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A POSITIVE MASS THEOREM AND PENROSE INEQUALITY
FOR GRAPHS WITH NONCOMPACT BOUNDARY

EZEQUIEL BARBOSA AND ADSON MEIRA

We prove a version of the positive mass theorem for graph hypersurfaces
with a noncompact boundary, in Euclidean space. We also prove a Penrose
inequality for such hypersurfaces.

1. Introduction

Let (Mn, g) be an asymptotically flat Riemannian manifold. Suppose that the scalar
curvature of g is nonnegative, Sg ≥ 0. The Riemannian positive mass theorem states
that, if either 3≤ n ≤ 7 or n ≥ 3 and the manifold is spin, the ADM-mass of g is
nonnegative: mADM ≥ 0. Moreover, mADM = 0 if and only if (Mn, g) is isometric
to the Euclidean space (Rn, δ). Recently, Almaraz, Barbosa and de Lima [Almaraz
et al. 2016] defined a kind of ADM-mass for asymptotically flat manifolds with a
noncompact boundary, and they proved that, if either 3≤ n ≤ 7 or if n ≥ 3 and the
manifold is spin, then that ADM-mass is nonnegative, assuming the scalar curvature
of the manifold and the mean curvature of the boundary are nonnegative. A similar
positive mass theorem for all dimensions and with no spin condition has not been
proved yet.

Although graphical hypersurfaces in Euclidean spaces are spin, Lam [2011]
used an elementary method for such manifolds — asymptotically flat graphical
hypersurfaces with an empty boundary — without invoking the spin structure, and
proved the positive mass conjecture for graphical hypersurfaces with compact
boundary. A version of the positive mass theorem for manifolds with compact
boundary is known as the Penrose inequality. The main goal of this work is to
provide an elementary proof for the positive mass theorem for graph hypersurfaces
with noncompact boundary in Euclidean spaces, and a kind of Penrose inequality
for such hypersurfaces. For more about the positive mass theorem and the Penrose
inequality, see [Almaraz et al. 2016; Huang and Wu 2015; Lee and Sormani 2014;
Mirandola and Vitório 2015].
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Let us be a little bit more precise with respect to the case where the manifold
has a noncompact boundary. Let (Mn, g) be an oriented Riemannian manifold
with a noncompact boundary 6 and dimension n ≥ 3. We denote by Sg the scalar
curvature of the manifold (M, g). We also assume that 6 is oriented by an outward
pointing unit normal vector η, so that its mean curvature is Hg = divg η. We say that
(M, g) is asymptotically flat with decay rate τ > 0 if there exists a compact subset
K ⊂ M and a diffeomorphism 9 : M \ K → Rn

−
\ B−1 (0) such that the following

asymptotic expansion holds as r→+∞:

(1-1) |gi j (x)− δi j | + r |gi j,k(x)| + r2
|gi j,kl(x)| = O(r−τ ).

Here, x = (x1, . . . , xn) is the coordinate system induced by 9; r = |x | and gi j are
the coefficients of g with respect to x ; the comma denotes partial differentiation;
Rn
−
= {x ∈ Rn

; xn ≤ 0}, and B−1 (0)= {x ∈ Rn
−
; |x | ≤ 1}. The subset M∞ = M\K

is called the end of M . In this paper, we use the Einstein summation convention
with the index ranges i, j, . . .= 1, . . . , n and α, β, . . .= 1, . . . , n−1. Observe that
along 6, {∂α}α spans T6 while ∂n points inwards.

The most important example of a manifold in this class is the half-space Rn
−

endowed with the standard flat metric δ; see Figure 1.

Definition 1.1. Suppose that τ > 1
2(n − 2) and Sg and Hg are integrable on M

and 6, respectively. In terms of asymptotically flat coordinates as above, the mass
of (M, g) is given by

(1-2) m(M,g) = lim
r→+∞

{∫
Sn−1

r,−

(gi j, j − g j j,i )µ
i dSn−1

r,− +

∫
Sn−2

r

gαnϑ
α dSn−2

r

}
,

where Sn−1
r,− ⊂ M is a large coordinate hemisphere of radius r with outward unit

normal µ, and ϑ is the outward pointing unit conormal to Sn−2
r = ∂Sn−1

r,− , oriented
as the boundary of the bounded region 6r ⊂6.

Almaraz–Barbosa–de Lima [Almaraz et al. 2016] showed that the limit on the
right-hand side of (1-2) exists and its value does not depend on the particular asymp-
totically flat coordinates chosen. Thus, m(M,g) is an invariant of the asymptotic
geometry of (M, g). Moreover, they considered the following conjecture:

Conjecture 1.2. If (M, g) is asymptotically flat with decay rate τ > 1
2(n− 2) as

above and satisfies Sg ≥ 0 and Hg ≥ 0 then m(M,g) ≥ 0, with the equality occurring
if and only if (M, g) is isometric to (Rn

−
, δ). Here, Hg is the mean curvature of the

noncompact boundary, related to the outward pointing unit normal vector.

