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ENTROPY OF EMBEDDED SURFACES
IN QUASI-FUCHSIAN MANIFOLDS

OLIVIER GLORIEUX

We compare critical exponents for quasi-Fuchsian groups acting on the hy-
perbolic 3-space and entropy of invariant disks embedded in H3. We give
a rigidity theorem for all embedded surfaces when the action is Fuchsian
and a rigidity theorem for negatively curved surfaces when the action is
quasi-Fuchsian.

1. Introduction

The aim of this paper is to compare two geometric invariants of Riemannian
manifolds: critical exponent and volume entropy. The first one is defined through
the action of the fundamental group on the universal cover, the second one is defined
for compact manifolds as the exponential growth rate of the volume of balls in the
universal cover. These two invariants have been studied in many cases; we pursue
this study for quasi-Fuchsian manifolds.

Let 0 be a group acting on a simply connected Riemannian manifold (X, g). If
the action on X is discrete we define the critical exponent by

(1) δ(0) := lim sup
R→∞

1
R

Card{γ ∈ 0 | d(γ · o, o)≤ R},

where o is any point in X. It does not depend on this particular base point thanks to
triangle inequality. If we want to insist on the space on which 0 acts we will write
δ(0, X).

The volume entropy h(g) of a Riemannian compact manifold (6, g) is defined by

(2) h(g) := lim
R→∞

log Volg(Bg(o, R))
R

,

where Bg(o, R) is the ball of radius R and center o in the universal cover of 6. We
will also use the notation h(X) for the exponential growth rate of ball volumes in a
a simply connected manifold X .

It is a classical fact, using a simple volume argument that the volume entropy
coincides with the critical exponent of π1(6) acting on 6̃. Moreover, a famous
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theorem of G. Besson, G. Courtois and S. Gallot [Besson et al. 1995] said that
the entropy allows us to distinguish the hyperbolic metric in the set of all metrics,
Met(6). Note that entropy is sensitive to homothetic transformations: for any λ> 0
we have h(λ2g) = 1

λ
h(g). Assume that 6 admits a hyperbolic metric g0 and let

Met0(6) be the set of metrics on 6 whose volume is equal to Vol(6, g0), then the
theorem of Besson, Courtois, and Gallot says that for all g ∈Met0(6)

(3) h(g)≥ h(g0),

with equality if and only if g = g0.
Our aim is to study the behavior of the volume entropy for a subset of all

the metrics on a surface. This subset is the metrics induced by an incompressible
embedding into quasi-Fuchsian manifolds. It has not the cone structure of Met(6): it
is not invariant by all homothetic transformations. Hence we will look at the behavior
of h(g) without normalization by the volume.

Let S be a compact surface of genus g ≥ 2 and 0 = π1(S) its fundamental group.
A Fuchsian representation of 0 is a faithful and discrete representation in PSL2(R).
A quasi-Fuchsian representation is a perturbation of Fuchsian representation in
PSL2(C). More precisely it is a discrete and faithful representation of 0 into
Isom(H3) such that the limit set on ∂H3 is a Jordan curve. A celebrated theorem
of R. Bowen [1979] asserts that for quasi-Fuchsian representations, the critical
exponent is minimal and equal to 1 if and only if the representation is Fuchsian.

We choose an isometric, totally geodesic embedding of H2 in H3 (the equatorial
plane in the ball model for example). This embedding gives an inclusion i :
Isom(H2)→ Isom(H3).

Let ρ be a Fuchsian representation of 0. The group 0 acts naturally on H2 and
H3 by ρ and i ◦ ρ, respectively. For every point o ∈ H2 we have

dH3(i ◦ ρ(γ )o, o)= dH2(ρ(γ )o, o),

since H2 is totally geodesic in H3. The critical exponents for these two actions of 0
are then equal

δ(0,H3)= δ(0,H2)= 1.

In light of this trivial example, two questions rise up. What is the entropy of a
0-invariant disk which is not totally geodesic? What happens when we modify the
Fuchsian representation in PSL2(C)?

We will answer the first question. Since ρ is a Fuchsian representation, the
critical exponent of 0 acting on H3 through i ◦ ρ is 1, and we have the following:

Theorem 1.1. Suppose 0 is Fuchsian. Let 6 be a 0-invariant disk embedded in H3.
We have

(4) h(6)≤ δ(0,H3),
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with equality if and only if 6 is the totally geodesic hyperbolic plane preserved
by 0.

Note that δ(0,H3)=h(6, g0), hence the last theorem can be rewritten as follows:

Theorem 1.2. For all metrics g obtained as induced metrics by an incompressible
embedding in a Fuchsian manifold we have

(5) h(g)≤ h(g0)

with equality if and only if g = g0.

We did not renormalize by the volume; this explains the dichotomy between (3)
and (5).

We will prove this theorem in the next section. The inequality is trivial since
the induced distance between two points is always greater than the distance in H3:
d6 ≥ dH3 , but the rigidity is not. We have no geometrical (curvature) hypothesis
on 6, therefore it is not obvious at all to show that the inequality is strict as
soon as 6 is not totally geodesic. Indeed we cannot use the “usual” techniques
of negative curvature like Bowen–Margulis measure, or even the uniqueness of
geodesic between two points.

We obtain an answer to the second question under a geometrical hypothesis on
the curvature:

Theorem 1.3. Let 0 be a quasi-Fuchsian group and 6 ⊂ H3 a 0-invariant em-
bedded disk. We suppose that 6 endowed with the induced metric has negative
curvature. We then have

h(6)≤ I (6,H3)δ(0,H3),

where I (6,H3) is the geodesic intersection between 6 and H3. Moreover, equality
occurs if and only if the length spectrum of 6/0 is proportional to that of H3/0.

The geodesic intersection will be defined in Section 3A. Roughly, it is the average
ratio of the length between two points of 6 for the extrinsic and intrinsic distance.
We need the curvature assumption to define and use this invariant.

This theorem implies Theorem 1.1 only for negatively curved embedded disks
but not in its full generality. Indeed, when 0 is Fuchsian, and 6/0 has the same
length spectrum as H3/0 it follows directly by the work of J-P. Otal [1990] that
6 = H2/0. However, using the fact that 6 is embedded in H3 we will be able to
prove without the Fuchsian hypothesis that if the two marked length spectra are
equal then 6 is totally geodesic, and therefore we obtain the following corollary of
Theorem 1.3:

Corollary 1.4. Under the assumptions of Theorem 1.3 we have
h(6)≤ δ(0,H3),

with equality if and only if 0 is fuchsian and 6 is the totally geodesic hyperbolic
plane, preserved by 0.
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The proof of this corollary raises the following question generalizing this result:
if a quasi-Fuchsian manifold has the same length spectrum as a negatively curved
surface, does it imply that it is in fact Fuchsian? We answer this question using a
well-known result of Y. Benoist, showing the following theorem:

Theorem 1.5. Let M be a quasi-Fuchsian manifold and 6 a hyperbolic (in the
sense that it has constant curvature −1) surface. Suppose that M and 6 have
proportional length spectrum (i.e., there exists k ∈ R+ such that for all γ ∈ 0,
`M(γ ) = k`6(γ )), then M is Fuchsian and 6 is isometric to the totally geodesic
surface in M.

