Pacific

Journal of Mathematics

ENTROPY OF EMBEDDED SURFACES IN QUASI-FUCHSIAN MANIFOLDS

Olivier Glorieux

ENTROPY OF EMBEDDED SURFACES IN QUASI-FUCHSIAN MANIFOLDS

Olivier Glorieux

Abstract

We compare critical exponents for quasi-Fuchsian groups acting on the hyperbolic 3 -space and entropy of invariant disks embedded in \mathbb{H}^{3}. We give a rigidity theorem for all embedded surfaces when the action is Fuchsian and a rigidity theorem for negatively curved surfaces when the action is quasi-Fuchsian.

1. Introduction

The aim of this paper is to compare two geometric invariants of Riemannian manifolds: critical exponent and volume entropy. The first one is defined through the action of the fundamental group on the universal cover, the second one is defined for compact manifolds as the exponential growth rate of the volume of balls in the universal cover. These two invariants have been studied in many cases; we pursue this study for quasi-Fuchsian manifolds.

Let Γ be a group acting on a simply connected Riemannian manifold (X, g). If the action on X is discrete we define the critical exponent by

$$
\begin{equation*}
\delta(\Gamma):=\limsup _{R \rightarrow \infty} \frac{1}{R} \operatorname{Card}\{\gamma \in \Gamma \mid d(\gamma \cdot o, o) \leq R\}, \tag{1}
\end{equation*}
$$

where o is any point in X. It does not depend on this particular base point thanks to triangle inequality. If we want to insist on the space on which Γ acts we will write $\delta(\Gamma, X)$.
The volume entropy $h(g)$ of a Riemannian compact manifold (Σ, g) is defined by

$$
\begin{equation*}
h(g):=\lim _{R \rightarrow \infty} \frac{\log \operatorname{Vol}_{g}\left(B_{g}(o, R)\right)}{R}, \tag{2}
\end{equation*}
$$

where $B_{g}(o, R)$ is the ball of radius R and center o in the universal cover of Σ. We will also use the notation $h(X)$ for the exponential growth rate of ball volumes in a a simply connected manifold X.

It is a classical fact, using a simple volume argument that the volume entropy coincides with the critical exponent of $\pi_{1}(\Sigma)$ acting on $\widetilde{\Sigma}$. Moreover, a famous

[^0]theorem of G. Besson, G. Courtois and S. Gallot [Besson et al. 1995] said that the entropy allows us to distinguish the hyperbolic metric in the set of all metrics, $\operatorname{Met}(\Sigma)$. Note that entropy is sensitive to homothetic transformations: for any $\lambda>0$ we have $h\left(\lambda^{2} g\right)=\frac{1}{\lambda} h(g)$. Assume that Σ admits a hyperbolic metric g_{0} and let $\operatorname{Met}_{0}(\Sigma)$ be the set of metrics on Σ whose volume is equal to $\operatorname{Vol}\left(\Sigma, g_{0}\right)$, then the theorem of Besson, Courtois, and Gallot says that for all $g \in \operatorname{Met}_{0}(\Sigma)$
\[

$$
\begin{equation*}
h(g) \geq h\left(g_{0}\right), \tag{3}
\end{equation*}
$$

\]

with equality if and only if $g=g_{0}$.
Our aim is to study the behavior of the volume entropy for a subset of all the metrics on a surface. This subset is the metrics induced by an incompressible embedding into quasi-Fuchsian manifolds. It has not the cone structure of $\operatorname{Met}(\Sigma)$: it is not invariant by all homothetic transformations. Hence we will look at the behavior of $h(g)$ without normalization by the volume.

Let S be a compact surface of genus $g \geq 2$ and $\Gamma=\pi_{1}(S)$ its fundamental group. A Fuchsian representation of Γ is a faithful and discrete representation in $\mathrm{PSL}_{2}(\mathbb{R})$. A quasi-Fuchsian representation is a perturbation of Fuchsian representation in $\mathrm{PSL}_{2}(\mathbb{C})$. More precisely it is a discrete and faithful representation of Γ into Isom $\left(\mathbb{H}^{3}\right)$ such that the limit set on $\partial \mathbb{H}^{3}$ is a Jordan curve. A celebrated theorem of R. Bowen [1979] asserts that for quasi-Fuchsian representations, the critical exponent is minimal and equal to 1 if and only if the representation is Fuchsian.

We choose an isometric, totally geodesic embedding of \mathbb{H}^{2} in \mathbb{H}^{3} (the equatorial plane in the ball model for example). This embedding gives an inclusion i : $\operatorname{Isom}\left(\mathbb{H}^{2}\right) \rightarrow \operatorname{Isom}\left(\mathbb{H}^{3}\right)$.

Let ρ be a Fuchsian representation of Γ. The group Γ acts naturally on \mathbb{H}^{2} and \mathbb{H}^{3} by ρ and $i \circ \rho$, respectively. For every point $o \in \mathbb{H}^{2}$ we have

$$
d_{\mathbb{H}^{3}}(i \circ \rho(\gamma) o, o)=d_{\mathbb{H}^{2}}(\rho(\gamma) o, o),
$$

since \mathbb{H}^{2} is totally geodesic in \mathbb{H}^{3}. The critical exponents for these two actions of Γ are then equal

$$
\delta\left(\Gamma, \mathbb{H}^{3}\right)=\delta\left(\Gamma, \mathbb{H}^{2}\right)=1 .
$$

In light of this trivial example, two questions rise up. What is the entropy of a Γ-invariant disk which is not totally geodesic? What happens when we modify the Fuchsian representation in $\mathrm{PSL}_{2}(\mathbb{C})$?

We will answer the first question. Since ρ is a Fuchsian representation, the critical exponent of Γ acting on \mathbb{H}^{3} through $i \circ \rho$ is 1 , and we have the following: Theorem 1.1. Suppose Γ is Fuchsian. Let Σ be a Γ-invariant disk embedded in \mathbb{H}^{3}. We have

$$
\begin{equation*}
h(\Sigma) \leq \delta\left(\Gamma, \mathbb{H}^{3}\right), \tag{4}
\end{equation*}
$$

with equality if and only if Σ is the totally geodesic hyperbolic plane preserved by Γ.

Note that $\delta\left(\Gamma, \mathbb{H}^{3}\right)=h\left(\Sigma, g_{0}\right)$, hence the last theorem can be rewritten as follows: Theorem 1.2. For all metrics g obtained as induced metrics by an incompressible embedding in a Fuchsian manifold we have

$$
\begin{equation*}
h(g) \leq h\left(g_{0}\right) \tag{5}
\end{equation*}
$$

with equality if and only if $g=g_{0}$.
We did not renormalize by the volume; this explains the dichotomy between (3) and (5).

We will prove this theorem in the next section. The inequality is trivial since the induced distance between two points is always greater than the distance in \mathbb{H}^{3} : $d_{\Sigma} \geq d_{\mathbb{H}^{3}}$, but the rigidity is not. We have no geometrical (curvature) hypothesis on Σ, therefore it is not obvious at all to show that the inequality is strict as soon as Σ is not totally geodesic. Indeed we cannot use the "usual" techniques of negative curvature like Bowen-Margulis measure, or even the uniqueness of geodesic between two points.

We obtain an answer to the second question under a geometrical hypothesis on the curvature:
Theorem 1.3. Let Γ be a quasi-Fuchsian group and $\Sigma \subset \mathbb{H}^{3}$ a Γ-invariant embedded disk. We suppose that Σ endowed with the induced metric has negative curvature. We then have

$$
h(\Sigma) \leq I\left(\Sigma, \mathbb{H}^{3}\right) \delta\left(\Gamma, \mathbb{H}^{3}\right),
$$

where $I\left(\Sigma, \mathbb{H}^{3}\right)$ is the geodesic intersection between Σ and \mathbb{H}^{3}. Moreover, equality occurs if and only if the length spectrum of Σ / Γ is proportional to that of \mathbb{H}^{3} / Γ.

The geodesic intersection will be defined in Section 3A. Roughly, it is the average ratio of the length between two points of Σ for the extrinsic and intrinsic distance. We need the curvature assumption to define and use this invariant.

This theorem implies Theorem 1.1 only for negatively curved embedded disks but not in its full generality. Indeed, when Γ is Fuchsian, and Σ / Γ has the same length spectrum as \mathbb{H}^{3} / Γ it follows directly by the work of J-P. Otal [1990] that $\Sigma=\mathbb{H}^{2} / \Gamma$. However, using the fact that Σ is embedded in \mathbb{H}^{3} we will be able to prove without the Fuchsian hypothesis that if the two marked length spectra are equal then Σ is totally geodesic, and therefore we obtain the following corollary of Theorem 1.3:

Corollary 1.4. Under the assumptions of Theorem 1.3 we have

$$
h(\Sigma) \leq \delta\left(\Gamma, \mathbb{H}^{3}\right),
$$

with equality if and only if Γ is fuchsian and Σ is the totally geodesic hyperbolic plane, preserved by Γ.

The proof of this corollary raises the following question generalizing this result: if a quasi-Fuchsian manifold has the same length spectrum as a negatively curved surface, does it imply that it is in fact Fuchsian? We answer this question using a well-known result of Y. Benoist, showing the following theorem:

Theorem 1.5. Let M be a quasi-Fuchsian manifold and Σ a hyperbolic (in the sense that it has constant curvature -1) surface. Suppose that M and Σ have proportional length spectrum (i.e., there exists $k \in \mathbb{R}^{+}$such that for all $\gamma \in \Gamma$, $\left.\ell_{M}(\gamma)=k \ell_{\Sigma}(\gamma)\right)$, then M is Fuchsian and Σ is isometric to the totally geodesic surface in M.

Theorem 1.3 has to be compared to results obtained by G. Knieper who compared entropy for two different metrics on the same manifolds, and our proof of Theorem 1.3 follows his paper [Knieper 1995]. As in his paper, we obtain that the intersection is larger than 1 as soon as Γ is not Fuchsian.

The theorem is also related to the work of M. Bridgeman and E. Taylor [2000]; indeed, we answer in the negative Question 2 of their paper. And finally, we can see our work as an extension of U. Hamenstadt's [2002], where she compared the geodesic intersection between the boundary of convex hulls and \Vdash^{3} for quasiFuchsian manifolds.

As we said, the two proofs are very different from one another. For the Fuchsian case, we give precise estimates for the length of some paths of the hyperbolic plane. We show that in some sense the length between two points on Σ is much greater than the extrinsic distance between those two points. For quasi-Fuchsian manifolds, we use well-known techniques of negative curvature geometry: we compare the Patterson-Sullivan measures for \mathbb{H}^{3} and for Σ.

2. Fuchsian case

In this section we are going to prove Theorem 1.1. This theorem has a strong condition on Γ, i.e., it is conjugate to a subgroup of $\mathrm{PSL}_{2}(\mathbb{R})$ but we make no geometrical assumptions on Σ. As we said, there could be more than one geodesic between two points on Σ.

We already remarked that the inequality is trivial, as is the equality when Σ is totally geodesic. Therefore, the only thing left to prove is the strict inequality when Σ is not totally geodesic or in other words if $\Sigma \neq \mathbb{H}^{2}$ then $h(\Sigma)<1$.

The proof of the theorem is based on the comparison between the distances on equidistant surfaces of the totally geodesic Γ-invariant hyperbolic plane. We are going to prove several lemmas which together give Theorem 1.1. The strict inequality follows directly from Lemmas 2.2 and 2.8 . We denote by \mathbb{D} the totally geodesic, Γ-invariant plane. The induced metric on \mathbb{D} is the usual hyperbolic metric, and we will denote it by \mathbb{H}^{2}. We are first going to see that between all the equidistant
surfaces, \mathbb{H}^{2} has the biggest entropy. Then we will make this argument work when only one part of the surface is "above" \mathbb{D}. The idea to prove it, is to consider another distance d_{m} on \mathbb{D}, which will be used as an intermediary between Σ and \mathbb{H}^{2}. We will explain, after the definition of d_{m}, how the two comparisons will be proved.

