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We compute the explicit formula (sometimes called the Casselman–Shalika
formula) of the generalized Shalika model for unramified principal series
of p-adic SO4n. The method mainly used is the Casselman–Shalika method,
modified by Y. Hironaka and applied by Y. Sakellaridis to the case of the
Shalika model of GL2n.

1. Introduction

Let G = SO4n(F), the F-split 4n-dimensional special orthogonal group, where F
is a nonarchimedean local field of characteristic 0.

By P, we denote the Siegel parabolic subgroup of G and by N, the unipotent
radical of P. Once we identify G with a subgroup of the isotropy group of the
quadratic form defined by

ξ =
(

12n
12n

)
,

N is identified with the subgroup consisting of matrices of the form(
12n X

12n

)
with X + tX = 02n.

Let M be the Levi component of P consisting of matrices of the form(A
tA−1

)
with A ∈ GL2n(F).

Jiang and Qin [2007] introduced the notion of a generalized Shalika model for
representations of G as follows. Take any nontrivial additive character ψ of F with
conductor 0. The expression

ψ
(1

2 tr(J X)
)

defines a character 9 on N, where

J =
(

1n
−1n

)
.
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The stabilizer of this character in M is naturally isomorphic to Sp2n(F), the sym-
plectic group with respect to J,

Sp2n(F)= {x ∈ GL2n(F) | tx J x = J }.

Define the subgroup (called the “generalized Shalika subgroup”) H of P by

H := StabM(9)N ∼= Sp2n(F)n N

and extend 9 to a character of H, which will be again denoted by 9.
An admissible representation π of G is said to have a generalized Shalika model

if there is a nonzero G-morphism from π to IndG
H (9). Because of Frobenius reci-

procity, this is equivalent to saying that there is a nonzero H -morphism from π to9.
In this article, we will treat the case of unramified principal series I (χ) of G

and determine a necessary and sufficient condition for I (χ) to have a generalized
Shalika model. Moreover, we will give an explicit formula (a Casselman–Shalika
formula) for the spherical vector in the generalized Shalika model of I (χ).

We will explain our results more precisely. Take any nonzero H -morphism 3

from I (χ) to 9. Let K = SO4n(o), the standard maximal compact subgroup of
G, where o is the ring of integers of F. There is a unique K -invariant vector φK

in I (χ) which satisfies φK (1)= 1. Let �(g)=3(RgφK ). Our goal is to give an
explicit formula for this function �.

The Weyl group of G is denoted by W. The main result involves the subgroup
0 of W. Let 6 = {ei ± e j , 1 ≤ i, j ≤ 2n, i 6= j} be the root system of G and
Ei = e2i−1 + e2i . Then, 8 = {Ei − E j , ±Ek, 1 ≤ i, j, k ≤ n, i 6= j} is a root
system of type Bn and 0 is the Weyl group of 8 realized by the subgroup of W. For
each root α ∈6, Casselman defined a certain constant cα(χ) (see [Casselman 1980,
Section 3]). If β ∈8 is a short root, then β is in 6 and aβ is already defined. In this
case, let dβ(χ)= χ(aβ). If β = Ei−E j is a long root of 8, define aβ = ae2i−1−e2 j−1 .
In this case, let

dβ(χ)= χ(aβ)
1− q−2χ(a−β)
1− q−2χ(aβ)

.

Our main result is as follows.

Theorem 1.1. For every λ= (λ1,...,λn) ∈ Zn with λ1 ≥ λ2 ≥ ··· ≥ λn ≥ 0,

�(gλ)=
∏
α>0

cα(χ)
∑
w∈0

(−1)l0(w)(wχ)−1δ1/2(hλ)
∏

β>0, wβ<0

dβ(χ),

where gλ = diag($ λ1,...,$ λn ,1,...,1), hλ = diag($ λ1,1,$ λ2,1,...,$ λn ,1) ∈ M
and l0 is the length function of 0.

Note that � satisfies �(hgk)=9(h)�(g) for every h ∈ H, k ∈ K, g ∈ G and
hence we only need to compute the value of � for representatives {gλ} of H \G/K.
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The method we will use is based on works of Casselman and Shalika (see
[Casselman 1980; 1980]) and the outline of this paper is essentially the same as that
of [Sakellaridis 2006], where an explicit formula for the Shalika model is given.

2. Preliminaries

Notation. Let F be a nonarchimedean local field of characteristic 0. Let $ be
a uniformizer, q the order of the residue field, o the ring of integers, and p the
maximal ideal of F.

Let G = SO4n(F), the F-split 4n-dimensional special orthogonal group. The
group G is identified with the subgroup of SL4n(F) consisting of matrices satisfying

tgξg = ξ, ξ =

(
12n

12n

)
.

Denote by Mat2n(F) the set of matrices of degree 2n.
By P, we denote the Siegel parabolic subgroup of G, consisting of matrices of

the form

(2-1)
(

x
tx−1

)(
12n X

12n

)
with x ∈ GL2n(F) and X ∈Mat2n(F), X + tX = 0. Let N be the unipotent radical
of P and M the Levi component with Levi decomposition P = M N as (2-1). We
will frequently identify M with GL2n(F) without notice.

The Bruhat–Tits building of G is denoted by B(G). Each maximal F-split torus
defines an apartment of B(G). We denote the split maximal torus consisting of
diagonal matrices by T and corresponding apartment by A(T ). Fix a special point
o ∈A(T ) and identify A(T ) with 2n-dimensional Euclid space with origin o.

Let 6 be the set of roots of G with respect to T. By taking differentials, we
identify elements of 6 with linear functions on t, the Lie algebra of T. We will
naturally identify t with an F-linear space of diagonal matrices:

t= {diag(t1, . . . , t2n,−t1, . . . ,−t2n) | t1, . . . , t2n ∈ F}.