Theorem 1.3 has to be compared to results obtained by G. Knieper who com-
pared entropy for two different metrics on the same manifolds, and our proof of
Theorem 1.3 follows his paper [Knieper 1995]. As in his paper, we obtain that the
intersection is larger than 1 as soon as 0 is not Fuchsian.

The theorem is also related to the work of M. Bridgeman and E. Taylor [2000];
indeed, we answer in the negative Question 2 of their paper. And finally, we can
see our work as an extension of U. Hamenstadt’s [2002], where she compared
the geodesic intersection between the boundary of convex hulls and H3 for quasi-
Fuchsian manifolds.

As we said, the two proofs are very different from one another. For the Fuchsian
case, we give precise estimates for the length of some paths of the hyperbolic plane.
We show that in some sense the length between two points on 6 is much greater
than the extrinsic distance between those two points. For quasi-Fuchsian manifolds,
we use well-known techniques of negative curvature geometry: we compare the
Patterson–Sullivan measures for H3 and for 6.

2. Fuchsian case

In this section we are going to prove Theorem 1.1. This theorem has a strong
condition on 0, i.e., it is conjugate to a subgroup of PSL2(R) but we make no
geometrical assumptions on 6. As we said, there could be more than one geodesic
between two points on 6.

We already remarked that the inequality is trivial, as is the equality when 6 is
totally geodesic. Therefore, the only thing left to prove is the strict inequality when
6 is not totally geodesic or in other words if 6 6= H2 then h(6) < 1.

The proof of the theorem is based on the comparison between the distances
on equidistant surfaces of the totally geodesic 0-invariant hyperbolic plane. We
are going to prove several lemmas which together give Theorem 1.1. The strict
inequality follows directly from Lemmas 2.2 and 2.8. We denote by D the totally
geodesic, 0-invariant plane. The induced metric on D is the usual hyperbolic metric,
and we will denote it by H2. We are first going to see that between all the equidistant
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surfaces, H2 has the biggest entropy. Then we will make this argument work when
only one part of the surface is “above” D. The idea to prove it, is to consider another
distance dm on D, which will be used as an intermediary between 6 and H2. We
will explain, after the definition of dm , how the two comparisons will be proved.

Let us begin to parametrize H3 by H2
× R as follows: take an orientation

for the unit normal tangent space of H2, then to a point x ∈ H3 we associate
s(x) the orthogonal projection from H3 to H2. This is the first parameter of the
parametrization. The oriented distance along this geodesic gives the second one.
Hence the parametrization, called Fermi coordinates, is defined by

H3
7→ H2

×R, z→ (s(z), d̂(z, s(z))),

where d̂ is the oriented distance defined by the choice of the orientation on the unit
normal tangent of H2. With this parametrization, the metric on H3 is

gH3 = cosh2(r)g0+ dr2.

Look at S(r) the equidistant disk at distance r of H2; its metric, induced by the
one on H3, is gr = cosh2(r)g0. It is isometric to a hyperbolic plane of curvature
1/cosh(r), and its volume entropy is h(S(r))= h(0)/cosh(r)= 1/cosh(r), hence
the entropy is maximal if and only if r = 0. For the general case, we are going to
refine this argument showing that it is sufficient that a small part of 6 is over H2

for the entropy to be strictly less than 1.
Let 6 be a embedded 0-invariant disk in H3. We assume that 6 6= D, and

we endow 6 with its induced metric. Let x, y be two points on 6. Let c6 be a
geodesic on 6 linking x to y. We parametrize c6 by its Fermi coordinates, (c, r).
We then have

d6(x, y)=
∫ L

0
‖c′6(t)‖6 dt

=

∫ L

0

√
r ′(t)2+ cosh2(r(t))‖c′(t)‖2g0

dt.(6)

≥

∫ L

0
cosh(r(t))‖c′(t)‖g0 dt.

We now endow D with a different distance to the one coming from hyperbolic metric.
It will play the role of intermediary to compare d6(x, y) on 6 with dg0(s(x), s(y))
on H2.

We call σ the restriction of s on 6. Since 6 6= D, there exist x0 ∈ D \6, ε > 0
and η > 0 such that

dH3(σ−1 B(x0, 2ε),D) > η.

This means that all the points in the pre-image of B(x0, 2ε) by σ are at distance
greater than η from D. We will assume that 2ε is smaller than the injectivity radius
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of H2/0 so that the translations of B(x0, 2ε) by 0 are disjoint. We have taken 2ε
in order to simplify the proof of Lemma 2.4.

We now consider on D the metric gm defined by putting weight on the translations
of B(x0, 2ε) by 0.

Definition 2.1. We define gm by

gm :=

{
cosh(η)2g0 on 0 · B(x0, 2ε),

g0 elsewhere.

We will index by m objects which depend on this metric. Note that this metric is
not continuous but it still defines a length space. Let c : [0, 1] → D be a C1 path,
we then have

`m(c)=
∫ 1

0
‖ċ(t)‖gm dt.

This gives a distance dm on D by choosing

dm(x, y) := inf
c
{`m(c) | c(0)= x, c(1)= y}.

In order to prove Theorem 1.1 we will compare the entropy of (D, dm) with
the one of 6 and the one of H2. The comparison with the entropy of 6 is quite
easy and follows quickly from the definition of dm and the inequality (6). The
comparison with the entropy of H2 is more subtle. Indeed, there exist geodesics
of H2 which are geodesics for (D, dm) (any lift of a closed geodesic which does
not cross the ball B(x0, 2ε)/0) on H2/0). We will first prove that two points of D

which are joined by a geodesic of H2 which often crosses 0 · B(x0, 2ε) are much
farther away from each other for dm distance, see Lemma 2.4. Then, we will use a
large deviation theorem for the geodesic flow (Theorem 2.6), to show that there are
few geodesics which do not cross 0 · B(x0, 2ε) (Lemma 2.7). It will follow from
these two results that the balls of radius R for dm are almost completely included
in balls of radius R/C of H2 for C > 1 (Lemma 2.8). The two comparisons give
the proof of Theorem 1.1.

The comparison between h(6) and the critical exponent of (D, dm) follows from
the inequality (6) and the definition of dm .

Lemma 2.2. We have
h(6)≤ δ((D, dm)).

Proof. Let x ∈6 and o= σ(x) ∈ D. Since 6/0 is compact, we have

h(6)= lim
R→∞

1
R

log Card{γ ∈ 0 | d6(γ x, x)≤ R}.

And by definition

δ((D, dm))= lim
R→∞

1
R

log Card{γ ∈ 0 | dm(γ o, o)≤ R}.
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It is sufficient to prove that d6(x, y) ≥ dm(s(x), s(y)), for all x, y ∈ 6. Let
c6 = (c, r) be a geodesic on 6 joining x to y. Recall that we have

d6(x, y)≥
∫ L

0
cosh(r(t))‖c′(t)‖g0 dt.

If c(t) /∈ 0 · B(x0, 2ε), then ‖c′(t)‖gm = ‖c
′(t)‖g0 . In particular,

‖c′(t)‖gm ≤ cosh(r(t))‖c′(t)‖g0 .

If c(t) ∈ 0 · B(x0, 2ε), then by definition of gm , ‖c′(t)‖gm = cosh(η)‖c′(t)‖g0 and
since 6 is “far” from D, r(t) > η. In particular,

‖c′(t)‖gm ≤ cosh(r(t))‖c′(t)‖g0 .