Let us begin to parametrize \mathbb{H}^{3} by $\mathbb{H}^{2} \times \mathbb{R}$ as follows: take an orientation for the unit normal tangent space of \mathbb{H}^{2}, then to a point $x \in \mathbb{H}^{3}$ we associate $s(x)$ the orthogonal projection from \mathbb{H}^{3} to \mathbb{H}^{2}. This is the first parameter of the parametrization. The oriented distance along this geodesic gives the second one. Hence the parametrization, called Fermi coordinates, is defined by

$$
\mathbb{M}^{3} \mapsto \mathbb{H}^{2} \times \mathbb{R}, \quad z \rightarrow(s(z), \hat{d}(z, s(z))),
$$

where \hat{d} is the oriented distance defined by the choice of the orientation on the unit normal tangent of \mathbb{H}^{2}. With this parametrization, the metric on \mathbb{H}^{3} is

$$
g_{\mathbb{H}^{3}}=\cosh ^{2}(r) g_{0}+d r^{2}
$$

Look at $S(r)$ the equidistant disk at distance r of \mathbb{M}^{2}; its metric, induced by the one on \mathbb{H}^{3}, is $g_{r}=\cosh ^{2}(r) g_{0}$. It is isometric to a hyperbolic plane of curvature $1 / \cosh (r)$, and its volume entropy is $h(S(r))=h(0) / \cosh (r)=1 / \cosh (r)$, hence the entropy is maximal if and only if $r=0$. For the general case, we are going to refine this argument showing that it is sufficient that a small part of Σ is over \mathbb{H}^{2} for the entropy to be strictly less than 1 .

Let Σ be a embedded Γ-invariant disk in \mathbb{H}^{3}. We assume that $\Sigma \neq \mathbb{D}$, and we endow Σ with its induced metric. Let x, y be two points on Σ. Let c_{Σ} be a geodesic on Σ linking x to y. We parametrize c_{Σ} by its Fermi coordinates, (c, r). We then have

$$
\begin{align*}
d_{\Sigma}(x, y) & =\int_{0}^{L}\left\|c_{\Sigma}^{\prime}(t)\right\|_{\Sigma} d t \\
& =\int_{0}^{L} \sqrt{r^{\prime}(t)^{2}+\cosh ^{2}(r(t))\left\|c^{\prime}(t)\right\|_{g_{0}}^{2}} d t \tag{6}\\
& \geq \int_{0}^{L} \cosh (r(t))\left\|c^{\prime}(t)\right\|_{g_{0}} d t
\end{align*}
$$

We now endow \mathbb{D} with a different distance to the one coming from hyperbolic metric. It will play the role of intermediary to compare $d_{\Sigma}(x, y)$ on Σ with $d_{g_{0}}(s(x), s(y))$ on \mathbb{H}^{2}.

We call σ the restriction of s on Σ. Since $\Sigma \neq \mathbb{D}$, there exist $x_{0} \in \mathbb{D} \backslash \Sigma, \varepsilon>0$ and $\eta>0$ such that

$$
d_{\mathbb{H}^{3}}\left(\sigma^{-1} B\left(x_{0}, 2 \varepsilon\right), \mathbb{D}\right)>\eta
$$

This means that all the points in the pre-image of $B\left(x_{0}, 2 \varepsilon\right)$ by σ are at distance greater than η from \mathbb{D}. We will assume that 2ε is smaller than the injectivity radius
of \mathbb{H}^{2} / Γ so that the translations of $B\left(x_{0}, 2 \varepsilon\right)$ by Γ are disjoint. We have taken 2ε in order to simplify the proof of Lemma 2.4.

We now consider on \mathbb{D} the metric g_{m} defined by putting weight on the translations of $B\left(x_{0}, 2 \varepsilon\right)$ by Γ.

Definition 2.1. We define g_{m} by

$$
g_{m}:=\left\{\begin{aligned}
\cosh (\eta)^{2} g_{0} & \text { on } \Gamma \cdot B\left(x_{0}, 2 \varepsilon\right), \\
g_{0} & \text { elsewhere. }
\end{aligned}\right.
$$

We will index by m objects which depend on this metric. Note that this metric is not continuous but it still defines a length space. Let $c:[0,1] \rightarrow \mathbb{D}$ be a C^{1} path, we then have

$$
\ell_{m}(c)=\int_{0}^{1}\|\dot{c}(t)\|_{g_{m}} d t
$$

This gives a distance d_{m} on \mathbb{D} by choosing

$$
d_{m}(x, y):=\inf _{c}\left\{\ell_{m}(c) \mid c(0)=x, c(1)=y\right\} .
$$

In order to prove Theorem 1.1 we will compare the entropy of $\left(\mathbb{D}, d_{m}\right)$ with the one of Σ and the one of \mathbb{H}^{2}. The comparison with the entropy of Σ is quite easy and follows quickly from the definition of d_{m} and the inequality (6). The comparison with the entropy of \mathbb{H}^{2} is more subtle. Indeed, there exist geodesics of \mathbb{H}^{2} which are geodesics for $\left(\mathbb{D}, d_{m}\right)$ (any lift of a closed geodesic which does not cross the ball $\left.B\left(x_{0}, 2 \varepsilon\right) / \Gamma\right)$ on $\left.\mathbb{H}^{2} / \Gamma\right)$. We will first prove that two points of \mathbb{D} which are joined by a geodesic of \mathbb{H}^{2} which often crosses $\Gamma \cdot B\left(x_{0}, 2 \varepsilon\right)$ are much farther away from each other for d_{m} distance, see Lemma 2.4. Then, we will use a large deviation theorem for the geodesic flow (Theorem 2.6), to show that there are few geodesics which do not cross $\Gamma \cdot B\left(x_{0}, 2 \varepsilon\right)$ (Lemma 2.7). It will follow from these two results that the balls of radius R for d_{m} are almost completely included in balls of radius R / C of \mathbb{H}^{2} for $C>1$ (Lemma 2.8). The two comparisons give the proof of Theorem 1.1.

The comparison between $h(\Sigma)$ and the critical exponent of $\left(\mathbb{D}, d_{m}\right)$ follows from the inequality (6) and the definition of d_{m}.

Lemma 2.2. We have

$$
h(\Sigma) \leq \delta\left(\left(\mathbb{D}, d_{m}\right)\right) .
$$

Proof. Let $x \in \Sigma$ and $o=\sigma(x) \in \mathbb{D}$. Since Σ / Γ is compact, we have

$$
h(\Sigma)=\lim _{R \rightarrow \infty} \frac{1}{R} \log \operatorname{Card}\left\{\gamma \in \Gamma \mid d_{\Sigma}(\gamma x, x) \leq R\right\} .
$$

And by definition

$$
\delta\left(\left(\mathbb{D}, d_{m}\right)\right)=\lim _{R \rightarrow \infty} \frac{1}{R} \log \operatorname{Card}\left\{\gamma \in \Gamma \mid d_{m}(\gamma o, o) \leq R\right\} .
$$

It is sufficient to prove that $d_{\Sigma}(x, y) \geq d_{m}(s(x), s(y))$, for all $x, y \in \Sigma$. Let $c_{\Sigma}=(c, r)$ be a geodesic on Σ joining x to y. Recall that we have

$$
d_{\Sigma}(x, y) \geq \int_{0}^{L} \cosh (r(t))\left\|c^{\prime}(t)\right\|_{g_{0}} d t
$$

If $c(t) \notin \Gamma \cdot B\left(x_{0}, 2 \varepsilon\right)$, then $\left\|c^{\prime}(t)\right\|_{g_{m}}=\left\|c^{\prime}(t)\right\|_{g_{0}}$. In particular,

$$
\left\|c^{\prime}(t)\right\|_{g_{m}} \leq \cosh (r(t))\left\|c^{\prime}(t)\right\|_{g_{0}}
$$

If $c(t) \in \Gamma \cdot B\left(x_{0}, 2 \varepsilon\right)$, then by definition of $g_{m},\left\|c^{\prime}(t)\right\|_{g_{m}}=\cosh (\eta)\left\|c^{\prime}(t)\right\|_{g_{0}}$ and since Σ is "far" from $\mathbb{D}, r(t)>\eta$. In particular,

$$
\left\|c^{\prime}(t)\right\|_{g_{m}} \leq \cosh (r(t))\left\|c^{\prime}(t)\right\|_{g_{0}} .
$$

Finally,

$$
\begin{aligned}
d_{\Sigma}(x, y) & \geq \int_{0}^{L}\left\|c^{\prime}(t)\right\|_{g_{m}} d t \\
& \geq l_{m}(c) \\
& \geq d_{m}(s(x), s(y)) .
\end{aligned}
$$

Our next aim is to compare the distances d_{m} and $d_{\mathrm{H}^{2}}$. Let us fix some notations before stating the first lemma. For all $v \in T^{1} \mathbb{W}^{2}$, let ζ_{R}^{v} be the probability measure on $T^{1} \mathbb{H}^{2}$, defined for all Borel sets $E \subset T^{1} \mathbb{H}^{2}$ by

$$
\zeta_{R}^{v}(E)=\frac{1}{R} \int_{0}^{R} \chi_{E}\left(\phi_{t}^{H^{2}}(v)\right) d t
$$

where χ_{E} is the indicator function of E. For a Borel set E which is a unitary tangent bundle of a subset of $\mathbb{D}, E:=T^{1} A$, we have

$$
\zeta_{R}^{v}(E)=\frac{1}{R} \operatorname{Leb}\left\{t \in[0, R] \mid c_{v}(t) \in A\right\}
$$

since $\phi_{t}^{\mathbb{H}^{2}}(v) \in E$ is equivalent to $c_{v}(t)=\pi \phi_{t}^{H^{2}}(v) \in A$.
Let L be the Liouville measure on the unitary tangent bundle of the quotient surface $T^{1} \mathbb{W}^{2} / \Gamma$. Recall that the metric g_{m} is given by $g_{m}=\cosh ^{2}(\eta) g_{0}$ on $T^{1} \Gamma B\left(x_{0}, 2 \varepsilon\right)$. We fix $K:=T^{1}\left(\Gamma \cdot B\left(x_{0}, \varepsilon\right)\right) .{ }^{1}$

Definition 2.3. Let $\kappa>0$ be such $L(K / \Gamma)-2 \kappa>0$. We define the sets

$$
\mathcal{E}(R):=\left\{v \in T^{1} \mathbb{H}^{2} \mid \zeta_{R}^{v}(K)>L(K / \Gamma)-\kappa\right\},
$$

and for all points $o \in \mathbb{H}^{2}$, we note

$$
\mathcal{E}_{o}(R):=\left\{v \in T_{o}^{1} \nVdash^{2} \mid \zeta_{R}^{v}(K)>L(K / \Gamma)-\kappa\right\} .
$$

[^1]

Figure 1. $\Gamma \cdot B\left(x_{0}, \varepsilon\right), \mathcal{E}_{o}(R)$ and $\mathcal{E}_{o}^{c}(R)$.
A geodesic of length R whose direction is given by a vector $v \in \mathcal{E}(R)$ crosses πK "often", that is, at least a number of times proportional to R; see Figure 1 . Indeed, if $v \in \mathcal{E}(R)$ we have

$$
\frac{1}{R} \operatorname{Leb}\left\{t \in[0, R] \mid c_{0}(t) \cap \pi K \neq \varnothing\right\}>L(K / \Gamma)-\kappa>\kappa>0
$$

since $\dot{c}_{0}(t) \in K$ is equivalent to $c_{0}(t) \in \pi K$ by definition of K.
The next argument is the key in the proof of Theorem 1.1. It shows that we can compare the length of a geodesic in \mathbb{H}^{2} which often crosses πK with its d_{m}-length.

