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A POSITIVE MASS THEOREM AND PENROSE INEQUALITY
FOR GRAPHS WITH NONCOMPACT BOUNDARY

EZEQUIEL BARBOSA AND ADSON MEIRA

We prove a version of the positive mass theorem for graph hypersurfaces
with a noncompact boundary, in Euclidean space. We also prove a Penrose
inequality for such hypersurfaces.

1. Introduction

Let (Mn, g) be an asymptotically flat Riemannian manifold. Suppose that the scalar
curvature of g is nonnegative, Sg ≥ 0. The Riemannian positive mass theorem states
that, if either 3≤ n ≤ 7 or n ≥ 3 and the manifold is spin, the ADM-mass of g is
nonnegative: mADM ≥ 0. Moreover, mADM = 0 if and only if (Mn, g) is isometric
to the Euclidean space (Rn, δ). Recently, Almaraz, Barbosa and de Lima [Almaraz
et al. 2016] defined a kind of ADM-mass for asymptotically flat manifolds with a
noncompact boundary, and they proved that, if either 3≤ n ≤ 7 or if n ≥ 3 and the
manifold is spin, then that ADM-mass is nonnegative, assuming the scalar curvature
of the manifold and the mean curvature of the boundary are nonnegative. A similar
positive mass theorem for all dimensions and with no spin condition has not been
proved yet.

Although graphical hypersurfaces in Euclidean spaces are spin, Lam [2011]
used an elementary method for such manifolds — asymptotically flat graphical
hypersurfaces with an empty boundary — without invoking the spin structure, and
proved the positive mass conjecture for graphical hypersurfaces with compact
boundary. A version of the positive mass theorem for manifolds with compact
boundary is known as the Penrose inequality. The main goal of this work is to
provide an elementary proof for the positive mass theorem for graph hypersurfaces
with noncompact boundary in Euclidean spaces, and a kind of Penrose inequality
for such hypersurfaces. For more about the positive mass theorem and the Penrose
inequality, see [Almaraz et al. 2016; Huang and Wu 2015; Lee and Sormani 2014;
Mirandola and Vitório 2015].

Barbosa was supported by FAPEMIG and CNPq grants. Meira was supported by FAPEMIG and
CAPES grants.
MSC2010: 53C24, 83C99.
Keywords: graphical hypersurface, ADM mass, scalar curvature, rigidity, asymptotically flat.

257

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2018.294-2
http://dx.doi.org/10.2140/pjm.2018.294.257


258 EZEQUIEL BARBOSA AND ADSON MEIRA

Let us be a little bit more precise with respect to the case where the manifold
has a noncompact boundary. Let (Mn, g) be an oriented Riemannian manifold
with a noncompact boundary 6 and dimension n ≥ 3. We denote by Sg the scalar
curvature of the manifold (M, g). We also assume that 6 is oriented by an outward
pointing unit normal vector η, so that its mean curvature is Hg = divg η. We say that
(M, g) is asymptotically flat with decay rate τ > 0 if there exists a compact subset
K ⊂ M and a diffeomorphism 9 : M \ K → Rn

−
\ B−1 (0) such that the following

asymptotic expansion holds as r→+∞:

(1-1) |gi j (x)− δi j | + r |gi j,k(x)| + r2
|gi j,kl(x)| = O(r−τ ).

Here, x = (x1, . . . , xn) is the coordinate system induced by 9; r = |x | and gi j are
the coefficients of g with respect to x ; the comma denotes partial differentiation;
Rn
−
= {x ∈ Rn

; xn ≤ 0}, and B−1 (0)= {x ∈ Rn
−
; |x | ≤ 1}. The subset M∞ = M\K

is called the end of M . In this paper, we use the Einstein summation convention
with the index ranges i, j, . . .= 1, . . . , n and α, β, . . .= 1, . . . , n−1. Observe that
along 6, {∂α}α spans T6 while ∂n points inwards.

The most important example of a manifold in this class is the half-space Rn
−

endowed with the standard flat metric δ; see Figure 1.

Definition 1.1. Suppose that τ > 1
2(n − 2) and Sg and Hg are integrable on M

and 6, respectively. In terms of asymptotically flat coordinates as above, the mass
of (M, g) is given by

(1-2) m(M,g) = lim
r→+∞

{∫
Sn−1

r,−

(gi j, j − g j j,i )µ
i dSn−1

r,− +

∫
Sn−2

r

gαnϑ
α dSn−2

r

}
,

where Sn−1
r,− ⊂ M is a large coordinate hemisphere of radius r with outward unit

normal µ, and ϑ is the outward pointing unit conormal to Sn−2
r = ∂Sn−1

r,− , oriented
as the boundary of the bounded region 6r ⊂6.

Almaraz–Barbosa–de Lima [Almaraz et al. 2016] showed that the limit on the
right-hand side of (1-2) exists and its value does not depend on the particular asymp-
totically flat coordinates chosen. Thus, m(M,g) is an invariant of the asymptotic
geometry of (M, g). Moreover, they considered the following conjecture:

Conjecture 1.2. If (M, g) is asymptotically flat with decay rate τ > 1
2(n− 2) as

above and satisfies Sg ≥ 0 and Hg ≥ 0 then m(M,g) ≥ 0, with the equality occurring
if and only if (M, g) is isometric to (Rn

−
, δ). Here, Hg is the mean curvature of the

noncompact boundary, related to the outward pointing unit normal vector.

This conjecture has been confirmed in some special cases in [Escobar 1992;
Raulot 2011]. Finally, Almaraz–Barbosa–de Lima [Almaraz et al. 2016] showed
that the following result holds.
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Rn Rn

Figure 1. Asymptotically flat manifolds.

Theorem 1.3. Conjecture 1.2 holds true if either 3 ≤ n ≤ 7 or if n ≥ 3 and M is
spin.

An immediate consequence of the rigidity statement in Theorem 1.3 is also worth
noticing.

Corollary 1.4. Let (M, g) be as in Theorem 1.3 and assume further that there exists
a compact subset K ⊂M such that (M \K , g) is isometric to (Rn

−
\B−1 (0), δ). Then

(M, g) is isometric to (Rn
−
, δ).

Now, we consider a graphical hypersurface with a noncompact boundary in the
Euclidean space.

Definition 1.5. Let � ⊂ Rn be a bounded subset. Let F : Rn
−
\�→ Rm , F(x) =

( f 1(x), . . . , f m(x)) be a C2 application. We will denote by G(F) the graph of F .
We say that F is asymptotically flat, with order p > 0, if the scalar curvature S of
the graph of F with the metric of Rn+m is an integrable function over G(F), and if
there exists a compact subset K ⊂Rn such that �⊂ K and, over Rn

−
\K , the partial

derivatives f αi = ∂ f α/∂xi , f αi j = ∂
2 f α/(∂xi∂x j ) satisfies

| f αi (x)| = O(|x |−p/2), | f αi j (x)| = O(|x |−p/2−1), | f αi jk(x)| = O(|x |−p/2−2)

for all α = 1, . . . ,m and i, j, k = 1, . . . , n.

From here, g f will denote δ+ d f ⊗ d f , where δ is the canonical metric of the
Euclidean space. Our main result is the following:

Theorem 1.6 (positive mass theorem). Let f : Rn
−
→ R be a C2 function up to

boundary, asymptotically flat over Rn
−
\�, with order p > 1

2(n− 2). Let (Rn
−
, g f )

be the graph of f . Suppose that fn = 0 over ∂Rn
−

, that S ∈ L1(Rn
−
), and S ≥ 0.

We also assume that the mean curvature H of the boundary of (Rn
−
, g f ), seen as a

submanifold of (Rn
−
, g f ) is such that H ≥ 0 and H ∈ L1(∂Rn

−
). Then, the mass of

G( f ) is nonnegative. Moreover, it is null if and only if G( f ) is a half-plane.

As a consequence of [Lee and Sormani 2014], we obtain the stability of the
rigidity supposing that the graph is rotationally symmetric. We can also consider
the Penrose inequality for such graphs.

Theorem 1.7 (Penrose inequality). Let � ⊂ Rn
−
\{xn = 0}, n ≥ 3, be an open

bounded set whose boundary is smooth and mean-convex. Suppose that ∂� is outer-
minimizing or each connected component of � is star-shaped. Let f : Rn

−
\�→ R
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be a function that is C2 up to boundary, asymptotically flat, constant over each
connected component of ∂� and such that |D f | → ∞ when x → ∂�. We also
suppose that fn = 0 over ∂Rn

−
, the scalar curvature of the graph is nonnegative, the

mean curvatures of the compact boundaries are nonnegative, and that the mean
curvature of the noncompact boundary (viewed as a submanifold of the graph) is
nonnegative. Then,

m(M,g) ≥
1
2

(
|∂�|

ωn−1

)(n−2)/(n−1)
,

where |∂�| is the (n− 1)-volume of ∂�.

2. Proof of the positive mass theorem

We start this section considering a very important proposition.

Proposition 2.1. Let �⊂ Rn be an open set and f :�→ R be a C2 function. Let
X :�→ Rn be the vector field given by

(2-1) X =U ( fi fkk − fk fik)ei ,

where U = 1/U , U = 1+〈D f, D f 〉, and 〈·, ·〉 is the Euclidean metric. Consider
the function s :�→ R given by

s =U ( fi i fkk − fik fik)−U 22 fl fli ( fi fkk − fk fik).

Then, s = div X and the scalar curvature of (G( f ), g) is s. Here, g is the induced
metric and G( f ) is the graph of f .

Proof. See [Huang and Wu 2013; Lam 2011; Mirandola and Vitório 2015; Reilly
1973]. �

Now we can prove the following result.

Theorem 2.2. Let f : Rn
−
→ R be an asymptotically flat function over Rn

−
\� of

class C2 up to boundary, with order p > 1
2(n− 2). Let (Rn

−
, g f ) be the graph of f .

We suppose the following items:

• fn = ∂ f/∂xn ≥ 0 over ∂Rn
−

and ∂n = (en, fn) is normal to the noncompact
boundary (this occurs when fn = 0 over ∂Rn

−
, for example);

• S ∈ L1(Rn
−
) and S ≥ 0;

• The mean curvature H of the boundary of (Rn
−
, g f ), viewed as a submanifold

of (Rn
−
, g f ) be such that H ≥0 (with respect to the unit normal inward pointing

vector field) and H ∈ L1(∂Rn
−
);

• The scalar second fundamental form h̃ (with respect to the unit normal upward
pointing vector field) of the boundary of (Rn

−
, g f ), viewed as a submanifold of

(Rn, δ)= (∂Rn
−
×R, δ), be such that

∑n−1
i=1 h̃(∂̄i , ∂̄i )≥ 0 and

∑n−1
i=1 h̃(∂̄i , ∂̄i ) ∈
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L1(∂Rn
−
). Here, ēi ∈ Rn−1 is a canonical vector and ∂̄i = (ēi , fi ) is a tangent

vector field.

Then,

(2-2) c(n)m(M,g) =

∫
Rn
−

S dxδ +
∫
∂Rn
−

H√
1+ ( fn)2

(2+ |D f |2) dxδ

+

∫
∂Rn
−

fn

√
1+ |D f |2

( n−1∑
i=1

h̃(∂̄i , ∂̄i )

)
|D f |2

1+ |D f |2
dxδ,

where D f = ( f1, . . . , fn−1). In particular, the mass m(M,g) is nonnegative.

Proof. Note that ∂B−r = S−r ∪Dr , where S−r = {x ∈Rn
−
| ‖x‖= r}, Dr = {x ∈ ∂Rn

−
|

‖x‖ ≤ r} and Sn−2
r = ∂Dr . Remembering that S = div X , we have∫

Rn
−

S dxδ = lim
r→∞

∫
B−r

S dxδ = lim
r→∞

∫
B−r

div X dxδ = lim
r→∞

∫
∂B−r
〈X, N 〉 dAr

= lim
r→∞

∫
S−r

〈
X, x
|x |

〉
dσr + lim

r→∞

∫
Dr

〈X, en〉 dxδ.

By hypothesis, fi = O(|x |−p/2) and fik = O(|x |−p/2−1) for all i, k = 1, . . . , n.
Since U −1= 〈D f, D f 〉 = O(|x |−p), we have lim|x |→∞U = 1, therefore we have
lim|x |→∞U = 1, where U = 1/U . Therefore, U − 1=−U 〈D f, D f 〉 = O(|x |−p).
With this, we conclude that

(U − 1)( fi fkk − fk fik)= O(|x |−2p−1).

Since p > 1
2(n− 2), we have 2p+ 1> n− 1= dim S−r . Thus,

lim
r→∞

∫
S−r

∣∣∣(U − 1)( fi fkk − fk fik)
x i

|x |

∣∣∣ dσr ≤ lim
r→∞

∫
S−r

C · |x |−2p−1 dσr

≤ C lim
r→∞

r−2p−1
|S−r | = 0.

Then

lim
r→∞

∫
S−r
(U − 1)( fi fkk − fk fik)

x i

|x |
dσr = 0.

Therefore,

lim
r→∞

∫
S−r

U ( fi fkk − fk fik)
x i

|x |
dσr = lim

r→∞

∫
S−r
( fi fkk − fk fik)

x i

|x |
dσr .

Thus,

lim
r→∞

∫
S−r

〈
X, x
|x |

〉
dσr = lim

r→∞

∫
S−r
( fi fkk − fk fik)

xi
|x |

dσr .
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Now, see that 〈X, en〉=U ( fn fkk− fk fnk)=U
∑n−1

k=1( fn fkk− fk fnk), because when
k = n the terms are canceled. On the other hand, since U = 1−|D f |2/(1+|D f |2),
we obtain

〈X, en〉 =

n−1∑
k=1

( fn fkk − fk fnk)−
|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk).

This implies that∫
Rn
−

S dxδ = lim
r→∞

∫
S−r
( fi fkk − fk fik)

xi
|x |

dσr + lim
r→∞

∫
Dr

n−1∑
k=1

( fn fkk − fk fnk) dxδ

− lim
r→∞

∫
Dr

|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk) dxδ

= lim
r→∞

∫
S−r
(gki,k − gkk,i )(νr )

i dσr

+ lim
r→∞

∫
Dr

(
divRn−1( fn D f )− 2〈D f, D fn〉

)
dxδ

− lim
r→∞

∫
Dr

|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk) dxδ.

Here, D f = (∂ f/∂x1, . . . , ∂ f/∂xn−1), νr is the normal vector field to S−r , and ηr

is the normal vector field to Sn−2
r . Using that∫

Dr

divRn−1( fn D f ) dxδ =
∫

Sn−2
r

fn〈D f, ηr 〉 dσr ,

we find∫
Rn
−

S dxδ = lim
r→∞

{∫
S−r
(gki,k − gkk,i )(νr )

i dσr +

∫
Sn−2

r

fn fk(ηr )
k dσr

}
lim

r→∞

{
−2

∫
Dr

〈D f, D fn〉 dxδ −
∫

Dr

( fn fkk − fk fnk)
|D f |2

1+ |D f |2
dxδ

}
= lim

r→∞

{∫
S−r
(gki,k − gkk,i )(νr )

i dσr +

∫
Sn−2

r

gnk(ηr )
k dσr

}
lim

r→∞

{
−2

∫
Dr

〈D f, D fn〉 dxδ −
∫

Dr

( fn fkk − fk fnk)
|D f |2

1+ |D f |2
dxδ

}
.

Thus,

c(n)m(M,g) =

∫
Rn
−

S dxδ + 2 lim
r→∞

∫
Dr

n−1∑
i=1

fni fi dxδ

+ lim
r→∞

∫
Dr

( fn fkk − fk fnk)
|D f |2

1+ |D f |2
dxδ.
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Now we will calculate the second fundamental form of the boundary viewed as a
submanifold of the graph of f . Note that N =−∂n =−(en, fn) is a normal field to
the boundary, and moreover, inward pointing and tangent to the graph. We have that

∇∂i ∂n = (0, . . . , 0, ∂i fn)= (0, . . . , 0, 〈D fn, ∂i 〉)

= (0, . . . , 0, 〈( fn1, . . . , fnn, 0), (ei , fi )〉)= (0, . . . , 0, fni ).

