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JAYCE R. GETZ

Braverman and Kazhdan have introduced an influential conjecture on lo-
cal functional equations for general Langlands L-functions. It is related
to L. Lafforgue’s equally influential conjectural construction of kernels for
functorial transfers. We formulate and prove a version of Braverman and
Kazhdan’s conjecture for spherical representations over an archimedean
field that is suitable for application to the trace formula. We then give a
global application related to Langlands’ beyond endoscopy proposal. It is
motivated by Ngô’s suggestion that one combine nonabelian Fourier trans-
forms with the trace formula in order to prove the functional equations of
Langlands L-functions in general.

1. Introduction

Let G be a split connected reductive group over an archimedean field F and let

(1-1) r : Ĝ→ GLn

be a representation of (the connected component of) its Langlands dual group,
which we regard as a connected reductive group over C. For simplicity we assume
that the neutral component of the kernel of r is trivial (this is the most interesting
case anyway). The local Langlands correspondence is a theorem of Langlands in
the archimedean case. Thus for every irreducible admissible representation π of
G(F) one has an irreducible admissible representation r(π) of GLn(F) that is the
transfer of (the L-packet of) π . One defines

γ (s, π, r, ψ) := γ (s, r(π), ψ) :=
ε(s, r(π), ψ)L(1− s, r(π)∨)

L(s, r(π))

for s ∈C and for any additive character ψ : F→C×, where the ε-factor on the right
is that defined by Godement and Jacquet [1972]. Let f ∈ C∞c (G(F)). In the case
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where r is the standard representation of GLn and the representation π is unitary
one has an identity of operators

γ (s, π, r, ψ)π |det|(n−1)/2+s( f )= π anti
|det|(n−1)/2+1−s( f̂ ),(1-2)

where π anti(g) := π(g−1) and f̂ is the restriction to GLn(F) of the gln(F)-Fourier
transform of f determined by ψ ; see [Godement and Jacquet 1972, (9.5)]. Strictly
speaking, that book assumes f to be in a space of Gaussian functions, but there is
no need to make this precise here.

A conjecture of Braverman and Kazhdan [2000] states that (1-2) is but the first
case of a general phenomenon. To be more precise we need to place an additional
assumption on the representation r . Assume that there is a character

ω : G→ Gm(1-3)

such that, if we denote by ω∨ the dual cocharacter of the center ZĜ of Ĝ, then

r ◦ω∨ = [N ],

where [N ] : Gm→ GLn is the cocharacter given on points by

x 7→ x N In.

Here In is the n× n identity matrix. For complex numbers s, we let

ωs := |ω|
s/N and πs := π ⊗ωs .

The quasicharacter ωs plays the role of |det|s in the case considered by Godement
and Jacquet [1972].

Temporarily let F be an arbitrary local field. Braverman and Kazhdan gave a
conjectural construction of a nonabelian Fourier transform,

Fr,ψ : C∞c (G(F))→ C∞(G(F)),(1-4)

such that
γ (s, π, r, ψ)πs( f )= π anti

1−s(Fr,ψ( f )).(1-5)

In the case where r is the standard representation of G = GLn one can take

Fr,ψ( f )= |det|(n−1)/2(|det|(1−n)/2 f )∧.

In the nonarchimedean case, L. Lafforgue has given a spectral definition of Fr,ψ

using Paley–Weiner theory under suitable assumptions that are implied by the
local Langlands correspondence for G(F) [Lafforgue 2014, Définition II.15]. The
analytic properties of Fr,ψ( f ) (e.g., whether or not it is integrable after a suitable
twist by a quasicharacter of G(F)) are not obvious from his construction.

Assume again that F is archimedean, and let K ≤ G(F) be a maximal compact
subgroup. In this paper we prove the existence of a transform Fr,ψ( f ) such that
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(1-5) holds for unitary representations π provided that f is spherical and lies in
a naturally defined subspace C∞c (G(F)//K , r) of C∞c (G(F)//K ) depending on r .
We also prove that suitable twists of Fr,ψ( f ) by quasicharacters lie in a space of
functions for which the trace formula is valid.

In Section 4 we define the subspace C∞c (G(F)//K , r) ≤ C∞c (G(F)//K ). For
0< p ≤ 2 let

S p(G(F)//K )≤ C∞(G(F)//K )

be the L p-Harish-Chandra–Schwartz space; we recall its definition in Section 3C.
The following is the main theorem of this paper:

Theorem 1.1. Let f ∈ C∞c (G(F)//K , r) and 0< p ≤ 1. There is a function,

Fr,ψ( f ) ∈ C∞(G(F)//K ),

such that

(a) one has Fr,ψ( f )ωs ∈ S p(G(F)//K ) for Re(s) sufficiently large in a sense
depending only on G and r , and

(b) if π is unitary and irreducible then

γ (s, π, r, ψ) trπs( f )= trπ∨1−s(Fr,ψ( f ))(1-6)

in the sense of analytic continuation.

Remarks. (1) A more precise version of (a) is proved in Theorem 4.1.

(2) Elements of S p(G(F)//K ) for 0 < p ≤ 1 are in L1(G(F)//K ), so the fact
that π is unitary implies that the operator π∨s (Fr,ψ( f )) is bounded for Re(s)
sufficiently large.

(3) The functions f and Fr,ψ( f ) are assumed to be spherical, so for π unitary
and nonspherical (1-6) is just the equality 0= 0.

(4) The operator πs( f ) is holomorphic as a function of s, and γ (s, π, r, ψ) is mero-
morphic. Thus (1-6) provides a meromorphic continuation of trπ∨1−s(Fr,ψ( f ))
to the complex plane.

Assertion (a) in the theorem is important because the Arthur–Selberg trace
formula is valid for functions in (the global version of) S p(G(F)//K ) for 0< p≤ 1
due to work of Finis, Lapid, and Müller [Finis et al. 2011; Finis and Lapid 2011;
2016]. One can then use their results to provide an absolutely convergent expression
for the sum of residues of Langlands L-functions that Langlands has isolated for
study in his “beyond endoscopy” proposal. This will be discussed in Section 5.

