Pacific Journal of Mathematics

A CASSELMAN-SHALIKA FORMULA FOR THE GENERALIZED SHALIKA MODEL OF SO $4 n$

Miyu Suzuki

A CASSELMAN-SHALIKA FORMULA FOR THE GENERALIZED SHALIKA MODEL OF SO $\mathbf{S H}_{n}$

Miyu Suzuki

Abstract

We compute the explicit formula (sometimes called the Casselman-Shalika formula) of the generalized Shalika model for unramified principal series of p-adic $\mathrm{SO}_{4 n}$. The method mainly used is the Casselman-Shalika method, modified by Y. Hironaka and applied by Y. Sakellaridis to the case of the Shalika model of $\mathbf{G L}_{2 n}$.

1. Introduction

Let $G=\mathrm{SO}_{4 n}(F)$, the F-split $4 n$-dimensional special orthogonal group, where F is a nonarchimedean local field of characteristic 0 .

By P, we denote the Siegel parabolic subgroup of G and by N, the unipotent radical of P. Once we identify G with a subgroup of the isotropy group of the quadratic form defined by

$$
\xi=\left(\mathbb{1}_{2 n} \mathbb{1}_{2 n}\right)
$$

N is identified with the subgroup consisting of matrices of the form

$$
\left(\begin{array}{cc}
\mathbb{1}_{2 n} & X \\
& \mathbb{1}_{2 n}
\end{array}\right) \quad \text { with } X+{ }^{t} X=0_{2 n}
$$

Let M be the Levi component of P consisting of matrices of the form

$$
\left({ }^{A}{ }^{t} A^{-1}\right) \text { with } A \in \mathrm{GL}_{2 n}(F)
$$

Jiang and Qin [2007] introduced the notion of a generalized Shalika model for representations of G as follows. Take any nontrivial additive character ψ of F with conductor 0 . The expression

$$
\psi\left(\frac{1}{2} \operatorname{tr}(J X)\right)
$$

defines a character Ψ on N, where

$$
J=\left(\mathbb{1}_{n}{ }^{\mathbb{1}_{n}}\right) .
$$

MSC2010: primary 11F70, 22E50; secondary 11F85.
Keywords: Casselman-Shalika formula, Shalika models.

The stabilizer of this character in M is naturally isomorphic to $\mathrm{Sp}_{2 n}(F)$, the symplectic group with respect to J,

$$
\mathrm{Sp}_{2 n}(F)=\left\{\left.x \in \mathrm{GL}_{2 n}(F)\right|^{t} x J x=J\right\} .
$$

Define the subgroup (called the "generalized Shalika subgroup") H of P by

$$
H:=\operatorname{Stab}_{M}(\Psi) N \cong \operatorname{Sp}_{2 n}(F) \ltimes N
$$

and extend Ψ to a character of H, which will be again denoted by Ψ.
An admissible representation π of G is said to have a generalized Shalika model if there is a nonzero G-morphism from π to $\operatorname{Ind}_{H}^{G}(\Psi)$. Because of Frobenius reciprocity, this is equivalent to saying that there is a nonzero H-morphism from π to Ψ.

In this article, we will treat the case of unramified principal series $I(\chi)$ of G and determine a necessary and sufficient condition for $I(\chi)$ to have a generalized Shalika model. Moreover, we will give an explicit formula (a Casselman-Shalika formula) for the spherical vector in the generalized Shalika model of $I(\chi)$.

We will explain our results more precisely. Take any nonzero H-morphism Λ from $I(\chi)$ to Ψ. Let $K=\mathrm{SO}_{4 n}(\mathfrak{o})$, the standard maximal compact subgroup of G, where \mathfrak{o} is the ring of integers of F. There is a unique K-invariant vector ϕ_{K} in $I(\chi)$ which satisfies $\phi_{K}(1)=1$. Let $\Omega(g)=\Lambda\left(R_{g} \phi_{K}\right)$. Our goal is to give an explicit formula for this function Ω.

The Weyl group of G is denoted by W. The main result involves the subgroup Γ of W. Let $\Sigma=\left\{e_{i} \pm e_{j}, 1 \leq i, j \leq 2 n, i \neq j\right\}$ be the root system of G and $E_{i}=e_{2 i-1}+e_{2 i}$. Then, $\Phi=\left\{E_{i}-E_{j}, \pm E_{k}, 1 \leq i, j, k \leq n, i \neq j\right\}$ is a root system of type B_{n} and Γ is the Weyl group of Φ realized by the subgroup of W. For each root $\alpha \in \Sigma$, Casselman defined a certain constant $c_{\alpha}(\chi)$ (see [Casselman 1980, Section 3]). If $\beta \in \Phi$ is a short root, then β is in Σ and a_{β} is already defined. In this case, let $d_{\beta}(\chi)=\chi\left(a_{\beta}\right)$. If $\beta=E_{i}-E_{j}$ is a long root of Φ, define $a_{\beta}=a_{e_{2 i-1}-e_{2 j-1}}$. In this case, let

$$
d_{\beta}(\chi)=\chi\left(a_{\beta}\right) \frac{1-q^{-2} \chi\left(a_{-\beta}\right)}{1-q^{-2} \chi\left(a_{\beta}\right)}
$$

Our main result is as follows.
Theorem 1.1. For every $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$,

$$
\Omega\left(g_{\lambda}\right)=\prod_{\alpha>0} c_{\alpha}(\chi) \sum_{w \in \Gamma}(-1)^{l_{\Gamma}(w)}(w \chi)^{-1} \delta^{1 / 2}\left(h_{\lambda}\right) \prod_{\beta>0, w \beta<0} d_{\beta}(\chi)
$$

where $g_{\lambda}=\operatorname{diag}\left(\varpi^{\lambda_{1}}, \ldots, \varpi^{\lambda_{n}}, 1, \ldots, 1\right), h_{\lambda}=\operatorname{diag}\left(\varpi^{\lambda_{1}}, 1, \varpi^{\lambda_{2}}, 1, \ldots, \varpi^{\lambda_{n}}, 1\right) \in M$ and l_{Γ} is the length function of Γ.

Note that Ω satisfies $\Omega(h g k)=\Psi(h) \Omega(g)$ for every $h \in H, k \in K, g \in G$ and hence we only need to compute the value of Ω for representatives $\left\{g_{\lambda}\right\}$ of $H \backslash G / K$.

The method we will use is based on works of Casselman and Shalika (see [Casselman 1980; 1980]) and the outline of this paper is essentially the same as that of [Sakellaridis 2006], where an explicit formula for the Shalika model is given.

2. Preliminaries

Notation. Let F be a nonarchimedean local field of characteristic 0 . Let ϖ be a uniformizer, q the order of the residue field, \mathfrak{o} the ring of integers, and \mathfrak{p} the maximal ideal of F.

Let $G=\mathrm{SO}_{4 n}(F)$, the F-split $4 n$-dimensional special orthogonal group. The group G is identified with the subgroup of $\mathrm{SL}_{4 n}(F)$ consisting of matrices satisfying

$$
\operatorname{t} g \xi g=\xi, \quad \xi=\left(\mathbb{1}_{2 n} \mathbb{1}_{2 n}\right)
$$

Denote by $\operatorname{Mat}_{2 n}(F)$ the set of matrices of degree $2 n$.
By P, we denote the Siegel parabolic subgroup of G, consisting of matrices of the form

$$
\left(\begin{array}{cc}
x & \tag{2-1}\\
& { }^{t} x^{-1}
\end{array}\right)\left(\begin{array}{cc}
\mathbb{1}_{2 n} & X \\
& \mathbb{1}_{2 n}
\end{array}\right)
$$

with $x \in \mathrm{GL}_{2 n}(F)$ and $X \in \operatorname{Mat}_{2 n}(F), X+{ }^{t} X=0$. Let N be the unipotent radical of P and M the Levi component with Levi decomposition $P=M N$ as (2-1). We will frequently identify M with $\mathrm{GL}_{2 n}(F)$ without notice.

The Bruhat-Tits building of G is denoted by $\mathscr{B}(G)$. Each maximal F-split torus defines an apartment of $\mathscr{B}(G)$. We denote the split maximal torus consisting of diagonal matrices by T and corresponding apartment by $\mathscr{A}(T)$. Fix a special point $o \in \mathscr{A}(T)$ and identify $\mathscr{A}(T)$ with $2 n$-dimensional Euclid space with origin o.

Let Σ be the set of roots of G with respect to T. By taking differentials, we identify elements of Σ with linear functions on \mathfrak{t}, the Lie algebra of T. We will naturally identify \mathfrak{t} with an F-linear space of diagonal matrices:

$$
\mathfrak{t}=\left\{\operatorname{diag}\left(t_{1}, \ldots, t_{2 n},-t_{1}, \ldots,-t_{2 n}\right) \mid t_{1}, \ldots, t_{2 n} \in F\right\}
$$

For $1 \leq i \leq 2 n$, the element e_{i} of the dual space of \mathfrak{t} is defined by

$$
e_{i}: \operatorname{diag}\left(t_{1}, \ldots, t_{2 n},-t_{1}, \ldots,-t_{2 n}\right) \mapsto t_{i}
$$

Then, under identifications mentioned above, $\Sigma=\left\{e_{i} \pm e_{j} \mid 1 \leq i \neq j \leq 2 n\right\}$. Let $\Pi=\left\{\alpha_{i}:=e_{i}-e_{i+1} \mid 1 \leq i \leq 2 n-1, \alpha_{2 n}:=e_{2 n-1}+e_{2 n}\right\}$; this is a basis of the root system Σ. Elements of Σ are regarded as linear functions on $\mathscr{A}(T)$ and the set $\Sigma_{\text {aff }}$ of affine roots of G as a subset of affine functions on $\mathscr{A}(T)$:

$$
\Sigma_{\mathrm{aff}}=\{\alpha+m \mid \alpha \in \Sigma, m \in \mathbb{Z}\}
$$

Let $C=\{x \in \mathscr{A}(T) \mid 0<\alpha(x)<1$ for all $\alpha \in \Pi\}$ be an alcove of $\mathscr{B}(G)$. Let B be the Iwahori subgroup of G stabilizing C.

We denote the Weyl group of G by W. By $s_{i} \in W$, we denote the simple reflection attached to the simple root α_{i}.

