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A SEMIDUALIZING MODULE

MOHAMMAD T. DIBAEI AND ARASH SADEGHI

The notion of linkage with respect to a semidualizing module is introduced.
This notion enables us to study the theory of linkage for modules in the Bass
class with respect to a semidualizing module. It is shown that over a Cohen–
Macaulay local ring with canonical module, every Cohen–Macaulay module
of finite Gorenstein injective dimension is linked with respect to the canoni-
cal module. For a linked module M with respect to a semidualizing module,
the connection between the Serre condition (Sn) on M and the vanishing of
certain local cohomology modules of its linked module is discussed.

1. Introduction

The theory of linkage of ideals in commutative algebra was introduced by Peskine
and Szpiro [1974]. Recall that two ideals I and J in a Cohen–Macaulay local
ring R are said to be linked if there is a regular sequence α in their intersection
such that I = (α : J ) and J = (α : I ). One of the main results in the theory of
linkage, due to C. Peskine and L. Szpiro, indicates that the Cohen–Macaulay-ness
property is preserved under linkage over Gorenstein local rings. They also give a
counterexample to show that the above result is no longer true if the base ring is
Cohen–Macaulay but non-Gorenstein. Attempts to generalize this theorem have led
to several developments in linkage theory, especially by C. Huneke and B. Ulrich
[Huneke 1982; Huneke and Ulrich 1987]. Schenzel [1982] used the theory of
dualizing complexes to extend the basic properties of linkage to the linkage by
Gorenstein ideals.

The classical linkage theory has been extended to modules by Martin [2000],
Yoshino and Isogawa [2000], Martsinkovsky and Strooker [2004], and Nagel [2005],
in different ways. Based on these generalizations, several works have been done
on studying the linkage theory in the context of modules; see for example [Dibaei
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et al. 2011; Dibaei and Sadeghi 2013; 2015; Iima and Takahashi 2016; Sadeghi
2017; Celikbas et al. 2017]. In this paper, we introduce the notion of linkage with
respect to a semidualizing module. This is a new notion of linkage for modules and
includes the concept of linkage due to Martsinkovsky and Strooker.

To be more precise, let M and N be R-modules and let α be an ideal of R
which is contained in AnnR(M)∩AnnR(N ). Assume that K is a semidualizing
R/α-module. We say that M is linked to N with respect to K if M ∼= λR/α(K, N )
and N ∼= λR/α(K,M), where

λR/α(K,−) :=�KTrK HomR/α(K,−),

where �K , TrK are the syzygy and transpose operators, respectively, with respect
to K. This notion enables us to study the theory of linkage for modules in the Bass
class with respect to a semidualizing module. In the first main result of this paper,
over a Cohen–Macaulay local ring with canonical module, it is proved that every
Cohen–Macaulay module of finite Gorenstein injective dimension is linked with
respect to the canonical module (see Theorem 3.12). More precisely:

Theorem A. Let R be a Cohen–Macaulay local ring of dimension d with canonical
module ωR . Assume that a is a Cohen–Macaulay quasi-Gorenstein ideal of grade n
and that M is a Cohen–Macaulay R-module of grade n and of finite Gorenstein
injective dimension (equivalently M ∈BωR ). If a⊆AnnR(M) and M is ωR/a-stable,
then the following statements hold true:

(i) M is linked by ideal a with respect to ωR/a.

(ii) λR/a(ωR/a,M) has finite Gorenstein injective dimension.

(iii) λR/a(ωR/a,M) is Cohen–Macaulay of grade n.

Martsinkovsky and Strooker [2004, Corollary 2] proved that horizontal linkage
preserves the maximal Cohen–Macaulay-ness property over Gorenstein rings, while
it may not preserve this property over non-Gorenstein rings. Theorem A shows that,
over a Cohen–Macaulay local ring with the canonical module, horizontal linkage
with respect to canonical module preserves maximal Cohen–Macaulay-ness for every
module of finite Gorenstein injective dimension. Note that over a Gorenstein ring,
every module has finite Gorenstein injective dimension. Therefore, Theorem A can
be viewed as a generalization of [Martsinkovsky and Strooker 2004, Corollary 2].

Recall that an R-module M is called G-perfect if gradeR(M)= G-dimR(M). If
R is Cohen–Macaulay then M is G-perfect if and only if M is Cohen–Macaulay and
G-dimR(M)<∞. Let us denote the category of G-perfect R-modules by X , and the
category of Cohen–Macaulay R-modules of finite Gorenstein injective dimension
is by Y . Theorem A enables us to obtain the following adjoint equivalence (see
Theorems 3.13 and 3.14).
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Theorem B. Let R be a Cohen–Macaulay local ring with canonical module ωR

and let a be a Cohen–Macaulay quasi-Gorenstein ideal, R = R/a. There is an
adjoint equivalence{

M ∈X
∣∣∣ M is linked by

the ideal a

} −⊗RωR
−−−−−−−→

HomR(ωR,−)
←−−−−−−−

{
N ∈ Y

∣∣∣ N is linked by the ideal
a with respect to ωR

}
.

Let R be a Cohen–Macaulay local ring with canonical module ωR . For a linked R-
module M, with respect to the canonical module, we study the connection between
the Serre condition on M with vanishing of certain local cohomology modules of its
linked module. We also establish a duality on local cohomology modules of a linked
module which is a generalization of [Schenzel 1982, Theorem 4.1; Martsinkovsky
and Strooker 2004, Theorem 10] (see Corollaries 4.9 and 4.12).

Theorem C. Let (R,m, k) be a Cohen–Macaulay local ring of dimension d > 1
with canonical module ωR . Assume that an R-module M is horizontally linked
to an R-module N with respect to ωR and that M has finite Gorenstein injective
dimension. Then the following statements hold true:

(i) M satisfies (Sn) if and only if Hi
m(N )= 0 for d − n < i < d.

(ii) If M is generalized Cohen–Macaulay then

Hi
m(HomR(ωR,M))∼= HomR(Hd−i

m (N ), ER(k)) for 0< i < d.

In particular, N is generalized Cohen–Macaulay.

The organization of the paper is as follows. In Section 2, we collect preliminary
notions, definitions and some known results which will be used in this paper. In
Section 3, the precise definition of linkage with respect to a semidualizing is given.
We obtain some necessary conditions for an R-module to be linked with respect to a
semidualizing (see Theorem 3.7). As a consequence, we prove Theorems A and B in
this section. In Section 4, for a linked R-module M, with respect to a semidualizing,
the relation between the Serre condition S̃n on M with vanishing of certain relative
cohomology modules of its linked module is studied. As a consequence, we prove
Theorem C.

