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Let Mn be a biharmonic hypersurface with constant scalar curvature in a
space form Mn+1(c). We show that Mn has constant mean curvature if c > 0
and Mn is minimal if c ≤ 0, provided that the number of distinct principal
curvatures is no more than 6. This partially confirms Chen’s conjecture and
the generalized Chen’s conjecture. As a consequence, we prove that there
exist no proper biharmonic hypersurfaces with constant scalar curvature in
Euclidean space En+1 or hyperbolic space Hn+1 for n < 7.

1. Introduction

In 1983, Eells and Lemaire [1983] introduced the concept of biharmonic maps
in order to generalize classical theory of harmonic maps. A biharmonic map φ
between an n-dimensional Riemannian manifold (Mn, g) and an m-dimensional
Riemannian manifold (N m, h) is a critical point of the bienergy functional

E2(φ)=
1
2

∫
M
|τ(φ)|2 dvg,

where τ(φ)= trace∇dφ is the tension field of φ that vanishes for a harmonic map.
More clearly, the Euler–Lagrange equation associated to the bienergy is given by

τ2(φ)=−1τ(φ)− trace RN (dφ, τ(φ))dφ = 0,

where RN is the curvature tensor of N m (see, e.g., [Jiang 1987]). We call φ to be a
biharmonic map if its bitension field τ2(φ) vanishes.

Biharmonic maps between Riemannian manifolds have been extensively studied
by geometers. In particular, many authors investigated a special class of biharmonic
maps named biharmonic immersions. An immersion φ : (Mn, g)→ (N m, h) is
biharmonic if and only if its mean curvature vector field EH fulfills the fourth-order
semilinear elliptic equations (see, e.g., [Caddeo et al. 2001]):

(1-1) 1 EH + trace RN (dφ, EH)dφ = 0.
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It is well known that any minimal immersion (satisfying EH = 0) is harmonic. The
nonharmonic biharmonic immersions are called proper biharmonic.

We should mention that biharmonic submanifolds in a Euclidean space Em were
independently defined by B. Y. Chen in the middle of 1980s (see [Chen 1991])
with the geometric condition 1 EH = 0, or equivalently 12φ = 0. Interestingly, both
biharmonic submanifolds and biharmonic immersions in Euclidean spaces coincide
with each other.

In recent years, the classification problem of biharmonic submanifolds has
attracted great attention in geometry. In particular, there is a longstanding conjecture
on biharmonic submanifolds due to Chen:

Chen’s conjecture [1991]. Every biharmonic submanifold in Euclidean space Em

is minimal.

Chen’s conjecture still remains open, even for hypersurfaces. In three decades,
only partial answers to Chen’s conjecture have been obtained, e.g., [Akutagawa and
Maeta 2013; Alías et al. 2013; Chen 2015; Ou 2012]. In the case of hypersurfaces,
Chen’s conjecture is true for the following special cases:

• Surfaces in E3 [Chen 1991; Jiang 1987].

• Hypersurfaces with at most two distinct principal curvatures in Em [Dimitrić
1992].

• Hypersurfaces in E4 [Hasanis and Vlachos 1995] (see also [Defever 1998]).

• δ(2)-ideal and δ(3)-ideal hypersurfaces in Em [Chen and Munteanu 2013].

• Weakly convex hypersurfaces in Em [Luo 2014].

• Hypersurfaces with at most three distinct principal curvatures in Em [Fu 2015a].

• Generic hypersufaces with irreducible principal curvature vector fields in Em

[Koiso and Urakawa 2014].

• Invariant hypersurfaces of cohomogeneity one in Em [Montaldo et al. 2016].

In 2001, Caddeo, Montaldo and Oniciuc [Caddeo et al. 2001] proposed the
following generalized Chen’s conjecture:

Generalized Chen’s conjecture. Every biharmonic submanifold in a Riemannian
manifold with nonpositive sectional curvature is minimal.

Recently, Ou and Tang [2012] constructed a family of counterexamples, where
the generalized Chen’s conjecture is false when the ambient space has nonconstant
negative sectional curvature. However, the generalized Chen’s conjecture remains
open when the ambient spaces have constant sectional curvature. For more recent
developments of the generalized Chen’s conjecture, we refer to [Chen 2014; 2015;
Montaldo and Oniciuc 2006; Oniciuc 2012; Nakauchi and Urakawa 2011; Ou 2016].
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The classification of proper biharmonic submanifolds in Euclidean spheres is
rather rich and interesting. The first example of proper biharmonic hypersurfaces
is a generalized Clifford torus S p(1/

√
2)× Sq(1/

√
2) ↪→ Sn+1 with p 6= q and

p + q = n, given by Jiang [1986]. The complete classifications of biharmonic
hypersurfaces in S3 and S4 were obtained in [Caddeo et al. 2001; Balmuş et al.
2010]. Moreover, biharmonic hypersurfaces with at most three distinct principal
curvatures in Sn were classified in [Balmuş et al. 2010; Fu 2015b]. For more details,
we refer the readers to [Balmuş et al. 2013; Loubeau and Oniciuc 2014; Oniciuc
2002; 2012; Ichiyama et al. 2010].

In general, the classification problem of proper biharmonic hypersurfaces in
space forms becomes more complicated when the number of distinct principal
curvatures is 4 or more.

In view of the above aspects, it is reasonable to study biharmonic submanifolds
with some geometric conditions. In geometry, hypersurfaces with constant scalar
curvature have been intensively studied by many geometers for the rigidity problem
and classification problem, for instance, see [Cheng and Yau 1977]. Some estimate
for scalar curvature of compact proper biharmonic hypersurfaces with constant
scalar curvature in spheres was obtained in [Balmuş et al. 2008]. Recently, it was
proved in [Fu 2015c] that a biharmonic hypersurface with constant scalar curvature
in the 5-dimensional space forms M5(c) necessarily has constant mean curvature.

