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ON THE EXISTENCE OF
CLOSED GEODESICS ON 2-ORBIFOLDS

CHRISTIAN LANGE

We show that on every compact Riemannian 2-orbifold there exist infinitely
many closed geodesics of positive length.

1. Introduction

Existence and properties of closed geodesics on Riemannian manifolds have been
the subject of intense research since Poincaré’s work [1905]. A prominent result in
the field is a theorem by Gromoll and Meyer [1969] that guarantees the existence
of infinitely many closed geodesics on compact Riemannian manifolds on some
cohomological assumption. This assumption is satisfied by a large class of manifolds
but not by spheres. Generalizing ideas of Birkhoff [1927], Franks [1992] and
Bangert [1993] together proved the existence of infinitely many closed geodesics
on every Riemannian 2-sphere.

Guruprasad and Haefliger [2006] generalized the result by Gromoll and Meyer
to the setting of Riemannian orbifolds. In this paper we generalize the result by
Bangert and Franks in the following way.

Theorem 1. On every compact Riemannian 2-orbifold there exist infinitely many
geometrically distinct closed geodesics of positive length.

For spindle orbifolds (see Figure 1), which also go by the name of football
orbifolds, this statement was previously only known to hold in the rotational
symmetric case [Borzellino et al. 2007]. In [Borzellino and Lorica 1996] the
existence of a closed geodesic in the regular part of any 2-orbifold with isolated
singularities is claimed. The alleged geodesic in the regular part is obtained as a
limit of locally length-minimizing curves contained in the complement of shrinking
δ-neighborhoods of the singular points. Note, however, that there are examples in
which such curves have a limit that is not contained in the regular part. For instance,
on a plane with two singular points of cone angle π which is otherwise flat, curves
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of minimal length that enclose both δ-neighborhoods converge to a straight segment
between the singular points.

To prove our result we first reduce its statement to the case of simply connected
spindle orbifolds (see Section 2). Using the curve-shortening flow we are able
to prove the existence of an embedded geodesic in the regular part of any simply
connected spindle orbifold and to apply ideas from Bangert’s proof and Frank’s
result in this case. Our proof relies on the observation that embedded loops in the
regular part that evolve under the curve-shortening flow either stay in the regular
part forever, or collapse into a singular point in finite time (see Section 4). The
possibility of a limit curve being not entirely contained in the regular part is then
excluded by topological arguments (see Proposition 4.5).

For spindle orbifolds with S1-symmetry, more is known, namely the existence
of infinitely many distinct (even modulo isometries) closed geodesics in the regular
part [Borzellino et al. 2007]. For general spindle orbifolds (and also in other cases)
this is not known to be true. For some 2-orbifolds, e.g., for a sphere with three
singular points of order 2, even the existence of a single closed geodesic in the
regular part does not seem to be rigorously proven, yet. In Section 6 we will add
some more comments on the following questions.

Question 1. Does there always exist a closed geodesic in the regular part of a
2-orbifold with isolated singularities? When do there exist infinitely many?

Note that there are examples of surfaces with more general conical singularities
that do not support infinitely many closed geodesics [Borzellino et al. 2007].

2. Preliminaries

2A. Orbifolds. Recall that a length space is a metric space in which the distance
of any two points can be realized as the infimum of the lengths of all rectifiable
paths connecting these points [Burago et al. 2001]. A Riemannian orbifold can be
defined as follows [Lange 2018b].

Definition 2.1. An n-dimensional Riemannian orbifold O is a length space such
that for each point x ∈O, there exists a neighborhood U of x in O, an n-dimensional
Riemannian manifold M and a finite group G acting by isometries on M such that
U and M/G are isometric.

Behind the above definition lies the fact that an effective isometric action of a
finite group on a simply connected Riemannian manifold can be recovered from
the corresponding metric quotient. In the case of spheres this is proven in [Swartz
2002]; the general case, see [Lange 2018b, Corollary 3.10], can be deduced from
it. In particular, the underlying topological space of a Riemannian orbifold in this
sense admits a smooth orbifold structure and a compatible Riemannian structure in
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the usual sense (see [Borzellino 1992; Bridson and Haefliger 1999; Guruprasad and
Haefliger 2006]) that in turn induces the metric. For a point x on a Riemannian
orbifold the linearized isotropy group of a preimage of x in a Riemannian manifold
chart is uniquely determined up to conjugation. Its conjugacy class in O(n) is
denoted as Gx and is called the local group of O at x . The points with trivial local
group form the regular part of O, which is a Riemannian manifold. All other points
are called singular. We will be particularly concerned with 2-orbifolds all of whose
singular points are isolated. In this case all local groups are cyclic and we refer to
their orders as the orders of the singular points.

We are interested in (orbifold) geodesics defined in the following way.

Definition 2.2. An (orbifold) geodesic on a Riemannian orbifold is a continuous
path that can locally be lifted to a geodesic in a Riemannian manifold chart. A
closed (orbifold) geodesic is a continuous loop that is an (orbifold) geodesic on
each subinterval.

In the following, by a (closed) geodesic we always mean a (closed) orbifold
geodesic. A geodesic that encounters an isolated singularity at an interior point is
not locally length-minimizing [Borzellino 1992, Theorem 3]. On a 2-orbifold such
a geodesic is either reflected or goes straight through the singular point depending
on whether the order of the singular point is even or odd. We say that two geodesics
are geometrically distinct if their geometric trajectories differ. Given a closed
geodesic c, the iterations cm(t) := c(mt), where m ∈ N, form a whole tower of
geometrically equivalent closed geodesics. In the following, by infinitely many
closed geodesics we always mean infinitely many geometrically distinct closed
geodesics of positive length.

We need the following concept; see [Lange 2018b] for a metric definition.

Definition 2.3. A covering orbifold or orbi-cover of a Riemannian orbifold O is
a Riemannian orbifold O′ together with a surjective map ϕ : O′→ O such that
each point x ∈O has a neighborhood U isometric to some M/G for which each
connected component Ui of ϕ−1(U ) is isometric to M/Gi for some subgroup
Gi < G such that the isometries respect the projections.