2. Preliminaries

Throughout the paper, R is a commutative Noetherian semiperfect ring and all
R-modules are finitely generated. Note that a commutative ring R is semiperfect
if and only if it is a finite direct product of commutative local rings [Lam 1991,
Theorem 23.11]. Whenever, R is assumed to be local, its unique maximal ideal is
denoted by m. The canonical module of R is denoted by ωR .
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Let M be an R-module. For a finite projective presentation P1
f
−→P0→ M→ 0

of M, its transpose TrM is defined as Coker f ∗, where (−)∗ :=HomR(−, R), which
satisfies the exact sequence

0→ M∗→ P∗0
f ∗
−→ P∗1 → TrM→ 0.

Moreover, TrM is unique up to projective equivalence. Thus all minimal projective
presentations of M represent isomorphic transposes of M. The syzygy module �M
of M is the kernel of an epimorphism P α

−→M, where P is a projective R-module
which is unique up to projective equivalence. Thus �M is uniquely determined, up
to isomorphism, by a projective cover of M.

Martsinkovsky and Strooker [2004] generalized the notion of linkage for mod-
ules over noncommutative semiperfect Noetherian rings (i.e., finitely generated
modules over such rings have projective covers). In Proposition 1 of that paper,
they introduced the operator λ :=�Tr and showed that ideals a and b are linked by
zero ideal if and only if R/a∼= λ(R/b) and R/b∼= λ(R/a).

Definition 2.1 [Martsinkovsky and Strooker 2004, Definition 3]. Two R-modules
M and N are said to be horizontally linked if M ∼= λN and N ∼= λM. Equivalently,
M is horizontally linked (to λM) if and only if M ∼= λ2 M.

A stable module is a module with no nonzero projective direct summands. An
R-module M is called a syzygy module if it is embedded in a projective R-module.
Let i be a positive integer, an R-module M is said to be an i-th syzygy if there
exists an exact sequence

0→ M→ Pi−1→ · · · → P0,

where the P0, . . . , Pi−1 are projective. By convention, every module is a 0-th syzygy.
Here is a characterization of horizontally linked modules.

Theorem 2.2 [Martsinkovsky and Strooker 2004, Theorem 2 and Proposition 3]. An
R-module M is horizontally linked if and only if it is stable and Ext1R(TrM, R)= 0,
equivalently M is stable and is a syzygy module.

Semidualizing modules were initially studied in [Foxby 1972; Golod 1984].

Definition 2.3. An R-module C is called a semidualizing module if the homothety
morphism R→ HomR(C,C) is an isomorphism and Exti

R(C,C)= 0 for all i > 0.

It is clear that R itself is a semidualizing R-module. Over a Cohen–Macaulay
local ring R, a canonical module ωR of R, if it exists, is a semidualizing module
with finite injective dimension.

Conventions 2.4. Throughout let C denote a semidualizing R-module. We set
(−)O = HomR(−,C) and (−)g = HomR(C,−). The notation (−)∗ stands for the
R-dual functor HomR(−, R). The canonical module of a Cohen–Macaulay local
ring, if it exists, is denoted as ωR; then we set (−)† = HomR(−, ωR).
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Let P1
f
−→P0→ M→ 0 be a projective presentation of an R-module M. The

transpose of M with respect to C , denoted by TrC M, is defined to be Coker f O,
which satisfies the exact sequence

(2.4.1) 0→ MO→ PO0
f O
−→ PO1 → TrC M→ 0.

By [Foxby 1972, Proposition 3.1], there exists the exact sequence

(2.4.2) 0→ Ext1R(TrC M,C)→ M→ MOO→ Ext2R(TrC M,C)→ 0.

The Gorenstein dimension has been extended to GC -dimension in [Foxby 1972;
Golod 1984].

Definition 2.5. An R-module M is said to have GC -dimension zero if M is C-
reflexive, i.e., the canonical map M→ MOO is bijective, and Exti

R(M,C)= 0=
Exti

R(M
O,C) for all i > 0.

A GC -resolution of an R-module M is a right acyclic complex of GC -dimension
zero modules whose 0-th homology is M. The module M is said to have finite
GC -dimension, denoted by GC-dimR(M), if it has a GC -resolution of finite length.

Note that, over a local ring R, a semidualizing R-module C is a canonical module
if and only if GC-dimR(M)<∞ for all finitely generated R-modules M ; see [Gerko
2001, Proposition 1.3].

In the following, we summarize some basic facts about GC -dimension; see
[Auslander and Bridger 1969; Golod 1984] for more details.

Theorem 2.6. For an R-module M, the following statements hold true:

(i) GC-dimR(M) = 0 if and only if Exti
R(M,C) = 0 = Exti

R(TrC M,C) for all
i > 0.

(ii) GC-dimR(M)= 0 if and only if GC-dimR(TrC M)= 0.

(iii) If GC-dimR(M) <∞ then GC-dimR(M)= sup{i | Exti
R(M,C) 6= 0, i ≥ 0}.

(iv) If R is local and GC-dimR(M)<∞, then GC-dimR(M)=depth R−depthR(M).

The Gorenstein injective dimension was introduced by Enochs and Jenda [1995].

Definition 2.7 [Enochs and Jenda 1995; Christensen 2000, Definition 6.2.2]. An
R-module M is said to be Gorenstein injective if there is an exact sequence

I• = · · · → I1
∂1
−→ I0

∂0
−→ I−1→ · · ·

of injective R-modules such that M ∼= Ker(∂0) and HomR(E, I•) is exact for any
injective R-module E . The Gorenstein injective dimension of M, denoted by
Gid(M), is defined as the infimum of n for which there exists an exact sequence
as I• with M ∼= Ker(I0→ I−1) and Ii = 0 for all i <−n. The Gorenstein injective
dimension is a refinement of the classical injective dimension, Gid(M) ≤ id(M),
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with equality if id(M) <∞; see [Christensen 2000, Definition 6.2.6]. It follows
that every module over a Gorenstein ring has finite Gorenstein injective dimension.

Definition 2.8. The Auslander class with respect to C, denoted by AC , consists of
all R-modules M satisfying the following conditions:

(i) The natural map µ : M→ HomR(C,M ⊗R C) is an isomorphism.