Motivated by above results, in this paper we consider biharmonic hypersurfaces
Mn with constant scalar curvatures in a space form Mn(c). More precisely, we get:

Theorem 1.1. Let Mn be an orientable biharmonic hypersurface with at most six
distinct principal curvatures in Mn+1(c). If the scalar curvature R is constant, then
Mn has constant mean curvature.

In general, it is difficult to deal with the biharmonic immersion equation (1-1)
due to its high nonlinearity. In order to prove Theorem 1.1, we use some new ideas
to overcome the difficulty of treating the equation of a biharmonic hypersurface.
More precisely, we transfer the problem into a system of algebraic equations (see
Lemma 3.3), so we can determine the behavior of the principal curvature functions
by investigating the solution of the system of algebraic equations (see Lemma 3.4).
Then, we are able to prove that a biharmonic hypersurface with constant scalar
curvatures in a space form Mn(c) must have constant mean curvature, provided
that the number of distinct principal curvature is no more than 6. We would like
to point out that our approach in this paper is different from those in [Fu 2015b;
2015c; Defever 1998; Balmuş et al. 2010].

Remark 1.2. Balmuş, Montaldo and Oniciuc in [Balmuş et al. 2008] conjectured
that the proper biharmonic hypersurfaces in Sn+1 must have constant mean curvature.
Theorem 1.1 with c = 1 gives a partial answer to this conjecture.
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We should point out that the complete classification of proper biharmonic hyper-
surfaces with constant mean curvature in a sphere is still open in the case where
the number of distinct principal curvatures is more than 3 (see [Oniciuc 2012]).

Moreover, combining these results with the biharmonic equations in Section 2,
we have:

Corollary 1.3. Any biharmonic hypersurface with constant scalar curvature and
with at most six distinct principal curvatures in Euclidean space En+1 or hyperbolic
space Hn+1 is minimal.

Thus, this result gives a partial answer to Chen’s conjecture and the generalized
Chen’s conjecture.

Further, as a direct consequence, we get the following characterization result:

Corollary 1.4. Any biharmonic hypersurface with constant scalar curvature in
Euclidean space En+1 or hyperbolic space Hn+1 for n < 7 has to be minimal.

Remark 1.5. We could replace or weaken the constant scalar curvature condition in
Theorem 1.1 by constant length of the second fundamental form or linear Weingarten
type, i.e., the scalar curvature R satisfying R = aH +b for some constants a and b.
In fact, the discussion is extremely similar to the proof of Theorem 1.1 and the
same conclusion holds true as well.

The paper is organized as follows. In Section 2, we recall some necessary
background theory for hypersurfaces and equivalent conditions for biharmonic
hypersurfaces. In Section 3, we prove some useful lemmas (Lemmas 3.1–3.6),
which are crucial to prove the main theorem. Finally, in Section 4, we give a proof
of Theorem 1.1.

2. Preliminaries

In this section, we recall some basic material for the theory of hypersurfaces
immersed in a Riemannian space form.

Let φ : Mn
→Mn+1(c) be an isometric immersion of a hypersurface Mn into a

space form Mn+1(c) with constant sectional curvature c. Denote the Levi-Civita
connections of Mn and Mn+1(c) by ∇ and ∇̃, respectively. Let X and Y denote the
vector fields tangent to Mn and let ξ be a unit normal vector field. Then the Gauss
and Weingarten formulas (see [Chen 2015]) are given, respectively, by

∇̃X Y =∇X Y + h(X, Y ),(2-1)

∇̃Xξ =−AX,(2-2)

where h is the second fundamental form and A is the Weingarten operator. Note
that the second fundamental form h and the Weingarten operator A are related by

(2-3) 〈h(X, Y ), ξ〉 = 〈AX, Y 〉.
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The mean curvature vector field EH is defined by

EH = 1
n trace h.(2-4)

Moreover, the Gauss and Codazzi equations are given, respectively, by

R(X, Y )Z = c
(
〈Y, Z〉X −〈X, Z〉Y

)
+〈AY, Z〉AX −〈AX, Z〉AY,

(∇X A)Y = (∇Y A)X,

where R is the curvature tensor of Mn and (∇X A)Y is given by

(∇X A)Y =∇X (AY )− A(∇X Y )(2-5)

for all X, Y, Z tangent to Mn.
Assume that EH = Hξ and H denotes the mean curvature.
By identifying the tangent and the normal parts of the biharmonic condition (1-1)

for hypersurfaces in a space form Mn+1(c), the following characterization result
for Mn to be biharmonic was obtained (see also [Caddeo et al. 2002; Balmuş et al.
2010]):

Proposition 2.1. The immersion φ : Mn
→Mn+1(c) of a hypersurface Mn in an

n+1-dimensional space form Mn+1(c) is biharmonic if and only if

(2-6)
{
1H + H trace A2

= ncH,
2A grad H + nH grad H = 0.

The Laplacian operator 1 on Mn acting on a smooth function f is given by

1 f =− div(∇ f )=−
n∑

i=1

< ∇ei (∇ f ), ei >=−

n∑
i=1

(ei ei −∇ei ei ) f.(2-7)

The following result was obtained in [Fu 2015b]:

Theorem 2.2. Let Mn be an orientable proper biharmonic hypersurface with at
most three distinct principal curvatures in Mn+1(c). Then Mn has constant mean
curvature.