Since ∂ j = (e j , f j ), we have that 〈∇∂i ∂n, ∂ j 〉 = fni f j . Thus,

〈∇∂i N , ∂ j 〉 = −〈∇∂i ∂n, ∂ j 〉 = − fni f j .

Here we used the fact that 〈∇∂i N , ∂ j 〉 = −〈N , I I (∂i , ∂ j )〉, where I I is the second
fundamental form of the boundary viewed as a submanifold of the graph, and we find
that 〈I I (∂i , ∂ j ), N )〉 = fni f j . Therefore, denoting the scalar second fundamental
form of the boundary viewed as a submanifold of the graph by h̄, we find

h̄(∂i , ∂ j )= 〈I I (∂i , ∂ j ), N/|N |〉 =
fni f j√

1+ ( fn)2
.

With this, we see that the mean curvature of ∂G( f ) viewed as a submanifold of
G( f ) is

H =
n−1∑

i, j=1

gi j h̄(∂i , ∂ j )=

n−1∑
i, j=1

(
δi j −

fi f j

1+ |D f |2

)
fni f j√

1+ ( fn)2

=

n−1∑
i, j=1

(
δi j fni f j√
1+ ( fn)2

−
fi f j fni f j

(1+ |D f |2)
√

1+ ( fn)2

)

=

n−1∑
i=1

fni fi√
1+ ( fn)2

−

n−1∑
i, j=1

fni fi ( f j )
2

(1+ |D f |2)
√

1+ ( fn)2

=

n−1∑
i=1

fni fi√
1+ ( fn)2

−

n−1∑
i=1

fni fi√
1+ ( fn)2

n−1∑
j=1

( f j )
2

1+ |D f |2

=

n−1∑
i=1

fni fi√
1+ ( fn)2

[
1−

n−1∑
j=1

( f j )
2

1+ |D f |2

]
.

Hence,
n−1∑
i=1

fni fi =
H
√

1+ ( fn)2

1−
∑n−1

j=1( f j )2/(1+ |D f |2)
.
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Therefore,

c(n)m(M,g)

=

∫
Rn
−

S dxδ + 2 lim
r→∞

∫
Dr

H
√

1+ ( fn)2

1−
∑n−1

j=1( f j )2/(1+ |D f |2)
dxδ

+ lim
r→∞

∫
Dr

( fn fkk − fk fnk)
|D f |2

1+ |D f |2
dxδ

=

∫
Rn
−

S dxδ + lim
r→∞

∫
Dr

H
√

1+ ( fn)2

1−
∑n−1

j=1( f j )2/(1+ |D f |2)

{
2−

|D f |2

1+ |D f |2

}
dxδ

+ lim
r→∞

∫
Dr

fn fkk
|D f |2

1+ |D f |2
dxδ.

By hypothesis, fn ≥ 0 over ∂Rn
−

. Also,
∑n−1

k=1 fkk =
√

1+ |D f̄ |2
∑n−1

i=1 h̃(∂̄i , ∂̄i ).
In this way,

c(n)m(M,g) =

∫
Rn
−

S dxδ +
∫
∂Rn
−

H√
1+ ( fn)

2
(2+ |D f |2) dxδ

+

∫
∂Rn
−

fn

√
1+ |D f̄ |2

( n−1∑
i=1

h̃(∂̄i , ∂̄i )

)
|D f |2

1+ |D f |2
dxδ ≥ 0.

In order to conclude, we will show that
∑n−1

k=1 fkk =
√

1+ |D f̄ |2
∑n−1

i=1 h̃(∂̄i , ∂̄i ).
Viewed as a submanifold of ∂Rn

−
×R, the boundary is the graph of f̄ = f |∂Rn

−
.

Thus, ∂̄i = (ēi , fi ), i = 1, . . . , n − 1, are tangent vector fields. Here ēi ∈ Rn−1.
Moreover, η̄ = (−D f̄ , 1) is a normal field. We have

∇ ∂̄i
η̄ = (−∂̄i f̄1, . . . ,−∂̄i f̄n−1, 0)= (−〈D f̄1, ∂̄i 〉, . . . ,−〈D f̄n−1, ∂̄i 〉, 0).

Using that
D f̄ j = ( f̄ j1, . . . , f̄ j (n−1))= ( f̄ j1, . . . , f̄ j (n−1), 0)

and ∂̄i = (ēi , f̄i ), we obtain that −〈D f̄ j , ∂̄i 〉 = f̄ j i . Thus

∇ ∂̄i
η̄ = (− f̄1i , . . . ,− f̄(n−1)i , 0)= (−D f̄i , 0).

With this, 〈∇ ∂̄i
η̄, ∂̄ j 〉 = − f̄ j i . Using the Weingarten equation, we find

〈 Ĩ I (∂̄i , ∂̄ j ), η̄〉 = f̄ j i = f j i .

Therefore,

n−1∑
i=1

h̃(∂̄i , ∂̄i )=

n−1∑
k=1

〈
Ĩ I (∂̄k, ∂̄k),

η̄

|η̄|

〉
=

n−1∑
k=1

fkk√
1+ |D f̄ |2

. �
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In the next theorem, we will use a doubling argument to produce an asymptotically
flat manifold without a compact boundary; more specifically, given f : Rn

−
→ R,

we will consider f̃ : Rn
→ R given by f̃ (x1, . . . , xn) = f (x1, . . . , xn) if xn ≤ 0,

and f̃ (x1, . . . , xn)= f (x1, . . . ,−xn) if xn > 0. Then, using (2-2) and some results
and arguments of [Huang and Wu 2013], we obtain the following result:

Theorem 2.3. Let f : Rn
−
→ R be a Cn+1 function up to boundary, asymptotically

flat, over Rn
−
\�, with order p> 1

2(n−2) and such that f̃ defined as above is Cn+1.
Let (Rn

−
, g f ) be the graph of f . We suppose that fn = 0 over ∂Rn

−
, that S ∈ L1(Rn

−
)

and S≥ 0. We also suppose that the mean curvature H of the boundary of (Rn
−
, g f ),

viewed as a submanifold of (Rn
−
, g f ) is such that H ≥ 0 and H ∈ L1(∂Rn

−
). If the

mass of G( f ) is null, then G( f ) is a half-plane.

Proof. We will assume that f is asymptotic to {xn+1 = 0, xn ≤ 0} and that f 6= 0;
if not the result will be trivially true. Consider f̃ and note that f̃ is asymptotically
flat, and its graph has integrable and nonnegative scalar curvature. By [Huang and
Wu 2013, Theorem 4], we can suppose that the mean curvature of the graph of f̃ is
nonnegative, H( f̃ )≥ 0, with respect to ν, where ν is the vector field

(−D f̃ , 1)√
1+ |D f̃ |2

(because we can reflect the graph over {xn+1 = 0}). Let Br be an open ball in Rn

centered at the origin of radius r ; by [Huang and Wu 2013, Lemma 3.10],

max
Br2\Br1

f̃ =max
∂Br2

f̃ ∀ r2 > r1 > 0.

Because max∂Br2
f̃ → 0 when r2 → ∞ (since f̃ is asymptotic to {xn+1 = 0}),

we conclude that f̃ ≤ 0 outside of Br1 . Moreover, applying the strong maximum
principle to H( f̃ ) ≥ 0, we have f̃ < 0 outside of Br1 , unless f̃ ≡ 0. In the latter
case we can, moreover, conclude that G( f̃ ) is identical to {xn+1 = 0}, repeating the
argument over Br2\Br0 , for 0< r0 < r1, and making r0→ 0. With this we conclude
that if f̃ 6= 0, then f̃ < 0, i.e., G( f̃ )⊂ {xn+1 < 0}. Therefore, for ε > 0 sufficiently
small, some connected components of the level set {x ∈ {xn+1= 0} | f̃ (x)=−ε} lie
over G( f̃ ) and have no boundary. We define6−ε as being the connected component
outermost, i.e., 6−ε is not enclosed by the others components. By Sard’s theorem,
6−ε is smooth for almost all ε. Moreover, because f̃ tends to zero, for some small
ε > 0, we see that η = −D f̃ /|D f̃ | is the unit normal vector on 6−ε pointing
inward to the limited region in {xn+1 = 0}, which is delimited by 6−ε . Let H6−ε be
the mean curvature of 6−ε defined by η. Then, using that H( f̃ )≥ 0 and S( f̃ )≥ 0,
by [Huang and Wu 2013, Theorem 2.2] we have H6−ε ≥ 0. Since S( f ) ≥ 0 and
c(n)m(g)(G( f )) = 0, by (2-2) we conclude that S( f ) = 0; then S( f̃ ) = 0 and
c(n)m(M,g)(G( f̃ )) = 0. This implies that G( f̃ ) = {xn+1 = 0}. If not, by [Huang
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and Wu 2013, Lemma 5.6] (or more generally by [Mirandola and Vitório 2015,
Theorem 1.2]) we will have H6−ε = 0 and therefore 6−ε will be a compact minimal
hypersurface without boundary, and embedded in Rn; this will be a contradiction. �

3. Penrose inequality

Let we start this section with a simple proposition that will be very useful in the
next one.

Proposition 3.1. Let (M, 〈·, ·〉) be an (n+1)-Riemannian manifold and f :M→R

a differentiable function. Let 6 ⊂ M be an embedded hypersurface and ν a unitary
normal field to 6. Suppose that f is constant on 6; then on 6 we have

1 f = Hess f (ν, ν)− H6
〈D f, ν〉.

Here, H6 is related to ν.

Proof. Given a point x ∈6, we have

1 f = div D f = div(〈D f, ν〉ν)= 〈D〈D f, ν〉, ν〉+ 〈D f, ν〉 div ν

= 〈∇νD f, ν〉+ 〈D f,∇νν〉+ 〈D f, ν〉 div ν

Using that 6 is embedded in M , we take a neighborhood U of x in 6 such that
U = g−1(a), where g : V ⊂ M → R is differentiable, U ⊂ V , and a ∈ R is a
regular value of g. Take an orthonormal referential E1, . . . , En+1 on V such that
En+1 = Dg/|Dg| = ν. Denote by H the mean curvature and by A the second
fundamental form of 6; then

H =
n∑

i=1

〈A(Ei , Ei ), ν〉 =

n∑
i=1

〈∇Ei Ei , ν〉

= −

n∑
i=1

〈∇Ei ν, Ei 〉− 〈∇νν, ν〉 = −

n+1∑
i=1

〈∇Ei ν, Ei 〉 = − div ν.

Therefore, we have

1 f = 〈∇νD f, ν〉+ 〈D f,∇νν〉− H6
〈D f, ν〉

= Hess f (ν, ν)+〈D f, ν〉〈ν,∇νν〉− H6
〈D f, ν〉

= Hess f (ν, ν)− H6
〈D f, ν〉. �

The next proposition will be useful in the proof of the Penrose inequality.

Proposition 3.2. Let � ⊂ Rn be an open bounded set such that the boundary of
Rn
−
\� is smooth. Let f : Rn

−
\�→ R be a C2 function up to boundary, asymptoti-

cally flat, constant on each connected component of ∂�, and such that |D f | →∞
when x → ∂�. We suppose that the graph of f has the induced metric from
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�̃i

�̇i

�̃i

�̇i

Sn−2
rSr

−

∂�̇i ∩ {xn < 0}

∂�̃i

Dr\�̇i

Sn−2
r

∂�̇i ∪ ∂Rn
−

Figure 2. Sets of Proposition 3.2.

Rn+1. Denoting by �̇i , i = 1, . . . , ṅ, the connected components of � such that
�̇i ∩ {xn < 0} 6=∅ and �̇i ∩ {xn > 0} 6=∅; and by �̃i , i = 1, . . . , ñ, the connected
components of � such that �̃i ⊂ Rn

−
, then

c(n)m(M,g) =

∫
Rn
−\�

S dxδ +
∫
∂Rn
−\∪�̇i

H√
1+ ( fn)2

(2+ |D f |2) dxδ

+

∫
∂Rn
−\∪�̇i

fn

√
1+ |D f |2

( n−1∑
i=1

h̃(∂̄i , ∂̄i )

)
|D f |2

1+ |D f |2
dxδ

−

ṅ∑
i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i +

∫
∪∂�̇i∩{xn<0}

H ∂� dσ̇

+

∫
∪∂�̃i

H ∂� dσ̃ .

Here c(n)=2(n−1)ωn−1 and η̇ is the unit normal vector field on ∂�̇ pointing inward
to �̇. Here, H and h̃ are the mean curvature and the scalar second fundamental
form, respectively defined in Theorem 2.2 and H ∂� is the mean curvature of ∂�
viewed as a submanifold of the hyperplanes containing them.

Proof. We have

(3-1)
∫

Rn
−\�

S dxδ = lim
r→∞

∫
B−r \�

div X dxδ

= lim
r→∞

∫
S−r

〈
X, x
|x |

〉
dσr + lim

r→∞

∫
Dr\∪�̇i

〈X, en〉 dxδ

+

∫
∪∂�̇i∩{xn<0}

〈X, η̇i 〉 dσ̇ +
∫
∪∂�̃i

〈X, η̃i 〉 dσ̃ ,
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where X = 1/(1+ |D f |2) ( fi fkk − fk fik)ei . Like in the Theorem 2.2, we find

(3-2) lim
r→∞

∫
S−r

〈
X, x
|x |

〉
dσr = lim

r→∞

∫
S−r
( fi fkk − fk fik)

xi
|x |

dσr .

On the other hand, since U = 1− |D f |2/(1+ |D f |2):

〈X, en〉 =

n−1∑
k=1

( fn fkk − fk fnk)−
|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk).

Thus,

lim
r→∞

∫
Dr\∪�̇i

〈X, en〉 dxδ = lim
r→∞

∫
Dr\∪�̇i

n−1∑
k=1

( fn fkk − fk fnk) dxδ

− lim
r→∞

∫
Dr\∪�̇i

|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk) dxδ

= lim
r→∞

∫
Dr\∪�̇i

(divRn−1( fn D f )− 2〈D f, D fn〉) dxδ

− lim
r→∞

∫
Dr\∪�̇i

|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk) dxδ.

Here, D f = (∂ f/∂x1, . . . , ∂ f/∂xn−1). Using that

lim
r→∞

∫
Dr\∪�̇i

divRn−1( fn D f ) dxδ

= lim
r→∞

∫
Sn−2

r

fn〈D f, ηr 〉 dσr +

ṅ∑
i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i ,

where ηr is the unit normal vector field on Sn−2
r pointing outward to Dr , we find

(3-3) lim
r→∞

∫
Dr\∪�̇i

〈X, en〉 dxδ = lim
r→∞

∫
Sn−2

r

fn〈D f, ηr 〉 dσr

+

ṅ∑
i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i

−2 lim
r→∞

∫
Dr\∪�̇i

〈D f, D fn〉 dxδ

− lim
r→∞

∫
Dr\∪�̇i

|D f |2

1+|D f |2

n−1∑
k=1

( fn fkk− fk fnk) dxδ.
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Using (3-1), (3-2), and (3-3), we find∫
Rn
−\�

S dxδ = lim
r→∞

∫
S−r
( fi fkk − fk fik)

xi

|x |
dσr + lim

r→∞

∫
Sn−2

r

fn〈D f, ηr 〉 dσr

+

ṅ∑
i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i − 2 lim
r→∞

∫
Dr\∪�̇i

〈D f, D fn〉 dxδ

− lim
r→∞

∫
Dr\∪�̇i

|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk) dxδ

+

∫
∪∂�̇i∩{xn<0}

〈X, η̇i 〉 dσ̇ +
∫
∪∂�̃i

〈X, η̃i 〉 dσ̃ .