(ii) TorR
i (M,C)= 0= Exti

R(C,M ⊗R C) for all i > 0.

Dually, the Bass class with respect to C , denoted by BC , consists of all R-modules
M satisfying the following conditions:

(i) The natural evaluation map µ : C ⊗R HomR(C,M)→ M is an isomorphism.

(ii) TorR
i (HomR(C,M),C)= 0= Exti

R(C,M) for all i > 0.

In the following we collect some basic properties and examples of modules in
the Auslander class, respectively in the Bass class, with respect to C , which will be
used in the rest of this paper.

Fact 2.9. The following statements hold:

(i) If any two R-modules in a short exact sequence are in AC , respectively BC ,
then so is the third one [Foxby 1972, Lemma 1.3]. Hence, every module of finite
projective dimension is in the Auslander class AC . Also the class BC contains all
modules of finite injective dimension.

(ii) Over a Cohen–Macaulay local ring R with canonical module ωR , we have
M ∈ AωR if and only if G-dimR(M) <∞ [Foxby 1975, Theorem 1]. Similarly,
M ∈BωR if and only if GidR(M) <∞ [Christensen et al. 2006, Theorem 4.4].

(iii) The PC -projective dimension of M, denoted by PC -pdR(M), is less than or
equal to n if and only if there is an exact sequence

0→ Pn ⊗R C→ · · · → P0⊗R C→ M→ 0

such that each Pi is a projective R-module [Takahashi and White 2010, Corol-
lary 2.10]. Note that if M has a finite PC -projective dimension, then M ∈BC by
Corollary 2.9 of the same paper.

(iv) M ∈ AC if and only if M ⊗R C ∈ BC . Similarly, M ∈ BC if and only if
Mg ∈ AC [Takahashi and White 2010, Theorem 2.8].

Definition 2.10. Let M and N be R-modules. Denote by β(M, N ) the set of R-
homomorphisms of M to N which pass through projective modules. That is, an
R-homomorphism f : M → N lies in β(M, N ) if and only if it is factored as
M→ P→ N, where P is projective. We denote the stable homomorphisms from
M to N as the quotient module

HomR(M, N )= HomR(M, N )/β(M, N ).
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By [Yoshino 1990, Lemma 3.9], there is a natural isomorphism

(2.10.1) HomR(M, N )∼= TorR
1 (TrM, N ).

The class of C-projective modules is defined as

PC = {P ⊗R C | P is projective}.

Two R-modules M and N are said to be stably equivalent with respect to C ,
denoted by M

C
≈N, if C1⊕M ∼= C2⊕ N for some C-projective modules C1 and C2.

We write M ≈ N when M and N are stably equivalent with respect to R. An
R-module M is called C-stable if M does not have a direct summand isomorphic
to a C-projective module. An R-module M is called a C-syzygy module if it is
embedded in a C-projective R-module.

Remark 2.11. Let M be an R-module.

(i) Let P1
f
−→P0→ M→ 0 be the minimal projective presentation of M. Then

TrM ⊗R C ∼= TrC M ; see [Dibaei and Sadeghi 2015, Remark 2.1(i)].

(ii) Note that, by [Martsinkovsky 2010, Proposition 3(a)], (P1)
∗
→ TrM→ 0 is

minimal. Therefore, by (i), we get the exact sequence

0→�CTrC M→ (P1)
∗
⊗R C→ TrC M→ 0,

where �CTrC M := Im f O.

(iii) It follows, by (2.10.1), that if HomR(M,C)= 0, then �CTrC M ∼= λM ⊗R C .

Definition 2.12 [Maşek 2000]. An R-module M is said to satisfy the property S̃k

if depthRp
(Mp)≥min{k, depth Rp} for all p ∈ Spec R.

Note that, for a horizontally linked module M over a Cohen–Macaulay local
ring R, the properties S̃k and (Sk) are identical.

3. Horizontal linkage with respect to a semidualizing

In this section C stands for a semidualizing R-module and M is an R-module. Set
(M)g := HomR(C,M) as in Conventions 2.4. In order to develop the notion of
linkage with respect to C , we give the following definition.

Definition 3.1. The linkage of M with respect to C is defined as the module
λR(C,M) := �CTrC(Mg). The module M is said to be horizontally linked to
an R-module N with respect to C if λR(C,M) ∼= N and λR(C, N ) ∼= M. Equiv-
alently, M is horizontally linked (to λR(C,M)) with respect to C if and only if
M ∼= λ2

R(C,M)(= λR(C, λR(C,M))). In this situation M is called a horizontally
linked module with respect to C .
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Assume that P1
f
−→P0→ Mg→ 0 is the minimal projective presentation of Mg.

By Remark 2.11, λR(C,M)= Im( f O) and we obtain the exact sequence

(3.1.1) 0→ λR(C,M)→ (P1)
∗
⊗R C→ TrC(Mg)→ 0.

Therefore λR(C,M) is unique, up to isomorphism. Having defined the horizontal
linkage with respect to a semidualizing module C , the general linkage for modules
is defined as follows.

Definition 3.2. Let a be an ideal of R and let K be a semidualizing R/a-module.
An R-module M is said to be linked to an R-module N by the ideal a, with respect
to K , if a ⊆ AnnR(M) ∩ AnnR(N ) and M and N are horizontally linked with
respect to K as R/a-modules. In this situation we write M K∼

a
N .

Lemma 3.3. Assume that an R-module M satisfies the following conditions:

(i) M is a C-stable and C-syzygy.

(ii) HomR(M
g,C)= 0= HomR(λ(M

g),C).

(iii) M ∼= C ⊗R Mg and λ(Mg)∼= HomR(C,C ⊗R λ(Mg)).

Then M is a horizontally linked R-module with respect to C.

Proof. As M is C-stable, by (iii), Mg is stable. By (i), we have the exact sequence
0→ M→ P⊗R C for some projective R-module P. By applying the functor (−)g

to the above exact sequence, it is easy to see that Mg is a first syzygy. It follows
from Theorem 2.2 that Mg is horizontally linked. In other words, Mg ∼= λ2(Mg).
Therefore, we obtain the isomorphisms

M ∼= C ⊗R Mg ∼= C ⊗R λ
2(Mg)

∼=�CTrC(λ(Mg))
∼=�CTrC HomR(C,C ⊗R λ(Mg))
∼= λR(C, λR(C,M)),

by Remark 2.11(iii) and our assumptions. �

For an integer n, set Xn(R) := {p ∈ Spec(R) | depth Rp ≤ n}.