Finally,

d6(x, y)≥
∫ L

0
‖c′(t)‖gm dt

≥ lm(c)

≥ dm(s(x), s(y)). �

Our next aim is to compare the distances dm and dH2 . Let us fix some notations
before stating the first lemma. For all v ∈ T 1H2, let ζ vR be the probability measure
on T 1H2, defined for all Borel sets E ⊂ T 1H2 by

ζ vR(E)=
1
R

∫ R

0
χE(φ

H2

t (v)) dt,

where χE is the indicator function of E . For a Borel set E which is a unitary tangent
bundle of a subset of D, E := T 1 A, we have

ζ vR(E)=
1
R

Leb{t ∈ [0, R] | cv(t) ∈ A}

since φH2

t (v) ∈ E is equivalent to cv(t)= πφH2

t (v) ∈ A.
Let L be the Liouville measure on the unitary tangent bundle of the quotient

surface T 1H2/0. Recall that the metric gm is given by gm = cosh2(η)g0 on
T 10B(x0, 2ε). We fix K := T 1(0 · B(x0, ε)).1

Definition 2.3. Let κ > 0 be such L(K/0)− 2κ > 0. We define the sets

E(R) := {v ∈ T 1H2
| ζ vR(K ) > L(K/0)− κ},

and for all points o ∈ H2, we note

Eo(R) := {v ∈ T 1
o H2
| ζ vR(K ) > L(K/0)− κ}.

1We use a ball of half the size, for a technical reason that appears at the beginning of the proof of
Lemma 2.4.
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B(xi , ε)

v ∈ Eo(R)

v /∈ Eo(R)

•o

Figure 1. 0 · B(x0, ε), Eo(R) and Ec
o(R).

A geodesic of length R whose direction is given by a vector v ∈ E(R) crosses
πK “often”, that is, at least a number of times proportional to R; see Figure 1.
Indeed, if v ∈ E(R) we have

1
R

Leb{t ∈ [0, R] | c0(t)∩πK 6=∅}> L(K/0)− κ > κ > 0,

since ċ0(t) ∈ K is equivalent to c0(t) ∈ πK by definition of K .
The next argument is the key in the proof of Theorem 1.1. It shows that we can

compare the length of a geodesic in H2 which often crosses πK with its dm-length.

Lemma 2.4. There exists C > 1, such that for all R > 0, for all v ∈ Eo(R) and for
all x ∈ {exp(tv) | t ∈ [R, 2R]}, we have

(7) dm(o, x)≥ CdH2(o, x).

Proof. Let c0 be the geodesic for g0 and cm be a minimizing geodesic for gm

between o and x . Let d be the hyperbolic distance between o and x , d = dH2(o, x),
and we parametrize c0 by unit speed; we thus have c0(d) = x . Let N (R) be
the number of intersections between πK and c0([0, R]), that is N is the number
of connected components of c0([0, R]) ∩ πK . On one hand, all components of
c0([0, R])∩πK are inside balls of radius ε, hence c0 “stays” at most 2ε in each
components. On the other hand, the hypothesis v ∈ Eo(R), implies

1
R

Leb{t ∈ [0, R] | c0(t)∩πK 6=∅}> L(K/0)− κ = κ > 0.

These two facts imply that 2εN (R)≥ κR, that is to say,

(8) N (R)≥ κ

2ε
R.

For i ≤ N (R), let ti ∈ [0, d] such that c0(ti ) ∈ πK and c0[ti−1, ti ] \ πK is
connected: we just have chosen a point xi = c0(ti ) in each ball of πK crossing c0.
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•

•

xi = c0(ti ))c0

B(xi , ε)

B(γi x0, ε) B(γi x0, 2ε)

γi x0

Figure 2. c0 meets B(γi x0, ε). B(xi , ε)⊂ B(γi x0, 2ε).

There exists γi ∈ 0 such that xi ∈ B(γi x0, ε), hence B(xi , ε) ⊂ B(γi x0, 2ε) on
which the metric gm is gm = cosh2(η)g0. See Figure 2. Therefore the geodesic c0 is
divided into N (R) segments: [xi , xi+1], such that for every i we know that on the
ball B(xi , ε) the metric gm is given by gm = cosh2(η)g0. We want a lower bound
on dm(o, x), therefore we can estimate the length of cm with the metric given by
cosh2(η)g0 on the smaller balls B(xi , ε) ⊂ B(γi x0, 2ε) and g0 on the rest of the
plane.

We call yi the middle of [xi , xi+1]. We now restrict our attention to one segment
[yi , yi+1]. Let 0< a < 1 whose dependence on η will be made clear in the rest of
the proof. We are going to analyze two different cases.

Case 1: cm crosses B(xi , aε). Let 1i be the lines (geodesics in H2 ) orthogonal
to c0 and passing through yi . Let z1

i and z2
i be the end points of the diameter of

B(xi , ε) defined by z1
i = c0(ti−ε) and z2

i = c0(ti+ε), and call D1
i and D2

i the lines
orthogonal to c0 and passing through z1

i and z2
i . See Figure 3.

We want to consider the intersections between cm and the lines 1i , D1
i and D2

i .
There might be many intersections. We will call the first intersection of cm with a
line D the point cm(t f ) where t f := inf{t | cm(t) ∈ D}, and the last intersection of
cm with D the point cm(tl), where tl := sup{t | cm(t) ∈ D}.

Let A′i , B ′i and C ′i be the last intersections of cm with 1i , D1
i and D2

i , respec-
tively. Let Bi ,Ci and Ai+1 be the first intersections of cm with D1

i , D2
i and 1i+1,

respectively. This divides cm into five connected components:

[A′i , Bi ], [Bi , B ′i ], [B
′

i ,Ci ], [Ci ,C ′i ], [C
′

i , Ai+1].

Our work will be to give a lower bound for the length of each component; see
Figure 3. Since it might happen that Bi = B ′i and Ci = C ′i the bound on the length
of those two components will be trivial: dm(Bi , B ′i )≥ 0 and dm(Ci ,C ′i )≥ 0.

The gm-length of cm from A′i to Bi is equal to (or larger than) its g0-length since
the metric gm is equal to the metric g0 outside K . Moreover the g0-length of cm
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•
xi

1i D1
i D2

i 1i+1

yi c0 z1
i z2

i
yi+1

B(xi , aε)

B(xi , ε)

Ai

A′i

Bi = B ′i

Ci

C ′i
Ai+1

cm

•

•

•
•

•

•

Figure 3. cm crosses B(xi , aε).

from A′i to Bi is greater than dg0(yi , z1
i ) since the orthogonal projection decreases

lengths. We then have
dm(A′i , Bi )≥ dg0(yi , z1

i ).

For the same reasons we have

dm(C ′i , Ai+1)≥ dg0(z
2
i , yi+1).

We want to give a lower bound for the gm-length of cm between B ′i and Ci . We
made the assumption that cm crosses the ball B(xi , aε) hence cm stays at least
2ε − 2aε in the ball B(xi , ε). In other words if cm is unitary for g0 we have
Leb{t | cm(t)∩ B(xi , ε) 6= ∅} ≥ 2ε− 2aε. In the ball B(xi , ε), the metric gm is
equal to cosh(η)2g0 hence the gm-length satisfies

dm(B ′i ,Ci )≥

∫
{t |cm(t)∩B(xi ,ε)6=∅}

‖ċm(t)‖m dt =
∫
{t |cm(t)∩B(xi ,ε) 6=∅}

cosh(η)

≥ ε cosh(η)(2− 2a).