It would be very interesting to extend the results in this paper to nonspherical rep-
resentations. Our approach might be applicable in this more general setting provided
one can prove a certain analytic result. More precisely, we use the characterization of
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the image of S p(G(F)//K ) under the Fourier transform due to Trombi and Varadara-
jan [1971]. A characterization of the image of the nonspherical analogue S p(G(F))
under the Fourier transform does not seem to be available in the literature, although
partial results are known [1981; 1990]. Hopefully the conjectures of Braverman and
Kazhdan [2000], Lafforgue [2014], and of course the beyond endoscopy proposal
of Langlands [2004] will provide motivation for giving such a characterization.

Remark. Arthur [1983] has characterized the image of the Fourier transform of
S2(G(F)), but this does not seem to be the right space from the point of view of
any of these proposals to move beyond endoscopy. It would be interesting to see if
the technique of Anker [1991] could be used to deduce the image of the Fourier
transform on S p(G(F)) for 0< p < 2 from this case.

We would be remiss not to recall that the fundamental aim of [Braverman and
Kazhdan 2000; Lafforgue 2014] is to provide a definition of the nonabelian Fourier
transform for which a version of Poisson summation is valid. As explained in these
papers, this would lead to a proof of the functional equation and meromorphic
continuation of the L-functions attached to r by Langlands. For this purpose it
would probably be desirable to have a definition of the Fourier transform Fr,ψ( f ),
which, unlike the approach of this paper and [Lafforgue 2014], does not rely on
Paley–Wiener theorems. For this we can only point to the hints provided in the
works [Altuğ 2015; Bouthier et al. 2016; Cheng and Ngô 2017; Cheng 2014; Frenkel
et al. 2010; Getz 2016; 2014; Getz and Herman 2015; Getz and Liu 2017; Li 2017;
Langlands 2013; Ngô 2014; Sakellaridis 2012].

We close the introduction by outlining the sections of this paper. In Section 2
we recall the notion of the transfer of a spherical representation. Preliminaries on
the characterization of the image of the spherical Fourier transform due to Trombi
and Varadarajan are given in Section 3C and in Section 4 we prove Theorem 4.1,
which immediately implies our main result, Theorem 1.1. Finally, in Section 5 we
give an application of the main theorem to Langlands’ beyond endoscopy proposal.

2. Tori and transfers of representations

Let F be a local field. In this section we set some notation and recall the notion
of the transfer r(π) of an irreducible admissible representation π of G(F) under
some simplifying assumptions. These assumptions are always true if π is spherical.
Before this we give a definition, from [Cheng and Ngô 2017], of a useful extension
W ′ of the Weyl group W of a split maximal torus T ≤ G by a subgroup of Sn , the
symmetric group on n letters. The whole point of the discussion below is to explain
how r induces a W ′-equivariant map,

r∨ : Tn→ T,
where Tn is a maximal torus in GLn .
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Let T ≤ G be a split maximal torus with Weyl group W. Moreover let T̂ ≤ Ĝ
be the dual torus; its Weyl group in Ĝ is isomorphic to W and we denote it by the
same letter. Let Vr be the space of r . We can decompose

Vr =⊕
m
i=1Vλi ,(2-1)

where the sum is over the nonzero weights λ1, . . . , λm ∈ X∗(T̂ ) of T̂ in Vr , Vλi is
the λi weight space, and dim Vλi = di . Fix a basis Ai ⊂ Vr for each Vλi (viewed as a
subspace of Vr ) and let A=

∐m
i=1 Ai ; this is a basis for Vr . This choice of basis gives

an embedding GA
m→ GL(Vr ). We let T̂n be its image and let 3= X∗(T̂n)= Z[A].

It comes equipped with a Z-linear map,

3→ X∗(T̂ )= X∗(T ),(2-2)

given by extending the set theoretic map sending each basis element in Ai to λi .
Thus r induces a map,

r : T̂ → T̂n,(2-3)

where T̂n ≤ GLn is the maximal torus with character group 3. In fact, upon
conjugating the representation r by an element of GLn(C) we can and do assume
that T̂n is the standard maximal torus of diagonal matrices. For F-algebras R we take

Tn(R)=3⊗ R×.

It is a torus over F with dual torus T̂n , and by construction there is a morphism

r∨ : Tn→ T(2-4)

over F whose dual is r .
The Weyl group Wn of GLn can be identified with the set of permutations of A

(which we also identify with Sn) and we let

6λ =Sr1 × · · ·×Srm ≤Sn =Wn(2-5)

denote the subgroup preserving the decomposition A =
∐m

i=1 Ai (i.e., those permu-
tations σ such that σ(Vλi )= Vλi for all i). We let

6′λ := {τ ∈Wn : there exists ξ ∈Sm such that τ(Ai )= Aξ(i) for all 1≤ i ≤ m}.

The map τ 7→ ξ implicit in this definition is in fact a homomorphism 6′λ→Sm

whose image is the set of permutations fixing the multiplicity function i 7→ di and
whose kernel is 6λ. The Weyl group W acts on X∗(T̂ ) and this action preserves the
weights λ1, . . . , λm and the multiplicity function i 7→ di . Thus the map W →Sm

induces a morphism,
ρW :W →6′λ/6λ

(this ρW has nothing to do with the sum of positive roots). We define W ′ to be the
following extension of W :
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W ′ := {(w, ξ) ∈W ×6′λ : ρW (w)≡ ξ (mod6λ)}.(2-6)

The group W ′ admits natural homomorphisms to both 6′λ and W by projection to
the two factors. We therefore obtain actions of W ′ via projection to 6′λ on 3, and
Tn and T̂n and actions of W ′ via projection to W on X∗(T̂ ), T and T̂ . One checks
that (2-2) is W ′ equivariant with respect to these actions, and hence so are the maps
(2-3) and (2-4).

For unramified quasicharacters χ : T (F)→C× extend χ to a character of a Borel
subgroup B containing T. Let J (χ) be the unique irreducible spherical subquotient
of the unitarily normalized induction IndG(F)

B(F)(χ) (see Theorem 3.1 for more details
and references).

Suppose that π = J (χ) where χ : T (F)→ C× is an unramified quasicharacter.
One defines r(χ) to be χ ◦ r∨ and one defines the transfer of π to be

r(π) := J (r(χ)).