Lemma 3.4. Let M be an R-module. Consider the natural map

µ : M→ HomR(C,M ⊗R C).

Then the following statements hold true:

(i) If M satisfies S̃1 and µp is a monomorphism for all p ∈ X0(R), then µ is a
monomorphism.

(ii) If M satisfies S̃2, M ⊗R C satisfies S̃1 and µp is an isomorphism for all
p ∈ X1(R), then µ is an isomorphism.
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Proof. (i) Set L =Ker(µ) and let p∈AssR(L). Therefore, depthRp
(Mp)= 0. As M

satisfies S̃1, we know p∈ X0(R) and so Lp= 0, which is a contradiction. Therefore,
µ is a monomorphism.

(ii) By (i), µ is a monomorphism. Consider the exact sequence

0→ M µ
−→HomR(C,M ⊗R C)→ L ′→ 0,

where L ′ := Coker(µ). Let p ∈ AssR(L ′). If p ∈ AssR(HomR(C,M ⊗R C)) ⊆
AssR(M⊗R C), then depthRp

(M⊗R C)p = 0. As M⊗R C satisfies S̃1, one obtains
p∈ X0(R), which is a contradiction, becauseµp is an isomorphism for all p∈ X0(R).
Now let depthRp

(HomR(C,M ⊗R C)p) > 0. It follows easily from the above exact
sequence that depthRp

(Mp)= 1. As Mp satisfies S̃2, we know p ∈ X1(R), which is
a contradiction because µp is an isomorphism for all p ∈ X1(R). Therefore L ′ = 0
and µ is an isomorphism. �

The proof of the following lemma is dual to the proof of [Dibaei and Sadeghi
2015, Lemma 2.11].

Lemma 3.5. Let R be a local ring, n ≥ 0 an integer, and M an R-module. If
M ∈BC , then the following statements hold true:

(i) depthR(M)= depthR(Mg) and dimR(M)= dimR(Mg).

(ii) M satisfies S̃n if and only if Mg does.

(iii) M is Cohen–Macaulay if and only if Mg is Cohen–Macaulay.

Lemma 3.6 [Sather-Wagstaff et al. 2010, Lemma 2.8]. Let M be an R-module that
is in the Bass class BC . Then GC-dimR(M)= 0 if and only if G-dimR(Mg)= 0.

In the following result, we give sufficient conditions for an element M ∈BC to
be a horizontally linked module with respect to C .

Theorem 3.7. Assume that M ∈BC is a C-syzygy and that idRp(Cp) <∞ for all
p ∈ X1(R). If M is C-stable and HomR(M

g,C) = 0 = Ext1R(M,C), then M is a
horizontally linked module with respect to C.

Proof. We shall prove that the conditions of Lemma 3.3 are satisfied. First note that

(3.7.1) M ∼= Mg⊗C,

because M ∈BC . As seen in the proof of Lemma 3.3, Mg is horizontally linked.
In other words, Mg ∼= λ2(Mg) and so we obtain the exact sequence

(3.7.2) 0→ Mg→ P→ Trλ(Mg)→ 0,

where P is a projective module. Applying −⊗R C gives the exact sequence

(3.7.3) 0→TorR
1 (Trλ(M

g),C)→Mg⊗R C→ P⊗R C→Trλ(Mg)⊗R C→ 0.
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Let p ∈ AssR(Tor
R
1 (Trλ(M

g),C)). It follows from (3.7.1) and the exact sequence
(3.7.3) that depthRp

(Mp)=depthRp
((Mg⊗R C)p)=0. As M is a C-syzygy module,

p ∈ X0(R). Note that, by Fact 2.9(iv), Mg∈ AC and so, G-dimRq((M
g)q)= 0 for

all q ∈ X0(R) by Fact 2.9(ii) and Theorem 2.6(iv). As λ(Mg) is a syzygy, one has

(3.7.4) Ext1R(Trλ(M
g), R)= 0.

It follows from (3.7.4), Theorem 2.6 and the exact sequence (3.7.2) that

G-dimRp((Trλ(M
g))p)= 0.

In other words, by Fact 2.9(ii), (Trλ(Mg))p ∈ACp . Hence TorR
1 (Trλ(M

g),C)p= 0,
which is a contradiction. Therefore, HomR(λ(M

g),C)∼= TorR
1 (Trλ(M

g),C)= 0
by (2.10.1).

Now we prove that the natural map µ : λ(Mg)→ HomR(C,C⊗R λ(Mg)) is an
isomorphism. To this end, we concentrate on Lemma 3.4. As Mg is horizontally
linked, we obtain the isomorphisms

(3.7.5) Ext2R(Trλ(M
g), R)∼= Ext1R(λ

2(Mg), R)
∼= Ext1R(M

g, R)
∼= Ext1R(M

g,Cg)
∼= Ext1R(M,C)= 0,

by [Takahashi and White 2010, Theorem 4.1 and Corollary 4.2]. It follows from
(3.7.4) and (3.7.5) that λ(Mg) is second syzygy and so it satisfies S̃2 by [Maşek
2000, Proposition 11]. By the exact sequence 0→λ(Mg)→ P ′→Tr(Mg)→0 and
the fact that TorR

1 (Tr(M
g),C)∼= HomR(M

g,C)= 0, it follows that λ(Mg)⊗R C
satisfies S̃1. As M satisfies S̃1, by Fact 2.9(ii), (iv), Lemma 3.5 and Theorem 2.6(iv),
G-dimRp((M

g)p)= 0 for all p∈ X1(R). Therefore, G-dimRp((λ(M
g))p)= 0 for all

p ∈ X1(R) by [Martsinkovsky and Strooker 2004, Theorem 1] and so (λ(Mg))p ∈
ACp for all p ∈ X1(R) by Fact 2.9(ii). Hence µ is an isomorphism by Lemma 3.4.
Now the assertion is clear by Lemma 3.3. �

Martsinkovsky and Strooker [2004, Corollary 2] proved that, over a Gorenstein
ring, horizontal linkage preserves the property of a module to be maximal Cohen–
Macaulay, while they showed in the example on page 601 of the same paper that over
non-Gorenstein rings, being maximal Cohen–Macaulay need not be preserved under
horizontal linkage. In the following, it is shown that, over a Cohen–Macaulay local
ring with the canonical module, horizontal linkage with respect to canonical module
preserves maximal Cohen–Macaulay-ness. Note that over a Gorenstein ring, every
module has finite Gorenstein injective dimension. Therefore, the following result can
be viewed as a generalization of [Martsinkovsky and Strooker 2004, Corollary 2].
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Corollary 3.8. Let R be a Cohen–Macaulay local ring with canonical module ωR .
Assume that M is a maximal Cohen–Macaulay R-module of finite Gorenstein
injective dimension. If M is ωR-stable then the following statements hold true:

(i) M is horizontally linked with respect to ωR .

