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In this paper, we study some nonlinear elliptic equations on a compact n-
dimensional weighted Riemannian manifold of positive m-Bakry–Émery–
Ricci curvature and convex boundary. Our main purpose is to find condi-
tions which imply that such elliptic equations admit only constant solutions.
As an application, we obtain weighted Sobolev inequalities with explicit
constants that extend the inequalities obtained by Ilias [1983; 1996] in the
Riemannian setting. In a last part of the article, as applications we derive
a new Onofri inequality, a logarithmic Sobolev inequality and estimates for
the eigenvalues of a weighted Laplacian and for the trace of the weighted
heat kernel.

1. Introduction and main result

Sobolev inequalities with sharp constants play an important role in Riemannian
and conformal geometries. For example, on the unit sphere Sn endowed with its
standard metric, we have (see [Aubin 1982]), for all f ∈ H 2

1 (S
n),

(1-1) ‖ f ‖2L2n/(n−2)(dv) ≤ K (n, 2)‖∇ f ‖2L2(dv)+ vol(Sn)−2/n
‖ f ‖2L2(dv),

where K (n, 2) := 4/(n(n− 2)) vol(Sn)−2/n , dv and vol(Sn) are respectively the
Riemannian measure and the Riemannian volume of Sn . This inequality has been
crucial in the study of the Yamabe problem on closed Riemannian manifolds. It
corresponds to the limiting case in the Sobolev embedding

H 2
1 ↪→ L p

(
2< p ≤ 2̂ := 2n

n−2

)
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and the constants appearing in it are the best possible constants (see [Aubin 1982;
Lee and Parker 1987; Ilias 1983]). Note that, using a stereographic projection
and the conformal nature of this inequality, one can show its equivalence with the
Euclidean Sobolev inequality (see for instance [Lee and Parker 1987]),

(1-2) ∀ f ∈ H 2
1 (R

n), ‖ f ‖2L2n/(n−2)(dx) ≤ K (n, 2)‖∇ f ‖2L2(dx),

where dx is the Lebesgue measure and K (n, 2) is the best constant in this Euclidean
Sobolev inequality [Aubin 1982]. The conformal nature of inequality (1-1) can also
be used to deduce the following Sobolev inequality on the hyperbolic space:

(1-3) ‖ f ‖2L2n/(n−2)(dx) ≤ K (n, 2)‖∇ f ‖2L2(dx)− vol(Sn)−2/n
‖ f ‖2L2(dx)

for all f ∈ H 2
1 (H

n) (see [Hebey 1996] for another proof of this inequality).
Beckner [1993] extended the spherical inequality (1-1) to all the Sobolev expo-

nents, proving that for all p ∈ (2, 2̂],

(1-4) ‖ f ‖2L p(dv) ≤ vol(Sn)
−

p−2
p

(
p− 2

n
‖∇ f ‖2L2(dv)+‖ f ‖2L2(dv)

)
.

This inequality is attributed in the literature to Beckner but it was proved in 1991
independently by Bidaut-Véron and Véron [1991].

In 1983, the first author generalized the spherical inequality (1-1) to any closed
Riemannian manifold with positive Ricci curvature, see [Ilias 1983]. In fact,
if (M, g) is a compact n-dimensional Riemannian manifold of Ricci curvature
bounded-below by a positive constant k, then every function f ∈ H 2

1 (M) satisfies

(1-5) ‖ f ‖2L2n/(n−2)(dvg)
≤ volg(M)−2/n

(
4(n− 1)

n(n− 2)k
‖∇ f ‖2L2(dvg)

+‖ f ‖2L2(dvg)

)
,

where dvg and volg(M) are respectively the Riemannian measure and the Riemann-
ian volume of (M, g).

This last inequality is derived from (1-1) using the Levy–Gromov isoperimetric
inequality and an adapted symmetrization. Moreover, we observe that if we use
the inequality (1-4) instead of (1-1), the same arguments of symmetrization extend
(1-5) for all the Sobolev exponents p ∈ (2, 2̂].

Bidaut-Véron and Véron [1991] were able to give another proof of the inequal-
ity (1-5). Their proof is based on the Bochner formula and a uniqueness result for
some nonlinear elliptic equations strongly related to that Sobolev inequality. In fact,
they improve a technique developed by Gidas and Spruck [1981]. The technique
developed by Gidas and Spruck seems mysterious, but it is in fact inspired by that
of Obata in his study of the unicity of an Einstein metric in a conformal class [Yano
and Obata 1970]. And as we mentioned above, Bidaut-Véron and Véron [1991]
obtained simultaneously the Beckner inequality (1-4). Note that, Bakry and Ledoux
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[1996] obtained another important and different proof of the inequality (1-5), and
this “probabilistic” proof, generalizes in fact, that inequality to the so-called Markov
generators. Another recent generalization of the inequality (1-5) to metric measured
spaces is due to Profeta [2015].

A natural question that can be asked is

“Is there a similar Sobolev inequality when the manifold has a boundary?”

For the hemisphere Sn
+

endowed with its standard metric, using the exact value of its
relative Yamabe infimum (see for instance [Escobar 1988; 1992]), we immediately
get,

(1-6) ‖ f ‖2L2n/(n−2)(dv) ≤ vol(Sn
+
)−2/n

(
4

n(n−2)
‖∇ f ‖2L2(dv)+‖ f ‖2L2(dv)

)
for all f ∈ H 2

1 (S
n
+
).

In 1996, after a generalization of the method used by Bidaut-Véron and Véron,
the first author [Ilias 1996] gave an answer to the above question by obtaining the
same inequality as (1-5) for manifolds with convex boundary. More precisely, he
proved that, for a compact Riemannian manifold (M, g) with convex boundary and
of Ricci curvature bounded below by a constant k > 0, we have for any p ∈ (2, 2̂]
and any f ∈ H 2

1 (M),

(1-7) ‖ f ‖2L p(dvg)
≤ volg(M)

−
p−2

p

(
(n− 1)(p− 2)

nk
‖∇ f ‖2L2(dvg)

+‖ f ‖2L2(dvg)

)
.

The purpose of the present paper is to adapt the technique that has been used in
[Ilias 1996] to the setting of weighted Riemannian manifolds with positive Bakry–
Émery–Ricci curvature. More precisely, for a compact n-dimensional weighted
Riemannian manifold (Mn, g, σ ) of convex boundary and of m-Bakry–Émery–
Ricci curvature (for some m ∈ [n,∞)) bounded below by a positive constant k,
we prove the analogue of (1-7) for any p ∈ (2, 2∗ := 2 m/(m − 2)], where the
constant of the gradient term is (m− 1)(p− 2)/(mk). In fact, we prove a stronger
inequality where the constant of the gradient term depends on m, p, k, and the first
nonzero Neumann eigenvalue λh

1 of the weighted Laplacian (see Theorem 3.6 for
more details). Concerning the limiting case p = 2∗, our result shows that for any
f ∈ H 2

1 (dσ),

(1-8) ‖ f ‖2L2m/(m−2)(dσ) ≤ volh(M)−2/m
(

4(m− 1)
m(m− 2)k

‖∇ f ‖2L2(dσ)+‖ f ‖2L2(dσ)

)
,

where dσ is the weighted measure and volh(M) is the volume of M with respect
to dσ (see Corollary 3.7). These inequalities are a consequence of two uniqueness
results for some nonlinear elliptic equations involving the weighted Laplacian
(see Propositions 3.2 and 3.4) which are respectively generalizations to weighted
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manifolds with convex boundary of the result obtained by the first author [Ilias
1996] and that obtained by Licois and Véron [1995] (independently by Fontenas
[1997]) for closed manifolds.