An orbifold is called simply connected, if it does not admit a nontrivial orbi-cover.
An orbifold is called good (or developable) if it is covered by a manifold; otherwise
it is called bad [Thurston 1980]. The only bad 2-orbifolds are depicted in Figure 1;
see [Scott 1983, Theorem 2.3]. In fact, every compact good 2-orbifold is very good,
meaning that it is finitely covered by a (necessarily compact) manifold [Scott 1983,
Theorem 2.5]. Clearly, if an orbifold is finitely covered by an orbifold with infinitely
many closed geodesics, then it has itself infinitely many closed geodesics. Since
all Riemannian surfaces have infinitely many closed geodesics (see, e.g., [Berger
2010, XII.5] for a survey), in view of proving our main result it suffices to treat
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p q

Figure 1. A (p, q)-spindle orbifold S2(p, q), i.e., a 2-orbifold with at
most two isolated singularities of order p and q (with p or q perhaps
being 1). Spindle orbifolds are also known as footballs and (p, 1)-spindle
orbifolds as teardrops. The orbifolds in the picture are bad if and only if
p 6= q and simply connected as orbifolds if and only if p and q are coprime.

simply connected spindle orbifolds, i.e., spindle orbifolds S2(p, q) with p and q
coprime (see Figure 1).

2B. Orbifold loop spaces. We would like to apply Morse theory and homological
methods to find closed geodesics on orbifolds. To this end a notion of a loop space
is needed. Such a notion is defined in [Guruprasad and Haefliger 2006]. To any
compact Riemannian orbifold O a free loop space 3O is associated and endowed
with a natural structure of a complete Riemannian Hilbert orbifold. We sketch this
construction in Appendix A.

Here we give an alternative description of 3O in the case in which O has only
isolated singularities. So in this section O will always be a Riemannian orbifold
with only isolated singularities. Let γ be a loop on O. In the following we always
assume that such a loop γ : S1

→ O is of class H 1, i.e., that it locally lifts to
absolutely continuous curves on manifold charts with square-integrable velocities.

Definition 2.4. A development of γ is a loop γ̂ on a Riemannian manifold M
together with a map M→O which is locally an orbi-covering and which projects
γ̂ to γ (respecting the parametrizations). The development is called geodesic if γ̂
is a geodesic on M.

Every loop on O can be locally lifted to Riemannian manifold charts. A de-
velopment of a loop γ on O can be obtained by gluing together the Riemannian
manifold charts that support the local lifts. In particular, this yields a loop after
having carried out the identifications. Two developments (M1, γ̂1) and (M2, γ̂2) are
said to be equivalent if there exist neighborhoods M ′1 of γ̂1 in M1 and M ′2 of γ̂2 in
M2 and an isometry M ′1→ M ′2 that maps γ̂1 to γ̂2 (respecting the parametrizations).

Definition 2.5. An orbifold loop is a loop γ on O together with an equivalence
class of developments of γ . The orbifold loop is called geodesic if the developments
are geodesic.

The notion of a geodesic orbifold loop is equivalent to the notion of a closed
orbifold geodesic. Every geodesic orbifold loop projects to a closed orbifold
geodesic in the sense of Definition 2.2 and every closed orbifold geodesic gives
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rise to a unique equivalence class of geodesic developments. However, viewing
a closed geodesic as a geodesic orbifold loop shows that it can be assigned local
invariants like the index or the nullity as in the manifold case. Moreover, as a set the
free loop space 3O is the collection of all orbifold loops and we can even recover
its metric structure using the concept of developments. Indeed, let D = (M, γ̂ )
be a development defining an orbifold loop γ . The free loop space 3M has a
natural structure of a Riemannian Hilbert manifold [Klingenberg 1978] and we
have γ̂ ∈3M. A loop γ̂ ′ ∈3M can be regarded as an orbifold loop represented
by the development (M, γ̂ ′). If γ is not a constant loop at a singular point of O,
then we can choose a neighborhood UD of γ̂ in 3M such that any pair of distinct
loops γ̂ ′, γ̂ ′′ ∈UD projects to distinct loops on O and hence corresponds to distinct
orbifold loops. The UD obtained in this way patch together to a Riemannian Hilbert
manifold 3regO by identifying elements that correspond to the same orbifold loop.
Indeed, if distinct γ̂ ′1 ∈ UD1 and γ̂ ′2 ∈ UD2 are identified, then, by the definition
of the equivalence relation on developments, a whole open neighborhood of γ̂ ′1
in UD1 is isometrically identified with an open neighborhood of γ̂ ′2 in UD2 . The
metric completion of 3regO is the Riemannian Hilbert orbifold 3O introduced in
[Guruprasad and Haefliger 2006]; see Appendix A, and the singular set 3O\3regO
corresponds to the constant loops at the singular points of O.

Given an atlas of O, the free loop space 3O can be written as a quotient of a
Riemannian Hilbert manifold �X (by a groupoid), where X is the disjoint union of
the manifold charts of the atlas, and this description provides local manifold charts
for 3O [Guruprasad and Haefliger 2006]; see Appendix A. On 3O, the energy
function E is defined and its critical points correspond to the closed geodesics.
Since all singular points of 3O have zero energy, an explicit knowledge of their
structure will not be relevant for our argument (see the Appendix). For some κ > 0
we write3κ :=3κO :=3O∩E−1([0, κ)) and for a geodesic loop c with E(c)= κ
we set 3(c) :=3O(c) :=3κO. The spaces �X and 3O admit finite-dimensional
approximations much as in the manifold case, see Proposition A.1.

From our description of 3O it is clear that the index ind(c) and the nullity ν(c)
of a nontrivial orbifold geodesic can be defined as in the manifold case. Moreover,
it shows that the statements used in [Gromoll and Meyer 1969] on the index and
the nullity of iterated geodesics and on local loop space homology remain valid in
the following form since their proofs involve only local arguments. Note that there
is a natural S1-action on 3O given by reparametrization.

Lemma 2.6. For a Riemannian orbifold with isolated singularities and a nontrivial
orbifold geodesic c on it, the following statements hold true:

(i) Either ind(cm) = 0 for all m or ind(cm) grows linearly in m [Gromoll and
Meyer 1969, Lemma 1].
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(ii) There are positive integers k1, . . . , ks and a sequence mi
j ∈ N, with i > 0

and j = 1, . . . , s, such that the numbers mi
j k j are mutually distinct, m1

j = 1,
{mi

j k j } = N, and ν(cmi
j k j )= ν(ck j ) [Gromoll and Meyer 1969, Lemma 2].