This is an irreducible admissible representation of GLn(F). We note that if

r(χ)

(
a1 . . .

an

)
=

n∏
i=1

ηi (ai )

for some quasicharacters ηi : F×→ C× then

γ (s, π, r, ψ) := γ (s, r(π), ψ)=
n∏

i=1

γ (s, ηi , ψ);

see [Godement and Jacquet 1972, Corollaries 3.6 and 8.9].

3. Preliminaries on the Fourier transform

In this section we collect some notation related to Langlands decompositions of
Borel subgroups and recall some basic facts about the spherical Fourier transform.
All of these results will be used in Section 4. In this section F is an archimedean
local field.

3A. Langlands decompositions. Let T ≤ G and Tn ≤ GLn be maximal tori as
in Section 2 (so Tn is the diagonal torus, T is split and r maps T̂ into T̂n). Let
B ≥ T be a Borel subgroup of G and let Bn ≥ Tn be the Borel subgroup of upper
triangular matrices in GLn . We let N ≤ B and Nn ≤ Bn be the unipotent radicals.
Let K ≤ G(F) be a maximal compact subgroup and let Kn ≤ GLn(F) be the
standard maximal compact subgroup. Let

M := T (F)∩ K , Mn := Tn(F)∩ Kn.

We can and do assume that M is the maximal compact subgroup of T (F), and
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then one has r∨(Mn)≤ M. Let a= X∗(T )⊗Z R, an := X∗(Tn)⊗Z R and let

a∗ = Hom(T (F)/M,R×>0),

a∗n = Hom(Tn(F)/Mn,R×>0)

be their R-linear duals.
We require a norm on a∗

C
. To construct it, let ( , ) be a nondegenerate symmetric

bilinear form on g := Lie(ResF/R G) whose restriction to the derived algebra is the
Killing form. We assume that the +1 and −1 eigenspaces of the Cartan involution
2 attached to K are orthogonal under ( , ) and that X 7→ −(X,2X) is a positive
definite quadratic form on g. We then set ‖X‖2=−(X,2X). It induces a hermitian
inner product on gC and aC and we continue to denote by ‖·‖ the induced form on a∗

C
.

The map r∨ yields
r : a∗C→ a∗nC.

One has an isomorphism

Rn
−→∼ a∗n, (s1, . . . , sn) 7→ ηs1,...,sn ,

where

ηs1,...,sn

(
t1 . . .

tn

)
:= |t1|s1 · · · |tn|sn .

We let
(a∗n)+

be the image of Rn
>0 and let

a∗
+
:= {λ ∈ a∗ : r(λ) ∈ (a∗n)+}.(3-1-1)

By the existence of ω (see (1-3)) this is nonempty. Note that this is not a Weyl
chamber.

3B. Spherical functions. We now recall the definition of the Harish-Chandra map.
We define a function HT : T (F)/M→ HomZ(X∗(T ),R) via

〈χ, HT (x)〉 := log|χ(x)|.

Since there is a canonical identification HomZ(X∗(T ),R) = X∗(T ) ⊗Z R =: a

we can regard HT as taking values in a. For (k, t, n) ∈ K × T (F)× N (F), the
Harish-Chandra map is then defined to be

HB : G(F)→ a, ktn 7→ HT (t).

We choose Haar measures dk, dt , dn, dg on K, T (F), N (F), and G(F), respec-
tively, such that measdk(K )= 1 and for f ∈ C∞c (G(F)),∫

G(F)
f (g) dg =

∫
K×T (F)×N (F)

e〈2ρ,HB(t)〉 f (ktn) dk dt dn,
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where ρ ∈ a∗ is half the sum of the positive roots of T in B.
For λ ∈ a∗

C
we let

ϕλ(g)=
∫

K
e〈−(λ+ρ),HB(g−1k)〉 dk(3-2-1)

be the usual spherical function. It is a matrix coefficient of the representation
Ind(e〈λ,HB〉). One defines the spherical transform of suitable K -biinvariant continu-
ous functions f : G(F)→ C to be

f̃ (λ) :=
∫

G(F)
f (g)ϕ−λ(g) dg(3-2-2)

(here we are using the convention of [Anker 1991, §1], at least up to multiplication
by
√
−1).

3C. Spaces of functions. Let g := Lie(ResF/R G). For 0< p ≤ 2 let

S p(G(F)//K )(3-3-1)

denote the space of K -biinvariant functions f : G(F)→ C such that

sup
x∈G(F)

(|x | + 1)nϕ0(x)−2/p
|X ∗ f ∗ Y (x)|<∞

for all n ≥ 0 and all invariant differential operators X, Y on G(F), that is, all
elements of the universal enveloping algebra U (gC) of the complexification of
g. Here ϕ0 is the spherical function of (3-2-1) and |x | is the distance of x to K
(see, e.g., [Anker 1991, §1]).

It is known that for 0< p < p′ ≤ 2 there are continuous inclusions

S p(G(F)//K )≤ S p′(G(F)//K )≤ L p′(G(F));

see [Anker 1991, §1]. To check the continuity of the last inclusion one uses the
fact that (ϕ2/p

0 (x))/(|x | + 1)n ∈ L p(G(F)) for n sufficiently large [Gangolli and
Varadarajan 1988, Proposition 4.6.12].

3D. The Fourier transform. For 0 < p ≤ 2 let a∗p be the closed tube in a∗
C

of
points whose real part lies in the closed convex hull of

W ·
( 2

p − 1
)
ρ

in a∗. Here ρ denotes half the sum of the positive roots of T in B. Let

S(a∗p)

denote the space of all complex valued functions h : a∗p→ C such that

(a) all derivatives of the function h exist and are continuous on a∗p,

(b) the function h is holomorphic in the interior of a∗p,
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(c) for any polynomial P in the symmetric algebra of a∗ and any integer n ≥ 0,

sup
λ∈a∗p

(‖λ‖+ 1)n
∣∣∣P( ∂

∂λ

)
h(λ)

∣∣∣<∞.
Trombi and Varadarajan [1971] proved that the spherical Fourier transform

f 7→ f̃ (λ) extends to an isomorphism of Fréchet algebras

S p(G(F)//K )−→∼ S(a∗p)
W.(3-4-1)

The seminorms which make S p(G(F)//K ) and S(a∗p) into Fréchet spaces are the
obvious ones. A simpler proof of the isomorphism (3-4-1) is contained in [Anker
1991], which is a very nice reference for the facts above, though, strictly speaking,
it assumes that G is semisimple. Therein, a∗p is denoted ia∗2/p−1.