That is,

(3-4) c(n)m(M,g) =

∫
Rn
−\�

S dxδ −
ṅ∑

i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i

+ 2 lim
r→∞

∫
Dr\∪�̇i

〈D f, D fn〉 dxδ

+ lim
r→∞

∫
Dr\∪�̇i

|D f |2

1+ |D f |2

n−1∑
k=1

( fn fkk − fk fnk) dxδ

−

∫
∪∂�̇i∩{xn<0}

〈X, η̇i 〉 dσ̇ −
∫
∪∂�̃i

〈X, η̃i 〉 dσ̃ .

Like in the Theorem 2.2 we have

(3-5) lim
r→∞

∫
Dr\∪�̇i

fk fnk

{
2−

|D f |2

1+ |D f |2

}
dxδ

=

∫
∂Rn
−\∪�̇i

H√
1+ ( fn)2

(2+ |D f |2) dxδ,

where H is the mean curvature of ∂G( f ), viewed as a submanifold of G( f ), and
we also have

(3-6) lim
r→∞

∫
Dr\∪�̇i

fn fkk
|D f |2

1+ |D f |2
dxδ

=

∫
∂Rn
−\∪�̇i

fn

√
1+ |D f |2

( n−1∑
i=1

h̃(∂̄i , ∂̄i )

)
|D f |2

1+ |D f |2
dxδ,
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where h̃ is the scalar second fundamental form of ∂G( f ), viewed as a submanifold
of ∂Rn

−
. Therefore,

(3-7) c(n)m(g)=
∫

Rn
−\�

S dxδ +
∫
∂Rn
−\∪�̇i

H√
1+ ( fn)2

(2+ |D f |2) dxδ

+

∫
∂Rn
−\∪�̇i

fn

√
1+ |D f |2

( n−1∑
i=1

h̃(∂̄i , ∂̄i )

)
|D f |2

1+ |D f |2
dxδ

−

ṅ∑
i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i

−

∫
∪∂�̇i∩{xn<0}

〈X, η̇〉 dσ̇ −
∫
∪∂�̃i

〈X, η̃〉 dσ̃ .

The next computations of the mean curvature of the level set ∂� can also be found in
[Lam 2011, Equation 5.3] or [Mirandola and Vitório 2015, Equation 33]. Since f is
constant on ∂�, we have that D f is normal to this set. Denote by �c a component
of � such that f increases when x → ∂�c, thus D f/|D f | is the unity normal
vector field outward pointing to the graph on ∂�c (D f/|D f | points inward to �c

in the hyperplane containing �c). Denote by �d a component of � such that f
decreases when x→ ∂�d , thus −D f/|D f | is the unity normal vector field outward
pointing to the graph on ∂�d (−D f/|D f | points inward to �d in the hyperplane
containing �d ). For an illustration, see Figure 3.

We have〈
X,

D f
|D f |

〉
=

〈
U ( fi fkk − fk fik)ei ,

f j

|D f |
e j

〉
=

fiU
|D f |

( fi fkk − fk fik)

=
U
|D f |

( f 2
i fkk − fk fi fik)=

U
|D f |

(|D f |21 f −Hess f (D f, D f ))

=
|D f |2

|D f |
U
(
1 f −Hess f

(
D f
|D f |

,
D f
|D f |

))
.

∂�d
D f
|D f |

Figure 3. Illustration of the argument above.



A POSITIVE MASS THEOREM AND PENROSE INEQUALITY FOR GRAPHS 271

Since ν = D f/|D f | is the unity normal vector field pointing inward to �c, using
Proposition 3.1 and that U = 1/(1+ |D f |2), we find〈

X,
D f
|D f |

〉
=
|D f |

1+ |D f |2

(
−H ∂�c

〈
D f,

D f
|D f |

〉)
=−

|D f |2

1+ |D f |2
H ∂�c

〈
D f
|D f |

,
D f
|D f |

〉
=−

|D f |2

1+ |D f |2
H ∂�c

.

Since ν =−D f/|D f | is the unity normal vector field pointing inward to �d , using
the Proposition 3.1 and that U = 1/(1+ |D f |2), we find〈

X,−
D f
|D f |

〉
=−

|D f |
1+ |D f |2

(
−H ∂�d

〈
D f,−

D f
|D f |

〉)
=−

|D f |2

1+ |D f |2
H ∂�d

〈
−

D f
|D f |

,−
D f
|D f |

〉
=−

|D f |2

1+ |D f |2
H ∂�d

.

Here, H ∂� is related with the vector field pointing inward to �. We know that
limx→∂� |D f (x)| =∞, thus limx→∂� |D f |2/(1+|D f |2)= 1, therefore, supposing
that ν is the unity normal vector field pointing inward to � on ∂�, on ∂� we have

〈X, ν〉 = −H ∂�.

Using (3-7), we have

c(n)m(M,g) =

∫
Rn
−\�

S dxδ +
∫
∂Rn
−\∪�̇i

H√
1+ ( fn)2

(2+ |D f |2) dxδ

+

∫
∂Rn
−\∪�̇i

fn

√
1+ |D f |2

(n−1∑
i=1

h̃(∂̄i , ∂̄i )

)
|D f |2

1+ |D f |2
dxδ

−

ṅ∑
i=1

∫
∂�̇i∩∂Rn

−

fn〈D f, η̇〉 dσ̇i +

∫
∪∂�̇i∩{xn<0}

H ∂� dσ̇

+

∫
∪∂�̃i

H ∂� dσ̃ . �

Now we will enunciate some auxiliary results.

Proposition 3.3 [Guan and Li 2009, Theorem 2]. Let �⊂ Rn+1 be a limited and
star-shaped set. We also suppose that ∂� is smooth and mean-convex. Denote by
H ∂� the mean curvature of ∂� with respect to the normal unit vector field inward
pointing to � and by B ⊂ Rn+1 a unit ball. Then,

1
2nωn

∫
∂�

H ∂� dµ∂� ≥
1
2

(
|∂�|

ωn

)(n−1)/n
.

Moreover, the equality will occur if and only if � is a ball.
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Proposition 3.4 [Freire and Schwartz 2014, Theorem 5, item (V)]. Let �⊂ Rn be
a set (not necessarily connected) limited, with a smooth mean-convex and outer-
minimizing boundary. Denote by H ∂� the mean curvature of ∂� with respect to
the normal unit vector field inward pointing to �. Then,

1
2(n−1)ωn−1

∫
∂�

H ∂� d∂�≥ 1
2

(
|∂�|

ωn−1

)(n−2)/(n−1)
.

Moreover, the equality will occur if and only if each connected component of � is
a rounded ball.

Lemma 3.5 [Huang and Wu 2015, Proposition 5.2]. Let a1, . . . , ak be nonnegative
real numbers and 0≤ β ≤ 1. Then,

k∑
i=1

aβi ≥
( k∑

i=1

ai

)β
.

If 0≤β<1, then the equality holds if and only if at most one element of {a1, . . . , ak}

is nonzero.

Using these results we obtain the following theorem:

Theorem 3.6. Let�⊂Rn
−
\{xn=0}, n≥3, be an open bounded set whose boundary

is smooth and mean-convex. Suppose that ∂� is outer-minimizing or each connected
component of � is star-shaped. Let f :Rn

−
\�→R be a C2 function up to boundary,

asymptotically flat, constant on each connected component of ∂� and such that
|D f |→∞ when x→ ∂�. We also suppose that fn = 0 on ∂Rn

−
, and the curvatures

that appears at the Proposition 3.2 are nonnegative. Then,

m(M,g) ≥
1
2

(
|∂�|

ωn−1

)(n−2)/(n−1)
,

where |∂�| denotes the area measure on ∂�.

Proof. By the Proposition 3.2, we have

2(n−1)ωn−1m(g)=
∫

Rn
−\�

S dxδ+
∫
∂Rn
−

H√
1+( fn)2

(2+|D f |2) dxδ+
∫
∂�

H ∂� d∂�.

Denoting by �i , i = 1, . . . , k, the connected components of �, we have

m(M,g) ≥
1

2(n−1)ωn−1

∑
i

∫
∂�i

H ∂�i d∂�i ≥
1
2

∑
i

(
|∂�i |

ωn−1

)(n−2)/(n−1)

≥
1
2

(∑
i

|∂�i |

ωn−1

)(n−2)/(n−1)

=
1
2

(
|∂�|

ωn−1

)(n−2)/(n−1)
.

�
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DIAGRAMS FOR RELATIVE TRISECTIONS

NICKOLAS A. CASTRO, DAVID T. GAY AND JUANITA PINZÓN-CAICEDO

We establish a correspondence between trisections of smooth, compact, ori-
ented 4-manifolds with connected boundary and diagrams describing these
trisected 4-manifolds. Such a diagram comes in the form of a compact,
oriented surface with boundary together with three tuples of simple closed
curves, with possibly fewer curves than the genus of the surface, satisfy-
ing a pairwise condition of being standard. This should be thought of as
the 4-dimensional analog of a sutured Heegaard diagram for a sutured 3-
manifold. We also give many foundational examples.

1. Introduction

Gay and Kirby [2016] defined, and proved existence and uniqueness statements for,
trisections of both closed 4-manifolds and compact 4-manifolds with connected
boundary. In the latter, relative case, the trisections restrict to open book decom-
positions on the bounding 3-manifolds. In the closed case, they discuss trisection
diagrams in the same paper: these are diagrams involving curves on surfaces
which uniquely determine closed, trisected 4-manifolds up to diffeomorphism. The
aim of this paper is to complete the story by defining relative trisection diagrams
and showing that they uniquely determine trisected 4-manifolds with connected
boundary, as well as to present a series of fundamental examples.

Before recalling the background definitions in [Gay and Kirby 2016], we intro-
duce some basic definitions and state the main result of the present article.

Definition 1. Two (n+ 1)-tuples of the form (6, α1, . . . , αn), where each αi is a
collection αi

={αi
1, . . . , α

i
k} of k disjoint simple closed curves on the surface 6, are

diffeomorphism and handle slide equivalent if they are related by a diffeomorphism
between the surfaces and a sequence of handle slides within each αi ; i.e., one is
only allowed to slide curves from αi over other curves from αi , but not over curves
from α j when j 6= i .

This work was supported by a grant from the Simons Foundation (# 359873, David Gay).
MSC2010: 57M99.
Keywords: trisection, open book, Heegaard diagram, monodromy, 3-manifold, 4-manifold.
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. . .. . .. . .

g+p+b−1−k︷ ︸︸ ︷ k−2p−b+1︷ ︸︸ ︷ p︷ ︸︸ ︷

} b
Figure 1. The standard model (6, δ, ε).

Definition 2. A (g, k; p, b)-trisection diagram, where

2p+ b− 1≤ k ≤ g+ p+ b− 1,

is a 4-tuple (6, α, β, γ ), where 6 is a surface of genus g with b boundary compo-
nents and each of α, β and γ is a collection of g− p simple closed curves such
that each triple (6, α, β), (6, β, γ ), and (6, γ, α) is diffeomorphism and handle
slide equivalent to the triple (6, δ, ε) shown in Figure 1.

The following theorem, the main result of this paper, references trisections of
4-manifolds with boundary, but we defer the definition of this concept to a later
section. If this is new to the reader, the main thing to know at the moment is
that a trisection of a 4-manifold X is a decomposition into three codimension–0
submanifolds X = X1 ∪ X2 ∪ X3, and that in the relative case a trisection induces
an open book decomposition on ∂X .

Theorem 3. For every (g, k; p, b)-trisection diagram (6, α, β, γ ) there is a unique
(up to diffeomorphism) trisected 4-manifold X = X1∪X2∪X3 with connected bound-
ary, such that, with respect to a fixed identification 6 ∼= X1∩ X2∩ X3, the α, β and
γ curves, respectively, bound disks in X1∩ X2, X2∩ X3 and X3∩ X1. In particular,
the open book decomposition on ∂X has b binding components and pages of genus p.
Furthermore, any trisected 4-manifold with connected boundary is determined in this
way by some relative trisection diagram, and any two relative trisection diagrams
for the same 4-manifold trisection are diffeomorphism and handle slide equivalent.

As a consequence, the monodromy of the open book decomposition on ∂X is
also completely determined by the diagram (6, α, β, γ ). We now describe how to
read off the monodromy from the diagram.

Definition 4. Given a compact oriented surface 6, consider a pair

(α = (α1, . . . , αk), a = (a1, . . . , al)),

where each αi is a simple closed curve in 6, each a j is a properly embedded arc in
6, and {α1, . . . , αk, a1, . . . , al} are disjoint. We say that another such pair (α′, a′)
is handle slide equivalent to (α, a) if (α′, a′) is obtained from (α, a) by a sequence
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of the following two operations: (1) Slide one simple closed curve in α over another
simple closed curve in α. (2) Slide one arc in a over a simple closed curve in α.

Note that we do not allow “arc slides”, in which arcs in a slide over other arcs in a.
We adopt the following notation: Given a surface 6 and a collection of simple

closed curves α, 6α denotes the surface obtained by performing surgery along α.
This comes with an embedding φα : 6 \ α → 6α, the image of which is the
complement of a collection of pairs of points, one for each component of α.

Theorem 5. A relative trisection diagram (6, α, β, γ ) encodes an open book
decomposition on ∂X with page given by 6α, the surface resulting from 6 by
performing surgery along the α curves, and monodromy µ :6α→6α determined
by the following algorithm:

(1) Choose an ordered collection of arcs a on 6, disjoint from α and such that its
image φα(a) in 6α cuts 6α into a disk.

(2) There exists a collection of arcs a1 and simple closed curves β ′ in 6 such that
(α, a1) is handle slide equivalent to (α, a), β ′ is handle slide equivalent to β,
and a1 and β ′ are disjoint. (We claim that in this step we do not need to slide α
curves over α curves, only a arcs over α curves and β curves over β curves.)
Choose such an a1 and β ′

(3) There exists a collection of arcs a2 and simple closed curves γ ′ in 6 such that
(β ′, a2) is handle slide equivalent to (β ′, a1), γ ′ is handle slide equivalent to
γ , and a2 and γ ′ are disjoint. (Again we claim that we do not need to slide β ′

curves over β ′ curves.) Choose such an a2 and γ ′

(4) There exists a collection of arcs a3 and simple closed curves α′ in 6 such that
(γ ′, a3) is handle slide equivalent to (γ ′, a2), α′ is handle slide equivalent to
α, and a3 and α′ are disjoint. (Again we do not need to slide γ ′ curves over γ ′

curves.) Choose such an a3 and α′.

(5) The pair (α′, a3) is handle slide equivalent to (α, a∗) for some collection of
arcs a∗. Choose such an a∗. Note that now a and a∗ are both disjoint from α

and thus we can compare φα(a) and φα(a∗) in 6α.

(6) The monodromy µ is the unique (up to isotopy) map such that

µ(φα(a))= φα(a∗),

respecting the ordering of the collections of arcs.

Of course there are choices in the above algorithm each time we perform han-
dleslides to arrange disjointness from the next system of curves, but part of the
content of the theorem is that the resulting µ is independent of these choices.
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Note that this, together with the existence of trisections relative to given open
books [Gay and Kirby 2016], gives us a purely 2-dimensional result, namely that
there is a way to encode mapping classes of surfaces with boundary via trisection
diagrams (on higher genus surfaces).

An alternative definition of a relative trisection diagram includes both the systems
of curves α, β and γ and the systems of arcs a1, a2, a3; from such a definition it is
easier to see that a diagram determines a trisected 4-manifold. The nontriviality of
both Theorem 3 and Theorem 5 is that one does not in fact need the arcs to uniquely
determine the 4-manifold and the open book on its boundary.

2. Trisections of closed manifolds and their diagrams

Let Zk = \k(S1
× B3) with Yk = ∂Zk = #k

(S1
× S2). Given an integer g ≥ k,

let Yk = Y−g,k ∪ Y+g,k be the standard genus g Heegaard splitting of Yk obtained by
stabilizing the standard genus k Heegaard splitting g− k times.

Definition 6. A (g, k)-trisection of a closed, connected, oriented 4-manifold X is
a decomposition of X into three submanifolds X = X1 ∪ X2 ∪ X3 satisfying the
following properties:

(1) For each i = 1, 2, 3, there is a diffeomorphism φi : X i → Zk .