3. Some lemmas

We now consider an orientable biharmonic hypersurface Mn (n > 3) in a space
form Mn+1(c).

In general, the set MA of all points of Mn, at which the number of distinct
eigenvalues of the Weingarten operator A (i.e., the principal curvatures) is locally
constant, is open and dense in Mn. Since Mn with at most three distinct principal
curvatures everywhere in a space form Mn+1(c) is CMC, i.e., the mean curvature
is constant (Theorem 2.2), one can work only on the connected component of MA

consisting of points where the number of principal curvatures is more than 3 (by
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passing to the limit, H will be constant on the whole Mn). On that connected
component, the principal curvature functions of A are always smooth.

Suppose that, on the component, the mean curvature H is not constant. Thus,
there is a point p where grad H(p) 6= 0. In the following, we will work on a
neighborhood of p where grad H(p) 6= 0 at any point of Mn.

The second equation of (2-6) shows that grad H is an eigenvector of the Wein-
garten operator A with the corresponding principal curvature −nH/2. We may
choose e1 such that e1 is parallel to grad H, and with respect to some suitable
orthonormal frame {e1, . . . , en}, the Weingarten operator A of M takes the form

A = diag(λ1, λ2, . . . , λn),(3-1)

where λi are the principal curvatures and λ1 =−nH/2. Therefore, it follows from
(2-4) that

∑n
i=1 λi = nH, and hence

n∑
i=2

λi =−3λ1.(3-2)

Denote by R the scalar curvature and by B the squared length of the second
fundamental form h of M. It follows from (3-1) that B is given by

B = trace A2
=

n∑
i=1

λ2
i =

n∑
i=2

λ2
i + λ

2
1.(3-3)

From the Gauss equation, the scalar curvature R is given by

R = n(n− 1)c+ n2 H 2
− B = n(n− 1)c+ 3λ2

1−

n∑
i=2

λ2
i .(3-4)

Hence
n∑

i=2

λ2
i = n(n− 1)c− R+ 3λ2

1.(3-5)

Since grad H =
∑n

i=1 ei (H)ei and e1 is parallel to grad H, it follows that

e1(H) 6= 0, ei (H)= 0, 2≤ i ≤ n,

and hence

e1(λ1) 6= 0, ei (λ1)= 0, 2≤ i ≤ n.(3-6)

Put ∇ei e j =
∑n

k=1 ω
k
i j ek (1≤ i, j ≤ n). A direct computation concerning the com-

patibility conditions ∇ek 〈ei , ei 〉 = 0 and ∇ek 〈ei , e j 〉 = 0 (i 6= j) yields, respectively,
that

(3-7) ωi
ki = 0, ω

j
ki +ω

i
k j = 0, i 6= j.
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The Codazzi equation yields

ei (λ j )= (λi − λ j )ω
j
j i ,(3-8)

(λi − λ j )ω
j
ki = (λk − λ j )ω

j
ik,(3-9)

for distinct i, j, k.
Moreover, from (3-6) we have

[ei , e j ](λ1)= 0,

which yields directly

ω1
i j = ω

1
j i , 2≤ i, j ≤ n and i 6= j.(3-10)

Lemma 3.1. Let Mn be an orientable biharmonic hypersurface with nonconstant
mean curvature in Mn+1(c). Then the multiplicity of the principal curvature λ1

(which equals −nH/2) is 1, i.e., λ j 6= λ1 for 2≤ j ≤ n.

Proof. If λ j = λ1 for j 6= 1, by putting i = 1 in (3-8), we get

0= (λ1− λ j )ω
j
j1 = e1(λ j )= e1(λ1),

which contradicts (3-6). �

Lemma 3.2. The smooth real-valued functions λi and ω1
i i (2≤ i ≤ n) satisfy the

following differential equations:

e1e1(λ1)= e1(λ1)
(∑n

i=2
ω1

i i

)
+ λ1(n(n− 2)c− R+ 4λ2

1),(3-11)

e1(λi )= λiω
1
i i − λ1ω

1
i i ,(3-12)

e1(ω
1
i i )= (ω

1
i i )

2
+ λ1λi + c.(3-13)

Proof. Substituting H =−2λ1/n into the first equation of (2-6), and using (2-7),
(3-6), (3-3) and (3-5), we get (3-11). By putting i = 1 in (3-8), combining this with
(3-9) gives (3-12).

Next, we will prove (3-13).
For j = 1 and i 6= 1 in (3-8), by (3-6) we have ω1

1i = 0 (i 6= 1). Combining this
with (3-7), we have

ωi
11 = 0, for 1≤ i ≤ n.(3-14)

For j = 1, and k, i 6= 1 in (3-9) we have

(λi − λ1)ω
1
ki = (λk − λ1)ω

1
ik,

which together with (3-10) yields

(3-15) ω1
ki = 0, k 6= i, if λk 6= λi .



336 YU FU AND MIN-CHUN HONG

For i 6= j and 2≤ i, j ≤ n, if λi = λ j , then by putting k = 1 in (3-9) we have

(λ1− λi )ω
j
i1 = 0,

which together with Lemma 3.1, (3-15) and (3-7) yields

ω
j
i1 = 0, i 6= j, and 2≤ i, j ≤ n.(3-16)

From the Gauss equation and (3-1), we have 〈R(e1, ei )e1, ei 〉 = −λ1λi − c. On the
other hand, the Gauss curvature tensor R is defined by

R(X, Y )Z =∇X∇Y Z −∇Y∇X Z −∇[X,Y ]Z .

Using (3-14), (3-16) and (3-7), a direct computation gives

〈R(e1, ei )e1, ei 〉 = −e1(ω
1
i i )+ (ω

1
i i )

2.