Choose a > 0 such that cosh(η)(2ε− 2aε) > 2ε, that is to say a ≤ 1− 1/cosh(η).
In order to fix the idea we set a := 1

2(1− 1/cosh(η)). This implies

dm(B ′i ,Ci )≥ ε cosh(η)(2− 2a)

= ε cosh(η)
(

2−
(

1− 1
cosh(η)

))
= (cosh(η)+ 1)ε

= 2ε+ ε[cosh(η)− 1)]

= dg0(z
1
i , z2

i )+ ε[cosh(η)− 1)].

Thus, we have proven

(9) dm(Ai , Ai+1)≥ dm(A′i , Ai+1)≥ dg0(yi , yi+1)+ ε[cosh(η)− 1].
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•

•

• •xi

�i1i

yi c0

ei

1i

cm

•

• •

Ai

A′i Ei = E ′i

Figure 4. cm does not cross B(xi , aε).

Case 2: cm does not cross B(xi , aε). Let 1i be the line orthogonal to c0 and
passing through yi , and �i the one through xi . Call A′i the last intersection of
cm and 1i and Ei the first intersection of cm with �i . Since cm does not cross
B(xi aε), Ei is in one of the connected components of �i \ B(xi , aε). Named ei

the intersection of S(xi , aε) (the sphere of center xi and diameter aε) and �i in the
same connected component as Ei , this is also the orthogonal projection of Ei on
B(xi , aε). See Figure 4.

We parametrize the geodesic �i by R; we give ω :R→H2 such that ω(R)=�i .
We suppose that ω(0)= xi and the orientation is chosen in order to have ω(aε)= ei .
The function t → dg0(ω(t),1i ) is convex, and has a minimum at 0; it is hence
increasing on R+. Therefore, dg0(1i , Ei )≥ dH2(1i , ei ). It follows that

dm(A′i , Ei )≥ dH2(A′i , Ei )≥ dg0(1i , Ei )≥ dg0(1i , ei ).

Let us compute dg0(1i , ei ). We fix some notation:

L = dg0(1i , ei ), l = dg0(yi , xi ), H = dg0(yi , ei ).

Now Pythagoras’ theorem in hyperbolic geometry for the triangle (yi xi ei ) gives

cosh(l) cosh(aε)= cosh(H).

Let θ be the angle x̂i yi ei . We have

cos(θ)=
tanh(l)

tanh(H)
and

sin(π/2− θ)=
sinh(L)
sinh(H)

.

Hence

sinh(L)= sinh(H)
tanh(l)

tanh(H)
= cosh(H) tanh(l)= cosh(aε) sinh(l).
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From this equation, we cannot conclude that L > l + u for some u > 0. Indeed
if L goes to 0 so does l. To avoid this problem we are going to assume that l is
greater than the injectivity radius of S.

Note the following property of sinh which is a consequence of easy calculus.
For all x0 > 0 and $ > 1, there exists u > 0, such that for all x > x0, we have
$ sinh(x)≥ sinh(x + u). Now we can choose yi on c0 in order to have

dg0(xi , yi )≥ s/2,

where s is the injectivity radius of H2/0. Consequently, applying the previous
property with $ = cosh(aε) and x0 = s/2, there exists u > 0 such that

cosh(aε) sinh(l)≥ sinh(l + u).

Since sinh is increasing we deduce that

L ≥ l + u.

Altogether, we show that there exists u > 0 such that

dm(A′i , Ei )≥ dg0(yi , xi )+ u.

By the same arguments we can show that

dm(E ′i , Ai+1)≥ dg0(xi , yi+1)+ u.

(E ′i is the last intersection of cm with �i ). Hence, if cm does not meet B(xi , aε),
the gm-length of cm between Ai and Ai+1 satisfies, (taking trivial bounds for first
and last intersections)

(10) dm(Ai , Ai+1)≥ dg0(yi , yi+1)+ 2u.

Now, let α :=min{ε[cosh(η)− 1]; 2u}. From (9) and (10) we have

dm(Ai , Ai+1)≥ dg0(yi , yi+1)+α.

Summing on i we get
dm(o, x)≥ dg0(o, x)+ N (R)α.

Equation (8) and the fact that dg0(o, x)≤ 2R2 imply that

N (R)≥ κ

2ε
R ≥ κ

4ε
dg0(o, x).

Consequently,
dm(o, x)≥

(
1+ ακ

4ε

)
dg0(o, x).

This proves the lemma with C =
(

1+ ακ
4ε

)
. �

2This is where we use the upper bound on dg0(o, x).
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We now compare the entropy of (D, dm) with that of H2. Let us define

Fo(R)= {exp(tv) | t ∈ R+, v ∈ Eo(R)}.

We denote by Bm(o, 2R) the ball of radius 2R for the dm distance.

Lemma 2.5. Let C ′ :=min(2,C) where C satisfies Lemma 2.4. For all o ∈ D, and
all R > 0,

Bm(o, 2R)⊂ BH2(o, 2R/C ′)∪
(
BH2(o, 2R)∩F c

o (R)
)
.

Proof. We have Bm(o, 2R) = (Bm(o, 2R)∩Fo(R))∪ (Bm(o, 2R)∩Fc
o (R)). Let

x ∈ Bm(o, 2R)∩Fo(R). Since dH2(o, x)≤ dm(o, x), it follows that dH2(o, x)≤ 2R.
There are only two possibilities. If dH2(o, x)≤ R, we have in particular dH2(o, x)≤
2R/C ′. However, if dH2(o, x)≥ R, we apply Lemma 2.4 and we get dH2(o, x)≤
2R/C ≤ 2R/C ′. Therefore,

Bm(o, 2R)∩Fo(R)⊂ BH2

(
o, 2R

C ′
)
∩Fo(R)⊂ BH2

(
o, 2R

C ′
)
.

Since we also have for R > 0, Bm(o, 2R)⊂ BH2(o, 2R), this gives

Bm(o, 2R)∩Fc
o (R)⊂ BH2(o, 2R)∩Fc

o (R),

and proves the lemma. �

The Liouville measure on T 1H2 is the product of the riemannian measure of
H2 with the angular measure on every fiber. We denote this product by L =
dµ(x)× dθ(x). Our aim is to show that the set Ec

o(R) is small and the volume of
(BH2(o, 2R)∩Fc

o (R)) is small compared to the one of BH2(o, 2R). For this we are
going to use a large deviation theorem of Y. Kifer [1990] which gives an upper
bound on the mass of the vectors which do not behave as the Liouville measure.

Let P be the set of probability measures on T 1H2/0 endowed with the weak
topology. Let P t be the subset of P of probability measures invariant by the geodesic
flow. We also denote by L the Liouville measure on the quotient T 1H2/0. Recall
that for a vector v ∈ T 1H2/0 we denote by ζ R

v the probability measure given for
all Borel subsets E ⊂ T 1H2/0 by

ζ vR(E)=
1
R

∫ R

0
χE(φ

H2/0
t (v)) dt.