For 0< p ≤ 1 and f ∈ S p(G(F)//K ), let

f (B)(t)= e〈ρ,HB(t)〉
∫

N (F)
f (tn) dn

be the constant term of f along B. It is absolutely convergent [Gangolli and
Varadarajan 1988, Theorem 6.2.4].

Let χ : T (F)→ C× be a character. If χ = e〈λ,HB〉 for some λ ∈ a∗
C

whose real
part is in the closed Weyl chamber defined by the positive roots attached to B we
will abbreviate

J (λ) := J
(
e〈λ,HB〉

)
and Ind(λ) := IndG(F)

B(F)

(
e〈λ,HB〉

)
.

We recall the following special case of the Langlands classification:

Theorem 3.1. Any irreducible admissible spherical representation of G(F) is
infinitesimally equivalent to J (λ) for some λ ∈ a∗

C
whose real part is in the closed

positive Weyl chamber attached to B. Conversely, for every λ ∈ a∗
C

whose real
part is in the closed positive Weyl chamber with respect to B, the representation
Ind(λ) has a unique irreducible quotient (usually called the Langlands quotient). It
is spherical.

Proof. In the notation of [Vogan 1981] and [Barbasch et al. 2008] take δ = triv and
µ= triv. In their terminology, δ is a fine T (F)∩ K -type, µ is a fine K -type and
µ ∈ A(δ). The stabilizer Wδ of δ under the natural action of the Weyl group W is
all of W : Wδ =W. Thus the first assertion of the lemma follows from [Barbasch
et al. 2008, Theorem in §2.4].

On the other hand, since δ is trivial the R-group Rδ is trivial (see [Vogan 1981,
Definition 4.3.13]), hence the set A(δ) consists of one element, namely the trivial
K -type; see [Vogan 1981, Theorem 4.3.16]. In view of this, the final assertion of
the theorem is contained in [Barbasch et al. 2008, §2.11]. �
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We also give a proof of the following well-known result for the convenience of
the reader.

Lemma 3.2. Let λ ∈ a∗
C

have real part in the closed positive Weyl chamber with
respect to B. Suppose that J (λ) is unitary. If f ∈ C∞c (G(F)//K ) then J (λ)( f )
acts via the scalar

f̃ (−λ)= tr J (λ)( f )= tr Ind(λ)( f )= tr e〈λ,HB〉( f (B))

on the (unique) spherical vector in J (λ). Under the same assumptions on J (λ), if
0< p ≤ 1 and f ∈ S p(G(F)//K ) then J (λ)( f ) acts via the scalar

f̃ (−λ)= tr J (λ)( f )

on the spherical vector in J (λ).

Proof. Assume first that f ∈ C∞c (G(F)//K ). The identity

tr Ind(λ)( f )= tr e〈λ,HB〉( f (B))

is the descent formula; see, e.g., [Knapp 1986, (10.23)]. The vector ϕλ is spherical,
satisfies ϕλ(1)= 1, and is a matrix coefficient of the representation Ind(λ) (compare
[Anker 1991, §1]). It is also known that this representation, even if it is reducible,
contains a unique spherical line [Gangolli and Varadarajan 1988, 3.1.13]. It follows
that Ind(λ)( f ) acts via the scalar f̃ (−λ)= tr Ind(λ)( f ) on this spherical line. On
the other hand, one has a nonzero equivariant map

Ind(λ)→ J (λ).(3-4-2)

Since the irreducible representation J (λ), being spherical, has a unique spherical
line this line must be the image of the unique spherical line in Ind(λ) under (3-4-2).
Thus tr J (λ)( f )= tr Ind(λ)( f ).

In the following discussion we use basic facts recalled in [Anker 1991, §1]
without further comment. Let 0< p≤ 1 and f ∈ S p(G(F)//K ). Then f̃ is defined
on λ∈ a∗1. Since C∞c (G(F)//K ) is dense in S p(G(F)//K ) we can choose a Cauchy
sequence

{ fn}
∞

n=1 ⊂ C∞c (G(F)//K )

converging to f in S p(G(F)//K ). In particular, limn→∞ f̃n = f̃ pointwise on a∗1.
Now the inclusion

S p(G(F)//K )→ L1(G(F)//K )

is continuous. Since J (λ) is unitary, the fact that limn→∞ fn = f in L1(G(F))
implies that

lim
n→∞

tr J (λ)( fn)= tr J (λ)( f ).

Thus
f̃ (−λ)= lim

n→∞
f̃n(−λ)= lim

n→∞
tr J (λ)( fn)= tr J (λ)( f ). �
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4. Proof of Theorem 1.1

Recall that we have normalized r : Ĝ→GLn so that it induces a morphism r : T̂→ T̂n

and used it to construct a dual morphism,

r∨ : Tn→ T .

There are natural isomorphisms

Tn(F)/Mn ∼= X∗(Tn)⊗Z R=: an,

and T (F)/M ∼= a, so r∨ induces an R-linear map,

r∨ : an := Tn(F)/Mn→ T (F)/M =: a.

It is surjective, as the complexification of its dual is

r : a∗C→ a∗nC,

which is injective since we assumed r has zero-dimensional kernel. Recall the
group W ′ of Section 2. It acts naturally on a, an , a∗

C
, a∗nC

and the maps r and r∨

are W ′ equivariant (see Section 2). We therefore obtain a push-forward map,

r∨
∗
: C∞c (Tn(F)/Mn)

W ′
→ C∞c (T (F)/M)W

′

= C∞c (T (F)/M)W.(4-1)

We define

C∞c (G(F)//K , r) :=
{

f ∈C∞c (G(F)//K ) : f (B)∈ r∨
∗
(C∞c (Tn(F)/Mn)

W ′)
}
.(4-2)

Let dω∈a∗ be the point corresponding toω∨. In this section we prove Theorem 4.1.
It obviously implies Theorem 1.1; it is simply a version of Theorem 1.1 that makes
explicit how large Re(s) must be in terms of the representation r .