(iii) There exists some k such that Hp(3(cm)∪ S1cm,3(cm))= 0 except possibly
for ind(cm)≤ p ≤ ind(cm)+ k [Gromoll and Meyer 1969, Corollary 1].

3. Homology generated by iterated geodesics

We will need the following slight generalizations of statements in [Bangert and
Klingenberg 1983]. Our proofs are essentially the same as those contained in that
paper. For convenience we summarize the arguments in the Appendix. Recall that
a geodesic c is called homologically invisible if H∗(3(c)∪ S1c,3(c))= 0.

Theorem 3.1 (cf. [Bangert and Klingenberg 1983, Theorem 3]). Let O be a compact
orbifold with isolated singularities and let c be a closed geodesic on O such that
ind(cm)= 0 for all m ∈N, i.e., c does not have conjugate points when defined on R.
Suppose c is neither homologically invisible nor an absolute minimum of E in its
free homotopy class. Then there exist infinitely many closed geodesics on O.

Note that if O is simply connected, then a nontrivial geodesic c is never an
absolute minimum in its free homotopy class.

Lemma 3.2 (cf. [Bangert and Klingenberg 1983, Lemma 2]). Let O be a compact
orbifold with isolated singularities and let {S1ci | i ∈N} be a sequence of pairwise
disjoint critical orbits such that the ci are not absolute minima of E in their free ho-
motopy classes. Suppose there exists p ∈N such that Hp(3(ci )∪ S1ci ,3(ci ))) 6= 0
for all i ∈ N. Then there exist infinitely many closed geodesics on O.

Note that the geodesics ci in the lemma do not need to be geometrically distinct.

4. Existence of simple closed geodesics

The curve-shortening flow can be used to prove the existence of a simple closed
geodesic on any Riemannian 2-sphere [Grayson 1989]. In this section we discuss
properties of the curve-shortening flow on Riemannian 2-orbifolds that allow us to
prove the existence of a separating geodesic on every simply connected Riemannian
spindle orbifold. Here a loop embedded in the regular part of a spindle orbifold
is called separating if each connected component of its complement contains at
most one singular point. Let us first recall some well-known properties of the curve-
shortening flow (see [Grayson 1989; Chou and Zhu 2001; Huisken and Polden
1999; Colding et al. 2015]). For a smoothly embedded curve γ = 00 : S1

→ M in a
closed Riemannian surface there exists a unique maximal smooth curve-shortening
flow 0t : S1

→ M for t ∈ [0, T ), T > 0, satisfying ∂0t/∂t = k N where k is the
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curvature of 0t and N is its normal vector, which moreover depends continuously
on the initial condition γ . This flow can be considered as the negative gradient flow
of the length functional. An important feature of the curve-shortening flow is that it
is a geometric flow meaning that the evolution of the geometric image of γ does
not depend on the initial parametrization. In the situation above, the curve 0t is
embedded for each t ∈ [0, T ). Moreover, if T is finite, then 0t converges to a point.
If T is infinite, then the curvature of 0t converges to zero in the C∞-norm and a
subsequence of 0t converges to a closed embedded geodesic on M. In particular, T
is finite if the length of γ is sufficiently small [Grayson 1989, Lemma 7.1]. If M is
not complete but the curvature is still bounded there is a single other alternative for
finite T , namely that points on γ do not have a limit on M for t→ T. In particular,
we see that the curve-shortening flow of an embedded curve in the regular part
of a compact 2-orbifold is (a priori) defined until the flow hits a singular point or
collapses to a point. In fact, if the 2-orbifold has only isolated singularities more is
true as will be discussed below. One possibility to analyze the local behavior of
a curve-shortening flow 0t : S1

→ M on a manifold at a space-time point (x, T ),
T <∞, is to blow up the flow at (x, T ) by a sequence of parabolic rescalings

((M, g), t)→ ((M, λ1g), λ2
i (t − T )+ T ), λi →∞,

where g denotes the Riemannian metric. Such a blow-up sequence subconverges to a
self-shrinking tangent flow of an embedded curve on Tx M (see [Colding et al. 2015])
which, according to a result of Abresch and Langer [1986], is either a self-shrinking
circle or a static straight line through the origin. In the first case 0t converges to x
as a “round point” and in the second case 0t is regular at (x, T ). Another feature
of the curve-shortening flow is that it satisfies the so-called avoidance principle,
meaning that two initially disjoint curves remain disjoint under the flow. This
is a consequence of the maximum principle. Moreover, by the strong maximum
principle for parabolic PDEs [Evans 1998, Theorem 7.1.12], it is impossible for a
closed curve to be disjoint from a (possibly noncompact) geodesic for t < t0 and to
touch it tangentially at t = t0.

The following statement is proven in [Grayson 1989, Corollary 1.7] and says
that the curve-shortening flow cannot spread out arbitrarily in finite time.

Lemma 4.1 [Grayson 1989]. If T <∞, then for every ε > 0 there exists t1 < T,
and an open set U in M such that U contains every 0t(S1), t1 < t < T, and U is
contained in the ε-neighborhood of each 0t(S1), t1 < t < T.

Now we analyze the evolution under the curve-shortening flow of a separating
loop on a simply connected spindle orbifold.

Lemma 4.2. Let O ∼= S2(p, q) be a Riemannian spindle orbifold, let γ be a sep-
arating loop on O and let 0 : S1

× [0, T )→ Oreg be the evolution of γ under the
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curve-shortening flow in the regular part of O. If 0 hits a singular point x of order
p > 2 in finite time T, then the flow converges to this point.

Proof. By Lemma 4.1 we can assume that there exists a point y 6= x on O which
is avoided by 0 such that each 0t separates x and y. If O has two singular points,
we choose y to be a singular point. The open subset O \ {y} of O admits a p-fold
manifold covering M with a cyclic group of deck transformations G of order p that
acts by rotations around the preimage x̂ of x in M. The preimages 0̂t of 0t(S1)

in M are embedded G-invariant loops (or loops after choosing a parametrization,
which does not make a difference for us since we are dealing with a geometric
flow) and are solutions of the curve-shortening flow. By parabolically blowing
up this flow at (x̂, T ) as discussed above, we obtain a G-invariant tangent flow.
Since p = |G|> 2, this tangent flow must be a circle and so 0̂t converges to x̂ , as,
by transversality, we would otherwise obtain a contradiction to the embeddedness
of the circles 0̂t for t < T. In particular, it follows that 0t converges to x in the
limit t→ T. �

Lemma 4.3. Let O∼= S2(p, q) be a simply connected Riemannian spindle orbifold,
let γ be a separating loop on O and let 0 : S1

× [0, T )→ Oreg be the maximal
evolution of γ under the curve-shortening flow in the regular part of O. Then the
curve γ either

(i) shrinks to a round point in the regular part of O in finite time T, or

(ii) collapses into a singular point of O in finite time T, or

(iii) T =∞ and γ stays in the regular part of O forever.

