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This is an addendum to the authors’ previous paper in which criteria for
cuspidal edges and swallowtails on surfaces are given by applying the so-
called Zakalyukin’s lemma. The original statement in Zakalyukin’s paper
assumed the properness of the mappings. However, the lemma in the ap-
pendix of our paper did not assume properness. Recently, we noticed that
the proof given in the appendix was implicitly relying on properness. In this
addendum, we prove that mappings satisfying the criteria of cuspidal edges
and swallowtails have properness. Consequently, the criteria are clarified.

In [Kokubu et al. 2005], to which this note is an addendum, we found an omitted
condition in the statement of Lemma 2.2, which was explained there as a lemma
given by Zakalyukin. The original statement in [Zakalyukin 1976] assumed the
properness of the mappings f1 and f2 in the lemma. We have discovered that
the proof given in the appendix of [Kokubu et al. 2005] was implicitly using the
properness of the mappings fi , (i = 1, 2).

In [Kokubu et al. 2005, Proposition 1.3], this lemma was applied to prove criteria
for cuspidal edges and swallowtails. In this paper, we show that these criteria still
remain valid. In fact, we prepare the following new lemma to replace Lemma 2.2
in [Kokubu et al. 2005].

Lemma. Let U (⊂ Rn) be a neighborhood of the origin, and let the mappings
fi : (U, o)→ (Rn+1, 0), with i = 1, 2, be wave fronts, where o and 0 are the origins
of Rn and Rn+1, respectively. Suppose that o is a singular point of fi and the set of
regular points of fi is dense in U for each i = 1, 2. Moreover, suppose that f −1

i (0)
is a finite set. Then the following two statements are equivalent:

(1) There exist neighborhoods V1, V2(⊂ Rn) of the origin o and a local diffeomor-
phism on Rn+1 which maps the image f1(V1) to f2(V2), namely the image of
f1 is locally diffeomorphic to that of f2.
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(2) There exists a local diffeomorphism h on Rn+1 and a local contact diffeo-
morphism 8 on the unit cotangent bundle T ∗1 Rn+1 of Rn+1 with respect to the
Euclidean metric of Rn+1 which sends fibers to fibers such that8◦L f1= L f2◦h,
namely the lift L f1 is Legendrian equivalent to the lift L f2 .

Remark 1. Instead of the properness in the original Zakalyukin lemma, we as-
sume the finiteness of the inverse images f −1

i (0), i = 1, 2, which was dropped in
Lemma 2.2 in [Kokubu et al. 2005]. The condition that f −1

i (0) is a finite set relates
to the K-finiteness of the map fi (cf. [Wall 1981]), which plays an important role
in singularity theory.

We prepare the following assertion:

Proposition. Let U (⊂ Rn) be a neighborhood of a point p ∈ Rn, and B0(r) be an
open ball of radius r(> 0) centered at the origin in RN, and let f : (U, p)→ (RN , 0)
(N ≥ n) be a continuous map such that f −1(0) is a finite set. Then for sufficiently
small r > 0, the connected component V of f −1(B0(r)) containing p satisfies
V ⊂U. Moreover, the restriction of the map f to V with image inside B0(r) is a
proper mapping.

Proof. Take a ball W := Dp(ε) of radius ε centered at p such that W is contained
in U. Since f −1(0) is a finite set, we may choose the radius ε so that

(1) f −1(0)∩W = {p}

holds. We denote by V (r) the connected component of f −1(B0(r)) containing p.
It is sufficient to show that V (1/k)⊂W for any sufficiently large integers k > 0.
If not, there exists a point qk 6∈ W lying in V (1/k). If qk 6∈ ∂W (:= W \W ), then
qk is an exterior point of W. Then we can find a point q ′k ∈ V (1/k) such that q ′k is
also an exterior point of W. Since V (1/k) is connected, there exists a continuous
curve on V (1/k) joining p and q ′k . By the intermediate value theorem, for each
positive integer k, there exists a point pk satisfying

(2) pk ∈ V (1/k)∩ ∂W.

On the other hand, if qk ∈ ∂W, then (2) trivially holds by setting pk := qk .
We then take a sequence {q j,k}

∞

j=1 lying in V (1/k) converging to pk . By defini-
tion, we have f (q j,k) ∈ B0(1/k). By the continuity of f ,

(3) f (pk) ∈ B0(1/k) (k = 1, 2, 3, . . .)

holds, where B0(1/k) is the closure of the open ball B0(1/k). Since ∂W is compact,
we can take a subsequence {pkm }

∞

m=1 of {pk} which converges to a point p∞ ∈ ∂W.
Letting m→∞, equation (3) yields that f (p∞)= 0, which contradicts (1).