This conjecture has been confirmed in some special cases in [Escobar 1992;
Raulot 2011]. Finally, Almaraz–Barbosa–de Lima [Almaraz et al. 2016] showed
that the following result holds.
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Rn Rn

Figure 1. Asymptotically flat manifolds.

Theorem 1.3. Conjecture 1.2 holds true if either 3 ≤ n ≤ 7 or if n ≥ 3 and M is
spin.

An immediate consequence of the rigidity statement in Theorem 1.3 is also worth
noticing.

Corollary 1.4. Let (M, g) be as in Theorem 1.3 and assume further that there exists
a compact subset K ⊂M such that (M \K , g) is isometric to (Rn

−
\B−1 (0), δ). Then

(M, g) is isometric to (Rn
−
, δ).

Now, we consider a graphical hypersurface with a noncompact boundary in the
Euclidean space.

Definition 1.5. Let � ⊂ Rn be a bounded subset. Let F : Rn
−
\�→ Rm , F(x) =

( f 1(x), . . . , f m(x)) be a C2 application. We will denote by G(F) the graph of F .
We say that F is asymptotically flat, with order p > 0, if the scalar curvature S of
the graph of F with the metric of Rn+m is an integrable function over G(F), and if
there exists a compact subset K ⊂Rn such that �⊂ K and, over Rn

−
\K , the partial

derivatives f αi = ∂ f α/∂xi , f αi j = ∂
2 f α/(∂xi∂x j ) satisfies

| f αi (x)| = O(|x |−p/2), | f αi j (x)| = O(|x |−p/2−1), | f αi jk(x)| = O(|x |−p/2−2)

for all α = 1, . . . ,m and i, j, k = 1, . . . , n.

From here, g f will denote δ+ d f ⊗ d f , where δ is the canonical metric of the
Euclidean space. Our main result is the following:

Theorem 1.6 (positive mass theorem). Let f : Rn
−
→ R be a C2 function up to

boundary, asymptotically flat over Rn
−
\�, with order p > 1

2(n− 2). Let (Rn
−
, g f )

be the graph of f . Suppose that fn = 0 over ∂Rn
−

, that S ∈ L1(Rn
−
), and S ≥ 0.

We also assume that the mean curvature H of the boundary of (Rn
−
, g f ), seen as a

submanifold of (Rn
−
, g f ) is such that H ≥ 0 and H ∈ L1(∂Rn

−
). Then, the mass of

G( f ) is nonnegative. Moreover, it is null if and only if G( f ) is a half-plane.

As a consequence of [Lee and Sormani 2014], we obtain the stability of the
rigidity supposing that the graph is rotationally symmetric. We can also consider
the Penrose inequality for such graphs.

Theorem 1.7 (Penrose inequality). Let � ⊂ Rn
−
\{xn = 0}, n ≥ 3, be an open

bounded set whose boundary is smooth and mean-convex. Suppose that ∂� is outer-
minimizing or each connected component of � is star-shaped. Let f : Rn

−
\�→ R
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be a function that is C2 up to boundary, asymptotically flat, constant over each
connected component of ∂� and such that |D f | → ∞ when x → ∂�. We also
suppose that fn = 0 over ∂Rn

−
, the scalar curvature of the graph is nonnegative, the

mean curvatures of the compact boundaries are nonnegative, and that the mean
curvature of the noncompact boundary (viewed as a submanifold of the graph) is
nonnegative. Then,

m(M,g) ≥
1
2

(
|∂�|

ωn−1

)(n−2)/(n−1)
,

where |∂�| is the (n− 1)-volume of ∂�.

2. Proof of the positive mass theorem

We start this section considering a very important proposition.

Proposition 2.1. Let �⊂ Rn be an open set and f :�→ R be a C2 function. Let
X :�→ Rn be the vector field given by

(2-1) X =U ( fi fkk − fk fik)ei ,

where U = 1/U , U = 1+〈D f, D f 〉, and 〈·, ·〉 is the Euclidean metric. Consider
the function s :�→ R given by

s =U ( fi i fkk − fik fik)−U 22 fl fli ( fi fkk − fk fik).

Then, s = div X and the scalar curvature of (G( f ), g) is s. Here, g is the induced
metric and G( f ) is the graph of f .

Proof. See [Huang and Wu 2013; Lam 2011; Mirandola and Vitório 2015; Reilly
1973]. �

Now we can prove the following result.

Theorem 2.2. Let f : Rn
−
→ R be an asymptotically flat function over Rn

−
\� of

class C2 up to boundary, with order p > 1
2(n− 2). Let (Rn

−
, g f ) be the graph of f .