Note that the first case can only occur if O has at most one singular point.

Proof. We only have to exclude the case that 0 hits a singular point x of O in finite
time T <∞ without collapsing into this point. Suppose this were the case. By
Lemma 4.2 we can assume that the order p of x is even and that the flow does
not approach a singular point of odd order at time T. Since p and q are coprime
by assumption, the order q must be odd. We can assume that there exists a point
y 6= x on O such that the flow avoids a whole neighborhood of y, such that each 0t

separates x and y, and such that O \ {x, y} lies in the regular part of O. In fact, for
q > 1 we can choose y to be the singular point of odd order q, and otherwise we
can apply Lemma 4.1. As in the proof of Lemma 4.2 the open subset O \ {y} of O
admits a p-fold manifold covering M with a cyclic group of deck transformations
G of order p that acts by rotations around the preimage x̂ of x in M. Also, the
preimages 0̂t of 0t(S1) in M are embedded G-invariant circles (or loops after
choosing a parametrization) and are solutions of the curve-shortening flow. Since
0 avoids a neighborhood of y and since 0̂t does not converge to a point at time T,
the flow 0̂t can be extended to a flow 0̂ : S1

×[0, T ′)→ M with T < T ′. Now the
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fact that 0 hits x at time T implies by G-equivariance that the extended flow 0̂

develops a self-crossing at time T. This contradicts embeddedness and hence the
claim follows. �

Using compactness and the fact that the curvature converges to zero in infinite
time, the following lemma can be proven as in the manifold case [Grayson 1989,
Section 7].

Lemma 4.4. In the situation of Lemma 4.3(iii), the loop subconverges to a nontrivial
(orbifold) geodesic.

Note that the limit geodesic obtained in Lemma 4.4 is a priori not necessarily
contained in the regular part of O.

Proposition 4.5. On every simply connected Riemannian spindle orbifold O ∼=
S2(p, q) there exists a separating geodesic. In particular, there exists a closed
geodesic in the regular part of any spindle orbifold.

Remark 4.6. The first statement is optimal in the sense that there exist Riemannian
metrics on S2(p, q) all of whose geodesics are closed but with only one embedded
geodesic [Lange 2018a].

Proof. Choose distinct x, y ∈O such that O \ {x, y} is contained in the regular part
of O. We smoothly foliate O \{x, y} by circles separating x and y. Then, under the
curve-shortening flow, small circles near x flow to a point in finite time, and so do
small circles near y [Grayson 1989, Lemma 7.1]. However, the orientations of the
limiting points will be opposite in both cases. Hence, by continuous dependence
of the flow on the initial conditions there must be some circle γ in the middle that
does not flow to a point in finite time, but instead stays in the regular part of O
forever by Lemma 4.2. By Lemma 4.4 this circle subconverges to some nontrivial
orbifold geodesic c.

It remains to show that c is contained in the regular part. In fact, in this case c is
embedded and separating as a limit of embedded and separating loops. Let γi be
a subsequence of the curve-shortening flow 0t that converges to c. Suppose that
c hits a singular point, say x of order p. We can assume that the γi and c avoid a
neighborhood of a point y′ on O. The open subset O \ {y′} of O admits a p-fold
orbi-cover Ô with a cyclic group of deck-transformations G of order p that acts
by rotations around the preimage x̂ of x in Ô. Let si ∈ S1 be a sequence such that
γi (si ) converges to some c(s) 6= x , s ∈ S1. The restrictions of γi to S1

\ {si } and of
c to S1

\ {s} can be lifted to embedded curves γ̂ j
i : S

1
\ {si } → Ôreg, j = 1, . . . , p,

and to geodesics ĉ j
: S1
\ {s} → Ô, j = 1, . . . , p, that are permuted by the deck

transformation group G. We can choose the si , s and the j-numbering in such a
way that γ̂ j

i converges to ĉ j. Note that for fixed i the γ̂ j
i have disjoint images in Ô

since γi is embedded in O. For p> 2 this yields a contradiction since the geodesics
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ĉ j intersect transversally at x̂ in this case. Suppose that p = 2. In this case O is
rotated by π around x̂ by the deck transformation group and the orbifold geodesic c
is reflected at the singular point x on O. The only way for c to reverse its direction is
by being reflected at a singular point of even order. Hence, by periodicity it has to be
reflected at singular points of even order twice during a single period. Since p and q
are coprime by assumption, this second reflection also has to occur at x . Moreover,
this second reflection has to occur from a different direction, because otherwise
there would have to be an additional encounter with the singularity of even order in
between. Therefore, the ĉ j have transverse self-intersections at x̂ . Now, in this case
the transversality argument from the case p ≥ 3 yields a contradiction since the γ̂ j

i
are embedded and hence the claim follows. �

5. Proof of the main result

As seen in Section 2A, it is sufficient to prove our main result for simply connected
spindle orbifolds. Given the results from the preceding section, in this case a proof
can be given similarly as in [Bangert 1993] in the case of a 2-sphere:

5A. Outline of the proof. Let O ∼= S2(p, q) be a simply connected Riemannian
spindle orbifold. By Proposition 4.5 there exists a separating geodesic,

c : S1
= R/Z→O.

Suppose the following two conditions are satisfied:

(i) For every geodesic d : [0,∞)→O with initial point d(0) on c(S1) there exists
t > 0 with d(t) ∈ c(S1).

(ii) When we consider c as defined on R there exists a pair of conjugate points
of c.