(2) For each i = 1, 2, 3, taking indices mod 3,

φi (X i ∩ X i+1)= Y−g,k and φi (X i ∩ X i−1)= Y+g,k .

Theorem 7 [Gay and Kirby 2016]. Every smooth closed oriented connected 4-
manifold has a trisection.

Definition 8. A (g, k)-trisection diagram is a tuple (6, α, β, γ ) such that 6 is
a closed oriented surface of genus g and each triple (6, α, β), (6, β, γ ) and
(6, γ, α) is diffeomorphism and handle slide equivalent to the triple (6, δ, ε)
shown in Figure 2.

g−k︷ ︸︸ ︷ k︷ ︸︸ ︷

Figure 2. The standard model (6, δ, ε) in the closed case.
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The following result is straightforward, and we present the proof here only to set
the stage for the more subtle relative case.

Theorem 9 [Gay and Kirby 2016]. For every (g, k)-trisection diagram (6, α, β, γ )
there is a unique (up to diffeomorphism) closed trisected 4-manifold X= X1∪X2∪X3

such that, with respect to a fixed identification 6 ∼= X1 ∩ X2 ∩ X3, the α, β and
γ curves, respectively, bound disks in X1 ∩ X2, X2 ∩ X3 and X3 ∩ X1. Further-
more, any closed trisected 4-manifold is determined in this way by some trisection
diagram, and any two trisection diagrams for the same 4-manifold trisection are
diffeomorphism and handle slide equivalent.

Proof. Note that the diagram in Figure 2 is a standard genus g Heegaard diagram
for #k S1

× S2
= Yk , describing the standard genus g splitting Yk = Y−g,k ∪Y+g,k . Fix

an identification of 6 with Y−g,k ∩ Y+g,k such that the δ curves bound disks in Y−g,k
and the ε curves bound disks in Y+g,k .

Given a trisected 4-manifold X = X1 ∪ X2 ∪ X3, let φi : X i → Zk , for i =
1, 2, 3, be the diffeomorphisms from Definition 6. The associated diagram is then
(X1∩X2∩X3, φ

−1
1 (δ), φ−1

2 (δ), φ−1
3 (δ)). Equivalently one could replace any φ−1

i (δ)

with φ−1
i+1(ε), or in fact any other cut system of g curves bounding disks in X i∩X i+1;

the resulting diagrams would be handle slide equivalent [Johannson 1995].
Conversely, given a trisection diagram (6, α, β, γ ), let Hα, Hβ and Hγ , be

handlebodies bounded by6 and determined by α, β and γ , respectively. Then build
X by starting with B2

×6, attaching I×Hα , I×Hβ and I×Hγ to ∂B2
×6= S1

×Fg

along successive arcs in S1 crossed with 6. This produces a 4-manifold with three
boundary components, but because each pair of systems of curves is a Heegaard
diagram for #k S1

× S2, each boundary component is diffeomorphic to #k S1
× S2,

and hence can be capped off uniquely with \k S1
× B3 [Laudenbach and Poénaru

1972]. �

3. Relative trisections

Here we rephrase the definition of relative trisection from [Gay and Kirby 2016].
Given integers (g, k; p, b) with g≥ p and g+ p+b−1≥ k ≥ 2p+b−1, we begin
as in the closed case with Zk = \k S1

× B3 and Yk = ∂Zk = #k S1
× S2, but in this

case we describe a certain decomposition of Yk as Yk = Y−g,k;p,b∪Y 0
g,k;p,b∪Y+g,k;p,b

needed for the definition. This decomposition is illustrated in Figure 3 as a lower-
dimensional analog.

Let D be a third of a unit 2-dimensional disk. Namely, use polar coordinates and
set

D =
{
(r, θ) | r ∈ [0, 1], θ ∈ [−π/3, π/3]

}
.
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boundary connect sum

stabilization

pages

boundary connect sum

Y+g,k;p,b

{π/3}×P {−π/3}×PY 0
g,k;p,b

Y−g,k;p,b

Figure 3. Several views of a lower-dimensional analog of the
standard model Zk for a sector of a relative trisection, with the
decomposition of the boundary Yk = Y−g,k;p,b ∪ Y 0

g,k;p,b ∪ Y+g,k;p,b.
The page P is represented as a straight line segment, in purple.

Decompose ∂D as ∂D = ∂−D ∪ ∂0 D ∪ ∂+D, where

(3-1)

∂−D = {r ∈ [0, 1], θ =−π/3},

∂0 D = {r = 1, θ ∈ [−π/3, π/3]}, and

∂+D = {r ∈ [0, 1], θ = π/3}.

Now let P be a compact surface of genus p with b boundary components and
consider U=D×P . Note that U∼=\2p+b−1S1

×B3 and that the decomposition (3-1)
induces a decomposition of ∂U as

∂U = ∂−U ∪ ∂0U ∪ ∂+U,

where ∂±U = ∂±D× P and ∂0U = (∂0 D× P)∪(D×∂P). Similarly, notice that if
we regroup the sets involved in the decomposition of ∂U into ∂−U ∪∂0U and ∂+U ,
we obtain the standard genus 2p+ b− 1 Heegaard splitting of #2p+b−1S1

× S2.
Next, decompose ∂(S1

× B3)= S1
× S2 as ∂−(S1

× B3)∪ ∂+(S1
× B3), where

∂±(S1
× B3)= S1

× S2
±

and S2
±

are the northern and southern hemispheres. This
is the standard genus 1 Heegaard splitting of S1

× S2. For a positive integer n, let
Vn = \n(S1

× B3), with the boundary connect sums all occurring in neighborhoods
of points in the Heegaard surface of each copy of ∂(S1

× B3), so that the induced
decomposition ∂V = ∂−V ∪ ∂+V is the standard genus n Heegaard splitting of
#n
(S1
× S2). Now, given an integer s ≥ n, let ∂Vn = ∂

−
s Vn ∪ ∂

+
s Vn be the result

of stabilizing this Heegaard splitting exactly s times. In what follows, to simplify
notation, let V = Vn , where n = k−2p−b+1, and take s to be g− k+ p+b−1.
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Finally, identify Zk with U \ V , with the boundary connect sum connecting a
neighborhood of a point in the interior of ∂−U ∩ ∂+U with a neighborhood of a
point in the Heegaard surface ∂−s V ∩∂+s V . The induced decomposition of Yk = ∂Zk

is the advertised decomposition Yk = Y−g,k;p,b ∪ Y 0
g,k;p,b ∪ Y+g,k;p,b. To be more

specific,

(3-2) Y±g,k;p,b = ∂
±U \ ∂±s V and Y 0

g,k;p,b= ∂
0U.

Before presenting the definition of a trisection relative to the boundary, we make
a brief comment on the schematic representation of the stabilization in Figure 3:
The illustration shows a “Heegaard splitting” of a 2-manifold, not a 3-manifold, in
which case “stabilization” corresponds to introducing a canceling 0-1-handle pair,
or 1-2-pair, depending on your perspective, and this is of course not as symmetric as
stabilization in dimension 3. In particular, the result is that one half of the splitting
becomes disconnected while the other half remains connected. This is the best
representation we can give when embedding the schematic in R3.

Definition 10. A (g, k; p, b)-trisection of a compact, connected, oriented 4-mani-
fold X with connected boundary is a decomposition of X into three submanifolds
X = X1 ∪ X2 ∪ X3 satisfying the following properties:

(1) For each i = 1, 2, 3, there is a diffeomorphism φi : X i → Zk .

(2) For each i = 1, 2, 3, taking indices mod 3, φi (X i ∩ X i+1) = Y−g,k;p,b and
φi (X i ∩ X i−1)= Y+g,k;p,b, while φi (X i ∩ ∂X)= Y 0

g,k;p,b.

Lemma 11. A (g, k; p, b)-trisection of a compact, connected, oriented 4-manifold
X with connected boundary induces an open book decomposition on ∂X with pages
of genus p with b boundary components.

Proof. Each X i ∩ ∂X is diffeomorphic to Y 0
g,k;p,b, which is diffeomorphic to

([−π/3, π/3]×P)∪(D×∂P). These three pieces fit together to form ∂X precisely
so that the three copies of [−π/3× π/3] × P form a bundle over S1 with fiber
P , and so that the three copies of D × ∂P form a B2

× ∂P , a disjoint union of
solid tori that fill the boundary components of the bundle as neighborhoods of the
binding components of an open book. �

Theorem 12 [Gay and Kirby 2016]. Every smooth, compact, oriented, connected
4-manifold with connected boundary, with a fixed open book decomposition on the
boundary, has a trisection inducing the given open book.

4. Relative trisections and sutured 3-manifolds,
and proofs of the main theorems

In this section we make several observations about our model (Zk, Yk). These
observations will help us analyze the topology of the corresponding pieces of a
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Y−g,k;p,b ∩ Y+g,k;p,b

Y+g,k;p,b ∩ Y 0
g,k;p,b

Y−g,k;p,b ∩ Y 0
g,k;p,b

Figure 4. Three “surfaces” in the standard model, as represented
in the lower-dimensional schematic. Their common intersection,
here shown as a red S0, is really a disjoint union of b copies of the
circle S1.

relative trisection X = X1∪ X2∪ X3 and will allow us to identify these spaces with
more familiar ones.

(1) The intersection Y−g,k;p,b∩Y+g,k;p,b, and hence the triple intersection X1∩X2∩X3,
is a surface of genus g with b boundary components. This is schematically
illustrated in Figure 3 as a black 1-manifold, see Figure 4.

(2) The intersection Y±g,k;p,b ∩ Y 0
g,k;p,b, and hence X i ∩ X i∓1 ∩ ∂X , is a surface

of genus p with b boundary components, and so diffeomorphic to P. For
i = 1, 2, 3, these become three pages of the induced open book decomposition
of ∂X . In Figure 3, these appear as the two gray ends of the “fan” of pages;
Figure 4 isolates the schematic representations of these two surfaces.

(3) The 3-dimensional triple intersection Y−g,k;p,b ∩ Y 0
g,k;p,b ∩ Y+g,k;p,b, and hence

the 4-dimensional intersection X1 ∩ X2 ∩ X3 ∩ ∂X , is a disjoint union of b
circles. These circles are precisely the components of ∂P , and as such, the
binding of the induced open book. This appears schematically in Figure 4 as a
red pair of points.

(4) Both Y−g,k;p,b and Y+g,k;p,b, and hence X i ∩ X i±1, are 3-dimensional relative
compression bodies starting from a surface 6 of genus g with b boundary
components and compressing along g− p disjoint simple closed curves to get
to a surface P of genus p with b boundary components. Here, by “relative
compression body”, we mean a cobordism with sides from a high genus surface
at the bottom to a low genus surface at the top, each with the same number
of boundary components, with a Morse function with critical points only of
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P+

P−
0

Figure 5. Diagrams concerning relative compression bodies. Top:
The two relative compression bodies Y−g,k;p,b and Y+g,k;p,b, each
shown with the high genus “surface” 6 on the bottom, the sides of
the cobordism, slanted up and to the left, and the low genus “page”
P on the top. Bottom: The two relative compression bodies fit
together to form a sutured 3-manifold, depicted here with “sutures”
vertical and bent at a 2π/3 angle along the core binding.

index 2. The schematic representations of these two relative compression
bodies are illustrated side by side in Figure 5, top.

(5) The union Y−g,k;p,b ∪ Y+g,k;p,b = Yk \ Y 0
g,k;p,b, and hence each ∂X i \ ∂X , is a

balanced sutured 3-manifold, with suture equal to a disjoint union of annuli
described, in the explicit construction of (Zk, Yk) described in Equation (3-2),
as {r ∈ [0, 1], θ =±π/3}× ∂P with the first factor as in Equation (3-1). Thus
each ∂X i \ ∂X is a balanced sutured 3-manifold, with suture 0 equal to a regular
neighborhood in ∂(∂X i \ ∂X) of the binding. The suture divides the boundary
into two remaining pieces P− and P+ which, in our case, are, respectively,
{−π/3} × P and {π/3} × P . See Figure 5, bottom. Note that, in this paper,
annular sutures of a sutured manifold are considered to be parametrized annuli,
i.e., parametrized as [−1, 1]× ∂P−.

(6) In fact the sutured manifold Y−g,k;p,b ∪ Y+g,k;p,b = Yk \ Y 0
g,k;p,b, and hence each

∂X i \ ∂X = (X i ∩ X i−1)∪ (X i ∩ X i+1), is diffeomorphic to

([−1, 1]× P) # (#k−2p−b+1S1
× S2),

with suture 0 = [−1, 1] × ∂P and boundary pieces P± = {±1} × P . The
decomposition as Y+g,k;p,b∪Y−g,k;p,b is the connected sum of the decomposition
of [−1, 1] × P as ([−1, 0] × P)∪ ([0, 1] × P) with a (g− k + b− 1)-times
stabilized standard Heegaard splitting of #k−2p−b+1S1

× S2. This gives a
standard genus g sutured Heegaard splitting of ∂X i \ ∂X .
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(7) There is a diffeomorphism between the surface 6 in Figure 1 and Y+g,k;p,b ∩
Y−g,k;p,b such that the δ curves in Figure 1 bound disks in Y−g,k;p,b and the ε
curves in Figure 1 bound disks in Y+g,k;p,b. Thus (6, δ, ε) is a sutured Heegaard
diagram for

Y+g,k;p,b ∪ Y−g,k;p,b = Yk \ Y 0
g,k;p,b.

(A sutured Heegaard diagram is a triple (6, δ, ε) such that 6 is a surface with
boundary and each of δ and ε is a nonseparating collection of simple closed
curves in 6; such a diagram determines a sutured 3-manifold, balanced if
|δ| = |ε|.)

Notice that the decomposition of Yg,k;p,b into Y−g,k;p,b ∪ Y 0
g,k;p,b ∪ Y+g,k;p,b can

be modified into a decomposition with pieces Y−g,k;p,b ∪ Y 0
g,k;p,b and Y+g,k;p,b, by

grouping together the first two pieces. This decomposition is the standard genus k
Heegaard splitting of #k S1

× S2 stabilized g− k + p+ b− 1 times. Notice also
that Y 0

g,k;p,b can be identified with a collar of the surface P in Yk,g+p+b−1. Thus,
we can think of the space Y−g,k;p,b ∪ Y+g,k;p,b = Yk \ Y 0

g,k;p,b as the complement of a
surface with boundary in a Heegaard splitting and so it is only natural to expect
arcs to be part of a notion of diagram for Y−g,k;p,b ∪ Y+g,k;p,b. However, the last two
observations indicate that it is possible to avoid the arcs. All this sets the stage for
our main technical lemma.

Lemma 13. Consider a diffeomorphism

φ : ([−1, 1]× P) # (#l S1
× S2)→ ([−1, 1]× P) # (#l S1

× S2),

where the domain and range here are equipped with the sutured structure 0 =
[−1, 1] × ∂P and P± = {±1} × P discussed above. Suppose that φ|0∪P− = id.
Then φ|P+ is isotopic rel. boundary to the identity function id : P+→ P+.