We suppose the following items:

• fn = ∂ f/∂xn ≥ 0 over ∂Rn
−

and ∂n = (en, fn) is normal to the noncompact
boundary (this occurs when fn = 0 over ∂Rn

−
, for example);

• S ∈ L1(Rn
−
) and S ≥ 0;

• The mean curvature H of the boundary of (Rn
−
, g f ), viewed as a submanifold

of (Rn
−
, g f ) be such that H ≥0 (with respect to the unit normal inward pointing

vector field) and H ∈ L1(∂Rn
−
);

• The scalar second fundamental form h̃ (with respect to the unit normal upward
pointing vector field) of the boundary of (Rn

−
, g f ), viewed as a submanifold of

(Rn, δ)= (∂Rn
−
×R, δ), be such that

∑n−1
i=1 h̃(∂̄i , ∂̄i )≥ 0 and

∑n−1
i=1 h̃(∂̄i , ∂̄i ) ∈
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L1(∂Rn
−
). Here, ēi ∈ Rn−1 is a canonical vector and ∂̄i = (ēi , fi ) is a tangent

vector field.

Then,

(2-2) c(n)m(M,g) =

∫
Rn
−

S dxδ +
∫
∂Rn
−

H√
1+ ( fn)2

(2+ |D f |2) dxδ

+

∫
∂Rn
−

fn

√
1+ |D f |2

( n−1∑
i=1

h̃(∂̄i , ∂̄i )

)
|D f |2

1+ |D f |2
dxδ,

where D f = ( f1, . . . , fn−1). In particular, the mass m(M,g) is nonnegative.

Proof. Note that ∂B−r = S−r ∪Dr , where S−r = {x ∈Rn
−
| ‖x‖= r}, Dr = {x ∈ ∂Rn

−
|

‖x‖ ≤ r} and Sn−2
r = ∂Dr . Remembering that S = div X , we have∫

Rn
−

S dxδ = lim
r→∞

∫
B−r

S dxδ = lim
r→∞

∫
B−r

div X dxδ = lim
r→∞

∫
∂B−r
〈X, N 〉 dAr

= lim
r→∞

∫
S−r

〈
X, x
|x |

〉
dσr + lim

r→∞

∫
Dr

〈X, en〉 dxδ.

By hypothesis, fi = O(|x |−p/2) and fik = O(|x |−p/2−1) for all i, k = 1, . . . , n.
Since U −1= 〈D f, D f 〉 = O(|x |−p), we have lim|x |→∞U = 1, therefore we have
lim|x |→∞U = 1, where U = 1/U . Therefore, U − 1=−U 〈D f, D f 〉 = O(|x |−p).
With this, we conclude that

(U − 1)( fi fkk − fk fik)= O(|x |−2p−1).

Since p > 1
2(n− 2), we have 2p+ 1> n− 1= dim S−r . Thus,

lim
r→∞

∫
S−r

∣∣∣(U − 1)( fi fkk − fk fik)
x i

|x |

∣∣∣ dσr ≤ lim
r→∞

∫
S−r

C · |x |−2p−1 dσr

≤ C lim
r→∞

r−2p−1
|S−r | = 0.

Then

lim
r→∞

∫
S−r
(U − 1)( fi fkk − fk fik)

x i

|x |
dσr = 0.

Therefore,

lim
r→∞

∫
S−r

U ( fi fkk − fk fik)
x i

|x |
dσr = lim

r→∞

∫
S−r
( fi fkk − fk fik)

x i

|x |
dσr .

Thus,

lim
r→∞

∫
S−r

〈
X, x
|x |

〉
dσr = lim

r→∞

∫
S−r
( fi fkk − fk fik)

xi
|x |

dσr .
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Now, see that 〈X, en〉=U ( fn fkk− fk fnk)=U
∑n−1

k=1( fn fkk− fk fnk), because when
k = n the terms are canceled. On the other hand, since U = 1−|D f |2/(1+|D f |2),
we obtain

〈X, en〉 =

n−1∑
k=1

( fn fkk − fk fnk)−
|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk).

This implies that∫
Rn
−

S dxδ = lim
r→∞

∫
S−r
( fi fkk − fk fik)

xi
|x |

dσr + lim
r→∞

∫
Dr

n−1∑
k=1

( fn fkk − fk fnk) dxδ

− lim
r→∞

∫
Dr

|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk) dxδ

= lim
r→∞

∫
S−r
(gki,k − gkk,i )(νr )

i dσr

+ lim
r→∞

∫
Dr

(
divRn−1( fn D f )− 2〈D f, D fn〉

)
dxδ

− lim
r→∞

∫
Dr

|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk) dxδ.

Here, D f = (∂ f/∂x1, . . . , ∂ f/∂xn−1), νr is the normal vector field to S−r , and ηr

is the normal vector field to Sn−2
r . Using that∫

Dr

divRn−1( fn D f ) dxδ =
∫

Sn−2
r

fn〈D f, ηr 〉 dσr ,

we find∫
Rn
−

S dxδ = lim
r→∞

{∫
S−r
(gki,k − gkk,i )(νr )

i dσr +

∫
Sn−2

r

fn fk(ηr )
k dσr

}
lim

r→∞

{
−2

∫
Dr

〈D f, D fn〉 dxδ −
∫

Dr

( fn fkk − fk fnk)
|D f |2

1+ |D f |2
dxδ

}
= lim

r→∞

{∫
S−r
(gki,k − gkk,i )(νr )

i dσr +

∫
Sn−2

r

gnk(ηr )
k dσr

}
lim

r→∞

{
−2

∫
Dr

〈D f, D fn〉 dxδ −
∫

Dr

( fn fkk − fk fnk)
|D f |2

1+ |D f |2
dxδ

}
.