Lemma 2.4. There exists $C>1$, such that for all $R>0$, for all $v \in \mathcal{E}_{o}(R)$ and for all $x \in\{\exp (t v) \mid t \in[R, 2 R]\}$, we have

$$
\begin{equation*}
d_{m}(o, x) \geq C d_{\mathbb{H}^{2}}(o, x) \tag{7}
\end{equation*}
$$

Proof. Let c_{0} be the geodesic for g_{0} and c_{m} be a minimizing geodesic for g_{m} between o and x. Let d be the hyperbolic distance between o and $x, d=d_{\mathbb{H}^{2}}(o, x)$, and we parametrize c_{0} by unit speed; we thus have $c_{0}(d)=x$. Let $N(R)$ be the number of intersections between πK and $c_{0}([0, R])$, that is N is the number of connected components of $c_{0}([0, R]) \cap \pi K$. On one hand, all components of $c_{0}([0, R]) \cap \pi K$ are inside balls of radius ε, hence c_{0} "stays" at most 2ε in each components. On the other hand, the hypothesis $v \in \mathcal{E}_{o}(R)$, implies

$$
\frac{1}{R} \operatorname{Leb}\left\{t \in[0, R] \mid c_{0}(t) \cap \pi K \neq \varnothing\right\}>L(K / \Gamma)-\kappa=\kappa>0 .
$$

These two facts imply that $2 \varepsilon N(R) \geq \kappa R$, that is to say,

$$
\begin{equation*}
N(R) \geq \frac{\kappa}{2 \varepsilon} R \tag{8}
\end{equation*}
$$

For $i \leq N(R)$, let $t_{i} \in[0, d]$ such that $c_{0}\left(t_{i}\right) \in \pi K$ and $c_{0}\left[t_{i-1}, t_{i}\right] \backslash \pi K$ is connected: we just have chosen a point $x_{i}=c_{0}\left(t_{i}\right)$ in each ball of $\pi K \operatorname{crossing} c_{0}$.

Figure 2. c_{0} meets $B\left(\gamma_{i} x_{0}, \varepsilon\right) . B\left(x_{i}, \varepsilon\right) \subset B\left(\gamma_{i} x_{0}, 2 \varepsilon\right)$.
There exists $\gamma_{i} \in \Gamma$ such that $x_{i} \in B\left(\gamma_{i} x_{0}, \varepsilon\right)$, hence $B\left(x_{i}, \varepsilon\right) \subset B\left(\gamma_{i} x_{0}, 2 \varepsilon\right)$ on which the metric g_{m} is $g_{m}=\cosh ^{2}(\eta) g_{0}$. See Figure 2. Therefore the geodesic c_{0} is divided into $N(R)$ segments: $\left[x_{i}, x_{i+1}\right]$, such that for every i we know that on the ball $B\left(x_{i}, \varepsilon\right)$ the metric g_{m} is given by $g_{m}=\cosh ^{2}(\eta) g_{0}$. We want a lower bound on $d_{m}(o, x)$, therefore we can estimate the length of c_{m} with the metric given by $\cosh ^{2}(\eta) g_{0}$ on the smaller balls $B\left(x_{i}, \varepsilon\right) \subset B\left(\gamma_{i} x_{0}, 2 \varepsilon\right)$ and g_{0} on the rest of the plane.

We call y_{i} the middle of $\left[x_{i}, x_{i+1}\right]$. We now restrict our attention to one segment [y_{i}, y_{i+1}]. Let $0<a<1$ whose dependence on η will be made clear in the rest of the proof. We are going to analyze two different cases.
Case 1: c_{m} crosses $B\left(x_{i}, a \varepsilon\right)$. Let Δ_{i} be the lines (geodesics in \mathbb{H}^{2}) orthogonal to c_{0} and passing through y_{i}. Let z_{i}^{1} and z_{i}^{2} be the end points of the diameter of $B\left(x_{i}, \varepsilon\right)$ defined by $z_{i}^{1}=c_{0}\left(t_{i}-\varepsilon\right)$ and $z_{i}^{2}=c_{0}\left(t_{i}+\varepsilon\right)$, and call D_{i}^{1} and D_{i}^{2} the lines orthogonal to c_{0} and passing through z_{i}^{1} and z_{i}^{2}. See Figure 3 .

We want to consider the intersections between c_{m} and the lines Δ_{i}, D_{i}^{1} and D_{i}^{2}. There might be many intersections. We will call the first intersection of c_{m} with a line D the point $c_{m}\left(t_{f}\right)$ where $t_{f}:=\inf \left\{t \mid c_{m}(t) \in D\right\}$, and the last intersection of c_{m} with D the point $c_{m}\left(t_{l}\right)$, where $t_{l}:=\sup \left\{t \mid c_{m}(t) \in D\right\}$.

Let $A_{i}^{\prime}, B_{i}^{\prime}$ and C_{i}^{\prime} be the last intersections of c_{m} with Δ_{i}, D_{i}^{1} and D_{i}^{2}, respectively. Let B_{i}, C_{i} and A_{i+1} be the first intersections of c_{m} with D_{i}^{1}, D_{i}^{2} and Δ_{i+1}, respectively. This divides c_{m} into five connected components:

$$
\left[A_{i}^{\prime}, B_{i}\right], \quad\left[B_{i}, B_{i}^{\prime}\right], \quad\left[B_{i}^{\prime}, C_{i}\right], \quad\left[C_{i}, C_{i}^{\prime}\right], \quad\left[C_{i}^{\prime}, A_{i+1}\right] .
$$

Our work will be to give a lower bound for the length of each component; see Figure 3. Since it might happen that $B_{i}=B_{i}^{\prime}$ and $C_{i}=C_{i}^{\prime}$ the bound on the length of those two components will be trivial: $d_{m}\left(B_{i}, B_{i}^{\prime}\right) \geq 0$ and $d_{m}\left(C_{i}, C_{i}^{\prime}\right) \geq 0$.

The g_{m}-length of c_{m} from A_{i}^{\prime} to B_{i} is equal to (or larger than) its g_{0}-length since the metric g_{m} is equal to the metric g_{0} outside K. Moreover the g_{0}-length of c_{m}

Figure 3. c_{m} crosses $B\left(x_{i}, a \varepsilon\right)$.
from A_{i}^{\prime} to B_{i} is greater than $d_{g_{0}}\left(y_{i}, z_{i}^{1}\right)$ since the orthogonal projection decreases lengths. We then have

$$
d_{m}\left(A_{i}^{\prime}, B_{i}\right) \geq d_{g_{0}}\left(y_{i}, z_{i}^{1}\right)
$$

For the same reasons we have

$$
d_{m}\left(C_{i}^{\prime}, A_{i+1}\right) \geq d_{g_{0}}\left(z_{i}^{2}, y_{i+1}\right)
$$

We want to give a lower bound for the g_{m}-length of c_{m} between B_{i}^{\prime} and C_{i}. We made the assumption that c_{m} crosses the ball $B\left(x_{i}, a \varepsilon\right)$ hence c_{m} stays at least $2 \varepsilon-2 a \varepsilon$ in the ball $B\left(x_{i}, \varepsilon\right)$. In other words if c_{m} is unitary for g_{0} we have $\operatorname{Leb}\left\{t \mid c_{m}(t) \cap B\left(x_{i}, \varepsilon\right) \neq \varnothing\right\} \geq 2 \varepsilon-2 a \varepsilon$. In the ball $B\left(x_{i}, \varepsilon\right)$, the metric g_{m} is equal to $\cosh (\eta)^{2} g_{0}$ hence the g_{m}-length satisfies

$$
\begin{aligned}
d_{m}\left(B_{i}^{\prime}, C_{i}\right) & \geq \int_{\left\{t \mid c_{m}(t) \cap B\left(x_{i}, \varepsilon\right) \neq \varnothing\right\}}\left\|\dot{c}_{m}(t)\right\|_{m} d t=\int_{\left\{t \mid c_{m}(t) \cap B\left(x_{i}, \varepsilon\right) \neq \varnothing\right\}} \cosh (\eta) \\
& \geq \varepsilon \cosh (\eta)(2-2 a)
\end{aligned}
$$

Choose $a>0$ such that $\cosh (\eta)(2 \varepsilon-2 a \varepsilon)>2 \varepsilon$, that is to say $a \leq 1-1 / \cosh (\eta)$. In order to fix the idea we set $a:=\frac{1}{2}(1-1 / \cosh (\eta))$. This implies

$$
\begin{aligned}
d_{m}\left(B_{i}^{\prime}, C_{i}\right) & \geq \varepsilon \cosh (\eta)(2-2 a) \\
& =\varepsilon \cosh (\eta)\left(2-\left(1-\frac{1}{\cosh (\eta)}\right)\right) \\
& =(\cosh (\eta)+1) \varepsilon \\
& =2 \varepsilon+\varepsilon[\cosh (\eta)-1)] \\
& \left.=d_{g_{0}}\left(z_{i}^{1}, z_{i}^{2}\right)+\varepsilon[\cosh (\eta)-1)\right] .
\end{aligned}
$$

Thus, we have proven

$$
\begin{equation*}
d_{m}\left(A_{i}, A_{i+1}\right) \geq d_{m}\left(A_{i}^{\prime}, A_{i+1}\right) \geq d_{g_{0}}\left(y_{i}, y_{i+1}\right)+\varepsilon[\cosh (\eta)-1] . \tag{9}
\end{equation*}
$$

Figure 4. c_{m} does not cross $B\left(x_{i}, a \varepsilon\right)$.
Case 2: c_{m} does not cross $B\left(x_{i}, a \varepsilon\right)$. Let Δ_{i} be the line orthogonal to c_{0} and passing through y_{i}, and Ω_{i} the one through x_{i}. Call A_{i}^{\prime} the last intersection of c_{m} and Δ_{i} and E_{i} the first intersection of c_{m} with Ω_{i}. Since c_{m} does not cross $B\left(x_{i} a \varepsilon\right), E_{i}$ is in one of the connected components of $\Omega_{i} \backslash B\left(x_{i}, a \varepsilon\right)$. Named e_{i} the intersection of $S\left(x_{i}, a \varepsilon\right)$ (the sphere of center x_{i} and diameter $a \varepsilon$) and Ω_{i} in the same connected component as E_{i}, this is also the orthogonal projection of E_{i} on $B\left(x_{i}, a \varepsilon\right)$. See Figure 4.

We parametrize the geodesic Ω_{i} by \mathbb{R}; we give $\omega: \mathbb{R} \rightarrow \mathbb{H}^{2}$ such that $\omega(\mathbb{R})=\Omega_{i}$. We suppose that $\omega(0)=x_{i}$ and the orientation is chosen in order to have $\omega(a \varepsilon)=e_{i}$. The function $t \rightarrow d_{g_{0}}\left(\omega(t), \Delta_{i}\right)$ is convex, and has a minimum at 0 ; it is hence increasing on \mathbb{R}^{+}. Therefore, $d_{g_{0}}\left(\Delta_{i}, E_{i}\right) \geq d_{\mathbb{H}^{2}}\left(\Delta_{i}, e_{i}\right)$. It follows that

$$
d_{m}\left(A_{i}^{\prime}, E_{i}\right) \geq d_{\mathbb{H}^{2}}\left(A_{i}^{\prime}, E_{i}\right) \geq d_{g_{0}}\left(\Delta_{i}, E_{i}\right) \geq d_{g_{0}}\left(\Delta_{i}, e_{i}\right) .
$$

Let us compute $d_{g_{0}}\left(\Delta_{i}, e_{i}\right)$. We fix some notation:

$$
L=d_{g_{0}}\left(\Delta_{i}, e_{i}\right), \quad l=d_{g_{0}}\left(y_{i}, x_{i}\right), \quad H=d_{g_{0}}\left(y_{i}, e_{i}\right) .
$$

Now Pythagoras' theorem in hyperbolic geometry for the triangle ($y_{i} x_{i} e_{i}$) gives

$$
\cosh (l) \cosh (a \varepsilon)=\cosh (H)
$$

Let θ be the angle $\widehat{x_{i} y_{i} e_{i}}$. We have

$$
\cos (\theta)=\frac{\tanh (l)}{\tanh (H)}
$$

and

$$
\sin (\pi / 2-\theta)=\frac{\sinh (L)}{\sinh (H)}
$$

Hence

$$
\sinh (L)=\sinh (H) \frac{\tanh (l)}{\tanh (H)}=\cosh (H) \tanh (l)=\cosh (a \varepsilon) \sinh (l) .
$$

From this equation, we cannot conclude that $L>l+u$ for some $u>0$. Indeed if L goes to 0 so does l. To avoid this problem we are going to assume that l is greater than the injectivity radius of S.