Theorem 4.1. Let f ∈ C∞c (G(F)//K , r) and 0< p ≤ 1. There is a function,

Fr,ψ( f ) ∈ C∞(G(F)//K ),

such that

(a) Fr,ψ( f )ωs ∈ S p(G(F)//K ) provided that Re(a∗p)+Re(s)dω ⊂ a∗
+

, and

(b) if π is unitary and irreducible then

γ (s, π, r, ψ) trπs( f )= trπ∨1−s(Fr,ψ( f ))(4-3)

in the sense of analytic continuation.

Now we give a diagram that outlines the construction of Fr,ψ( f ) from f . Let
s0 > 0 be large enough that Re(a∗p)+ s0dω ⊂ a∗

+
. Let S(a∗p)(−s0) (respectively,

S(a∗p)(−s0)
W ) denote the space of functions of the form

a∗p + s0dω→ C, λ 7→ f̃ (λ− s0dω)
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for some f̃ ∈ S(a∗p) (respectively, S(a∗p)W ). We note that ω is fixed by W, so
this space admits an action of W, and S(a∗p)W (−s0)= S(a∗p)(−s0)

W. Moreover,
(3-4-1) induces an isomorphism

S p(G(F)//K )ω−s0 −→
∼ S(a∗p)(−s0)

W , f ˜7−→ 1pt f̃ (λ),

where the C-vector space on the left is the space of functions of the form f ω−s0

for f ∈ S p(G(F)//K ). We will construct Fr,ψ( f ) so that the following diagram
commutes:

C∞c (Tn(F)/Mn)
W ′ S(tn(F)/Mn)

W ′

C∞c (T (F)/M)W S(a∗p)(−s0)
W

C∞c (G(F)//K ) S p(G(F)//K )ω−s0

̂
r∨∗ 9 7→9̃◦r

f 7→ f (B)

Fr,ψ

f 7→ f̃ (−λ)

Here the horizontal arrow marked ̂ is (4-7), which is just the Fourier transform
on Tn(F)⊂ tn(F) (the F-points of the Lie algebra of Tn). Moreover 9̃ is a Mellin
transform. The proof of Theorem 4.1 we now give amounts to filling in the details of
this diagram. The functional equation ultimately reduces to the familiar functional
equation of Tate zeta functions.

Before beginning the proof in earnest let us describe the map 9 7→ 9̃ ◦ r more
precisely and show that it is well defined. Let tn :=Lie(Tn) and denote by S(tn(F))
the usual Schwartz space. Assume that

9 ∈ S(tn(F)).
We then have that

9̃(λ) :=

∫
Tn(F)

e〈λ,HTn (t)〉9(t) dt(4-4)

is absolutely convergent and holomorphic if Re(λ) ∈ (a∗n)+. Here, as above, dt is
the Haar measure on Tn(F). In fact something stronger is true:

Lemma 4.2. For any polynomial P in the symmetric algebra of a∗n and any integer
n ≥ 0 the quantity

(‖λ‖+ 1)n
∣∣∣P( ∂

∂λ

)
9̃(λ)

∣∣∣
is bounded for Re(λ) in a fixed compact subset of (a∗n)+. Here ‖·‖ is any Hermitian
inner product on a∗nC

.

Proof. The lemma is a consequence of the following claim: for any f ∈ S(R), real
numbers 0< a < b, and nonnegative integers n, k one has

|s|n
∣∣∣∣ dk

dsk f̃ (s)
∣∣∣∣� f,a,b,n,k 1



NONABELIAN FOURIER TRANSFORMS FOR SPHERICAL REPRESENTATIONS 363

provided that a ≤ Re(s) ≤ b. Here f̃ (s) =
∫
∞

0 f (x)x s−1 dx is the usual Mellin
transform. To check this, let D := x d

dx . It is not difficult to see that xεDn(logk f )
is continuous on R>0 and in L1(R>0,

dx
x ) for any real number ε > 0, and thus the

Mellin transform (Dn(logk f ))∼ (σ + i t) is bounded as a function of t ∈ R for
a ≤ σ ≤ b. Thus ∣∣∣∣sn dk

dsk f̃ (s)
∣∣∣∣= |(Dn(logk f ))∼(s)|

is bounded for a ≤ Re(s)≤ b. �

Corollary 4.3. Suppose that s0 ∈R>0 is large enough that a∗p+s0dω ⊂ a∗
+

and that
9 ∈ S(tn(F)/Mn). Then the function

λ 7→ 9̃(r(λ))

is in S(a∗p)(−s0).

Proof. By assumption and the definition (3-1-1) of a+ one has r(a∗p+s0dω)⊂ (a∗n)+.
Therefore the corollary follows from Lemma 4.2 and the injectivity of the map
r : a∗

C
→ a∗nC

. �

The corollary implies that the map 9 7→ 9̃ ◦ r in the top right of the diagram is
well defined for s0 large enough.

We now begin the proof of Theorem 4.1. Let π be a given spherical unitary
irreducible representation of G(F). Thus there is a quasicharacter

χ : T (F)/M→ C×

so that π ∼= J (χ). Let f ∈ C∞c (G(F)//K , r). We will trace J (χ) and f along the
upper path from C∞c (G(F)//K ) to S p(G(F)//K )ω−s0 in the diagram. Lemma 3.2
implies that

tr J (χ)( f )= χ( f (B)).(4-5)

We choose a 8 ∈ C∞c (Tn(F)/Mn)
W ′ so that the push-forward r∨

∗
(8) is f (B).