For 1≤ i ≤ 2n, the element ei of the dual space of t is defined by

ei : diag(t1, . . . , t2n,−t1, . . . ,−t2n) 7→ ti .

Then, under identifications mentioned above, 6 = {ei ± e j | 1≤ i 6= j ≤ 2n}. Let
5 = {αi := ei − ei+1 | 1 ≤ i ≤ 2n− 1, α2n := e2n−1+ e2n}; this is a basis of the
root system 6. Elements of 6 are regarded as linear functions on A(T ) and the set
6aff of affine roots of G as a subset of affine functions on A(T ):

6aff = {α+m | α ∈6,m ∈ Z}.
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Let C = {x ∈A(T ) | 0< α(x) < 1 for all α ∈5} be an alcove of B(G). Let B
be the Iwahori subgroup of G stabilizing C.

We denote the Weyl group of G by W. By si ∈W, we denote the simple reflection
attached to the simple root αi .

Generalized Shalika model. Following [Jiang and Qin 2007], we define the gener-
alized Shalika model for representations of G as follows. Let A be the set of nonsin-
gular skew-symmetric matrices of degree 2n. Take any nontrivial additive character
ψ of F with conductor 0 and a skew-symmetric matrix b ∈ A . The expression

ψ
( 1

2 tr(bX)
)

defines a character 9b on N. The stabilizer of this character in M is naturally
isomorphic to Spb

2n(F), the symplectic group with respect to b,

Spb
2n(F)= {x ∈ GL2n(F) | txbx = b}.

Form a group
H b
:= Spb

2n(F)n N

and extend 9b to a character of H b, which is again denoted by 9b.
Let J =

(
−1n

1n
)
∈ A. We will simply denote 9b, H b and Spb

2n(F) by 9 (or
sometimes by 9H ), H and Sp2n(F) when b = J.

Definition. Let (π, V ) be an irreducible admissible representation of G. We say
that π has a generalized Shalika model if HomHb(π,9b) is nonzero for some b ∈A .

Nien proved the uniqueness of generalized Shalika models:

Theorem 2.1 [Nien 2010]. For any irreducible admissible representation π of
SO4n(F) and b ∈ A ,

dim HomHb(π,9b)≤ 1.

We will consider the generalized Shalika model for unramified principal series of
G. The Borel subgroup of G consisting of matrices in the form of (2-1) with upper tri-
angular x ∈GL2n(F)will be denoted by Pφ . Let χ= (|·|z1, |·|z2 |, . . . , |·|z2n ) be an un-
ramified character of Pφ (i.e., χ : diag(t1, . . . , t2n, t−1

1 , . . . , t−1
2n ) 7→ |t1|

z1 · · · |t2n|
z2n )

and I (χ) the smooth unramified principal series of G. The representation space of
I (χ) is realized by the space of locally constant functions on G which satisfy

f (pg)= χδ1/2(p) f (g)

for every p ∈ Pφ , g ∈G, where δ= (| · |4n−2, | · |4n−4, . . . , | · |2, | · |0) is the modular
character of Pφ . Then G acts on this space by right translations R. There is a
surjective map Pχ to this space from C∞c (G) defined by

Pχ ( f )(g)=
∫

Pφ
χ−1δ1/2(p) f (pg) dp
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for f ∈ C∞c (G) and g ∈ G. We will always assume that Pφ(o) has total measure 1.
Let K = SO4n(o) be the standard maximal compact subgroup of G and φK = φK ,χ

be the unique K -invariant element of I (χ) satisfying φK (1)= 1. It is easy to see
that φK is the image under Pχ of the characteristic function of K.

Definition. Take a nontrivial element 3(=3H =3H,χ ) ∈ HomH (I (χ),9)). We
define a generalized Shalika function

�(g)(=�H (g)=�H,χ (g))=3(RgφK ).

The aim of this paper is to give an explicit formula of this function.

The main results. We will briefly explain the statement of the main results in this
subsection. At first, we need to introduce some more notation.

Since the function � satisfies

�(hgk)=9(h)�(g)

for every h ∈ H, g ∈ G and k ∈ K, it suffices to compute it for a set of double coset
representatives in H \G/K. By Iwasawa decomposition,

H \G/K = H \ P K/K ∼= Sp2n(F) \GL2n(F)/GL2n(o).

Considering transitive right action of GL2n(F) on A defined by X∗g := tgXg, we can
naturally identify these double cosets with orbits in A under the action of GL2n(o).

Proposition 2.2. We have the following double coset decomposition:

GL2n(F)=
⊔
λ

Sp2n(F)gλ GL2n(o),

where gλ :=diag($ λ1,$ λ2, . . .$ λn , 1, . . . , 1)with λ=(λ1, λ2, . . . , λn)∈Zn, λ1≥

λ2 ≥ . . .≥ λn .

Proof. The elementary divisor theorem shows that representatives of orbits in A
under the action of GL2n(o) can be taken as follows:

Xλ =



$ λ1

$ λ2

. . .
$ λn

−$ λ1

−$ λ2

. . .
−$ λn


.

Since Xλ = J ∗ gλ, we obtain the double coset decomposition. �

By an abuse of notation, we will write gλ as diag(g−1
λ , gλ) ∈ G. Then we only

have to compute �(gλ) for each λ.
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Lemma 2.3. If some λi is negative, then �(gλ)= 0.

Proof. Assume that λn < 0 and let X ∈Mat2n(o) be a matrix whose only nonzero
entries are Xn,2n = u and X2n,n =−u, where u ∈ o×. Then

a =
(

12n X
12n

)
is an element of K and we have �(gλ)=�(gλa)= ψ−1(u$ λn )�(gλ). Since the
conductor of ψ is 0, we can choose u so that ψ(u$ λn ) 6= 1. �

Consequently, we only have to treat the case where λ is a dominant partition of
some positive integer. Hereafter, we assume that λ denotes these partitions.