Note the following property of sinh which is a consequence of easy calculus. For all $x_{0}>0$ and $\varpi>1$, there exists $u>0$, such that for all $x>x_{0}$, we have $\varpi \sinh (x) \geq \sinh (x+u)$. Now we can choose y_{i} on c_{0} in order to have

$$
d_{g_{0}}\left(x_{i}, y_{i}\right) \geq s / 2,
$$

where s is the injectivity radius of \mathbb{H}^{2} / Γ. Consequently, applying the previous property with $\varpi=\cosh (a \varepsilon)$ and $x_{0}=s / 2$, there exists $u>0$ such that

$$
\cosh (a \varepsilon) \sinh (l) \geq \sinh (l+u) .
$$

Since sinh is increasing we deduce that

$$
L \geq l+u .
$$

Altogether, we show that there exists $u>0$ such that

$$
d_{m}\left(A_{i}^{\prime}, E_{i}\right) \geq d_{g_{0}}\left(y_{i}, x_{i}\right)+u .
$$

By the same arguments we can show that

$$
d_{m}\left(E_{i}^{\prime}, A_{i+1}\right) \geq d_{g_{0}}\left(x_{i}, y_{i+1}\right)+u .
$$

(E_{i}^{\prime} is the last intersection of c_{m} with Ω_{i}). Hence, if c_{m} does not meet $B\left(x_{i}, a \varepsilon\right)$, the g_{m}-length of c_{m} between A_{i} and A_{i+1} satisfies, (taking trivial bounds for first and last intersections)

$$
\begin{equation*}
d_{m}\left(A_{i}, A_{i+1}\right) \geq d_{g_{0}}\left(y_{i}, y_{i+1}\right)+2 u . \tag{10}
\end{equation*}
$$

Now, let $\alpha:=\min \{\varepsilon[\cosh (\eta)-1] ; 2 u\}$. From (9) and (10) we have

$$
d_{m}\left(A_{i}, A_{i+1}\right) \geq d_{g_{0}}\left(y_{i}, y_{i+1}\right)+\alpha .
$$

Summing on i we get

$$
d_{m}(o, x) \geq d_{g_{0}}(o, x)+N(R) \alpha .
$$

Equation (8) and the fact that $d_{g_{0}}(o, x) \leq 2 R^{2}$ imply that

$$
N(R) \geq \frac{\kappa}{2 \varepsilon} R \geq \frac{\kappa}{4 \varepsilon} d_{g_{0}}(o, x) .
$$

Consequently,

$$
d_{m}(o, x) \geq\left(1+\frac{\alpha \kappa}{4 \varepsilon}\right) d_{g_{0}}(o, x) .
$$

This proves the lemma with $C=\left(1+\frac{\alpha \kappa}{4 \varepsilon}\right)$.

[^2]We now compare the entropy of $\left(\mathbb{D}, d_{m}\right)$ with that of \mathbb{H}^{2}. Let us define

$$
\mathcal{F}_{o}(R)=\left\{\exp (t v) \mid t \in \mathbb{R}^{+}, v \in \mathcal{E}_{o}(R)\right\} .
$$

We denote by $B_{m}(o, 2 R)$ the ball of radius $2 R$ for the d_{m} distance.
Lemma 2.5. Let $C^{\prime}:=\min (2, C)$ where C satisfies Lemma 2.4. For all $o \in \mathbb{D}$, and all $R>0$,

$$
B_{m}(o, 2 R) \subset B_{\mathbb{H}^{2}}\left(o, 2 R / C^{\prime}\right) \cup\left(B_{\mathbb{H}^{2}}(o, 2 R) \cap \mathcal{F}_{o}^{c}(R)\right) .
$$

Proof. We have $B_{m}(o, 2 R)=\left(B_{m}(o, 2 R) \cap \mathcal{F}_{o}(R)\right) \cup\left(B_{m}(o, 2 R) \cap \mathcal{F}_{o}^{c}(R)\right)$. Let $x \in B_{m}(o, 2 R) \cap \mathcal{F}_{o}(R)$. Since $d_{\mathbb{H}^{2}}(o, x) \leq d_{m}(o, x)$, it follows that $d_{\mathbb{H}^{2}}(o, x) \leq 2 R$. There are only two possibilities. If $d_{\mathrm{H}^{2}}(o, x) \leq R$, we have in particular $d_{\mathrm{H}^{2}}(o, x) \leq$ $2 R / C^{\prime}$. However, if $d_{\mathbb{H}^{2}}(o, x) \geq R$, we apply Lemma 2.4 and we get $d_{\mathbb{H}^{2}}(o, x) \leq$ $2 R / C \leq 2 R / C^{\prime}$. Therefore,

$$
B_{m}(o, 2 R) \cap \mathcal{F}_{o}(R) \subset B_{\mathbb{H}^{2}}\left(o, \frac{2 R}{C^{\prime}}\right) \cap \mathcal{F}_{o}(R) \subset B_{\mathbb{H}^{2}}\left(o, \frac{2 R}{C^{\prime}}\right) .
$$

Since we also have for $R>0, B_{m}(o, 2 R) \subset B_{\mathbb{H}^{2}}(o, 2 R)$, this gives

$$
B_{m}(o, 2 R) \cap \mathcal{F}_{o}^{c}(R) \subset B_{H^{2}}(o, 2 R) \cap \mathcal{F}_{o}^{c}(R),
$$

and proves the lemma.
The Liouville measure on $T^{1} \Vdash^{2}$ is the product of the riemannian measure of \mathbb{H}^{2} with the angular measure on every fiber. We denote this product by $L=$ $d \mu(x) \times d \theta(x)$. Our aim is to show that the set $\mathcal{E}_{o}^{c}(R)$ is small and the volume of $\left(B_{H^{2}}(o, 2 R) \cap \mathcal{F}_{o}^{c}(R)\right)$ is small compared to the one of $B_{H^{2}}(o, 2 R)$. For this we are going to use a large deviation theorem of Y. Kifer [1990] which gives an upper bound on the mass of the vectors which do not behave as the Liouville measure.

Let \mathcal{P} be the set of probability measures on $T^{1} \mathbb{H}^{2} / \Gamma$ endowed with the weak topology. Let \mathcal{P}^{t} be the subset of \mathcal{P} of probability measures invariant by the geodesic flow. We also denote by L the Liouville measure on the quotient $T^{1} \mathbb{H}^{2} / \Gamma$. Recall that for a vector $v \in T^{1} \mathbb{-} \mathbb{}^{2} / \Gamma$ we denote by ζ_{v}^{R} the probability measure given for all Borel subsets $E \subset T^{1} \mathbb{H}^{2} / \Gamma$ by

$$
\zeta_{R}^{v}(E)=\frac{1}{R} \int_{0}^{R} \chi_{E}\left(\phi_{t}^{\mathbb{H}^{2} / \Gamma}(v)\right) d t .
$$

Theorem 2.6 [Kifer 1990, Theorem 3.4]. Let \bar{A} be a compact subset of \mathcal{P},

$$
\limsup _{T \rightarrow \infty} \frac{1}{T} \log L\left\{v \in T^{1} \mathbb{H}^{2} / \Gamma \mid \zeta_{v}^{T} \in \bar{A}\right\} \leq-\inf _{\mu \in \bar{A} \cap \mathcal{P}^{t}} f(\mu),
$$

where $f(\mu)=1-h_{\mu}\left(\phi_{t}^{H^{2} / \Gamma}\right)$ and $h_{\mu}\left(\phi_{t}^{H^{2} / \Gamma}\right)$ is the entropy of the geodesic flow $\phi_{t}^{\mathbb{H}^{2} / \Gamma}$ with respect to μ.

The fact that the theorem can be applied in this setting is explained after the Theorem 3.4 in [Kifer 1990]. In this reference the function f is given by a formula which seems different. One can look at [Paulin et al. 2015, Chapter 7], where the authors explain in detail why the geodesic flow of negatively curved surfaces satisfies the hypothesis of Kifer's theorem, and that one can take $f(\mu)=1-h_{\mu}\left(\phi_{t}^{\mathbb{H}^{2} / \Gamma}\right)$.
Lemma 2.7. There exist $o \in \mathbb{H}^{2}, \alpha>0$ and $R_{0}>0$ such that for all $R>R_{0}$,

$$
\theta_{o}\left(\mathcal{E}_{o}^{c}(R)\right) \leq e^{-\alpha R} .
$$

Proof. Let us keep the notations of Lemma 2.4. $K=T^{1} \Gamma \cdot B(x, \varepsilon)$ and we consider the following subset of \mathcal{P} :

$$
A:=\{\mu \in \mathcal{P} \mid \mu(K / \Gamma) \leq L(K / \Gamma)-\kappa\} .
$$

This set is not closed for the weak topology. Its closure satisfies

$$
\bar{A} \subset\left\{\mu \in \mathcal{P} \mid \mu\left(T^{1} \Gamma \cdot B^{\circ}(x, \varepsilon) / \Gamma\right) \leq L(K / \Gamma)-\kappa\right\}
$$

where $B^{\circ}(x, \varepsilon)$ is the open ball. There might be equality between the two sets, but we won't use it.

However, since the unitary tangent bundle of the sphere $S(x, \varepsilon)$ is transverse to the flow, we have

$$
\left\{v \in T^{1} \mathbb{W}^{2} / \Gamma \mid \zeta_{v}^{R} \in A\right\}=\left\{v \in T^{1} \mathbb{W}^{2} / \Gamma \mid \zeta_{v}^{R} \in \bar{A}\right\} .
$$

Since $L \notin \bar{A}$ and L is the unique measure of maximal entropy satisfying $h(L)=1$, we have

$$
-\inf _{\mu \in \bar{A}} f(\mu)=-\alpha<0 .
$$

Besides, it is clear that the set $\mathcal{E}^{c}(R)=\left\{v \in T^{1} \mathbb{W}^{2} \mid \zeta_{R}^{v}(K) \leq L(K / \Gamma)-\kappa\right\}$ is Γ invariant from the Γ invariance of K. By definition and the previous remark we get

$$
\begin{aligned}
\mathcal{E}^{c}(R) / \Gamma & =\left\{v \in T^{1} \mathbb{Q}^{2} / \Gamma \mid \zeta_{v}^{R} \in A\right\} \\
& =\left\{v \in T^{1} \mathbb{W}^{2} / \Gamma \mid \zeta_{v}^{R} \in \bar{A}\right\} .
\end{aligned}
$$

Theorem 2.6 says that there exists $R_{0}>0$ such that for all $R>R_{0}$ we have

$$
L\left(\mathcal{E}^{c}(R) / \Gamma\right) \leq e^{-\alpha R}
$$

The product structure of L implies the existence of a point $o \in \mathbb{H}^{2} / \Gamma$ such that

$$
\theta_{o}\left(\mathcal{E}_{o}^{c}(R) / \Gamma\right) \leq e^{-\alpha R}
$$

The lemma follows, choosing any lift of o in \mathbb{H}^{2}.
We finish the proof of Theorem 1.1 with Lemma 2.8, which compares the critical exponent between d_{m} and hyperbolic distance. Lemmas 2.2 and 2.8 conclude the proof.

Lemma 2.8. There exists $u>0$ such that

$$
\delta\left(\left(\mathbb{D}, d_{m}\right)\right) \leq 1-u .
$$

Proof. We are going to show that the volume entropy of $\left(\mathbb{D}, d_{m}\right)$ satisfies the inequality, which implies a similar result on the critical exponent.