Theorem 2.6 [Kifer 1990, Theorem 3.4]. Let A be a compact subset of P ,

lim sup
T→∞

1
T

log L
{
v ∈ T 1H2/0 | ζ T

v ∈ A
}
≤− inf

µ∈A∩P t
f (µ),

where f (µ) = 1− hµ(φ
H2/0
t ) and hµ(φ

H2/0
t ) is the entropy of the geodesic flow

φ
H2/0
t with respect to µ.
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The fact that the theorem can be applied in this setting is explained after the
Theorem 3.4 in [Kifer 1990]. In this reference the function f is given by a formula
which seems different. One can look at [Paulin et al. 2015, Chapter 7], where the
authors explain in detail why the geodesic flow of negatively curved surfaces satisfies
the hypothesis of Kifer’s theorem, and that one can take f (µ)= 1− hµ(φ

H2/0
t ).

Lemma 2.7. There exist o ∈ H2, α > 0 and R0 > 0 such that for all R > R0,

θo(Ec
o(R))≤ e−αR.

Proof. Let us keep the notations of Lemma 2.4. K = T 10 · B(x, ε) and we consider
the following subset of P:

A := {µ ∈ P | µ(K/0)≤ L(K/0)− κ}.

This set is not closed for the weak topology. Its closure satisfies

A ⊂ {µ ∈ P | µ(T 10 · B◦(x, ε)/0)≤ L(K/0)− κ},

where B◦(x, ε) is the open ball. There might be equality between the two sets, but
we won’t use it.

However, since the unitary tangent bundle of the sphere S(x, ε) is transverse to
the flow, we have

{v ∈ T 1H2/0 | ζ R
v ∈ A} = {v ∈ T 1H2/0 | ζ R

v ∈ A}.

Since L /∈ A and L is the unique measure of maximal entropy satisfying h(L)= 1,
we have

− inf
µ∈A

f (µ)=−α < 0.

Besides, it is clear that the set Ec(R)= {v ∈ T 1H2
| ζ vR(K ) ≤ L(K/0)− κ} is 0-

invariant from the 0 invariance of K . By definition and the previous remark we get

Ec(R)/0 = {v ∈ T 1H2/0 | ζ R
v ∈ A}

= {v ∈ T 1H2/0 | ζ R
v ∈ A}.

Theorem 2.6 says that there exists R0 > 0 such that for all R > R0 we have

L(Ec(R)/0)≤ e−αR.

The product structure of L implies the existence of a point o ∈ H2/0 such that

θo(Ec
o(R)/0)≤ e−αR.

The lemma follows, choosing any lift of o in H2. �

We finish the proof of Theorem 1.1 with Lemma 2.8, which compares the critical
exponent between dm and hyperbolic distance. Lemmas 2.2 and 2.8 conclude the
proof.
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Lemma 2.8. There exists u > 0 such that

δ((D, dm))≤ 1− u.

Proof. We are going to show that the volume entropy of (D, dm) satisfies the
inequality, which implies a similar result on the critical exponent.

Let o ∈ D be a point satisfying Lemma 2.7. From Lemma 2.5, we have

Bm(o, 2R)⊂ BH2

(
o, 2R

C ′
)
∪ (BH2(o, 2R)∩Fc

o (R)).

On one hand we have the classical upper bound Vol(BH2(o, 2R/C ′))= O(e2R/C ′).
On the other hand the volume form on H2 can be written in polar coordinates as
sinh(r)drdθ , hence for all R > R0 we get

Vol
(

BH2(o, 2R)∩Fc
o (R)

)
=

∫ 2R

0

∫
Ec

o (R)
sinh(r) dθ dr ≤

∫ 2R

0
e−αRer dr

≤ e(2−α)R.

Let u > 0, defined by 1− u = max(1/C ′, (1− α/2)) < 1. The last two upper
bounds give

Vol(Bm(o, 2R))= O(e2R/C ′)+ O(e(2−α)R)= O(e2(1−u)R).

We finish by taking the log and the limit. �

3. Quasi-Fuchsian case

3A. Geodesic intersection. Let 6 be an incompressible surface in M . We des-
ignate by φH3

t , φ6t the geodesic flows on the unitary tangent spaces T 1H3, T 16

respectively. We denote by π the projection from T 1H3 to H3. The restriction of π
to T 16 will still be denoted by π . There are two distances we can consider on 6.
The intrinsic one, defined as the infimum of the length of curves staying on 6 and
the extrinsic one, where we take the distance in H3. We will denote by d6 and d
these two distances.

First let us remark that there is no riemanniann metric on 6 which induces d.
If such a metric existed, our Theorem 1.3 would be a particular case of [Knieper
1995].

Proposition 3.1. If 6 is not totally geodesic, there is no riemannian metric on 6
which induces d.

Proof. Assume there is such a riemannian metric, named g′. Let ε > 0 be such that
the exponential map for g′ is an embedding at every point. Let cg′ : [0, ε] →6 be
a minimizing geodesic for g′ on 6, then for all t ∈ [0, ε],

dg′(cg′(0), cg′(t))+ dg′(cg′(t), cg′(ε))= dg′(cg′(0), cg′(ε)).
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But since we suppose that g′ induces d we have the same equality for d ,

d(cg′(0), cg′(t))+ d(cg′(t), cg′(ε))= d(cg′(0), cg′(ε)),

and this implies that cg′ is a geodesic for H3. Hence every point of 6 is included in
a totally geodesic disc, therefore 6 is totally geodesic. �

Consider the function a defined by

T 16×R→ R, (v, t) 7→ d(πφ6t (v), π(v)).

Letting t1, t2 ∈ R and v ∈ T 16, we have by the triangle inequality,

a(v, t1+ t2)= d(πφ6t1+t2(v), π(v))

≤ d(πφ6t1+t2(v), πφ
6
t1 (v))+ d(πφ6t1 (v), π(v))

≤ d(πφ6t2 (φt1v), πφ
6
t1 (v))+ d(πφ6t1 (v), π(v))

≤ a(φ6t1 v, t2)+ a(v, t1).

Hence a is a subadditive cocycle for the geodesic flow φ6t . Since a is 0-invariant
it defines a subadditive cocycle on T 16, still denoted by a.

The following is a consequence of Kingman’s subadditive ergodic theorem
[Kingman 1973].

Theorem 3.2. Les µ be a φ6t invariant probability measure on T 16. Then

Iµ(6,M, v) := lim
t→∞

a(v, t)
t

exists for µ-almost v ∈ T 16 and defines a µ-integrable function on T 16, invariant
under the geodesic flow and we have∫

T 16

Iµ(6,M, v) dµ= lim
t→∞

∫
T 16

a(v, t)
t

dµ.

Moreover if µ is ergodic, Iµ(6,M, v) is constant µ-almost everywhere. In this
case, we write Iµ(6,M).

3B. Patterson–Sullivan measures. We call3 the limit set of 0 acting on H3. Since
0 acts cocompactly on 6, and on the convex core C(3), the three geometric spaces
0 (seen as its Cayley graph), 6 and C(3) are quasi-isometric. We assume from
now on that (6, g) has negative curvature, hence there is a unique geodesic in
each homotopy class of curves, and for every pair of points in 6 there is a unique
geodesic which joins them. Let c6 be a geodesic on 6, and denote by c6(±∞) its
limit points on3. There is a unique H3-geodesic cH3 whose endpoints are c6(±∞).
Since 6 is quasi-isometric to C(3), the two geodesics cH3 and c6 are at bounded
distance.
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Let p ∈6 and call pr6p the projection from 6 to 3 defined as follows. For any
point x ∈6 call c6p,x the geodesic on 6 which joins p to x , then

pr6p (x)= c6p,x(+∞).

