ) dt,

where the last equality follows from h(0)= h(`)= 0. By (3-4) and the assumption
| f |6 H in Theorem 9, we have

(3-5)
∫ `

0
h2 Hess f (γ̇ , γ̇ ) dt 6 2H

∫ `

0

∣∣∣ d
dt
(hḣ)

∣∣∣ dt.

On the other hand, from the assumption |φ|6 L in Theorem 9, we obtain

(3-6)
∫ `

0
h2 dφ

dt
dt = [h2φ]`0−

∫ `

0
2hḣφ dt >−2L

∫ `

0
|hḣ| dt.
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From (3-2), (3-5), and (3-6), we have

(3-7)
n∑

i=2

I (hei , hei )6
∫ `

0

(
(n− 1)ḣ2

− λh2
+ 2H

∣∣∣ d
dt
(hḣ)

∣∣∣+ 2L|hḣ|
)

dt.

If the function h is taken to be h(t)= sin(π t/`), then we obtain

hḣ = π
`

sin
(
π t
`

)
cos
(
π t
`

)
=
π

2`
sin
(2π t
`

)
.

Then (3-7) becomes

(3-8)
n∑

i=2

I (hei , hei )6
∫ `

0
(n− 1)

(
π2

`2 cos2
(
π t
`

)
− λ sin2

(
π t
`

))
dt

+ 2H
(
π

`

)2
∫ `

0

∣∣∣cos
(2π t
`

)∣∣∣ dt + Lπ
`

∫ `

0

∣∣∣sin
(2π t
`

)∣∣∣ dt.

Since

(3-9)

∫ `

0
ḣ2 dt =

∫ `

0

π2

`2 cos2
(
π t
`

)
dt = π

2

2`
,∫ `

0
h2 dt =

∫ `

0
sin2

(
π t
`

)
dt = `

2
,∫ `

0

∣∣∣cos
(2π t
`

)∣∣∣ dt = 2`
π
,∫ `

0
|hḣ| dt =

∫ `

0

π

2`

∣∣∣sin
(2π t
`

)∣∣∣ dt = 1,

it follows from (3-8) and (3-9) that

n∑
i=2

I (hei , hei )6−
1
2`

(
λ`2
− 4L`− (n− 1)π2

− 8Hπ
)
.

Since γ is a minimizing geodesic, we must obtain

λ`2
− 4L`− (n− 1)π2

− 8Hπ 6 0,

from where we have

`6 1
λ

(
2L +

√
4L2+{(n− 1)π + 8H}λπ

)
.

This proves Theorem 9. �
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3.2. Proof of Theorem 10. Next, we shall prove Theorem 10.

Proof of Theorem 10. By using the assumption (1-9) in the integral expression (3-1),
we obtain

(3-10)
n∑

i=2

I (hei , hei )6
∫ `

0

(
(n− 1)ḣ2

− λh2
+

1
2

h2(LV g)(γ̇ , γ̇ )− h2 dφ
dt

)
dt

=

∫ `

0

(
(n− 1)ḣ2

− λh2
+ h2g(∇γ̇ V, γ̇ )− h2 dφ

dt

)
dt

=

∫ `

0

(
(n− 1)ḣ2

− λh2
+ h2γ̇ (g(V, γ̇ ))− h2 dφ

dt

)
dt,

where the last equality follows from the parallelism of the metric g and ∇γ̇ γ̇ = 0.
On the geodesic segment γ (t), we have

(3-11) h2γ̇ (g(V, γ̇ ))= h2 d
dt
(g(V, γ̇ ))=−2hḣg(V, γ̇ )+ d

dt
(h2g(V, γ̇ )).

Hence, by integrating both sides of (3-11), we obtain∫ `

0
h2γ̇ (g(V, γ̇ )) dt =

∫ `

0
−2hḣg(V, γ̇ ) dt + [h2g(V, γ̇ )]`0

6 2
∫ `

0
|hḣg(V, γ̇ )| dt(3-12)

6 2K
∫ `

0
|hḣ| dt,(3-13)

where the second inequality follows from h(0) = h(`) = 0. From (3-10), (3-13),
and (3-6), we have

(3-14)
n∑

i=2

I (hei , hei )6
∫ `

0
((n−1)ḣ2

−λh2) dt+2K
∫ `

0
|hḣ| dt+2L

∫ `

0
|hḣ| dt.

If the function h is taken to be h(t)= sin(π t/`), then (3-14) becomes

(3-15)
n∑

i=2

I (hei , hei )6
∫ `

0

(
(n− 1)π

2

`2 cos2
(
π t
`

)
− λ sin2

(
π t
`

))
dt

+
Kπ
`

∫ `

0

∣∣∣sin
(2π t
`

)∣∣∣ dt + Lπ
`

∫ `

0

∣∣∣sin
(2π t
`

)∣∣∣ dt.

It follows from (3-15) and (3-9) that

n∑
i=2

I (hei , hei )6−
1
2`
{λ`2
− 4(L + K )`− (n− 1)π2

}.
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Since γ is a minimizing geodesic, we must obtain

λ`2
− 4(L + K )`− (n− 1)π2 6 0,

from where we have

`6 1
λ

(
2(L + K )+

√
4(L + K )2+ (n− 1)λπ 2

)
.

This proves Theorem 10. �

3.3. Proof of Theorem 15. Finally, we shall prove Theorem 15.

Proof of Theorem 15. By using the assumption (1-13) in the integral expression
(3-1), we obtain

(3-16)
n∑

i=2

I (hei , hei )6
∫ `

0

(
(n− 1)ḣ2

− λh2
+

1
2

h2(LV g)(γ̇ , γ̇ )− h2 dφ
dt

)
dt

−
1
k

∫ `

0
h2(g(V, γ̇ ))2 dt

6
∫ `

0
((n− 1)ḣ2

− λh2
+ 2|hḣg(V, γ̇ )| + 2L|hḣ|) dt

−
1
k

∫ `

0
h2(g(V, γ̇ ))2 dt,

where the last inequality follows from (3-12) and (3-6). Applying P = |ḣ| and
Q = |hg(V, γ̇ )| to the Cauchy–Schwarz inequality∫ `

0
P Q dt 6

√∫ `

0
P2 dt

√∫ `

0
Q2 dt,

we have

(3-17)
∫ `

0

∣∣∣hḣg(V, γ̇ )
∣∣∣ dt 6

√∫ `

0
ḣ2 dt

√∫ `

0
h2(g(V, γ̇ ))2 dt .

Applying A=k
∫ `

0 ḣ2 dt>0 and B= (1/k)
∫ `

0 h2(g(V, γ̇ ))2 dt>0 to the elementary
inequality 2

√
AB 6 A+ B, we obtain

(3-18) 2

√∫ `

0
ḣ2 dt

√∫ `

0
h2(g(V, γ̇ ))2 dt 6

∫ `

0

(
kḣ2
+

1
k

h2(g(V, γ̇ ))2
)

dt.

From (3-16), (3-17), and (3-18), we have

(3-19)
n∑

i=2

I (hei , hei )6
∫ `

0
((n− 1)ḣ2

− λh2
+ kḣ2

+ 2L|hḣ|) dt.
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If the function h is taken to be h(t)= sin(π t/`), then (3-19) becomes

(3-20)
n∑

i=2

I (hei , hei )6
∫ `

0
(n− 1)

(
π2

`2 cos2
(
π t
`

)
− λ sin2

(
π t
`

))
dt

+
kπ2

`2

∫ `

0
cos2

(
π t
`

)
dt + Lπ

`

∫ `

0

∣∣∣sin
(2π t
`

)∣∣∣ dt.