Let $o \in \mathbb{D}$ be a point satisfying Lemma 2.7. From Lemma 2.5, we have

$$
B_{m}(o, 2 R) \subset B_{\mathbb{H}^{2}}\left(o, \frac{2 R}{C^{\prime}}\right) \cup\left(B_{\mathbb{H}^{2}}(o, 2 R) \cap \mathcal{F}_{o}^{c}(R)\right) .
$$

On one hand we have the classical upper bound $\operatorname{Vol}\left(B_{\mathbb{H}^{2}}\left(o, 2 R / C^{\prime}\right)\right)=O\left(e^{2 R / C^{\prime}}\right)$. On the other hand the volume form on \mathbb{H}^{2} can be written in polar coordinates as $\sinh (r) d r d \theta$, hence for all $R>R_{0}$ we get

$$
\begin{aligned}
\operatorname{Vol}\left(B_{H^{2}}(o, 2 R) \cap \mathcal{F}_{o}^{c}(R)\right) & =\int_{0}^{2 R} \int_{\mathcal{E}_{o}^{c}(R)} \sinh (r) d \theta d r \leq \int_{0}^{2 R} e^{-\alpha R} e^{r} d r \\
& \leq e^{(2-\alpha) R} .
\end{aligned}
$$

Let $u>0$, defined by $1-u=\max \left(1 / C^{\prime},(1-\alpha / 2)\right)<1$. The last two upper bounds give

$$
\operatorname{Vol}\left(B_{m}(o, 2 R)\right)=O\left(e^{2 R / C^{\prime}}\right)+O\left(e^{(2-\alpha) R}\right)=O\left(e^{2(1-u) R}\right)
$$

We finish by taking the \log and the limit.

3. Quasi-Fuchsian case

3A. Geodesic intersection. Let Σ be an incompressible surface in M. We designate by $\phi_{t}^{H^{3}}, \phi_{t}^{\Sigma}$ the geodesic flows on the unitary tangent spaces $T^{1} \mathbb{H}^{3}, T^{1} \Sigma$ respectively. We denote by π the projection from $T^{1} \mathbb{H}^{3}$ to \mathbb{H}^{3}. The restriction of π to $T^{1} \Sigma$ will still be denoted by π. There are two distances we can consider on Σ. The intrinsic one, defined as the infimum of the length of curves staying on Σ and the extrinsic one, where we take the distance in \mathbb{H}^{3}. We will denote by d_{Σ} and d these two distances.

First let us remark that there is no riemanniann metric on Σ which induces d. If such a metric existed, our Theorem 1.3 would be a particular case of [Knieper 1995].
Proposition 3.1. If Σ is not totally geodesic, there is no riemannian metric on Σ which induces d.

Proof. Assume there is such a riemannian metric, named g^{\prime}. Let $\varepsilon>0$ be such that the exponential map for g^{\prime} is an embedding at every point. Let $c_{g^{\prime}}:[0, \varepsilon] \rightarrow \Sigma$ be a minimizing geodesic for g^{\prime} on Σ, then for all $t \in[0, \varepsilon]$,

$$
d_{g^{\prime}}\left(c_{g^{\prime}}(0), c_{g^{\prime}}(t)\right)+d_{g^{\prime}}\left(c_{g^{\prime}}(t), c_{g^{\prime}}(\varepsilon)\right)=d_{g^{\prime}}\left(c_{g^{\prime}}(0), c_{g^{\prime}}(\varepsilon)\right) .
$$

But since we suppose that g^{\prime} induces d we have the same equality for d,

$$
d\left(c_{g^{\prime}}(0), c_{g^{\prime}}(t)\right)+d\left(c_{g^{\prime}}(t), c_{g^{\prime}}(\varepsilon)\right)=d\left(c_{g^{\prime}}(0), c_{g^{\prime}}(\varepsilon)\right)
$$

and this implies that $c_{g^{\prime}}$ is a geodesic for \mathbb{H}^{3}. Hence every point of Σ is included in a totally geodesic disc, therefore Σ is totally geodesic.

Consider the function a defined by

$$
T^{1} \Sigma \times \mathbb{R} \rightarrow \mathbb{R}, \quad(v, t) \mapsto d\left(\pi \phi_{t}^{\Sigma}(v), \pi(v)\right)
$$

Letting $t_{1}, t_{2} \in \mathbb{R}$ and $v \in T^{1} \Sigma$, we have by the triangle inequality,

$$
\begin{aligned}
a\left(v, t_{1}+t_{2}\right) & =d\left(\pi \phi_{t_{1}+t_{2}}^{\Sigma}(v), \pi(v)\right) \\
& \leq d\left(\pi \phi_{t_{1}+t_{2}}^{\Sigma}(v), \pi \phi_{t_{1}}^{\Sigma}(v)\right)+d\left(\pi \phi_{t_{1}}^{\Sigma}(v), \pi(v)\right) \\
& \leq d\left(\pi \phi_{t_{2}}^{\Sigma}\left(\phi_{t_{1}} v\right), \pi \phi_{t_{1}}^{\Sigma}(v)\right)+d\left(\pi \phi_{t_{1}}^{\Sigma}(v), \pi(v)\right) \\
& \leq a\left(\phi_{t_{1}}^{\Sigma} v, t_{2}\right)+a\left(v, t_{1}\right) .
\end{aligned}
$$

Hence a is a subadditive cocycle for the geodesic flow ϕ_{t}^{Σ}. Since a is Γ-invariant it defines a subadditive cocycle on $T^{1} \Sigma$, still denoted by a.

The following is a consequence of Kingman's subadditive ergodic theorem [Kingman 1973].

Theorem 3.2. Les μ be a ϕ_{t}^{Σ} invariant probability measure on $T^{1} \Sigma$. Then

$$
I_{\mu}(\Sigma, M, v):=\lim _{t \rightarrow \infty} \frac{a(v, t)}{t}
$$

exists for μ-almost $v \in T^{1} \Sigma$ and defines a μ-integrable function on $T^{1} \Sigma$, invariant under the geodesic flow and we have

$$
\int_{T^{1} \Sigma} I_{\mu}(\Sigma, M, v) d \mu=\lim _{t \rightarrow \infty} \int_{T^{1} \Sigma} \frac{a(v, t)}{t} d \mu
$$

Moreover if μ is ergodic, $I_{\mu}(\Sigma, M, v)$ is constant μ-almost everywhere. In this case, we write $I_{\mu}(\Sigma, M)$.

3B. Patterson-Sullivan measures. We call Λ the limit set of Γ acting on \mathbb{H}^{3}. Since Γ acts cocompactly on Σ, and on the convex core $C(\Lambda)$, the three geometric spaces Γ (seen as its Cayley graph), Σ and $C(\Lambda)$ are quasi-isometric. We assume from now on that (Σ, g) has negative curvature, hence there is a unique geodesic in each homotopy class of curves, and for every pair of points in Σ there is a unique geodesic which joins them. Let c_{Σ} be a geodesic on Σ, and denote by $c_{\Sigma}(\pm \infty)$ its limit points on Λ. There is a unique \mathbb{H}^{3}-geodesic $c_{\Vdash^{3}}$ whose endpoints are $c_{\Sigma}(\pm \infty)$. Since Σ is quasi-isometric to $C(\Lambda)$, the two geodesics $c_{\mathbb{H}^{3}}$ and c_{Σ} are at bounded distance.

Let $p \in \Sigma$ and call $p r_{p}^{\Sigma}$ the projection from Σ to Λ defined as follows. For any point $x \in \Sigma$ call $c_{p, x}^{\Sigma}$ the geodesic on Σ which joins p to x, then

$$
p r_{p}^{\Sigma}(x)=c_{p, x}^{\Sigma}(+\infty)
$$

We will denote the equivalent projection in \mathbb{H}^{3} by $p r_{p}^{\mathbb{H}^{3}}$. There are two small distinctions to notice between $p r_{p}^{\mathbb{H}^{3}}$ and $p r_{p}^{\Sigma}$. First, $p r_{p}^{\mathbb{H}^{3}}$ is defined for every point in \mathbb{H}^{3}, whereas $p r_{p}^{\Sigma}$ is only defined for points in Σ. Second is that the codomain of $p r_{p}^{\Sigma}$ is exactly Λ whereas the codomain of $p r_{p}^{\mathbb{H}^{3}}$ is all S^{2}.

As we have just stated, for all $\xi \in \Lambda$ the geodesics, $c_{p, \xi}^{\Sigma}$ and $c_{p, \xi}^{\mathbb{H}^{3}}$ are at bounded distance, and this bound depends only on the quasi-isometry between Σ and $C(\Lambda)$. There exists C_{1} such that for all $\xi \in \Lambda$ the Hausdorff distance between geodesics $c_{p, \xi}^{\Sigma}$ and $c_{p, \xi}^{\mathbb{H}^{3}}$ is less than C_{1}.

Let $x \in \Sigma, R>0$ and consider the ball $B_{\mathbb{H}^{3}}(x, R)$ in \Vdash^{3} of center x and radius R. Now take $\xi \in \operatorname{pr}_{p}^{\mathbb{H}^{3}}\left(B\left(x, R-C_{1}\right)\right) \cap \Lambda$; this means that the \Vdash^{3}-geodesic from p to ξ crosses the ball $B_{\mathbb{H}^{3}}\left(x, R-C_{1}\right)$. This \mathbb{H}^{3}-geodesic is at bounded distance C_{1} of the Σ-geodesic joining p to ξ. Hence,

$$
c_{p, \xi}^{\Sigma} \cap\left(B_{\mathbb{H}^{3}}(x, R) \cap \Sigma\right) \neq \varnothing
$$

which proves that

$$
\xi \in p r_{p}^{\Sigma}\left(B_{\mathbb{B}^{3}}(x, R) \cap \Sigma\right)
$$

The same argument shows that

$$
p_{p}^{\Sigma}\left(B_{\mathbb{H}^{3}}(x, R) \cap \Sigma\right) \subset p_{p}^{\mathbb{H}^{3}}\left(B_{\mathbb{H}^{3}}\left(x, R+C_{1}\right)\right) \cap \Lambda \subset p_{p}^{\mathbb{H}^{3}}\left(B_{\mathbb{H}^{3}}\left(x, R+C_{1}\right)\right)
$$

The distances on Σ and on \mathbb{H}^{3} are locally equivalent: for every $R>0$ there exists C_{2} such that all balls satisfy

$$
B_{\Sigma}\left(x, R-C_{2}\right) \subset B_{\mathbb{H}^{3}}(x, R) \cap \Sigma \subset B_{\Sigma}\left(x, R+C_{2}\right)
$$

Set $C=\max \left(C_{1}, C_{2}\right)$, which leads to the following theorem:

Theorem 3.3.

$$
\operatorname{pr}_{p}^{\Sigma}\left(B_{\Sigma}(x, R-C)\right)
$$

\cap

$$
\begin{gathered}
p r_{p}^{\mathbb{H}^{3}}\left(B_{\mathbb{H}^{3}}(x, R-C)\right) \cap \Lambda \subset p r_{p}^{\Sigma}\left(B_{\mathbb{H}^{3}}(x, R) \cap \Sigma\right) \subset p r_{p}^{\mathbb{H}^{3}}\left(B_{\mathbb{H}^{3}}(x, R+C)\right) \\
\operatorname{pr}_{p}^{\Sigma}\left(B_{\Sigma}(x, R+C)\right) .
\end{gathered}
$$

Before proving Theorem 1.3, we will recall some basic facts about PattersonSullivan measure. Some classical references for this are [Patterson 1976] and [Sullivan 1979], the lecture of J-F. Quint [2006] and the monograph of T. Roblin [2003]. Let (X, g) be a simply connected manifold with negative curvature and $X(\infty)$ its geometric boundary. If Γ is a discrete group acting on (X, g) we can
associate to it a family of measures $\left\{\mu_{p}^{g}\right\}_{p \in X}$ on $X(\infty)$ constructed as follows. Let x, y be two points of X and consider the Poincaré series

$$
P(s):=\sum_{\gamma \in \Gamma} e^{-s d(\gamma x, y)} .
$$

The convergence of $P(s)$ is independent of x and y by the triangle inequality. It converges for $s>\delta(\Gamma)$ and diverges for $s<\delta(\Gamma)$. If the action is cocompact, $\delta(\Gamma)=h(g)$ and the series diverges at $h(g)$. Then we define the probability measure

$$
\mu_{p, x}^{g}(s):=\frac{\sum_{\gamma \in \Gamma} e^{-s d(\gamma x, p)} \delta_{\gamma x}}{\sum_{\gamma \in \Gamma} e^{-s d(\gamma p, p)}} .
$$

By compactness of the set of probability measures on $X(\infty)$, we obtain a measure on $X(\infty)$ by taking a weak limit of a sequence $\mu_{p, x}^{g}\left(s_{n}\right)^{3}$,

$$
\mu_{p}^{g}:=\lim _{s_{n} \rightarrow h(g)} \mu_{p}^{g}\left(s_{n}\right) .
$$

It is supported on the accumulation points of G, that is to say the limit set.
These measures, called Patterson-Sullivan measures, have the following properties. They are quasiconformal, i.e., for all $p \in X$ and all $\xi, \eta \in \Lambda$, we have

$$
\frac{d \mu_{p}^{g}}{d \mu_{q}^{g}}(\xi)=e^{-h(g) \beta_{\xi}(p, q)},
$$

where $\beta_{\xi}(p, q)=\lim _{z \rightarrow \xi} d_{g}(p, z)-d_{g}(q, z)$.
They are also Γ-equivariant, i.e., for all $\gamma \in \Gamma$ and all $p \in X$, we have

$$
\mu_{p}^{g} \circ \gamma=\mu_{\gamma^{-1} p}^{g} .
$$

Moreover we know these measures behave locally like $h(g)$-Hausdorff measures. See [Quint 2006, Lemma 4.10], for example.