Thus,

c(n)m(M,g) =

∫
Rn
−

S dxδ + 2 lim
r→∞

∫
Dr

n−1∑
i=1

fni fi dxδ

+ lim
r→∞

∫
Dr

( fn fkk − fk fnk)
|D f |2

1+ |D f |2
dxδ.
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Now we will calculate the second fundamental form of the boundary viewed as a
submanifold of the graph of f . Note that N =−∂n =−(en, fn) is a normal field to
the boundary, and moreover, inward pointing and tangent to the graph. We have that

∇∂i ∂n = (0, . . . , 0, ∂i fn)= (0, . . . , 0, 〈D fn, ∂i 〉)

= (0, . . . , 0, 〈( fn1, . . . , fnn, 0), (ei , fi )〉)= (0, . . . , 0, fni ).

Since ∂ j = (e j , f j ), we have that 〈∇∂i ∂n, ∂ j 〉 = fni f j . Thus,

〈∇∂i N , ∂ j 〉 = −〈∇∂i ∂n, ∂ j 〉 = − fni f j .

Here we used the fact that 〈∇∂i N , ∂ j 〉 = −〈N , I I (∂i , ∂ j )〉, where I I is the second
fundamental form of the boundary viewed as a submanifold of the graph, and we find
that 〈I I (∂i , ∂ j ), N )〉 = fni f j . Therefore, denoting the scalar second fundamental
form of the boundary viewed as a submanifold of the graph by h̄, we find

h̄(∂i , ∂ j )= 〈I I (∂i , ∂ j ), N/|N |〉 =
fni f j√

1+ ( fn)2
.

With this, we see that the mean curvature of ∂G( f ) viewed as a submanifold of
G( f ) is

H =
n−1∑

i, j=1

gi j h̄(∂i , ∂ j )=

n−1∑
i, j=1

(
δi j −

fi f j

1+ |D f |2

)
fni f j√

1+ ( fn)2

=

n−1∑
i, j=1

(
δi j fni f j√
1+ ( fn)2

−
fi f j fni f j

(1+ |D f |2)
√

1+ ( fn)2

)

=

n−1∑
i=1

fni fi√
1+ ( fn)2

−

n−1∑
i, j=1

fni fi ( f j )
2

(1+ |D f |2)
√

1+ ( fn)2

=

n−1∑
i=1

fni fi√
1+ ( fn)2

−

n−1∑
i=1

fni fi√
1+ ( fn)2

n−1∑
j=1

( f j )
2

1+ |D f |2

=

n−1∑
i=1

fni fi√
1+ ( fn)2

[
1−

n−1∑
j=1

( f j )
2

1+ |D f |2

]
.

Hence,
n−1∑
i=1

fni fi =
H
√

1+ ( fn)2

1−
∑n−1

j=1( f j )2/(1+ |D f |2)
.
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Therefore,

c(n)m(M,g)

=

∫
Rn
−

S dxδ + 2 lim
r→∞

∫
Dr

H
√

1+ ( fn)2

1−
∑n−1

j=1( f j )2/(1+ |D f |2)
dxδ

+ lim
r→∞

∫
Dr

( fn fkk − fk fnk)
|D f |2

1+ |D f |2
dxδ

=

∫
Rn
−

S dxδ + lim
r→∞

∫
Dr

H
√

1+ ( fn)2

1−
∑n−1

j=1( f j )2/(1+ |D f |2)

{
2−

|D f |2

1+ |D f |2

}
dxδ

+ lim
r→∞

∫
Dr

fn fkk
|D f |2

1+ |D f |2
dxδ.

By hypothesis, fn ≥ 0 over ∂Rn
−

. Also,
∑n−1

k=1 fkk =
√

1+ |D f̄ |2
∑n−1

i=1 h̃(∂̄i , ∂̄i ).
In this way,

c(n)m(M,g) =

∫
Rn
−

S dxδ +
∫
∂Rn
−

H√
1+ ( fn)

2
(2+ |D f |2) dxδ

+

∫
∂Rn
−

fn

√
1+ |D f̄ |2

( n−1∑
i=1

h̃(∂̄i , ∂̄i )

)
|D f |2

1+ |D f |2
dxδ ≥ 0.

In order to conclude, we will show that
∑n−1

k=1 fkk =
√

1+ |D f̄ |2
∑n−1

i=1 h̃(∂̄i , ∂̄i ).
Viewed as a submanifold of ∂Rn

−
×R, the boundary is the graph of f̄ = f |∂Rn

−
.

Thus, ∂̄i = (ēi , fi ), i = 1, . . . , n − 1, are tangent vector fields. Here ēi ∈ Rn−1.
Moreover, η̄ = (−D f̄ , 1) is a normal field. We have

∇ ∂̄i
η̄ = (−∂̄i f̄1, . . . ,−∂̄i f̄n−1, 0)= (−〈D f̄1, ∂̄i 〉, . . . ,−〈D f̄n−1, ∂̄i 〉, 0).