For each w ∈ W, there is an intertwining operator Tw : I (χ)→ I (wχ) which
satisfies the following relations (see [Casselman 1980]):

Tw(φK ,χ )= cw(χ)φK ,wχ ,

where

cw(χ)=
∏

α>0, wα<0

cα(χ), cα(χ)=
1− q−1χ(aα)

1−χ(aα)
.

Here α is a root of G and aα is a diagonal matrix attached to α. For details, see
[Casselman 1980]. Taking the adjoint, we get a G-morphism T ∗w : I (wχ)

∗
→ I (χ)∗,

where ∗ denotes the dual space of a complex linear space.
Denote the space of distributions on G by D(G). By Pχ : C∞c (G)→ I (χ), we

obtain the adjoint G-morphism P∗χ : I (χ)∗→ D(G). Let 1(= 1H = 1H,χ ) :=

P∗χ (3) ∈ D(G). Based on the work of Sakellaridis [2006] (also see [Casselman
1980] and [Hironaka 1999]), we get

(2-2) �(g)= Q−1
∑
w

( ∏
α>0, wα>0

cα(χ)
)

T ∗
w−11(Rg chB),

where chB denotes the characteristic function of B, Q the volume of Bwl B and
wl is the longest element of W. Hence the problem is reduced to computing
T ∗
w−11(Rg chB) for w ∈W and g = gλ.

The statement of our formula involves the subgroup 0 of W, which is isomorphic
to the Weyl group of type Bn , and its root system. Therefore, let us fix some
notation.

Let Ei = e2i−1 + e2i , βi = Ei − Ei+1 (1 ≤ i < n) and βn = En . Then, 8 :=
{Ei−E j ,±Ek | 1≤ i, j, k≤ n, i 6= j} is a root system of type Bn and {βi | 1≤ i ≤ n}
is a basis of 8.



A CASSELMAN–SHALIKA FORMULA FOR THE SHALIKA MODEL OF SO4n 479

The subgroup 0 is generated by

wi :=



i
∨

12
...

. . .
...

02 12

12 02
. . .

12


∈ M, (1≤ i ≤ n− 1)

and

wn :=


12(n−1)

02 ε

12(n−1)

ε 02

 ∈ G, where ε =
(

0 1
−1 0

)
.

Note that 0 is naturally identified with the Weyl group of the root system 8 and
under this identification, wi is the simple reflection corresponding to βi .

Definition. For each long root β = Ei − E j ∈8, let aβ = ae2i−1−e2 j−1 . For a short
root β ∈8, aβ is already defined since β ∈6.

We define dβ(χ) for each β ∈8 as follows: if β is a short root,

dβ(χ)= χ(aβ)

and if β is a long root,

dβ(χ)= χ(aβ)
1− q−2χ(a−β)
1− q−2χ(aβ)

.

Our main theorem is as follows.

Theorem 2.4. Let χ = (| · |z1, | · |z2, . . . , | · |z2n ) be an unramified character on Pφ
and assume that this character satisfies z2i−1 = 1+ z2i for all a ≤ i ≤ n.

(i) If χ is not of the form as above (or its W -translate), then I (χ) does not have a
generalized Shalika model.

(ii) For every λ= (λ1, . . . , λn) ∈ Zn with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

�(gλ)= Q−1
∏
α>0

cα(χ)
∑
w∈0

(−1)l0(w)(wχ)−1δ1/2(hλ)
∏
β>0
wβ<0

dβ(χ),

where hλ=diag($ λ1, 1,$ λ2, 1, . . . ,$ λn , 1)∈M and l0 is the length function
of 0.
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3. The open coset

In this section, we will determine which double cosets in Pφ \G/H are open (if they
exist). We don’t analyze this quotient space directly but consider Pφ \G/P, which is
easily described by using Weyl groups. Since the unique open coset in Pφ \G/P is
Pφξ P, the open cosets in Pφ \G/H are in this coset (if they exist). So we will treat
the following quotient space: Pφ \ Pφξ P/H ∼= (ξ−1 Pφξ ∩ P)\ P/H ∼= P0 \G0/H0,
where G0=GL2n(F), H0=Sp2n(F) and P0 is the Borel subgroup of G0 consisting
of lower triangular matrices.

The transitive left action of G0 on A is defined by g ∗ X := gX tg. Then there
is a natural surjective map θ from G0 to A defined by θ(g) = g ∗ J. For X ∈ G0

and each 1 ≤ i ≤ n, X i denotes the top left 2i × 2i-block and di (X) its Pfaffian.
Let A ′ = {X ∈ A | di (X) 6= 0 (1 ≤ i ≤ n)} be an open set in A . We will show
that the inverse image of this set under the map θ is a double coset in P0 \G0/H0.
Identifying W0, the Weyl group of G0, with the symmetric group of degree 2n,
define the element w0 of W0 as a permutation such that

w0(i)=
{

2i − 1 (1≤ i ≤ n)
2i − 2n (n+ 1≤ i ≤ 2n).

Let ε =
(
−1

1). Then

θ(w0)= w0 ∗ J =

(
ε
ε
. . .
ε

)
∈ A ′.

Lemma 3.1. A ′ = θ(P0w0 H0). In particular, P0w0 H0 = θ
−1(A ′) is open.

Proof. Since

p ∗ X =
(

pi

∗ ∗

)(
X i ∗

∗ ∗

)(tpi ∗

∗

)
=

(
pi ∗ X i ∗

∗ ∗

)
,

we have di (p ∗ X)= det(pi )
2di (X) 6= 0 and this shows that A ′ is P0-stable. Hence

θ(P0w0 H0)⊂ A ′. By induction on i , we have to show that if X i is of the form(
ε
. . .
ε

)
,

there is a lower triangular matrix p ∈ GL2(i+1)(F) such that

p ∗ X i+1 =

(
ε
. . .
ε

)
.
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Let A j be 2× 2-matrices and assume that X i+1 is expressed as ε A1
. . .