Thus

tr J (χ)s( f )= χωs( f (B))= χωs(r∨∗ (8))= r(χ)|det|s(8).(4-6)

We are now at the top row of the diagram. The usual embedding GLn ↪→ gln
of algebraic monoids induces an embedding Tn ↪→ tn where tn := Lie(Tn). We can
therefore regard an element of C∞c (Tn(F)) as an element of C∞c (tn(F)). The pairing

tn(F)× tn(F)→ C, (X, Y ) 7→ ψ(tr(XY ))

is perfect. For t ∈ Tn(F) let

(4-7) 8̂(t)=
∫
tn(F)

8(x)ψ(tr(t x)) dx;
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it is just the Fourier transform. We then have

γ (s, J (r(χ)), ψ)r(χ)|det|s(8)= r(χ−1)|det|1−s(8̂)(4-8)

by the local functional equation of Tate’s thesis [1979, (3.2.1)]. Here the left-hand
side is meromorphic as a function of s, and

tr r(χ−1)|det|1−s(8̂)

is absolutely convergent for Re(s) sufficiently small in a sense depending on χ .
We are now at the upper right corner of the diagram. The representation

J (χ) is unitary, but χ need not be. However, there is a µ ∈ a∗
C

whose real
part lies in the closed convex hull of W · ρ in a∗ such that χ(t) = e〈µ,HT (t)〉 by
[Knapp 1986, p. 654]. In particular, since 0< p ≤ 1, one has µ ∈ a∗p. Then

r(χ−1)= e〈r(−µ),HT 〉.(4-9)

Combining this notation with (4-6) and (4-8) we arrive at

γ (s, J (r(χ)), ψ) tr J (χ)s( f )= γ (s, J (r(χ)), ψ)r(χ)|det|s(8)(4-10)

= r(χ−1)|det|1−s(8̂)

= 8̂∼(r(−µ+ (1− s)dω)).

Now λ 7→ 8̂∼(r(λ)) is in S(a∗p)(−s0) for s0 sufficiently large by Corollary 4.3.
Thus there is a unique h ∈ S p(G(F)//K ) so that for all λ ∈ a∗p one has

ĥ(−λ)= 8̂∼(r(λ+ s0dω))

by (3-4-1). In particular, if λ is chosen so that J (λ) is spherical and unitary then

tr J (λ)(h)= 8̂∼(r(λ+ s0dω))(4-11)

by Lemma 3.2. Set
Fr,ψ( f ) := hω−s0 .

By construction, h ∈ S p(G(F)//K ). We have now successfully traversed along the
upper path from C∞c (G(F)//K ) to S p(G(F)//K )ω−s0 in our diagram.

Combining (4-10) and (4-11) we deduce that (with µ as in (4-9)),

γ (s, J (χ), r, ψ) tr J (χ)s( f )= 8̂∼(r(−µ+ (1− s)dω))(4-12)

= Fr,ψ( f )∼(−µ+ (1− s)dω)

= tr J (χ)∨1−s(Fr,ψ( f )).

This completes the proof of the theorem. �
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5. A global application

Let F be a number field and let∞ be the set of infinite places of F. Let G=GLm for
some integer m. It is not strictly necessary to take G =GLm for what follows, but it
makes the discussion simpler. We also restrict ourselves to everywhere unramified
representations. We assume ω = det : G→ Gm .

Remark. We have already discussed how one might remove the unramified as-
sumption at the archimedean places in the introduction. To treat representations
that are ramified at finite places one would have to define nonarchimedean Fourier
transforms and give some analytic control on them similar to the control afforded
in the archimedean setting by Theorem 1.1. More specifically, one would need to
show that a twist of them by ωs is L1 for Re(s) sufficiently large. For G =GLm one
can define these nonarchimedean Fourier transforms spectrally using the Plancherel
formula since the local Langlands correspondence is known. This is the approach
of [Lafforgue 2014], where the analytic control is not established. Cheng and Ngô’s
approach [2017], if it is generalized from the finite field case to the local field case,
may also yield the desired Fourier transforms.

We retain the obvious analogues of the notation above in this global setting;
for example T ≤ GLm is a maximal split torus which we take to be the diagonal
matrices for simplicity. For v -∞ let

S : C∞c (G(Fv)//G(OFv ))→ C[T̂ ]W(5-1)

be the Satake isomorphism. Let

r : Ĝ→ GLm

be an irreducible representation. Let A∞F denote the ring of finite adeles of F and let

Lr :=
∏
v-∞

Lr,v ∈ C∞ac (G(A
∞

F )//G(ÔF )),

where

Lr,v :=

∞∑
k=0

S−1(tr Symk(r(t))
)
∈ C∞ac (G(Fv)//G(OFv ))

with t ∈ T̂ (C). Here the subscript “ac” denotes the space of functions that are almost
compactly supported, in other words, when restricted to a subset of G(A∞F ) with
determinant lying in a compact subset of (A∞F )

× they are compactly supported (and
similarly in the local setting). Then if π∞ is an irreducible unramified admissible
representation of G(A∞F ) one has

trπ∞s (Lr )= L(s, π∞, r)(5-2)

for Re(s) large enough. Here π∞s := π
∞(|ω|∞)s/N.
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Let A be the connected component of the real points of the maximal Q-split
torus in the center of ResF/Q G and

G(AF )
1
:= ker(|·|AF ◦ det : G(AF )→ R>0).

Langlands [2004] proposed a method to prove Langlands functoriality in general
via the trace formula. His point of departure was that for f̄ ∈ C∞c (A \G(AF∞))

one can use the trace formula to provide an absolutely convergent expression for

(5-3)
∑
π

trπ∞( f̄ )π∞s (Lr )

for Re(s) large. Here the sum over π is over cuspidal automorphic representa-
tions of A \G(AF ). We note that the sum here is infinite, but since trπ∞s (Lr ) is
bounded independently of s and π for Re(s) sufficiently large (compare the proof of
Corollary 5.1 below) and the regular action of any element of C∞c (A\G(AF )) on the
cuspidal spectrum is trace class, the sum is absolutely convergent. Strictly speaking,
Langlands used logarithmic derivatives of L-functions. Sarnak [2001] proposed the
current formulation because it appears to be more tractable analytically.