Using that
D f̄ j = ( f̄ j1, . . . , f̄ j (n−1))= ( f̄ j1, . . . , f̄ j (n−1), 0)

and ∂̄i = (ēi , f̄i ), we obtain that −〈D f̄ j , ∂̄i 〉 = f̄ j i . Thus

∇ ∂̄i
η̄ = (− f̄1i , . . . ,− f̄(n−1)i , 0)= (−D f̄i , 0).

With this, 〈∇ ∂̄i
η̄, ∂̄ j 〉 = − f̄ j i . Using the Weingarten equation, we find

〈 Ĩ I (∂̄i , ∂̄ j ), η̄〉 = f̄ j i = f j i .

Therefore,

n−1∑
i=1

h̃(∂̄i , ∂̄i )=

n−1∑
k=1

〈
Ĩ I (∂̄k, ∂̄k),

η̄

|η̄|

〉
=

n−1∑
k=1

fkk√
1+ |D f̄ |2

. �
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In the next theorem, we will use a doubling argument to produce an asymptotically
flat manifold without a compact boundary; more specifically, given f : Rn

−
→ R,

we will consider f̃ : Rn
→ R given by f̃ (x1, . . . , xn) = f (x1, . . . , xn) if xn ≤ 0,

and f̃ (x1, . . . , xn)= f (x1, . . . ,−xn) if xn > 0. Then, using (2-2) and some results
and arguments of [Huang and Wu 2013], we obtain the following result:

Theorem 2.3. Let f : Rn
−
→ R be a Cn+1 function up to boundary, asymptotically

flat, over Rn
−
\�, with order p> 1

2(n−2) and such that f̃ defined as above is Cn+1.
Let (Rn

−
, g f ) be the graph of f . We suppose that fn = 0 over ∂Rn

−
, that S ∈ L1(Rn

−
)

and S≥ 0. We also suppose that the mean curvature H of the boundary of (Rn
−
, g f ),

viewed as a submanifold of (Rn
−
, g f ) is such that H ≥ 0 and H ∈ L1(∂Rn

−
). If the

mass of G( f ) is null, then G( f ) is a half-plane.

Proof. We will assume that f is asymptotic to {xn+1 = 0, xn ≤ 0} and that f 6= 0;
if not the result will be trivially true. Consider f̃ and note that f̃ is asymptotically
flat, and its graph has integrable and nonnegative scalar curvature. By [Huang and
Wu 2013, Theorem 4], we can suppose that the mean curvature of the graph of f̃ is
nonnegative, H( f̃ )≥ 0, with respect to ν, where ν is the vector field

(−D f̃ , 1)√
1+ |D f̃ |2

(because we can reflect the graph over {xn+1 = 0}). Let Br be an open ball in Rn

centered at the origin of radius r ; by [Huang and Wu 2013, Lemma 3.10],

max
Br2\Br1

f̃ =max
∂Br2

f̃ ∀ r2 > r1 > 0.

Because max∂Br2
f̃ → 0 when r2 → ∞ (since f̃ is asymptotic to {xn+1 = 0}),

we conclude that f̃ ≤ 0 outside of Br1 . Moreover, applying the strong maximum
principle to H( f̃ ) ≥ 0, we have f̃ < 0 outside of Br1 , unless f̃ ≡ 0. In the latter
case we can, moreover, conclude that G( f̃ ) is identical to {xn+1 = 0}, repeating the
argument over Br2\Br0 , for 0< r0 < r1, and making r0→ 0. With this we conclude
that if f̃ 6= 0, then f̃ < 0, i.e., G( f̃ )⊂ {xn+1 < 0}. Therefore, for ε > 0 sufficiently
small, some connected components of the level set {x ∈ {xn+1= 0} | f̃ (x)=−ε} lie
over G( f̃ ) and have no boundary. We define6−ε as being the connected component
outermost, i.e., 6−ε is not enclosed by the others components. By Sard’s theorem,
6−ε is smooth for almost all ε. Moreover, because f̃ tends to zero, for some small
ε > 0, we see that η = −D f̃ /|D f̃ | is the unit normal vector on 6−ε pointing
inward to the limited region in {xn+1 = 0}, which is delimited by 6−ε . Let H6−ε be
the mean curvature of 6−ε defined by η. Then, using that H( f̃ )≥ 0 and S( f̃ )≥ 0,
by [Huang and Wu 2013, Theorem 2.2] we have H6−ε ≥ 0. Since S( f ) ≥ 0 and
c(n)m(g)(G( f )) = 0, by (2-2) we conclude that S( f ) = 0; then S( f̃ ) = 0 and
c(n)m(M,g)(G( f̃ )) = 0. This implies that G( f̃ ) = {xn+1 = 0}. If not, by [Huang
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and Wu 2013, Lemma 5.6] (or more generally by [Mirandola and Vitório 2015,
Theorem 1.2]) we will have H6−ε = 0 and therefore 6−ε will be a compact minimal
hypersurface without boundary, and embedded in Rn; this will be a contradiction. �

3. Penrose inequality

Let we start this section with a simple proposition that will be very useful in the
next one.