It follows from (3-20) and (3-9) that
n∑

i=2

I (hei , hei )6−
1
2`
{λ`2
− 4L`− (n− 1)π2

− kπ2
}.

Since γ is a minimizing geodesic, we must obtain

λ`2
− 4L`− (n− 1)π2

− kπ2 6 0,

from where we have

`6 1
λ

(
2L +

√
4L2+ (n− 1+ k)λπ 2

)
.

This proves Theorem 15. �
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IRREDUCIBLE DECOMPOSITION
FOR LOCAL REPRESENTATIONS

OF QUANTUM TEICHMÜLLER SPACE

JÉRÉMY TOULISSE

We give an irreducible decomposition of the so-called local representations
(Bai, Bonahon and Liu, 2007) of the quantum Teichmüller space Tq(6),
where6 is a punctured surface of genus g> 0 and q is an N-th root of unity
with N odd. As an application, we construct a family of representations of
the Kauffman bracket skein algebra of the closed surface 6.
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1. Introduction

Let 6 be the surface obtained by removing s > 0 points v1, . . . , vs from the
closed oriented surface 6 of genus g > 0. Denote by T (6) the Teichmüller space
of 6, that is roughly speaking, the space of complete hyperbolic metrics on 6.
Given λ an ideal triangulation of 6 (that is a triangulation of the closed surface 6
whose vertices are exactly the vi ), Thurston [1986] constructed a parametrization
of T (6) by associating a strictly positive real number to each edge λi of the ideal
triangulation, i ∈ {1, . . . , n}, where n = 6g− 6+ 3s is the number of edges of λ.
These coordinates are called the shear coordinates associated to λ. In this coordinate
system, the coefficients of the Weil–Petersson form on T (6) depend only on the
combinatorics of λ and are easy to compute.

For a parameter q ∈ C∗, Chekhov and Fock [1999] defined the quantum Teich-
müller space Tq(6) of 6, which is a deformation quantization of the Poisson
algebra of a certain class of functions over T (6); see also [Kashaev 1998] for a
slightly different version and [Guo and Liu 2009] for a relation between the two.
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This algebraic object is obtained by gluing together a collection of noncommutative
algebras Tq(λ), called Chekhov–Fock algebras, canonically associated to each ideal
triangulation of 6. A representation of Tq(6) is then a family of representations
{ρλ : Tq(λ)→ End(V )}λ∈3(6), where 3(6) is the space of all ideal triangulations
of6, and ρλ and ρλ′ satisfy compatibility conditions whenever λ 6=λ′. For λ∈3(6),
the representation ρλ is an avatar of the representation of Tq(6) and carries almost
all the information.

When q is a primitive N-th root of unity, Tq(λ) admits finite-dimensional repre-
sentations. In this paper, we will consider the case that N is odd. The irreducible rep-
resentations of Tq(λ) were studied in [Bonahon and Liu 2007], where it was shown
that an irreducible representation of Tq(λ) is classified (up to isomorphism) by a
weight xi ∈C∗ assigned to each edge λi , a choice of N-th root pj =

(
xkj1

1 · · · x
kjn
n
)1/N

associated to each puncture vj (where kji is the number of times a small simple loop
around vj intersects λi ) and an N-th root c = (x1 . . . xn)

1/N. Such a representation
has dimension N 3g−3+s .

Bai, Bonahon, and Liu [Bai et al. 2007] introduced another type of representations
of Tq(λ), called local representations, which are well behaved under cut and paste.
A local representation of Tq(λ) is defined by an embedding into the tensorial
product of triangle algebras (see definitions below). Isomorphism classes of local
representations of Tq(λ) are classified by a weight xi ∈C∗ associated to each edge λi

and a choice of an N-th root c= (x1 . . . xn)
1/N. Such a representation has dimension

N 4g−4+2s .
It follows that a local representation of Tq(λ) is not irreducible. In this paper,

we address the question of the decomposition of a local representation into its
irreducible components. We prove:

Main Theorem. Let λ be an ideal triangulation of 6 and ρ be a local representa-
tion of Tq(λ) classified by weight x j ∈ C∗ associated to each edge λj and a choice
of N-th root c = (x1 . . . xn)

1/N. Then we have the decomposition

ρ =
⊕
i∈I

ρ(i).

Here, ρ(i) is an irreducible representation classified by the same x j , an N-th root
p(i)j = (x

kj1
1 · · · x

kjn
n )1/N associated to each puncture, and the same c. Moreover, I is

a finite set such that, given a choice of an N-th root pj = (x
kj1
1 · · · x

kjn
n )1/N for each

puncture, there exists exactly N g elements i ∈ I with p(i)j = pj for all j ∈ {1, . . . , s}.

It is proved by Bai [2007] that if λ and λ′ are two different triangulations of the
square related by a diagonal switch, then the intertwining operators associated to
two isomorphic representations ρ : Tq(λ)→ End(V ) and ρ ′ : Tq(λ

′)→ End(V ′)
correspond to the 6 j -symbols defined by Kashaev [1995]. These 6 j -symbols relate
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hyperbolic geometry and quantum invariants and gave birth to the famous volume
conjecture; see [Murakami 2011] for an overview.

In particular, Baseilhac and Benedetti [2005] used these 6 j -symbols to construct
a (2+ 1)-dimensional topological quantum field theory (TQFT) on manifolds with
PSL(2,C)-character. Our result thus provides a decomposition of the vector spaces
arising in the TQFT.

As an application, we adapt the construction of Bonahon and Wong [2015] to
local representations of the balanced Chekhov–Fock algebra and obtain a family of
representations of the Kauffman bracket skein algebra SA(6) of the closed surface6.
The vector space associated to this family of representations is canonically associated
to an ideal triangulation λ. In particular, it makes the computations very explicit. It
also behaves well under cut and paste.

In Section 2, we recall the definition of the Chekhov–Fock algebra, the quantum
Teichmüller space, the triangle algebra and the local representations. In Section 3,
we prove the Main Theorem. Finally, in Section 4, we explain the connections
between quantum Teichmüller theory, skein theory and construct a new family of
representations of SA(6).

2. Chekhov–Fock algebra and representations of Tq(6)

In this section, we define the Chekhov–Fock algebra Tq(λ) associated to an ideal
triangulation λ, describe its representations and recall the definition of the quantum
Teichmüller space. Most results come from [Bonahon and Liu 2007; Bai et al.
2007].

In all this paper, for an integer n ∈ N, set Zn := Z/nZ and denote by U(N ) the
group of N-th roots of unity.

2.1. The Chekhov–Fock algebra. In this subsection, q is a formal parameter and
6 is allowed to have boundary components with punctures on the boundary (and
every boundary component has at least one puncture).

Let λ be an ideal triangulation of 6. We denote by λ1, . . . , λn the edges of λ.
The Fock’s matrix associated to λ is the skew-symmetric n× n matrix with integer
coefficients ηλ = (σi j )i, j=1,...n defined by

σi j = ai j − a j i

where ai j is the number of angular sector delimited by λi and λj in the faces of λ
with λi coming before λj counterclockwise.