Generalized Shalika model. Following [Jiang and Qin 2007], we define the generalized Shalika model for representations of G as follows. Let \mathcal{A} be the set of nonsingular skew-symmetric matrices of degree $2 n$. Take any nontrivial additive character ψ of F with conductor 0 and a skew-symmetric matrix $b \in \mathcal{A}$. The expression

$$
\psi\left(\frac{1}{2} \operatorname{tr}(b X)\right)
$$

defines a character Ψ^{b} on N. The stabilizer of this character in M is naturally isomorphic to $\mathrm{Sp}_{2 n}^{b}(F)$, the symplectic group with respect to b,

$$
\mathrm{Sp}_{2 n}^{b}(F)=\left\{\left.x \in \mathrm{GL}_{2 n}(F)\right|^{t} x b x=b\right\} .
$$

Form a group

$$
H^{b}:=\operatorname{Sp}_{2 n}^{b}(F) \ltimes N
$$

and extend Ψ^{b} to a character of H^{b}, which is again denoted by Ψ^{b}.
Let $J=\left({ }_{-\mathbb{1}_{n}} \mathbb{1}_{n}\right) \in \mathcal{A}$. We will simply denote Ψ^{b}, H^{b} and $\mathrm{Sp}_{2 n}^{b}(F)$ by Ψ (or sometimes by $\left.\Psi_{H}\right), H$ and $\mathrm{Sp}_{2 n}(F)$ when $b=J$.
Definition. Let (π, V) be an irreducible admissible representation of G. We say that π has a generalized Shalika model if $\operatorname{Hom}_{H^{b}}\left(\pi, \Psi^{b}\right)$ is nonzero for some $b \in \mathcal{A}$.

Nien proved the uniqueness of generalized Shalika models:
Theorem 2.1 [Nien 2010]. For any irreducible admissible representation π of $\mathrm{SO}_{4 n}(F)$ and $b \in \mathcal{A}$,

$$
\operatorname{dim} \operatorname{Hom}_{H^{b}}\left(\pi, \Psi^{b}\right) \leq 1
$$

We will consider the generalized Shalika model for unramified principal series of G. The Borel subgroup of G consisting of matrices in the form of (2-1) with upper triangular $x \in \mathrm{GL}_{2 n}(F)$ will be denoted by P_{ϕ}. Let $\chi=\left(|\cdot|^{z_{1}},|\cdot|^{z_{2}}\left|, \ldots,|\cdot|^{z_{2 n}}\right)\right.$ be an unramified character of P_{ϕ} (i.e., $\chi: \operatorname{diag}\left(t_{1}, \ldots, t_{2 n}, t_{1}^{-1}, \ldots, t_{2 n}^{-1}\right) \mapsto\left|t_{1}\right|^{z_{1}} \cdots\left|t_{2 n}\right|^{z_{2 n}}$) and $I(\chi)$ the smooth unramified principal series of G. The representation space of $I(\chi)$ is realized by the space of locally constant functions on G which satisfy

$$
f(p g)=\chi \delta^{1 / 2}(p) f(g)
$$

for every $p \in P_{\phi}, g \in G$, where $\delta=\left(|\cdot|^{4 n-2},|\cdot|^{4 n-4}, \ldots,|\cdot|^{2},|\cdot|^{0}\right)$ is the modular character of P_{ϕ}. Then G acts on this space by right translations R. There is a surjective map \mathscr{P}_{χ} to this space from $C_{c}^{\infty}(G)$ defined by

$$
\mathscr{P}_{\chi}(f)(g)=\int_{P_{\phi}} \chi^{-1} \delta^{1 / 2}(p) f(p g) d p
$$

for $f \in C_{c}^{\infty}(G)$ and $g \in G$. We will always assume that $P_{\phi}(\mathfrak{o})$ has total measure 1 . Let $K=\mathrm{SO}_{4 n}(\mathfrak{o})$ be the standard maximal compact subgroup of G and $\phi_{K}=\phi_{K, \chi}$ be the unique K-invariant element of $I(\chi)$ satisfying $\phi_{K}(1)=1$. It is easy to see that ϕ_{K} is the image under \mathscr{P}_{χ} of the characteristic function of K.
Definition. Take a nontrivial element $\left.\Lambda\left(=\Lambda_{H}=\Lambda_{H, \chi}\right) \in \operatorname{Hom}_{H}(I(\chi), \Psi)\right)$. We define a generalized Shalika function

$$
\Omega(g)\left(=\Omega_{H}(g)=\Omega_{H, \chi}(g)\right)=\Lambda\left(R_{g} \phi_{K}\right)
$$

The aim of this paper is to give an explicit formula of this function.
The main results. We will briefly explain the statement of the main results in this subsection. At first, we need to introduce some more notation.

Since the function Ω satisfies

$$
\Omega(h g k)=\Psi(h) \Omega(g)
$$

for every $h \in H, g \in G$ and $k \in K$, it suffices to compute it for a set of double coset representatives in $H \backslash G / K$. By Iwasawa decomposition,

$$
H \backslash G / K=H \backslash P K / K \cong \mathrm{Sp}_{2 n}(F) \backslash \mathrm{GL}_{2 n}(F) / \mathrm{GL}_{2 n}(\mathfrak{o})
$$

Considering transitive right action of $\mathrm{GL}_{2 n}(F)$ on \mathcal{A} defined by $X * g:={ }^{t} g X g$, we can naturally identify these double cosets with orbits in \mathcal{A} under the action of $\mathrm{GL}_{2 n}(\mathfrak{o})$.
Proposition 2.2. We have the following double coset decomposition:

$$
\mathrm{GL}_{2 n}(F)=\bigsqcup_{\lambda} \mathrm{Sp}_{2 n}(F) g_{\lambda} \mathrm{GL}_{2 n}(\mathfrak{o})
$$

where $g_{\lambda}:=\operatorname{diag}\left(\varpi^{\lambda_{1}}, \varpi^{\lambda_{2}}, \ldots \varpi^{\lambda_{n}}, 1, \ldots, 1\right)$ with $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}, \lambda_{1} \geq$ $\lambda_{2} \geq \ldots \geq \lambda_{n}$.
Proof. The elementary divisor theorem shows that representatives of orbits in \mathcal{A} under the action of $\mathrm{GL}_{2 n}(\mathfrak{o})$ can be taken as follows:

$$
X_{\lambda}=\left(\begin{array}{llllll}
& & & & \varpi^{\lambda_{1}} & \\
& & & \\
& & \varpi^{\lambda_{2}} & & \\
& & & \ddots & \\
& & & & \\
\hline-\varpi^{\lambda_{1}}-\varpi^{\lambda_{2}} & & & & & \\
& & \ddots & & & \\
& & & & -\varpi^{\lambda_{n}}
\end{array}\right) .
$$

Since $X_{\lambda}=J * g_{\lambda}$, we obtain the double coset decomposition.
By an abuse of notation, we will write g_{λ} as $\operatorname{diag}\left(g_{\lambda}^{-1}, g_{\lambda}\right) \in G$. Then we only have to compute $\Omega\left(g_{\lambda}\right)$ for each λ.

Lemma 2.3. If some λ_{i} is negative, then $\Omega\left(g_{\lambda}\right)=0$.
Proof. Assume that $\lambda_{n}<0$ and let $X \in \operatorname{Mat}_{2 n}(\mathfrak{o})$ be a matrix whose only nonzero entries are $X_{n, 2 n}=u$ and $X_{2 n, n}=-u$, where $u \in \mathfrak{o}^{\times}$. Then

$$
a=\left(\begin{array}{cc}
\mathbb{1}_{2 n} & X \\
& \mathbb{1}_{2 n}
\end{array}\right)
$$

is an element of K and we have $\Omega\left(g_{\lambda}\right)=\Omega\left(g_{\lambda} a\right)=\psi^{-1}\left(u \varpi^{\lambda_{n}}\right) \Omega\left(g_{\lambda}\right)$. Since the conductor of ψ is 0 , we can choose u so that $\psi\left(u \varpi^{\lambda_{n}}\right) \neq 1$.

Consequently, we only have to treat the case where λ is a dominant partition of some positive integer. Hereafter, we assume that λ denotes these partitions.

For each $w \in W$, there is an intertwining operator $T_{w}: I(\chi) \rightarrow I(w \chi)$ which satisfies the following relations (see [Casselman 1980]):

$$
T_{w}\left(\phi_{K, \chi}\right)=c_{w}(\chi) \phi_{K, w \chi}
$$

where

$$
c_{w}(\chi)=\prod_{\alpha>0, w \alpha<0} c_{\alpha}(\chi), \quad c_{\alpha}(\chi)=\frac{1-q^{-1} \chi\left(a_{\alpha}\right)}{1-\chi\left(a_{\alpha}\right)}
$$

Here α is a root of G and a_{α} is a diagonal matrix attached to α. For details, see [Casselman 1980]. Taking the adjoint, we get a G-morphism $T_{w}^{*}: I(w \chi)^{*} \rightarrow I(\chi)^{*}$, where * denotes the dual space of a complex linear space.

Denote the space of distributions on G by $\mathscr{D}(G)$. By $\mathscr{P}_{\chi}: C_{c}^{\infty}(G) \rightarrow I(\chi)$, we obtain the adjoint G-morphism $\mathscr{P}_{\chi}^{*}: I(\chi)^{*} \rightarrow \mathscr{D}(G)$. Let $\Delta\left(=\Delta_{H}=\Delta_{H, \chi}\right):=$ $\mathscr{P}_{\chi}^{*}(\Lambda) \in \mathscr{D}(G)$. Based on the work of Sakellaridis [2006] (also see [Casselman 1980] and [Hironaka 1999]), we get

$$
\begin{equation*}
\Omega(g)=Q^{-1} \sum_{w}\left(\prod_{\alpha>0, w \alpha>0} c_{\alpha}(\chi)\right) T_{w^{-1}}^{*} \Delta\left(R_{g} \operatorname{ch}_{B}\right) \tag{2-2}
\end{equation*}
$$

where ch_{B} denotes the characteristic function of B, Q the volume of $B w_{l} B$ and w_{l} is the longest element of W. Hence the problem is reduced to computing $T_{w^{-1}}^{*} \Delta\left(R_{g} \mathrm{ch}_{B}\right)$ for $w \in W$ and $g=g_{\lambda}$.

The statement of our formula involves the subgroup Γ of W, which is isomorphic to the Weyl group of type B_{n}, and its root system. Therefore, let us fix some notation.

Let $E_{i}=e_{2 i-1}+e_{2 i}, \beta_{i}=E_{i}-E_{i+1}(1 \leq i<n)$ and $\beta_{n}=E_{n}$. Then, $\Phi:=$ $\left\{E_{i}-E_{j}, \pm E_{k} \mid 1 \leq i, j, k \leq n, i \neq j\right\}$ is a root system of type B_{n} and $\left\{\beta_{i} \mid 1 \leq i \leq n\right\}$ is a basis of Φ.