Proposition 3.1. Let (M, 〈·, ·〉) be an (n+1)-Riemannian manifold and f :M→R

a differentiable function. Let 6 ⊂ M be an embedded hypersurface and ν a unitary
normal field to 6. Suppose that f is constant on 6; then on 6 we have

1 f = Hess f (ν, ν)− H6
〈D f, ν〉.

Here, H6 is related to ν.

Proof. Given a point x ∈6, we have

1 f = div D f = div(〈D f, ν〉ν)= 〈D〈D f, ν〉, ν〉+ 〈D f, ν〉 div ν

= 〈∇νD f, ν〉+ 〈D f,∇νν〉+ 〈D f, ν〉 div ν

Using that 6 is embedded in M , we take a neighborhood U of x in 6 such that
U = g−1(a), where g : V ⊂ M → R is differentiable, U ⊂ V , and a ∈ R is a
regular value of g. Take an orthonormal referential E1, . . . , En+1 on V such that
En+1 = Dg/|Dg| = ν. Denote by H the mean curvature and by A the second
fundamental form of 6; then

H =
n∑

i=1

〈A(Ei , Ei ), ν〉 =

n∑
i=1

〈∇Ei Ei , ν〉

= −

n∑
i=1

〈∇Ei ν, Ei 〉− 〈∇νν, ν〉 = −

n+1∑
i=1

〈∇Ei ν, Ei 〉 = − div ν.

Therefore, we have

1 f = 〈∇νD f, ν〉+ 〈D f,∇νν〉− H6
〈D f, ν〉

= Hess f (ν, ν)+〈D f, ν〉〈ν,∇νν〉− H6
〈D f, ν〉

= Hess f (ν, ν)− H6
〈D f, ν〉. �

The next proposition will be useful in the proof of the Penrose inequality.

Proposition 3.2. Let � ⊂ Rn be an open bounded set such that the boundary of
Rn
−
\� is smooth. Let f : Rn

−
\�→ R be a C2 function up to boundary, asymptoti-

cally flat, constant on each connected component of ∂�, and such that |D f | →∞
when x → ∂�. We suppose that the graph of f has the induced metric from
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�̃i

�̇i

�̃i

�̇i

Sn−2
rSr

−

∂�̇i ∩ {xn < 0}

∂�̃i

Dr\�̇i

Sn−2
r

∂�̇i ∪ ∂Rn
−

Figure 2. Sets of Proposition 3.2.

Rn+1. Denoting by �̇i , i = 1, . . . , ṅ, the connected components of � such that
�̇i ∩ {xn < 0} 6=∅ and �̇i ∩ {xn > 0} 6=∅; and by �̃i , i = 1, . . . , ñ, the connected
components of � such that �̃i ⊂ Rn

−
, then

c(n)m(M,g) =

∫
Rn
−\�

S dxδ +
∫
∂Rn
−\∪�̇i

H√
1+ ( fn)2

(2+ |D f |2) dxδ

+

∫
∂Rn
−\∪�̇i

fn

√
1+ |D f |2

( n−1∑
i=1

h̃(∂̄i , ∂̄i )

)
|D f |2

1+ |D f |2
dxδ

−

ṅ∑
i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i +

∫
∪∂�̇i∩{xn<0}

H ∂� dσ̇

+

∫
∪∂�̃i

H ∂� dσ̃ .

Here c(n)=2(n−1)ωn−1 and η̇ is the unit normal vector field on ∂�̇ pointing inward
to �̇. Here, H and h̃ are the mean curvature and the scalar second fundamental
form, respectively defined in Theorem 2.2 and H ∂� is the mean curvature of ∂�
viewed as a submanifold of the hyperplanes containing them.

Proof. We have

(3-1)
∫

Rn
−\�

S dxδ = lim
r→∞

∫
B−r \�

div X dxδ

= lim
r→∞

∫
S−r

〈
X, x
|x |

〉
dσr + lim

r→∞

∫
Dr\∪�̇i

〈X, en〉 dxδ

+

∫
∪∂�̇i∩{xn<0}

〈X, η̇i 〉 dσ̇ +
∫
∪∂�̃i

〈X, η̃i 〉 dσ̃ ,
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where X = 1/(1+ |D f |2) ( fi fkk − fk fik)ei . Like in the Theorem 2.2, we find

(3-2) lim
r→∞

∫
S−r

〈
X, x
|x |

〉
dσr = lim

r→∞

∫
S−r
( fi fkk − fk fik)

xi
|x |

dσr .

On the other hand, since U = 1− |D f |2/(1+ |D f |2):

〈X, en〉 =

n−1∑
k=1

( fn fkk − fk fnk)−
|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk).