Proof. To simplify notation, let M = ([−1, 1] × P) # (#l S1
× S2) and consider

a properly embedded arc a ⊂ P; this gives rise to a simple closed curve γa =

({0} × a) ∪ ([0, 1] × ∂a) ∪ ({1} × a) ⊂ ∂M . Since φ|0∪P− = id, then φ(γa) =

({0} × a) ∪ ([0, 1] × ∂a) ∪ ({1} × a′) for some other arc a′ ⊂ P with the same
endpoints as a. Since γa bounds a disk in M , so does φ(γa) and thus, in fact
φ(γa) is homotopically trivial in [−1, 1] × P . Therefore the loop τa = a ∗ (a′)−1

obtained by concatenating a and (a′)−1 is homotopically trivial in P . So a and
a′ are homotopic rel. endpoints, and thus by a result of Baer [1928], see [Epstein
1966, Theorem 3.1], a and a′ are actually isotopic. Apply this to a collection
of arcs cutting P into a disk to conclude that φ|P+ is isotopic rel. boundary to
id : P+→ P+. �

In what follows we use this lemma in the following form:
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Corollary 14. Consider the model sutured 3-manifold

(([−1, 1]× P) # (#l S1
× S2), 0, P−, P+)

discussed above, and note that there is an “identity” map id : P−→ P+ defined by
id(−1, p)= (1, p). Given any sutured 3-manifold

(M, 0M , P−M , P+M)

diffeomorphic to (([−1, 1] × P) # (#l S1
× S2), 0, P−, P+) there is a unique (up

to isotopy rel. boundary) diffeomorphism idM : P−M → P+M such that, for any
diffeomorphism

φ : (M, 0M , P−M , P+M)→ (([−1, 1]× P) # (#l S1
× S2), 0, P−, P+),

we have idM = φ
−1
◦ id ◦φ.

We are finally ready to prove the main results of this paper, namely Theorem 3
and Theorem 5. We include the statements of both theorems again to make it easier
for the reader to follow our proofs.

Theorem 3. For every (g, k; p, b)-trisection diagram (6, α, β, γ ) there is a unique
(up to diffeomorphism) trisected 4-manifold X = X1 ∪ X2 ∪ X3 with connected
boundary, such that, with respect to a fixed identification 6 ∼= X1 ∩ X2 ∩ X3, the α,
β and γ curves, respectively, bound disks in X1 ∩ X2, X2 ∩ X3 and X3 ∩ X1. In
particular, the open book decomposition on ∂X has b binding components and
pages of genus p. Furthermore, any trisected 4-manifold with connected boundary
is determined in this way by some relative trisection diagram, and any two relative
trisection diagrams for the same 4-manifold trisection are diffeomorphism and
handle slide equivalent.

Proof of Theorem 3. We parallel as much as possible the proof of Theorem 9.
As mentioned above, the diagram (6, δ, ε) in Figure 1 is a sutured Heegaard

diagram for Y+g,k;p,b ∪ Y−g,k;p,b = Yk \ Y 0
g,k;p,b. Fix an identification of 6 with

Y−g,k;p,b ∩ Y+g,k;p,b such that the δ curves bound disks in Y−g,k;p,b and the ε curves
bound disks in Y+g,k;p,b.

Given a trisected 4-manifold X = X1∪ X2∪ X3, for i = 1, 2, 3, let φi : X i→ Zk

be the diffeomorphisms from Definition 10. As before, the associated diagram is
then (X1 ∩ X2 ∩ X3, φ

−1
1 (δ), φ−1

2 (δ), φ−1
3 (δ)). Equivalently one could replace any

φ−1
i (δ) with φ−1

i+1(ε), or in fact any other complete nonseparating system of curves
bounding disks in X i ∩ X i+1; the resulting diagrams would again be handle slide
equivalent [Johannson 1995; Casson and Gordon 1987].

Conversely, given a relative (g, k; p, b)-trisection diagram (6, α, β, γ ), let Cα,
Cβ and Cγ , be relative compression bodies built by starting with I×6 and attaching
3-dimensional 2-handles along α, β and γ , respectively. The boundary of Cα, for
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Figure 6. B2
×6 with I× three relative compression bodies.

example, is naturally identified with 6 ∪ (I × ∂6)∪6α , where 6α is the result of
surgery applied to 6 along α. Let P =6α ∼=6β ∼=6γ .

Build X by starting with B2
× 6, attaching I × Cα, I × Cβ and I × Cγ to

∂B2
× 6 = S1

× 6 along the product of successive arcs in S1 with 6. This
produces a 4-manifold with boundary naturally divided into B2

×6, three copies
of (I × P)∪ (I × I × ∂P) and three sutured 3-manifolds diffeomorphic to

(([−1, 1]× P) # (#l S1
× S2), 0, P−, P+).

The three sutured manifolds are as advertised because each of (6, α, β), (6, β, γ )
and (6, γ, α) is handle slide and diffeomorphism equivalent to the standard sutured
Heegaard diagram (6, δ, ε) discussed above. This is illustrated in Figure 6. Using
Corollary 14, there is a unique way to glue ([−1, 1] × P) ∪ (D × ∂P), that is
one third of an open book, to each of these sutured 3-manifolds. Thickening the
three pieces we have glued on to be 4-dimensional, we get a 4-manifold with four
boundary components: one on the “outside”, equal to an open book decomposition
with page P , and three “inside” boundary components each diffeomorphic to
#k S1

× S2. This is illustrated in Figure 7, in which at the last stage we only see the
outer boundary. Cap off each of the inside boundary components with \k S1

× B3

(uniquely, by [Laudenbach and Poénaru 1972]). The end result is our trisected
4-manifold X = X1 ∪ X2 ∪ X3. (Each X i is the union of a third of B2

×6, half of
I cross one relative compression body, half of I cross the next relative compression
body, the thickened copy of ([−1, 1]× P)∪ (D× ∂P) glued in to this third, and
the corresponding copy of \k S1

× B3.) �
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Figure 7. Gluing on three groups of pages and closing up.

Theorem 5. A relative trisection diagram (6, α, β, γ ) encodes an open book
decomposition on ∂X with page given by 6α, the surface resulting from 6 by
performing surgery along the α curves, and monodromy µ :6α→6α determined
by the following algorithm:

(1) Choose an ordered collection of arcs a on 6, disjoint from α and such that its
image φα(a) in 6α cuts 6α into a disk.

(2) There exists a collection of arcs a1 and simple closed curves β ′ in 6 such that
(α, a1) is handle slide equivalent to (α, a), β ′ is handle slide equivalent to β,
and a1 and β ′ are disjoint. (We claim that in this step we do not need to slide α
curves over α curves, only a arcs over α curves and β curves over β curves.)
Choose such an a1 and β ′

(3) There exists a collection of arcs a2 and simple closed curves γ ′ in 6 such that
(β ′, a2) is handle slide equivalent to (β ′, a1), γ ′ is handle slide equivalent to
γ , and a2 and γ ′ are disjoint. (Again we claim that we do not need to slide β ′

curves over β ′ curves.) Choose such an a2 and γ ′

(4) There exists a collection of arcs a3 and simple closed curves α′ in 6 such that
(γ ′, a3) is handle slide equivalent to (γ ′, a2), α′ is handle slide equivalent to
α, and a3 and α′ are disjoint. (Again we do not need to slide γ ′ curves over γ ′

curves.) Choose such an a3 and α′.

(5) The pair (α′, a3) is handle slide equivalent to (α, a∗) for some collection of
arcs a∗. Choose such an a∗. Note that now a and a∗ are both disjoint from α

and thus we can compare φα(a) and φα(a∗) in 6α.

(6) The monodromy µ is the unique (up to isotopy) map such that

µ(φα(a))= φα(a∗),
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respecting the ordering of the collections of arcs.

Proof of Theorem 5. The fact that each of (6, α, β), (6, β, γ ) and (6, γ, α)
is handle slide and diffeomorphism equivalent to the sutured Heegaard diagram
(6, δ, ε) in Figure 1 tells us that we can in fact find the collections of arcs and
sequences of slides advertised. Each time we find a collection of arcs which is
disjoint from, for example, both β and γ , this describes a diffeomorphism from 6β

to 6γ , which is the “identity” map coming from Corollary 14. Thus we have the
following steps:

(1) Note that φα(a) is isotopic to φα(a1) in 6α because a1 was produced from a
by sliding over α curves.

(2) Map 6α to 6β ′ so as to send φα(a1)⊂6α to φβ ′(a1)⊂6β ′ .

(3) Note that φβ ′(a1) is isotopic to φβ ′(a2) in 6β ′ because a2 was produced from
a1 by sliding over β ′ curves.

(4) Map 6β ′ to 6γ ′ so as to send φβ ′(a2)⊂6β ′ to φγ ′(a2)⊂6γ ′ .

(5) Note that φγ ′(a2) is isotopic to φγ ′(a3) in 6γ ′ because a3 was produced from
a2 by sliding over γ ′ curves.

(6) Map 6γ ′ to 6α′ so as to send φγ ′(a3)⊂6γ ′ to φα′(a3)⊂6α′ .

(7) Map 6α′ to 6α so as to send φα′(a3) to φα(a∗).

The fact that each of the maps in the above sequence of maps is independent of the
choices is a restatement of Corollary 14, and thus we see the monodromy expressed
as a composition 6α→6β ′→6γ ′→6α′→6α. �

5. Examples

5.1. Disk bundles over the 2-sphere S2. Consider p : En→ S2 the oriented disk
bundle over S2 with Euler number n. Decompose S2 as the union of three wedges
B1, B2, B3 that intersect pairwise in arcs joining the north and south pole and
whose triple intersection consists precisely of the north and south poles as shown
in Figure 8. Ideally, we would just lift this trisection of S2 to get a trisection for En .
However, although each p−1(Bi ) is in fact a 4-dimensional 1-handlebody, the triple
intersection of these pieces is not connected and so this naive decomposition of En

is not really a trisection. To fix this, for i, j = 1, 2, 3 let ϕi : Bi × D2
→ p−1(Bi )

be a trivialization over Bi and let gi j : Bi ∩ B j → SO(2) be the transition function
for ϕ−1

i ◦ϕ j . Next, parametrize each arc Bi ∩ Bi+1 by t ∈ [0, 1] and use the cocycle
condition to set

(5-1) g12, g23 : t→ 1, and g31 : t→ e2π int .
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Figure 8. Decomposition of S2
= B1 ∪ B2 ∪ B3.

Here we are using the identification eiθ
=
( cos(θ) − sin(θ)

sin(θ) cos(θ)

)
and the notion of cocycle

condition from [Davis and Kirk 2001]. In addition, choose sections σi over Bi

(i = 1, 2, 3) disjoint from one another and so that at each point b ∈ Bi , σi (b) lies in
the interior of the fiber p−1({b}). Let νi ∼= Bi × Ni be a tubular neighborhood of
σi (Bi ) in p−1(Bi ), and also assume that these tubular neighborhoods are pairwise
disjoint and that at each point b ∈ Bi , the vertical direction of νi at b lies in the
interior of p−1(b). Finally, set

X i = p−1(Bi ) \ νi ∪
ϕi◦ϕ

−1
i+1

νi+1,

where the gluing is done via

ϕi ◦ϕ
−1
i+1 : νi+1 ∩ p−1(Bi )→ νi+1 ∩ p−1(Bi ).

Notice that since νi is a 2-handle, removing it from p−1(Bi ) results in a space
diffeomorphic to S1

× B3. In addition, since νi+1 is attached along νi+1 ∩ p−1(Bi )

and this set is a 3-ball, attaching νi+1 does not change the diffeomorphism type and
thus X i is diffeomorphic to S1

× B3.
For the X i ’s to define a trisection of En , we need to check that the intersections

between them behave in the way stipulated in Definition 10. With this in mind,
consider first the pairwise intersection X i−1 ∩ X i and notice that this intersection is
such that

(5-2) X i−1 ∩ X i

=
(

p−1(Bi−1 ∩ Bi ) \ (νi−1 ∪ νi )
)
∪

ϕi−1◦ϕ
−1
i

∂iνi ∪
ϕi◦ϕ

−1
i+1

(νi+1 ∩ p−1(Bi−1)).

Here
(

p−1(Bi−1∩ Bi )\ (νi−1∪νi )
)

is diffeomorphic to a 3-ball with two 2-handles
removed, and νi+1 ∩ p−1(Bi−1) is a 1-handle. Moreover, the set ∂iνi ∼= Bi × ∂Ni ,
the boundary of νi as a subspace of p−1(Bi ), is a solid torus attached to the 3-ball
with two 2-handles removed along a cylinder in its boundary and thus is simply
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a thickening of one of the holes left by the 2-handles. We can then conclude that
X i−1∩X i is diffeomorphic to a handlebody of genus 3. An extension of the previous
argument then shows that the triple intersection is given by

(5-3) X1 ∩ X2 ∩ X3

= p−1(B1 ∩ B2 ∩ B3) \ (ν1 ∪ ν2 ∪ ν3) ∪
ϕi◦ϕ

−1
i+1

i=1,2,3

[ 3⋃
i=1

∂iνi ∩ p−1(Bi+1)

]
,

where p−1(B1∩B2∩B3)\(ν1∪ν2∪ν3) consists of the disjoint union of two 2-disks
with three interior disks removed, and each ∂iνi ∩ p−1(Bi+1) is diffeomorphic to
the cylinder Bi ∩ Bi+1 × ∂Ni and is glued to the first space in such a way that
it joins internal boundary components of the two different disks. From this it
follows that the triple intersection is a twice punctured genus two surface. The last
intersections to consider are those that involve the boundary, namely, X i ∩ En and
X i−1 ∩ X i ∩ ∂En . In this case we have

X i ∩ ∂En = ∂p−1(Bi ) \ p−1(∂Bi )∼= Bi × ∂D2,

and

X i−1 ∩ X i ∩ ∂En = ∂p−1(Bi−1 ∩ Bi ) \ p−1(∂Bi−1 ∩ ∂Bi )∼= Bi−1 ∩ Bi × ∂D2.

From this we see that X i ∩ En is diffeomorphic to I × X i−1 ∩ X i ∩ ∂En with the
space ∂ I × X i−1∩ X i ∩ ∂En identified, or, using the terminology of Equation (3-1),
that X i ∩ En is diffeomorphic to ∂0 D× (X i−1∩ X i ∩ ∂En)∪ D× ∂(X1∩ X2∩ X3).

In sum, the previous paragraphs describe a (2, 1; 0, 2) relative trisection of En

whose relative trisection diagram (6, α, β, γ ) has yet to be exhibited. To this end,
notice that by Equation (5-3), 6 is a surface decomposed as the union of two copies
of a three times punctured disk with three cylinders joining the punctures of the
two disks. To finish the description of the diagram, it is enough to find three sets of
curves in F = X1∩ X2∩ X3 that bound disks in the double intersections X i−1∩ X i ,
and draw their images in 6. For example, in X3 ∩ X1, the 1-handle ν2 ∩ p−1(B3)

has the cylinder ∂2ν2 ∩ p−1(B3) as its boundary and so the central circle in the
latter is one of the curves in the collection γ . A similar argument applied to the
other two pairwise intersections shows that the central circle in ∂3ν3∩ p−1(B1) is a
curve in α and ∂1ν1∩ p−1(B2) is a curve in β. Next, consider the disk D in X3∩ X1

constructed as the union of a disk in p−1(B3 ∩ B1) \ ν3 ∪ ν1 that lies between the
holes left by ν3, ν1 with a meridional disk in ∂3ν3. Then, the curve ∂D can be
realized as the union of:

(i) a properly embedded arc in ∂3ν3∩ p−1(B1) with one endpoint in each boundary
component,
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Figure 9. A (2, 1; 0, 2) relative trisection diagram for the disk
bundle over S2 corresponding to the integer −1. The monodromy
of the open book in the boundary is a left handed twist.

(ii) a properly embedded arc in ∂1ν1∩ p−1(B2) with one endpoint in each boundary
component, and

(iii) two horizontal arcs that lie in different components of the disjoint union of
disks (p−1

\ ν1 ∪ ν2 ∪ ν3)(B1 ∩ B2 ∩ B3).

This curve ∂D is the second curve in the collection γ and to draw it in 6 we have
to proceed with caution since by assumption the gluing map ϕ3 ◦ϕ

−1
1 depends on n.

Indeed, using Equation (5-1) we see that the two disks that make up D align only if
the second one is twisted. Thus, the arc described in (ii) appears in ∂1ν1 ∩ p−1(B2)

as an arc with n-twists. Lastly, to get the remaining curves in α and β, we proceed
in a similar manner noticing that in these cases the gluing maps are trivial and thus
the analogous arcs to the one from (ii) are not twisted. This shows that the trisection
diagram corresponding to the decomposition En = X1 ∪ X2 ∪ X3 can be obtained
from the one shown in Figure 9 by replacing the single left handed twist on the
green curve appearing in the right, with n full twists around the cylinder.