One can then hope to use the trace formula to give an expression for

(5-4)
∑
π

Ress=1 trπ∞( f̄ )L(s, π∞, r)

in terms of orbital integrals (and automorphic representations on Levi subgroups).
The residues ought to be nonzero for representations whose L-parameter, upon
composition with r , fixes a vector in V. These ought to be transfers from smaller
groups, and one hopes to compare the sum of residues (5-4) with corresponding
sums on smaller groups. Since every algebraic subgroup of Ĝ is the fixed points of
a line in some representation of Ĝ by a theorem of Chevalley, in principle executing
this approach would lead to a proof of functoriality in general.

However, Langlands gave no absolutely convergent geometric expression for
(5-4) nor any indication of how to obtain one, even assuming Langlands functoriality.
In practice this seems to be an extremely difficult analytic hurdle that has only been
overcome in a handful of cases [Altuğ 2015; Getz 2016; Getz and Herman 2015;
Herman 2011; Venkatesh 2004; White 2014] that are essentially those isolated as
tractable by Sarnak in his letter [2001].

In this section we use Theorem 1.1 and work of Finis, Lapid, and Müller to give
an absolutely convergent expression in terms of orbital integrals and automorphic
representations of Levi subgroups that is equal to (5-4) if one assumes Langlands
functoriality (what we need is given precisely in Conjecture 5.3 below). We em-
phasize that the expression makes sense without any assumption in place, so one
could try to use it to study Langlands’ beyond endoscopy proposal. At the very
least it allows us to replace (5-4) with a quantity which is well defined without any
assumptions.
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Remark. For some time Ngô has advocated combining Braverman and Kazhdan’s
proposal [2000] with the trace formula to prove functional equations of L-functions.
The author first learned of this idea from Ngô at IAS in 2010, and Ngô has given a
progress report on his perspective at the 2016 Takagi lectures. The construction we
now propose, which is due to the author, amounts to understanding the residues that
occur when one follows Ngô’s suggestion. In particular one can give an absolutely
convergent expression for the sum of residues that is the focus of Langlands’ beyond
endoscopy proposal.

For a compact open subgroup K ≤ G(A∞F ), let

C(G(AF ), K )= { f : G(AF )/K → C : | f ∗ X |L1(G(AF )) <∞ for all X ∈U (gC)}.

Here g is the Lie algebra of
G(AF∞)

(viewed as a real Lie algebra) and U (gC) is its universal enveloping algebra. This
is the space of test functions treated in [Finis et al. 2011; Finis and Lapid 2011].
A slightly different space of test functions (called C(G(AF )

1, K )) is considered in
[Finis and Lapid 2016]. In any case, the main result of these papers is that Arthur’s
noninvariant trace formula is valid for functions in C(G(AF ), K ).

Let K∞ ≤ G(AF∞) be a maximal compact subgroup and let

f ∈ ⊗v|∞C∞c (G(Fv)//Kv, r);

see (4-2). Let Fr,ψ( f ) : G(AF∞)→ C be its nonabelian Fourier transform. For
g ∈ G(AF ) and s ∈ C we set

f Lrωs(g) := f ωs∞(g∞)Lrωs(g∞),

Fr,ψ( f )Lrωs(g) := Fr,ψ( f )ωs∞(g∞)Lrω
∞

s (g
∞).

Fix a nontrivial additive character ψ : F \AF → C× and choose d ∈ A×F such that
ψ∞(d ·) is unramified and d∞ ∈ AGm , the copy of R>0 embedded diagonally in
F×
∞

. We assume, moreover, that ωs(d N Im)= |d∞|ns. Choose σ ∈ R and let

f1(g)= f Lrωσ ,

f2(g)= |d∞|−nFr,ψ( f )Lrωσ (d N Im g).

The role of the d here is explained by Conjecture 5.3 below.
The key consequence of Theorem 4.1 we use here is the following corollary:

Corollary 5.1. If σ is sufficiently large then f1, f2 ∈ C(G(AF ),G(ÔF )).

Proof. For σ sufficiently large one has

(5-5)
∫

G(A∞F )
|Lr (g)|ωσ (g)dg <∞
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by [Li 2017, Proposition 3.11]. Combining this with Theorem 4.1 we immediately
deduce the corollary. �

For a G(F)-conjugacy class o in G(F) and an h ∈ C(G(AF ), K ) Finis and Lapid
[2016] have shown that one can define the noninvariant orbital integral Jo(h).
Technically speaking they work with a slightly coarser notion than conjugacy, but
it reduces to conjugacy for the case at hand since we have assumed G is a general
linear group.

Together with Müller [Finis et al. 2011], they have also shown that for functions
in the same space one can define a trace∫

ia∗Ls

tr(ML(P, λ)M(P, s)ρ(P, λ, h))dλ(5-6)

that is again absolutely convergent. Unfortunately, it would take several pages to
define the notation used in (5-6); we refer the reader to [Finis et al. 2011, Corollary 1]
and the discussion preceding it. This is the contribution of the Levi subgroup Ls to
the trace formula.

Call a parabolic subgroup of G standard if it contains T. For each standard
parabolic subgroup P , let MP be the unique Levi subgroup of P containing T. For
a cuspidal automorphic representation π of A \G(AF ), let

πs := π |ω|
s/N.

The transfer r(π) of π to GLn(AF ) is an irreducible admissible representation
(which of course, we do not yet know to be automorphic). We let ωr(π) be its central
character.

Using Corollary 5.1 we can now apply the work of Finis, Lapid and Müller to
prove the following theorem:

Theorem 5.2. Consider

(5-7)
∑
π

(
1

2π i

∫
Re(s)=σ

(
trπs( f Lr )−

|d∞|n(s−1)

ωr(π)(d∞)
tr(π∨)s(Fr,ψ( f )Lr )

)
ds
)

where the sums are over isomorphism classes of cuspidal automorphic representa-
tions of A \G(AF ). It is equal to

(5-8)
∑
o

Jo( f1− f2)

−

∑
[P]6=G

1
|W (MP)|

∑
s∈W (MP )

ιs

∫
iaLs

tr(ML(P,λ)M(P,s)ρ(P,λ, f1− f2)dλ,

where the sum over o is over conjugacy classes in G(F), the sum over [P] is over
associate classes of standard proper parabolic subgroups of G, W (MP) is the Weyl
group of MP in G, and ιs is the normalizing factor of [Finis et al. 2011, Corollary 1].
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Moreover for each i and each [P] and s,∑
o

|Jo( fi )|<∞ and
∫

iaLs

|tr(ML(P, λ)M(P, s)ρ(P, λ, fi )|dλ <∞.