...
ε Ai

−
tA1 · · · −

tAi Ai+1

 .
Let p1 ∈ GL2(i+1)(F) denote a lower triangular matrix of the form

12
. . .

12

B1 · · · Bi 12

 ,
where Bj :=

tA jε
−1. Then there is a skew-symmetric matrix C ∈GL2(F) satisfying

p1 ∗ X i+1 =

(ε
. . .
ε

C

)
.

It is clear that there is a diagonal matrix p2 of degree 2(i+1) so that (p2 p1)∗ X i+1

becomes the desired form. �

Remark. From the proof of Lemma 3.1, we easily obtain the following slight
refinement. For any X ∈A ′, there is a p ∈ P0 with diagonal component (c1, . . . , c2n)

which sends X to θ(w0) and satisfies

c2i = 1, c2i+1 =
di+1(X)
di (X)

.

Let

B0 =

o× p
. . .

o o×


be the standard Iwahori subgroup corresponding to P0 and

Yλ =

$
λ1ε 0

. . .

0 $ λnε


be an element of A ′.

Lemma 3.2. For all b ∈ B0 and λ, 1≤ i ≤ n,

|di (b ∗ Y−λ)| = |di (Y−λ)|.

In particular, A ′ = P0 B0 ∗ Y−λ = θ(P0 B0w0 H0).
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Proof. By Lemma 3.1, A ′ = P0 ∗ Y−λ ⊂ P0 B0 ∗ Y−λ = θ(P0 B0w0 H0). The other
inclusion follows once we prove the first equation. This is clear for elements in
P0 ∩ B0. Thus, by Iwahori decomposition, it suffices to prove this equation for
elements in

N0 :=

1 p
. . .

1

 .
This will be proved by induction on the size of matrices. Let n ∈ N0 and X = n∗Y−λ.
Then for 1≤ i ≤ n− 1,

X i ∈ ni ∗ (Y−λ)i +$−λi+1+2M2i (o).

Since −λi ≤ −λi+1, any component of ni ∗ (Y−λ)i does not lie in $−λi+1+2o =

p−λi+1+2. Hence we see by induction hypothesis,

|di (X)| = | det X i |
1/2
= | det(ni ∗ (Y−λ)i )|1/2 = |di (Y−λ)|. �

From the two lemmas above, we have θ(P0w0 H0)= A ′ = P0 B0 ∗Y−λ. Let hλ =
diag($ λ1,1,$ λ2,1,...,$ λn ,1). Then θ(hλw0)=Yλ and P0w0 H0= P0 B0h−λw0 H0.
In other words, B0w0g−λ ⊂ P0w0 H0 since g−λ = w−1

0 h−λw0.

Lemma 3.3. For all λ, Bξw0g−λ ⊂ Pφξw0 H.

Proof. Identifying G0 with M by

g 7→
(

g
tg−1

)
,

we see that ξ P0ξ
−1
⊂ Pφ , H0 ⊂ H and ξ B0ξ

−1
⊂ B. From the previous argument,

Pφξ B0w0g−λH ⊂ Pφξ P0w0 H0 H.
Since ξ and w0 are commutative, we obtain

Pφξ P0w0 H0 H = Pφ(ξ P0ξ
−1)ξw0 H = Pφξw0 H.

On the other hand, Pφξ B0w0g−λH = Pφ(ξ B0ξ
−1)ξw0g−λH. By Iwahori de-

composition, B= (B∩Pφ)(ξ B0ξ
−1)(B∩ξNξ−1) and sincew0g−λ∈G0, ξNξ−1

=

(ξw0g−λ)N (ξw0g−λ)−1. Therefore, Pφ(ξ B0ξ
−1)ξw0g−λH = PφBξw0g−λH and

the desired inclusion follows. �

Let η = ξw0, S = ηHη−1. Hereafter, we will treat S instead of H and so we
need to translate all things defined above as follows:

9S(s)=9H (η
−1sη), 3S =3H ◦ Rη−1 ∈ HomS(I (χ),9S),

1S = P∗χ (3S) ∈ D(G), �S(g)=�H (η
−1g)=�H (η

−1gη).
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We have to compute �H (gλ) = �S((ξw0)gλ(ξw0)
−1) = �S(h−λ). Since by

Lemma 3.3, we have supp(Rh−λ chB)= Bhλ ⊂ PφS, and taking (2-2) into consid-
eration, we obtain the following result:

Proposition 3.4. Let χ = (| · |z1, | · |z2, . . . , | · |z2n ) be an unramified character on
Pφ and assume that this character satisfies z2i−1 = 1+ z2i for all 1≤ i ≤ n.

(i) If χ is not of the form above (or its W -translate), then I (χ) does not have a
generalized Shalika model.

(ii) Forw 6∈0, we have T ∗
w−11S(Rh−λ chB)=0 for every λ, where 0 is the subgroup

of W generated by

wi :=



i
∨

12
...

. . .
...

02 12

12 02

. . .

12


∈ G0, (1≤ i ≤ n− 1) and

wn:=


12(n−1)

02 ε

12(n−1)

ε 02

 ∈ G.

Proof. (essentially the same as [Sakellaridis 2006, Proposition 5.2])

(i) Let IS(wχ) be the subspace of I (wχ) consisting of elements supported in PφS.
Then the restriction map induces an isomorphism IS(wχ)→ c-indS

Pφ∩S(wχ)δ
1/2.