Note that the second statement is equivalent to the condition that for every t0 ∈ R

there exists t1 > t0 such that c(t0) and c(t1) are conjugate points of c [Lytchak
2009, Corollary 1.3]. In this case Birkhoff’s annulus map Bc can be defined on the
closed annulus S1

×[0, π] as follows (see [Bangert 1993; Franks 1992; Birkhoff
1927, VI.10]). For t ∈ S1 and α ∈ (0, π), consider a geodesic γ starting at c(t)
in a direction that forms an angle of α with ċ(t). Condition (i) guarantees the
existence of some time t2 at which γ returns to an encounter with c for the second
time, say at c(t ′). Then γ̇ (t2) and c(t ′) enclose some angle α′ ∈ (0, π) and one sets
Bc(t, α)= (t ′, α′). Moreover, second conjugate points can be used to extend the
map Bc to all of S1

× [0, π] in a continuous way. The map Bc is isotopic to the
identity and preserves a canonical area measure related to the Liouville measure on
the unit tangent bundle of S2 which is invariant under the geodesic flow. Moreover,
the restrictions of Bc to the two boundary components are inverse to each other.
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In this case the work of Franks [1992] implies that Birkhoff’s annulus map has
infinitely many periodic points (see [Franks 1992, Theorem 4.1]) and these points
correspond to closed geodesics on O.

In the following we show that the existence of infinitely many geodesics can still
be shown if Birkhoff’s annulus map cannot be defined.

5B. Simple closed geodesics without conjugate points.

Proposition 5.1. Suppose on a Riemannian spindle orbifold O ∼= S2(p, q) there
exists a separating geodesic c without conjugate points. Then there exist infinitely
many closed geodesics.

Proof. The proof works similarly to the proof of [Bangert 1993, Theorem 1]. We
choose Riemannian manifold charts X0=Oreg, Xx , X y of O where O\{x, y}⊂Oreg

and where Xx and X y cover O \ {y} and O \ {x}, respectively. Moreover, we
choose finite-dimensional approximations (see Proposition A.1) �=�κX (k) and
P =3Oκ(k) of �κX and 3Oκ containing S1c. Since c is separating, there exists a
tubular neighborhood V of c(S1) in the regular part of O which is homeomorphic
to an annulus. For every ε > 0 we let U (V, ε) denote the set of γ ∈ P which
have energy E(γ ) < E(c)+ ε and whose projections to O lie in V and are freely
homotopic to c in V. Since we are looking for infinitely many closed geodesics
we may assume that the only closed geodesics freely homotopic to c in V are
those in S1c. Moreover, we can choose V so small that every γ ∈ U (V, ε) with
E(γ ) < E(c) is disjoint from c(S1). This follows from the assumption that c
does not have conjugate points and the Gauss lemma, see the proof of [Bangert
1993, Theorem 1]. If we choose arbitrarily small V and ε, the sets U (V, ε) form a
fundamental system of neighborhoods of S1c in P. Therefore, we have that either
(see [Bangert 1993, Theorem 1])

(i) c is a local minimum of E , or

(ii) c can be approximated by curves γ ∈ P with E(γ ) < E(c) from both sides, or

(iii) c can be approximated by curves γ ∈ P with E(γ ) < E(c) precisely from one
side.

In the second case it follows as in [Bangert 1993, Theorem 1] that

H1(3(c)∪ S1c,3(c)) 6= 0

and this implies the existence of infinitely many closed geodesics by Theorem 3.1.
In the first or third cases, let D be a disk bounded by c(S1) such that c cannot

be approximated by closed curves in D with E(γ ) < E(c) and suppose that x ∈ D
has order p. The disk D is p-foldly covered by a disk D̂ in Xx . A parametrization
ĉ of the boundary of D̂ by arclength is a geodesic that covers c a total of p times.
For some sufficiently large κm we can choose finite-dimensional approximations
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�m of �κm
X containing a homotopy in D̂ from ĉm to a point curve. As above we

choose an annulus V ⊃ c(S1) so small that S1c are the only closed geodesics freely
homotopic to c in V. Moreover, we may assume that every γ ∈ U (V, ε) which
lies in the component V0 of V \ c(S1) contained in D has energy E(γ ) ≥ E(c).
Hence we have E(γ ) > E(c) for all γ ∈U (V, ε) \ S1c which are contained in D,
because otherwise such a γ with E(γ )= E(c) would be a closed geodesic freely
homotopic to c. The analogous statement also holds for cm [Bangert 1993, page 5].
In particular, the analogous statement also holds for ĉm

∈�m . In this very situation,
min-max methods applied to homotopies in D̂ from ĉm to a point curve are used
in the proof of [Bangert 1993, Theorem 1] to show the existence of a sequence
of closed geodesics d̂m in D̂ such that E(d̂m) tends to infinity and such that the
local groups H1(�X (d̂m)∪ S1c, �X (d̂m)) do not vanish. The gradient of the energy
functional restricted to the finite-dimensional approximation is used to deform the
homotopies, and so the fact that D̂ is bounded by a geodesic guarantees that the
construction remains in D̂. The resulting geodesics project to (orbifold) geodesics
dm in D with E(dm) tending to infinity and with

H1(3(dm)∪ S1c,3(dm))= H1(�X (d̂m)∪ S1c, �X (d̂m)) 6= 0.

Therefore there exist infinitely many closed geodesics on O by Lemma 3.2. �

5C. The non-Birkhoff case. In this section we study the case of a Riemannian
spindle orbifold with a separating geodesic for which the corresponding Birkhoff
map is not defined. We reduce this case to Proposition 5.1. Finally we summarize
why this implies our main result.

The following lemma is a special case of [Bangert 1993, Lemma 2].

Lemma 5.2. Suppose c is a separating geodesic with conjugate points on a Rie-
mannian spindle orbifold. Then c can be approximated from either side by closed
curves γ which are disjoint from c and satisfy E(γ ) < E(c). In particular, c can
be approximated from either side by shorter, disjoint curves.

Now we can prove the following proposition.

Proposition 5.3. Suppose c is a separating geodesic with conjugate points on a
simply connected Riemannian spindle orbifold O ∼= S2(p, q) and d : (0,∞)→O
is a geodesic disjoint from c. Then there exist infinitely many closed geodesics.

Proof. The proof is similar to the proof of [Bangert 1993, Theorem 2]. However,
we use the curve-shortening flow instead of Birkhoff’s curve shortening process
and simplify the second part of the argument.