Definition 2.1. The Chekhov–Fock algebra of λ is the algebra Tq(λ) freely gener-
ated by the elements X±1

i , i ∈ {1, . . . , n}, subject to the relations

X i X j = q2σi j X j X i .
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v1

v2

λ2

λ1

λ3

v3

Figure 1. The triangle T .

The following example is of first importance.

Example 2.2. Let T be a disk with three punctures v1, v2, v3 on the boundary. The
boundary arcs between the punctures provides a natural triangulation λ of T (see
Figure 1).

The triangle algebra is T := Tq(λ). It is generated by X±1
i , i = 1, 2, 3, subject

to the relations
X i X i+1 = q2 X i+1 X i , i ∈ Z3.

The algebraic structure of the Chekhov–Fock algebra is fairly simple. In particu-
lar, it is a quantum torus [Goodearl and Warfield 2004].

Given a monomial X = X k1
1 . . . X kn

n ∈ Tq(λ) for a multi-index k= (k1, . . . , kn) ∈

Zn , we define the Weyl ordering of X to be the monomial

[X ] := q−
∑

i< j σi j X k1
1 . . . X kn

n .

The advantage of the Weyl ordering is its independence with respect to the order of
the terms. In particular, for any permutation σ : {1, . . . , n} → {1, . . . , n}, we have[

X k1
1 . . . X kn

n
]
=
[
X kσ(1)
σ(1) . . . X kσ(n)

σ(n)

]
.

For a multi-index k= (k1, . . . , kn) ∈ Zn , we define Xk := [X
k1
1 . . . X kn

n ] ∈ Tq(λ).

2.2. Finite-dimensional representations of Tq(λ). When the parameter q is a root
of unity, the structure of the Chekhov–Fock algebra is drastically different. In
particular, Tq(λ) admits finite dimensional representations that we describe here.

In this subsection, q ∈ C∗ is a primitive N-th root of unity with N odd, 6 has
no boundary component and λ is an ideal triangulation of 6 with edges labeled
λ1, . . . , λn .

Definition 2.3. For each puncture vj , the puncture invariant Pj = [X
k j1
1 . . . X k jn

n ] ∈

Tq(λ) is the monomial associated to the multi-index k j = (k j1, . . . , k jn )∈Nn , where
k ji is the minimum number of intersections between the edge λi and a closed simple
loop around vj .
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The puncture invariants are of main importance in the representation theory of
the Chekhov–Fock algebra. In particular:

Proposition 2.4 [Bonahon and Liu 2007, Proposition 15]. The center of Tq(λ) is
generated by:

• X N
i for each i ∈ {1, . . . , n}.

• The puncture invariant Pj associated to each puncture vj ∈ {v1, . . . , vs}.

• The element H := [X1 . . . Xn].

Note that [P1 . . . Ps] = [H 2
].

A representation of Tq(λ) is a morphism ρ : Tq(λ)→End(V ) where V is a vector
space. Such a representation is finite-dimensional when V is finite-dimensional and
ρ is called irreducible when there is no proper linear subspace W ⊂ V preserved
by ρ

(
Tq(λ)

)
. Two representations ρ : Tq(λ)→ End(V ) and ρ ′ : Tq(λ)→ End(V ′)

are isomorphic if there exists a linear isomorphism L : V → V ′ such that

ρ ′(X)= L ◦ ρ(X) ◦ L−1 for X ∈ Tq(λ).

Theorem 2.5 [Bonahon and Liu 2007, Theorems 20 and 21]. Up to isomorphism,
any irreducible representation

ρ : Tq(λ)→ End(V )

is determined by its restriction to the center of Tq(λ) and is classified by a nonzero
complex number xi associated to each edges λi , a choice of an N-th root pj =(
xk j1

1 . . . xk jn
n
)1/N for each puncture vj (where the k jk ∈{1, 2} are as in Definition 2.3)

and a choice of a square root c = (p0 . . . ps)
1/2.

Such a representation is characterized by

• ρ(X N
i )= xi IdV ,

• ρ(Pj )= pj IdV ,

• ρ(H)= c IdV .

Moreover, such a representation has dimension N 3g−3+s .

Let us come back to Example 2.2. Recall that the triangle algebra T is the algebra
generated by X±1

i , i ∈ Z3, with relations X i X i+1 = q2 X i+1 X i .
The center of T is generated by X N

i and H = q−1 X1 X2 X3. One easily checks
that irreducible representations of T have dimension N and are classified (up to
isomorphism) by a choice of weight xi ∈ C∗ associated to each edge λi and a
central charge, that is a choice of an N-th root c= (x1x2x3)

1/N ; see [Bai et al. 2007,
Lemma 2] for more details.
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More precisely, let V be the complex vector space generated by {e1, . . . , eN }

and let ρ be an irreducible representation of T classified by x1, x2, x3 ∈ C∗ and
c = (x1x2x3)

1/N. Then, up to isomorphism, the action of T on V is defined by

ρ(X1)ei = x ′1q2i ei , ρ(X2)ei = x ′2ei+1, ρ(X3)ei = x ′3q1−2i ei−1,

where x ′i is an N-th root of xi such that x ′1x ′2x ′3 = c. Note that, up to isomorphism,
ρ is independent of the choice of the N-th root x ′i with x ′1x ′2x ′3 = c.

The following lemma will be useful in the next section. Recall that U(N ) is the
group of N-th roots of unity.

Lemma 2.6. Let ρ : T → End(V ) be the representation of the triangle algebra
classified by x1 = x2 = x3 = 1 and c ∈ U(N ). For each i ∈ Z3 and N-th root
ζ ∈ U(N ), the eigenspace of ρ(X i ) of eigenvalue ζ is one-dimensional.

Proof. We use the explicit form of the representation ρ in V = span{e1, . . . , eN }

described above. Set x ′1 = x ′2 = 1, x ′3 = c and ζ = q2k for some k ∈ {0, . . . , N − 1}.
For i = 1, one checks that the eigenspace of ρ(X1) associated to ζ is generated

by ek .
For i = 2, the vector αk :=

∑
i∈ZN

q−2ki ei satisfies ρ(X2)αk = q2kαk and
{α1, . . . , αk} form a basis of V . So the eigenspace of ρ(X2) associated to the
eigenvalue ζ is generated by αk .

For i = 3, we use the fact that ρ(q−1 X1 X2 X3)= c IdV , where c ∈ U(N ). �

An ideal triangulation of 6 is composed by m faces T1, . . . , Tm . Each face T j

determines a triangle algebra T j whose generators are associated to the three edges
of T j . It provides a canonical embedding ι of Tq(λ) into T1⊗ · · ·⊗ Tm defined on
the generators as follows:

• ι(X i )= X ji ⊗ Xki if λi belongs to two distinct triangles T j and Tk and X ji ∈

T j , Xki ∈ Tk are the generators associated to the edge λi ∈ T j and λi ∈ Tk

respectively.

• ι(X i ) = [X ji1 X ji2 ] if λi corresponds to two sides of the same face T j and
X ji1 , X i j2

∈ T j are the associated generators.