Using inequality (1-8) we can extend many Riemannian results to weighted
Riemannian manifolds. Without being exhaustive, we will treat only applications
which seems to us the most important. More precisely, we can obtain an upper
bound with explicit constants (depending on the Sobolev constants) for the trace of
the weighted heat kernel (see Section 4) and deduce therefrom a lower bound for
the eigenvalues of the weighted Laplacian.

We also derive from our Sobolev inequalities, the analogue of the Onofri inequal-
ity. In fact, we prove in Corollary 4.1 that for any surface M of convex boundary
and of Gaussian curvature bounded below by a positive constant k, it holds that

log
(

1
volg(M)

∫
M

eϕ dvg

)
≤

1
volg(M)

(
1

4k

∫
M
|∇ϕ|2 dvg +

∫
M
ϕ dvg

)
for all ϕ ∈ H 2

1 (M). In the case of the unit sphere and the unit hemisphere, we
recover the classical Onofri inequalities (see [Onofri 1982; Chang and Yang 1988;
Osgood et al. 1988]). As another consequence of our Sobolev inequalities, we
obtain a logarithmic Sobolev inequality (Corollary 4.3) for weighted Riemannian
manifolds with boundary.

This paper is organized as follows. In Section 2, we establish two elementary
lemmas (Lemmas 2.1 and 2.2). The uniqueness results (Propositions 3.2 and 3.4) are
discussed in Section 3 as well as Theorem 3.6 and Corollary 3.7. Finally, Section 4
is dedicated to some applications.

2. Preliminaries

Throughout the paper, we consider (Mn, g) as a smooth compact n-dimensional
Riemannian manifold of boundary ∂M , endowed with a measure dσ := σdvg,
where σ = e−h is a positive density (h is a smooth real-valued function on M)
and dvg is the Riemannian measure associated to the metric g. We denote by
volg(M) and volh(M) respectively the volume of M with respect to dvg and that
with respect to dσ . Such a triplet (M, g, σ ) is known in the literature as a weighted
Riemannian manifold, a manifold with density, a Bakry–Émery manifold, or a
Riemannian measure space. The associated weighted Laplacian 1h (also called
drifted Laplacian, h-Laplacian or Bakry–Émery Laplacian) is given by

(2-1) 1hu =1u− 1
σ
〈∇σ,∇u〉 =1u+〈∇h,∇u〉,

where 1 and ∇ are respectively the nonnegative Laplacian and the gradient with
respect to g. It is self-adjoint on the space of square integrable functions on M
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with respect to the weighted measure dσ , henceforth L2(dσ). We will denote
by H 2

1 (dσ), the Sobolev space of L2(dσ) functions, such that the norm of their
gradient is also in L2(dσ). Note that, since the manifold is compact and h is smooth,
this Sobolev space coincides with the Sobolev space H 2

1 (M) of the Riemannian
manifold (M, g), and these two spaces differ only in their norms.

The m-dimensional Bakry–Émery–Ricci curvature tensor (where m ∈ [n,∞)) is
a modified Ricci tensor more suitable to control the geometry of weighted manifolds
and is defined by

(2-2) Ricm
h := Ric+D2h− 1

m−n
dh⊗ dh

where D2 is the Hessian operator on M and Ric is the usual Ricci curvature
of (M, g). The equation Ricm

h = κg correspond to the so-called quasi-Einstein
metric, which has been studied by many authors (see for instance [Case et al. 2011]).
When m =∞, (2-2) gives the tensor Rich =Ric+D2h introduced by Lichnerowicz
[1970; 1971/72] and independently by Bakry and Émery [1985]. For m = n, (2-2)
makes sense only when the function h is constant and so Ricm

h is the usual Ricci
tensor of M and 1h in this case is nothing but the Laplace–Beltrami operator 1
of M .

Let {e1, . . . , en} be a local orthonormal frame of M such that at p ∈ ∂M , the
vectors e1, . . . , en−1 are tangent to the boundary and the remaining vector en := ν

is the outward unit normal vector to ∂M . The second fundamental form of ∂M at
p ∈ ∂M is defined as

II(X, Y ) := 〈AX, Y 〉 = 〈∇Xν, Y 〉

for any X, Y ∈ Tp(∂M), where A is the Weingarten endomorphism of Tp M . The
mean curvature H of ∂M is defined as the trace of the second fundamental form II:

H =
n−1∑
i=1

II(ei , ei ).

In the sequel, we will need the following two lemmas. The first one is nothing
but a little modification of the Bochner–Lichnerowicz–Weitzenböck formula for
functions on weighted Riemannian manifolds which generalizes the Reilly identity
([Reilly 1977; Ma and Du 2010]). The version we present here is better suited to
our purpose and its proof is a straightforward adaptation of that given by the first
author [Ilias 1996] to the weighted setting.

Lemma 2.1 (generalized Reilly formula). Let (Mn, g, σ ) be a compact weighted
Riemannian manifold with boundary ∂M. For any two smooth functions u and v on
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M , we have∫
M
v
(
|D2u|2− (1hu)2

)
dσ

=−

∫
M

{
(1hu)〈∇u,∇v〉+ 1

2 |∇u|21hv+Rich(∇u,∇u)v
}

dσ

+

∫
∂M

{
−

1
2 |∇u|2 ∂v

∂ν
+

〈
∇
∂
(
∂u
∂ν

)
,∇∂u

〉
v+ (1∂u)

(
∂u
∂ν

)
v

− II(∇∂u,∇∂u)v− Hv
(
∂u
∂ν

)2
+〈∇u,∇h〉v

(
∂u
∂ν

)}
dσ,

where ∇∂ and 1∂ denote the gradient and the Laplacian of ∂M and for the sake of
simplicity, we still denote by dσ the induced weighted measure on ∂M.

Proof. From the classical Riemannian Bochner formula applied to u, one can easily
deduce the following weighted one (see for instance [Setti 1998; Bakry and Émery
1985]):

(2-3) 〈∇(1hu),∇u〉 = |D2u|2+ 1
21h(|∇u|2)+Rich(∇u,∇u).

Multiplying (2-3) by v and integrating over M with respect to dσ , we get:∫
M
v〈∇(1hu),∇u〉 dσ

=

∫
M
v|D2u|2 dσ + 1

2

∫
M
v1h(|∇u|2) dσ +

∫
M
v Rich(∇u,∇u) dσ.

Integration by parts in the left hand side and in the second term of the right hand
side gives

(2-4)
∫

M
v
(
|D2u|2− (1hu)2

)
dσ

=−

∫
M

{
(1hu)〈∇u,∇v〉+ 1

2 |∇u|21hv+Rich(∇u,∇u)v
}

dσ

+

∫
∂M

{
−

1
2 |∇u|2 ∂v

∂ν
+ (1hu)∂u

∂ν
v+ 1

2
∂(|∇u|2)
∂ν

v

}
dσ.

Now in the calculations that follow (at a point x ∈ ∂M), we will use an orthonormal
local frame {e1, . . . , en} such that e1, . . . , en−1 are tangent to the boundary and
en = ν is the outward unit normal to ∂M . A direct calculation of the last two terms
in (2-4) at a point x ∈ ∂M yields

(2-5) (1hu)
(
∂u
∂ν

)
v+ 1

2
∂(|∇u|2)
∂ν

v

=

n−1∑
i=1

(
D2u(en, ei )ei (u)− D2u(ei , ei )en(u)

)
v+〈∇h,∇u〉

(
∂u
∂ν

)
v
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and

(2-6)

n−1∑
i=1

D2u(en, ei )ei (u)=
〈
∇
∂
(
∂u
∂ν

)
,∇∂u

〉
− II(∇∂u,∇∂u),

n−1∑
i=1

D2u(ei , ei )en(u)=−(1∂u)
(
∂u
∂ν

)
+ H

(
∂u
∂ν

)2
.