Let D be the component of O \ c(S1) that contains d(R). Since c is separating
by assumption, there exists an open neighborhood V of the closure of D in O
that admits a Riemannian manifold chart V̂. The geodesic d lifts to a geodesic d̂
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on V̂ and the geodesic c is covered p times by a geodesic ĉ disjoint from d̂. In
[Bangert 1993, Theorem 2] it is proven that the closure of every limit geodesic d̄
of d̂ , that is, every geodesic of the form d̄ : R→ V̂, d̄(t)= expp(tv) where (p, v)
is an accumulation point of (d̂, d̂ ′) in T V̂, is disjoint from ĉ(S1). In particular, the
closure of the image d̃ in V of such a limit geodesic of d̂ is disjoint from c(S1). Let
U1 be the component of D \ closure(d̃(R)) that contains c(S1) in its closure. Since
the closure of d̃(R) is disjoint from c(S1), by Lemma 5.2 there is an embedded
loop γ1 in U1 that is freely homotopic in the regular part of U1 to c and shorter
than c. We claim that the evolution 0t of γ1 under the curve-shortening flow does
not leave U1. Otherwise there would exist some t1 minimal with the property that
0t1(S

1) is not contained in U1. Let x ∈ 0t1(S
1)∩U C

1 . By the avoidance principle
applied to c and γ1 the only possibility could be that x is contained in the closure
of d̃(R). Since γ1 is noncontractible in U1 and since d̃(R) is not a point, the point
x is regular by Lemma 4.2 and so is the loop 0t1 by Lemma 4.3. Let d0 : R→O
be the geodesic which is tangent to 0t1 at x . By minimality of t1 the geodesic d0 is
contained in the closure of d̃(R). In particular, the flow of γ1 and the (static) flow of
d0 touch at (x, t1) for the first time. This is impossible by the maximum principle
(see Section 4) and hence the evolution of γ1 stays in U1 as claimed. Moreover, since
γ1 is noncontractible in U1 by assumption, it evolves in the regular part forever, i.e.,
we are in case (iii) of Lemma 4.2. By Lemma 4.4 the flow subconverges to a simple
closed geodesic d̃1 contained in the closure of U1. The proof of Proposition 4.5
shows that this limit geodesic actually lies in the regular part of O. It is distinct
from c since γ1 is shorter than c and the curve-shortening flow does not increase
the arclength. By the choice of γ1 the geodesic d̃1 is separating and so we are done
in this case by Proposition 5.1 if d̃1 does not have conjugate points. Otherwise
we define U2 to be the component of D \ d̃1(S1) whose closure contains c. This
component is bounded by two geodesics with conjugate points and contained in the
regular part of O by the construction of d̃1. Moreover, it contains a noncontractible
embedded loop γ2 which is shorter than d̃1 by Lemma 5.2 and hence also shorter
than c. Again, letting γ2 evolve under the curve-shortening flow, the same argument
as above yields a separating limit geodesic d̃2 in U 2 which is now distinct from
both c and d̃1 and hence contained in U2. This process can be iterated. It either
yields infinitely many (simple) closed geodesics on O with conjugate points or
terminates at a separating geodesic without conjugate points which in turn implies
the existence of infinitely many closed geodesics by Proposition 5.1. �

Together with Section 5A, we see Propositions 5.3 and 5.1 imply the following:

Proposition 5.4. Let c be a separating geodesic on a Riemannian spindle orbifold
O ∼= S2(p, q) for which Birkhoff’s annulus map Bc is not defined. Then there exist
infinitely many closed geodesics.
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Recall from Section 5A that Frank’s work implies the existence of infinitely
many closed geodesics in the case in which Birkhoff’s annulus map Bc can be
defined. Therefore, in any case there are infinitely many closed geodesics on a
Riemannian spindle orbifold. By the remark at the end of Section 2A our main
result, Theorem 1, follows.

6. Closed geodesics in the regular part

In this section we sketch some ideas and make some speculations on the question,
posed in the introduction, of when there exists one, or even infinitely many closed
geodesics in the regular part of a Riemannian 2-orbifold O with isolated singularities.

Let us begin with a general remark. In Section 4 we have shown that an em-
bedded loop in the regular part of a simply connected spindle orbifold cannot
flow into a singular point in finite time under the curve-shortening flow unless it
collapses into this point entirely. The simply-connectedness assumption was used
to handle the case of singular points of order 2 (see proof of Lemma 4.3). Using a
local noncollapsing result of Brian White this avoidance of singularities principle
can actually be shown to be true for embedded loops in the regular part of any
Riemannian 2-orbifold. More precisely, if such a loop were to flow into a singular
point in finite time, then we could locally lift the flow to a manifold chart and look
at a tangent flow of a blow-up limit at the singular space-time point in question as
in the proof of Lemma 4.2. Recall from that argument that such a tangent flow can
only either be a self-shrinking circle or a static line, and that we used equivariance
with respect to the deck transformation group in case of a singular point of order at
least 3 in order to exclude the latter case. In case of a singular point of order 2 the
blow-up sequence could in principle converge to a line, but this line would have
to have multiplicity 2, i.e., two strands of the lifted flow that are permuted by the
deck transformation group would converge to it in the blow-up limit. However, this
possibility is ruled out by the noncollapsing result of White [2000, Theorem 9.1]
(see also [White 2015, Section 7] for more details).

The discussed argument not only works for embedded loops, but also for loops
that stay δ-embedded in the regular part under the curve-shortening flow for some
δ > 0 as long as it remains in the regular part. Here a loop is called δ-embedded if its
restriction to each subinterval of length δ with respect to arclength parametrization
is embedded. If the 2-orbifold O has at least 4 singular points, then one can
find infinitely many loops in the regular part with this property that are pairwise
homotopically different in the regular part. This is because the property of having
a “minimal number of transverse self-intersections” in one’s homotopy class is
preserved under the curve-shortening flow. Each such loop subconverges to a closed
(orbifold) geodesic on O and one is left to decide whether the limits lie in the
regular part. If all singular points have orders at least 3, this is the case by the
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same argument as in the proof of Proposition 4.5, and so there exist infinitely many
distinct closed geodesics in the regular part in this case. We believe that the same
conclusion can be drawn in the presence of singular points of order 2 by arguments
similar to the one in the proof of Proposition 4.5. For instance, if a limit geodesic
hit a singular point of order 2, then, by the above arguments, it would have to
oscillate between two singular points of order 2 and avoid all other singularities.
By choosing the initial loops in a clever way, this limit behavior could possibly be
ruled out in advance.