Definition 2.7. A local representation of Tq(λ) is a representation which factorizes
as (ρ1 ⊗ · · · ⊗ ρm) ◦ ι where ρi : Ti → Vi is an irreducible representation of the
triangle algebra Ti and ι : Tq(λ)→ T1⊗ · · ·⊗ Tm is defined as above.

In particular, a local representation has dimension N m where m = 4g−4+2s is
the number of faces of the triangulation.

Local representations were first introduced by Bai et al. [2007].

Theorem 2.8 [Bai et al. 2007, Proposition 6]. Up to isomorphism, a local repre-
sentation

ρ : Tq(λ)→ End(V )
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Figure 2. Flip of triangulation.

is classified by a nonzero complex number xi associated to the edge λi and a choice
of an N-th root c = (x1 . . . xn)

1/N. Such a representation satisfies

• ρ(X N
i )= xi IdV ,

• ρ(H)= c IdV .

Local representations have certain advantages over irreducible representations.
First of all, these representations behave very well under cut and paste, so one can
use them to construct invariant of 3-manifolds; see [Baseilhac and Benedetti 2005].
Also, the vector space associated to a local representation decomposes as a tensor
product of vector spaces and each generator X i ∈ Tq(λ) associated to an edge λi

only acts on the vector spaces associated to triangle adjacent to the edge λi (that is
why these representations are called local).

2.3. Quantum Teichmüller space and its representations. The quantum Teich-
müller space is obtained by gluing together a family of (division algebras of)
Chekhov–Fock algebras indexed by the set of ideal triangulations of 6.

The simplex of ideal triangulations. Let 3(6) be the set of ideal triangulations of
6. We say that two triangulations λ, λ′ ∈3(6) differ by a flip if λ and λ′ coincide
everywhere except in a square made of two adjacent triangles where they differ as
in Figure 2.

The graph of ideal triangulations is the graph whose set of vertices is 3(6) and
two vertices λ, λ′ ∈3(6) are connected by an edge if and only if λ and λ′ differ
by a flip.

The simplex of ideal triangulations is obtained from the graph of ideal triangula-
tions by gluing a 2-simplex on each cycle corresponding to the pentagon relation
(see Figure 3).

Proposition 2.9 [Penner 1993]. The simplex of ideal triangulations is connected
and simply connected. Namely, any two different ideal triangulations are connected
by a sequence of flips and two sequences between two ideal triangulations differ by
a sequence of pentagon relations.

Coordinate change. The Chekhov–Fock algebra Tq(λ) associated to an ideal tri-
angulation λ ∈3(6) satisfies the Ore condition; see [Goodearl and Warfield 2004].
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Figure 3. Pentagon relation.

In particular, Tq(λ) has a well-defined division algebra T̂q(λ) consisting of rational
fractions satisfying some noncommutativity relations.

Let λ, λ′ ∈3(6) be two ideal triangulations related by a flip. Chekhov and Fock
[1999] constructed coordinates change isomorphisms

9
q
λλ′ : T̂q(λ

′)→ T̂q(λ).

These coordinates change satisfy the pentagon relation. In particular, using the
result of Penner, they extend uniquely to coordinates change 9q

λλ′ : T̂q(λ
′)→ T̂q(λ)

for any two different ideal triangulations λ, λ′ ∈3(6).
It was proved in [Liu 2009] that these coordinates change are the unique ones

satisfying some natural relations, as for instance 9q
λλ′′ = 9

q
λλ′ ◦ 9

q
λ′λ′′ for any

λ, λ′, λ′′ ∈ 3(6). Moreover, when q = 1, these maps reduce to the classical
coordinates change in Teichmüller theory; see [loc. cit.] for more details.

Definition 2.10. The quantum Teichmüller space of 6 is defined by

Tq(6) :=
⊔

λ∈3(6)

T̂q(λ)/∼,

where xλ ∈ T̂q(λ)∼ xλ′ ∈ T̂q(λ
′) if and only if xλ =9

q
λλ′(xλ′).

Note that, as Since each coordinate change9q
λλ′ is an algebra isomorphism, Tq(6)

inherits an algebra structure, and the T̂q(λ) can be thought as “global coordinates”
on Tq(6).
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Representations. A natural definition for a finite dimensional representation of
Tq(6) would be a family of finite dimensional representations

{ρλ : T̂q(λ)→ End(Vλ)}λ∈3(6)

such that for each pair λ, λ′ ∈3(6), the representations ρλ′ and ρλ◦9
q
λ,λ′ of T̂q(λ

′)

are isomorphic (as representations).
However, as pointed out in [Bai et al. 2007, Section 4.2], when Vλ is finite-

dimensional, there is no morphism T̂q(λ)→ End(Vλ). In fact, T̂q(λ) is infinite-
dimensional as a vector space while End(Vλ) is finite-dimensional and so, such a
homomorphism ρλ would have nonzero kernel. In particular, there would exists
elements x ∈ T̂q(λ) such that ρλ(x)= 0 and so, ρλ(x−1) would make no sense.

This motivates the following definition:

Definition 2.11. A local representation (respectively an irreducible representation)
of Tq(6) is a family of representations

{ρλ : Tq(λ)→ End(Vλ)}λ∈3(6)

such that for each λ, λ′ ∈ 3(6), ρλ is a local representation (respectively an
irreducible representation) of Tq(λ), and ρλ′ is isomorphic to ρλ ◦9

q
λλ′ whenever

ρλ ◦9
q
λλ′ makes sense.

We say that ρλ ◦9
q
λλ′ makes sense, if for each Laurent polynomial X ′ ∈ Tq(λ

′),

9λλ′(X ′)= P Q−1
= Q′−1 P ′ ∈ T̂q(λ), for some P, Q, P ′, Q′ ∈ Tq(λ).

In that case, we define

ρλ ◦9λλ′(X ′) := ρλ(P)ρλ(Q)−1
= ρλ(Q′)−1ρλ(P ′).

Proposition 2.12 [Bai et al. 2007, Proposition 10]. Let λ, λ′ ∈3(6) be two ideal
triangulations of 6. Then there exists a rational map

ϕλλ′ : C
n
→ Cn

such that a local representation ρ ′ : Tq(λ
′)→ End(Vλ′) classified by (x ′1, . . . , x ′n)

and c′ =
(
x ′1 . . . x

′
n
)1/N is isomorphic to ρλ ◦9λλ′ (whenever it makes sense) where

ρλ : Tq(λ) → End(Vλ) is a local representation classified by (x1, . . . , xn) and
c = (x1 . . . xn)

1/N if and only if c = c′ and

(x ′1, . . . , x ′n)= ϕλλ′(x1, . . . , xn).

Remark 2.13. The analogue is also proved in [Bonahon and Liu 2007] for irre-
ducible representations. In particular, the rational maps ϕλλ′ are the same.
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It turns out that the rational maps ϕλλ′ correspond to the coordinates change of
the shear-bend coordinates on the character variety χ

(
6,SL(2,C)

)
.

As a result, isomorphism classes of local (respectively irreducible) representa-
tions of Tq(6) are classified, up to finitely many choices, by the character variety
χ
(
6,SL(2,C)

)
; see [loc. cit.] for more details.