5.2. Local modifications of diagrams, Lefschetz fibrations and Hopf plumbings.
Throughout this section, suppose that we are given a relative trisection diagram
(6, α, β, γ ) for a trisected 4-manifold X = X1∪ X2∪ X3, with induced open book
on ∂X with page P =6α and monodromy µ : P→ P .

Lemma 15. Let 6′ ⊃6 be the result of attaching a 2-dimensional 1-handle to 6
along some S0

⊂ ∂6. Then the tuple (6′, α, β, γ ) is a relative trisection diagram
for a trisected 4-manifold X ′ = X ′1 ∪ X ′2 ∪ X ′3 such that X ′ is the result of attaching
a 4-dimensional 1-handle H to X along the same S0

⊂ ∂6, seeing ∂6 ⊂ ∂X as the
binding of the open book on ∂X. Furthermore, H = H1 ∪ H2 ∪ H3, where each Hi

is a 4-dimensional 1-handle attached to X i to form X ′i . The open book on ∂X ′ has
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+

−

Figure 10. Local modification of (6, α, β, γ ) near a curve C dis-
joint from α and transverse to β and γ . The gray transverse arc
represents a collection of parallel β and γ arcs.

page P ′ = P ∪ h, the result of attaching the 2-dimensional 1-handle h to P , and
monodromy µ′ equal to µ extended by the identity across h.

Proof. Let h be the 2-dimensional 1-handle attached to 6 to form 6′. In the
construction of X and X ′, we see that X is naturally a subset of X ′ and that X ′\X is
precisely a 1-handle H = B2

×h. Splitting B2 into three thirds B2
= D1∪D2∪D3

gives the three 1-handles Hi = Di × h. �

Lemma 16. Consider a simple closed curve C ⊂6 disjoint from α and transverse
to β and γ . Let (6±, α±, β±, γ±) be the result of removing a cylinder neighbor-
hood of C , together with the β and γ arcs running across this neighborhood, and
replacing it with a twice-punctured torus as in Figure 10 with β and γ arcs as
drawn, and with one new α, β and γ curve as drawn. Then (6±, α±, β±, γ±) is a
relative trisection diagram for a trisected 4-manifold X ′ = X ′1 ∪ X ′2 ∪ X ′3 such that
X ′ is the result of attaching a 2-handle to X along C ⊂ P with framing ∓1 relative
to P , and such that the open book on ∂X ′ has page P with monodromy τ±1

C ◦µ,
where τC is a right-handed Dehn twist about C.

Proof. Since (6, α, β, γ ) is a trisection diagram, we know that there is an arc A
connecting C to ∂X avoiding α and transverse to β and γ ; we draw a neighborhood
of C ∪ A as on the left in Figure 11. In this picture there are two groups of β and
γ arcs: those transverse to C and those transverse to A. The modification drawn
in Figure 10 is then redrawn in Figure 11 so that we see the new genus in 6′ as
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−→

Figure 11. A different perspective of the local modification of
(6, α, β, γ ), taking into account an arc A connecting C to ∂6.
Again, the gray arcs represent collections of parallel β and γ arcs;
now one collection of such arcs is transverse to the closed curve C
and one collection is transverse to the arc A.

Figure 12. After some handle slides.

arising from 6 by attaching two 2-dimensional 1-handles h1 and h2. The β and γ
arcs that were transverse to A avoid the new α, β and γ curves by running parallel
to ∂6′. Note that we can slide these boundary-parallel β and γ arcs over the new
β or, respectively, γ curve to get Figure 12. (Each β (resp. γ ) arc slides twice over
the β (resp. γ ) curve.) Thus we can take Figure 12 to be the modification of the
trisection diagram which we work with; i.e., (6±, α±, β±, γ±) is obtained from
(6, α, β, γ ) by replacing the figure on the left in Figure 11 with Figure 12.

Now, recalling the construction of X from the diagram (6, α, β, γ ) and of
X ′ from (6±, α±, β±, γ±), we see that X ′ is naturally built by adding two 4-
dimensional 1-handles to X (as in Lemma 15) followed by three 4-dimensional
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6+

//

��

//

��

P

µ
//

Figure 13. Local effect on the monodromy.

2-handles, one along the new α curve in 6′α, one along the new β curve in 6′β
and one along the new γ curve in 6′γ , with 0-framings relative to the pages in
which they sit. The β and γ 2-handles each, topologically, cancel one of the new
1-handles, and when this cancellation is performed, we see that the α curve now
sits in 6α with framing equal to ±1 with respect to 6α.

Figure 13 shows a local implementation of the algorithm from Theorem 5 to show
the effect of the new monodromy on a single arc transverse to C , thus completing
the proof of the lemma. �

Note that the roles of α, β and γ in Lemma 16 can obviously be cyclically per-
muted; in some of the following applications, γ will play the role that α plays here.

Notice also that if (6, α, β, γ ) is a relative trisection diagram for a (g, k; p, b)
trisection, then the tuple (6′, α, β, γ ) from Lemma 15 is a relative trisection diagram
of a (g+ 1, k+ 1; p+ 1, b) trisection or a (g, k+ 1; p, b+ 1) trisection depending
on whether the chosen 0-sphere S0

⊂ ∂6 is contained in different components of
∂6 or in the same one. Similarly, the tuple (6±, α±, β±, γ±) from Lemma 16 is a
relative trisection diagram of a (g+ 1, k; p, b) trisection.

We have two immediate corollaries. The first describes a stabilization operation
on trisection diagrams corresponding to Hopf plumbing on the bounding open book
decomposition, and is the diagrammatic version of the construction described in
Section 3.3 of [Castro 2016].
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Corollary 17. Suppose that X has a trisection T with induced open book decom-
position D on ∂X , and that D+ (resp. D−) is an open book decomposition of ∂X
obtained from D by plumbing a left-handed (resp. right-handed) Hopf band along a
properly embedded arc A in a page P of the open book D. If T is described by the
relative trisection diagram (6, α, β, γ ) such that P is identified with 6α , consider
the new diagram (6′±, α±, β±, γ±) obtained by first attaching a 2-dimensional
1-handle to 6 at the end points of A, as in Lemma 15, producing (6′, α, β, γ ) and
then modifying this as in Lemma 16 in a neighborhood of the curve C obtained by
attaching the core of the 1-handle to the arc A. Then (6′±, α±, β±, γ±) is again a
trisection of X inducing the open book decomposition D± on ∂X.

We leave the proof of this corollary to the reader.
For the next corollary, let P be a smooth orientable surface with boundary and for

c a curve embedded in P , denote by τc the right handed twist of P along c. Given
a 3-manifold Y with open book decomposition given by (P, µ) with µ factored as
µ= τ

εn
cn ◦· · ·◦τ

ε1
c1

with εi ∈{−1, 1}, and ci a curve in P , i =1, . . . , n it is well known
that Y is the boundary of a 4-manifold X admitting an achiral Lefschetz fibration
over D2 with vanishing cycles c1, . . . , cn . Moreover [Kas 1980], X admits a handle
decomposition diffeomorphic to the result of attaching n 2-handles h2

1, . . . , h2
n , to

D2
×P along the circles {1}×ci with framing given by the surface framing minus εi .

Corollary 18. Let π : X→ D2 be an achiral Lefschetz fibration with regular fiber
a surface P of genus p and b boundary components, and with n vanishing cycles.
The manifold X admits a (p+ n, 2p+ b− 1; p, b) trisection.

Proof. Build X and its trisection beginning with the standard (0, 0; 0, 1) trisection
of B4 and attaching 1-handles as in Lemma 15 to produce P× D2 with a trisection
inducing the standard open book on P × S1 with page P and identity monodromy.
At this stage the central surface 60 is P , and there are no α, β or γ curves. Attach
a 2-handle along c1 as in Lemma 16 to get a new (61, α1, β1, γ 1), such that each
of α1, β1 and γ 1 consists of a single curve, and P is identified with 61

α1 . Now, as i
goes from 2 to n repeat the following process: Pull ci back from P to 6i−1, using
the fact that P is identified with 6i−1

αi−1 , and then apply Lemma 16 to ci ⊂6
i−1 to

produce (6i , αi , β i , γ i ), with P again identified with 6i
αi . �

The subtlety in implementing the method of proof above in a particular example
arises when the vanishing cycles intersect. The images in Figure 14 illustrate a
slightly nontrivial example, in which the vanishing cycles correspond to one side
of the lantern relation in the mapping class group of a genus 0 surface with four
boundary components. The end result is a relative trisection diagram for a well
known rational homology 4-ball with boundary L(4, 1); see [Endo and Gurtas 2010;
Fintushel and Stern 1997]. Note that from Figure 14(c) to Figure 14(d) we need
to isotope the third vanishing cycle so as to be disjoint from a red α curve before
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(a)
A

A

A

A B

B

(b) (c)

A

A B

B

A

A B

B

C

C

(d) (e)

Figure 14. A relative trisection diagram for a rational homology
4-ball with boundary L(4, 1). (a) Three vanishing cycles on a
genus 0 surface with 4 boundary components. (b) One vanishing
cycle turned into α, β and γ curves, genus now equal to 1. (c) Two
vanishing cycles done, genus equals 2; note that C3 now intersects
α curves. (d) C3 isotoped to intersect only γ curves. (e) A rational
homology B4.

proceeding to Figure 14(e). This corresponds to adjusting our drawing so that the
third vanishing cycle does in fact live in the page obtained by surgering the central
surface along the α curves.

5.3. Plumbings. In this section, we explain how to combine the method to obtain
a diagram for achiral Lefschetz fibrations with well-known facts about plumbings
of disk bundles over surfaces to describe trisection diagrams for plumbings of disk
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bundles. Notice however that for a single disk bundle of large Euler class, this
method gives a much higher genus trisection than the method in Section 5.1.

Definition 19. A plumbing graph is a finite connected graph 0 whose vertices and
edges are assigned weights as follows:

• each vertex v of 0 carries two integer weights ev, and gv, with gv ≥ 0,

• each edge of 0 is assigned a sign +1 or −1.

To simplify notation, denote by V (0) the set of vertices, E(0) the set of edges,
and Q(0) the incidence matrix of 0, that is, the matrix whose qvw entry is given
by the signed count of edges joining the vertices v and w if v 6= w, and qvv = ev.
In addition, for every vertex v let sv =

∑
w∈V (0) qvw. Then, if dv is the degree of v,

or in other words the weighted sum of edges that intersect v, we have sv = ev + dv .

Definition 20. Given a plumbing graph 0, its modified plumbing graph is the
connected graph 0∗ that results from adding loose edges (edges with only one end
at a vertex and the other end “loose”) to 0 as follows:

• at each vertex v of 0 attach |sv| loose edges,

• to each loose edge assign the sign of −sv.

If we call L(0∗) the set of loose edges and if we let D be the diagonal matrix
with entries given by the sums sv , using the notation introduced after Definition 19
we have

V (0∗)= V (0),

E(0∗)= E(0)∪L(0∗),

Q(0∗)= Q(0).

To a modified plumbing graph 0∗ with underlying plumbing graph 0, one can
associate a surface F(0∗) and a set of vanishing cycles as follows: Assign to each
vertex v the closed orientable surface of genus gv and to each loose end of a loose
edge a disk D2 and connect these surfaces with tubes according to 0∗ to obtain the
surface F(0∗) (i.e., for each edge, replace two disks, one in the interior of each
surface corresponding to the ends of the edge, with [0, 1]×S1). The vanishing cycles
are simply the necks of the tubes (explicitly, the curves {1/2}× S1

⊂ [0, 1]× S1)
used in the construction of F(0∗) and each vanishing cycle’s framing is equal to
the sign ±1 of the edge of 0∗ giving rise to that tube.

Lemma 21. Let 0 be a plumbing graph. Then there exists an (achiral) Lefschetz
fibration π : L(0)→ D2 with the following properties:

(i) the regular fiber of π is diffeomorphic to F(0∗),

(ii) the vanishing cycles and their framings correspond to edges in 0∗ and their
signs,
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Figure 15. Relative trisection diagrams for the disk bundles over
closed orientable surfaces. Left: Disk bundle over a closed surface
with Euler number n < 0. Right: Disk bundle over a torus with
Euler number 0.

(iii) the monodromy µ is equal to the signed product of Dehn twists along the
vanishing cycles.

Furthermore, the 4-manifold P(0) obtained as a plumbing of disk bundles of
surfaces according to a plumbing graph 0 and L(0) constructed from the given
vanishing cycle data are diffeomorphic.

Proof. To see that L(0) is diffeomorphic to P(0) we need to show that L(0) is
a regular neighborhood of a collection of surfaces of the right genus transversely-
and self-intersecting according to 0. Since all the vanishing cycles are disjoint on
F(0∗), we can see L(0) as a Lefschetz fibration with exactly one singular fiber
containing all the singularities. Since each vanishing cycle becomes a transverse
intersection point in the singular fiber, with sign given by the sign of the vanishing
cycle, we immediately get the correct configuration of surfaces. Since there is only
one singular value, L(0) is a neighborhood of that singular fiber. �

Lemma 21 can be combined with Corollary 18 to obtain trisections and trisection
diagrams for plumbing manifolds. For example, if6 is the closed orientable surface
of genus G > 1 and p : En→ 6 is the disk bundle over 6 with Euler number n,
let π : En → D2 be the (achiral) Lefschetz fibration described in Lemma 21. If
n 6= 0, there is a (|n|+G, |n|+2G−1;G, |n|) trisection of En with diagram given
by Figure 15, left. If n = 0, there is a (G+ 2, 2G+ 1;G, 2) trisection of En with
diagram given by Figure 15, right.

A less trivial example is the negative definite E8 manifold. The plumbing graph,
the modified plumbing graph, the regular surface, and the trisection diagram are
shown in Figure 16.

5.4. The product of the circle with knot complements. In this section we show
that if a knot K ⊂ S3 is in bridge position with B bridges, then X = S1

× S3
\N (K )
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(0,−2) (0,−2) (0,−2) (0,−2) (0,−2) (0,−2) (0,−2)

+ + + + + +

+

(0,−2)

The plumbing graph E8.

+ + + + + +

+

+ − +

+

The modified plumbing graph E∗8 .

The regular fiber of L(E8).

The trisection diagram of P(E8).

Figure 16. The negative definite E8 manifold. Its boundary is the
Poincaré homology sphere.

admits a (6B− 1, 2B+ 1; 1, 4) trisection. The description of the trisection and the
trisection diagram will depend on the notion of doubly pointed diagrams for knots
in S3 and so we begin the section with its definition. For the details regarding this
construction we refer the reader to [Rasmussen 2003, Section 3.2; Manolescu 2016,
Example 3.4].

Definition 22. A doubly-pointed diagram for a knot K ⊂ S3, is a tuple

(6, E,F, z1, z2),
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S−2 S−2S−1 S−3

S+3 S+2 S+1

Figure 17. A projection of S1
× S3

\ N (K ) into [0, 6] × [0, 3]
using a factor of the angle of S1 and the restriction of a Morse
function on S3 to the knot complement.

where (6, E,F) is a Heegaard diagram for S3 and z1 and z2 are distinct points on6
in the complement of E and F , such that, in the associated handle decomposition of
S3, K is the union of two arcs connecting the index 0 and 3 critical points, avoiding
the cocores of the 1-handles and the cores of the 2-handles, intersecting 6 at z1

and z2.

Note that if K is given in bridge position with B bridges, stabilizing the genus
0 Heegaard splitting B − 1 times gives a genus B − 1 doubly pointed diagram
describing K .

This description can then be translated into a Morse function f : S3
→ [0, 3]

such that the knot K is obtained as the union of the gradient flow lines of f joining
the unique index 3 critical point with the unique index 0 critical point and passing
through the points z1 and z2. After a small perturbation we may assume that f |∂N (K )

is a standard Morse function on T 2; the only feature we really care about is that
f −1(3/2) intersect N (K ) as meridional disks and thus splits ∂N (K ) into two annuli.