After incorporating the two identities of (2-6) in (2-5), and the obtained result in
(2-4), we conclude the proof of Lemma 2.1. �

The second lemma, which has an elementary proof, arises naturally when we
need to estimate the Hessian D2u in terms of 1hu (see for example [Li 2005] for a
proof):

Lemma 2.2. Let u be a smooth function on M. For every m ≥ n, we have

(2-7) |D2u|2+Rich(∇u,∇u)≥ 1
m
(1hu)2+Ricm

h (∇u,∇u).

Moreover, the equality in (2-7) holds if and only if

D2u =−1
n
(1u)g and 1hu = m

m−n
〈∇h,∇u〉.

3. Weighted Sobolev inequalities

Let (M, g, σ ) be a compact weighted Riemannian manifold of dimension n ≥ 2.
In this section, we seek conditions that guarantee the uniqueness of the positive
solution of a nonlinear elliptic PDE (see (3-17)). This is an important step towards
the Sobolev inequality.

We first start by giving the keystone of both uniqueness results (Propositions 3.2
and 3.4):

Proposition 3.1. Let q > 1, λ > 0 and ϕ be a positive solution of the following
system

(3-1)

{
1hϕ+ λϕ = ϕ

q in M,
∂ϕ

∂ν
= 0 on ∂M.

Put

(3-2) J := |D2u|2− 1
m
(1hu)2+Rich(∇u,∇u).

(i) For any two nonzero real numbers α and β, we have

(3-3)
∫

M
uβ J dσ +

∫
∂M

uβII(∇∂u,∇∂u) dσ

= A1

∫
M

uβ+(q−1)/α
|∇u|2 dσ + B1

∫
M

uβ |∇u|2 dσ + C1

∫
M

uβ−2
|∇u|4 dσ,
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where

A1 =

{
m−1

m
(αβ + q)− 3

2αβ

}
,

B1 =

{
−λ

m−1
m

(αβ + 1)+ 3
2αβλ

}
,

C1 =

{
m−1

m

(
α−1
α

)2
+

3
2β
(
α−1
α

)
+
β(β−1)

2

}
.

(ii) For any two nonzero real numbers α and β 6=−2, we have the following identity:

(3-4)
∫

M
uβJ dσ +

∫
∂M

uβII(∇∂u,∇∂u) dσ

= A2

∫
M

(
1hu(β+2)/2)2 dσ + B2

∫
M

uβ |∇u|2 dσ +C2

∫
M

uβ−2
|∇u|4 dσ,

where

A2 =−
2

m(β+2)2
{
(m+ 2)αβ

q
− 2(m− 1)

}
,

B2 =
αβ

q

(m+2
2m

)
λ(q − 1),

C2 =
αβ

q

[
m+2
2m

{(
β

4
+
α−1
α

)(
β +

q
α

)
+

(
α−1
α

)2
}
+

q(β−4)
8α

]
,

while if β =−2, we have

(3-5)
∫

M
u−2 J dσ +

∫
∂M

u−2II(∇∂u,∇∂u) dσ

= A3

∫
M
(1h ln u)2 dσ + B3

∫
M
|∇ ln u|2 dσ +C3

∫
M
|∇ ln u|4 dσ,

where

A3 =
1
m

{
(m+ 2)

α

q
+ (m− 1)

}
,

B3 =
−2α

q

(m+2
2m

)
λ(q − 1),

C3 =−
2α
q

[
m+2
2m

{(1
2
−

1
α

)(
−2+ q

α

)
+

(
α−1
α

)2
}
−

3q
4α

]
.

Proof. Let ϕ be a positive solution of (3-1). Let α and β be two nonzero real
numbers to be determined later and take u = ϕα and v = uβ . Using (3-1), a direct
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calculation gives

(3-6)

1hu = αu1+(q−1)/α
−αλu−

(
α−1
α

)
|∇u|2

u
in M,

∂u
∂ν
= 0 on ∂M.

Applying Lemma 2.1 with u and v as above, and using (3-6), we obtain

(3-7)
∫

M
uβ
(
|D2u|2− 1

m
(1hu)2+Rich(∇u,∇u)

)
dσ

=
m−1

m

∫
M

uβ(1hu)2 dσ −
∫

M
(1hu)〈∇u,∇uβ〉 dσ

−
1
2

∫
M
|∇u|21huβ dσ −

∫
∂M

II(∇∂u,∇∂u)uβ dσ,

which is equivalent to

(3-8)
∫

M
uβJ dσ +

∫
∂M

II(∇∂u,∇∂u)uβ dσ

=
m−1

m

∫
M

uβ(1hu)2 dσ − 3
2β

∫
M

uβ−1(1hu)|∇u|2 dσ

+
β(β−1)

2

∫
M

uβ−2
|∇u|4 dσ.

Proof of (i). To prove identity (3-3), let us calculate the first two terms on the right
hand side of (3-8). First:

I1 :=
m−1

m

∫
M

uβ(1hu)2 dσ

=
m−1

m

∫
M

uβ
(
αu1+(q−1)/α

−αλu−
(
α−1
α

)
|∇u|2

u

)
1hu dσ

= α
m−1

m

(
β + 1+ q−1

α

)∫
M

uβ+(q−1)/α
|∇u|2 dσ

−αλ
m−1

m
(β + 1)

∫
M

uβ |∇u|2 dσ

−
m−1

m

(
α−1
α

)∫
M

uβ−1
|∇u|2

(
αu1+(q−1)/α

−αλu−
(
α−1
α

)
|∇u|2

u

)
dσ

=
m−1

m
(αβ + q)

∫
M

uβ+(q−1)/α
|∇u|2 dσ − λm−1

m
(αβ + 1)

∫
M

uβ |∇u|2 dσ

+
m−1

m

(
α−1
α

)2
∫

M
uβ−2
|∇u|4 dσ,
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where we used integration by parts with respect to dσ . A similar type of calculation
yields

I2 := −
3
2β

∫
M

uβ−1(1hu)|∇u|2 dσ

= −
3
2β

∫
M

uβ−1
(
αu1+(q−1)/α

−αλu−
(
α−1
α

)
|∇u|2

u

)
|∇u|2 dσ

= −
3
2αβ

∫
M

uβ+(q−1)/α
|∇u|2 dσ + 3

2αβλ

∫
M

uβ |∇u|2 dσ

+
3
2β
(
α−1
α

)∫
M

uβ−2
|∇u|4 dσ.

Incorporating I1 and I2 in (3-8), we complete the proof of (3-3) by deducing that

(3-9)
∫

M
uβJ dσ +

∫
∂M

II(∇∂u,∇∂u)uβ dσ

=

{
m−1

m
(αβ + q)− 3

2αβ

}∫
M

uβ+(q−1)/α
|∇u|2 dσ

+

{
−λ

m−1
m

(αβ + 1)+ 3
2αβλ

}∫
M

uβ |∇u|2 dσ

+

{
m−1

m

(
α−1
α

)2
+

3
2β
(
α−1
α

)
+
β(β−1)

2

}∫
M

uβ−2
|∇u|4 dσ.

Proof of (ii). Let us now give the proof of (3-4). The main idea here is to replace
the second term on the right hand side of (3-8)

(
i.e.,

∫
M uβ−1(1hu)|∇u|2 dσ

)
by an

expression in which the sign is controllable. For that, we multiply the first equation
of (3-6) by uβ−1

|∇u|2, and we obtain after integrating with respect to dσ ,

(3-10)
∫

M
uβ−1(1hu)|∇u|2 dσ

= α

∫
M
(uβ+(q−1)/α

− λuβ)|∇u|2 dσ −
(
α−1
α

)∫
M

uβ−2
|∇u|4 dσ.