3. Decomposition of local representations

In this section, we prove the Main Theorem. Let ρ : Tq(λ)→ End(V ) be the local
representation classified by the nonzero complex number xi associated to each
edge and the central charge c. Given a puncture invariant Pj = [X

k j1
1 . . . X k jn

n ] (see
Proposition 2.4) associated to the puncture vj , the representation ρ satisfies

ρ(P N
j )= xk j1

1 . . . xk jn
n IdV .

It follows that if pj is an eigenvalue of Pj , then pN
j = xk j1

1 . . . xk jn
n .

Notation.
• Given pj ∈ C∗ so that pN

j = xk j1
1 . . . xk jn

n , we denote by

Vpj (Pj ) := {x ∈ V : ρ(Pj )x = pj x}

the associated eigenspace.

• Given p= (p1, . . . , ps) so that for each j , pN
j = xk j1

1 . . . xk jn
n , set

Vp := {x ∈ V : ρ(Pj )x = pj x, j = 1, . . . , s} =
s⋂

j=1

Vpj (Pj ).

The proof of the Main Theorem will follow the next proposition:

Proposition 3.1. There exists an ideal triangulation λ0 ∈3(6) such that for each
p as above, Vp has dimension N 4g−3+s .

Proof. The dimension of Vp does not depend on the numbers xi ∈C∗ characterizing
ρ. In this proof, we will consider all the xi equal to 1, which implies that the
eigenvalues of ρ(Pi ) are root of unity.

Consider the one punctured surface 6′ :=6 ∪ {v1, . . . , vs−1}. As g > 0, there
exists an ideal triangulation λ′ of 6′. Let T be a triangle of the triangulation λ′ and
consider the triangulation of T \ {v1, . . . , vs−1} as in Figure 4.

The union of the triangulation λ′ and the one of T gives an ideal triangulation
λ0 of 6.

Consider a local representation ρ : Tq(λ0)→ End(V ). The decomposition of the
ideal triangulation λ0 gives the nice decomposition

V =W ⊗W ′,
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v1

v2

vs
T0

T1 T'1

T's −2Ts −2

Ts −1 T's −1
vs −1

vs

vs

Figure 4. Triangulation of T ∪ {v1, . . . , vs}.

where W ′ is the vector space corresponding to the triangles of the triangulation λ′

(except the triangle T ), and W corresponds to the triangles of T .
In particular, as the triangulation λ′ contains 4g−2 triangles, dim(W ′)= N 4g−3

(remember that we do not consider the vector space associated to T ), and dim W =
N 2s−1.

The interest of the triangulation λ0 is clear: the puncture invariant Pi associated
to the puncture vi 6= vs acts as the identity on W ′, so the eigenspaces of ρ(Pi ) has
the form E ⊗W ′ where E ⊂W is an eigenspace of the restriction of ρ(Pi ) on W .
It motivates the following notation:

Notation.

• The vector space W decomposes as

W =W 0
⊗ · · ·⊗W s−1,

where W 0 is associated to T0 and W j to T j and T ′j for j = 1, . . . , s− 1.

• Given a root of unity pk ∈ U(N ), set

W j
pk
(Pk) := {x ∈W j

: ρ(Pk)x = pk x}.

• For p= (p1, . . . , ps−1) ∈ U(N )s−1, set

W j
p = {x ∈W j

: ρ(Pk)x = pk x, k = 1, . . . , s− 1} =
s−1⋂
k=1

W j
pk
(Pk).

• Finally, set

W p = {x ∈W : ρ(Pk)x = pk x, k = 1, . . . , s− 1}.
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X

X'

Y

Z Z'

Y'

Tj T'j

vj +1

vj

Figure 5. The generators of T j and T ′j .

Lemma 3.2. Using the above notation, and given p ∈ U(N )s−1, we have the
following:

(1) dim W 0
p =

{
1 if p= (p1, 1, . . . , 1),
0 otherwise.

(2) For j ∈ {1, . . . , s− 2},

dim W j
p =

{
1 if p= (1, . . . , 1, pj , p j+1, 1, . . . , 1),
0 otherwise.

(3) dim W s−1
p =

{
N if p= (1, . . . , 1, ps−1),

0 otherwise.

Proof. (1) If k 6= 1, vk is not a vertex of T0. It follows that Pk acts on W 0 by the
identity; so if pk 6= 1, W 0

p = {0}.
Now, if pk = 1 for all k 6= 1, then W 0

p is the eigenspace of the action on W 0 of
the edge opposite to v1. By Lemma 2.6, it is one-dimensional.

(2) Fix j ∈ {1, . . . , s− 2}. For k /∈ { j, j + 1}, vk is neither a vertex of T j nor of T ′j .

Hence Pj acts on W j as the identity, and if pk 6= 1, then W j
p = {0}.

Take pk = 1 for all k /∈ { j, j + 1} and denote by X±1, Y±1, Z±1 (respectively
X ′±1

, Y ′±1
, Z ′±1) the generators of the triangle algebras T j (respectively T ′j ) asso-

ciated to the triangles T j (respectively T ′ j ) as in Figure 5. Set also W j
= V j

⊗V ′ j

where V j (respectively V ′ j ) is the vector space associated to the representation of
the triangle algebra T j (respectively T ′j ).

Denote by c j , c′j ∈U(N ) the central charges of the restriction of the representation
to T j and T ′j respectively. Then ρ(Pj ) acts on V j

:= span{e0, . . . , eN−1} like c j Z−1

and on V ′ j = span{e′0, . . . , e′N−1} like c′j Z ′−1. In the same way, ρ(Pj+1) acts on
V j like c j Y−1 and on V ′j like c′j Y

′−1.
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Using the same action as in Example 2.2 and writing

cj = q p, c′j = q p′,

we get
ρ(Pj )ek = q2k−1+pek+1, ρ(Pj )e′l = q1−2l+p′el+1

It follows that the action of Pj on W j is given by

Pjεk,l = q2(k−l)+p+p′εk+1,l+1 where εk,l := ek ⊗ e′l ∈W j .

In the same way, one sees that the action of Pj+1 on W j is given by

Pj+1εk,l = q p+p′εk−1,l−1.

Now, for m, n ∈ ZN, set αm,n :=

N−1∑
k=0

q2kmεk,k+n , an easy calculation shows that

Pjαm,n = q−2(m+n)+p+p′αm,n, Pj+1αm,n = q2m+p+p′αm,n.

It follows that {αn,m : n,m ∈ZN } is a base of W j and, for all pj , p j+1 ∈U(N ), there
exists a unique couple (m, n)∈Z2

N with pj = q−2(m+n)+p+p′ and p j+1= q2m+p+p′ .
Therefore, dim W j

p = 1 if and only if pk = 1 for all k 6= j, j + 1.

(3) If k 6= s−1, then vk is neither a vertex of Ts−1 nor a vertex of T ′s−1, so if pk 6= 1,
then W s

h = {0}.
Suppose that pk = 1 for all k ∈ {1, . . . , s− 2}, then

W s−1
p ⊃

⊕
pa pb=ps−1

V s−1
pa
(Ps−1)⊗ V ′s−1

pb
(Ps−1),

where V s
pa
(Ps−1) is the eigenspace associated to the eigenvalue pa of the action

of ρ(Ps−1) on the vector space associated to the triangle Ts−1, and V ′s−1
pb

(Ps−1) is
defined in an analogous way.