In the case that O has 3 singular points one should still be able to infer the
existence of infinitely many closed geodesics if the orders of the singular points are
sufficiently large by observing that the avoidance of singularities principle discussed
above still holds for loops that “wind around a singular point of order 2n up to
n−1 times”. Otherwise, one might be able to use the existence of a finite manifold
cover in this case to find at least one closed geodesic in the regular part.

In the case of (simply connected) spindle orbifolds the above arguments break
down and we do not know how to find infinitely many closed geodesics in the
regular part. There might also exist metrics without this property.

Appendix A: Orbifold loop spaces

We summarize the description of an orbifold loop space from [Guruprasad and
Haefliger 2006]. For a Riemannian orbifold O let X be the disjoint union of
Riemannian manifold charts covering O and let G be the small category with the
set of objects X and arrows being the germs of change of charts of X . Then (G, X)
with the usual topology of germs on G is an étale groupoid and O can be represented
as a quotient O = G \ X [Guruprasad and Haefliger 2006, Section 2.1.4]. A G-loop
based at x ∈ X over a subdivision 0= t0 < t1 · · ·< tk = 1 of the interval [0, 1] is a
sequence c = (g0, c1, g1, . . . , ck, gk) where:

(i) ci : [ti−1, ti ] → X is of class H 1, i.e., ci is absolutely continuous and the
velocity functions t 7→ |ċi (t)| are square integrable.

(ii) gi is an element of G such that α(gi ) = ci+1(ti ) for i = 0, 1, . . . , k − 1,
ω(gi )= ci (ti ) for i = 1, . . . , k and ω(g0)= α(gk)= x . Here α(g) and ω(g)
denote the source and the target of g ∈ G; see [Guruprasad and Haefliger 2006,
Section 2.1.4].

A G-loop is called geodesic if all the ci are geodesics and their velocities match up
at the break points ti via the gi . A geodesic G-loop gives rise to a closed geodesic on
O in the sense of Definition 2.2. The space �x is defined as the set of equivalence
classes of G-loops based at x under the equivalence relation generated by the
following operations [Guruprasad and Haefliger 2006, Sections 2.3.2 and 3.3.2]:
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(i) Given a G-loop c = (g0, c1, g1, . . . , ck, gk) over the subdivision

0= t0 < · · ·< tk = 1,

we can add a subdivision point t ′ ∈ (ti−1, ti ) together with the unit element
g′ = 1ci (t ′) to get a new sequence, replacing ci in c by c′i , g′, c′′i , where c′i and
c′′i are the restrictions of ci to the intervals [ti−1, t ′] and [t ′, ti ] and where 1y ,
y ∈ X is the germ of the identity map at y.

(ii) Replace a G-loop c by a new loop c′ = (g′0, c′1, g′1, . . . , c′k, g′k) over the same
subdivision as follows: for each i = 1, . . . , k choose H 1-maps

hi : [ti−1, ti ] → G

such that α(hi (t))= ci (t), and define c′i : t 7→ω(hi (t)), g′i = hi (ti )gi hi+1(ti )−1

for i = 1, . . . , k− 1, g′0 = g0h1(0)−1 and g′k = hk(1)gk .

The space �X is defined to be �X =
⋃

x∈X �x . It admits a natural structure of
a Riemannian Hilbert manifold [Guruprasad and Haefliger 2006, Section 3.3.2].
A G-loop c gives rise to a development (M, γ̂ ) in the sense of Definition 2.4. A
neighborhood of the equivalence class of c in �X is isometric to a neighborhood of
γ̂ in 3M. If O is compact, then �X is complete with respect to the induced metric
(see the proof of [Klingenberg 1978, Theorem 1.4.5]). An energy function can be
defined on �X whose critical points correspond to geodesic G-loops [Guruprasad
and Haefliger 2006, Section 3.4.1]. The groupoid G acts isometrically on the left
on�X . If [c] ∈�X is represented by the G-loop c= (g0, c1, g1, . . . , ck, gk) based at
x and g is an element of G with α(g)= x and ω(g)= y, then g[c] is represented by

gc := (gg0, c1, g1, . . . , ck, gk g−1)

[Guruprasad and Haefliger 2006, Section 2.3.3]. The quotient |3O| = G \�X is
called the free loop space of O. The quotient map �X → G \�X induces a natural
structure of a Riemannian Hilbert orbifold on |3O| denoted as 3O [Guruprasad
and Haefliger 2006, Section 3.3.4]. Since �X is complete as a metric space, so is
3O. The space3(Oreg) is naturally a subset of3O and coincides with the ordinary
loop space of Oreg as a Riemannian manifold; see [Klingenberg 1978]. If O has only
isolated singularities, then the only elements of �X with nontrivial G-isotropy are
the loops that project to a singular point of O. In this case G-equivalence classes of
G-loops correspond to equivalence classes of developments discussed in Section 2B
and the regular part of 3O is isometric to the Riemannian Hilbert manifold 3regO
constructed in Section 2B. In particular, 3O is the metric completion of 3regO, as
3regO is dense in the complete metric space 3O.

As in the manifold case, the spaces

�κX =�X ∩ E−1([0, κ)) and 3Oκ
=3Oκ

∩ E−1([0, κ))

admit finite-dimensional approximations [Guruprasad and Haefliger 2006, v.1].
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Proposition A.1 (finite-dimensional approximation). Let O be a compact orbifold
and let κ ≥ 0 be given.

(i) There exist ε > 0 and a big enough k such that every element of �κX can be
represented by a G-path c = (g0, c1, g1, . . . , ck, gk) defined over the subdivi-
sion 0= t0 < t1 < · · ·< tk = 1, where ti = i/k, and each ci (ti−1) is the center
of a convex open geodesic ball of radius ε containing the image of ci .

(ii) The space�κX retracts by energy-nonincreasing deformation onto the subspace
�κX (k) whose elements are represented by G-loops as above for which each ci

is a geodesic segment.

(iii) The restrictions of the energy function to �κX and to �κX (k) have the same
critical points, and at each such point the nullity and the index (which can still
be defined in this case [Guruprasad and Haefliger 2006]) are the same.