Similarly, multiplying the same equation of (3-6) by uβ1hu and integrating by
parts yields

(3-11)
∫

M
uβ(1hu)2 dσ

=−
α−1
α

∫
M

uβ−1(1hu)|∇u|2 dσ +α
∫

M

(
uβ+1+(q−1)/α

− λuβ+1)1hu dσ

=−
α−1
α

∫
M

uβ−1(1hu)|∇u|2 dσ+α
(
β+1+q−1

α

)∫
M

uβ+(q−1)/α
|∇u|2 dσ

−αλ(β + 1)
∫

M
uβ |∇u|2 dσ.
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In order to eliminate the term∫
M

uβ+(q−1)/α
|∇u|2dσ,

we multiply (3-10) by (β + 1+ (q − 1)/α) and subtract it from (3-11) to get

(3-12) λ(q − 1)
∫

M
uβ |∇u|2 dσ

=−

(
β +

q
α

)∫
M

uβ−1(1hu)|∇u|2 dσ +
∫

M
uβ(1hu)2 dσ

−

(
α−1
α

)(
β + 1+ q−1

α

)∫
M

uβ−2
|∇u|4 dσ.

On the other hand, by a straightforward calculation, we have for β 6= −2,

(3-13)
∫

M
uβ−1(1hu)|∇u|2 dσ =− 4

β(β+2)2

∫
M
(1hu(β+2)/2)2 dσ

+
β

4

∫
M

uβ−2
|∇u|4 dσ + 1

β

∫
M

uβ(1hu)2 dσ.

Now, we replace
∫

M uβ−1(1hu)|∇u|2 dσ by its expression given in (3-13) in the
equations (3-8) and (3-12) respectively. So (3-8) gives

(3-14)
∫

M
uβJ dσ +

∫
∂M

uβII(∇∂u,∇∂u) dσ

=−
m+2
2m

∫
M

uβ(1hu)2 dσ + 6
(β+2)2

∫
M
(1hu(β+2)/2)2 dσ

+
β(β−4)

8

∫
M

uβ−2
|∇u|4 dσ,

and the Equation (3-12) gives

(3-15) λ(q − 1)
∫

M
uβ |∇u|2 dσ

=
−q
αβ

∫
M

uβ(1hu)2 dσ +
4(β + q/α)
β(β + 2)2

∫
M
(1hu(β+2)/2)2 dσ

−

(
β

4

(
β +

q
α

)
+

(
α−1
α

)(
β + 1+ q−1

α

))∫
M

uβ−2
|∇u|4 dσ.

Thus in order to eliminate the term∫
M

uβ(1hu)2 dσ

from (3-14) and (3-15), we multiply (3-14) by (q/αβ) and (3-15) by (m+ 2)/2m
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and subtract them to obtain

(3-16) A
∫

M
uβ−2
|∇u|4 dσ

=−
q
αβ

(∫
M

uβ J dσ+
∫
∂M

uβII(∇∂u,∇∂u) dσ
)
−B

∫
M
(1hu(β+2)/2)2 dσ

+

(m+2
2m

)
λ(q − 1)

∫
M

uβ |∇u|2 dσ,

where the expressions of A and B are given by

A =−
m+ 2

2m

{(
β

4
+
α−1
α

)(
β +

q
α

)
+

(
α−1
α

)2
}
−

q(β − 4)
8α

,

B =
2

m(β + 2)2

{
(m+ 2)− 2(m− 1) q

αβ

}
This completes the proof of (3-4) in the case β 6= −2.

Concerning the case where β =−2, the second term on the right hand side of
(3-16) can be written as

B
∫

M
(1hu(β+2)/2)2 dσ

=
1

2m

{
(m+ 2)− 2(m− 1)

q
αβ

}∫
M

(
1h

(
u(β+2)/2

− u0

(β + 2)/2

))2

dσ,

and when β tends to −2 in (3-16), we obtain (3-5). Therefore the proof of
Proposition 3.1 is completed. �

The first uniqueness result in this paper is the following:

Proposition 3.2. Let (Mn, g, σ ) be a compact weighted Riemannian manifold of
dimension n ≥ 2 with convex boundary ∂M. Assume that for some m ∈ [n,∞), the
m-Bakry–Émery–Ricci curvature satisfies Ricm

h ≥ kg, for a positive constant k. Let
q > 1, λ > 0 and ϕ be a positive solution of the following system:

(3-17)

{
1hϕ+ λϕ = ϕ

q in M,
∂ϕ

∂ν
= 0 on ∂M.

Suppose that

q ≤
m+ 2
m− 2

with no restriction on q if m = 2,

λ≤
mk

(m− 1)(q − 1)

and one of these two inequalities is strict, then ϕ is constant equal to λ1/(q−1).
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In addition, if (M, g) is of constant scalar curvature R, nonisometric to the
hemisphere Sn

+
(
√

n(n− 1)/R), then

λ=
mk

(m− 1)(q − 1)
and q =

m+ 2
m− 2

ensure that ϕ is constant equal to λ1/(q−1).

Remark 3.3. • In the last Proposition, one can consider more generally an equation
of the form

1hϕ+ λϕ = µϕ
q ,

where µ is a positive constant. In fact, if we take ϕ̃ = µ1/(q−1) ϕ, we can easily
obtain 1hϕ̃+ λϕ̃ = ϕ̃

q .

• The solutions in the spherical case: In the Riemannian case (i.e., the case m = n),
the solutions are well known and they are related to the metrics conformal to the
standard metric on the sphere, respectively the hemisphere (see for instance [Aubin
1982; Escobar 1990; 1992; Lee and Parker 1987]).

• Unicity of an Einstein metric in a conformal class: For (Mn, g) a compact Einstein
manifold of totally geodesic boundary ∂M , Escobar [1990] proved that if g1 is a
metric conformally related to g with constant scalar curvature and for which ∂M is
minimal, then g1 is Einstein. Moreover, if (Mn, g) is not conformally equivalent to
Sn
+

, then g1 = cg for some positive constant c. In fact, one can easily see that if
g1 = u4/(n−2)g, then the scalar curvatures Rg and Rg1 satisfy1u+ n−2

4(n−1)
Rgu = n−2

4(n−1)
Rg1u(n+2)/(n−2) in M,

∂u
∂ν
= 0 on ∂M.

Now, when the scalar curvatures are positive (this is the difficult part in Escobar’s
result), using Proposition 3.2 one can easily deduce that u is constant. Note that
Escobar’s result is the generalization of the classical uniqueness result of Obata for
Einstein compact manifolds without boundary (see for instance [Obata 1962]).

The situation is more complicated in the case of weighted Riemannian manifolds
as one can see, for instance, in [Case et al. 2011; Case 2015; Chang et al. 2006;
2011]. Nevertheless, we expect that there is an analogue of Escobar’s theorem for
weighted Riemannian manifolds.

Proof of Proposition 3.2. One can easily infer from (3-3) the following:∫
M

uβ
(
J −Ricm

h (∇u,∇u)
)

dσ +
∫
∂M

II(∇∂u,∇∂u)uβ dσ

= A1

∫
M

uβ+(q−1)/α
|∇u|2 dσ + B1

∫
M

uβ |∇u|2 dσ

+C1

∫
M

uβ−2
|∇u|4 dσ −

∫
M

uβ Ricm
h (∇u,∇u).
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Using the hypothesis that the m-Bakry–Émery–Ricci curvature satisfies Ricm
h ≥ kg,

and the fact that ∂M is convex (i.e., II≥ 0), we obtain:

(3-18)
∫

M
uβ
(
J −Ricm

h (∇u,∇u)
)

dσ

≤ A1

∫
M

uβ+(q−1)/α
|∇u|2 dσ+(B1−k)

∫
M

uβ |∇u|2 dσ+C1

∫
M

uβ−2
|∇u|4 dσ,

where A1, B1 and C1 are as given in Proposition 3.1. Since Lemma 2.2 asserts that
J is bounded below by Ricm

h (∇u,∇u), it suffices to show the existence of α and β
such that A1≤ 0, (B1−k)≤ 0, C1≤ 0 and at least one of these three inequalities is
strict, in order to conclude from Equation (3-18) that u (and hence ϕ) is a constant.