The direct sum contains N terms of dimension one, hence dim(W s−1
p )≥ N. On

the other hand, we have
dim(W s−1)= N 2

and also
dim(W s−1)=

∑
p∈U(N )s−1

dim(W s−1
p )≥ N × N .

This implies that W s−1
p has exactly dimension N for p= (1, . . . , 1, ps−1). �

The proof of Proposition 3.1 follows from the following elementary remark:
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Remark 3.3. For all j ∈ {0, . . . , s− 1}, given pj ∈ U(N )s−1 and a nonzero vector
x j ∈W j

pj , the vector x0⊗· · ·⊗ xs−1 is in W p where p= p0 p1 . . . ps−1 is obtained
by taking the product on each component.

We thus have the inclusion

(1) W p ⊃
⊕

p= p0... ps−1

W 0
p0
⊗ · · ·⊗W s−1

ps−1
.

Writing pj =
(

p( j)
0 , . . . , p( j)

s−1

)
and p = (p1, . . . , ps), one notes that from

Lemma 3.2, the only nonzero terms in the direct sum of (1) are the pj satisfying

(2)

p(0)1 p(1)1 = p1,

p(1)2 p(2)2 = p2,

...

p(s−2)
s−1 p(s−1)

s−1 = ps−1

There exists exactly N s−1 different choices for the pj satisfying relations (2).
Moreover, for each choice of pj satisfying (2), the vector space W 0

p0
⊗· · ·⊗W s−1

ps−1

has dimension N. It follows that for each p ∈ U(N )s−1,

dim W p ≥ N s .

On the other hand,

dim W = N 2s−1
=

∑
p∈U(N )s−1

dim W p,

hence each W p has exactly dimension N s .
Finally, as the puncture invariants act as the identity on the vector space W ′, the

intersection of the eigenspaces of the ρ(Pj ) for all j = 1, . . . , s− 1 has the form
W p⊗W ′ for some p∈U(N )s−1 and has dimension N 4g−3+s . As the representation
ρ has fixed central charge c,

ρ([P1 P2 . . . Ps])= ρ([H 2
])= c2 IdV .

It follows that the action of ρ(Ps) on V can be easily expressed as a function of
the action of the ρ(Pj ) for j = 1, . . . , s− 1, and we get the result. �

Proposition 3.1 implies the decomposition of the Main Theorem for the triangu-
lation λ0. Since the dimension of the eigenspaces depends continuously on the xi ,
we get the decomposition for all value of xi ∈ C∗.

Indeed, consider the local representation

ρ : Tq(λ0)→ End(V )
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classified by a nonzero complex number xi associated to each edge and central
charge c. Let ρ(i) : Tq(λ0)→ End(V (i)) be an irreducible factor.

In particular,
ρ(i)(X N

i )= ρ(X
N
i )|V (i) = xi IdV (i),

ρ(i)(H)= ρ(H)|V (i) = c IdV (i),

so a necessary condition for ρ(i) to be an irreducible factor is that it is classified by
the same xi and same central charge c.

For each puncture vj , denote by p(i)j the N-th root of xk j1
1 . . . xk jn

n so that

ρ(i)(Pj )= p(i)j IdV (i) .

It follows that p(i)s = c2
(

p(i)1 . . . p(i)s−1

)−1 and V (i)
⊂ Vp where p=

(
p(i)1 , . . . , p(i)s−1

)
with

Vp =
{

x ∈ V : ρ(Pj )x = p(i)j x, j = 1, . . . , s− 1
}
.

Finally, as dim Vp = N 4g−3+s and the dimension of an irreducible representation
of Tq(λ0) has dimension N 3g−3+s , Vp contains exactly N g irreducible factors
classified by the same xi , same central charge c and N-the root p(i)j associated to
the puncture vj .

Proof in the general case. Recall that, given another ideal triangulation λ ∈3(6),
the “transition maps” ϕλ0λ : C

n
→ Cn defined in Section 2.3 are rational, hence

defined on a Zariski open set of Cn .
Now, consider a local representation

ρ : Tq(λ)→ End(Vλ),

classified by a number xi ∈ C∗ associated to each edge and central charge c.
If there exists (y1, . . . , yn) ∈ Cn so that ϕλ0λ(y1, . . . , yn)= (x1, . . . , xn) (which

is a generic condition), then it follows from Section 2.3 that ρλ is isomorphic to
ρλ0 : Tq(λ0)→ End(Vλ0). It means that there exists an isomorphism

Lλ0λ : Vλ→ Vλ0,

so that for each X ∈ Tq(λ) we have

ρλ0(9
q
λ0λ
(X))= Lλ0λ ◦ ρλ(X) ◦ L−1

λ0λ
.

Here 9q
λ0λ
: T̂q(λ)→ T̂q(λ0) are the coordinates change defined in Section 2.3.

As ρλ0 is a local representation of Tq(λ0), there exists an irreducible decomposi-
tion of ρλ0 given by the decomposition

Vλ0 =

⊕
i∈I

V i
λ0
.
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In particular, each i ∈ I, V i
λ0

is stable by ρλ0 and has dimension N 3g−3+s .
For each i ∈ I, set V i

λ := L(−1)
λ0λ

(V i
λ0
). One easily gets that each V i

λ is stable by
ρλ(Tq(λ)), and has dimension N 3g−3+s . In this way we get a decomposition of ρλ
into irreducible factors given by the decomposition

Vλ =
⊕
i∈I

V i
λ .

Finally, if ρλ is classified by the parameters (x1, . . . , xn) which are not in the
image of ϕλ0λ, one can deform continuously (x1, . . . , xn) to get the previous de-
composition and, as the decomposition does not depend of the parameters, get the
result for ρλ.

4. Representations of the skein algebra

In this section, we use the Main Theorem to construct a nice family of representation
of the Kauffman bracket skein algebra SA(6) of the closed surface 6 = 6 ∪
{v1, . . . , vs}. This is done by adapting the construction of Bonahon and Wong
[2015] to the case of local representations.

In Section 4.1, we describe the balanced Chekhov–Fock algebra Zω(λ) associated
to an ideal triagulation λ of 6 and characterize its irreducible representations. Then,
in Section 4.2, we introduce the local representations of Zω(λ) and extend the
Main Theorem to decompose these local representations into irreducible factors.
Finally, in Section 4.3, we use the previous decomposition to construct a family of
representations of SA(6).

4.1. Balanced Chekhov–Fock algebra. Let q be a primitive N-th root of unity
with N odd and let ω be the unique fourth root of q which is also a primitive N-th
root of unity. Namely, if q = e2iπ k

N with N and k coprime, then there is a unique
l ∈ Z4 so that k+ l N ∈ 4Z, and ω = e2iπ k

4N ei lπ
2 .

Let λ be an ideal triangulation of 6 whose edges are (λ1, . . . , λn). In order
to avoid confusion, we will denote by X i the generators of Tq(λ) and by Zi the
generators of Tω(λ).

A multi-index k ∈ Zn is called λ-balanced (or balanced) if for each triangle of
the triangulation whose edges are j1, j2, j3 we have

k j1 + k j2 + k j3 ∈ 2Z.

A monomial Z ∈ Tω(λ) is balanced if Z is a scalar multiple of Zk where k ∈ Zn is
balanced. (Here Zk is defined as in Section 2.1).