The subgroup Γ is generated by

$$
w_{i}:=\left(\begin{array}{cccccc}
& & \stackrel{i}{\vee} & & & \\
\mathbb{1}_{2} & & \vdots & & & \\
& \ddots & \vdots & & & \\
& & 0_{2} & \mathbb{1}_{2} & & \\
& & \mathbb{1}_{2} & 0_{2} & & \\
& & & & \ddots & \\
& & & & & \mathbb{1}_{2}
\end{array}\right) \in M, \quad(1 \leq i \leq n-1)
$$

and

$$
w_{n}:=\left(\begin{array}{ll|l}
\mathbb{1}_{2(n-1)} & & \\
& 0_{2} & \\
\hline & & \varepsilon \\
& \varepsilon & \mathbb{1}_{2(n-1)} \\
& & 0_{2}
\end{array}\right) \in G, \quad \text { where } \varepsilon=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Note that Γ is naturally identified with the Weyl group of the root system Φ and under this identification, w_{i} is the simple reflection corresponding to β_{i}.

Definition. For each long root $\beta=E_{i}-E_{j} \in \Phi$, let $a_{\beta}=a_{e_{2 i-1}-e_{2 j-1}}$. For a short root $\beta \in \Phi, a_{\beta}$ is already defined since $\beta \in \Sigma$.

We define $d_{\beta}(\chi)$ for each $\beta \in \Phi$ as follows: if β is a short root,

$$
d_{\beta}(\chi)=\chi\left(a_{\beta}\right)
$$

and if β is a long root,

$$
d_{\beta}(\chi)=\chi\left(a_{\beta}\right) \frac{1-q^{-2} \chi\left(a_{-\beta}\right)}{1-q^{-2} \chi\left(a_{\beta}\right)}
$$

Our main theorem is as follows.
Theorem 2.4. Let $\chi=\left(|\cdot|^{z_{1}},|\cdot|^{z_{2}}, \ldots,|\cdot|^{z_{2 n} n}\right)$ be an unramified character on P_{ϕ} and assume that this character satisfies $z_{2 i-1}=1+z_{2 i}$ for all $a \leq i \leq n$.
(i) If χ is not of the form as above (or its W-translate), then $I(\chi)$ does not have a generalized Shalika model.
(ii) For every $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$,

$$
\Omega\left(g_{\lambda}\right)=Q^{-1} \prod_{\alpha>0} c_{\alpha}(\chi) \sum_{w \in \Gamma}(-1)^{l_{\Gamma}(w)}(w \chi)^{-1} \delta^{1 / 2}\left(h_{\lambda}\right) \prod_{\substack{\beta>0 \\ w \beta<0}} d_{\beta}(\chi)
$$

where $h_{\lambda}=\operatorname{diag}\left(\varpi^{\lambda_{1}}, 1, \varpi^{\lambda_{2}}, 1, \ldots, \varpi^{\lambda_{n}}, 1\right) \in M$ and l_{Γ} is the length function of Γ.

3. The open coset

In this section, we will determine which double cosets in $P_{\phi} \backslash G / H$ are open (if they exist). We don't analyze this quotient space directly but consider $P_{\phi} \backslash G / P$, which is easily described by using Weyl groups. Since the unique open coset in $P_{\phi} \backslash G / P$ is $P_{\phi} \xi P$, the open cosets in $P_{\phi} \backslash G / H$ are in this coset (if they exist). So we will treat the following quotient space: $P_{\phi} \backslash P_{\phi} \xi P / H \cong\left(\xi^{-1} P_{\phi} \xi \cap P\right) \backslash P / H \cong P_{0} \backslash G_{0} / H_{0}$, where $G_{0}=\mathrm{GL}_{2 n}(F), H_{0}=\mathrm{Sp}_{2 n}(F)$ and P_{0} is the Borel subgroup of G_{0} consisting of lower triangular matrices.

The transitive left action of G_{0} on \mathcal{A} is defined by $g * X:=g X^{t} g$. Then there is a natural surjective map θ from G_{0} to \mathcal{A} defined by $\theta(g)=g * J$. For $X \in G_{0}$ and each $1 \leq i \leq n, X_{i}$ denotes the top left $2 i \times 2 i$-block and $d_{i}(X)$ its Pfaffian. Let $\mathscr{A}^{\prime}=\left\{X \in \mathcal{A} \mid d_{i}(X) \neq 0(1 \leq i \leq n)\right\}$ be an open set in \mathcal{A}. We will show that the inverse image of this set under the map θ is a double coset in $P_{0} \backslash G_{0} / H_{0}$. Identifying W_{0}, the Weyl group of G_{0}, with the symmetric group of degree $2 n$, define the element w_{0} of W_{0} as a permutation such that

$$
w_{0}(i)= \begin{cases}2 i-1 & (1 \leq i \leq n) \\ 2 i-2 n & (n+1 \leq i \leq 2 n)\end{cases}
$$

Let $\varepsilon=\left({ }_{-1}{ }^{1}\right)$. Then

$$
\theta\left(w_{0}\right)=w_{0} * J=\left(\begin{array}{llll}
\varepsilon & \varepsilon & & \\
& & & \\
& & \varepsilon
\end{array}\right) \in \mathfrak{A}^{\prime}
$$

Lemma 3.1. $\mathfrak{A}^{\prime}=\theta\left(P_{0} w_{0} H_{0}\right)$. In particular, $P_{0} w_{0} H_{0}=\theta^{-1}\left(\mathfrak{A}^{\prime}\right)$ is open.
Proof. Since

$$
p * X=\left(\begin{array}{ll}
p_{i} & \\
* & *
\end{array}\right)\left(\begin{array}{cc}
X_{i} & * \\
* & *
\end{array}\right)\left(\begin{array}{cc}
{ }^{t} p_{i} & * \\
& *
\end{array}\right)=\left(\begin{array}{cc}
p_{i} * X_{i} & * \\
* & *
\end{array}\right),
$$

we have $d_{i}(p * X)=\operatorname{det}\left(p_{i}\right)^{2} d_{i}(X) \neq 0$ and this shows that \mathcal{A}^{\prime} is P_{0}-stable. Hence $\theta\left(P_{0} w_{0} H_{0}\right) \subset \mathscr{A}^{\prime}$. By induction on i, we have to show that if X_{i} is of the form

$$
\left(\begin{array}{lll}
\varepsilon & & \\
& \ddots & \\
& & \varepsilon
\end{array}\right),
$$

there is a lower triangular matrix $p \in \mathrm{GL}_{2(i+1)}(F)$ such that

$$
p * X_{i+1}=\left(\begin{array}{ccc}
\varepsilon & & \\
& \ddots & \\
& & \varepsilon
\end{array}\right)
$$

Let A_{j} be 2×2-matrices and assume that X_{i+1} is expressed as

$$
\left(\begin{array}{cccc}
\varepsilon & & & A_{1} \\
& \ddots & & \vdots \\
& \varepsilon & A_{i} \\
-{ }^{t} A_{1} & \cdots & -{ }^{t} A_{i} & A_{i+1}
\end{array}\right)
$$

Let $p_{1} \in \mathrm{GL}_{2(i+1)}(F)$ denote a lower triangular matrix of the form

$$
\left(\begin{array}{llll}
\mathbb{1}_{2} & & \\
& \ddots & \\
& & \mathbb{1}_{2} \\
B_{1} & \cdots & B_{i} & \mathbb{1}_{2}
\end{array}\right)
$$

where $B_{j}:={ }^{t} A_{j} \varepsilon^{-1}$. Then there is a skew-symmetric matrix $C \in \mathrm{GL}_{2}(F)$ satisfying

$$
p_{1} * X_{i+1}=\left(\begin{array}{llll}
\varepsilon & & & \\
& \ddots & \\
& & \varepsilon & \\
& &
\end{array}\right)
$$

It is clear that there is a diagonal matrix p_{2} of degree $2(i+1)$ so that $\left(p_{2} p_{1}\right) * X_{i+1}$ becomes the desired form.

Remark. From the proof of Lemma 3.1, we easily obtain the following slight refinement. For any $X \in \mathcal{A}^{\prime}$, there is a $p \in P_{0}$ with diagonal component $\left(c_{1}, \ldots, c_{2 n}\right)$ which sends X to $\theta\left(w_{0}\right)$ and satisfies

$$
c_{2 i}=1, \quad c_{2 i+1}=\frac{d_{i+1}(X)}{d_{i}(X)}
$$

Let

$$
B_{0}=\left(\begin{array}{ccc}
\mathfrak{o}^{\times} & & \mathfrak{p} \\
& \ddots & \\
\mathfrak{o} & & \mathfrak{o}^{\times}
\end{array}\right)
$$

be the standard Iwahori subgroup corresponding to P_{0} and

$$
Y_{\lambda}=\left(\begin{array}{ccc}
\varpi^{\lambda_{1}} \varepsilon & & 0 \\
& \ddots & \\
0 & & \varpi^{\lambda_{n}} \varepsilon
\end{array}\right)
$$

be an element of \mathcal{A}^{\prime}.
Lemma 3.2. For all $b \in B_{0}$ and $\lambda, 1 \leq i \leq n$,

$$
\left|d_{i}\left(b * Y_{-\lambda}\right)\right|=\left|d_{i}\left(Y_{-\lambda}\right)\right|
$$

In particular, $\mathfrak{A}^{\prime}=P_{0} B_{0} * Y_{-\lambda}=\theta\left(P_{0} B_{0} w_{0} H_{0}\right)$.

Proof. By Lemma 3.1, $\mathfrak{A}^{\prime}=P_{0} * Y_{-\lambda} \subset P_{0} B_{0} * Y_{-\lambda}=\theta\left(P_{0} B_{0} w_{0} H_{0}\right)$. The other inclusion follows once we prove the first equation. This is clear for elements in $P_{0} \cap B_{0}$. Thus, by Iwahori decomposition, it suffices to prove this equation for elements in

$$
N_{0}:=\left(\begin{array}{ccc}
1 & & \mathfrak{P} \\
& \ddots & \\
& & 1
\end{array}\right)
$$

This will be proved by induction on the size of matrices. Let $n \in N_{0}$ and $X=n * Y_{-\lambda}$. Then for $1 \leq i \leq n-1$,

$$
X_{i} \in n_{i} *\left(Y_{-\lambda}\right)_{i}+\varpi^{-\lambda_{i+1}+2} \mathrm{M}_{2 i}(\mathfrak{o})
$$

Since $-\lambda_{i} \leq-\lambda_{i+1}$, any component of $n_{i} *\left(Y_{-\lambda}\right)_{i}$ does not lie in $\varpi^{-\lambda_{i+1}+2} \mathfrak{o}=$ $\mathfrak{p}^{-\lambda_{i+1}+2}$. Hence we see by induction hypothesis,

$$
\left|d_{i}(X)\right|=\left|\operatorname{det} X_{i}\right|^{1 / 2}=\left|\operatorname{det}\left(n_{i} *\left(Y_{-\lambda}\right)_{i}\right)\right|^{1 / 2}=\left|d_{i}\left(Y_{-\lambda}\right)\right|
$$

From the two lemmas above, we have $\theta\left(P_{0} w_{0} H_{0}\right)=\mathfrak{A}^{\prime}=P_{0} B_{0} * Y_{-\lambda}$. Let $h_{\lambda}=$ $\operatorname{diag}\left(\varpi^{\lambda_{1}}, 1, \varpi^{\lambda_{2}}, 1, \ldots, \varpi^{\lambda_{n}}, 1\right)$. Then $\theta\left(h_{\lambda} w_{0}\right)=Y_{\lambda}$ and $P_{0} w_{0} H_{0}=P_{0} B_{0} h_{-\lambda} w_{0} H_{0}$. In other words, $B_{0} w_{0} g_{-\lambda} \subset P_{0} w_{0} H_{0}$ since $g_{-\lambda}=w_{0}^{-1} h_{-\lambda} w_{0}$.
Lemma 3.3. For all $\lambda, B \xi w_{0} g_{-\lambda} \subset P_{\phi} \xi w_{0} H$.
Proof. Identifying G_{0} with M by

$$
g \mapsto\left(\begin{array}{ll}
g & \\
& \\
& t_{g}-1
\end{array}\right)
$$

we see that $\xi P_{0} \xi^{-1} \subset P_{\phi}, H_{0} \subset H$ and $\xi B_{0} \xi^{-1} \subset B$. From the previous argument, $P_{\phi} \xi B_{0} w_{0} g_{-\lambda} H \subset P_{\phi} \xi P_{0} w_{0} H_{0} H$.