(ii) λR(ωR,M) has finite Gorenstein injective dimension.

(iii) λR(ωR,M) is maximal Cohen–Macaulay.

Proof. (i) By Fact 2.9(ii), M ∈BωR . As M is maximal Cohen–Macaulay, it is a
ωR-syzygy and also Ext1R(M, ωR)= 0. Therefore, by Theorem 3.7, it is enough to
prove that HomR(HomR(ωR,M), ωR) = 0. Note that G-dimR(HomR(ωR,M)) =
0 by Theorem 2.6 and Lemma 3.6. Hence G-dimR(Tr HomR(ωR,M)) = 0 and
Tr HomR(ωR,M) ∈ AωR by Fact 2.9(ii) so that TorR

i (Tr HomR(ωR,M), ωR) = 0
for all i > 0. Indeed, by (2.10.1),

HomR(HomR(ωR,M), ωR)∼= TorR
1 (Tr HomR(ωR,M), ωR)= 0.

Therefore, by Theorem 3.7, M is horizontally linked with respect to ωR .

(ii) As we have seen in part (i), Tr(HomR(ωR,M))∈AωR . Hence by Fact 2.9(iv) and
Remark 2.11(i), TrωR (HomR(ωR,M)) ∈BωR . Therefore, GidR(λR(ωR,M)) <∞
by Fact 2.9(i) and the exact sequence (3.1.1).

(iii) By Lemma 3.5, HomR(ωR,M) is maximal Cohen–Macaulay. Therefore
TrωR (HomR(ωR,M)) is maximal Cohen–Macaulay by Theorem 2.6(ii). It follows
from the exact sequence (3.1.1) that λR(ωR,M) is maximal Cohen–Macaulay. �

To prove Theorem A, we first bring the following lemma and recall a definition.

Lemma 3.9. Let R be a Cohen–Macaulay local ring and let I be an unmixed ideal
of R. Assume that K is a semidualizing R/I -module and that M is an R-module
which is linked by I with respect to K. Then gradeR(M)= gradeR(I ).

Proof. First note that gradeR(M) = inf{depth Rq | q ∈ SuppR(M)}. Therefore,
gradeR(M) = depth Rp for some p ∈ MinR(M) and so p/I ∈ MinR/I (M). As M
is linked by I with respect to K , it is a first K -syzygy module and so p/I ∈
AssR/I (R/I ), because AssR/I (K ) = AssR/I (R/I ). As I is unmixed, grade(I ) =
depth Rp. �

Let (R,m, k) be a local ring and let M be an R-module. For every integer n ≥ 0
the n-th Bass number µn

R(M) is the dimension of the k-vector space ExtnR(k,M).

Definition 3.10 [Avramov and Foxby 1997]. An ideal a of a local ring R is called
quasi-Gorenstein if G-dimR(R/a) <∞ and for every i ≥ 0 there is an equality of
Bass numbers

µ
i+depth R
R (R)= µi+depth R/a

R/a (R/a).
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Theorem 3.11 [Avramov and Foxby 1997, Corollary 7.9]. Let R be a Cohen–
Macaulay local ring with canonical module ωR and let a be a quasi-Gorenstein ideal
of R. For an R/a-module M, we have GidR(M)<∞ if and only if GidR/a(M)<∞.
Also, G-dimR(M) <∞ if and only if G-dimR/a(M) <∞.

We now present Theorem A.

Theorem 3.12. Let R be a Cohen–Macaulay local ring of dimension d with canon-
ical module ωR and let a be a Cohen–Macaulay quasi-Gorenstein ideal of grade n,
R = R/a. Assume that M is a Cohen–Macaulay R-module of grade n and of finite
Gorenstein injective dimension such that a⊆ AnnR(M). If M is ωR-stable then the
following statements hold true:

(i) M is linked by ideal a with respect to ωR .

(ii) λR(ωR,M) has finite Gorenstein injective dimension.

(iii) λR(ωR,M) is Cohen–Macaulay of grade n.

Proof. (i) As R is Cohen–Macaulay,

d − n = d − grade(a)= dim(R/a).

On the other hand, as M is Cohen–Macaulay of grade n,

depthR(M)= depthR(M)= dimR(M)= d − n.

Therefore, M is a maximal Cohen–Macaulay R-module. By Theorem 3.11, GidR(M)
is finite and so M is horizontally linked with respect to ωR as an R-module by
Corollary 3.8.

(ii) By Corollary 3.8, GidR(λR(ωR,M))<∞, which by Theorem 3.11 is equivalent
to GidR(λR(ωR,M)) <∞.

(iii) By Corollary 3.8, λR(ωR,M) is a maximal Cohen–Macaulay R-module. Hence

depthR(λR(ωR,M))= depthR(λR(ωR,M))= dim(R/a).

Also, by Lemma 3.9, gradeR(λR(ωR,M))= n. Hence,

dimR(λR(ωR,M))= d − n = dim R/a.

Therefore, λR(ωR,M) is Cohen–Macaulay as an R-module. �

Let R be a Cohen–Macaulay local ring with canonical module ωR . Set

X := CM(R)∩AωR and Y := CM(R)∩BωR ,

where CM(R) is the category of Cohen–Macaulay R-module. Now we prove
Theorem B.
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Theorem 3.13. Let R be a Cohen–Macaulay local ring with canonical module ωR

and let a be a Cohen–Macaulay quasi-Gorenstein ideal of grade n, R = R/a. There
is an adjoint equivalence{

M ∈X
∣∣∣ M is linked

by the ideal a

} −⊗RωR
−−−−−−−→

HomR(ωR,−)
←−−−−−−−

{
N ∈ Y

∣∣∣ N is linked by the ideal
a with respect to ωR

}
.

Proof. Let M ∈X, which is linked by the ideal a. By Theorem 3.11, M ∈ AωR
.