(iv) The orbifold 3Oκ
:= G \�κX retracts by energy-nonincreasing deformation

onto the finite-dimensional orbifold 3Oκ(k)= G \�κX (k).
For a Riemannian spindle orbifold O= S2(p, q) with a separating geodesic c we

can choose the following convenient charts. Let x, y ∈O be two points in different
components of the complement of c such that O \ {x, y} lies in the regular part
of O. We choose X to be the disjoint union of X0 =Oreg and Riemannian manifold
charts Xx and X y covering O \ {y} p-foldly and O \ {x} q-foldly, respectively.
With respect to this choice any G-loop based at z ∈ X0 that projects to Oreg can be
represented as (1z, c, 1z) for an H 1-loop in X0 with c(0)= z = c(1) and can thus
be identified with c. Any G-equivalence class of G-loops based at z ∈ Xx which is
represented by a G-loop that projects to O \ {y} can be represented as (1z, c, gz) for
an H 1-loop in X0 with c(0)= z and c(1)= gz and a deck transformation g ∈ Gx

of the covering Xx →O \ {y}.

Appendix B: Homology generated by iterated geodesics

In this section we explain why the proofs of [Bangert and Klingenberg 1983,
Theorem 3; Bangert and Klingenberg 1983, Lemma 2] also work in the slightly
more general situation of Theorem 3.1 and Lemma 3.2, which allow for isolated
orbifold singularities. The first step is to obtain [Bangert and Klingenberg 1983,
Theorem 1] in the following version. Here the map ψm

:3→3 sends a loop γ to
its m-fold iteration γ m.

Theorem B.1. Let 3 be the free loop space of a compact Riemannian orbifold O
with isolated singularities. For some κ > 0 let [g] be a class in πp(|3|, |3

κ
|). Then

[gm
] := [ψm

◦ g] ∈ πp(|3|, |3
κm2
|) is trivial for almost all m ∈ N.

In the manifold case the idea of the proof is the following. Given a homotopy
h : [a, b]→3, then hm

:=ψm
◦h is a naturally associated homotopy from hm(a) to
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hm(b). One can replace this homotopy, which pulls the m loops of hm(a) to hm(b)
as a whole, by another homotopy hm : [a, b]→3 from hm(a)= hm(a) to hm(b)=
hm(b) that pulls the m loops from hm(a) to hm(b) successively. The advantage of the
new homotopy over the old one is that the energy of hm(t) depends only on h(a) and
h(b) in the limit of large m and can thus be bounded appropriately. This construction
can be applied fiberwise to a map g : (I p, ∂ I p)→ (|3|, |3κ |) with respect to a
splitting I p

= I p−1
× I and yields a homotopic map with image in 3κ. The same

construction can be carried out in the case of an orbifold with isolated singularities.
In fact, all regularity issues occurring in [Bangert and Klingenberg 1983] can be
handled in the same way in this case since finite-dimensional approximations are
also available for orbifold loop spaces (see Proposition A.1) and since the whole
construction can be assumed to take place away from the energy zero level set, and
hence in the manifold part of 3.

The next step is to obtain a related result in homology as in [Bangert and
Klingenberg 1983, Theorem 2].

Theorem B.2. Let 3 be the free loop space of a compact Riemannian orbifold O
with isolated singularities. Let H be an element of H∗(3κ ,3κ), where κ > 0 and
3κ is the union of all components of 3 intersecting 3κ. Let K be a finite set of
integers k ≥ 2. Then there exists m ∈ N such that no k ∈ K divides m and such that
ψm
∗
(H) vanishes in H∗(3κ ,3κm2

).

The proof of [Bangert and Klingenberg 1983, Theorem 2] can be taken verbatim
as a proof for Theorem B.2. For sufficiently large m one can construct a homotopy
from a representative of ψm

∗
(H) to a representative in 3κm2

by using Theorem B.1
inductively.

Now we explain the proof of [Bangert and Klingenberg 1983, Theorem 3] and
why it generalizes to the setting of Theorem 3.1. Suppose that there exist only
finitely many towers of closed geodesics on O. Then all critical S1-orbits on 3 are
isolated. Moreover, by Lemma 2.6(iii), and perhaps after choosing a different c, one
can find p ∈N such that Hp(3(c)∪S1c,3(c)) 6= 0 and Hq(3(d)∪S1d,3(d))= 0
for every q > p and every closed geodesic d with ind(dm) = 0 for all m. In the
manifold case Lemma 2.6(ii) implies that there exist integers {k1, . . . , ks}, ki ≥ 2,
such that

ψm
∗
: Hp(3(c)∪ S1c,3(c))→ Hp(3(cm)∪ S1cm,3(cm))

is an isomorphism whenever none of the ki divides m (for details see the proof of
[Bangert and Klingenberg 1983, Theorem 2]). The same conclusion holds in the
present situation since its proof involves only local arguments. By Lemma 2.6(i) and
the assumption of only finitely many towers of closed geodesics, there exists some
A>0 such that every closed geodesic d with E(d)> A either satisfies ind(d)> p+1
or ind(dm)= 0 for all m. Hence one has Hp+1(3(d)∪ S1d,3(d))= 0 whenever
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d is a closed geodesic with E(d) > A. Therefore, as in [Bangert and Klingenberg
1983], standard arguments from Morse theory imply that

i∗ : Hp(3(cm)∪ S1cm,3(cm))→ Hp(3,3(cm))

is one-to-one if E(cm) > A. In particular, the composition

i∗ ◦ψm
∗
: Hp(3(c)∪ S1c,3(c))→ Hp(3,3(cm))

is one-to-one. Since c is not an absolute minimum in its free homotopy class, this
contradicts Theorem B.2.

Hence Theorem 3.1 holds. The proof of [Bangert and Klingenberg 1983,
Lemma 2] and Lemma 3.2 works as follows. Hp(3(ci )∪ S1ci ,3(ci )) 6= 0 implies
ind(ci ) ≤ p by Lemma 2.6(iii). Since for every closed geodesic c either ind(cm)

grows linearly with m or ind(cm) = 0 for all m, the ci can be iterates of a finite
number of prime closed geodesics only if ind(cm

i )= 0 for some i and all m. In this
case Theorem 3.1 proves the existence of infinitely many closed geodesics.
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