We will denote the equivalent projection in H3 by prH3

p . There are two small
distinctions to notice between prH3

p and pr6p . First, prH3

p is defined for every point
in H3, whereas pr6p is only defined for points in 6. Second is that the codomain of
pr6p is exactly 3 whereas the codomain of prH3

p is all S2.
As we have just stated, for all ξ ∈3 the geodesics, c6p,ξ and cH3

p,ξ are at bounded
distance, and this bound depends only on the quasi-isometry between 6 and C(3).
There exists C1 such that for all ξ ∈3 the Hausdorff distance between geodesics
c6p,ξ and cH3

p,ξ is less than C1.
Let x ∈6, R> 0 and consider the ball BH3(x, R) in H3 of center x and radius R.

Now take ξ ∈ prH3

p (B(x, R−C1))∩3; this means that the H3-geodesic from p to
ξ crosses the ball BH3(x, R−C1). This H3-geodesic is at bounded distance C1 of
the 6-geodesic joining p to ξ . Hence,

c6p,ξ ∩ (BH3(x, R)∩6) 6=∅,

which proves that
ξ ∈ pr6p (BH3(x, R)∩6).

The same argument shows that

pr6p (BH3(x, R)∩6)⊂ prH3

p (BH3(x, R+C1))∩3⊂ prH3

p (BH3(x, R+C1)).

The distances on 6 and on H3 are locally equivalent: for every R > 0 there
exists C2 such that all balls satisfy

B6(x, R−C2)⊂ BH3(x, R)∩6 ⊂ B6(x, R+C2).

Set C =max(C1,C2), which leads to the following theorem:

Theorem 3.3. pr6p (B6(x, R−C))
∩

prH3

p (BH3(x, R−C))∩3⊂ pr6p (BH3(x, R)∩6)⊂ prH3

p (BH3(x, R+C))
∩

pr6p (B6(x, R+C)).

Before proving Theorem 1.3, we will recall some basic facts about Patterson–
Sullivan measure. Some classical references for this are [Patterson 1976] and
[Sullivan 1979], the lecture of J-F. Quint [2006] and the monograph of T. Roblin
[2003]. Let (X, g) be a simply connected manifold with negative curvature and
X (∞) its geometric boundary. If 0 is a discrete group acting on (X, g) we can



392 OLIVIER GLORIEUX

associate to it a family of measures {µg
p}p∈X on X (∞) constructed as follows. Let

x, y be two points of X and consider the Poincaré series

P(s) :=
∑
γ∈0

e−sd(γ x,y).

The convergence of P(s) is independent of x and y by the triangle inequality.
It converges for s > δ(0) and diverges for s < δ(0). If the action is cocompact,
δ(0)= h(g) and the series diverges at h(g). Then we define the probability measure

µg
p,x(s) :=

∑
γ∈0 e−sd(γ x,p)δγ x∑
γ∈0 e−sd(γ p,p) .

By compactness of the set of probability measures on X (∞), we obtain a measure
on X (∞) by taking a weak limit of a sequence µg

p,x(sn)
3,

µg
p := lim

sn→h(g)
µg

p(sn).

It is supported on the accumulation points of G, that is to say the limit set.
These measures, called Patterson–Sullivan measures, have the following proper-

ties. They are quasiconformal, i.e., for all p ∈ X and all ξ, η ∈3, we have

dµg
p

dµg
q
(ξ)= e−h(g)βξ (p,q),

where βξ (p, q)= limz→ξ dg(p, z)− dg(q, z).
They are also 0-equivariant, i.e., for all γ ∈ 0 and all p ∈ X, we have

µg
p ◦ γ = µ

g
γ−1 p.

Moreover we know these measures behave locally like h(g)−Hausdorff measures.
See [Quint 2006, Lemma 4.10], for example.

Lemma 3.4 (shadowing). For R > 0 sufficiently large, there exists c > 1 such that
for all x ∈ X ,

1
c

e−h(g)dg(x,p) ≤ µg
p(pr g

p(Bg(x, R)))≤ ce−h(g)dg(x,p).

Suppose that X/0 is compact; from the Patterson–Sullivan measure, we can
construct an invariant measure on T 1 X/0. Let 3(2) := {(x, y)∈32

| x 6= y}. There
is a natural identification of 3(2)×R and T 1 X; a vector v ∈ T 1 X is identified with
(cv(+∞), cv(−∞), βcv(+∞)(p, πv)). The Bowen–Margulis measure is defined by

dµB M(ξ, η, t)= e2h(g)〈ξ |η〉p dµg
p(ξ)dµ

g
p(η) dt,

3It is a classical result of Sullivan that there is in fact a unique limit, up to normalization. It is
equivalent to the ergodicity of Bowen–Margulis measure [Roblin 2003, Chapter 1]
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where 〈ξ | η〉p is the Gromov product:

〈ξ | η〉p =
1
2

(
βξ (z, p)+βη(z, p)

)
,

where z is any point on the geodesic (ξ, η).
Let us recall the classical fact that the measure µB M is 0-invariant and define

therefore a measure on T 1 X/0. Letting z ∈ (ξ, η),

〈γ ξ | γ η〉p =
1
2

(
βγ ξ (γ z, p)+βγ η(γ z, p)

)
=

1
2

(
βγ ξ (γ z, γ p)+βγ ξ (γ p, p)+βγ η(γ z, γ p)+βγ η(γ p, p)

)
=

1
2

(
βξ (z, p)+βη(z, p)+βγ ξ (γ p, p)+βγ η(γ p, p)

)
= 〈ξ | η〉p +

1
2

(
βγ ξ (γ p, p)+βγ η(γ p, p)

)
.

By the quasiconformal behavior of µg
p, we have

e2h(g)〈γ ξ |γ η〉p dµg
p(γ ξ)dµ

g
p(γ η)

= e2h(g)〈ξ |η〉p eh(g)βγ ξ (γ p,p))dµg
p(γ ξ)e

h(g)βγ η(γ p,p))dµg
p(γ η)

= e2h(g)〈ξ |η〉p dµg
p(ξ)dµ

g
p(η).

The invariance by the geodesic flow is clear by definition and it is shown in
[Nicholls 1989] that µB M is ergodic.

Finally we will need the following theorem, which is classical for compact
manifolds endowed with two different negatively curved metrics. Since we treat a
slightly different case, we give a proof.

Theorem 3.5. If µ6p and µH3

p are equivalent, then the marked length spectrum of
6 is proportional to the marked length spectrum of M.

Note that in the Fuchsian case, any surface equidistant to the totally geodesic one
has a metric proportional to H2 and therefore satisfies the hypothesis of the theorem.
It seems likely that it is the only case where the length spectrum is proportional to
the one of the ambient manifold, however this is still uncertain.

Definition 3.6. For all ξ, η ∈ ∂X (2), we define the function DX by

DX (ξ, η)= exp(−〈ξ | η〉p).

It is shown in [Ghys and de la Harpe 1990] that Da
X for a > 0 small enough is a

distance, called Gromov distance. However, we do not need such renormalization
here.

The proof of Theorem 3.5 is in two steps. In the first, we prove that if the
Patterson Sullivan measures are equivalent then the functions D6 and DH3 are
Hölder equivalent. In the second, we prove that this last condition implies the
proportionality of the length spectrum.
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Lemma 3.7. If µ6p and µH3

p are equivalent, then the functions DH3 and D6 are
Hölder equivalent.