On the other hand, there is a surjective map Pr : C∞c (S)→ c-indS
Pφ∩S(wχ)δ

1/2

defined by

Pr ( f )(s)=
∫

Pφ∩S
(wχ)δ1/2(p)−1 f (ps) dr p

where dr p is a right Haar measure on Pφ ∩ S. Composed with these maps, T ∗
w−13S

can be taken as a distribution on S. Then 9S · T ∗w−13S is a right S-invariant
distribution, which must be a Haar measure on S:

T ∗
w−13S =9

−1
S ds.
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For x ∈ Pφ ∩ S, f ∈ C∞c (S),

(wχ)δ1/2δ−1
Pφ∩S(x)

∫
S

f (s)T ∗
w−13S(s) ds =

∫
S

f (xs)T ∗
w−13S(s) ds

=

∫
S

f (xs)9−1
S (s) ds

=9S(x)
∫

S
f (s)9−1

S (s) ds

=9S(x)
∫

S
f (s)T ∗

w−13S(s) ds,

where δPφ∩S is the modular character of Pφ ∩ S. Since Pφ ∩ S consists of matrices
of the form

p =

(A1
. . .

An

)
, Ai =

(
ai bi

a−1
i

)
∈ SL2(F)

and is contained in G0 ∼= M, 9S is trivial on Pφ ∩ S. So we have

(3-1) δPφ∩S(x)= (wχ)δ1/2(x)

for all x ∈ Pφ ∩ S.
An easy calculation shows that δPφ∩S(p) = δ(p) =

∏
i |ai |

2 and hence we
get (wχ)(p) =

∏
i |ai |. If we put wχ = (| · |z1, . . . , | · |z2n ), then (wχ)(p) =∏

i |ai |
z2i−1−z2i and so it is necessary for the existence of a generalized Shalika

model that z2i−1− z2i = 1 for every 1≤ i ≤ n.

(ii) Note that 0 is isomorphic to the Weyl group of type Bn , in particular, it is a
Coxeter group. It is easy to see that 0 consists of elements which preserves the
condition (3-1) and the claim follows immediately. �

This proposition proves the first half of the main theorem. Throughout this paper,
assume that χ satisfies the conditions stated in Proposition 3.4.

Since χδ1/2δ−1
Pφ∩S = 1 on Pφ ∩ S and S is unimodular, there exists a nonzero

right S-invariant linear functional I : c-indS
Pφ∩S χδ

1/2
→ C (where the action of S

on C is trivial). We habitually use an integral expression

I (ϕ)=
∫

Pφ∩S\S
ϕ(s) dṡ

for ϕ ∈ c-indS
Pφ∩S χδ

1/2. Note that this is not an integral in the usual sense since
“integrands” are twisted by characters. This functional is uniquely determined by
right S-invariance up to a positive constant factor (see [Bushnell and Henniart 2006,
Proposition 3.4]). For an element ϕ of c-indS

Pφ∩S χδ
1/2, ϕ ·9−1

S is also an element
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of c-indS
Pφ∩S χδ

1/2 and it follows that∫
Pφ∩S\S

ϕ(s)9−1
S (s) dṡ

is well defined. On the other hand, P∗r I is a right S-invariant distribution on S, which
is a Haar measure on S. Therefore, by the argument in the proof of Proposition 3.4,

P∗r3S =9
−1
S P∗r I = P∗r (9

−1
S I ).

In other words, the restriction of 3S to IS(χ) has an integral expression:

Lemma 3.5. For ϕ ∈ IS(χ),

(3-2) 3S(ϕ)=

∫
Pφ∩S\S

ϕ(s)9−1
S (s) dṡ.

In a similar way, using uniqueness of invariant distributions and the linear
functional C∞c (Pφ × S)→ C∞c (PφS) defined by

PφS 3 ps 7→
∫

pφ∩S
f (px−1, xs) dr x, f ∈ C∞c (Pφ × S),

we obtain the following result:

Lemma 3.6. The map2χ : PφS→C defined by2χ (ps)= χ−1δ1/2(p)9−1
S (s) for

ps ∈ PφS is well defined and for every f ∈ C∞c (PφS) and

(3-3) 1S( f )=
∫

Pφ S
2χ (x) f (x) dx,

where dx is a suitably normalized Haar measure on G.

Proposition 3.7. Assume that Re zi > 0 for all i . Then (3-2) converges absolutely
for every ϕ ∈ I (χ).

Proof. (essentially the same as [Sakellaridis 2006, Proposition 7.1])
We will treat 3H in place of 3S . The equation (3-2) is equivalent to saying that

for every ϕ ∈ I (χ) with support contained in PφηH,

(3-4) 3H (ϕ)=

∫
H Pφ\H

ϕ(ηh)9−1
H (h) dḣ.

Here, H Pφ = η−1 Pφη∩H. Hence we need to prove that (3-4) converges absolutely
for every ϕ ∈ I (χ).

Since every element of I (χ) is dominated by some multiple of φK , it suffices to
treat the case ϕ = φK . By Iwasawa decomposition and K -invariance of φK , (3-4)
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is reduced to∫
φK

(
η

(
12n X

12n

)(
m

tm−1

))
ψ
( 1

2 tr(J X)
)

d X dm,

where X is a skew-symmetric matrix and

m =
(

a
ta−1

)(
12n Y

12n

)
∈ Sp2n(F)

with an upper triangular unipotent matrix a ∈ GL2n(F) and a symmetric matrix
Y ∈Matn(F). The integral over a is taken modulo matrices of the form(

1n b
1n

)
∈ GL2n(F),

where b ∈Matn(F) is a diagonal matrix. Then∫
φK

(
η

(
12n X

12n

)(
m

tm−1

))
ψ

(
1
2 tr(J X)

)
d X dṁ

=

∫
φK

(
η

(
m

tm−1

)(
12n m−1 X tm−1

12n

))
ψ
( 1

2 tr(J X)
)

d X dṁ.