Lemma 3.4 (shadowing). For $R>0$ sufficiently large, there exists $c>1$ such that for all $x \in X$,

$$
\frac{1}{c} e^{-h(g) d_{g}(x, p)} \leq \mu_{p}^{g}\left(p r_{p}^{g}\left(B_{g}(x, R)\right)\right) \leq c e^{-h(g) d_{g}(x, p)} .
$$

Suppose that X / Γ is compact; from the Patterson-Sullivan measure, we can construct an invariant measure on $T^{1} X / \Gamma$. Let $\Lambda^{(2)}:=\left\{(x, y) \in \Lambda^{2} \mid x \neq y\right\}$. There is a natural identification of $\Lambda^{(2)} \times \mathbb{R}$ and $T^{1} X$; a vector $v \in T^{1} X$ is identified with $\left(c_{v}(+\infty), c_{v}(-\infty), \beta_{c_{v}(+\infty)}(p, \pi v)\right)$. The Bowen-Margulis measure is defined by

$$
d \mu_{B M}(\xi, \eta, t)=e^{2 h(g)\langle\xi \mid \eta\rangle_{p}} d \mu_{p}^{g}(\xi) d \mu_{p}^{g}(\eta) d t
$$

[^3]where $\langle\xi \mid \eta\rangle_{p}$ is the Gromov product:
$$
\langle\xi \mid \eta\rangle_{p}=\frac{1}{2}\left(\beta_{\xi}(z, p)+\beta_{\eta}(z, p)\right),
$$
where z is any point on the geodesic (ξ, η).
Let us recall the classical fact that the measure $\mu_{B M}$ is Γ-invariant and define therefore a measure on $T^{1} X / \Gamma$. Letting $z \in(\xi, \eta)$,
\[

$$
\begin{aligned}
\langle\gamma \xi \mid \gamma \eta\rangle_{p} & =\frac{1}{2}\left(\beta_{\gamma \xi}(\gamma z, p)+\beta_{\gamma \eta}(\gamma z, p)\right) \\
& =\frac{1}{2}\left(\beta_{\gamma \xi}(\gamma z, \gamma p)+\beta_{\gamma \xi}(\gamma p, p)+\beta_{\gamma \eta}(\gamma z, \gamma p)+\beta_{\gamma \eta}(\gamma p, p)\right) \\
& =\frac{1}{2}\left(\beta_{\xi}(z, p)+\beta_{\eta}(z, p)+\beta_{\gamma \xi}(\gamma p, p)+\beta_{\gamma \eta}(\gamma p, p)\right) \\
& =\langle\xi \mid \eta\rangle_{p}+\frac{1}{2}\left(\beta_{\gamma \xi}(\gamma p, p)+\beta_{\gamma \eta}(\gamma p, p)\right) .
\end{aligned}
$$
\]

By the quasiconformal behavior of μ_{p}^{g}, we have

$$
\begin{aligned}
e^{2 h(g)\langle\gamma \xi \mid \gamma \eta\rangle_{p}} d \mu_{p}^{g}(\gamma \xi) & d \mu_{p}^{g}(\gamma \eta) \\
& =e^{2 h(g)\langle\xi \mid \eta\rangle_{p}} e^{\left.h(g) \beta_{\gamma \xi}(\gamma p, p)\right)} d \mu_{p}^{g}(\gamma \xi) e^{\left.h(g) \beta_{\gamma \eta}(\gamma p, p)\right)} d \mu_{p}^{g}(\gamma \eta) \\
& =e^{2 h(g)\langle\xi \mid \eta\rangle_{p}} d \mu_{p}^{g}(\xi) d \mu_{p}^{g}(\eta)
\end{aligned}
$$

The invariance by the geodesic flow is clear by definition and it is shown in [Nicholls 1989] that $\mu_{B M}$ is ergodic.

Finally we will need the following theorem, which is classical for compact manifolds endowed with two different negatively curved metrics. Since we treat a slightly different case, we give a proof.
Theorem 3.5. If μ_{p}^{Σ} and $\mu_{p}^{\mathbb{H}^{3}}$ are equivalent, then the marked length spectrum of Σ is proportional to the marked length spectrum of M.

Note that in the Fuchsian case, any surface equidistant to the totally geodesic one has a metric proportional to \Vdash^{2} and therefore satisfies the hypothesis of the theorem. It seems likely that it is the only case where the length spectrum is proportional to the one of the ambient manifold, however this is still uncertain.
Definition 3.6. For all $\xi, \eta \in \partial X^{(2)}$, we define the function D_{X} by

$$
D_{X}(\xi, \eta)=\exp \left(-\langle\xi \mid \eta\rangle_{p}\right) .
$$

It is shown in [Ghys and de la Harpe 1990] that D_{X}^{a} for $a>0$ small enough is a distance, called Gromov distance. However, we do not need such renormalization here.

The proof of Theorem 3.5 is in two steps. In the first, we prove that if the Patterson Sullivan measures are equivalent then the functions D_{Σ} and $D_{\mathbb{H}^{3}}$ are Hölder equivalent. In the second, we prove that this last condition implies the proportionality of the length spectrum.

Lemma 3.7. If μ_{p}^{Σ} and $\mu_{p}^{\mathbb{H}^{3}}$ are equivalent, then the functions $D_{\mathbb{H}^{3}}$ and D_{Σ} are Hölder equivalent.
Proof. Let us consider on $\Lambda^{(2)}$ the Bowen-Margulis currents defined by

$$
\begin{aligned}
\nu_{\Sigma}(\xi, \eta) & =\frac{d \mu_{\Sigma}^{p}(\xi) d \mu_{\Sigma}^{p}(\eta)}{D_{\Sigma}(\xi, \eta)^{2 \delta(\Sigma)}}, \\
v_{\mathbb{H}^{3}}(\xi, \eta) & =\frac{d \mu_{\mathbb{H}^{3}}^{p}(\xi) d \mu_{\mathbb{H}^{3}}^{p}(\eta)}{D_{\mathbb{H}^{3}}(\xi, \eta)^{2 \delta\left(H^{3}\right)}} .
\end{aligned}
$$

These two measures are Γ-invariant by the previous computations for the BowenMargulis measures.

By assumption, μ_{Σ}^{p} and $\mu_{p}^{\mathbb{H}^{3}}$ are equivalent, therefore ν_{Σ} and $\nu_{\mathbb{H}^{3}}$ are also equivalent. The ergodicity and the Γ-invariance imply the existence of $c>0$ such that

$$
\nu_{\Sigma}=c v_{\mathbb{H}^{3}} .
$$

Since μ_{p}^{Σ} and $\mu_{p}^{\mathbb{H}^{3}}$ are equivalent, there exists a function $f: \Lambda \rightarrow \mathbb{R}^{+}$such that $\mu_{p}^{\Sigma}(\xi)=f(\xi) \mu_{p}^{\mathbb{H}^{3}}$. We have

$$
f(\xi) f(\eta) D_{\mathbb{H}^{3}}^{\delta\left(H^{3}\right)}(\xi, \eta)=c D_{\Sigma}^{\delta(\Sigma)}(\xi, \eta) .
$$

We see that f is equal almost everywhere to a continuous function. We can therefore suppose that f is continuous on Λ and hence strictly positive. By compacity, there exists $C>1$ such that $\frac{1}{C} \leq f(\xi) \leq C$. Finally we get what we stated:

$$
\frac{c}{C^{2}} D_{\Sigma}^{\delta(\Sigma)}(\xi, \eta) \leq D_{H^{3}}^{\delta\left(H^{3}\right)}(\xi, \eta) \leq C^{2} c D_{\Sigma}^{\delta(\Sigma)}(\xi, \eta) .
$$

We now show the second part.
Lemma 3.8. If D_{Σ} and $D_{\mathbb{H}^{3}}$ are Hölder equivalent the marked length spectra of Σ and $M=\mathbb{H}^{3} / \Gamma$ are proportional.
Proof. In [Paulin et al. 2015, Section 3.5], the authors show that in a very general setting we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left[g^{-}, g+, g^{n}(\xi), \xi\right]=\ell(g)
$$

where $\ell(g)$ is the displacement of g and

$$
\left[g^{-}, g^{+}, g^{n}(\xi), \xi\right]=\frac{D\left(g^{-}, g^{n}(\xi)\right) D\left(g^{+}, \xi\right)}{D\left(g^{-}, \xi\right) D\left(g^{+}, g^{n}(\xi)\right)}
$$

In particular, we can apply this result to Σ and \mathbb{H}^{3} to get

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left[g^{-}, g^{+}, g^{n}(\xi), \xi\right]_{\Sigma}=\ell_{\Sigma}(g)
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left[g^{-}, g^{+}, g^{n}(\xi), \xi\right]_{\mathbb{H}^{3}}=\ell_{\mathbb{H}^{3}}(g) .
$$

By assumption on the distances $D_{\Sigma}, D_{\mathbb{H}^{3}}$, there exists $C>1$ such that

$$
\frac{1}{C}\left[g^{-}, g^{+}, g^{n}(\xi), \xi\right]_{H^{3}}^{r} \leq\left[g^{-}, g^{+}, g^{n}(\xi), \xi\right]_{\Sigma} \leq C\left[g^{-}, g^{+}, g^{n}(\xi), \xi\right]_{H^{3}}^{r} .
$$

Hence,

$$
\ell_{\Sigma}(g)=r \ell_{\mathbb{H}^{3}}(g) .
$$

Theorem 3.5 follows directly from Lemmas 3.7 and 3.8.
We will show at the very end of this article that if Σ has the same length spectrum as $M=\mathbb{H}^{3} / \Gamma$ then Γ is Fuchsian, to prove Corollary 1.4. It might be also true even when we only suppose that they are proportional, however this does not follow from our proof.

3C. Entropy comparison. We finally get to the proof of Theorem 1.3. First we prove the inequality using the behavior of Patterson-Sullivan measures and a volume comparison of a subset of Σ; the proof follows the same lines as [Knieper 1995, Theorem 3.4]. Then we prove the equality case using Theorem 3.5 .

Theorem 3.9. Let $\Sigma \subset \mathbb{H}^{3}$ be a Γ-invariant embedded disk, whose induced metric g has negative curvature, then

$$
h(g) \leq I_{\mu_{B M}}(\Sigma, M) \delta(\Gamma) .
$$

Moreover, the equality occurs if and only if the marked length spectrum of Σ is proportional to the marked length spectrum of M. In this case, the proportionality factor is given by $\ell_{\Sigma}(g) I(\Sigma, M)=\ell_{M}(g)$.
Proof. The geodesic flow is ergodic with respect to the Bowen-Margulis measure $\mu_{B M}$, hence for $\mu_{B M}$-almost all $v \in T^{1} \Sigma$ we have

$$
\lim _{t \rightarrow \infty} \frac{a(v, t)}{t}=I_{\mu}(\Sigma, M) .
$$

Let v and v^{\prime} be two unit vectors on the same weak stable manifold. Then

$$
d\left(c_{v^{\prime}}(t), c_{v^{\prime}}(0)\right) \leq d\left(c_{v^{\prime}}(t),\left(c_{v}(t)\right)+d\left(c_{v}(t),\left(c_{v}(0)\right)+d\left(c_{v}(0),\left(c_{v^{\prime}}(0)\right),\right.\right.\right.
$$

and the same inequality holds interchanging the role of v and v^{\prime}. Moreover $d\left(c_{v^{\prime}}(t),\left(c_{v}(t)\right)\right.$ decreases exponentially since v and v^{\prime} are on the same weak stable manifold. Hence $\lim _{t \rightarrow \infty} \frac{1}{t} a(v, t)$ exists if and only if $\lim _{t \rightarrow \infty} \frac{1}{t} a\left(v^{\prime}, t\right)$ does.