Thus, we obtain differential equation (3-13), completing the proof of Lemma 3.2. �

Consider an integral curve of e1 passing through p = γ (t0) as γ (t), t ∈ I. Since
ei (λ1)= 0 for 2≤ i ≤ n and e1(λ1) 6= 0, it is easy to show that there exists a local
chart (U ; t = x1, x2, . . . , xm) around p, such that λ1(t, x2, . . . , xm)= λ1(t) on the
whole neighborhood of p.

In the following, we begin our arguments under the assumption that the scalar
curvature R is always constant. The following system of algebraic equations is
important for us to proceed further.

Lemma 3.3. Assume that R is constant. We have
n∑

i=2

(ω1
i i )

k
= fk(t), for k = 1, . . . , 5,(3-17)

where fk(t) are some smooth real-valued functions with respect to t .

Proof. Since e1(λ1) 6= 0, λ1 = λ1(t) and R is constant, (3-11) becomes
n∑

i=2

ω1
i i = f1(t),(3-18)

where

f1(t)=
e1e1(λ1)− λ1

(
n(n− 2)c+ 4λ2

1− R
)

e1(λ1)
.

Taking the sum of (3-13) and (3-12) for i and taking into account (3-2) and (3-18),
respectively, we have

n∑
i=2

(
ω1

i i
)2
= f2(t),(3-19)

n∑
i=2

λiω
1
i i = g1(t),(3-20)
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where f2 = 3λ2
1− (n− 1)c+ e1( f1) and g1(t)= λ1 f1− 3e1(λ1).

Multiplying by ω1
i i on both sides of (3-13), we have

1
2 e1((ω

1
i i )

2)= (ω1
i i )

3
+ λ1λiω

1
i i + cω1

i i .

Using this and (3-18)–(3-20), we obtain
n∑

i=2

(ω1
i i )

3
= f3(t),(3-21)

where f3 =
1
2 e1( f2)− λ1g1− c f1.

Differentiating (3-20) with respect to e1 and using (3-12) and (3-13), we have

e1(g1)= 2
n∑

i=2

λi (ω
1
i i )

2
+ λ1

n∑
i=2

λ2
i + c

n∑
i=2

λi − λ1

n∑
i=2

(ω1
i i )

2.(3-22)

From (3-2), (3-5) and (3-19), this yields
n∑

i=2

λi (ω
1
i i )

2
= g2(t),(3-23)

where g2 =
1
2

{
e1(g1)− λ1

(
n(n− 1)c− R+ 3λ2

1

)
+ 3cλ1+ λ1 f2

}
.

Multiplying by (ω1
i i )

2 on both sides of (3-13), we have

1
3 e1((ω

1
i i )

3)= (ω1
i i )

4
+ λ1λi (ω

1
i i )

2
+ c(ω1

i i )
2.

Applying (3-19), (3-21) and (3-23) to this, we obtain
n∑

i=2

(ω1
i i )

4
= f4(t),(3-24)

where f4 =
1
3 e1( f3)− λ1g2− c f2.

Multiplying by λi on both sides of (3-12) gives

λ2
i ω

1
i i =

1
2 e1(λ

2
i )+ λ1λiω

1
i i ,

which together with (3-5) and (3-20) yields
n∑

i=2

λ2
i ω

1
i i = g3(t),(3-25)

where g3 = 3λ1e1(λ1)+ λ1g1.
Differentiating (3-23) with respect to e1 and using (3-12) and (3-13), we have

(3-26) e1(g2)= 3
n∑

i=2

λi (ω
1
i i )

3
− λ1

n∑
i=2

(ω1
i i )

3
+ 2λ1

n∑
i=2

λ2
i ω

1
i i + 2c

n∑
i=2

λiω
1
i i .
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Substituting (3-20), (3-21) and (3-25) into (3-26) gives
n∑

i=2

λi (ω
1
i i )

3
= g4(t),(3-27)

where
g4 =

1
3(e1(g2)+ λ1 f3− 2λ1g3− 2cg1).

Multiplying by (ω1
i i )

3 on both sides of (3-13), we have

1
4 e1((ω

1
i i )

4)= (ω1
i i )

5
+ λ1λi (ω

1
i i )

3
+ c(ω1

i i )
3.

Applying (3-21), (3-24) and (3-27) to this, we have
n∑

i=2

(
ω1

i i
)5
= f5(t),(3-28)

where f5 =
1
4 e1( f4)− λ1g4− c f3. �

Lemma 3.4. Assume that R is constant. If the number m of distinct principal
curvatures satisfies m ≤ 6, then ei (λ j ) = 0 for 2 ≤ i, j ≤ n, i.e., all principal
curvature λi depend only on one variable t .

Proof. Since the number m of distinct principal curvatures satisfies m ≤ 6, there
are at most five distinct principal curvatures for λi (2≤ i ≤ n) except λ1. It follows
easily from (3-12) and (3-13) that

λi 6= λ j ⇔ ω1
i i 6= ω

1
j j .

We now distinguish the following two cases:

Case A: Suppose that m = 6. We denote by λ̃i the five distinct principal curvatures
with the corresponding multiplicities ni for 1≤ i ≤ 5. Note that here ni are positive
integers and

∑5
i=1 ni = n− 1 (see Lemma 3.1). According to (3-12), let

ui :=
e1(λ̃i )

λ̃i − λ1
.