Definition 4.1. The balanced Chekhov–Fock algebra Zω(λ) is the subalgebra of
Tω(λ) generated (as a vector space) by balanced monomials.
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e1

e2

λ2

λ1

λ3

e3

Figure 6. Train track.

In particular, the image of the map

i : Tq(λ) → Tω(λ)
X i 7→ Z2

i

lies in Zω(λ) so we will consider Tq(λ) as a subalgebra of Zω(λ).
The ideal triangulation λ defines canonically a train track τλ on 6 which looks

like in Figure 6 on each triangle of the triangulation. Note that τλ has a switch on
each edge of λ.

We denote by W(τλ,Z) the abelian group of integer weight systems on τλ.
Namely, an element α ∈W(τλ,Z) is a map that associates to each edge e of τλ
an integer α(e) in such a way that at each switch, the sum of the weights of the
incoming edges equals the sum of the weights of the outgoing edges.

A weight system α ∈W(τλ,Z) on τλ is a map that associates an integer to any
edge of the train track in such a way that the sum of weights of the incoming edges
equals the sum of weights of the outgoing edges. Given α ∈W(τλ,Z) and an edge
λi ∈ λ, the sum of the weights of the edges incoming to λi is an integer. It thus
define a map

ϕ :W(τλ,Z)→ Zn

whose image is exactly the set of balanced multi-index. Thus, given an integer
weight system α ∈W(τλ,Z), we define Zα ∈ Zω(λ) to be Zϕ(α) = [Z

α1
1 . . . Zαn

n ]

where ϕ(α) = (α1, . . . , αn) ∈ Zn . In particular, one gets the noncommutativity
relations

ZαZβ = ω4�(α,β)Zβ Zα,

where� :W(τλ,Z)×W(τλ,Z)→Z is the Thurston intersection form; see [Bonahon
and Wong 2012, Section 2] for more details.

Definition 4.2. A twisted homomorphism is a map ζ :W(τλ,Z)→ C∗ such that
for every α, β ∈W(τλ,Z),

ζ(α+β)= (−1)�(α,β)ζ(α)ζ(β).
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Finally, note that each puncture vj defines a integer weight system η j ∈W(τλ,Z)

as follow. The connected component D j of 6 \ τλ containing vj is bounded by a
finite number of edges of τλ. For an edge e of τλ, define η j (e) ∈ {0, 1, 2} to be the
number of times e lies in the boundary of D j . In particular,

Z2
η j
= i(Pj )

where Pj ∈ Tq(λ) is the puncture invariant associated to vj and i : Tq(λ)→ Zω(λ)
is defined above.

Irreducible representations of Zω(λ) were classified in [Bonahon and Wong
2015]. They proved:

Proposition 4.3 [Bonahon and Wong 2012, Proposition 14]. Up to isomorphism,
an irreducible representation ρ : Zω(λ)→ End(V ) has dimension N 3g−3+s and is
classified by a twisted homomorphism ζ :W(τλ,Z)→ C∗ and a choice of an N-th
root h j = ζ(η j )

1/N for each puncture vj . Such a representation satisfies:

• ρ(Z N
α )= ζ(α) IdV for all α ∈W(τλ,Z).

• ρ(η j )= ζ(η j ) IdV for all j ∈ {1, . . . , s}.

4.2. Local representations of Zω(λ). Here, we introduce the notion of local rep-
resentation of the balanced Chekhov–Fock algebra Zω(λ) associated to an ideal
triangulation λ. We then extend the Main Theorem to give a decomposition of local
representations of Zω(λ) into its irreducible components.

Since by our choice ω is also a primitive N-th root of unity, there is a map

Tω(λ)→
⊗

Ti∈F(λ)

Tω(Ti )

as introduced in Section 2.2, where F(λ) is the set of faces of λ and Tω(Ti ) is the
triangle algebra associated to the face Ti . It is clear that this map restricts to a
morphism

ι : Zω(λ)→
⊗

Ti∈F(λ)

Zω(Ti ).

Here, Zω(Ti ) is the balanced triangle algebra associated to the face Ti .

Definition 4.4. A local representation of the balanced Chekhov–Fock algebra
Zω(λ) is a representation ρ :Zω(λ)→End(V ) that can be written as (ρ1⊗· · ·⊗ρm)◦ι

where each ρi is an irreducible representation of Zω(Ti ).

In order to classify local representations of Zω(λ), we first have to understand
the irreducible representations of the balanced triangle algebra Zω(T ). Let τ be
the train track in T with edges e1, e2, e3 as in Figure 6 and denote by W(τ,Z) The
group of integer weight systems on τ .
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Lemma 4.5. Up to isomorphism, an irreducible representation of the balanced tri-
angle algebra Zω(T ) has dimension N and is classified by a twisted homomorphism
ζ :W(τ,Z)→ C∗ together with a choice of an N-th root C =

(
ζ(µ)

)1/N where
µ ∈W(τ,Z) is such that µ(ei )= 1 for all i ∈ Z3. Such a representation satisfies

• ρ(Z N
α )= ζ(α) IdV .

• ρ(Zµ)= C IdV .

Proof. The group W(τ,Z) is generated by {α1, α2, α3} where

αi (e j )= δi j , i, j ∈ Z3.

It follows that the balanced triangle algebra Zω(T ) is generated by Z±1
α1
, Z±1

α2
and

Z±1
α3

and the relations are

Zα1 Zαi+1 = ω
−2 Zαi+1 Zαi , i ∈ Z3.

If we denote by Zi the generator of Tω(T ) associated to the edge λi (so for instance
Zα1 = [Z2 Z3]), the map

9 : Zω(T )→ Tω(T ), Zαi 7→ Z−1
i

is an isomorphism of algebras such that 9(Zµ)= H−1 where H = [Z1 Z2 Z3].
In particular, an irreducible representation ρ of Zω(λ) has the form ρ = ρ ◦9

where ρ is an irreducible representation of Tω(T ).
Using the result of Section 2.2 and the fact that a twisted homomorphism of

W(τ,Z) is fully determined by its value on the αi , we get the result. �

Let τi be the restriction of the train track τλ to the triangle Ti of the triangulation λ.
A twisted homomorphism ζ :W(τλ,Z)→C∗ induces a twisted homomorphism ζi :

W(τi ,Z)→C∗ for each triangle Ti of the triangulation λ. In particular, the following
proposition is a straightforward extension of [Bai et al. 2007, Proposition 6]:

Proposition 4.6. A local representation ρ : Zω(λ) → End(V ) has dimension
N 4g−4+2s and is classified (up to isomorphism) by a twisted homomorphism ζ :

W(τλ,Z)→ C∗ and a choice of an N-th root C = ζ(µ)1/N where µ(e)= 1 for all
edge e of τλ. Such a representation satisfies:

• ρ(Z N
α )= ζ(α) IdV .

• ρ(Zµ)= C IdV .

Finally, the Main Theorem implies the following:

Theorem 4.7. Let ρ : Zω(λ)→ End(V ) be the (isomorphism class of ) represen-
tation classified by the twisted homomorphism ζ :W(τλ,Z)→ C∗ and the choice
of an N-th root C = ζ(µ)1/N (where µ is defined as above). Then ρ =

⊕
i∈I ρ

(i)

where each ρ(i) is irreducible, classified by the same twisted homomorphism ζ and
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N-th root h(i)k =
(
ζ(ηk)

)1/N with h(i)1 . . . h(i)s = C (here, the ηk are defined as in
Section 4.1).