Then m−1 X tm−1 can be replaced by X since H is unimodular and m ∈ Sp2n(F).
Since φK ∈ I (χ), m on the left factor can be assumed to be of the form(

c d
1n

)
,

with an upper triangular unipotent matrix c ∈ GLn(F) and an upper triangular
nilpotent matrix d ∈Matn(F) (here, the integral is taken in the usual sense, not
in that of Lemma 3.5). Therefore, the integral above is dominated absolutely
by the integral representing the intertwining operator Tη (see [Casselman 1995,
Lemma 6.4.2]), which converges absolutely when Re zi > 0 for all i by [Casselman
1980, Lemma 3.2]. �

Thanks to Proposition 3.7, exactly the same argument given in [Sakellaridis 2006,
Section 7] suggests that for any f ∈ C∞c (G), 1S,χ ( f ) is a rational function of χ .

4. End of calculations

Normalize the Haar measure on G so that vol(B)= 1.

Lemma 4.1. For any λ, 1S(chBhλ)= χ
−1δ1/2(hλ).

Proof. Since Bhλ ⊂ PφS and (3-3), 1S(chBhλ) =
∫

Bhλ
2χ (x) dx . Using Iwahori

decomposition of B and B0, every b ∈ B can be expressed in the form b = pqr ,
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where

p =
(

12n ∗

12n

)
∈ B ∩ N ⊂ Pφ, q=

(
∗ 02n

02n ∗

)
∈ ξ B0ξ

−1,

r =
(

12n

∗ 12n

)
∈ B ∩ ξNξ−1.

Then

bhλ = pqrηg−λη−1
= pξ · ξ−1qξ︸ ︷︷ ︸

∈B0

·w0g−λ · (ηg−λ)−1r(ηg−λ)︸ ︷︷ ︸
∈N

·η−1.

Since B0w0g−λ ⊂ P0w0 H0, there are p0 ∈ P0 and h0 ∈ H0 satisfying b0w0g−λ =
p0w0h0, where b0 := ξ

−1qξ . In other words,

b0Y−λt b0 = θ(b0w0g−λ)= θ(p0w0h0)= p0Y0
tp0 =: X ∈A.

By this and Lemma 3.2,

|di (X)| = |di (b0 ∗ Y−λ)| = |di (Y−λ)| = |di (p0 ∗ Y0)| = | det(p0)i |.

Denote the diagonal component of p0 by (c1, . . . , c2n). Then we have |di (X)| =∏2i
j=1 |cj | = qλ1+···+λi and therefore the remark on page 481 shows that p0 can be

chosen so that c2i = 1, |c2i−1| = qλi for each i .
Let n0 = (ηg−λ)−1r(ηg−λ). Then

bhλ = pξp0w0h0n0η
−1
= p · ξp0ξ

−1︸ ︷︷ ︸
∈Pφ

· ηh0n0η
−1︸ ︷︷ ︸

∈S

Hence,

2χ (bhλ)= χ−1δ1/2(pξp0ξ
−1)9H (h0n0)=

n∏
i=1

q−(2n−2i+1−z2i−1)λi9H (n0)

Express r in the form (
12n

X 12n

)
,

where X is an element of Mat2n(p). Since

n0 = (w0g−λ)−1
(

12n X
12n

)
(w0g−λ)=

(
12n gλtw0 Xw0gλ

12n

)
and the conductor of ψ is assumed to be 0,

9H (n0)= ψ
( 1

2 tr(Jgλtw0 Xw0gλ)
)
= ψ

( 1
2 tr(X · Yλ)

)
= 1.

Some additional simple computations show that 1S(chBhλ)= χ
−1δ1/2(hλ). �
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Proposition 4.2.

�S(h−λ)= Q−1
∑
w∈0

( ∏
α>0
wα>0

cα(χ)
)
(wχ)−1δ1/2(hλ)T ∗w−11S,χ (chB).

Proof. By the uniqueness of the generalized Shalika model, T ∗
w−13S,χ is a scalar

multiple of 3S,wχ . Hence,

T ∗
w−11S,χ (Rh−λ chB)

T ∗
w−11S,χ (chB)

=
T ∗
w−13S,χ (Rh−λφB)

T ∗
w−13S,χ (φB)

=
3S,wχ (Rh−λφB)

3S,wχ (φB)

=
1S,wχ (Rh−λ chB)

1S,wχ (chB)

= (wχ)−1δ1/2(hλ).

Applying this to (2-2), the desired result follows. �

We denote the length function of W by l and that of 0 by l0. The following
lemma suggests that we only have to treat the case w = wi in the notation of
Proposition 3.4.

Lemma 4.3. For w,w′ ∈ 0, l0(ww′) = l0(w) + l0(w′) implies that l(ww′) =
l(w)+ l(w′).

Notice that a reduced expression of each wi is given as follows:

wi = s2i s2i−1s2i+1s2i , (1≤ i ≤ n− 1), wn = s2n.

Following [Casselman 1980], we denote Pχ (chBwB) by φw,χ for each w ∈W.
Let Nφ be the unipotent radical of Pφ and N−φ be that of the opposite of Pφ . For

α ∈ 6, Nα
φ (resp. N−,αφ ) will denote the image of standard embedding F → Nφ

(resp. F→ N−φ ) corresponding to α. We will use N α̂
φ (resp. N−,−̂αφ ) to denote the

product (in any order) of all Nβ
φ (resp. N−,−βφ ), (0<β 6= α). Similarly, for a subset

6′ ⊂6, we define N6′

φ , N 6̂′

φ , etc. Let Pαφ = T · Nα
φ and so on.

We use the following fundamental equation of intertwining operators Tw and
functions φ (see [Casselman 1980, Theorem 3.4]): for each simple reflection sk

and w ∈W with l(skw)= l(w)+ 1, we have

Tsk (φw,skχ )= (cαk (skχ)− 1)φw,χ + q−1φskw,χ ,(4-1)

Tsk (φw,skχ )= φw,χ + (cαk (skχ)− q−1)φskw,χ .(4-2)

Lemma 4.4. Let w = wn and β = βn . Then, T ∗
w−11S,χ (chB)=−cβ(χ)χ(aβ).