Thus, the ui are mutually different for 1≤ i ≤ 5.
In this case, the system of polynomial equations (3-17) becomes

(3-29)

n1u1+ n2u2+ n3u3+ n4u4+ n5u5 = f1,

n1u2
1+ n2u2

2+ n3u2
3+ n4u2

4+ n5u2
5 = f2,

n1u3
1+ n2u3

2+ n3u3
3+ n4u3

4+ n5u3
5 = f3,

n1u4
1+ n2u4

2+ n3u4
3+ n4u4

4+ n5u4
5 = f4,

n1u5
1+ n2u5

2+ n3u5
3+ n4u5

4+ n5u5
5 = f5.
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Since ei ( f1)= 0 for 2≤ i ≤ n, differentiating both sides of the equations in (3-29)
with respect to ei (2≤ i ≤ n), we obtain

(3-30)

n1ei (u1)+ n2ei (u2)+ n3ei (u3)+ n4ei (u4)+ n5ei (u5)= 0,

n1u1ei (u1)+ n2u2ei (u2)+ n3u3ei (u3)+ n4u4ei ((u4)+ n5u5ei (u5)= 0,

n1u2
1ei (u1)+ n2u2

2ei (u2)+ n3u2
3ei (u3)+ n4u2

4ei (u4)+ n5u2
5ei (u5)= 0,

n1u3
1ei (u1)+ n2u3

2ei (u2)+ n3u3
3ei (u3)+ n4u3

4ei (u4)+ n5u3
5ei (u5)= 0,

n1u4
1ei (u1)+ n2u4

2ei (u2)+ n3u4
3ei (u3)+ n4u4

4ei (u4)+ n5u4
5ei (u5)= 0.

Now consider this system of five linear equations with five unknowns ei (uk) for
1≤ k ≤ 5.

According to Cramer’s rule in linear algebra, for any k, ei (uk)≡ 0 holds true if
and only if the determinant of the coefficient matrix of (3-30) is not vanishing, i.e.,

(3-31)

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1
u1 u2 u3 u4 u5

u2
1 u2

2 u2
3 u2

4 u2
5

u3
1 u3

2 u3
3 u3

4 u3
5

u4
1 u4

2 u4
3 u4

4 u4
5

∣∣∣∣∣∣∣∣∣∣∣
6= 0.

We note that the determinant in (3-31) is the famous Vandermonde determinant
with order 5 and hence

(3-32)

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1
u1 u2 u3 u4 u5

u2
1 u2

2 u2
3 u2

4 u2
5

u3
1 u3

2 u3
3 u3

4 u3
5

u4
1 u4

2 u4
3 u4

4 u4
5

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤ j<i≤5

(ui − u j ).

Since the ui are mutually different for 1≤ i ≤ 5, (3-32) implies that (3-31) holds
true identically. Hence, we have ei (uk)= 0 for any 1≤ k ≤ 5 and 2≤ i ≤ n.

Therefore, by using ei (uk)= 0 and

ei e1(uk)− e1ei (uk)= [ei , e1](uk)=

n∑
j=2

(ω
j
i1−ω

j
1i )e j (uk),

we get

ei e1(uk)= 0.

Noting that with the notation uk , (3-13) becomes

e1(uk)= (uk)
2
+ λ1λk + c.
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Differentiating the above equation with respect to ei , by taking into account
ei (uk)= 0 and ei e1(uk)= 0 we derive

ei (λk)= 0

for any 1≤ k ≤ 5 and 2≤ i ≤ n.

Case B: Suppose m ≤ 5. Denote by λ̃i the distinct principal curvatures with the
corresponding multiplicities ni for 1 ≤ i ≤ 4. Then the number of different ui is
less than or equal to 4. In the case that four of the ui are mutually different, it is
only necessary to consider the system (3-17) for k = 1, 2, 3, 4. A similar discussion
to the one in Case A yields the conclusion. If less than four of the ui are mutually
different, then the conclusion follows by some arguments similar to the above.

Thus, we conclude Lemma 3.4. �

Lemma 3.5. For three arbitrary distinct principal curvatures λi , λ j and λk , where
2≤ i, j, k ≤ n, we have the following relations:

ωk
i j (λ j − λk)= ω

k
ji (λi − λk)= ω

i
k j (λ j − λi ),(3-33)

ωk
i jω

k
ji +ω

i
jkω

i
k j +ω

j
ikω

j
ki = 0,(3-34)

ωk
i j (ω

1
j j −ω

1
kk)= ω

k
ji (ω

1
i i −ω

1
kk)= ω

i
k j (ω

1
j j −ω

1
i i ).(3-35)

Proof. We recall from the beginning of this section that the number m of distinct
principal curvatures satisfies m ≥ 4. Hence, by taking into account the second
expression of (3-7) and (3-9) for three distinct principal curvatures λi , λ j and λk

(2≤ i, j, k ≤ n), we obtain (3-33) and (3-34) immediately.
Let us consider (3-35). It follows from the Gauss equation that

〈R(ei , e j )ek, e1〉 = 0.

Moreover, since ω1
i j = 0 for i 6= j from (3-7) and (3-16), from the definition of the

curvature tensor we have

ωk
i j (ω

1
j j −ω

1
kk)= ω

k
ji (ω

1
i i −ω

1
kk).(3-36)

Similarly, by considering 〈R(e j , ek)ei , e1〉 = 0 one also has

ωi
jk(ω

1
kk −ω

1
i i )= ω

i
k j (ω

1
j j −ω

1
i i ),

which together with (3-7) and (3-36) gives (3-35). �

Lemma 3.6. Under the assumptions as above, we have

ω1
i iω

1
j j −

n∑
k=2, k 6=l(i, j)

2ωk
i jω

k
ji =−λiλ j − c, for λi 6= λ j ,(3-37)

where l(i, j) stands for the indexes satisfying λl(i, j) = λi or λ j .
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Proof. In the following, we consider the case that the number m of distinct principal
curvatures is 6.