By arguing as in [Ilias 1996], we see that if

q ≤
m+ 2
m− 2

and λ≤
mk

(m− 1)(q − 1)

then there exist α, β such that A1, (B1− k),C1 ≤ 0. Moreover, if one of the above
two inequalities is strict, we may choose α, β such that A1, (B1− k),C1 ≤ 0 and at
least one of these inequalities is strict.

Now suppose that (M, g) is of constant scalar curvature R, nonisometric to the
hemisphere Sn

+
(
√

n(n− 1)/R). If q = (m+2)/(m−2) and λ=mk/(m−1)(q−1),
then one can choose α and β such that A1 = B1− k = C1 = 0. From (3-18) we
conclude that J −Ricm

h (∇u,∇u)= 0, which is equivalent by Lemma 2.2, to

(3-19) D2u =−1
n
(1u)g and 1hu = m

m−n
〈∇u,∇h〉.

Suppose that u is not constant and consider the vector field Y = ∇u. First of
all, Y is a conformal vector field because the first equality of (3-19) is nothing but
LY g = (2/n)ρg, where ρ = div Y =−1u. Since Y is conformal and R is constant,
we have (see equation (1.11) of [Yano and Obata 1970])

LY (R)= Y (R)= 2(n−1)
n

1ρ−
2
n
ρR = 0,

and consequently

(3-20) 1u−
R

n− 1
u = constant.

We immediately deduce from (3-20) that ∂
∂ν
(1u) |∂M= 0.

Differentiating (3-20) two times we get

(3-21)

D2ρ+
R

n(n−1)
ρg = 0 in M,

∂ρ

∂ν
= 0 on ∂M.
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Since we have supposed that u is not constant, ρ =−1u is not identically zero on
M and we can deduce from Escobar’s theorem [1990, Theorem 4.2] that (M, g)
is isometric to the upper hemisphere Sn

+
(
√

n(n− 1)/R), which contradicts our
hypothesis. Thus u (hence ϕ) is constant. �

Now, we shall prove another kind of uniqueness result (under different conditions
on λ) for the same nonlinear elliptic PDE (3-17) which generalizes a result of Licois
and Véron [1995]. This result involves the first nonzero eigenvalue λh

1 of the
weighted Laplacian 1h under the Neumann boundary condition.

Proposition 3.4. Let (Mn, g, σ ) be a compact weighted Riemannian manifold of
dimension n ≥ 2 with convex boundary ∂M. Assume that for some m ∈ [n,∞), the
m-Bakry–Émery–Ricci curvature satisfies Ricm

h ≥ kg, for a positive constant k. Let
q > 1, λ > 0 and ϕ be a positive solution of the following system

(3-22)

{
1hϕ+ λϕ = ϕ

q in M,
∂ϕ

∂ν
= 0 on ∂M.

Suppose that

(3-23) q ≤
m+ 2
m− 2

with no restriction on q if m = 2,

(3-24) (q − 1)λ≤ λh
1 +

qm(m− 1)
q +m(m+ 2)

(
k−

m− 1
m

λh
1

)
and one of these two inequalities is strict, then ϕ is constant equal to λ1/(q−1).

In addition, if (M, g) is of constant scalar curvature R nonisometric to the
hemisphere Sn

+
(
√

n(n− 1)/R), then

(q − 1)λ= λh
1 +

qm(m− 1)
q +m(m+ 2)

(
k−

m− 1
m

λh
1

)
and q =

m+ 2
m− 2

ensure that ϕ is constant equal to λ1/(q−1).

Remark 3.5. We observe that the term (k − ((m − 1)/m)λh
1) in Equation (3-24)

is always nonpositive and this is due to the Escobar–Lichnerowicz theorem (see
[Escobar 1990, Theorem 4.3]) generalized to weighted Riemannian manifolds with
convex boundary and satisfying Ricm

h ≥ kg> 0 (see, for example, [Li and Wei 2015,
Theorem 3] or [Ma and Du 2010, Theorem 2]). Moreover, (3-24) can be rewritten
in the following form:

(3-25) (q − 1)λ≤
(

1−
q(m− 1)2

q +m(m+ 2)

)
λh

1 +

(
qm(m− 1)

q +m(m+ 2)

)
k.
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The coefficient of λh
1 in (3-25) is positive if q < (m+ 2)/(m− 2) and equal to zero

if q = (m+ 2)/(m− 2).

Proof of Proposition 3.4. From (3-4) of Proposition 3.1, we easily infer for β 6= −2,

(3-26) A
∫

M
uβ−2
|∇u|4 dσ

=−
q
αβ

(∫
M

uβ J dσ+
∫
∂M

uβII(∇∂u,∇∂u) dσ
)
−B

∫
M
(1hu(β+2)/2)2 dσ

+

(m+2
2m

)
λ(q − 1)

∫
M

uβ |∇u|2 dσ,

where the expressions of A and B are given by

A =−m+2
2m

{(
β

4
+
α−1
α

)(
β +

q
α

)
+

(
α−1
α

)2
}
−

q(β−4)
8α

,

B = 2
m(β+2)2

{
(m+ 2)− 2(m− 1)

q
αβ

}
.

The idea is to replace the integral associated to B by one of the form
∫

M uβ |∇u|2 dσ .
Since ∂u

∂ν
= 0 over the boundary ∂M , the variational characterization of λh

1 yields

(3-27)

∫
M
(1hu(β+2)/2)2dσ ≥ (β+2)2

4
λh

1

∫
M

uβ |∇u|2 dσ for β 6= −2,∫
M
(1h ln u)2 dσ ≥ λh

1

∫
M
|∇ ln u|2 dσ for β =−2.

Therefore if we can find a couple of nonzero real numbers (α, β) such that

(3-28) αβ > 0, A = 0 and B = 0,

then by using the relation (3-27), the hypothesis on the m-Bakry–Émery–Ricci
curvature and the convexity of ∂M , we deduce from (3-26),

(3-29)
0≤ A

∫
M

uβ−2
|∇u|4 dσ

≤
−q
αβ

∫
M

uβ
(
J −Ricm

h (∇u,∇u)
)

dσ +C
∫

M
uβ |∇u|2 dσ,

where

C :=
−q
αβ

k− (β+2)2

4
λh

1 B+
(m+2

2m

)
(q − 1)λ

=
m+2
2m

(λ(q − 1)− λh
1)−

q
αβ

(
k− m−1

m
λh

1

)
,

and using the hypothesis (3-23) as well as (3-24) concerning λ, we can find a
couple among the (α, β) satisfying the conditions (3-28) such that C is nonpositive.
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Moreover, when the equality is not achieved in (3-23) or in (3-24) we will be able
to conclude that u is constant.

For β =−2, an immediate modification where we use identity (3-5) instead of
(3-4) permits us to conclude.

In the rest of the proof we will show how to find such a couple (α, β) when
β 6= −2. First we simplify the expressions of A, B and C , by setting

X = −1
αβ
, δ =

1
β
+

1
2
, and Ã = 2m

(m+2)β2 A

to obtain

Ã =−δ2
+ 2q−(m+2)

m+2
Xδ+ (q − 1)X2

+
(m−1)Xq
2(m+2)

,

B = 2
m(β+2)2

(
(m+ 2)+ 2(m− 1)Xq

)
,

C = m+2
2m

(
λ(q − 1)− λh

1
)
+ Xq

(
k− m−1

m
λh

1

)
,

and then we maximize X in the interval

I :=
[
−

m+2
2(m−1)q

, 0
)

(which ensures that B ≥ 0 and αβ > 0) such that

Ã =−δ2
+ 2q−(m+2)

m+2
Xδ+ (q − 1)X2

+
(m−1)
2(m+2)

Xq ≥ 0.