Proof. Since w = s2n is a simple reflection, we can apply (4-1) and obtain
Tw−1(φB,wχ )= (cβ(wχ)− 1)φ1,χ + q−1φw,χ . Using the integral expression (3-3),
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it follows that 3S(φ1,χ )= 1 (with Haar measure normalized so that the volume of
B is 1). Therefore, it remains to compute 3S,χ (φw,χ ).

Assume Re zi > 0 for all i so that 1S is given by (3-3). In order to use the
integral expression (3-3) again, we need to express elements of BwB in the form
PφS. Note that BwB need not be contained in PφS, but almost all (i.e., except
elements in certain set of measure 0) elements must be contained.

We use the following measure-preserving decomposition where all compact
groups which appear are assumed to be total measure 1:

BwB = Pφ(o)wNβ(o)N−,−̂β(p).

An easy calculation shows that Lie(N−,−̂β)(p)⊂ Lie(P β̂φ )(p)+Lie(S)(p), and
by an argument similar to the proof of [Sakellaridis 2006, Lemma 5.1], we have
N−,−̂β(p)⊂ P β̂φ (o)S(o). Consequently,

3S(φw,χ )=1S(chBwB)=

∫
BwB

2χ (x) dx = q
∫
wNβ

φ (o)
2χ (x) dx .

The domain of the integral wNβ
φ (o) consists of elements of the form

12(n−1)

02 ε

12(n−1)

ε −x ·12

=: A(x),

with x ∈ o. If x 6= 0,

A(x)=


12(n−1)

x−1
·12 −ε

12(n−1)

x ·12




12(n−1)

−12

12(n−1)

x−1ε −12

∈ PφS.

Therefore,

2χ (A(x))= |x |z2n−1+z2n−1ψ
( 1

2 tr(x−1ε2)
)
= |x |z2n−1+z2n−1ψ−1(x−1)

and

3S(φw,χ)=q
∫
o
|x |z2n−1+z2n−1ψ−1(x−1)dx=q

∞∑
i=0

(qχ(aα))i
∫
pi−pi+1

ψ−1(x−1)dx .

Substituting ∫
pi−pi+1

ψ−1(x−1) dx =


1− q−1 (i = 0)
−q−2 (i = 1)
0 (i ≥ 2)
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for the above equation, it follows that

3S(φw,χ )= q(1− q−1
− q−1χ(aβ)).

By putting all this together and after some simple algebraic manipulation, the
desired equation follows. By rationality, we can drop the assumption of Re zi > 0
and the result follows for all χ . �

Lemma 4.5. Let w = wi for fixed 1≤ i ≤ n− 1. Then

T ∗
w−11S(chB)=

q−1(q−2x − 1)(x − q−1)

(q−1x − 1)(x − 1)
,

where x = χ(aα2i ).

Proof. Applying (4-1), we obtain Ts−1
j
φ1,s jχ = (cα j (s jχ)− 1)φ1,χ + q−1φs jχ for

each 2i − 1≤ j ≤ 2i + 1. Since s j 6∈ 0, T ∗s−1
j
3S,χ (φ1,s jχ )= 0 and we get

(4-3) q−13S,χ (φs j ,χ )=−(cα j (s jχ)− 1).

Repeating the same argument gives us the following equations: for every distinct
j, k, l ∈ {2i − 1, 2i, 2i + 1},

q−23S,χ (φsks j ,χ )= (cαk (skχ)− 1)(cα j (s jχ)− 1),(4-4)

q−33S,χ (φsl sks j ,χ )=−(cαl (slχ)− 1)(cαk (skχ)− 1)(cα j (s jχ)− 1).(4-5)

For j ∈ {2i − 1, 2i + 1}, we also obtain

(4-6) q−33S,χ (φs2i s j s2i , χ)

= (cα2i+1(s2i+1s2iχ)− 1)(cα2i (s2iχ)− q−1)(cα2i (s2iχ)− 1)

− q−1(cα2i+1(s2i+1s2χ)− 1)− (cα2i (s2iχ)− 1)2(cα2i+1(s2i+1χ)− 1).

Using (4-1) and (4-2) repeatedly, we can express Tw−1(φ1,wχ ) as a linear combi-
nation of functions φ. Substituting (4-3), (4-4) and (4-5), we obtain

3S(Tw−1(φ1,wχ ))= (cα2i (s2iχ)− 1)2(cα2i−1(s2i−1χ)− 1)(cα2i+1(s2i+1s2iχ)− 1)

+ (cα2i−1(s2i−1s2iχ)− 1)(cα2i (s2iχ)− q−1)

(cα2i (s2iχ)− 1)(cα2i+1(s2i+1s2iχ)− 1)

− q−1(cα2i−1(s2i−1s2iχ)− 1)(cα2i+1(s2i+1s2iχ)− 1)

− (cα2i (s2iχ)− 1)2(cα2i−1(s2i−1χ)− 1)(cα2i+1(s2i+1s2iχ)− 1)

− (cα2i (s2iχ)− 1)2(cα2i−1(s2i−1χ)− 1)(cα2i+1(s2i+1χ)− 1)

+ q−43S(φw,χ ).
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Simple computations using

cα2i+1(s2i+1χ)= cα2i−1(s2i−1χ)= 0,

cα2i (s2iχ)− 1=
1− q−1

χ(aα2i )− 1
,

cα2i+1(s2i+1s2iχ)− 1= cα2i−1(s2i−1s2i+1s2iχ)− 1=
1− q−1

q−1χ(aα2i )− 1
,

cα2i (s2iχ)− q−1
=

1− q−1

χ(aα2i )− 1
χ(aα2i )

show that

3S(Tw−1(φ1,wχ ))=
(1− q−1)4

(q−1x − 1)2(x − 1)2
x − q−1 (1− q−1)2

(q−1x − 1)2

−
(1− q−1)2

(x − 1)2
+ q−43S(φw,χ )

=−
(1+ q−1)(1− q−1)2

(q−1x − 1)(x − 1)
+ q−43S(φw,χ ),

where x = χ(aα2i ).
It remains to compute 3S(φw,χ ). This can be done by essentially the same

method as the proof of Lemma 4.4.
Assume Re z1 > Re z2 > · · ·> Re z2n > 0 so that 1S is given by (3-3). For later

use, we make a stronger assumption. Let

6i ={α∈6 |α>0, wα<0}={e2i−1−e2i+1, e2i−1−e2i+2, e2i−e2i+1, e2i−e2i+2}.