Thus,

lim
r→∞

∫
Dr\∪�̇i

〈X, en〉 dxδ = lim
r→∞

∫
Dr\∪�̇i

n−1∑
k=1

( fn fkk − fk fnk) dxδ

− lim
r→∞

∫
Dr\∪�̇i

|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk) dxδ

= lim
r→∞

∫
Dr\∪�̇i

(divRn−1( fn D f )− 2〈D f, D fn〉) dxδ

− lim
r→∞

∫
Dr\∪�̇i

|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk) dxδ.

Here, D f = (∂ f/∂x1, . . . , ∂ f/∂xn−1). Using that

lim
r→∞

∫
Dr\∪�̇i

divRn−1( fn D f ) dxδ

= lim
r→∞

∫
Sn−2

r

fn〈D f, ηr 〉 dσr +

ṅ∑
i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i ,

where ηr is the unit normal vector field on Sn−2
r pointing outward to Dr , we find

(3-3) lim
r→∞

∫
Dr\∪�̇i

〈X, en〉 dxδ = lim
r→∞

∫
Sn−2

r

fn〈D f, ηr 〉 dσr

+

ṅ∑
i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i

−2 lim
r→∞

∫
Dr\∪�̇i

〈D f, D fn〉 dxδ

− lim
r→∞

∫
Dr\∪�̇i

|D f |2

1+|D f |2

n−1∑
k=1

( fn fkk− fk fnk) dxδ.
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Using (3-1), (3-2), and (3-3), we find∫
Rn
−\�

S dxδ = lim
r→∞

∫
S−r
( fi fkk − fk fik)

xi

|x |
dσr + lim

r→∞

∫
Sn−2

r

fn〈D f, ηr 〉 dσr

+

ṅ∑
i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i − 2 lim
r→∞

∫
Dr\∪�̇i

〈D f, D fn〉 dxδ

− lim
r→∞

∫
Dr\∪�̇i

|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk) dxδ

+

∫
∪∂�̇i∩{xn<0}

〈X, η̇i 〉 dσ̇ +
∫
∪∂�̃i

〈X, η̃i 〉 dσ̃ .

That is,

(3-4) c(n)m(M,g) =

∫
Rn
−\�

S dxδ −
ṅ∑

i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i

+ 2 lim
r→∞

∫
Dr\∪�̇i

〈D f, D fn〉 dxδ

+ lim
r→∞

∫
Dr\∪�̇i

|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk) dxδ

−

∫
∪∂�̇i∩{xn<0}

〈X, η̇i 〉 dσ̇ −
∫
∪∂�̃i

〈X, η̃i 〉 dσ̃ .

Like in the Theorem 2.2 we have

(3-5) lim
r→∞

∫
Dr\∪�̇i

fk fnk

{
2−

|D f |2

1+ |D f |2

}
dxδ

=

∫
∂Rn
−\∪�̇i

H√
1+ ( fn)2

(2+ |D f |2) dxδ,

where H is the mean curvature of ∂G( f ), viewed as a submanifold of G( f ), and
we also have

(3-6) lim
r→∞

∫
Dr\∪�̇i

fn fkk
|D f |2

1+ |D f |2
dxδ

=

∫
∂Rn
−\∪�̇i

fn

√
1+ |D f |2

( n−1∑
i=1

h̃(∂̄i , ∂̄i )

)
|D f |2

1+ |D f |2
dxδ,
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where h̃ is the scalar second fundamental form of ∂G( f ), viewed as a submanifold
of ∂Rn

−
. Therefore,

(3-7) c(n)m(g)=
∫

Rn
−\�

S dxδ +
∫
∂Rn
−\∪�̇i

H√
1+ ( fn)2

(2+ |D f |2) dxδ

+

∫
∂Rn
−\∪�̇i

fn

√
1+ |D f |2

( n−1∑
i=1

h̃(∂̄i , ∂̄i )

)
|D f |2

1+ |D f |2
dxδ

−

ṅ∑
i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i

−

∫
∪∂�̇i∩{xn<0}

〈X, η̇〉 dσ̇ −
∫
∪∂�̃i

〈X, η̃〉 dσ̃ .

The next computations of the mean curvature of the level set ∂� can also be found in
[Lam 2011, Equation 5.3] or [Mirandola and Vitório 2015, Equation 33]. Since f is
constant on ∂�, we have that D f is normal to this set. Denote by �c a component
of � such that f increases when x → ∂�c, thus D f/|D f | is the unity normal
vector field outward pointing to the graph on ∂�c (D f/|D f | points inward to �c

in the hyperplane containing �c). Denote by �d a component of � such that f
decreases when x→ ∂�d , thus −D f/|D f | is the unity normal vector field outward
pointing to the graph on ∂�d (−D f/|D f | points inward to �d in the hyperplane
containing �d ). For an illustration, see Figure 3.

We have〈
X,

D f
|D f |

〉
=

〈
U ( fi fkk − fk fik)ei ,

f j

|D f |
e j

〉
=

fiU
|D f |

( fi fkk − fk fik)

=
U
|D f |

( f 2
i fkk − fk fi fik)=

U
|D f |

(|D f |21 f −Hess f (D f, D f ))

=
|D f |2

|D f |
U
(
1 f −Hess f

(
D f
|D f |

,
D f
|D f |

))
.