Remark. The sum over [P] and s above is finite.

Proof. Let h ∈ C(G(AF ),G(ÔF )). In [Finis et al. 2011; Finis and Lapid 2016] the
authors extended the Arthur–Selberg trace formula to obtain the equality

(5-9)
∑
o

Jo(h)=
∑
[P]

1
|W (MP)|

∑
s∈W (MP )

ιs

∫
iaLs

tr(ML(P,λ)M(P,s)ρ(P,λ,h)dλ

together with the absolute convergence of the sum over o and the integral over iaLs .
Here the sum is over all association classes of standard parabolic subgroups of G,
including G itself. Thus the absolute convergence statements in the theorem follow.

Provided that the measure on A is chosen appropriately, the contribution of
[P] = G to the spectral side of (5-9) here is just∑

π

1
2π i

∫
Re(s)=0

trπs(h)ds,

where the sum is over isomorphism classes of cuspidal automorphic representations
of A \G(AF ). Thus, pulling the contribution of the [P] = G summand to one side,
we see that the quantity (5-8) is equal to∑

π

1
2π i

∫
Re(s)=0

(trπs( f1)− trπ∨s ( f2)) ds,(5-10)

where the sums are over isomorphism classes of cuspidal automorphic represen-
tations of A \G(AF ). We now note that ωr(π)(aIn)= ωπ (aN Im). It follows from
this and our choice of d that (5-10) is equal to (5-7), proving the theorem. �

In the remaining pages of this paper we prove that (5-7) is equal to (5-4), assuming
a special case of Langlands’ functoriality. Before we do this we emphasize again that
it makes perfect sense to study (5-7) using (5-8) without assuming any conjecture,
and we hope that some progress towards the conjecture we are about to state can
be made by proceeding in this manner.

Here is the conjecture we will invoke:

Conjecture 5.3 (Langlands). Let ψ : F \AF → C× be a nontrivial character, and
choose d∞ ∈ A∞×F such that x 7→ ψ(d∞x) is unramified at every finite place. For
each everywhere unramified cuspidal automorphic representation π of G(AF )

1, the
function

L(s, π∞, r)

admits a meromorphic continuation to the plane, holomorphic except for a possible
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pole at s = 1. It satisfies the functional equation

L(s, π∞, r)= ωr(π)(d∞)−1
|d∞|n(1−s)γ (s, π∞, r, ψ∞)L(1− s, π∞∨, r).

In stating the conjecture in this manner, we are using the fact that

ε(s, π∞, r, ψ∞) := ε(s, r(π∞), ψ∞)

=ωr(π)(d∞)−1
|d∞|n(1−s)ε(s, r(π∞), ψ∞(d∞·))

=ωr(π)(d∞)−1
|d∞|n(1−s)

(compare [Tate 1979, (3.2.3)]), where r(π∞) is the transfer of π∞ to GLm(A
∞

F ). It
is known to exist as an admissible representation.

Theorem 5.4. If Conjecture 5.3 is true for all unramified cuspidal automorphic
representations of A \G(AF ) then (5-7) is equal to the absolutely convergent sum∑

π

Ress=1 trπ∞s( f )L(s, π∞, r).(5-11)

Remark. We remark that the proof of Theorem 5.4 requires Theorem 1.1 in partic-
ular at the archimedean places; working outside a finite set of places including the
archimedean ones where one can assume an unramified functional equation is not
enough.

For an admissible irreducible representation π of G(AF ), let C(π,Re(s)) be its
analytic conductor as defined by Iwaniec and Sarnak ([Brumley 2006, §1] is a nice
reference). We have the following corollary of Conjecture 5.3:

Corollary 5.5. Assume Conjecture 5.3 for the unramified cuspidal automorphic
representation π . For any real numbers A < B and A ≤ Re(s) ≤ B one has an
estimate

(s− 1)ords=1 L(s,π∞,r)L(s, π∞, r)�A,B,M C(π, Im(s))M

for some M > 0.

Proof. Notice that
C(r(π), Im(s))�N C(π, Im(s))N

for some integer N depending only on r . Thus, since we are assuming Conjecture 5.3,
to prove the corollary it suffices to prove that

(s− 1)ords=1 L(s,π∞,r)L(s, π∞, r)�A,B,M C(r(π), Im(s))M .

This is a standard preconvexity estimate; see, e.g., [Brumley 2006, (10)]. �

Proof of Theorem 5.4. Since f ∈ C∞c (G(F∞)), the trace trπ∞s( f ) is entire as
a function of s. We also note that if A ≤ Re(s) ≤ B then trπ∞s( f ) is rapidly
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decreasing as a function of C(π, Im(s)); see [Getz 2012, Lemma 4.4]. Thus for σ
sufficiently large ∑

π

∫
Re(s)=σ

∣∣trπs( f Lr )
∣∣ ds <∞.(5-12)

Applying Corollary 5.5 we see that (5-11) also converges absolutely.
Now consider∑

π

1
2π i

∫
Re(s)=σ

|d∞|n(s−1)

ωr(π)(d∞)
tr(π∨)s(Fr,ψ( f )Lr ) ds.

By Theorem 4.1 and Conjecture 5.3 this is equal to

(5-13)
∑
π

1
2π i

∫
Re(s)=σ

|d∞|n(s−1)

ωr(π)(d∞)
γ (1−s,π∞,r,ψ) trπ∞1−s( f ) tr(π∞∨)s(Lr )ds

=

∑
π

1
2π i

∫
Re(s)=σ

trπ∞1−s( f )L(1−s,π∞,r)ds

=

∑
π

1
2π i

∫
Re(s)=1−σ

trπ∞s( f )L(s,π∞,r)ds.

Applying Corollary 5.5 and (5-12) we deduce that this converges absolutely. We
now shift the contour in (5-13) to the line Re(s)= σ , picking up the contribution
of (5-11) from the poles at s = 1, and deduce the theorem. �
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