Since ξ and w_{0} are commutative, we obtain

$$
P_{\phi} \xi P_{0} w_{0} H_{0} H=P_{\phi}\left(\xi P_{0} \xi^{-1}\right) \xi w_{0} H=P_{\phi} \xi w_{0} H
$$

On the other hand, $P_{\phi} \xi B_{0} w_{0} g_{-\lambda} H=P_{\phi}\left(\xi B_{0} \xi^{-1}\right) \xi w_{0} g_{-\lambda} H$. By Iwahori decomposition, $B=\left(B \cap P_{\phi}\right)\left(\xi B_{0} \xi^{-1}\right)\left(B \cap \xi N \xi^{-1}\right)$ and since $w_{0} g_{-\lambda} \in G_{0}, \xi N \xi^{-1}=$ $\left(\xi w_{0} g_{-\lambda}\right) N\left(\xi w_{0} g_{-\lambda}\right)^{-1}$. Therefore, $P_{\phi}\left(\xi B_{0} \xi^{-1}\right) \xi w_{0} g_{-\lambda} H=P_{\phi} B \xi w_{0} g_{-\lambda} H$ and the desired inclusion follows.

Let $\eta=\xi w_{0}, S=\eta H \eta^{-1}$. Hereafter, we will treat S instead of H and so we need to translate all things defined above as follows:

$$
\begin{aligned}
\Psi_{S}(s) & =\Psi_{H}\left(\eta^{-1} s \eta\right), & \Lambda_{S} & =\Lambda_{H} \circ R_{\eta^{-1}} \in \operatorname{Hom}_{S}\left(I(\chi), \Psi_{S}\right) \\
\Delta_{S} & =\mathscr{P}_{\chi}^{*}\left(\Lambda_{S}\right) \in \mathscr{D}(G), & \Omega_{S}(g) & =\Omega_{H}\left(\eta^{-1} g\right)=\Omega_{H}\left(\eta^{-1} g \eta\right)
\end{aligned}
$$

We have to compute $\Omega_{H}\left(g_{\lambda}\right)=\Omega_{S}\left(\left(\xi w_{0}\right) g_{\lambda}\left(\xi w_{0}\right)^{-1}\right)=\Omega_{S}\left(h_{-\lambda}\right)$. Since by Lemma 3.3, we have $\operatorname{supp}\left(R_{h_{-\lambda}} \mathrm{ch}_{B}\right)=B h_{\lambda} \subset P_{\phi} S$, and taking (2-2) into consideration, we obtain the following result:

Proposition 3.4. Let $\chi=\left(|\cdot|^{z_{1}},|\cdot|^{z_{2}}, \ldots,|\cdot|^{z_{2 n}}\right)$ be an unramified character on P_{ϕ} and assume that this character satisfies $z_{2 i-1}=1+z_{2 i}$ for all $1 \leq i \leq n$.
(i) If χ is not of the form above (or its W-translate), then $I(\chi)$ does not have a generalized Shalika model.
(ii) For $w \notin \Gamma$, we have $T_{w^{-1}}^{*} \Delta_{S}\left(R_{h_{-\lambda}} \mathrm{ch}_{B}\right)=0$ for every λ, where Γ is the subgroup of W generated by

$$
\begin{aligned}
& w_{i}:=\left(\begin{array}{cccccc}
& & \stackrel{i}{\vee} & & & \\
\mathbb{1}_{2} & & \vdots & & & \\
& \ddots & \vdots & & & \\
& & 0_{2} & \mathbb{1}_{2} & & \\
& & \mathbb{1}_{2} & 0_{2} & & \\
& & & & \ddots & \\
& & & & & \mathbb{1}_{2}
\end{array}\right) \in G_{0},(1 \leq i \leq n-1) \text { and } \\
& w_{n}:=\left(\begin{array}{ll|ll}
\mathbb{1}_{2(n-1)} & & & \\
& 0_{2} & & \varepsilon \\
\hline & & \mathbb{1}_{2(n-1)} & \\
& & 0_{2}
\end{array}\right) \in G .
\end{aligned}
$$

Proof. (essentially the same as [Sakellaridis 2006, Proposition 5.2])
(i) Let $I_{S}(w \chi)$ be the subspace of $I(w \chi)$ consisting of elements supported in $P_{\phi} S$.
 On the other hand, there is a surjective map $\left.\mathscr{P}_{r}: C_{c}^{\infty}(S) \rightarrow{\mathrm{c}-\operatorname{ind}_{P_{\phi} \cap S}^{S^{\phi} \cap S}}^{(w \chi}\right) \delta^{1 / 2}$ defined by

$$
\mathscr{P}_{r}(f)(s)=\int_{P_{\phi} \cap S}(w \chi) \delta^{1 / 2}(p)^{-1} f(p s) d_{r} p
$$

where $d_{r} p$ is a right Haar measure on $P_{\phi} \cap S$. Composed with these maps, $T_{w^{-1}}^{*} \Lambda_{S}$ can be taken as a distribution on S. Then $\Psi_{S} \cdot T_{w^{-1}}^{*} \Lambda_{S}$ is a right S-invariant distribution, which must be a Haar measure on S :

$$
T_{w^{-1}}^{*} \Lambda_{S}=\Psi_{S}^{-1} d s
$$

For $x \in P_{\phi} \cap S, f \in C_{c}^{\infty}(S)$,

$$
\begin{aligned}
(w \chi) \delta^{1 / 2} \delta_{P_{\phi} \cap S}^{-1}(x) \int_{S} f(s) T_{w^{-1}}^{*} \Lambda_{S}(s) d s & =\int_{S} f(x s) T_{w^{-1}}^{*} \Lambda_{S}(s) d s \\
& =\int_{S} f(x s) \Psi_{S}^{-1}(s) d s \\
& =\Psi_{S}(x) \int_{S} f(s) \Psi_{S}^{-1}(s) d s \\
& =\Psi_{S}(x) \int_{S} f(s) T_{w^{-1}}^{*} \Lambda_{S}(s) d s
\end{aligned}
$$

where $\delta_{P_{\phi} \cap S}$ is the modular character of $P_{\phi} \cap S$. Since $P_{\phi} \cap S$ consists of matrices of the form

$$
p=\left(\begin{array}{ccc}
A_{1} & & \\
& \ddots & \\
& & A_{n}
\end{array}\right), \quad A_{i}=\left(\begin{array}{cc}
a_{i} & b_{i} \\
& a_{i}^{-1}
\end{array}\right) \in \mathrm{SL}_{2}(F)
$$

and is contained in $G_{0} \cong M, \Psi_{S}$ is trivial on $P_{\phi} \cap S$. So we have

$$
\begin{equation*}
\delta_{P_{\phi} \cap S}(x)=(w \chi) \delta^{1 / 2}(x) \tag{3-1}
\end{equation*}
$$

for all $x \in P_{\phi} \cap S$.
An easy calculation shows that $\delta_{P_{\phi} \cap S}(p)=\delta(p)=\prod_{i}\left|a_{i}\right|^{2}$ and hence we get $(w \chi)(p)=\prod_{i}\left|a_{i}\right|$. If we put $w \chi=\left(|\cdot|{ }^{z_{1}}, \ldots,|\cdot|{ }^{z_{2 n} n}\right)$, then $(w \chi)(p)=$ $\prod_{i}\left|a_{i}\right|^{z_{2 i-1}-z_{2 i}}$ and so it is necessary for the existence of a generalized Shalika model that $z_{2 i-1}-z_{2 i}=1$ for every $1 \leq i \leq n$.
(ii) Note that Γ is isomorphic to the Weyl group of type B_{n}, in particular, it is a Coxeter group. It is easy to see that Γ consists of elements which preserves the condition (3-1) and the claim follows immediately.

This proposition proves the first half of the main theorem. Throughout this paper, assume that χ satisfies the conditions stated in Proposition 3.4.

Since $\chi \delta^{1 / 2} \delta_{P_{\phi} \cap S}^{-1}=1$ on $P_{\phi} \cap S$ and S is unimodular, there exists a nonzero right S-invariant linear functional $I: \operatorname{c-ind}_{P_{\phi} \cap S}^{S} \chi \delta^{1 / 2} \rightarrow \mathbb{C}$ (where the action of S on \mathbb{C} is trivial). We habitually use an integral expression

$$
I(\varphi)=\int_{P_{\phi} \cap S \backslash S} \varphi(s) d \dot{s}
$$

for $\varphi \in \mathrm{c}-\operatorname{ind}_{P_{\phi} \cap S}^{S} \chi \delta^{1 / 2}$. Note that this is not an integral in the usual sense since "integrands" are twisted by characters. This functional is uniquely determined by right S-invariance up to a positive constant factor (see [Bushnell and Henniart 2006, Proposition 3.4]). For an element φ of $\mathrm{c}-\mathrm{ind}_{P_{\phi} \cap S}^{S} \chi \delta^{1 / 2}, \varphi \cdot \Psi_{S}^{-1}$ is also an element
of $\mathrm{c}-\operatorname{ind}_{P_{\phi} \cap S}^{S} \chi \delta^{1 / 2}$ and it follows that

$$
\int_{P_{\phi} \cap S \backslash S} \varphi(s) \Psi_{S}^{-1}(s) d \dot{s}
$$

is well defined. On the other hand, $\mathscr{P}_{r}^{*} I$ is a right S-invariant distribution on S, which is a Haar measure on S. Therefore, by the argument in the proof of Proposition 3.4,

$$
\mathscr{P}_{r}^{*} \Lambda_{S}=\Psi_{S}^{-1} \mathscr{P}_{r}^{*} I=\mathscr{P}_{r}^{*}\left(\Psi_{S}^{-1} I\right)
$$