Note that a is a G-perfect ideal and so gradeR(M)= gradeR(a) by [Sadeghi 2017,
Lemma 3.16]. Therefore

depthR(M)= dimR(M)= dim R− gradeR(M)= dim R− gradeR(a).

Hence M is a maximal Cohen–Macaulay R-module. Set N =M⊗RωR . By [Dibaei
and Sadeghi 2015, Lemma 2.11], N is a maximal Cohen–Macaulay R-module.
Therefore N ∈ CM(R). Also, by Fact 2.9(iv) and Theorem 3.11, N ∈BωR . Hence
N ∈ Y . As M ∈ AωR

,

(3.13.1) M ∼= HomR(ωR, N ).

Note that M is stable R-module by Theorem 2.2. It follows from (3.13.1) that N is
ωR-stable. Hence, by Theorem 3.12, N is linked by the ideal a with respect to ωR .

Conversely, assume that N ∈Y , which is linked by the ideal a with respect to ωR .
As N is Cohen–Macaulay, by Lemma 3.9,

depthR(N )= dimR(N )= dim R− gradeR(N )= dim R− gradeR(a).

Therefore N is a maximal Cohen–Macaulay R-module. Set M = HomR(ωR, N ).
Note that by Theorem 3.11, N ∈ BωR

. Hence M ∈ AωR by Fact 2.9(iv), and
Theorem 3.11. Also, by Lemma 3.5, M is a maximal Cohen–Macaulay R-module.
Thus M ∈X. Set X = HomR(ωR, λR(ωR, N )). It follows from Theorem 3.12(ii),
Fact 2.9(ii), (iv), and Theorem 3.11 that X ∈ AωR

. Also, by Theorem 3.12(iii)
and Lemma 3.5, X is a maximal Cohen–Macaulay R-module. Therefore, by
Theorem 2.6(ii), (iv) and Fact 2.9(ii), G-dimR(λR X)=0. In other words, λR X ∈AωR

.
Hence,

(3.13.2) λR X ∼= HomR(ωR, λR X ⊗R ωR).

As λR X is a first syzygy of TrR X , by Fact 2.9(i), TrR X ∈ AωR
. Therefore

HomR(X, ωR)
∼= TorR

1 (TrR X, ωR)= 0. As N is linked by the ideal a with respect
to ωR , it follows from Remark 2.11(iii) that

(3.13.3) N ∼=�ωR
TrωR

X ∼= λR X ⊗R ωR.

It follows from (3.13.2) and (3.13.3) that M ∼= λR X . Hence, by [Avramov 1998,
Corollary 1.2.5], M is a stable R-module. By [Martsinkovsky and Strooker 2004,
Theorem 1], M is linked by the ideal a. �
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Let a be an ideal of R an let M be an R/a-module. Recall that M is said
to be self-linked by the ideal a if M ∼= λR/aM. Let K be a semidualizing R/a-
module. An R/a-module N is called self-linked by the ideal a with respect to K if
N ∼= λR/a(K, N ).

Theorem 3.14. Let R be a Cohen–Macaulay local ring with canonical module ωR

and let a be a Cohen–Macaulay quasi-Gorenstein ideal of grade n, R = R/a. There
is an adjoint equivalence{

M∈AωR

∣∣∣M is self -linked
by the ideal a

} −⊗RωR
−−−−−−−→

HomR(ωR,−)
←−−−−−−−

{
N ∈BωR

∣∣∣ N is self -linked by the
ideal a with respect to ωR

}
.

Proof. Let M ∈AωR and let M ∼= λR M. It follows from Theorem 3.11 that M ∈AωR
.

Set N = M ⊗R ωR . Therefore,

(3.14.1) M ∼= HomR(ωR, N ).

As M ∼=�RTrR M, we have TrR M ∈ AωR
. Hence,

HomR(M, ωR)
∼= TorR

1 (TrR M, ωR)= 0.

It follows from (3.14.1) and Remark 2.11(iii) that

λR(ωR, N )=�ωR
TrωR

(HomR(ωR, N ))
∼=�ωR

TrωR
(M)

∼= λR M ⊗R ωR

∼= M ⊗R ωR = N .

In other words, N is self-linked by the ideal a with respect to ωR . Also, by
Fact 2.9(iv), Theorem 3.11, N ∈BωR .

Conversely, assume that N ∈BωR which is self-linked by the ideal a with respect
to ωR . Set M = HomR(ωR, N ). It follows from Fact 2.9(iv), Theorem 3.11 that
M ∈ AωR . As N ∼= λR(ωR, N ), we have TrωR

(M) ∈ BωR
by the exact sequence

(3.1.1), Fact 2.9(i) and Theorem 3.11. It follows from Remark 2.11(i) and Fact 2.9(iv)
that TrR(M) ∈AωR

. Therefore HomR(M, ωR)
∼= TorR

1 (TrR(M)ωR)= 0. Hence, by
Remark 2.11(iii),

(3.14.2) N ∼= λR(ωR, N )∼= λR(M)⊗R ωR.

As TrR(M) ∈ AωR
, we have λR M ∈ AωR

. Hence

(3.14.3) λR M ∼= HomR(ωR, λR M ⊗R ωR).

It follows from (3.14.2) and (3.14.3) that M ∼= λR M. �
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4. Serre condition and vanishing of local cohomology

In this section, for a linked module, we study the relation between the Serre
condition S̃n and the vanishing of certain relative cohomology modules of its linked
module. As a consequence, [Schenzel 1982, Theorem 4.1] is generalized. We start
with the following lemma, which will be used in the proof of Theorem 4.2.

Lemma 4.1. Let M be a C-syzygy module. Then Ext1R(TrC(M
g),C)= 0. In par-

ticular, if M is horizontally linked with respect to C , then Ext1R(TrC(M
g),C)= 0.

Proof. Consider the exact sequence 0→ M→ P ⊗R C , where P is a projective
R-module. Applying the functor (−)g to the above exact sequence, we get the
exact sequence 0→ Mg→ P. Therefore, Ext1R(TrM

g, R)= 0. By [Rotman 2009,
Theorem 10.62], there is a third quadrant spectral sequence

Ep,q
2 = Ext

p
R(Tor

R
q (Tr(M

g),C),C)⇒ Ext
p+q
R (Tr(Mg), R).

Hence we obtain the following exact sequence

0→ Ext1R(Tr(M
g)⊗R C,C)→ Ext1R(Tr(M

g), R),

by [Rotman 2009, Theorem 10.33]. Hence, by Remark 2.11,

Ext1R(TrC(M
g),C)∼= Ext1R(Tr(M

g)⊗R C,C)= 0. �

The following is a generalization of [Martsinkovsky and Strooker 2004, Theo-
rem 1].