Identify S1 with [0, 6]/0∼ 6, draw a grid on [0, 6]× [0, 3] as in Figure 17 and
label the squares S±i , i = 1, 2, 3 with the sign chosen depending on the position of
the square relative to the horizontal line [0, 1]×{3/2}. Notice that the left and right
ends of the figure should be identified since [0, 6] is actually [0, 6]/0 ∼ 6 = S1.
Consider the projection π : S1

× S3
\ N (K )→ S1

× [0, 3] given by the identity
in the first component, and the restriction of the Morse function f to the knot
complement in the second component. Over each vertical line segment in Figure 17
is a 3-dimensional handlebody with B 1-handles, realized as the intersection of the
genus (B− 1) handlebody U± with the knot complement S3

\ N (K ). Therefore,
over each square lies a 4-dimensional space diffeomorphic to \B S1

× B3. Similarly,
over each interior vertex lies the punctured surface 6′=6\(D(z1)tD(z2)), where
z1, z2 are the points in 6 that describe the knot K ⊂ S3, and D(z j ) ( j = 1, 2), is a
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S−2 S−2S−1 S−3

S+3 S+2 S+1

Figure 18. The pieces involved in the pairwise intersection X1 ∩ X2.

disk neighborhood of z j in 6. We thus see that over each interior and horizontal
edge of a square lies the genus 2B− 1, 3-dimensional handlebody I ×6′.

We will obtain a trisection of X = S1
× S3
\ N (K ) by connecting the preimage

of S+i to the preimage of S−i using 4-dimensional 1-handles realized as tubular
neighborhoods of appropriately chosen arcs. Let k = 1, . . . , 6 and j = 1, 2, and
to simplify notation identify ∂D(z j ) with the unit circle in C, and denote by ξ k

j
the k-th power of a third root of unity ξ ∈ S1, regarded as a point in ∂D(z j ).
Consider the arcs ak j obtained by taking the product of the preimage of [k−1, k] in
S1
= [0, 6]/(0∼ 6) with the point ξ k

j in S3
\ N (K ). The i-th piece of the trisection

of X into X1∪ X2∪ X3 will be obtained by connecting π−1(S+i ) to π−1(S−i ) using
the 1-handles whose cores project into the grid as a horizontal edge disjoint from
the squares S+i and S−i , and removing from it the other 1-handles. Specifically, if
we denote the tubular neighborhood of ak j (k = 1, . . . , 6, j = 1, 2) in X by νk j ,
then

X i =

(
π−1(S+i t S−i )

∖ ⋃
l 6=i,i+3

j=1,2

νl j

)
∪

( ⋃
j=1,2

νi j t νi+3, j

)
.

Since for k 6≡ i mod 3 the cores of the tubes νk j lie in the boundary of the squares
S±i , removing them from their preimages does not change the diffeomorphism type
of this space. Thus, X i is a connected space and since π−1(S±i )∼= \

B S1
× B3, we

see that X i is diffeomorphic to \2B+3S1
× B3.

Next we analyze the pairwise intersections of the pieces, and since the calculations
are analogous for any pair (i, i+1), we present the details for X1∩X2 and leave out
those concerning the other cases. There are three different types of spaces involved
in the double intersection: the preimages of the vertical segments of the intersections
S1 ∩ S2, the preimages of the horizontal intersections, and 3-dimensional tubular
neighborhoods of some of the arcs ak j . These sets are highlighted in Figure 18,
with the dotted line representing the presence of tubular neighborhood of two arcs.
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S1
×{3/2}

∂D(z j )

Figure 19. Two of the four components of X1 ∩ X2 ∩ X3 ∩ ∂X .
This parallelogram represents a torus as follows: the horizontal
component represents the S1 direction in the middle of Figure 17
and the slanted direction represents the direction of ∂D(z j ) which
is “internal” to 6′ and therefore not represented in Figure 17.

We then see that the space X1 ∩ X2 is diffeomorphic to the disjoint union of two 3-
dimensional handlebodies of genus B and two 3-dimensional handlebodies of genus
2B− 1 (two copies of I ×6′), connected to one another using eight 3-dimensional
1-handles. Therefore, X1 ∩ X2 is diffeomorphic to \6B+3S1

× D2.
The triple intersection F= X1∩X2∩X3 is the union of six copies of the punctured

surface6′=6\(N (z1)tN (z2)) realized as the preimages of the six interior vertices
in Figure 17, connected to one another using band neighborhoods of the arcs ak j

in S1
×6′. A simple computation shows that a surface so decomposed has Euler

characteristic equal to −12B and so, to establish the diffeomorphism type of this
central surface F , it is enough to calculate the number of boundary components.
With that in mind, notice that ∂F is precisely the space X1∩ X2∩ X3∩∂X , and that
this space is the result of joining the copies of ∂D(z j ) lying above the six internal
vertices to one another using band neighborhoods of the six arcs a jk for j = 1, 2.
For each j = 1, 2 this results in two circles, for a total of four boundary components.
A schematic picture that describes these components can be found in Figure 19. A
simple Euler characteristic argument then shows that the surface X1 ∩ X2 ∩ X3 has
genus 6B− 1.

Next, to understand X1 ∩ X2 ∩ ∂X intersect the highlighted pieces in Figure 18
with ∂N (K ). Above the vertical edges lies a cylinder, above each horizontal edge
two disks realized as I × (∂D(z1) \ N (ξ 3

1 )) and I × (∂D(z2) \ N (ξ 3
2 )), and above

each dotted line two band neighborhoods of the arcs (one for each of z1 and z2).
Thus, X1∩X2∩∂X is diffeomorphic to the disjoint union of six cylinders connected
to one another using eight bands. A surface with this decomposition has Euler
characteristic equal to −4, and since its boundary is the same as the boundary of
the central surface F we conclude that X1 ∩ X2 ∩ ∂X is a surface of genus 1 and 4
boundary components.
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The last intersection to consider is X1 ∩ ∂X . This space consists of two solid
tori, one above each one of S±1 , and two 3-dimensional 1-handles that lie above
[0, 1]× {3/2} and [3, 4]× {3/2}. This shows that X1∩ ∂X is a genus 5 handlebody.
Moreover, notice that each solid torus is a relative compression body from one of
the cylinders in X1 ∩ X2 ∩ ∂X to a cylinder in X1 ∩ X3 ∩ ∂X , and that each solid
torus contains one of the disks in each one of X1 ∩ X2 ∩ ∂X and X1 ∩ X3 ∩ ∂X . In
addition, the 3-dimensional 1-handles are relative compression bodies between the
band neighborhoods of the arcs, and so X1 ∩ ∂X is diffeomorphic to the product of
an interval and the surface X1 ∩ X2 ∩ ∂X .

Finally, to obtain a trisection diagram for S1
× S3
\ N (K ) all that is left to do

is understand the collection of disks in the pairwise intersections X i ∩ X i+1 that
are bounded by curves that lie entirely in the triple intersection F = X1 ∩ X2 ∩ X3.
One more time we focus only on the intersection X1 ∩ X2. In this case we have:

• The collection F of B− 1 curves that bound disks D+i at {4}×U+.

• The collection E of B− 1 curves that bound disks D−i at {1}×U−.

• A collection of 2B curves stemming from a handle decomposition of [2, 3]×6′

relative to the union of {2, 3} × 6′ with band neighborhoods of the arcs
[2, 3]× {ξ 2

j }, j = 1, 2. The curves are realized as the union of arcs in {2}×6′

with arcs in {3}×6′ going through the bands; 2(B− 1) of the arcs arise from
some 1-handles in 6′ that give rise to genus, one other from a 1-handle in 6′

that gives rise to the boundary components, and one other that connects the
two bands.

• A collection analogous to the one above but related to [5, 6]×6′.

Thus, the trisection diagram consists of a surface of genus 6B−1 with 4 boundary
components, realized as the union of six copies of 6′ joined to one another using
twelve bands, and curves coming either from the Heegaard splitting of S3 that
corresponds to the doubly pointed diagram of K , or from the handlebody structure
of I ×6′ and distributed along the pieces of 6′ as shown in Figure 20, top.
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LINKAGE OF MODULES WITH RESPECT TO
A SEMIDUALIZING MODULE

MOHAMMAD T. DIBAEI AND ARASH SADEGHI

The notion of linkage with respect to a semidualizing module is introduced.
This notion enables us to study the theory of linkage for modules in the Bass
class with respect to a semidualizing module. It is shown that over a Cohen–
Macaulay local ring with canonical module, every Cohen–Macaulay module
of finite Gorenstein injective dimension is linked with respect to the canoni-
cal module. For a linked module M with respect to a semidualizing module,
the connection between the Serre condition (Sn) on M and the vanishing of
certain local cohomology modules of its linked module is discussed.

1. Introduction

The theory of linkage of ideals in commutative algebra was introduced by Peskine
and Szpiro [1974]. Recall that two ideals I and J in a Cohen–Macaulay local
ring R are said to be linked if there is a regular sequence α in their intersection
such that I = (α : J ) and J = (α : I ). One of the main results in the theory of
linkage, due to C. Peskine and L. Szpiro, indicates that the Cohen–Macaulay-ness
property is preserved under linkage over Gorenstein local rings. They also give a
counterexample to show that the above result is no longer true if the base ring is
Cohen–Macaulay but non-Gorenstein. Attempts to generalize this theorem have led
to several developments in linkage theory, especially by C. Huneke and B. Ulrich
[Huneke 1982; Huneke and Ulrich 1987]. Schenzel [1982] used the theory of
dualizing complexes to extend the basic properties of linkage to the linkage by
Gorenstein ideals.

The classical linkage theory has been extended to modules by Martin [2000],
Yoshino and Isogawa [2000], Martsinkovsky and Strooker [2004], and Nagel [2005],
in different ways. Based on these generalizations, several works have been done
on studying the linkage theory in the context of modules; see for example [Dibaei
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et al. 2011; Dibaei and Sadeghi 2013; 2015; Iima and Takahashi 2016; Sadeghi
2017; Celikbas et al. 2017]. In this paper, we introduce the notion of linkage with
respect to a semidualizing module. This is a new notion of linkage for modules and
includes the concept of linkage due to Martsinkovsky and Strooker.

To be more precise, let M and N be R-modules and let α be an ideal of R
which is contained in AnnR(M)∩AnnR(N ). Assume that K is a semidualizing
R/α-module. We say that M is linked to N with respect to K if M ∼= λR/α(K, N )
and N ∼= λR/α(K,M), where

λR/α(K,−) :=�KTrK HomR/α(K,−),

where �K , TrK are the syzygy and transpose operators, respectively, with respect
to K. This notion enables us to study the theory of linkage for modules in the Bass
class with respect to a semidualizing module. In the first main result of this paper,
over a Cohen–Macaulay local ring with canonical module, it is proved that every
Cohen–Macaulay module of finite Gorenstein injective dimension is linked with
respect to the canonical module (see Theorem 3.12). More precisely:

Theorem A. Let R be a Cohen–Macaulay local ring of dimension d with canonical
module ωR . Assume that a is a Cohen–Macaulay quasi-Gorenstein ideal of grade n
and that M is a Cohen–Macaulay R-module of grade n and of finite Gorenstein
injective dimension (equivalently M ∈BωR ). If a⊆AnnR(M) and M is ωR/a-stable,
then the following statements hold true:

(i) M is linked by ideal a with respect to ωR/a.

(ii) λR/a(ωR/a,M) has finite Gorenstein injective dimension.

(iii) λR/a(ωR/a,M) is Cohen–Macaulay of grade n.

Martsinkovsky and Strooker [2004, Corollary 2] proved that horizontal linkage
preserves the maximal Cohen–Macaulay-ness property over Gorenstein rings, while
it may not preserve this property over non-Gorenstein rings. Theorem A shows that,
over a Cohen–Macaulay local ring with the canonical module, horizontal linkage
with respect to canonical module preserves maximal Cohen–Macaulay-ness for every
module of finite Gorenstein injective dimension. Note that over a Gorenstein ring,
every module has finite Gorenstein injective dimension. Therefore, Theorem A can
be viewed as a generalization of [Martsinkovsky and Strooker 2004, Corollary 2].

Recall that an R-module M is called G-perfect if gradeR(M)= G-dimR(M). If
R is Cohen–Macaulay then M is G-perfect if and only if M is Cohen–Macaulay and
G-dimR(M)<∞. Let us denote the category of G-perfect R-modules by X , and the
category of Cohen–Macaulay R-modules of finite Gorenstein injective dimension
is by Y . Theorem A enables us to obtain the following adjoint equivalence (see
Theorems 3.13 and 3.14).
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Theorem B. Let R be a Cohen–Macaulay local ring with canonical module ωR

and let a be a Cohen–Macaulay quasi-Gorenstein ideal, R = R/a. There is an
adjoint equivalence{

M ∈X
∣∣∣ M is linked by

the ideal a

} −⊗RωR
−−−−−−−→

HomR(ωR,−)
←−−−−−−−

{
N ∈ Y

∣∣∣ N is linked by the ideal
a with respect to ωR

}
.

Let R be a Cohen–Macaulay local ring with canonical module ωR . For a linked R-
module M, with respect to the canonical module, we study the connection between
the Serre condition on M with vanishing of certain local cohomology modules of its
linked module. We also establish a duality on local cohomology modules of a linked
module which is a generalization of [Schenzel 1982, Theorem 4.1; Martsinkovsky
and Strooker 2004, Theorem 10] (see Corollaries 4.9 and 4.12).

Theorem C. Let (R,m, k) be a Cohen–Macaulay local ring of dimension d > 1
with canonical module ωR . Assume that an R-module M is horizontally linked
to an R-module N with respect to ωR and that M has finite Gorenstein injective
dimension. Then the following statements hold true:

(i) M satisfies (Sn) if and only if Hi
m(N )= 0 for d − n < i < d.

(ii) If M is generalized Cohen–Macaulay then

Hi
m(HomR(ωR,M))∼= HomR(Hd−i

m (N ), ER(k)) for 0< i < d.

In particular, N is generalized Cohen–Macaulay.

The organization of the paper is as follows. In Section 2, we collect preliminary
notions, definitions and some known results which will be used in this paper. In
Section 3, the precise definition of linkage with respect to a semidualizing is given.
We obtain some necessary conditions for an R-module to be linked with respect to a
semidualizing (see Theorem 3.7). As a consequence, we prove Theorems A and B in
this section. In Section 4, for a linked R-module M, with respect to a semidualizing,
the relation between the Serre condition S̃n on M with vanishing of certain relative
cohomology modules of its linked module is studied. As a consequence, we prove
Theorem C.

2. Preliminaries

Throughout the paper, R is a commutative Noetherian semiperfect ring and all
R-modules are finitely generated. Note that a commutative ring R is semiperfect
if and only if it is a finite direct product of commutative local rings [Lam 1991,
Theorem 23.11]. Whenever, R is assumed to be local, its unique maximal ideal is
denoted by m. The canonical module of R is denoted by ωR .
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Let M be an R-module. For a finite projective presentation P1
f
−→P0→ M→ 0

of M, its transpose TrM is defined as Coker f ∗, where (−)∗ :=HomR(−, R), which
satisfies the exact sequence

0→ M∗→ P∗0
f ∗
−→ P∗1 → TrM→ 0.

Moreover, TrM is unique up to projective equivalence. Thus all minimal projective
presentations of M represent isomorphic transposes of M. The syzygy module �M
of M is the kernel of an epimorphism P α

−→M, where P is a projective R-module
which is unique up to projective equivalence. Thus �M is uniquely determined, up
to isomorphism, by a projective cover of M.

Martsinkovsky and Strooker [2004] generalized the notion of linkage for mod-
ules over noncommutative semiperfect Noetherian rings (i.e., finitely generated
modules over such rings have projective covers). In Proposition 1 of that paper,
they introduced the operator λ :=�Tr and showed that ideals a and b are linked by
zero ideal if and only if R/a∼= λ(R/b) and R/b∼= λ(R/a).