In other words, the restriction of Λ_{S} to $I_{S}(\chi)$ has an integral expression:
Lemma 3.5. For $\varphi \in I_{S}(\chi)$,

$$
\begin{equation*}
\Lambda_{S}(\varphi)=\int_{P_{\phi} \cap S \backslash S} \varphi(s) \Psi_{S}^{-1}(s) d \dot{s} \tag{3-2}
\end{equation*}
$$

In a similar way, using uniqueness of invariant distributions and the linear functional $C_{c}^{\infty}\left(P_{\phi} \times S\right) \rightarrow C_{c}^{\infty}\left(P_{\phi} S\right)$ defined by

$$
P_{\phi} S \ni p s \mapsto \int_{p_{\phi} \cap S} f\left(p x^{-1}, x s\right) d_{r} x, \quad f \in C_{c}^{\infty}\left(P_{\phi} \times S\right)
$$

we obtain the following result:
Lemma 3.6. The map $\Theta_{\chi}: P_{\phi} S \rightarrow \mathbb{C}$ defined by $\Theta_{\chi}(p s)=\chi^{-1} \delta^{1 / 2}(p) \Psi_{S}^{-1}(s)$ for $p s \in P_{\phi} S$ is well defined and for every $f \in C_{c}^{\infty}\left(P_{\phi} S\right)$ and

$$
\begin{equation*}
\Delta_{S}(f)=\int_{P_{\phi} S} \Theta_{\chi}(x) f(x) d x \tag{3-3}
\end{equation*}
$$

where $d x$ is a suitably normalized Haar measure on G.
Proposition 3.7. Assume that $\operatorname{Re} z_{i}>0$ for all i. Then (3-2) converges absolutely for every $\varphi \in I(\chi)$.

Proof. (essentially the same as [Sakellaridis 2006, Proposition 7.1])
We will treat Λ_{H} in place of Λ_{S}. The equation (3-2) is equivalent to saying that for every $\varphi \in I(\chi)$ with support contained in $P_{\phi} \eta H$,

$$
\begin{equation*}
\left.\Lambda_{H}(\varphi)=\int_{H} P_{\phi} \backslash H \text { (} \varphi h\right) \Psi_{H}^{-1}(h) d \dot{h} \tag{3-4}
\end{equation*}
$$

Here, ${ }_{H} P_{\phi}=\eta^{-1} P_{\phi} \eta \cap H$. Hence we need to prove that (3-4) converges absolutely for every $\varphi \in I(\chi)$.

Since every element of $I(\chi)$ is dominated by some multiple of ϕ_{K}, it suffices to treat the case $\varphi=\phi_{K}$. By Iwasawa decomposition and K-invariance of $\phi_{K},(3-4)$
is reduced to

$$
\int \phi_{K}\left(\eta\left(\begin{array}{cc}
\mathbb{1}_{2 n} & X \\
& \mathbb{1}_{2 n}
\end{array}\right)\left(\begin{array}{ll}
m & \\
& t_{m^{-1}}
\end{array}\right)\right) \psi\left(\frac{1}{2} \operatorname{tr}(J X)\right) d X d m
$$

where X is a skew-symmetric matrix and

$$
m=\left(\begin{array}{ll}
a & \\
& { }^{t} a^{-1}
\end{array}\right)\left(\begin{array}{cc}
\mathbb{1}_{2 n} & Y \\
& \mathbb{1}_{2 n}
\end{array}\right) \in \operatorname{Sp}_{2 n}(F)
$$

with an upper triangular unipotent matrix $a \in \mathrm{GL}_{2 n}(F)$ and a symmetric matrix $Y \in \operatorname{Mat}_{n}(F)$. The integral over a is taken modulo matrices of the form

$$
\left(\begin{array}{ll}
\mathbb{1}_{n} & b \\
& \mathbb{1}_{n}
\end{array}\right) \in \mathrm{GL}_{2 n}(F)
$$

where $b \in \operatorname{Mat}_{n}(F)$ is a diagonal matrix. Then

$$
\begin{aligned}
& \int \phi_{K}\left(\eta\left(\begin{array}{cc}
\mathbb{1}_{2 n} & X \\
& \mathbb{1}_{2 n}
\end{array}\right)\left(\begin{array}{ll}
m & \\
& { }^{m^{-1}}
\end{array}\right)\right) \psi\left(\frac{1}{2} \operatorname{tr}(J X)\right) d X d \dot{m} \\
&=\int \phi_{K}\left(\eta\left(\begin{array}{ll}
m & \\
& m^{-1}
\end{array}\right)\binom{\mathbb{1}_{2 n} m^{-1} X^{t} m^{-1}}{\mathbb{1}_{2 n}}\right) \psi\left(\frac{1}{2} \operatorname{tr}(J X)\right) d X d \dot{m}
\end{aligned}
$$

Then $m^{-1} X^{t} m^{-1}$ can be replaced by X since H is unimodular and $m \in \operatorname{Sp}_{2 n}(F)$.
Since $\phi_{K} \in I(\chi), m$ on the left factor can be assumed to be of the form

$$
\left(\begin{array}{ll}
c & d \\
& \mathbb{1}_{n}
\end{array}\right)
$$

with an upper triangular unipotent matrix $c \in \mathrm{GL}_{n}(F)$ and an upper triangular nilpotent matrix $d \in \operatorname{Mat}_{n}(F)$ (here, the integral is taken in the usual sense, not in that of Lemma 3.5). Therefore, the integral above is dominated absolutely by the integral representing the intertwining operator T_{η} (see [Casselman 1995, Lemma 6.4.2]), which converges absolutely when $\operatorname{Re} z_{i}>0$ for all i by [Casselman 1980, Lemma 3.2].

Thanks to Proposition 3.7, exactly the same argument given in [Sakellaridis 2006, Section 7] suggests that for any $f \in C_{c}^{\infty}(G), \Delta_{S, \chi}(f)$ is a rational function of χ.

4. End of calculations

Normalize the Haar measure on G so that $\operatorname{vol}(B)=1$.
Lemma 4.1. For any $\lambda, \Delta_{S}\left(\mathrm{ch}_{B h_{\lambda}}\right)=\chi^{-1} \delta^{1 / 2}\left(h_{\lambda}\right)$.
Proof. Since $B h_{\lambda} \subset P_{\phi} S$ and (3-3), $\Delta_{S}\left(\operatorname{ch}_{B h_{\lambda}}\right)=\int_{B h_{\lambda}} \Theta_{\chi}(x) d x$. Using Iwahori decomposition of B and B_{0}, every $b \in B$ can be expressed in the form $b=p q r$,
where

$$
\begin{aligned}
& p=\left(\begin{array}{cc}
\mathbb{1}_{2 n} & * \\
& \mathbb{1}_{2 n}
\end{array}\right) \in B \cap N \subset P_{\phi}, \quad q=\left(\begin{array}{cc}
* & 0_{2 n} \\
0_{2 n} & *
\end{array}\right) \in \xi B_{0} \xi^{-1}, \\
& r=\left(\begin{array}{cc}
\mathbb{1}_{2 n} & \\
* & \mathbb{1}_{2 n}
\end{array}\right) \in B \cap \xi N \xi^{-1} .
\end{aligned}
$$

Then

$$
b h_{\lambda}=p q r \eta g_{-\lambda} \eta^{-1}=p \xi \cdot \underbrace{\xi^{-1} q \xi}_{\in B_{0}} \cdot w_{0} g_{-\lambda} \cdot \underbrace{\left(\eta g_{-\lambda}\right)^{-1} r\left(\eta g_{-\lambda}\right)}_{\in N} \cdot \eta^{-1}
$$

Since $B_{0} w_{0} g_{-\lambda} \subset P_{0} w_{0} H_{0}$, there are $p_{0} \in P_{0}$ and $h_{0} \in H_{0}$ satisfying $b_{0} w_{0} g_{-\lambda}=$ $p_{0} w_{0} h_{0}$, where $b_{0}:=\xi^{-1} q \xi$. In other words,

$$
b_{0} Y_{-\lambda}{ }^{t} b_{0}=\theta\left(b_{0} w_{0} g_{-\lambda}\right)=\theta\left(p_{0} w_{0} h_{0}\right)=p_{0} Y_{0}{ }^{t} p_{0}=: X \in \mathscr{A}
$$

By this and Lemma 3.2,

$$
\left|d_{i}(X)\right|=\left|d_{i}\left(b_{0} * Y_{-\lambda}\right)\right|=\left|d_{i}\left(Y_{-\lambda}\right)\right|=\left|d_{i}\left(p_{0} * Y_{0}\right)\right|=\left|\operatorname{det}\left(p_{0}\right)_{i}\right| .
$$

Denote the diagonal component of p_{0} by $\left(c_{1}, \ldots, c_{2 n}\right)$. Then we have $\left|d_{i}(X)\right|=$ $\prod_{j=1}^{2 i}\left|c_{j}\right|=q^{\lambda_{1}+\cdots+\lambda_{i}}$ and therefore the remark on page 481 shows that p_{0} can be chosen so that $c_{2 i}=1,\left|c_{2 i-1}\right|=q^{\lambda_{i}}$ for each i.

Let $n_{0}=\left(\eta g_{-\lambda}\right)^{-1} r\left(\eta g_{-\lambda}\right)$. Then

$$
b h_{\lambda}=p \xi p_{0} w_{0} h_{0} n_{0} \eta^{-1}=\underbrace{p \cdot \xi p_{0} \xi^{-1}}_{\in P_{\phi}} \cdot \underbrace{\eta h_{0} n_{0} \eta^{-1}}_{\in S}
$$

Hence,

$$
\Theta_{\chi}\left(b h_{\lambda}\right)=\chi^{-1} \delta^{1 / 2}\left(p \xi p_{0} \xi^{-1}\right) \Psi_{H}\left(h_{0} n_{0}\right)=\prod_{i=1}^{n} q^{-\left(2 n-2 i+1-z_{2 i-1}\right) \lambda_{i}} \Psi_{H}\left(n_{0}\right)
$$

Express r in the form

$$
\left(\begin{array}{cc}
\mathbb{1}_{2 n} & \\
X & \mathbb{1}_{2 n}
\end{array}\right)
$$

where X is an element of $\operatorname{Mat}_{2 n}(\mathfrak{p})$. Since

$$
n_{0}=\left(w_{0} g_{-\lambda}\right)^{-1}\left(\begin{array}{cc}
\mathbb{1}_{2 n} & X \\
& \mathbb{1}_{2 n}
\end{array}\right)\left(w_{0} g_{-\lambda}\right)=\left(\begin{array}{cc}
\mathbb{1}_{2 n} & g_{\lambda}{ }^{t} w_{0} X w_{0} g_{\lambda} \\
\mathbb{1}_{2 n}
\end{array}\right)
$$

and the conductor of ψ is assumed to be 0 ,

$$
\Psi_{H}\left(n_{0}\right)=\psi\left(\frac{1}{2} \operatorname{tr}\left(J g_{\lambda}^{t} w_{0} X w_{0} g_{\lambda}\right)\right)=\psi\left(\frac{1}{2} \operatorname{tr}\left(X \cdot Y_{\lambda}\right)\right)=1
$$

Some additional simple computations show that $\Delta_{S}\left(\operatorname{ch}_{B h_{\lambda}}\right)=\chi^{-1} \delta^{1 / 2}\left(h_{\lambda}\right)$.