The derivative of Ã with respect to δ is given by

d Ã
dδ
=−2

(
δ−

q − (m+ 2)
m+ 2

X
)
.

Therefore the maximum of Ã with respect to δ is achieved for

δ0 :=
q − (m+ 2)

m+ 2
X

and thus:

Ã(δ0, X)= δ2
0 + (q − 1)X2

+
(m− 1)
2(m+ 2)

Xq

=

(
q − 1+

(
q − (m+ 2)

m+ 2

)2)
X2
+
(m− 1)

2(m+ 2)
Xq,

which admits a nontrivial negative solution

X0 =−
(m− 1)(m+ 2)

2
(
q +m(m+ 2)

) .



440 SAÏD ILIAS AND ABDOLHAKIM SHOUMAN

Using the hypothesis that q ≤ (m+ 2)/(m− 2), one has X0 ∈ I and therefore

Ã(δ0, X)≥ 0 on
[
−

m+2
2(m−1)q

, X0

]
⊆ I.

Moreover, a direct computation of C at the specific value X = X0 gives

C(X0)=
m+ 2

2m

(
λ(q − 1)− λh

1 −
qm(m− 1)

q +m(m+ 2)

(
k− m−1

m
λh

1

))
.

Thus, if we suppose that

(3-30) q ≤
m+ 2
m− 2

and

(3-31) λ(q − 1)≤ λh
1 +

qm(m− 1)
q +m(m+ 2)

(
k− m−1

m
λh

1

)
then we have two possibilities:

(1) The equality in (3-31) is not achieved (i.e., C(X0) < 0). In this case, we obtain
from (3-29) at X = X0,

C(X0)

∫
M

uβ |∇u|2 dσ = 0,

and since C(X0) < 0, we deduce that u is constant.

(2) The equality in (3-31) is achieved (i.e., C(X0)= 0) and the inequality (3-30) is
strict. In this case, one can deduce that all the inequalities used to obtain (3-29) are
in fact equalities. In particular, one has

B(X0)

∫
M
(1hu(β+2)/2)2dσ = B(X0)

(β+2)2

4
λh

1

∫
M

uβ |∇u|2 dσ

and since (3-30) is strict, B(X0) is positive. Therefore

(3-32)
∫

M
(1hu(β+2)/2)2 dσ = λh

1

∫
M
|∇u(β+2)/2

|
2 dσ.

Thus, if u is not constant, then u(β+2)/2 is an eigenfunction associated to λh
1 and

since ∂u
∂ν
|∂M = 0, we have ∫

M
u(β+2)/2 dσ = 0,

which contradicts the fact that u is positive. In conclusion u is constant.

To prove the last assertion in the proposition, suppose that (M, g) is of constant
scalar curvature R, nonisometric to the hemisphere Sn

+
(
√

n(n− 1)/R). If (3-30) and
(3-31) are equalities, then we can conclude from (3-29) that J −Ricm

h (∇u,∇u)= 0.
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Similar arguments as those used in the proof of Proposition 3.2 allow us to conclude
that u is constant. �

Now we will deduce our Sobolev inequalities from the previous uniqueness
results.

Theorem 3.6. Let (Mn, g, σ ) be a compact weighted Riemannian manifold of
dimension n ≥ 2 with convex boundary (i.e., II ≥ 0). Assume that for some m ∈
[n,∞), the m-Bakry–Émery–Ricci curvature satisfies Ricm

h ≥ kg for a positive
constant k. Then every function f ∈ H 2

1 (dσ) satisfies

(3-33) ‖ f ‖2L p(dσ) ≤ volh(M)−(p−2)/p
(

1
θ(m, p)

‖∇ f ‖2L2(dσ)+‖ f ‖2L2(dσ)

)
,

for any p ∈ (2, 2∗] with 2∗ = 2m/(m−2) if m > 2 and for any p ∈ (2,∞) if m = 2
(i.e., n = 2 and h is constant) with θ(m, p) ∈ {θ1(m, p), θ2(m, p)} where

θ1(m, p)=
mk

(m− 1)(p− 2)
,

θ2(m, p)=
λh

1

(p− 2)
+

m(m− 1)(p− 1)(
(p− 1)+m(m+ 2)

)
(p− 2)

(
k− m−1

m
λh

1

)
.

Using the Escobar–Lichnerowicz theorem (see Section 4), we note that for m > 2

θ1(m, p)− θ2(m, p)=
m(m+ 2)−m(m− 2)(p− 1)(
(p− 1)+m(m+ 2)

)
(p− 2)

( mk
m−1

− λh
1

)
≤ 0

and for m = 2,

θ1(2, p)− θ2(2, p)=
8

((p− 1)+ 8)(p− 2)
(2k− λh

1)≤ 0

therefore, (3-33) is better with θ(m, p)= θ2(m, p) than with θ1(m, p).
On the other hand, when m > 2 and p tends to the critical exponent 2∗ =

2m/(m− 2), we have

θ1(m, 2∗)= θ2(m, 2∗)=
m(m− 2)k
4(m− 1)

.

Therefore, one limiting case of Theorem 3.6 gives the following:

Corollary 3.7. Let (Mn, g, σ ) be a compact weighted Riemannian manifold of
dimension n ≥ 2 and of convex boundary (i.e., II ≥ 0). Assume that for some
m ∈ [n,∞), the m-Bakry–Émery–Ricci curvature satisfies Ricm

h ≥ kg, for a positive
constant k. If m > 2, then every f ∈ H 2

1 (dσ) satisfies

(3-34) ‖ f ‖2L2m/(m−2)(dσ) ≤ volh(M)−2/m
(

4(m−1)
m(m−2)k

‖∇ f ‖2L2(dσ)+‖ f ‖2L2(dσ)

)
.
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Proof of Theorem 3.6. Suppose that m > 2, and consider the following family of
functionals Jq , defined by

Jq(ϕ)=

∫
M
|∇ϕ|2 dσ +2(m, q)

∫
M
ϕ2 dσ for 1< q < m+2

m−2

with 2(m, q) ∈ {21(m, q),22(m, q)} where

21(m, q)= mk
(m−1)(q−1)

22(m, q)=
λh

1

(q − 1)
+

qm(m− 1)
(q − 1)

(
q +m(m+ 2)

)(k− m−1
m

λh
1

)
and consider µq := inf{Jq(ϕ), ϕ ∈Hq}, where

Hq :=

{
ϕ ∈ H 2

1 (dσ) :
∫

M
ϕq+1 dσ = 1

}
.

Another crucial key here is the fact that the real-valued function

g : x 7−→ x+2
x−2

is decreasing. So
m+2
m−2

= g(m) < g(n)= n+2
n−2

as n < m.
Using the compactness of the inclusions

H 2
1 (dσ) ↪→ L2(dσ) and H 2

1 (dσ) ↪→ Lq+1(dσ)

for any q+1< 2n/(n−2), we can prove that µq is achieved by a positive function
ψq ∈Hq and therefore, one can easily check that ψq verifies weakly the following
system:

(3-35)

{
1hψq +2(m, q)ψq = µqψ

q
q in M,

∂ψq

∂ν
= 0 on ∂M.