∂�d
D f
|D f |

Figure 3. Illustration of the argument above.
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Since ν = D f/|D f | is the unity normal vector field pointing inward to �c, using
Proposition 3.1 and that U = 1/(1+ |D f |2), we find〈

X,
D f
|D f |

〉
=
|D f |

1+ |D f |2

(
−H ∂�c

〈
D f,

D f
|D f |

〉)
=−

|D f |2

1+ |D f |2
H ∂�c

〈
D f
|D f |

,
D f
|D f |

〉
=−

|D f |2

1+ |D f |2
H ∂�c

.

Since ν =−D f/|D f | is the unity normal vector field pointing inward to �d , using
the Proposition 3.1 and that U = 1/(1+ |D f |2), we find〈

X,−
D f
|D f |

〉
=−

|D f |
1+ |D f |2

(
−H ∂�d

〈
D f,−

D f
|D f |

〉)
=−

|D f |2

1+ |D f |2
H ∂�d

〈
−

D f
|D f |

,−
D f
|D f |

〉
=−

|D f |2

1+ |D f |2
H ∂�d

.

Here, H ∂� is related with the vector field pointing inward to �. We know that
limx→∂� |D f (x)| =∞, thus limx→∂� |D f |2/(1+|D f |2)= 1, therefore, supposing
that ν is the unity normal vector field pointing inward to � on ∂�, on ∂� we have

〈X, ν〉 = −H ∂�.

Using (3-7), we have

c(n)m(M,g) =

∫
Rn
−\�

S dxδ +
∫
∂Rn
−\∪�̇i

H√
1+ ( fn)2

(2+ |D f |2) dxδ

+

∫
∂Rn
−\∪�̇i

fn

√
1+ |D f |2

(n−1∑
i=1

h̃(∂̄i , ∂̄i )

)
|D f |2

1+ |D f |2
dxδ

−

ṅ∑
i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i +

∫
∪∂�̇i∩{xn<0}

H ∂� dσ̇

+

∫
∪∂�̃i

H ∂� dσ̃ . �

Now we will enunciate some auxiliary results.

Proposition 3.3 [Guan and Li 2009, Theorem 2]. Let �⊂ Rn+1 be a limited and
star-shaped set. We also suppose that ∂� is smooth and mean-convex. Denote by
H ∂� the mean curvature of ∂� with respect to the normal unit vector field inward
pointing to � and by B ⊂ Rn+1 a unit ball. Then,

1
2nωn

∫
∂�

H ∂� dµ∂� ≥
1
2

(
|∂�|

ωn

)(n−1)/n
.

Moreover, the equality will occur if and only if � is a ball.
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Proposition 3.4 [Freire and Schwartz 2014, Theorem 5, item (V)]. Let �⊂ Rn be
a set (not necessarily connected) limited, with a smooth mean-convex and outer-
minimizing boundary. Denote by H ∂� the mean curvature of ∂� with respect to
the normal unit vector field inward pointing to �. Then,

1
2(n−1)ωn−1

∫
∂�

H ∂� d∂�≥ 1
2

(
|∂�|

ωn−1

)(n−2)/(n−1)
.

Moreover, the equality will occur if and only if each connected component of � is
a rounded ball.

Lemma 3.5 [Huang and Wu 2015, Proposition 5.2]. Let a1, . . . , ak be nonnegative
real numbers and 0≤ β ≤ 1. Then,

k∑
i=1

aβi ≥
( k∑

i=1

ai

)β
.

If 0≤β<1, then the equality holds if and only if at most one element of {a1, . . . , ak}

is nonzero.

Using these results we obtain the following theorem:

Theorem 3.6. Let�⊂Rn
−
\{xn=0}, n≥3, be an open bounded set whose boundary

is smooth and mean-convex. Suppose that ∂� is outer-minimizing or each connected
component of � is star-shaped. Let f :Rn

−
\�→R be a C2 function up to boundary,

asymptotically flat, constant on each connected component of ∂� and such that
|D f |→∞ when x→ ∂�. We also suppose that fn = 0 on ∂Rn

−
, and the curvatures

that appears at the Proposition 3.2 are nonnegative. Then,

m(M,g) ≥
1
2

(
|∂�|

ωn−1

)(n−2)/(n−1)
,

where |∂�| denotes the area measure on ∂�.

Proof. By the Proposition 3.2, we have

2(n−1)ωn−1m(g)=
∫

Rn
−\�

S dxδ+
∫
∂Rn
−

H√
1+( fn)2

(2+|D f |2) dxδ+
∫
∂�

H ∂� d∂�.

Denoting by �i , i = 1, . . . , k, the connected components of �, we have

m(M,g) ≥
1

2(n−1)ωn−1

∑
i

∫
∂�i

H ∂�i d∂�i ≥
1
2

∑
i

(
|∂�i |

ωn−1

)(n−2)/(n−1)

≥
1
2

(∑
i

|∂�i |

ωn−1

)(n−2)/(n−1)

=
1
2

(
|∂�|

ωn−1

)(n−2)/(n−1)
.

�
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