Proposition 4.2.

$$
\Omega_{S}\left(h_{-\lambda}\right)=Q^{-1} \sum_{w \in \Gamma}\left(\prod_{\substack{\alpha>0 \\ w \alpha>0}} c_{\alpha}(\chi)\right)(w \chi)^{-1} \delta^{1 / 2}\left(h_{\lambda}\right) T_{w^{-1}}^{*} \Delta_{S, \chi}\left(\operatorname{ch}_{B}\right) .
$$

Proof. By the uniqueness of the generalized Shalika model, $T_{w^{-1}}^{*} \Lambda_{S, \chi}$ is a scalar multiple of $\Lambda_{S, w \chi}$. Hence,

$$
\begin{aligned}
\frac{T_{w^{-1}}^{*} \Delta_{S, \chi}\left(R_{h_{-\lambda}} \operatorname{ch}_{B}\right)}{T_{w^{-1}}^{*} \Delta_{S, \chi}\left(\operatorname{ch}_{B}\right)}=\frac{T_{w^{-1}}^{*} \Lambda_{S, \chi}\left(R_{h_{-\lambda}} \phi_{B}\right)}{T_{w^{-1}}^{*} \Lambda_{S, \chi}\left(\phi_{B}\right)} & =\frac{\Lambda_{S, w \chi}\left(R_{h_{-\lambda}} \phi_{B}\right)}{\Lambda_{S, w \chi}\left(\phi_{B}\right)} \\
& =\frac{\Delta_{S, w \chi}\left(R_{h_{-\lambda}} \mathrm{ch}_{B}\right)}{\Delta_{S, w \chi}\left(\mathrm{ch}_{B}\right)} \\
& =(w \chi)^{-1} \delta^{1 / 2}\left(h_{\lambda}\right)
\end{aligned}
$$

Applying this to (2-2), the desired result follows.
We denote the length function of W by l and that of Γ by l_{Γ}. The following lemma suggests that we only have to treat the case $w=w_{i}$ in the notation of Proposition 3.4.

Lemma 4.3. For $w, w^{\prime} \in \Gamma, l_{\Gamma}\left(w w^{\prime}\right)=l_{\Gamma}(w)+l_{\Gamma}\left(w^{\prime}\right)$ implies that $l\left(w w^{\prime}\right)=$ $l(w)+l\left(w^{\prime}\right)$.

Notice that a reduced expression of each w_{i} is given as follows:

$$
w_{i}=s_{2 i} s_{2 i-1} s_{2 i+1} s_{2 i},(1 \leq i \leq n-1), \quad w_{n}=s_{2 n}
$$

Following [Casselman 1980], we denote $\mathscr{P}_{\chi}\left(\operatorname{ch}_{B w B}\right)$ by $\phi_{w, \chi}$ for each $w \in W$.
Let N_{ϕ} be the unipotent radical of P_{ϕ} and N_{ϕ}^{-}be that of the opposite of P_{ϕ}. For $\alpha \in \Sigma, N_{\phi}^{\alpha}$ (resp. $N_{\phi}^{-, \alpha}$) will denote the image of standard embedding $F \rightarrow N_{\phi}$ (resp. $F \rightarrow N_{\phi}^{-}$) corresponding to α. We will use $N_{\phi}^{\hat{\alpha}}$ (resp. $N_{\phi}^{-,-\alpha}$) to denote the product (in any order) of all N_{ϕ}^{β} (resp. $\left.N_{\phi}^{-,-\beta}\right),(0<\beta \neq \alpha)$. Similarly, for a subset $\Sigma^{\prime} \subset \Sigma$, we define $N_{\phi}^{\Sigma^{\prime}}, N_{\phi}^{\widehat{\Sigma}^{\prime}}$, etc. Let $P_{\phi}^{\alpha}=T \cdot N_{\phi}^{\alpha}$ and so on.

We use the following fundamental equation of intertwining operators T_{w} and functions ϕ (see [Casselman 1980, Theorem 3.4]): for each simple reflection s_{k} and $w \in W$ with $l\left(s_{k} w\right)=l(w)+1$, we have

$$
\begin{align*}
& T_{s_{k}}\left(\phi_{w, s_{k} \chi}\right)=\left(c_{\alpha_{k}}\left(s_{k} \chi\right)-1\right) \phi_{w, \chi}+q^{-1} \phi_{s_{k} w, \chi} \tag{4-1}\\
& T_{s_{k}}\left(\phi_{w, s_{k} \chi}\right)=\phi_{w, \chi}+\left(c_{\alpha_{k}}\left(s_{k} \chi\right)-q^{-1}\right) \phi_{s_{k} w, \chi} \tag{4-2}
\end{align*}
$$

Lemma 4.4. Let $w=w_{n}$ and $\beta=\beta_{n}$. Then, $T_{w^{-1}}^{*} \Delta_{S, \chi}\left(\operatorname{ch}_{B}\right)=-c_{\beta}(\chi) \chi\left(a_{\beta}\right)$.
Proof. Since $w=s_{2 n}$ is a simple reflection, we can apply (4-1) and obtain $T_{w^{-1}}\left(\phi_{B, w \chi}\right)=\left(c_{\beta}(w \chi)-1\right) \phi_{1, \chi}+q^{-1} \phi_{w, \chi}$. Using the integral expression (3-3),
it follows that $\Lambda_{S}\left(\phi_{1, \chi}\right)=1$ (with Haar measure normalized so that the volume of B is 1). Therefore, it remains to compute $\Lambda_{S, \chi}\left(\phi_{w, \chi}\right)$.

Assume $\operatorname{Re} z_{i}>0$ for all i so that Δ_{S} is given by (3-3). In order to use the integral expression (3-3) again, we need to express elements of $B w B$ in the form $P_{\phi} S$. Note that $B w B$ need not be contained in $P_{\phi} S$, but almost all (i.e., except elements in certain set of measure 0) elements must be contained.

We use the following measure-preserving decomposition where all compact groups which appear are assumed to be total measure 1:

$$
B w B=P_{\phi}(\mathfrak{o}) w N^{\beta}(\mathfrak{o}) N^{-, \widehat{-\beta}}(\mathfrak{p})
$$

An easy calculation shows that $\operatorname{Lie}\left(N^{-,} \widehat{-\beta}\right)(\mathfrak{p}) \subset \operatorname{Lie}\left(P_{\phi}^{\hat{\beta}}\right)(\mathfrak{p})+\operatorname{Lie}(S)(\mathfrak{p})$, and by an argument similar to the proof of [Sakellaridis 2006, Lemma 5.1], we have $N^{-, \widehat{-\beta}}(\mathfrak{p}) \subset P_{\phi}^{\hat{\beta}}(\mathfrak{o}) S(\mathfrak{o})$. Consequently,

$$
\Lambda_{S}\left(\phi_{w, \chi}\right)=\Delta_{S}\left(\operatorname{ch}_{B w B}\right)=\int_{B w B} \Theta_{\chi}(x) d x=q \int_{w N_{\phi}^{\beta}(\mathfrak{o})} \Theta_{\chi}(x) d x
$$

The domain of the integral $w N_{\phi}^{\beta}(\mathfrak{o})$ consists of elements of the form

$$
\left(\begin{array}{cc|cc}
\mathbb{1}_{2(n-1)} & & \\
& 0_{2} & & \varepsilon \\
\hline & & \mathbb{1}_{2(n-1)} & \\
& \varepsilon & & -x \cdot \mathbb{1}_{2}
\end{array}\right)=: A(x),
$$

with $x \in \mathfrak{o}$. If $x \neq 0$,

$$
A(x)=\left(\begin{array}{ll|ll}
\mathbb{1}_{2(n-1)} & & & \\
& x^{-1} \cdot \mathbb{1}_{2} & & -\varepsilon \\
\hline & \mathbb{1}_{2(n-1)} & \\
\hline & & x \cdot \mathbb{1}_{2}
\end{array}\right)\left(\begin{array}{ll|l}
\mathbb{1}_{2(n-1)} & & \\
& & -\mathbb{1}_{2} \\
& \\
\hline & & \mathbb{1}_{2(n-1)} \\
& & \\
& & \\
& & -\mathbb{1}_{2}
\end{array}\right) \in P_{\phi} S
$$

Therefore,

$$
\Theta_{\chi}(A(x))=|x|^{z_{2 n-1}+z_{2 n}-1} \psi\left(\frac{1}{2} \operatorname{tr}\left(x^{-1} \varepsilon^{2}\right)\right)=|x|^{z_{2 n-1}+z_{2 n}-1} \psi^{-1}\left(x^{-1}\right)
$$

and
$\Lambda_{S}\left(\phi_{w}, \chi\right)=q \int_{0}|x|^{z_{2 n-1}+z_{2 n}-1} \psi^{-1}\left(x^{-1}\right) d x=q \sum_{i=0}^{\infty}\left(q \chi\left(a_{\alpha}\right)\right)^{i} \int_{\mathfrak{p}^{i}-\mathfrak{p}^{i+1}} \psi^{-1}\left(x^{-1}\right) d x$.
Substituting

$$
\int_{\mathfrak{p}^{i}-\mathfrak{p}^{i+1}} \psi^{-1}\left(x^{-1}\right) d x= \begin{cases}1-q^{-1} & (i=0) \\ -q^{-2} & (i=1) \\ 0 & (i \geq 2)\end{cases}
$$

for the above equation, it follows that

$$
\Lambda_{S}\left(\phi_{w, \chi}\right)=q\left(1-q^{-1}-q^{-1} \chi\left(a_{\beta}\right)\right)
$$

By putting all this together and after some simple algebraic manipulation, the desired equation follows. By rationality, we can drop the assumption of $\operatorname{Re} z_{i}>0$ and the result follows for all χ.