Let $v_{p}(\xi)$ denote the unitary vector in $T_{p}^{1} \Sigma$ such that $c_{v_{p}(\xi)}(\infty)=\xi$. The previous fact and the product structure of $d \mu_{B M}$ ensure that for μ_{p}^{g}-almost all $\xi \in \partial \Sigma$,

$$
\lim _{t \rightarrow \infty} \frac{a\left(v_{p}(\xi), t\right)}{t}=I_{\mu}(\Sigma, M) .
$$

For all $\varepsilon>0$ and $T>0$, we define the set

$$
A_{p}^{T, \varepsilon}=\left\{\left.\xi \in \partial \Sigma| | \frac{a\left(v_{p}(\xi), t\right)}{t}-I_{\mu}(\Sigma, M) \right\rvert\, \leq \varepsilon, t \geq T\right\}
$$

For all $d \in] 0,1\left[\right.$ and all $\varepsilon>0$, there exists $T>0$ such that $\mu_{p}^{\Sigma}\left(A_{p}^{T, \varepsilon}\right) \geq d$. For $t>T$, consider the subset $\left\{c_{p, \xi}(t) \mid \xi \in A_{p}^{T, \varepsilon}\right\} \subset S_{g}(p, t)$ of the geodesic sphere of radius t and center p on Σ.

Choose $\left\{B_{\Sigma}\left(x_{i}, R\right) \mid i \in I\right\}$ a covering of this subset of fixed radius $R>0$ such that $x_{i} \in S_{\Sigma}(p, t)$ and $B_{\Sigma}\left(x_{i}, R / 4\right)$ are pairwise disjoint. Then, by the local behavior of μ_{p}^{Σ}, there exists a constant $c>1$, independent of t, such that

$$
\frac{1}{c} e^{-h(g) t} \leq \mu_{p}^{\Sigma}\left(p r_{p}^{\Sigma}\left(B_{\Sigma}\left(x_{i}, R\right)\right)\right) \leq c e^{-h(g) t}
$$

It is clear that $A_{p}^{T, \varepsilon} \subset \bigcup_{i \in I} p r_{p}^{\Sigma}\left(B_{\Sigma}\left(x_{i}, R\right)\right)$ and therefore,

$$
d \leq \mu_{p}^{\Sigma}\left(\bigcup_{i \in I} p r_{p}^{\Sigma}\left(B_{\Sigma}\left(x_{i}, R\right)\right)\right) \leq \sum_{i \in I} \mu_{p}^{\Sigma}\left(p r_{p}^{\Sigma}\left(B_{\Sigma}\left(x_{i}, R\right)\right)\right) \leq c \operatorname{Card}(I) e^{-h(g) t}
$$

Since \mathbb{H}^{3} / Γ is convex cocompact, $C_{Q}(\Lambda) / \Gamma$ is compact, where $C_{Q}(\Lambda)$ is the Q neighborhood of the convex core of Λ. Hence for any $Q>0$,

$$
\delta(\Gamma)=\lim _{R \rightarrow \infty} \operatorname{Vol}\left(B_{\mathbb{H}^{3}}(o, R) \cap C_{Q}(\Lambda)\right)
$$

Now take Q sufficiently large such that Σ is inside $C_{Q}(\Lambda)$. There exists K such that $B_{\Sigma}\left(x_{i}, R / 4\right) \subset B_{\mathbb{H}^{3}}\left(x_{i}, R+K\right) \cap C_{Q}(\Lambda)$.

From the definition of the set $A_{p}^{T, \varepsilon}$, we then have that the disjoint union

$$
\bigcup_{i \in I} B_{\Sigma}\left(x_{i}, R / 4\right) \subset B_{\mathbb{H}^{3}}\left(p, t\left(I_{\mu_{B M}}\left(\Sigma, \mathbb{H}^{3}\right)+\varepsilon\right)+R+K\right) \cap C_{Q}(\Lambda)
$$

It follows that

$$
\begin{aligned}
e^{h(g) t} & \left.\leq \frac{c}{d} \operatorname{Card}(I) \leq \frac{c}{d V} \sum_{i \in I} \operatorname{Vol}_{\mathbb{H}^{3}}\left(B_{\mathbb{H}^{3}}\left(x_{i}, R / 4\right)\right) \cap C_{Q}(\Lambda)\right) \\
& \leq \frac{c}{d V} \operatorname{Vol}_{\mathbb{H}^{3}}\left(B_{\mathbb{H}^{3}}\left(p, t\left(I_{\mu_{B M}}\left(\Sigma, \mathbb{H}^{3}\right)+\varepsilon\right)+R+K\right) \cap C_{Q}(\Lambda)\right) .
\end{aligned}
$$

Hence,

$$
h(g) \leq \frac{1}{t}\left(\log \frac{c}{d V}+\log \operatorname{Vol}_{\mathbb{H}^{3}}\left(B_{\mathbb{H}^{3}}\left(p, t\left(I_{\mu_{B M}}\left(\Sigma, \mathbb{H}^{3}\right)+\varepsilon\right)+R+K\right) \cap C_{Q}(\Lambda)\right)\right)
$$

Taking the limit $t \rightarrow \infty$, we get

$$
h(g) \leq\left(I_{\mu_{B M}}\left(\Sigma, \mathbb{M}^{3}\right)+\varepsilon\right) \delta(\Gamma),
$$

which concludes the proof since ε is arbitrary.
For the proof of the equality case in Theorem 1.3 we will use the result equivalent to [Knieper 1995, Corollary 3.6] in our context, that is:

Lemma 3.10 [Knieper 1995]. Letting $p \in \Sigma$ and μ_{p}^{g} be the Patterson-Sullivan measure with respect to p and g, there exists a constant L such that for μ_{p}^{g}-almost all $\xi \in \partial \Sigma$ there is a sequence $t_{n} \rightarrow \infty$ such that

$$
\left|d\left(p, \pi \phi_{t_{n}}^{\Sigma} v_{p}(\xi)\right)-I_{\mu_{B M}}\left(\Sigma, \mathbb{H}^{3}\right) t_{n}\right| \leq L .
$$

Proof. It follows from Lemma 3.5 of [Knieper 1995], that our lemma is true provided there exists a constant $C>0$ such that, for all $t_{1}, t_{2}>0$ and all $v \in T^{1} \Sigma$,

$$
a\left(v, t_{1}\right)+a\left(\phi_{t_{1}}^{\Sigma} v, t_{2}\right) \leq C+a\left(v, t_{1}+t_{2}\right) .
$$

Let $v \in T^{1} \Sigma$ and c_{v}^{Σ} be the geodesic on Σ directed by v. Recall that there exists C_{1} such that the \mathbb{H}^{3}-geodesic from $\pi(v)$ to $c_{v}^{\Sigma}\left(t_{1}+t_{2}\right)$ is at bounded distance C_{1} of $c_{v}^{\Sigma}\left(t_{1}+t_{2}\right)$, independent of t_{1} and t_{2}. The \mathbb{H}^{3}-geodesic from p to $c_{v}^{\Sigma}\left(t_{1}\right)$ and the one from $c_{v}^{\Sigma}\left(t_{1}\right)$ to $c_{v}^{\Sigma}\left(t_{1}+t_{2}\right)$ are also at bounded distance C_{1} of c_{v}^{Σ}. This implies the desired property with $C=2 C_{1}$.
Proof of the equality case in 1.3. Suppose that $h(g)=I_{\mu_{B M}}\left(\Sigma, \mathbb{H}^{3}\right) \delta(\Gamma)$. Choose a point $p \in \Sigma$ and $\xi \in \Lambda$, set $y_{n}:=\pi \phi_{t_{n}}^{\Sigma} v_{p}(\xi)$. From the above lemma, for μ_{p}^{Σ}-almost all ξ we have

$$
\left|d\left(p, y_{n}\right)-I_{\mu_{B M}}\left(\Sigma, \mathbb{H}^{3}\right) t_{n}\right| \leq L .
$$

Setting a fixed constant, $R>0$, by the local property of the Patterson-Sullivan measure on \mathbb{H}^{3}, there is c_{1} such that

$$
\frac{1}{c_{1}} e^{-\delta(\Gamma) d\left(p, y_{n}\right)} \leq \mu_{p}^{H^{3}}\left(p r_{H^{3}} B_{H^{3}}\left(y_{n}, R\right)\right) \leq c_{1} e^{-\delta(\Gamma) d\left(p, y_{n}\right)},
$$

and by Theorem 3.3,

$$
p r_{\mathbb{H}^{3}}\left(B_{\mathbb{H}^{3}}(x, R-C)\right) \cap \Lambda \subset \operatorname{pr}_{\Sigma}\left(B_{\mathbb{H}^{3}}(x, R) \cap \Sigma\right) \subset p_{\mathbb{H}^{3}}\left(B_{\mathbb{H}^{3}}(x, R+C)\right) .
$$

Hence there is a constant c_{2} such that

$$
\frac{1}{c_{2}} e^{-\delta(\Gamma) d\left(p, y_{n}\right)} \leq \mu_{p}^{\mathbb{H}^{3}}\left(p r_{\Sigma} B_{\mathbb{H}^{3}}\left(y_{n}, R\right) \cap \Sigma\right) \leq c_{1} e^{-\delta(\Gamma) d\left(p, y_{n}\right)} .
$$

By the local property of the Patterson-Sullivan measure on Σ, there is c_{3} such that

$$
\frac{1}{c_{3}} e^{-h(\Sigma) d_{\Sigma}\left(p, y_{n}\right)} \leq \mu_{p}^{\Sigma}\left(p r_{\Sigma} B_{\Sigma}\left(y_{n}, R\right)\right) \leq c_{3} e^{-h(\Sigma) d_{\Sigma}\left(p, y_{n}\right)},
$$

and by Theorem 3.3,

$$
\operatorname{pr}_{\Sigma}\left(B_{\Sigma}(x, R-C)\right) \subset \operatorname{pr}_{\Sigma}\left(B_{H^{3}}(x, R) \cap \Sigma\right) \subset \operatorname{pr}_{\Sigma}\left(B_{\Sigma}(x, R+C)\right) .
$$

Hence there is c_{4} such that

$$
\frac{1}{c_{4}} e^{-h(\Sigma) d_{\Sigma}\left(p, y_{n}\right)} \leq \mu_{p}^{\Sigma}\left(p r_{\Sigma} B_{H^{3}}\left(y_{n}, R\right) \cap \Sigma\right) \leq c_{4} e^{-h(\Sigma) d_{\Sigma}\left(p, y_{n}\right)} .
$$

From the choice of y_{n} and since $h(\Sigma)=I_{\mu_{B M}}\left(\Sigma, \mathbb{H}^{3}\right) \delta(\Gamma)$,

$$
e^{-L} e^{-\delta(\Gamma) d\left(p, y_{n}\right)} \leq e^{-h(g) d_{\Sigma}\left(p, y_{n}\right)} \leq e^{L} e^{-\delta(\Gamma) d\left(p, y_{n}\right)} .
$$

Hence there is $c_{5}>0$ such that

$$
\frac{1}{c_{5}} e^{-\delta(\Gamma) d\left(p, y_{n}\right)} \leq \mu_{p}^{\Sigma}\left(p r_{\Sigma} B_{H 3}\left(y_{n}, R\right) \cap \Sigma\right) \leq c_{5} e^{-\delta(\Gamma) d\left(p, y_{n}\right)} .
$$

Finally we have a constant c_{6} such that

$$
c_{6} \leq \frac{\mu_{p}^{\Sigma}\left(p r_{\Sigma} B_{\mathbb{H}^{3}}\left(y_{n}, R\right) \cap \Sigma\right)}{\mu_{p}^{\mathbb{H}^{3}}\left(p r_{\Sigma} B_{\mathbb{H}^{3}}\left(y_{n}, R\right) \cap \Sigma\right)} \leq c_{6} .
$$

Since $\operatorname{pr}_{\Sigma}\left(B_{H^{3}}\left(y_{n}, R\right) \cap \Sigma\right) \rightarrow \xi$, the measures μ_{p}^{Σ} and $\mu_{p}^{H^{3}}$ are equivalent. Theorem 3.5 concludes the proof.