Theorem 4.2. Let M be an R-module which is horizontally linked with respect to C.
Assume M ∈BC . Then GC-dimR(M)= 0 if and only if G-dimR((λR(C,M))g)= 0.

Proof. Set N = λR(C,M). Consider the exact sequence

(4.2.1) 0→ M→ P∗⊗R C→ TrC(Ng)→ 0,

where P is a projective R-module; see (3.1.1). As M ∈BC , we know TrC(Ng)∈BC

by the exact sequence (4.2.1) and Fact 2.9(i). Hence Tr(Ng) ∈AC by Remark 2.11
and Fact 2.9(iv). In particular,

(4.2.2) Tr(Ng)∼= HomR(C,Tr(Ng)⊗R C)∼= HomR(C,TrC(Ng)).

It follows from Theorem 2.6(ii), Lemma 3.6 and (4.2.2) that

(4.2.3) G-dimR(Ng)= 0 ⇐⇒ GC-dimR(TrC(N
g))= 0.

On the other hand, by the exact sequence (4.2.1)
(4.2.4)
GC-dimR(M)= 0 and Ext1R(TrC(N

g),C)= 0 ⇐⇒ GC-dimR(TrC(N
g))= 0.

Now the assertion is clear by (4.2.3), (4.2.4) and Lemma 4.1. �



322 MOHAMMAD T. DIBAEI AND ARASH SADEGHI

The class PC is precovering and then each R-module M has an augmented
proper PC -resolution; that is, there is an R-complex

X+ = · · · → C ⊗R P1→ C ⊗R P0→ M→ 0

such that HomR(Y, X+) is exact for all Y ∈PC . The truncated complex

X = · · · → C ⊗R P1→ C ⊗R P0→ 0

is called a proper PC -projective resolution of M. Proper PC -projective resolutions
are unique up to homotopy equivalence.

Definition 4.3 [Takahashi and White 2010]. Let M and N be R-modules. The n-th
relative cohomology module is defined as ExtnPC

(M, N )=Hn HomR(X, N ), where
X is a proper PC -projective resolution of M.

Theorem 4.4 [Takahashi and White 2010, Theorem 4.1 and Corollary 4.2]. Let M
and N be R-modules. Then there exists an isomorphism

Exti
PC
(M, N )∼= Exti

R(M
g, Ng)

for all i ≥ 0. Moreover, if M and N are in BC then Exti
PC
(M, N )∼= Exti

R(M, N )
for all i ≥ 0.

For a positive integer n, a module M is called an n-th C-syzygy module if there
is an exact sequence 0→ M→ C1→ C2→ · · · → Cn , where Ci ∈PC for all i .
The following results will be used in the proof of Theorem 4.7.

Lemma 4.5. Let M be an R-module such that GCp-dimRp(Mp) <∞ for all p ∈
Xn−2(R). Then the following statements are equivalent:

(i) M is an n-th C-syzygy module.

(ii) Exti
R(TrC M,C)= 0 for 0< i < n.

Proof. The proof is analogous to [Maşek 2000, Theorem 43]. �

Theorem 4.6 [Dibaei and Sadeghi 2015, Proposition 2.4]. Let C be a semidualizing
R-module and M an R-module. For a positive integer n, consider the following
statements:

(i) Exti
R(TrC M,C)= 0 for all i , 1≤ i ≤ n.

(ii) M is an n-th C-syzygy module.

(iii) M satisfies S̃n .

Then the following implications hold true:

(a) (i)=⇒ (ii)=⇒ (iii).

(b) If M has finite GC -dimension on Xn−1(R), then (iii)=⇒ (i).
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The following is a generalization of [Schenzel 1982, Theorem 4.1].

Theorem 4.7. Let M be an R-module which is horizontally linked with respect to C.
Assume that M ∈BC . For a positive integer n, consider the following statements:

(i) Exti
PC
(λR(C,M),C)= 0 for 0< i < n.

(ii) M is an n-th C-syzygy module.

(iii) M satisfies S̃n .

Then the following implications hold true:

(a) (i)=⇒ (ii)=⇒ (iii).

(b) If M has finite GC -dimension on Xn−2(R), then the statements (i) and (ii) are
equivalent.

(c) If M has finite GC -dimension on Xn−1(R), then all the statements (i)–(iii) are
equivalent.

Proof. Set N = λR(C,M). Consider the exact sequence

(4.7.1) 0→ M→ P ⊗R C→ TrC(Ng)→ 0,

where P is a projective R-module. By Lemma 4.1,

(4.7.2) Ext1R(TrC(N
g),C)= 0.

Therefore, by [Dibaei and Sadeghi 2015, Lemma 2.2], the exact sequence (4.7.1)
induces the exact sequence

(4.7.3) 0→ TrCTrC(Ng)→ Q⊗R C→ TrC M→ 0,

where Q is a projective R-module. Moreover, by [Sadeghi 2017, Lemma 2.12],
there exists the following exact sequence

(4.7.4) 0→ Ng→ TrCTrC(Ng)→ X→ 0,

where GC-dimR(X) = 0. As M is horizontally linked with respect to C , it is a
C-syzygy module and so Ext1R(TrC M,C)= 0. Therefore, by the exact sequences
(4.7.3) and (4.7.4), we obtain

(4.7.5) Exti
R(TrC M,C)= 0 for 1≤ i ≤ n

⇐⇒ Exti
R(N

g,C)= 0 for 1≤ i ≤ n− 1.

As M ∈BC , by Fact 2.9(i) and the exact sequence (4.7.1), TrC(Ng) ∈BC . Hence,
by Fact 2.9(iv) and Remark 2.11(i), Tr(Ng) ∈ AC . It follows from [Sadeghi 2017,
Theorem 4.1] that

(4.7.6) Exti
R(N

g,C)= 0 for 0< i < n ⇐⇒ Exti
R(N

g, R)= 0 for 0< i < n.
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Note that, by Theorem 4.4, we have the isomorphism

(4.7.7) Exti
PC
(N ,C)∼= Exti

R(N
g, R) for all i ≥ 0.