Since h is smooth, the regularity result of Cherrier [1984, Theorem 1] shows that
ψq is smooth, and hence by applying Proposition 3.2 if 2(m, q) = 21(m, q) or
Proposition 3.4 if 2(m, q) = 22(m, q), we deduce that ψq is constant. Since
ψq ∈Hq , we get

ψq = (volh(M))−1/(q+1) and µq =2(m, q)(volh(M))(q−1)/(q+1).
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Therefore, one can deduce from the definition of µq , that any f ∈ H 2
1 (dσ) satisfies

(3-36)
(∫

M
| f |q+1 dσ

)2/(q+1)

≤ volh(M)−(q−1)/(q+1)
(

1
2(m, q)

∫
M
|∇ f |2 dσ +

∫
M
| f |2 dσ

)
.

If we put p = q + 1, then 2(m, q) = 2(m, p − 1) = θ(m, p) and thus (3-36)
completes the proof of Theorem 3.6 for m > 2. The case where m = 2, can be
treated in a similar manner. �

4. Some applications

We can derive many interesting applications from the weighted Sobolev inequalities
we obtain. The list is long but for brevity we will limit ourselves to a few and more
significant examples.

(I) The classical Escobar–Lichnerowicz lower bound: As in [Bakry and Ledoux
1996], if we apply (3-34) to f = 1+ tφ (t > 0), where

∫
M φ dσ = 0, and use the

Taylor expansion (1+x)p
'x→0 1+ px+ 1

2 p(p−1)x2, then we obtain the analogue
of the classical Escobar–Lichnerowicz theorem for measured spaces with convex
boundary:

(4-1) λh
1 ≥

mk
m− 1

.

We should also point out that many authors have obtained this estimate (see, for
example, [Li and Wei 2015, Theorem 3; Ma and Du 2010, Theorem 2]).

Similarly, one can look for lower bounds depending on k for higher eigenvalues:

(II) Lower bounds of higher eigenvalues with explicit constants: Inspired by the
work of Cheng and Li [1981] in the case of a Riemannian manifold and using
Poincaré and Hölder inequalities, we can easily derive from (3-34) that any f ∈
H 2

1 (dσ) such that
∫

M f dσ = 0 satisfies

(4-2)
∫

M
|∇ f |2 dσ ≥ C1

(∫
M

f 2 dσ
)m+2

m
(∫

M
| f | dσ

)− 4
m

,

where C1=λ
h
1/(λ

h
1C0+1)(volh(M))2/m with C0= 4(m−1)/(m(m−2)k). Applying

this last inequality (4-2) to the weighted heat kernel Hh(t, x, y) with Neumann
condition on the boundary and after using its semigroup property (see for instance
the book of Grigor’yan [2009] for the properties of such heat kernel), we are able
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to obtain an explicit upper bound for its trace. In fact, we obtain

(4-3)
∫

M

(
Hh(t, x, x)−

1
volh(M)

)
dσ =

∞∑
i=1

e−λ
h
i t
≤ 4

( m
2C1

)m/2
volh(M)t−m/2.

From this upper bound, taking t = 1/λh
` , where λh

` is the `-th Neumann eigenvalue
of 1h on M , we can easily deduce a lower bound of λh

` as follows:

(4-4) λh
` ≥

( 1
4e

)2/m( 2
m

)
C1

(
`

volh(M)

)2/m
.

In the particular case, where the manifold is without boundary (respectively with
convex boundary) and the density function is constant (hence m = n), λh

` is nothing
but λ` , the `-th eigenvalue of the usual Laplacian (resp. the Neumann Laplacian),
and thus we recover the lower bound obtained in [Cheng and Li 1981] but with
explicit constants. It’s worthwhile to point out that if we use the estimate (4-1) for
λh

1 obtained above, then the constant C1 in (4-2) can be replaced by the constant

C2 :=
m−2
m+2

(volh(M))2/m mk
m−1

and thus (4-4) becomes

λh
` ≥ 2

( 1
4e

)2/m (m−2)k
(m+2)(m−1)

`2/m .

In the same spirit, but inspired this time by the work of Li and Yau [1983], one
can consider the Neumann heat kernel of the operator 1h/q , where q is a positive
potential on M . In this case, using (4-2), one can deduce that

λh
`

(∫
M

q
m
2 dσ

)2
m
≥

(
C1

e

)
`2/m

and as above C1 can be replaced by C2. Using this last inequality, the same arguments
as in Corollary 2 of [Li and Yau 1983] gives an explicit estimate of the number of
eigenvalues for a weighted Schrödinger operator 1h + V which are less than or
equal to a given value.

(III) Lower bound for the Yamabe invariant: • The case of a compact Riemannian
manifold without boundary: Let (M, g) be a compact Riemannian manifold without
boundary of dimension n > 2, and as before denote by dvg its Riemannian measure
and by Rg its scalar curvature. Let [g] be the class of conformal metrics to g. The
Yamabe invariant of the conformal class [g] (see for instance [Aubin 1982; Hebey
and Vaugon 1996; Lee and Parker 1987]) is given by

(4-5) µ(M, [g])= inf
u∈C1(M)\{0}

(
4(n− 1)/(n− 2)

∫
M |∇u|2 dvg +

∫
M Rgu2 dvg

)(∫
M u2n/(n−2) dvg

)(n−2)/n
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and under the condition Ric(M, g)≥ kg (with k > 0), using the Sobolev inequality
of Corollary 3.7 and the fact that Rg ≥ nk, we obtain the following lower bound of
(4-5):

(4-6) µ(M, [g])≥ nk(vol(M))2/n.

Note that since

µ(M, [g])≤ µ(Sn, [can])= n (n− 1) (vol(Sn))2/n

(see [Aubin 1982]), we obtain the Bishop inequality:

volg(M)≤
(n−1

k

)n/2
vol(Sn).

We also observe that Petean [2005] deduced from (4-6) that if g0 is the Fubini–
Study metric on CP2 and g is any other metric on CP2 with Ricg ≥ Ricg0 then
volg(CP2)≤ volg0(CP2).

• The case of a compact Riemannian manifold with boundary: This case is more
complicated than the first one (see [Cherrier 1984; Escobar 1992; Akutagawa 2001])
even if the strategy is the same. In this case the boundary Yamabe invariant is given
by

(4-7) µ(M, [g])

= inf
u∈C1(M)\{0}

(
4(n−1)/(n−2)

∫
M |∇u|2 dvg+

∫
M Rgu2 dvg+2

∫
∂M Hu2 dvg

)(∫
M u2n/(n−2) dvg

)(n−2)/n ,

where H is the mean curvature of ∂M and dvg denotes the induced Riemannian
measure on ∂M . As before, under the conditions Ric(M, g)≥ kg (with k > 0) and
∂M convex, we deduce since, in this case, Rg ≥ n k and H ≥ 0, the following lower
bound for the boundary Yamabe invariant, similar to that for the Yamabe invariant:

(4-8) µ(M, [g])≥ nk(vol(M))2/n.

Note that since

µ(M, [g])≤ µ(Sn
+
, [can])= n(n− 1)(vol(Sn

+
))2/n

(see [Escobar 1992]), we obtain the equivalent of the Bishop inequality when the
boundary of the manifold is convex:

volg(M)≤
(n−1

k

)n/2
1
2 vol(Sn).

• The case of a measured Riemannian space: Here we consider a weighted Rie-
mannian manifold of dimension n > 2, and when the manifold is with boundary,
H denotes the mean curvature of its boundary. As we observed in Remark 3.3,
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the situation is more complicated. We don’t know if there’s an equivalent of the
Yamabe invariant related to our Sobolev inequality of Corollary 3.7. If we consider
the following infimum:

(4-9) µ(M,m, g, σ )

:= inf
u∈C1(M)\{0}

(
4(m−1)/(m−2)

∫
M |∇u|2 dσ+

∫
M Rm

h u2 dσ+2
∫
∂M Hu2 dσ

)(∫
M u2m/(m−2) dσ

)(m−2)/m ,

where Rm
h =

m
n trace(Ricm

h ) and as before, if we suppose that Ricm
h ≥ kg > 0 and

the boundary is convex in the case where ∂M 6=∅, we obtain

µ(M,m, g, σ )≥ mk(volh(M))2/m .