We next prove the final assertion: Suppose that K is a compact subset of B0(r)
and f −1(K ) is not compact. Then we can take a sequence {xk} in f −1(K ) not
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accumulating to any point of V. Since V is compact, we may assume that {xk}

converges to a point x∞ on ∂V := V \ V. Since f is a continuous map on U and
V ⊂U, there exists a connected open neighborhood O of x∞ such that f (O)⊂ B0(r).
Then V ′ := V ∪ O is a connected open subset such that f (V ′) ⊂ B0(r), which
contradicts the definition of V, since V ( V ∪ O . �

Proof of Lemma. (1) follows from (2) immediately, so it is sufficient to show
(1) implies (2). By Fact A.3 in the appendix of [Kokubu et al. 2005], we may
assume f1(V1) = f2(V2). By the above proposition, we can take r > 0 such that
V (r) := f −1(B0(r)) satisfies V (r)⊂ V1 ∩ V2. Then we have that

f1(V (r))= f2(V (r)).

By [Kokubu et al. 2005, Fact A.1], we may assume that the associated Legendrian
immersion L fi : Ũi → T ∗1 Rn+1 (i = 1, 2) is an embedding. Since V (r) is compact,
we have

f1(V (r))= f1(V (r))= f2(V (r))= f2(V (r)).

Thus by [Kokubu et al. 2005, Proposition A.4], we have L f1(V1) = L f2(V2). In
particular, we have

L f1(V1)⊂ L f2(U2),

and by [Kokubu et al. 2005, Fact A.2], there exists a local diffeomorphism ϕ on Rn

such that L f2 = L f1 ◦ϕ, which proves the assertion. �

We next show the following claim, that is, that wave fronts satisfying our criteria
for cuspidal edges or swallowtails also satisfy the assumption of the above lemma.
Consequently, the statement of [Kokubu et al. 2005, Proposition 1.3] is clarified.

Claim 1. Let U be a domain in R2, and let f : (U, p)→ (R3, 0) be a wave front such
that p is a nondegenerate singular point. Take a regular curve γ (t) parametrizing
the singular set such that γ (0)= p. If f satisfies one of the two conditions

(1) the null vector η(0) is linearly independent of γ̇ (0), or

(2) η(0) is proportional to γ̇ (0), and

d
dt

∣∣∣∣
t=0

det(γ̇ (t), η(t)) 6= 0,

then the inverse image f −1(0) is a finite set.

Proof. Let ν0 be the unit normal vector of f at p, and T the plane passing through 0
perpendicular to ν0. We denote by π :R3

→ T the orthogonal projection. Then ϕ :=
π ◦ f :U→R2 is a smooth map having a singular point at p. Then the condition (1)
(respectively, (2)) turns out to be a well-known criterion for a fold singularity
(respectively, Whitney cusp singularity), see [Whitney 1955] or Theorem A1 in the
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appendix of [Saji et al. 2009] (A1-Morin singularity means fold singularity, and
A2-Morin singularity means Whitney cusp singularity). So ϕ is right-left equivalent
to the map germ (u, v) 7→ (u2, v) (respectively, (u, v) 7→ (u3

− 3uv, v)). Thus,
f −1(0) is a finite set. �

In [Saji et al. 2009], we gave a criterion for an Ak+1-singular point of a wave
front for k ≥ 1, as a generalization of the case of cuspidal edges and swallowtails.
Then the same problem has arisen in that case as well, that is, to clarify the criterion,
we must show that the map satisfies the condition that the inverse image of the
singular point is a finite set. However, by the following claim, this is actually true:

Claim 2. Let U be a domain in Rn, and let f : (U, p)→ (Rn+1, 0) be a wave front
such that p is a nondegenerate singular point. If f satisfies the criterion given in
[Saji et al. 2009, Theorem 2.4], then the inverse image f −1(0) consists of finitely
many points.

The proof is the same as for Claim 1: Taking the unit normal vector ν0 of f at p,
we define the orthogonal projection π : Rn+1

→ H, where H is the hyperplane
passing through p orthogonal to the vector ν0. Then ϕ :=π ◦ f :U→ H(=Rn) is a
smooth map having a singular point at p. Then the criterion for an Ak+1 singularity
on the wave front f corresponds to the criterion for an Ak-Morin singularity of ϕ
given in [Saji et al. 2009, Theorem A1]. Hence, the inverse image of the origin is a
finite set. �

Remark 2. In [Izumiya and Saji 2010; Izumiya et al. 2010; Saji 2011], criteria for
cuspidal lips, cuspidal beaks, cuspidal butterflies and D4 singularities are given. In
these cases as well, one can similarly show the finiteness of the inverse image of
the singular point, assuming that the criteria given in those papers hold. However,
the arguments are longer and will be given in a separate work by those authors.
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