Without loss of generality, except in the case of λ1, we assume λp, λq , λr , λu, λv

are the five distinct principal curvatures in sequence with the corresponding multi-
plicities n1, n2, n3, n4, n5, respectively, i.e.,

λ1, λp, . . . , λp︸ ︷︷ ︸
n1

, λq , . . . , λq︸ ︷︷ ︸
n2

, λr , . . . , λr︸ ︷︷ ︸
n3

, λu, . . . , λu︸ ︷︷ ︸
n4

, λv, . . . , λv︸ ︷︷ ︸
n5

.

We now compute 〈R(ep, eq)ep, eq〉. On one hand, it follows from the Gauss
equation and (3-1) that

〈R(ep, eq)ep, eq〉 = −λpλq − c.(3-38)

On the other hand, since

∇ep∇eq ep =

n∑
k=1

ep
(
ωk

qp
)
ek +

n∑
k=1

ωk
qp

n∑
l=1

ωl
pkel,

∇eq∇ep ep =

n∑
k=1

eq
(
ωk

pp
)
ek +

n∑
k=1

ωk
pp

n∑
l=1

ωl
qkel,

∇[ep,eq ]ep =

n∑
k=1

(
ωk

pq −ω
k
qp
) n∑

l=1

ωl
kpel,

it follows that

(3-39) 〈R(ep, eq)ep, eq〉 =

ep(ω
q
qp)+

n∑
k=1

ωk
qpω

q
pk − eq(ω

q
pp)−

n∑
k=1

ωk
ppω

q
qk −

n∑
k=1

(ωk
pq −ω

k
qp)ω

q
kp.

Since λp 6= λq , from (3-8), (3-7) and Lemma 3.4 we have

ωq
qp = ω

p
qq = ω

q
pp = 0 and

n∑
k=2

ωk
ppω

q
qk = 0.(3-40)

Moreover, if 2≤ k ≤ n1+ 1, then λk = λp, by the second expression of (3-7) and
(3-9) we get

(λp − λk)ω
k
qp = (λq − λk)ω

k
pq and (λk − λq)ω

q
pk = (λp − λq)ω

q
kp,

which imply that

(3-41) ωk
pq = ω

q
pk = ω

q
kp = 0.
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Similarly, if n1+ 2≤ k ≤ n1+ n2+ 1, we also have

ωk
pq = ω

q
pk = ω

q
kp = 0.(3-42)

Hence, by taking (3-40)–(3-42) into account, (3-39) becomes

〈R(ep, eq)ep, eq〉 = ω
1
ppω

1
qq +

n∑
k=n1+n2+2

{
ωk

qpω
q
pk − (ω

k
pq −ω

k
qp)ω

q
kp

}
,

which together with (3-38), (3-7) and (3-34) gives

ω1
ppω

1
qq −

n∑
k=n1+n2+2

2ωk
pqω

k
qp =−λpλq − c.(3-43)

Similarly, we can deduce other equations for different pairs ω1
ppω

1
rr , ω

1
ppω

1
uu, . . . .

Hence we get (3-37).
In the case that the number m of distinct principal curvatures is equal to 4 or 5,

a very similar argument gives (3-37) as well. �

4. Proof of Theorem 1.1

Assume that the mean curvature H is not constant.
Differentiating (3-2) with respect to e1 and using (3-12) and (3-13), we obtain

3e1(λ1)=

n∑
i=2

(λ1− λi )ω
1
i i .(4-1)

Following the previous section, we only deal with the case where the number of
distinct principal curvatures is 6, i.e., m = 6. In fact, the proofs for the cases
m = 4, 5 are very similar, so we omit them here without loss of generality.

According to Lemma 3.5, we consider the following cases:

Case A: ωr
pq 6= 0, ωu

pq 6= 0, and ωvpq 6= 0. Since λp, λq , λr , λu, λv are mutually
different, equations (3-33) and (3-35) reduce to

ω1
pp −ω

1
qq

λp − λq
=
ω1

pp −ω
1
rr

λp − λr
=
ω1

qq −ω
1
rr

λq − λr

=
ω1

pp −ω
1
uu

λp − λu
=
ω1

qq −ω
1
uu

λq − λu

=
ω1

pp −ω
1
vv

λp − λv
=
ω1

qq −ω
1
vv

λq − λv
.

Thus, there exist two smooth functions ϕ and ψ depending on t such that

(4-2) ω1
i i = ϕλi +ψ.
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Differentiating with respect to e1 on both sides of (4-2), and using (3-12) and (3-13)
we get

e1(ϕ)= λ1(ϕ
2
+ 1)+ϕψ,(4-3)

e1(ψ)= ψ(λ1ϕ+ψ)+ c.(4-4)

Taking into account (4-2), and using (3-2), (3-5) one has

n∑
i=2

ω1
i i =−3λ1ϕ+ (n− 1)ψ,

and (4-1) and (3-11), respectively, become

3e1(λ1)=
(
R− n(n− 1)c− 6λ2

1
)
ϕ+ (n+ 2)λ1ψ,(4-5)

e1e1(λ1)= e1(λ1)(−3λ1ϕ+ (n− 1)ψ)+ λ1
(
n(n− 2)c− R+ 4λ2

1
)
.(4-6)

Differentiating (4-5) with respect to e1, we may eliminate e1e1(λ1) by (4-6). Using
(4-3), (4-4) and (4-6) we have

3(n− 4)e1(λ1)ψ = λ1
(
6R− (4n2

− 12n− 3)c− 27λ2
1
)
.(4-7)

Note here, n > 4 since the number of distinct principal curvatures is 6.
Eliminating e1(λ1) between (4-5) and (4-7) gives

(4-8) (n− 4)
{(

R− n(n− 1)c− 6λ2
1
)
ϕψ + (n+ 2)λ1ψ

2}
= λ1

(
6R− (4n2

− 12n− 3)c− 27λ2
1
)
.