Implications (a) and (c) follow from (4.7.5), (4.7.6), (4.7.7) and Theorem 4.6,
and (b) follows from (4.7.5), (4.7.6), (4.7.7) and Lemma 4.5. �

Corollary 4.8. Let C be a semidualizing R-module with idRp(Cp) < ∞ for all
p ∈ Xn−1(R). Assume that M is an R-module which is horizontally linked with
respect to C and that M ∈BC . Then the following are equivalent:

(i) M satisfies S̃n .

(ii) M is an n-th C-syzygy module.

(iii) Exti
R(λR(C,M),C)= 0 for 0< i < n.

(iv) Exti
PC
(λR(C,M),C)= 0 for 0< i < n.

Proof. (i)=⇒ (iii): Set N = λR(C,M). By Lemma 3.5,

(4.8.1) M satisfies S̃n ⇐⇒ Mg satisfies S̃n.

By Lemma 4.1, Ext1R(TrC(M
g),C)= 0. It follows from the exact sequence (3.1.1)

that

(4.8.2) Exti
R(N ,C)= 0 for 0< i < n

⇐⇒ Exti
R(TrC(M

g),C)= 0 for 0< i < n+ 1.

Now the assertion follows from (4.8.1), (4.8.2) and Theorem 4.6.
The equivalence of (i), (ii) and (iv) follows from Theorem 4.7. �

Now we are ready to present the first part of Theorem C.

Corollary 4.9. Let (R,m) be a Cohen–Macaulay local ring of dimension d > 0
with canonical module ωR . Assume that M is an R-module of finite Gorenstein
injective dimension which is horizontally linked with respect to ωR . The following
are equivalent:

(i) M satisfies (Sn).

(ii) Hi
m(λR(ωR,M))= 0 for d − n < i < d.

In particular, M is maximal Cohen–Macaulay if and only if λR(ωR,M) is maximal
Cohen–Macaulay.

Proof. This is an immediate consequence of Corollary 4.8, Fact 2.9(ii) and the local
duality theorem. �

One may translate Corollary 4.9 to a change-of-rings result.
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Corollary 4.10. Let (R,m) be a Cohen–Macaulay local ring with canonical mod-
ule ωR and let a be a Cohen–Macaulay quasi-Gorenstein ideal of R of grade n,
R = R/a. Assume that M is an R-module of finite Gorenstein injective dimension
which is linked by the ideal a with respect to ωR . The following are equivalent:

(i) M satisfies (Sn).

(ii) Hi
m(λR(ωR,M))= 0 for dim R/a− n < i < dim R/a.

Proof. This is an immediate consequence of Corollary 4.9 and Theorem 3.11. �

Recall that an R-module M of dimension d ≥ 1 is called a generalized Cohen–
Macaulay module if `(Hi

m(M)) <∞ for all i , 0≤ i ≤ d − 1, where ` denotes the
length. For an R-module M and positive integer n, set T C

n M := TrC�
n−1 M.

Theorem 4.11. Let R be a Cohen–Macaulay local ring of dimension d > 1 and
let C be a semidualizing R-module with idRp(Cp) <∞ for all p ∈ Spec(R) \ {m}.
Assume that M is a generalized Cohen–Macaulay R-module which is horizontally
linked with respect to C and that M ∈BC . Then Exti

R(M
g,C) ∼= Hi

m(λR(C,M))
for 0< i < d. In particular, λR(C,M) is generalized Cohen–Macaulay.

Proof. Set X = Mg and N = λR(C,M). As M is generalized Cohen–Macaulay, by
[Trung 1986, Lemmas 1.2 and 1.4] and Theorem 2.6(iv), GCp-dimRp(Mp)= 0 for all
p∈Spec R\{m}. Therefore G-dimRp(Xp)=0 for all p∈Spec R\{m} by Lemma 3.6.
Hence, Exti

R(X,C) has finite length for all i > 0. Consider the exact sequences

0→ Exti
R(X,C)→ T C

i X→ L i → 0,(4.11.1)

0→ L i →⊕
ni C→ T C

i+1 X→ 0(4.11.2)

for all i > 0. By applying the functor 0m(−) on the exact sequences (4.11.1) and
(4.11.2), we get

H j
m(T

C
i−1 X)∼= H j

m(L i−1) for all i and j, with j ≥ 1, i ≥ 2,(4.11.3)

Exti
R(X,C)= 0m(Ext

i
R(X,C))∼= 0m(T

C
i X) for all i ≥ 1,(4.11.4)

and also

(4.11.5) H j
m(T

C
i X)∼= H j+1

m (L i−1) for all i and j, 0≤ j < d − 1, i ≥ 2.

As M is horizontally linked with respect to C , we have the exact sequence

0→ N →⊕nC→ T C
1 X→ 0

for some integer n> 0. By applying the functor 0m(−) to the above exact sequence,
we get the isomorphism

(4.11.6) H j
m(T

C
1 X)∼= H j+1

m (N ) for all j, 0≤ j ≤ d − 2.

Now by using (4.11.3), (4.11.4), (4.11.5) and (4.11.6) we obtain the result. �
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Now we give a proof for part (ii) of Theorem C as the following corollary.

Corollary 4.12. Let (R,m, k) be a Cohen–Macaulay local ring of dimension d > 1
with canonical module ωR . Assume that M is an R-module of finite Gorenstein injec-
tive dimension which is horizontally linked with respect to ωR . If M is generalized
Cohen–Macaulay, then the following statements hold true:

(i) Hi
m(HomR(ωR,M))∼= HomR(Hd−i

m (λR(ωR,M)), ER(k)) for 0< i < d.

(ii) λR(ωR,M) is generalized Cohen–Macaulay.

(iii) If M is not maximal Cohen–Macaulay, then

depthR(M)= sup{i < d | Hi
m(λR(ωR,M)) 6= 0}.

Proof. Parts (i) and (ii) follow immediately from Theorem 4.11 and the local duality
theorem. Part (iii) follows from part (i) and Lemma 3.5. �

We end the paper with the following result, which is an immediate consequence
of Corollary 4.12 and Theorem 3.11.

Corollary 4.13. Let (R,m, k) be a Cohen–Macaulay local ring with canonical
module ωR , let c be a Cohen–Macaulay quasi-Gorenstein ideal of R, R = R/c
and dim R = d > 1. Assume that M is an R-module of finite Gorenstein injective
dimension which is linked by the ideal c with respect to ωR . If M is generalized
Cohen–Macaulay, then

Hi
m(HomR(ωR,M))∼= HomR(Hd−i

m (λR(ωR,M)), ER(k))

for 0< i < d.
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