We finish this article with the proof of Corollary 1.4:
Corollary 1.4. Under the assumptions of Theorem 1.3 we have

$$
h(\Sigma) \leq \delta\left(\Gamma, \mathbb{H}^{3}\right),
$$

with equality if and only if Γ is fuchsian and Σ is the totally geodesic hyperbolic plane, preserved by Γ.

Proof. The inequality is obvious. Suppose the equality occurs. Then by Theorem 1.3, we have that the length spectrum is proportional to the one of \mathbb{H}^{3} / Γ and moreover that $I(\Sigma, M)=1$. In other words the two length spectra are equal.

Since Σ is embedded in \mathbb{H}^{3}, we can prove that the equality between the spectra implies that Σ is totally geodesic by the following argument:

Let $\gamma \in \Gamma$, and consider A its axis in Σ. Then for all $p \in A$, we have

$$
\ell_{\Sigma}(\gamma)=d_{\Sigma}(\gamma p, p) \geq d_{\mathbb{H}^{3}}(\gamma p, p) \geq \ell_{\mathbb{H}^{3}}(\gamma) .
$$

Since the two spectra are equal, these inequalities are equalities. In particular, it implies that p lies in the axis of γ in \mathbb{H}^{3}. Therefore A is a geodesic of \mathbb{H}^{3}.

Let c be the closed geodesic on Σ represented by g and consider c^{\prime} any geodesic that intersects c. Let g^{\prime} be a representative of this closed geodesic such that the axis A^{\prime} of g^{\prime} on Σ intersects A. By similar computations as before, we see that A^{\prime} is a geodesic of \mathbb{H}^{3}.

Since the two geodesics intersect, the endpoints of A and A^{\prime} are cocyclic on the boundary of \mathbb{H}^{3}, and in particular bound a copy of \mathbb{H}^{2} inside \mathbb{H}^{3}. By similar arguments for any element $g \in \Gamma$ such that its axis A_{g} intersects A and A^{\prime} we see that A_{g} is a geodesic of \mathbb{H}^{3} and therefore that A_{g} is included in the copy of \mathbb{H}^{2}. This last fact implies that Σ is included, therefore equal, to this copy of \mathbb{H}^{2} and finishes the proof of the corollary.

3C1. A remark on length spectrum rigidity. As we said in the introduction, the proof of the last corollary raises the following question: If a quasi-Fuchsian has the same length spectrum as a negatively curved surface, is it Fuchsian? Or more generally, if the two length spectra are proportional does it imply that it is Fuchsian? The latter question seems to be unanswered even if we suppose that the surface has constant negative curvature equal -1 , and the problem in general seems to be quite hard.

We answer the case of constant negative curvature:
Theorem 1.5. Let M be a quasi-Fuchsian manifold and Σ a hyperbolic (in the sense that it has constant curvature -1) surface. Suppose that M and Σ have proportional length spectrum (i.e., there exists $k \in \mathbb{R}^{+}$such that for all $\gamma \in \Gamma, \ell_{M}(\gamma)=$ $\left.k \ell_{\Sigma}(\gamma)\right)$, then M is Fuchsian, $k=1$ and Σ is isometric to the totally geodesic surface in M.

In this case we cannot use the entropy argument that is used when we suppose the equality of the two spectra. Our proof is inspired by the work of F. Dal'bo and I. Kim [2000] and based on the following theorem of Benoist:

Theorem 3.11 [Benoist 1997]. Let G be a semisimple linear connected Lie group. Let $\Gamma<G$ be a Zariski dense subgroup. Then the limit cone is convex with nonempty interior.

The limit cone is the smallest closed cone of a Cartan subspace of \mathfrak{g} containing $\log (\lambda(\Gamma))$ where $\lambda(\gamma)$ is the Jordan projection.

Proof of Theorem 1.5. Consider Γ a surface group and $\rho_{Q F}$ a quasi-Fuchsian representation into $\mathrm{PSL}_{2}(\mathbb{C})$ and ρ_{0} a Teichmüller representation in $\mathrm{PSL}_{2}(\mathbb{R})$. Consider the diagonal representation,

$$
\rho=\left(\rho_{Q F}, \rho_{0}\right): \Gamma \rightarrow \operatorname{PSL}_{2}(\mathbb{C}) \times \operatorname{PSL}_{2}(\mathbb{R})
$$

The group $\mathrm{PSL}_{2}(\mathbb{C}) \times \mathrm{PSL}_{2}(\mathbb{R})$ is a semisimple linear connected Lie group of rank 2. The Jordan projection of an element $\left(\gamma_{1}, \gamma_{2}\right)$ is given by $\left(\ell_{\mathbb{H}^{3}}\left(\gamma_{1}\right), \ell_{\mathbb{H}^{2}}\left(\gamma_{2}\right)\right)$ where ℓ_{X} is the translation length in X.

Therefore if the two representations have proportional length spectra, then the limit cone of $\rho(\Gamma)$ is a line, in particular it has empty interior. Using Benoist's theorem we conclude that $\rho(\Gamma)$ is not Zariski dense, which implies that M is Fuchsian. Therefore the length spectrum of Σ is k times the length spectrum of the hyperbolic surface $\Sigma_{0}=\Vdash^{2} / \rho(\Gamma)$. By Otal's theorem [1990] we get

$$
(\Sigma, g)=\left(\Sigma_{0}, k^{2} g_{\text {H }}\right),
$$

hence since Σ is hyperbolic, we have $k=1$ and $\Sigma=\Sigma_{0}$.
Acknowledgements. We want to thank Maxime Wolff for his help in the proof of Theorem 1.1, and the referee for useful comments concerning rigidity questions.

References

[Benoist 1997] Y. Benoist, "Propriétés asymptotiques des groupes linéaires", Geom. Funct. Anal. 7:1 (1997), 1-47. MR Zbl
[Besson et al. 1995] G. Besson, G. Courtois, and S. Gallot, "Entropies et rigidités des espaces localement symétriques de courbure strictement négative", Geom. Funct. Anal. 5:5 (1995), 731-799. MR Zbl
[Bowen 1979] R. Bowen, "Hausdorff dimension of quasicircles", Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11-25. MR Zbl
[Bridgeman and Taylor 2000] M. Bridgeman and E. C. Taylor, "Length distortion and the Hausdorff dimension of limit sets", Amer. J. Math. 122:3 (2000), 465-482. MR Zbl
[Dal'Bo and Kim 2000] F. Dal'Bo and I. Kim, "A criterion of conjugacy for Zariski dense subgroups", C. R. Acad. Sci. Paris Sér. I Math. 330:8 (2000), 647-650. MR Zbl
[Ghys and de la Harpe 1990] E. Ghys and P. de la Harpe, "Espaces métriques hyperboliques", pp. $27-45$ in Sur les groupes hyperboliques d'après Mikhael Gromov ((Bern, 1988)), Progr. Math. 83, Birkhäuser, Boston, 1990. MR
[Hamenstädt 2002] U. Hamenstädt, "Ergodic properties of function groups", Geom. Dedicata 93 (2002), 163-176. MR Zbl
[Kifer 1990] Y. Kifer, "Large deviations in dynamical systems and stochastic processes", Trans. Amer. Math. Soc. 321:2 (1990), 505-524. MR Zbl
[Kingman 1973] J. F. C. Kingman, "Subadditive ergodic theory", Ann. Probability 1 (1973), 883-909. MR Zbl
[Knieper 1995] G. Knieper, "Volume growth, entropy and the geodesic stretch", Math. Res. Lett. 2:1 (1995), 39-58. MR Zbl
[Nicholls 1989] P. J. Nicholls, The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series 143, Cambridge University Press, 1989. MR Zbl
[Otal 1990] J.-P. Otal, "Le spectre marqué des longueurs des surfaces à courbure négative", Ann. of Math. (2) 131:1 (1990), 151-162. MR Zbl
[Patterson 1976] S. J. Patterson, "The limit set of a Fuchsian group", Acta Math. 136:3-4 (1976), 241-273. MR Zbl
[Paulin et al. 2015] F. Paulin, M. Pollicott, and B. Schapira, Equilibrium states in negative curvature, Astérisque 373, Société Mathématique de France, Paris, 2015. MR Zbl
[Quint 2006] J. F. Quint, "An overview of Patterson-Sullivan theory", workshop on the barycenter method, Forschungsinstitut für Mathematik, Zurich, 2006, available at https://tinyurl.com/quint-pdf.
[Roblin 2003] T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. 95, Société Mathématique de France, Paris, 2003. MR Zbl
[Sullivan 1979] D. Sullivan, "The density at infinity of a discrete group of hyperbolic motions", Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171-202. MR Zbl

Received February 2, 2016. Revised November 14, 2017.

Olivier Glorieux

University of Luxembourg
Esch-sur-Alzette
Luxembourg
olivier.glrx@gmail.com

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm
EDITORS
Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@ math.ucla.edu

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department
National University of Singapore
Singapore 119076
matgwt@nus.edu.sg

Sorin Popa

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu
Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics University of California
Santa Barbara, CA 93106-3080 cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

aCADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
oregon state univ.

STANFORD UNIVERSITY
univ. of british columbia
UNIV. OF CALIFORNIA, BERKELEY
univ. of California, davis
UNIV. OF CALIFORNIA, LOS ANGELES
univ. of CALIFORNIA, RIVERSIDE
univ. of CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2018 is US $\$ 475 /$ year for the electronic version, and $\$ 640 /$ year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY

- mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 294 No. 2 June 2018
A positive mass theorem and Penrose inequality for graphs with noncompact 257 boundaryEzequiel Barbosa and Adson Meira
Diagrams for relative trisections 275
Nickolas A. Castro, David T. Gay and Juanita Pinzón-Caicedo
Linkage of modules with respect to a semidualizing module 307
Mohammad T. Dibaei and Arash Sadeghi
Biharmonic hypersurfaces with constant scalar curvature in space forms 329
Yu Fu and Min-Chun Hong
Nonabelian Fourier transforms for spherical representations 351
Jayce R. Getz
Entropy of embedded surfaces in quasi-Fuchsian manifolds 375
Olivier Glorieux
Smooth Schubert varieties and generalized Schubert polynomials in algebraic 401cobordism of GrassmanniansJens Hornbostel and Nicolas Perrin
Sobolev inequalities on a weighted Riemannian manifold of positive 423
Bakry-Émery curvature and convex boundarySaïd Ilias and Abdolhakim Shouman
On the existence of closed geodesics on 2-orbifolds 453
Christian Lange
A Casselman-Shalika formula for the generalized Shalika model of $\mathrm{SO}_{4 n}$ 473
Miyu Suzuki
Nontautological bielliptic cycles 495Jason van Zelm
Addendum: Singularities of flat fronts in hyperbolic space 505
Masatoshi Kokubu, Wayne Rossman, Kentaro Saji, Masaaki Umehara and Kotaro Yamada

[^0]: MSC2010: 32Q45, 51F99, 51K99, 53A35.
 Keywords: hyperbolic geometry, entropy, quasi-Fuchsian, length spectrum.

[^1]: ${ }^{1}$ We use a ball of half the size, for a technical reason that appears at the beginning of the proof of Lemma 2.4.

[^2]: ${ }^{2}$ This is where we use the upper bound on $d_{g_{0}}(o, x)$.

[^3]: ${ }^{3}$ It is a classical result of Sullivan that there is in fact a unique limit, up to normalization. It is equivalent to the ergodicity of Bowen-Margulis measure [Roblin 2003, Chapter 1]