Proof. Let us consider on 3(2) the Bowen–Margulis currents defined by

ν6(ξ, η)=
dµp

6(ξ)dµ
p
6(η)

D6(ξ, η)2δ(6)
,

νH3(ξ, η)=
dµp

H3(ξ)dµ
p
H3(η)

DH3(ξ, η)2δ(H
3)
.

These two measures are 0-invariant by the previous computations for the Bowen–
Margulis measures.

By assumption, µp
6 and µH3

p are equivalent, therefore ν6 and νH3 are also equiv-
alent. The ergodicity and the 0-invariance imply the existence of c > 0 such that

ν6 = cνH3 .

Since µ6p and µH3

p are equivalent, there exists a function f :3→ R+ such that

µ6p (ξ)= f (ξ)µH3

p . We have

f (ξ) f (η)Dδ(H3)

H3 (ξ, η)= cDδ(6)
6 (ξ, η).

We see that f is equal almost everywhere to a continuous function. We can therefore
suppose that f is continuous on 3 and hence strictly positive. By compacity, there
exists C > 1 such that 1

C ≤ f (ξ)≤ C . Finally we get what we stated:

c
C2 Dδ(6)

6 (ξ, η)≤ Dδ(H3)

H3 (ξ, η)≤ C2cDδ(6)
6 (ξ, η). �

We now show the second part.

Lemma 3.8. If D6 and DH3 are Hölder equivalent the marked length spectra of
6 and M = H3/0 are proportional.

Proof. In [Paulin et al. 2015, Section 3.5], the authors show that in a very general
setting we have

lim
n→∞

1
n

log[g−, g+, gn(ξ), ξ ] = `(g),

where `(g) is the displacement of g and

[g−, g+, gn(ξ), ξ ] =
D(g−, gn(ξ))D(g+, ξ)
D(g−, ξ)D(g+, gn(ξ))

.

In particular, we can apply this result to 6 and H3 to get

lim
n→∞

1
n

log[g−, g+, gn(ξ), ξ ]6 = `6(g)

and
lim

n→∞

1
n

log[g−, g+, gn(ξ), ξ ]H3 = `H3(g).



ENTROPY OF EMBEDDED SURFACES IN QUASI-FUCHSIAN MANIFOLDS 395

By assumption on the distances D6, DH3 , there exists C > 1 such that

1
C
[g−, g+, gn(ξ), ξ ]r

H3 ≤ [g−, g+, gn(ξ), ξ ]6 ≤ C[g−, g+, gn(ξ), ξ ]r
H3 .

Hence,
`6(g)= r`H3(g). �

Theorem 3.5 follows directly from Lemmas 3.7 and 3.8.
We will show at the very end of this article that if6 has the same length spectrum

as M = H3/0 then 0 is Fuchsian, to prove Corollary 1.4. It might be also true
even when we only suppose that they are proportional, however this does not follow
from our proof.

3C. Entropy comparison. We finally get to the proof of Theorem 1.3. First we
prove the inequality using the behavior of Patterson–Sullivan measures and a volume
comparison of a subset of 6; the proof follows the same lines as [Knieper 1995,
Theorem 3.4]. Then we prove the equality case using Theorem 3.5.

Theorem 3.9. Let 6 ⊂H3 be a 0-invariant embedded disk, whose induced metric
g has negative curvature, then

h(g)≤ IµB M (6,M)δ(0).

Moreover, the equality occurs if and only if the marked length spectrum of 6 is
proportional to the marked length spectrum of M. In this case, the proportionality
factor is given by `6(g)I (6,M)= `M(g).

Proof. The geodesic flow is ergodic with respect to the Bowen–Margulis measure
µB M , hence for µB M -almost all v ∈ T 16 we have

lim
t→∞

a(v, t)
t
= Iµ(6,M).

Let v and v′ be two unit vectors on the same weak stable manifold. Then

d(cv′(t), cv′(0))≤ d(cv′(t), (cv(t))+ d(cv(t), (cv(0))+ d(cv(0), (cv′(0)),

and the same inequality holds interchanging the role of v and v′. Moreover
d(cv′(t), (cv(t)) decreases exponentially since v and v′ are on the same weak stable
manifold. Hence limt→∞

1
t a(v, t) exists if and only if limt→∞

1
t a(v′, t) does.

Let vp(ξ) denote the unitary vector in T 1
p6 such that cvp(ξ)(∞)= ξ . The previous

fact and the product structure of dµB M ensure that for µg
p-almost all ξ ∈ ∂6,

lim
t→∞

a(vp(ξ), t)
t

= Iµ(6,M).

For all ε > 0 and T > 0, we define the set
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AT,ε
p =

{
ξ ∈ ∂6

∣∣ ∣∣∣a(vp(ξ), t)
t

− Iµ(6,M)
∣∣∣≤ ε, t ≥ T

}
.

For all d ∈ ]0, 1[ and all ε > 0, there exists T > 0 such that µ6p (A
T,ε
p )≥ d. For

t > T , consider the subset {cp,ξ (t) | ξ ∈ AT,ε
p } ⊂ Sg(p, t) of the geodesic sphere of

radius t and center p on 6.
Choose {B6(xi , R) | i ∈ I } a covering of this subset of fixed radius R > 0

such that xi ∈ S6(p, t) and B6(xi , R/4) are pairwise disjoint. Then, by the local
behavior of µ6p , there exists a constant c > 1, independent of t , such that

1
c

e−h(g)t
≤ µ6p (pr6p (B6(xi , R)))≤ ce−h(g)t .

It is clear that AT,ε
p ⊂

⋃
i∈I pr6p (B6(xi , R)) and therefore,

d ≤ µ6p
(⋃

i∈I

pr6p (B6(xi , R))
)
≤

∑
i∈I

µ6p (pr6p (B6(xi , R)))≤ c Card(I )e−h(g)t .

Since H3/0 is convex cocompact, CQ(3)/0 is compact, where CQ(3) is the
Q neighborhood of the convex core of 3. Hence for any Q > 0,

δ(0)= lim
R→∞

Vol(BH3(o, R)∩CQ(3)).

Now take Q sufficiently large such that 6 is inside CQ(3). There exists K such
that B6(xi , R/4)⊂ BH3(xi , R+ K )∩CQ(3).

From the definition of the set AT,ε
p , we then have that the disjoint union⋃

i∈I

B6(xi , R/4)⊂ BH3(p, t (IµB M (6,H3)+ ε)+ R+ K )∩CQ(3).

It follows that

eh(g)t
≤

c
d

Card(I )≤ c
dV

∑
i∈I

VolH3(BH3(xi , R/4))∩CQ(3))

≤
c

dV
VolH3

(
BH3(p, t (IµB M (6,H3)+ ε)+ R+ K )∩CQ(3)

)
.

Hence,

h(g)≤ 1
t

(
log c

dV
+ log VolH3(BH3(p, t (IµB M (6,H3)+ ε)+ R+ K )∩CQ(3))

)
.

Taking the limit t→∞, we get

h(g)≤ (IµB M (6,H3)+ ε)δ(0),

which concludes the proof since ε is arbitrary. �

For the proof of the equality case in Theorem 1.3 we will use the result equivalent
to [Knieper 1995, Corollary 3.6] in our context, that is:
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Lemma 3.10 [Knieper 1995]. Letting p ∈ 6 and µg
p be the Patterson–Sullivan

measure with respect to p and g, there exists a constant L such that for µg
p-almost

all ξ ∈ ∂6 there is a sequence tn→∞ such that

|d(p, πφ6tn vp(ξ))− IµB M (6,H3)tn| ≤ L .