Lemma 4.5. Let $w=w_{i}$ for fixed $1 \leq i \leq n-1$. Then

$$
T_{w^{-1}}^{*} \Delta_{S}\left(\operatorname{ch}_{B}\right)=\frac{q^{-1}\left(q^{-2} x-1\right)\left(x-q^{-1}\right)}{\left(q^{-1} x-1\right)(x-1)}
$$

where $x=\chi\left(a_{\alpha_{2 i}}\right)$.
Proof. Applying (4-1), we obtain $T_{s_{j}^{-1}} \phi_{1, s_{j} \chi}=\left(c_{\alpha_{j}}\left(s_{j} \chi\right)-1\right) \phi_{1, \chi}+q^{-1} \phi_{s_{j} \chi}$ for each $2 i-1 \leq j \leq 2 i+1$. Since $s_{j} \notin \Gamma, T_{s_{j}^{-1}}^{*} \Lambda_{S, \chi}\left(\phi_{1, s_{j} \chi}\right)=0$ and we get

$$
\begin{equation*}
q^{-1} \Lambda_{S, \chi}\left(\phi_{s_{j}, \chi}\right)=-\left(c_{\alpha_{j}}\left(s_{j} \chi\right)-1\right) \tag{4-3}
\end{equation*}
$$

Repeating the same argument gives us the following equations: for every distinct $j, k, l \in\{2 i-1,2 i, 2 i+1\}$,

$$
\begin{align*}
q^{-2} \Lambda_{S, \chi}\left(\phi_{s_{k} s_{j}, \chi}\right) & =\left(c_{\alpha_{k}}\left(s_{k} \chi\right)-1\right)\left(c_{\alpha_{j}}\left(s_{j} \chi\right)-1\right), \tag{4-4}\\
q^{-3} \Lambda_{S, \chi}\left(\phi_{s_{l} s_{k} s_{j}, \chi}\right) & =-\left(c_{\alpha_{l}}\left(s_{l} \chi\right)-1\right)\left(c_{\alpha_{k}}\left(s_{k} \chi\right)-1\right)\left(c_{\alpha_{j}}\left(s_{j} \chi\right)-1\right) \tag{4-5}
\end{align*}
$$

For $j \in\{2 i-1,2 i+1\}$, we also obtain

$$
\begin{align*}
& q^{-3} \Lambda_{S, \chi}\left(\phi_{s_{2 i} s_{j} s_{2 i}}, \chi\right) \tag{4-6}\\
& =\left(c_{\alpha_{2 i+1}}\left(s_{2 i+1} s_{2 i} \chi\right)-1\right)\left(c_{\alpha_{2 i}}\left(s_{2 i} \chi\right)-q^{-1}\right)\left(c_{\alpha_{2 i}}\left(s_{2 i} \chi\right)-1\right) \\
& \quad-q^{-1}\left(c_{\alpha_{2 i+1}}\left(s_{2 i+1} s_{2} \chi\right)-1\right)-\left(c_{\alpha_{2 i}}\left(s_{2 i} \chi\right)-1\right)^{2}\left(c_{\alpha_{2 i+1}}\left(s_{2 i+1} \chi\right)-1\right)
\end{align*}
$$

Using (4-1) and (4-2) repeatedly, we can express $T_{w^{-1}}\left(\phi_{1, w \chi}\right)$ as a linear combination of functions ϕ. Substituting (4-3), (4-4) and (4-5), we obtain

$$
\begin{aligned}
\Lambda_{S}\left(T_{w^{-1}}\left(\phi_{1, w \chi}\right)\right)= & \left(c_{\alpha_{2 i}}\left(s_{2 i} \chi\right)-1\right)^{2}\left(c_{\alpha_{2 i-1}}\left(s_{2 i-1} \chi\right)-1\right)\left(c_{\alpha_{2 i+1}}\left(s_{2 i+1} s_{2 i} \chi\right)-1\right) \\
& +\left(c_{\alpha_{2 i-1}}\left(s_{2 i-1} s_{2 i} \chi\right)-1\right)\left(c_{\alpha_{2 i}}\left(s_{2 i} \chi\right)-q^{-1}\right) \\
& \quad\left(c_{\alpha_{2 i}}\left(s_{2 i} \chi\right)-1\right)\left(c_{\alpha_{2 i+1}}\left(s_{2 i+1} s_{2 i} \chi\right)-1\right) \\
& -q^{-1}\left(c_{\alpha_{2 i-1}}\left(s_{2 i-1} s_{2 i} \chi\right)-1\right)\left(c_{\alpha_{2 i+1}}\left(s_{2 i+1} s_{2 i} \chi\right)-1\right) \\
& -\left(c_{\alpha_{2 i}}\left(s_{2 i} \chi\right)-1\right)^{2}\left(c_{\alpha_{2 i-1}}\left(s_{2 i-1} \chi\right)-1\right)\left(c_{\alpha_{2 i+1}}\left(s_{2 i+1} s_{2 i} \chi\right)-1\right) \\
& -\left(c_{\alpha_{2 i}}\left(s_{2 i} \chi\right)-1\right)^{2}\left(c_{\alpha_{2 i-1}}\left(s_{2 i-1} \chi\right)-1\right)\left(c_{\alpha_{2 i+1}}\left(s_{2 i+1} \chi\right)-1\right) \\
& +q^{-4} \Lambda_{S}\left(\phi_{w, \chi}\right) .
\end{aligned}
$$

Simple computations using

$$
\begin{aligned}
c_{\alpha_{2 i+1}}\left(s_{2 i+1} \chi\right) & =c_{\alpha_{2 i-1}}\left(s_{2 i-1} \chi\right)=0, \\
c_{\alpha_{2 i}}\left(s_{2 i} \chi\right)-1 & =\frac{1-q^{-1}}{\chi\left(a_{\alpha_{2 i}}\right)-1}, \\
c_{\alpha_{2 i+1}}\left(s_{2 i+1} s_{2 i} \chi\right)-1 & =c_{\alpha_{2 i-1}}\left(s_{2 i-1} s_{2 i+1} s_{2 i} \chi\right)-1=\frac{1-q^{-1}}{q^{-1} \chi\left(a_{\alpha_{2 i}}\right)-1}, \\
c_{\alpha_{2 i}}\left(s_{2 i} \chi\right)-q^{-1} & =\frac{1-q^{-1}}{\chi\left(a_{\alpha_{2 i}}\right)-1} \chi\left(a_{\alpha_{2 i}}\right)
\end{aligned}
$$

show that

$$
\begin{aligned}
\Lambda_{S}\left(T_{w^{-1}}\left(\phi_{1, w \chi}\right)\right)= & \frac{\left(1-q^{-1}\right)^{4}}{\left(q^{-1} x-1\right)^{2}(x-1)^{2}} x-q^{-1} \frac{\left(1-q^{-1}\right)^{2}}{\left(q^{-1} x-1\right)^{2}} \\
& \quad-\frac{\left(1-q^{-1}\right)^{2}}{(x-1)^{2}}+q^{-4} \Lambda_{S}\left(\phi_{w, \chi}\right) \\
= & -\frac{\left(1+q^{-1}\right)\left(1-q^{-1}\right)^{2}}{\left(q^{-1} x-1\right)(x-1)}+q^{-4} \Lambda_{S}\left(\phi_{w, \chi}\right)
\end{aligned}
$$

where $x=\chi\left(a_{\alpha_{2 i}}\right)$.
It remains to compute $\Lambda_{S}\left(\phi_{w, \chi}\right)$. This can be done by essentially the same method as the proof of Lemma 4.4.

Assume $\operatorname{Re} z_{1}>\operatorname{Re} z_{2}>\cdots>\operatorname{Re} z_{2 n}>0$ so that Δ_{S} is given by (3-3). For later use, we make a stronger assumption. Let
$\Sigma_{i}=\{\alpha \in \Sigma \mid \alpha>0, w \alpha<0\}=\left\{e_{2 i-1}-e_{2 i+1}, e_{2 i-1}-e_{2 i+2}, e_{2 i}-e_{2 i+1}, e_{2 i}-e_{2 i+2}\right\}$. Then $B w B=P_{\phi}(\mathfrak{o}) w N_{\phi}^{\Sigma_{i}}(\mathfrak{o}) N_{\phi}^{-,-\widehat{\Sigma_{i}}}(\mathfrak{p})$. An easy calculation shows that

$$
\operatorname{Lie}\left(N_{\phi}^{-,-\widehat{\Sigma_{i}}}\right)(\mathfrak{p}) \subset \operatorname{Lie}(S)(\mathfrak{p})+\operatorname{Lie}\left(P_{\phi}^{\widehat{\Sigma_{i}}}\right)(\mathfrak{p})
$$

and by an argument similar to the proof of Lemma 5.1 of [Sakellaridis 2006], we have $N_{\phi}^{-,-\Sigma_{i}}(\mathfrak{p}) \subset P_{\phi}^{\widehat{\Sigma_{i}}}(\mathfrak{o}) S(\mathfrak{o})$. Therefore,

$$
\Lambda_{S}\left(\phi_{w, \chi}\right)=\Delta_{S}\left(\operatorname{ch}_{B w B}\right)=\int_{B w B} \Theta_{\chi}(x) d x=q^{4} \int_{w N_{\phi}^{\Sigma_{i}(\mathfrak{o})}} \Theta_{\chi}(x) d x
$$

Then $w N_{\phi}^{\Sigma_{i}}(\mathfrak{o})$ consists of elements of the form

$$
B(a)=\left(\begin{array}{cccc}
\mathbb{1}_{2(i-1)} & & \\
& 0_{2} & \mathbb{1}_{2} & \\
& \mathbb{1}_{2} & a & \\
& & & \mathbb{1}_{2(n-i-1)}
\end{array}\right) \in G_{0}
$$

with $a \in \operatorname{Mat}_{2}(\mathfrak{o})$. If $\operatorname{det} a \neq-1$, let

$$
b=\left(\begin{array}{cc}
1+\operatorname{det} a & 0 \\
0 & 1
\end{array}\right)
$$

Then

$$
\left(\begin{array}{ccc}
\mathbb{1}_{2(i-1)} & & \\
& b \varepsilon b^{-1 t} a \varepsilon & \\
& b^{-1} & \\
& & \mathbb{1}_{2(n-i-1)}
\end{array}\right) B(a) \in S \cap G_{0}
$$

Thus,

$$
\Theta_{\chi}(B(a))=|1+\operatorname{det} a|^{z_{2 i-1}-z_{2 i+1}-2}
$$

and

$$
\begin{array}{rl}
\Lambda_{S}\left(\phi_{w, \chi}\right)= & \left.q^{4} \int_{\binom{x}{z}} \begin{array}{l}
w
\end{array}\right) \in \operatorname{Mat}_{2}(o) \\
= & q^{4} \cdot \operatorname{vol}\left(\operatorname{Mat}_{2}(\mathfrak{o})-\operatorname{GL}_{2}(\mathfrak{o})\right) \\
& +q^{4} \int_{\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right) \in \operatorname{GL}_{2}(\mathfrak{o})}|1+x w-y z|^{z_{2 i-1}-z_{2 i+1}-2} d x d y d z d w \\
z_{2 i-1}-z_{2 i+1}-2 & d x d y d z d w .
\end{array}
$$