For an extension of the Yamabe invariant in the case of weighted manifolds, one
can consult [Chang et al. 2011; Case 2015].

(IV) Onofri and logarithmic Sobolev inequalities: Another interesting application is
the Onofri inequality (see for example [Onofri 1982; Beckner 1993]), which appears
as an endpoint of various families of interpolation inequalities in dimension two,
exactly like Sobolev inequality in higher dimensions. The following corollary gives
the analogue of Onofri’s inequality on any 2-dimensional compact Riemannian
manifold (M2, g) with positive curvature and convex boundary (see also [Ilias
1983] for nonsharp Onofri inequalities in all dimensions). Since in this case we
take m = 2, we must have h constant, and finally the measure dσ is just a multiple
of the Riemannian measure. The inequality being invariant by homothety on the
measure, we can restrict ourselves to the Riemannian case.

Corollary 4.1. Let (M, g) be a compact Riemannian surface of convex boundary
and such that Ricg ≥ kg for a positive constant k. We have for any ϕ ∈ H 2

1 ,

log
(

1
volg(M)

∫
M

eϕ dvg

)
≤

1
volg(M)

(
1

4k

∫
M
|∇ϕ|2 dvg +

∫
M
ϕ dvg

)
.

Proof. For any p ∈ (2,∞) and f ∈ H 2
1 (M), (3-33) yields

(4-10)
(∫

M
| f |p dvg

)2
p
≤volg(M)

−
p−2

p

(
1

θ(2, p)

∫
M
|∇ f |2 dvg+

∫
M
| f |2 dvg

)
,

where θ(2, p) ∈ {θ1(2, p), θ2(2, p)} as defined in Theorem 3.6. Proceeding as in
[Beckner 1993], if we choose f = 1+ ϕ/p, then (4-10) gives after applying the
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logarithm function to both sides

2 log
(∫

M

∣∣∣1+ ϕp ∣∣∣p
dvg

)
≤ 2 log(volg(M))+ p

{
log

(
1

θ(2, p)
1
p2

∫
M
|∇ϕ|2 dvg + volg(M)

+
2
p

∫
M
ϕ dvg +

1
p2

∫
M
ϕ2 dvg

)
− log(volg(M))

}
.

Therefore when p tends to infinity, one can easily see that 1/θ(2, p)p2 converges
to zero, and thus the second term on the right hand side of the above equation
converges to

1
volg(M)

(
1

2k

∫
M
|∇ϕ|2 dvg + 2

∫
M
ϕ dvg

)
. �

Remark 4.2. • For any ϕ ∈ H 2
1 (S

2) (respectively, ϕ ∈ H 2
1 (S

2
+
)), Corollary 4.1

gives immediately

(4-11) log
(

1
4π

∫
S2

eϕ dv
)
≤

1
4π

(
1
4

∫
S2
|∇ϕ|2 dv+

∫
S2
ϕ dv

)
respectively,

(4-12) log
(

1
2π

∫
S2
+

eϕ dv
)
≤

1
2π

(
1
4

∫
S2
+

|∇ϕ|2 dv+
∫

S2
+

ϕ dv
)
,

where dv is the Riemannian measure of the unit 2-dimensional sphere S2 (respec-
tively, hemisphere S2

+
), see for instance [Chang and Yang 1988; Onofri 1982;

Osgood et al. 1988] for different proofs. It is worth noting that our method (which
is inspired by that of Beckner [1993] for the sphere) is the simplest among the
existing ones concerning surfaces with boundary.

• We also observe that as in the proofs of [Ilias 1983] for surfaces without boundary,
one can use the Levy–Gromov isoperimetric inequality and an adapted symmetriza-
tion to deduce the inequality of Corollary 4.1 from that of the 2-sphere.

In the last corollary, we give a logarithmic Sobolev inequality on a compact
weighted Riemannian manifold (M, g, σ ) of arbitrary dimension (for this kind of
inequalities one can see for instance [Gross 1975]). In fact:

Corollary 4.3. Let (Mn, g, σ ) be a compact weighted Riemannian manifold of di-
mension n≥ 2 with convex boundary (i.e., II≥ 0). Assume that for some m ∈ [n,∞),
the m-Bakry–Émery–Ricci curvature satisfies Ricm

h ≥ kg for a positive constant k.
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Then for any f ∈ H 2
1 (dσ), we have:∫

M
| f |2 log | f |2 dσ −

∫
M
| f |2 log

(
‖ f ‖2L2(dσ)

volh(M)

)
dσ

≤
p

p− 2
‖ f ‖2L2(dσ) log

(
1

θ(m, p)

∫
M |∇ f |2 dσ

‖ f ‖2L2(dσ)

+ 1
)

for any p ∈ (2, 2∗] with 2∗ = 2m/(m − 2) if m ≥ 3 and p ∈ (2,∞) if m = 2 (i.e.,
n = 2 and h is constant) with θ(m, p) as defined in Theorem 3.6.

Proof. It is equivalent to prove that∫
M
| f |2 log | f |2 dσ ≤

p
p− 2

log
(

1
θ(m, p)

∫
M
|∇ f |2 dσ + 1

)
− log(volh(M)),

for any f ∈ H 2
1 (dσ) with ‖ f ‖2L2(dσ) = 1. From Theorem 3.6, we have

(4-13) 2
p

log
(∫

M
| f |p dσ

)
≤−

p− 2
p

log(volh(M))+ log
(

1
θ(m, p)

∫
M
|∇ f |2 dσ + 1

)
.

Since the logarithmic function is concave, we use Jensen’s inequality and the fact
that

∫
M | f |

2 dσ = 1, to obtain

log
(∫

M
| f |p dσ

)
= log

(∫
M
| f |p−2

| f |2 dσ
)
≥

p− 2
2

∫
M
| f |2 log | f |2 dσ.

Replacing the above equation in (4-13), we finish the proof of Corollary 4.3. �

Remark 4.4. If we suppose that the weighted measure dσ is a probability measure
on M , that is volh(M)= 1, then one can reformulate Theorem 3.6 as follows:

(4-14) η(m, p)
F(p)− F(2)

p− 2
≤ ‖∇ f ‖2L2(dσ),

where F(p)= ‖ f ‖2L p(dσ) =
(∫

M | f |
p dσ

)2/p and η(m, p) ∈ {η1(m, p), η2(m, p)}
with

η1(m, p)=
mk

(m− 1)
,

η2(m, p)= λh
1 +

m(m− 1)(p− 1)(
(p− 1)+m(m+ 2)

)(k−
m− 1

m
λh

1

)
.

By taking the limit p→ 2 in (4-14), we obtain

(4-15) η(m, 2)F ′(2)≤
∫

M
|∇ f |2 dσ
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but

F ′(p)= 2
p

F(p)1−p/2
∫

M
| f |p log | f | dσ − 2

p2 F(p) log
(∫

M
| f |p dσ

)
.

Substituting in (4-15), we obtain the following analogue for weighted Riemannian
manifolds of the logarithmic Sobolev inequality:

1
2η(m, 2)

(∫
M
| f |2 log | f |2 dσ −

∫
M
| f |2 log

(∫
M
| f |2dσ

)
dσ
)
≤

∫
M
|∇ f |2 dσ.

In the case of a compact Riemannian manifold (without boundary), this last inequal-
ity was obtained by Fontenas [1997].
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