Moreover, for each choice of an N-th root hk =
(
ζ(ηk)

)1/N for each k ∈
{1, . . . , s}, there are exactly N g indices i ∈ I such that h(i)k = hk for all k.

Proof. Let ρ be a local representation of Zω(λ) classified by ζ and C . In particular,
ρ induces a local representation ρ := ρ ◦ i of Tq(λ), where i : Tq(λ) ↪→ Zω(λ).
The local representation ρ is classified by the weight ζ(βi ) for all edges λi , where
βi ∈W(τλ,Z) is defined by Zβi = Z2

i = i(X i ).
Let Pj ∈ Tq(λ) be the puncture invariant associated to the puncture vj . The

image of Pj in Zω(λ) is Z2
η j

. We claim that the eigenspaces of ρ(Pj ) correspond
to the eigenspaces of ρ(Zη j ). In fact, if Vh j (Zη j ) is the eigenspace of ρ(Zη j )

corresponding to the eigenvalue h j =
(
ζ(η j )

)1/N, then one has the inclusion

Vh j (Zη j )⊂ Vpj (Pj ),

where Vpj (Pj ) is the eigenspace of ρ(Pj )= ρ(Z2
η j
) corresponding to the eigenvalue

pj = h2
j . Because there are only N different possible eigenvalues of ρ(Zη j ), a

dimension counting argument shows the equality.
Now, we apply the Main Theorem and get that, for each choice of (h1, . . . , hs)

where h j =
(
ζ(Zη j )

)1/N, the intersection Vh1(Zη1)∩ · · · ∩ Vhs (Zηs ) has dimension
N 4g−3+s and hence is made of N g copies of the irreducible representation of Zω(λ)
classified by ζ and h1, . . . , hs . �

Bonahon and Wong [2012, Section 3] associate a character rζ ∈ χ
(
6,SL(2,C)

)
to a twisted homomorphism ζ :W(τλ,Z)→ C∗ (here χ

(
6,SL(2,C)

)
is the alge-

braic quotient of Hom
(
π1(6),SL2(C)

)
by the action of SL2(C) by conjugation). In

particular, the (irreducible or local) representations of the balanced Chekhov–Fock
algebra associated to an ideal triangulation λ of 6 are classified, up to finitely many
choice, by a Zariski open set in χ

(
6,SL(2,C)

)
.

Note that, if rζ is the character associated to the twisted homomorphism ζ , the
holonomy of rζ around a puncture vj is parabolic exactly when ζ(η j )= 1.

4.3. Representations of SA(6). We explain here how Theorem 4.7 gives rise to a
new family of representations of the Kauffman bracket skein algebra of the closed
surface 6 =6 ∪ {v1, . . . , vs}.

Skein algebra. Given an oriented 3-manifold M , and a nonzero complex number
A ∈ C∗, consider the complex vector space V (M) freely generated by isotopy
classes of framed links in M . The skein module SA(M) of M is the quotient of
V (M) by the Kauffman bracket skein relations as defined in Figure 7.

Namely, we identify three different links when differ by the previous relation in
an open ball and agree everywhere else.
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Figure 7. Kauffman bracket skein relations.

Given a framed link K ⊂ M , we denote by [K ] its image in the skein module
SA(M).

When M =6×[0, 1] for a surface6, the skein module SA(M)=SA(6) inherits
an algebra structure given by superposition of links. Namely, given two framed
links K1 and K2 in 6× [0, 1], the product [K1] · [K2] is defined to be the image
of K1 ∪ K2 in SA(6), where K1 ∪ K2 is given by the superposition of K1 on top
of K2 where we rescaled so that K1 ⊂ 6 × [0, 1

2 ] and K2 ⊂ 6 × [
1
2 , 1]. We call

SA(6) with the product · the Kauffman bracket skein algebra of S.
Finite-dimensional representations of the skein algebra SA(6) are of main im-

portance as they appear naturally in topological quantum field theory (TQFT). For
example, the Witten–Reshetekin–Turaev TQFT [Blanchet et al. 1995; Turaev 1994].

Classical shadow and quantum trace. Let µ : SA(6)→End(V ) be an irreducible
representation of the Kauffman bracket skein algebra of 6.

Bonahon and Wong [2016] (see also [Lê 2015a] for a simpler proof) proved
that if A is a primitive N-th root of −1, the N-th Chebyshev polynomial TN

of the first kind of any skein [K ] ∈ SA(6) is a central element in SA(6). In
particular, the precomposition of ρ by TN maps each skein [K ] to a multiple of the
identity in End(V ). This multiple of the identity can be interpreted as an element
rµ ∈ χ

(
6,SL2(C)

)
in the SL(2,C) character variety of 6. This character is called

the classical shadow of the representation µ.
When A=ω−2 (so A is a primitive N-th root of−1) and λ is an ideal triangulation

of 6, Bonahon and Wong [2011] (see also [Lê 2015b] for a more conceptual proof)
constructed a quantum trace map

trλω : SA(6)→ Zω(λ),

which turns out to be an injective algebra homomorphism.
In particular, by precomposing irreducible representations of Zω(λ) by the quan-

tum trace, Bonahon and Wong [2012] obtained a family of irreducible representa-
tions of the Kauffman bracket skein algebra of S indexed by a Zariski open subset
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of the character variety χ
(
6,SL2(C)

)
. Moreover, taking the classical shadow of

such an irreducible representation recovers the character.

Representations of SA(6). The inclusion6 ↪→6 gives an algebra homomorphism

ι : SA(6)→ SA(6).

Let r ∈χ
(
6,SL(2,C)

)
be a character obtained from a character r ′∈χ

(
6,SL(2,C)

)
(namely, the holonomy of r around each puncture is trivial). If ζ :W(τλ,Z)→ C∗

is the twisted homomorphism associated to r , then ζ(η j )= 1 for each puncture vj .
Denote by

ρ : Zω(λ)→ End(V )

the local representation of Zω(λ) classified by ζ and the N-th root C = ((−ω4)s)1/N.
Let E ⊂ V be the intersection of the eigenspaces of ρ(Zηk ) for k ∈ {1, . . . , s}
corresponding to the eigenvalue −ω4.

By Theorem 4.7, the vector space E is stable by ρ
(
Zω(λ)

)
, so we get an induced

representation ρ ′ : Zω(λ)→ End(E). Note that ρ ′ is made of N g copies of the
irreducible representation of Zω(λ) classified by ζ and puncture invariant −ω4.

Proposition 4.8. There is a proper linear subspace F⊂ E such that the composition

µ : SA(6)
ι
→ SA(6)

ρ
→ End(F)

induces a representation of SA(6). The classical shadow of each irreducible factor
of µ is same. Finally, the dimension of F is at least N 4g−3 when g > 1 and at least
N 2 when g = 1.

Proof. This is a direct consequence of the construction of Bonahon and Wong
[2015]. In fact, using the decomposition of ρ into irreducible parts and considering
the total off-diagonal kernel of each irreducible factor (see [op. cit., Section 4.2]),
one gets the result. �

The vector space F is canonically associated to the triangulation λ, which makes
the family of representations described above easier to handle for computations.
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