Then BwB = Pφ(o)wN6i
φ (o)N

−,−̂6i
φ (p). An easy calculation shows that

Lie(N−,−̂6i
φ )(p)⊂ Lie(S)(p)+Lie(P6̂i

φ )(p),

and by an argument similar to the proof of Lemma 5.1 of [Sakellaridis 2006], we
have N−,−̂6i

φ (p)⊂ P6̂i
φ (o)S(o). Therefore,

3S(φw,χ )=1S(chBwB)=

∫
BwB

2χ (x) dx = q4
∫
wN

6i
φ (o)

2χ (x) dx

Then wN6i
φ (o) consists of elements of the form

B(a)=

12(i−1)
02 12
12 a

12(n−i−1)

 ∈ G0
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with a ∈Mat2(o). If det a 6= −1, let

b =
(

1+ det a 0
0 1

)
.

Then 12(i−1)
b εb−1taε

b−1

12(n−i−1)

 B(a) ∈ S ∩G0.

Thus,
2χ (B(a))= |1+ det a|z2i−1−z2i+1−2

and

3S(φw,χ )= q4
∫(

x
z

y
w

)
∈Mat2(o)

|1+ xw− yz|z2i−1−z2i+1−2 dx dy dz dw

= q4
· vol(Mat2(o)−GL2(o))

+ q4
∫(

x
z

y
w

)
∈GL2(o)

|1+ xw− yz|z2i−1−z2i+1−2 dx dy dz dw.

The first term can be computed as follows. Since the restriction of a Haar measure
on Mat2(o) to GL2(o) is equal to the restriction of a Haar measure on GL2(F),

vol(GL2(o))= (q + 1) · vol
(
o× o

p o×

)
= q−3(q − 1)2(q + 1),

and hence vol(Mat2(o)−GL2(o))= 1− q−3(q − 1)2(q + 1).
Next, we need to compute the second term. There is a diffeomorphism f between

GL2(o) and o××SL2(o) given by

o××SL2(o) 3

(
t,
(

x y
z w

))
7→

(
t x ty
z w

)
∈ GL2(o).

The Jacobian of f on the region o××{w 6= 0} ⊂ o××SL2(o) is J f = t/w. Since
the complement of this region is a set of measure 0, we can transform the second
term into an integral on o××SL2(o):∫(

x
z

y
w

)
∈GL2(o)

|1+ xw− yz|z2i−1−z2i+1−2 dx dy dz dw

=

∫
o×

∫
{w 6=0}

|1+ t |z2i−1−z2i+1−2
|tw−1

| d×t dy dz dw

=

∫
o×
|1+ t |z2i−1−z2i+1−2 dt ·

∫
{w 6=0}

|w|−1 dy dz dw.
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First, we consider the integral
∫
o× |1+ t |z2i−1−z2i+1−2 dt . Split the integral into

1+ t ∈ o× and 1+ t ∈ p. The former contributes 1− 2q−1 and the latter meshing
∞∑
j=1

|$ j
|
z2i−1−z2i+1−2

· (1− q−1)q− j
= (1− q−1)

∞∑
j=1

χ(aα2i )
j

= (1− q−1)χ(aα2i )(1−χ(aα2i )
−1.

Here, we used the assumption Re z1 > Re z2 > · · · > Re z2n > 0. This implies
|χ(aα2i )|< 1, which is necessary for convergence of the above power series.

Therefore, we have∫
o×
|1+ t |z2i−1−z2i+1−2 dt =−q−1

+ (1− q−1)(1−χ(aα2i ))
−1.

Second, we compute the integral
∫
{w 6=0} |w|

−1 dy dz dw. Splitting the integral
into w ∈ o× and w ∈$ jo×, we get∫
{w 6=0}

|w|−1 dy dz dw

=

∫
w∈o×

∫
y,z∈o

dy dz dw+
∞∑
j=1

∫
w∈$ jo×

∫
yz∈−1+p j

|$ j
|
−1 dy dz dw

= 1− q−1
+

∞∑
j=1

(1− q−1)2q− j

= 1− q−2.

Consequently, we obtain

3S(φw,χ )= q2
− q(q − 1)2(q + 1)(χ(aα2i )− 1)−1.

Putting all this together, the desired equation follows. By rationality, we can drop the
assumption of Rez1 > Rez2 > ···> Rez2n > 0, and the result follows for all χ . �

Some more computation enables us to rewrite these results.

Corollary. For w = wn we have:

T ∗
w−13S,χ =−χ(aβ)cβ(χ)3S,wχ ,

where β = βn .
For w = wi (1≤ i < n) we have:

T ∗
w−13S,χ =−χ(aβ)

1− q−2χ(a−β)
1− q−2χ(aβ)

∏
α∈6i

cα(χ)3S,wχ ,

where β = βi .
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More compactly, for every w ∈ 0,

T ∗
w−13S,χ = (−1)l0(w)

∏
α>0
wα<0

cα(χ)
∏
β>0
wβ<0

dβ(χ)3S,wχ ,

where α ∈6, β ∈8.

These complete the proof of Theorem 2.4.
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