Proof. It follows from Lemma 3.5 of [Knieper 1995], that our lemma is true
provided there exists a constant C > 0 such that, for all t1, t2 > 0 and all v ∈ T 16,

a(v, t1)+ a(φ6t1 v, t2)≤ C + a(v, t1+ t2).

Let v ∈ T 16 and c6v be the geodesic on 6 directed by v. Recall that there exists
C1 such that the H3-geodesic from π(v) to c6v (t1+ t2) is at bounded distance C1 of
c6v (t1+ t2), independent of t1 and t2. The H3-geodesic from p to c6v (t1) and the
one from c6v (t1) to c6v (t1+ t2) are also at bounded distance C1 of c6v . This implies
the desired property with C = 2C1. �

Proof of the equality case in 1.3. Suppose that h(g)= IµB M (6,H3)δ(0). Choose a
point p ∈6 and ξ ∈3, set yn :=πφ

6
tn vp(ξ). From the above lemma, for µ6p -almost

all ξ we have
|d(p, yn)− IµB M (6,H3)tn| ≤ L .

Setting a fixed constant, R > 0, by the local property of the Patterson–Sullivan
measure on H3, there is c1 such that

1
c1

e−δ(0)d(p,yn) ≤ µH3

p (prH3 BH3(yn, R))≤ c1e−δ(0)d(p,yn),

and by Theorem 3.3,

prH3(BH3(x, R−C))∩3⊂ pr6(BH3(x, R)∩6)⊂ prH3(BH3(x, R+C)).

Hence there is a constant c2 such that

1
c2

e−δ(0)d(p,yn) ≤ µH3

p (pr6BH3(yn, R)∩6)≤ c1e−δ(0)d(p,yn).

By the local property of the Patterson–Sullivan measure on6, there is c3 such that

1
c3

e−h(6)d6 (p,yn) ≤ µ6p (pr6B6(yn, R))≤ c3e−h(6)d6 (p,yn),

and by Theorem 3.3,

pr6(B6(x, R−C))⊂ pr6(BH3(x, R)∩6)⊂ pr6(B6(x, R+C)).

Hence there is c4 such that

1
c4

e−h(6)d6 (p,yn) ≤ µ6p (pr6BH3(yn, R)∩6)≤ c4e−h(6)d6 (p,yn).
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From the choice of yn and since h(6)= IµB M (6,H3)δ(0),

e−Le−δ(0)d(p,yn) ≤ e−h(g)d6(p,yn) ≤ eLe−δ(0)d(p,yn).

Hence there is c5 > 0 such that

1
c5

e−δ(0)d(p,yn) ≤ µ6p (pr6BH3(yn, R)∩6)≤ c5e−δ(0)d(p,yn).

Finally we have a constant c6 such that

c6 ≤
µ6p (pr6BH3(yn, R)∩6)

µH3
p (pr6BH3(yn, R)∩6)

≤ c6.

Since pr6(BH3(yn, R) ∩ 6) → ξ , the measures µ6p and µH3

p are equivalent.
Theorem 3.5 concludes the proof. �

We finish this article with the proof of Corollary 1.4:

Corollary 1.4. Under the assumptions of Theorem 1.3 we have

h(6)≤ δ(0,H3),

with equality if and only if 0 is fuchsian and 6 is the totally geodesic hyperbolic
plane, preserved by 0.

Proof. The inequality is obvious. Suppose the equality occurs. Then by Theorem 1.3,
we have that the length spectrum is proportional to the one of H3/0 and moreover
that I (6,M)= 1. In other words the two length spectra are equal.

Since 6 is embedded in H3, we can prove that the equality between the spectra
implies that 6 is totally geodesic by the following argument:

Let γ ∈ 0, and consider A its axis in 6. Then for all p ∈ A, we have

`6(γ )= d6(γ p, p)≥ dH3(γ p, p)≥ `H3(γ ).

Since the two spectra are equal, these inequalities are equalities. In particular, it
implies that p lies in the axis of γ in H3. Therefore A is a geodesic of H3.

Let c be the closed geodesic on 6 represented by g and consider c′ any geodesic
that intersects c. Let g′ be a representative of this closed geodesic such that the axis
A′ of g′ on 6 intersects A. By similar computations as before, we see that A′ is a
geodesic of H3.

Since the two geodesics intersect, the endpoints of A and A′ are cocyclic on
the boundary of H3, and in particular bound a copy of H2 inside H3. By similar
arguments for any element g ∈ 0 such that its axis Ag intersects A and A′ we see
that Ag is a geodesic of H3 and therefore that Ag is included in the copy of H2.
This last fact implies that 6 is included, therefore equal, to this copy of H2 and
finishes the proof of the corollary. �
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3C1. A remark on length spectrum rigidity. As we said in the introduction, the
proof of the last corollary raises the following question: If a quasi-Fuchsian has the
same length spectrum as a negatively curved surface, is it Fuchsian? Or more gener-
ally, if the two length spectra are proportional does it imply that it is Fuchsian? The
latter question seems to be unanswered even if we suppose that the surface has con-
stant negative curvature equal−1, and the problem in general seems to be quite hard.

We answer the case of constant negative curvature:

Theorem 1.5. Let M be a quasi-Fuchsian manifold and 6 a hyperbolic (in the
sense that it has constant curvature −1) surface. Suppose that M and 6 have pro-
portional length spectrum (i.e., there exists k ∈R+ such that for all γ ∈0, `M(γ )=

k`6(γ )), then M is Fuchsian, k = 1 and 6 is isometric to the totally geodesic
surface in M.

In this case we cannot use the entropy argument that is used when we suppose
the equality of the two spectra. Our proof is inspired by the work of F. Dal’bo and
I. Kim [2000] and based on the following theorem of Benoist:

Theorem 3.11 [Benoist 1997]. Let G be a semisimple linear connected Lie group.
Let 0<G be a Zariski dense subgroup. Then the limit cone is convex with nonempty
interior.

The limit cone is the smallest closed cone of a Cartan subspace of g containing
log(λ(0)) where λ(γ ) is the Jordan projection.

Proof of Theorem 1.5. Consider 0 a surface group and ρQF a quasi-Fuchsian repre-
sentation into PSL2(C) and ρ0 a Teichmüller representation in PSL2(R). Consider
the diagonal representation,

ρ = (ρQF , ρ0) : 0→ PSL2(C)×PSL2(R).

The group PSL2(C)×PSL2(R) is a semisimple linear connected Lie group of
rank 2. The Jordan projection of an element (γ1, γ2) is given by (`H3(γ1), `H2(γ2))

where `X is the translation length in X.
Therefore if the two representations have proportional length spectra, then the

limit cone of ρ(0) is a line, in particular it has empty interior. Using Benoist’s
theorem we conclude that ρ(0) is not Zariski dense, which implies that M is
Fuchsian. Therefore the length spectrum of 6 is k times the length spectrum of the
hyperbolic surface 60 = H2/ρ(0). By Otal’s theorem [1990] we get

(6, g)= (60, k2gH),

hence since 6 is hyperbolic, we have k = 1 and 6 =60. �

Acknowledgements. We want to thank Maxime Wolff for his help in the proof of
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