The first term can be computed as follows. Since the restriction of a Haar measure on $\operatorname{Mat}_{2}(\mathfrak{o})$ to $\mathrm{GL}_{2}(\mathfrak{o})$ is equal to the restriction of a Haar measure on $\mathrm{GL}_{2}(F)$,

$$
\operatorname{vol}\left(\mathrm{GL}_{2}(\mathfrak{o})\right)=(q+1) \cdot \operatorname{vol}\left(\begin{array}{ll}
\mathfrak{o}^{\times} & \mathfrak{o} \\
\mathfrak{p} & \mathfrak{o}^{\times}
\end{array}\right)=q^{-3}(q-1)^{2}(q+1)
$$

and hence $\operatorname{vol}\left(\operatorname{Mat}_{2}(\mathfrak{o})-\mathrm{GL}_{2}(\mathfrak{o})\right)=1-q^{-3}(q-1)^{2}(q+1)$.
Next, we need to compute the second term. There is a diffeomorphism f between $\mathrm{GL}_{2}(\mathfrak{o})$ and $\mathfrak{o}^{\times} \times \mathrm{SL}_{2}(\mathfrak{o})$ given by

$$
\mathfrak{o}^{\times} \times \mathrm{SL}_{2}(\mathfrak{o}) \ni\left(t,\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)\right) \mapsto\left(\begin{array}{cc}
t x & t y \\
z & w
\end{array}\right) \in \mathrm{GL}_{2}(\mathfrak{o})
$$

The Jacobian of f on the region $\mathfrak{o}^{\times} \times\{w \neq 0\} \subset \mathfrak{o}^{\times} \times \mathrm{SL}_{2}(\mathfrak{o})$ is $J f=t / w$. Since the complement of this region is a set of measure 0 , we can transform the second term into an integral on $\mathfrak{o}^{\times} \times \mathrm{SL}_{2}(\mathfrak{o})$:

$$
\begin{aligned}
& \int_{\left(\begin{array}{ll}
x \\
z & y
\end{array}\right) \in \mathrm{GL}_{2}(\mathfrak{o})}|1+x w-y z|^{\mid Z_{2 i-1}-z_{2 i+1}-2} d x d y d z d w \\
&=\int_{\mathfrak{o}^{\times}} \int_{\{w \neq 0\}}|1+t|^{z_{2 i-1}-z_{2 i+1}-2}\left|t w^{-1}\right| d^{\times} t d y d z d w \\
&=\int_{\mathfrak{o}^{\times}}|1+t|^{z_{2 i-1}-z_{2 i+1}-2} d t \cdot \int_{\{w \neq 0\}}|w|^{-1} d y d z d w
\end{aligned}
$$

First, we consider the integral $\int_{\mathfrak{0}^{\times}}|1+t|^{z_{i-1}-z_{2 i+1}-2} d t$. Split the integral into $1+t \in \mathfrak{o}^{\times}$and $1+t \in \mathfrak{p}$. The former contributes $1-2 q^{-1}$ and the latter meshing

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left|\varpi^{j}\right|^{z_{2 i-1}-z_{2 i+1}-2} \cdot\left(1-q^{-1}\right) q^{-j} & =\left(1-q^{-1}\right) \sum_{j=1}^{\infty} \chi\left(a_{\alpha_{2 i}}\right)^{j} \\
& =\left(1-q^{-1}\right) \chi\left(a_{\alpha_{2 i}}\right)\left(1-\chi\left(a_{\alpha_{2 i}}\right)^{-1}\right.
\end{aligned}
$$

Here, we used the assumption $\operatorname{Re} z_{1}>\operatorname{Re} z_{2}>\cdots>\operatorname{Re} z_{2 n}>0$. This implies $\left|\chi\left(a_{\alpha_{2 i}}\right)\right|<1$, which is necessary for convergence of the above power series.

Therefore, we have

$$
\int_{\mathfrak{o}^{\times}}|1+t|^{z_{2 i-1}-z_{2 i+1}-2} d t=-q^{-1}+\left(1-q^{-1}\right)\left(1-\chi\left(a_{\alpha_{2 i}}\right)\right)^{-1}
$$

Second, we compute the integral $\int_{\{w \neq 0\}}|w|^{-1} d y d z d w$. Splitting the integral into $w \in \mathfrak{o}^{\times}$and $w \in \varpi^{j} \mathfrak{o}^{\times}$, we get

$$
\begin{array}{rl}
\int_{\{w \neq 0\}}|w|^{-1} & d y d z d w \\
& =\int_{w \in \mathfrak{o}^{\times}} \int_{y, z \in \mathfrak{o}} d y d z d w+\sum_{j=1}^{\infty} \int_{w \in \varpi^{j} \mathfrak{o}^{\times}} \int_{y z \in-1+\mathfrak{p}^{j}}\left|\varpi^{j}\right|^{-1} d y d z d w \\
& =1-q^{-1}+\sum_{j=1}^{\infty}\left(1-q^{-1}\right)^{2} q^{-j} \\
& =1-q^{-2}
\end{array}
$$

Consequently, we obtain

$$
\Lambda_{S}\left(\phi_{w, \chi}\right)=q^{2}-q(q-1)^{2}(q+1)\left(\chi\left(a_{\alpha_{2 i}}\right)-1\right)^{-1}
$$

Putting all this together, the desired equation follows. By rationality, we can drop the assumption of $\operatorname{Re} z_{1}>\operatorname{Re} z_{2}>\cdots>\operatorname{Re} z_{2 n}>0$, and the result follows for all χ.

Some more computation enables us to rewrite these results.
Corollary. For $w=w_{n}$ we have:

$$
T_{w^{-1}}^{*} \Lambda_{S, \chi}=-\chi\left(a_{\beta}\right) c_{\beta}(\chi) \Lambda_{S, w \chi}
$$

where $\beta=\beta_{n}$.
For $w=w_{i}(1 \leq i<n)$ we have:

$$
T_{w^{-1}}^{*} \Lambda_{S, \chi}=-\chi\left(a_{\beta}\right) \frac{1-q^{-2} \chi\left(a_{-\beta}\right)}{1-q^{-2} \chi\left(a_{\beta}\right)} \prod_{\alpha \in \Sigma_{i}} c_{\alpha}(\chi) \Lambda_{S, w \chi}
$$

where $\beta=\beta_{i}$.

More compactly, for every $w \in \Gamma$,

$$
T_{w^{-1}}^{*} \Lambda_{S, \chi}=(-1)^{l_{\Gamma}(w)} \prod_{\substack{\alpha>0 \\ w \alpha<0}} c_{\alpha}(\chi) \prod_{\substack{\beta>0 \\ w \beta<0}} d_{\beta}(\chi) \Lambda_{S, w \chi}
$$

where $\alpha \in \Sigma, \beta \in \Phi$.
These complete the proof of Theorem 2.4.

Acknowledgements

I would like to thank Tamotsu Ikeda, my advisor, for directing my attention to this question and for guiding and encouraging my research.

References

[Bushnell and Henniart 2006] C. J. Bushnell and G. Henniart, The local Langlands conjecture for GL(2), Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 335, Springer, Berlin, 2006. MR Zbl
[Casselman 1980] W. Casselman, "The unramified principal series of \mathfrak{p}-adic groups. I. The spherical function", Compositio Math. 40:3 (1980), 387-406. MR Zbl
[Casselman 1995] W. Casselman, "Introduction to the theory of admissible repressentaitons of p adic reductive groups", book draft, 1995, Available at https://www.math.ubc.ca/~cass/research/pdf/ p-adic-book.pdf.
[Casselman and Shalika 1980] W. Casselman and J. Shalika, "The unramified principal series of p-adic groups. II. The Whittaker function", Compositio Math. 41:2 (1980), 207-231. MR Zbl
[Hironaka 1999] Y. Hironaka, "Spherical functions and local densities on Hermitian forms", J. Math. Soc. Japan 51:3 (1999), 553-581. MR Zbl
[Jiang and Qin 2007] D. Jiang and Y. Qin, "Residues of Eisenstein series and generalized Shalika models for $\mathrm{SO}_{4 n} "$, J. Ramanujan Math. Soc. 22:2 (2007), 101-133. MR Zbl
[Nien 2010] C. Nien, "Local uniqueness of generalized Shalika models for $\mathrm{SO}_{4 n}$ ", J. Algebra 323:2 (2010), 437-457. MR Zbl
[Sakellaridis 2006] Y. Sakellaridis, "A Casselman-Shalika formula for the Shalika model of GL ${ }_{n}$ ", Canad. J. Math. 58:5 (2006), 1095-1120. MR Zbl

Received February 20, 2017.
MiYu Suzuki
Department of Mathematics
Kyoto University
Kyoto
JAPAN
msuzuki@math.kyoto-u.ac.jp

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm
EDITORS
Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu
Wee Teck Gan
Mathematics Department
National University of Singapore Singapore 119076 matgwt@nus.edu.sg

Sorin Popa

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135 chari@math.ucr.edu

Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 liu@math.ucla.edu

Jie Qing

Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Daryl Cooper

Department of Mathematics
University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu
Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhlu@maths.hku.hk

Paul Yang

Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2018 is US $\$ 475 /$ year for the electronic version, and $\$ 640 /$ year for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
E. mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 294 No. $2 \quad$ June 2018
A positive mass theorem and Penrose inequality for graphs with noncompact 257 boundaryEzEQUIEL BARBOSA and Adson MEIra
Diagrams for relative trisections 275Nickolas A. Castro, David T. Gay and Juanita Pinzón-Caicedo
Linkage of modules with respect to a semidualizing module 307Mohammad T. DibaEi and Arash Sadeghi
Biharmonic hypersurfaces with constant scalar curvature in space forms 329Yu Fu and Min-Chun Hong
Nonabelian Fourier transforms for spherical representations 351
JAyCE R. GETZ
Entropy of embedded surfaces in quasi-Fuchsian manifolds 375
Olivier Glorieux
Smooth Schubert varieties and generalized Schubert polynomials in algebraic 401
cobordism of Grassmannians
Jens Hornbostel and Nicolas Perrin
Sobolev inequalities on a weighted Riemannian manifold of positive 423
Bakry-Émery curvature and convex boundary Saïd Ilias and Abdolhakim Shouman
On the existence of closed geodesics on 2-orbifolds 453
Christian LANGE
A Casselman-Shalika formula for the generalized Shalika model of $\mathrm{SO}_{4 n}$ 473 MiYu SUZUKI
Nontautological bielliptic cycles 495JASON VAN ZELM
Addendum: Singularities of flat fronts in hyperbolic space 505
Masatoshi Kokubu, Wayne Rossman, Kentaro Saji, Masaaki Umehara and Kotaro Yamada