Further, differentiating (4-7) with respect to e1, by (4-4), (4-6), (4-7), (4-5) we have(
432λ4

1+ a1λ
2
1+ a2

)
ϕ+

{
−54(n+ 3)λ3

1+ a3λ1
}
ψ = 12(n− 4)λ3

1+ a4λ1,(4-9)

where

a1 = (97n2
− 111n+ 60)c− 105R,

a2 = ((4n2
− 9n+ 9)c− 6R)(n(n− 1)c− R),

a3 = 12R− (4n2
− 6n+ 21)c,

a4 = 3n(n− 4)(n− 2)c.

Differentiating (4-9) with respect to e1 and using (4-3) and (4-4), we get

(1728λ3
1+ 2a1λ1)ϕe1(λ1)+ (432λ4

1+ a1λ
2
1+ a2){λ1(ϕ

2
+ 1)+ϕψ}

+{−162(n+ 3)λ2
1+ a3}ψe1(λ1)+{−54(n+ 3)λ3

1+ a3λ1}{ψ(λ1ϕ+ψ)+ c}

= (36(n− 4)λ2
1+ a4)e1(λ1).
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Multiplying by 3(n− 4) on both sides of the above equation and using (4-5) and
(4-7) we have

(4-10) (n− 4)
(
1728λ3

1+ 2a1λ1
)
ϕ
{(

R− n(n− 1)c− 6λ2
1
)
ϕ+ (n+ 2)λ1ψ

}
+ 3(n− 4)

(
432λ4

1+ a1λ
2
1+ a2

){
λ1(ϕ

2
+ 1)+ϕψ

}
+ λ1

{
−162(n+ 3)λ2

1+ a3
}{

6R− (4n2
− 12n− 3)c− 27λ2

1
}

+ 3(n− 4)
{
−54(n+ 3)λ3

1+ a3λ1
}{
ψ(λ1ϕ+ψ)+ c

}
= (n− 4)

(
36(n− 4)λ2

1+ a4
){(

R− n(n− 1)c− 6λ2
1
)
ϕ+ (n+ 2)λ1ψ

}
.

Note that Equation (4-10) could be rewritten as

q1(λ1)ϕ
2
+ q2(λ1)ϕψ + q3(λ1)ψ

2
+ q4(λ1)ϕ+ q5(λ1)ψ + q6(λ1)= 0,(4-11)

where qi are nontrivial polynomials concerning the function λ1 and given by:

(4-12)

q1 = (n− 4)
(
1728λ3

1+ 2a1λ1
)(

R− n(n− 1)c− 6λ2
1
)

+3(n− 4)
(
432λ4

1+ a1λ
2
1+ a2

)
λ1,

q2 = (n− 4)(n+ 2)λ1
(
1728λ3

1+ 2a1λ1
)

+3(n− 4)
(
432λ4

1+ a1λ
2
1+ a2

)
+ 3(n− 4)

{
−54(n+ 3)λ3

1+ a3λ1
}
λ1,

q3 = 3(n− 4)
{
−54(n+ 3)λ3

1+ a3λ1
}
,

q4 = (n− 4)
(
36(n− 4)λ2

1+ a4
)(

R− n(n− 1)c− 6λ2
1
)
,

q5 =−(n− 4)(n+ 2)
(
36(n− 4)λ2

1+ a4
)
λ1,

q6 =−3(n− 4)
(
432λ4

1+ a1λ
2
1+ a2

)
λ1

+ λ1
(
−162(n+ 3)λ2

1+ a3
){

6R− (4n2
− 12n− 3)c− 27λ2

1
}

+ 3c(n− 4)
{
−54(n+ 3)λ3

1+ a3λ1
}
.

In the same manner, (4-8) and (4-9) could be also rewritten, respectively, as:

p1(λ1)ϕψ + p2(λ1)ψ
2
= p3(λ1),(4-13)

h1(λ1)ϕ+ h2(λ1)ψ = h3(λ1),(4-14)

where pi , hi (i = 1, 2) are polynomials concerning the function λ1 and given by

(4-15)

p1 = (n− 4)
(
R− n(n− 1)c− 6λ2

1
)
,

p2 = (n− 4)(n+ 2)λ1,

p3 = λ1
(
6R− (4n2

− 12n− 3)c− 27λ2
1
)
,

h1 = 432λ4
1+ a1λ

2
1+ a2,

h2 =−54(n+ 3)λ3
1+ a3λ1,

h3 = 12(n− 4)λ3
1+ a4λ1.
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Multiplying by h2
1 on both sides of (4-11), by taking into account (4-14) we may

eliminate ϕ and get

P1ψ
2
+ P2ψ = P3,(4-16)

where

(4-17)

P1 = q1h2
2− q2h1h2+ q3h2

1,

P2 =−2q1h2h3+ q2h1h3− q4h1h2+ q5h2
1,

P3 =−q1h2
3− q4h1h3− q6h2

1.

Similarly, eliminating ϕ in (4-13) by using (4-14) yields

Q1ψ
2
+ Q2ψ = Q3,(4-18)

where

(4-19)

Q1 = p2h1− p1h2,

Q2 = p1h3,

Q3 = p3h1.

Moreover, multiplying by Q1 and P1 on both sides of the equations (4-16) and
(4-18), respectively, after eliminating the ‘ψ2’ part we obtain

(P2 Q1− P1 Q2)ψ = P3 Q1− P1 Q3.(4-20)

Multiplying (4-20) by P1ψ and then combining this with (4-16) gives{
P1(P3 Q1− P1 Q3)+ P2(P2 Q1− P1 Q2)

}
ψ = P3(P2 Q1− P1 Q2).(4-21)

At last, after eliminating ψ between (4-20) and (4-21) we get

(4-22) P1(P3 Q1− P1 Q3)
2
+ P2(P2 Q1− P1 Q2)(P3 Q1− P1 Q3)

= P3(P2 Q1− P1 Q2)
2.

We observe from (4-12), (4-15), (4-17) and (4-19) that both Pi and Qi (1≤ i ≤ 3)
are polynomials concerning λ1 with constant coefficients. Hence, it follows that

P1 =−10077696(n− 4)(n+ 3)(n− 1)λ11
1 + · · · ,

P2 =−839808(n− 4)2(11n+ 5)λ11
1 + · · · ,

P3 =−69984(19n+ 113)λ13
1 + · · · ,

Q1 = 108(n− 4)(n− 1)λ5
1+ · · · ,

Q2 =−72(n− 4)2λ5
1+ · · · ,

Q3 =−11664λ7
1+ · · · ,

where we only need to write the highest order terms of λ1.
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By substituting Pi and Qi into (4-22), we get a polynomial equation concerning
λ1 with constant coefficients ci = ci (n, c, R):∑47

i=0
ciλ

i
1 = 0,(4-23)

where the coefficient c47 of the highest order term satisfies

c47 =−10077696(n− 4)2(n+ 3)(n− 1)2
[
69984× 108(19n+ 113)

+10077696× 11664(n+ 3)
]2
6= 0.

Therefore, λ1 has to be constant and H =−2λ1/n is a constant, which is a contra-
diction.

Case B: ωr
pq 6= 0, ωu

pq 6= 0, and ωk
i j = 0 for all other distinct triplets {i, j, k} and

distinct principal curvatures λi , λ j , λk . Then, (3-37) implies that

ω1
ppω

1
vv =−λpλv − c,(4-24)

ω1
qqω

1
vv =−λqλv − c,(4-25)

ω1
rrω

1
vv =−λrλv − c,

ω1
uuω

1
vv =−λuλv − c.

Similar to Case A, since ωr
pq 6= 0 and ωu

pq 6= 0, (3-33) and (3-35) imply that

ω1
i i = ϕλi +ψ, for i = p, q, r, u,(4-26)

where ϕ and ψ satisfy the differential equations (4-3) and (4-4).
Substituting (4-26) into (4-24) and (4-25), we obtain

ω1
vv =−

1
ϕ
λv,(4-27)

λvψ = cϕ,(4-28)

which means that ω1
vv and λv are determined completely by ϕ and ψ .

Substitute (4-26)–(4-28) into (4-1), and then differentiate it with respect to e1. By
using (4-3), (4-4) and (3-11), a similar discussion as in Case A gives a polynomial
concerning the function λ1 with constant coefficients. Hence, λ1 has to be constant,
which yields a contradiction as well.

Case C: ωr
pq 6= 0 (or ωr

pq = 0), and all the ωk
i j = 0 for distinct triplets {i, j, k} and

distinct principal curvatures λi , λ j , λk . Then, (3-37) implies that

ω1
ppω

1
uu =−λpλu − c, ω1

ppω
1
vv =−λpλv − c,(4-29)

ω1
qqω

1
uu =−λqλu − c, ω1

qqω
1
vv =−λqλv − c,(4-30)

ω1
rrω

1
uu =−λrλu − c, ω1

rrω
1
vv =−λrλv − c,(4-31)

ω1
uuω

1
vv =−λuλv − c.(4-32)



BIHARMONIC HYPERSURFACES WITH CONSTANT SCALAR CURVATURE 347

We first consider λi 6= 0 for i = p, q, r, u, v. Consequently, (4-29)–(4-32) reduce to

ω1
pp

λp
=
ω1

qq

λq
=
ω1

rr

λr
=−

λu − λv

ω1
uu −ω

1
vv

,

ω1
uu

λu
=
ω1
vv

λv
=−

λp − λq

ω1
pp −ω

1
qq
,

and hence

ω1
pp

λp
=
ω1

qq

λq
=
ω1

rr

λr
= ϕ,(4-33)

ω1
uu

λu
=
ω1
vv

λv
= ψ(4-34)

for two functions ϕ and ψ .
Substituting (4-33) and (4-34) back to (4-29) gives

(1+ϕψ)λpλu =−c,

(1+ϕψ)λpλv =−c,

which imply that λu = λv. This is impossible.
If λp = 0, then (3-12) and (4-29) imply that ω1

pp = 0 and c= 0. Then (4-30) and
(4-31) yield

ω1
uu

λu
=
ω1
vv

λv
= γ(4-35)

for some function γ . However, combining (4-35) with (4-32) gives γ 2
=−1. Hence

it is a contradiction.
Lastly, we consider λu = 0. Then (3-12) and (4-29) reduce to ω1

uu = c = 0. The
second equations of (4-29)–(4-31) show that

ω1
pp

λp
=
ω1

qq

λq
=
ω1

rr

λr
= ϕ,(4-36)

ω1
vv

λv
=−

1
ϕ
.(4-37)

By taking into account (4-36) and (4-37) together with (3-11) and (4-1), a very
similar and direct computation as in Case A also gives a polynomial concerning
the function λ1 with constant coefficients. Hence, this is a contradiction and the
mean curvature H must be constant.

In conclusion, the proof of Theorem 1.1 is completed.
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