Definition 2.1 [Martsinkovsky and Strooker 2004, Definition 3]. Two R-modules
M and N are said to be horizontally linked if M ∼= λN and N ∼= λM. Equivalently,
M is horizontally linked (to λM) if and only if M ∼= λ2 M.

A stable module is a module with no nonzero projective direct summands. An
R-module M is called a syzygy module if it is embedded in a projective R-module.
Let i be a positive integer, an R-module M is said to be an i-th syzygy if there
exists an exact sequence

0→ M→ Pi−1→ · · · → P0,

where the P0, . . . , Pi−1 are projective. By convention, every module is a 0-th syzygy.
Here is a characterization of horizontally linked modules.

Theorem 2.2 [Martsinkovsky and Strooker 2004, Theorem 2 and Proposition 3]. An
R-module M is horizontally linked if and only if it is stable and Ext1R(TrM, R)= 0,
equivalently M is stable and is a syzygy module.

Semidualizing modules were initially studied in [Foxby 1972; Golod 1984].

Definition 2.3. An R-module C is called a semidualizing module if the homothety
morphism R→ HomR(C,C) is an isomorphism and Exti

R(C,C)= 0 for all i > 0.

It is clear that R itself is a semidualizing R-module. Over a Cohen–Macaulay
local ring R, a canonical module ωR of R, if it exists, is a semidualizing module
with finite injective dimension.

Conventions 2.4. Throughout let C denote a semidualizing R-module. We set
(−)O = HomR(−,C) and (−)g = HomR(C,−). The notation (−)∗ stands for the
R-dual functor HomR(−, R). The canonical module of a Cohen–Macaulay local
ring, if it exists, is denoted as ωR; then we set (−)† = HomR(−, ωR).
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Let P1
f
−→P0→ M→ 0 be a projective presentation of an R-module M. The

transpose of M with respect to C , denoted by TrC M, is defined to be Coker f O,
which satisfies the exact sequence

(2.4.1) 0→ MO→ PO0
f O
−→ PO1 → TrC M→ 0.

By [Foxby 1972, Proposition 3.1], there exists the exact sequence

(2.4.2) 0→ Ext1R(TrC M,C)→ M→ MOO→ Ext2R(TrC M,C)→ 0.

The Gorenstein dimension has been extended to GC -dimension in [Foxby 1972;
Golod 1984].

Definition 2.5. An R-module M is said to have GC -dimension zero if M is C-
reflexive, i.e., the canonical map M→ MOO is bijective, and Exti

R(M,C)= 0=
Exti

R(M
O,C) for all i > 0.

A GC -resolution of an R-module M is a right acyclic complex of GC -dimension
zero modules whose 0-th homology is M. The module M is said to have finite
GC -dimension, denoted by GC-dimR(M), if it has a GC -resolution of finite length.

Note that, over a local ring R, a semidualizing R-module C is a canonical module
if and only if GC-dimR(M)<∞ for all finitely generated R-modules M ; see [Gerko
2001, Proposition 1.3].

In the following, we summarize some basic facts about GC -dimension; see
[Auslander and Bridger 1969; Golod 1984] for more details.

Theorem 2.6. For an R-module M, the following statements hold true:

(i) GC-dimR(M) = 0 if and only if Exti
R(M,C) = 0 = Exti

R(TrC M,C) for all
i > 0.

(ii) GC-dimR(M)= 0 if and only if GC-dimR(TrC M)= 0.

(iii) If GC-dimR(M) <∞ then GC-dimR(M)= sup{i | Exti
R(M,C) 6= 0, i ≥ 0}.

(iv) If R is local and GC-dimR(M)<∞, then GC-dimR(M)=depth R−depthR(M).

The Gorenstein injective dimension was introduced by Enochs and Jenda [1995].

Definition 2.7 [Enochs and Jenda 1995; Christensen 2000, Definition 6.2.2]. An
R-module M is said to be Gorenstein injective if there is an exact sequence

I• = · · · → I1
∂1
−→ I0

∂0
−→ I−1→ · · ·

of injective R-modules such that M ∼= Ker(∂0) and HomR(E, I•) is exact for any
injective R-module E . The Gorenstein injective dimension of M, denoted by
Gid(M), is defined as the infimum of n for which there exists an exact sequence
as I• with M ∼= Ker(I0→ I−1) and Ii = 0 for all i <−n. The Gorenstein injective
dimension is a refinement of the classical injective dimension, Gid(M) ≤ id(M),
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with equality if id(M) <∞; see [Christensen 2000, Definition 6.2.6]. It follows
that every module over a Gorenstein ring has finite Gorenstein injective dimension.

Definition 2.8. The Auslander class with respect to C, denoted by AC , consists of
all R-modules M satisfying the following conditions:

(i) The natural map µ : M→ HomR(C,M ⊗R C) is an isomorphism.

(ii) TorR
i (M,C)= 0= Exti

R(C,M ⊗R C) for all i > 0.

Dually, the Bass class with respect to C , denoted by BC , consists of all R-modules
M satisfying the following conditions:

(i) The natural evaluation map µ : C ⊗R HomR(C,M)→ M is an isomorphism.

(ii) TorR
i (HomR(C,M),C)= 0= Exti

R(C,M) for all i > 0.

In the following we collect some basic properties and examples of modules in
the Auslander class, respectively in the Bass class, with respect to C , which will be
used in the rest of this paper.

Fact 2.9. The following statements hold:

(i) If any two R-modules in a short exact sequence are in AC , respectively BC ,
then so is the third one [Foxby 1972, Lemma 1.3]. Hence, every module of finite
projective dimension is in the Auslander class AC . Also the class BC contains all
modules of finite injective dimension.

(ii) Over a Cohen–Macaulay local ring R with canonical module ωR , we have
M ∈ AωR if and only if G-dimR(M) <∞ [Foxby 1975, Theorem 1]. Similarly,
M ∈BωR if and only if GidR(M) <∞ [Christensen et al. 2006, Theorem 4.4].

(iii) The PC -projective dimension of M, denoted by PC -pdR(M), is less than or
equal to n if and only if there is an exact sequence

0→ Pn ⊗R C→ · · · → P0⊗R C→ M→ 0

such that each Pi is a projective R-module [Takahashi and White 2010, Corol-
lary 2.10]. Note that if M has a finite PC -projective dimension, then M ∈BC by
Corollary 2.9 of the same paper.

(iv) M ∈ AC if and only if M ⊗R C ∈ BC . Similarly, M ∈ BC if and only if
Mg ∈ AC [Takahashi and White 2010, Theorem 2.8].

Definition 2.10. Let M and N be R-modules. Denote by β(M, N ) the set of R-
homomorphisms of M to N which pass through projective modules. That is, an
R-homomorphism f : M → N lies in β(M, N ) if and only if it is factored as
M→ P→ N, where P is projective. We denote the stable homomorphisms from
M to N as the quotient module

HomR(M, N )= HomR(M, N )/β(M, N ).
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By [Yoshino 1990, Lemma 3.9], there is a natural isomorphism

(2.10.1) HomR(M, N )∼= TorR
1 (TrM, N ).

The class of C-projective modules is defined as

PC = {P ⊗R C | P is projective}.

Two R-modules M and N are said to be stably equivalent with respect to C ,
denoted by M

C
≈N, if C1⊕M ∼= C2⊕ N for some C-projective modules C1 and C2.

We write M ≈ N when M and N are stably equivalent with respect to R. An
R-module M is called C-stable if M does not have a direct summand isomorphic
to a C-projective module. An R-module M is called a C-syzygy module if it is
embedded in a C-projective R-module.

Remark 2.11. Let M be an R-module.

(i) Let P1
f
−→P0→ M→ 0 be the minimal projective presentation of M. Then

TrM ⊗R C ∼= TrC M ; see [Dibaei and Sadeghi 2015, Remark 2.1(i)].

(ii) Note that, by [Martsinkovsky 2010, Proposition 3(a)], (P1)
∗
→ TrM→ 0 is

minimal. Therefore, by (i), we get the exact sequence

0→�CTrC M→ (P1)
∗
⊗R C→ TrC M→ 0,

where �CTrC M := Im f O.

(iii) It follows, by (2.10.1), that if HomR(M,C)= 0, then �CTrC M ∼= λM ⊗R C .

Definition 2.12 [Maşek 2000]. An R-module M is said to satisfy the property S̃k

if depthRp
(Mp)≥min{k, depth Rp} for all p ∈ Spec R.

Note that, for a horizontally linked module M over a Cohen–Macaulay local
ring R, the properties S̃k and (Sk) are identical.

3. Horizontal linkage with respect to a semidualizing

In this section C stands for a semidualizing R-module and M is an R-module. Set
(M)g := HomR(C,M) as in Conventions 2.4. In order to develop the notion of
linkage with respect to C , we give the following definition.

Definition 3.1. The linkage of M with respect to C is defined as the module
λR(C,M) := �CTrC(Mg). The module M is said to be horizontally linked to
an R-module N with respect to C if λR(C,M) ∼= N and λR(C, N ) ∼= M. Equiv-
alently, M is horizontally linked (to λR(C,M)) with respect to C if and only if
M ∼= λ2

R(C,M)(= λR(C, λR(C,M))). In this situation M is called a horizontally
linked module with respect to C .
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Assume that P1
f
−→P0→ Mg→ 0 is the minimal projective presentation of Mg.

By Remark 2.11, λR(C,M)= Im( f O) and we obtain the exact sequence

(3.1.1) 0→ λR(C,M)→ (P1)
∗
⊗R C→ TrC(Mg)→ 0.

Therefore λR(C,M) is unique, up to isomorphism. Having defined the horizontal
linkage with respect to a semidualizing module C , the general linkage for modules
is defined as follows.

Definition 3.2. Let a be an ideal of R and let K be a semidualizing R/a-module.
An R-module M is said to be linked to an R-module N by the ideal a, with respect
to K , if a ⊆ AnnR(M) ∩ AnnR(N ) and M and N are horizontally linked with
respect to K as R/a-modules. In this situation we write M K∼

a
N .

Lemma 3.3. Assume that an R-module M satisfies the following conditions:

(i) M is a C-stable and C-syzygy.

(ii) HomR(M
g,C)= 0= HomR(λ(M

g),C).

(iii) M ∼= C ⊗R Mg and λ(Mg)∼= HomR(C,C ⊗R λ(Mg)).

Then M is a horizontally linked R-module with respect to C.

Proof. As M is C-stable, by (iii), Mg is stable. By (i), we have the exact sequence
0→ M→ P⊗R C for some projective R-module P. By applying the functor (−)g

to the above exact sequence, it is easy to see that Mg is a first syzygy. It follows
from Theorem 2.2 that Mg is horizontally linked. In other words, Mg ∼= λ2(Mg).
Therefore, we obtain the isomorphisms

M ∼= C ⊗R Mg ∼= C ⊗R λ
2(Mg)

∼=�CTrC(λ(Mg))
∼=�CTrC HomR(C,C ⊗R λ(Mg))
∼= λR(C, λR(C,M)),

by Remark 2.11(iii) and our assumptions. �

For an integer n, set Xn(R) := {p ∈ Spec(R) | depth Rp ≤ n}.

Lemma 3.4. Let M be an R-module. Consider the natural map

µ : M→ HomR(C,M ⊗R C).

Then the following statements hold true:

(i) If M satisfies S̃1 and µp is a monomorphism for all p ∈ X0(R), then µ is a
monomorphism.

(ii) If M satisfies S̃2, M ⊗R C satisfies S̃1 and µp is an isomorphism for all
p ∈ X1(R), then µ is an isomorphism.



LINKAGE OF MODULES WITH RESPECT TO A SEMIDUALIZING MODULE 315

Proof. (i) Set L =Ker(µ) and let p∈AssR(L). Therefore, depthRp
(Mp)= 0. As M

satisfies S̃1, we know p∈ X0(R) and so Lp= 0, which is a contradiction. Therefore,
µ is a monomorphism.

(ii) By (i), µ is a monomorphism. Consider the exact sequence

0→ M µ
−→HomR(C,M ⊗R C)→ L ′→ 0,

where L ′ := Coker(µ). Let p ∈ AssR(L ′). If p ∈ AssR(HomR(C,M ⊗R C)) ⊆
AssR(M⊗R C), then depthRp

(M⊗R C)p = 0. As M⊗R C satisfies S̃1, one obtains
p∈ X0(R), which is a contradiction, becauseµp is an isomorphism for all p∈ X0(R).
Now let depthRp

(HomR(C,M ⊗R C)p) > 0. It follows easily from the above exact
sequence that depthRp

(Mp)= 1. As Mp satisfies S̃2, we know p ∈ X1(R), which is
a contradiction because µp is an isomorphism for all p ∈ X1(R). Therefore L ′ = 0
and µ is an isomorphism. �

The proof of the following lemma is dual to the proof of [Dibaei and Sadeghi
2015, Lemma 2.11].

Lemma 3.5. Let R be a local ring, n ≥ 0 an integer, and M an R-module. If
M ∈BC , then the following statements hold true:

(i) depthR(M)= depthR(Mg) and dimR(M)= dimR(Mg).

(ii) M satisfies S̃n if and only if Mg does.

(iii) M is Cohen–Macaulay if and only if Mg is Cohen–Macaulay.

Lemma 3.6 [Sather-Wagstaff et al. 2010, Lemma 2.8]. Let M be an R-module that
is in the Bass class BC . Then GC-dimR(M)= 0 if and only if G-dimR(Mg)= 0.

In the following result, we give sufficient conditions for an element M ∈BC to
be a horizontally linked module with respect to C .

Theorem 3.7. Assume that M ∈BC is a C-syzygy and that idRp(Cp) <∞ for all
p ∈ X1(R). If M is C-stable and HomR(M

g,C) = 0 = Ext1R(M,C), then M is a
horizontally linked module with respect to C.

Proof. We shall prove that the conditions of Lemma 3.3 are satisfied. First note that

(3.7.1) M ∼= Mg⊗C,

because M ∈BC . As seen in the proof of Lemma 3.3, Mg is horizontally linked.
In other words, Mg ∼= λ2(Mg) and so we obtain the exact sequence

(3.7.2) 0→ Mg→ P→ Trλ(Mg)→ 0,

where P is a projective module. Applying −⊗R C gives the exact sequence

(3.7.3) 0→TorR
1 (Trλ(M

g),C)→Mg⊗R C→ P⊗R C→Trλ(Mg)⊗R C→ 0.
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Let p ∈ AssR(Tor
R
1 (Trλ(M

g),C)). It follows from (3.7.1) and the exact sequence
(3.7.3) that depthRp

(Mp)=depthRp
((Mg⊗R C)p)=0. As M is a C-syzygy module,

p ∈ X0(R). Note that, by Fact 2.9(iv), Mg∈ AC and so, G-dimRq((M
g)q)= 0 for

all q ∈ X0(R) by Fact 2.9(ii) and Theorem 2.6(iv). As λ(Mg) is a syzygy, one has

(3.7.4) Ext1R(Trλ(M
g), R)= 0.

It follows from (3.7.4), Theorem 2.6 and the exact sequence (3.7.2) that

G-dimRp((Trλ(M
g))p)= 0.

In other words, by Fact 2.9(ii), (Trλ(Mg))p ∈ACp . Hence TorR
1 (Trλ(M

g),C)p= 0,
which is a contradiction. Therefore, HomR(λ(M

g),C)∼= TorR
1 (Trλ(M

g),C)= 0
by (2.10.1).

Now we prove that the natural map µ : λ(Mg)→ HomR(C,C⊗R λ(Mg)) is an
isomorphism. To this end, we concentrate on Lemma 3.4. As Mg is horizontally
linked, we obtain the isomorphisms

(3.7.5) Ext2R(Trλ(M
g), R)∼= Ext1R(λ

2(Mg), R)
∼= Ext1R(M

g, R)
∼= Ext1R(M

g,Cg)
∼= Ext1R(M,C)= 0,

by [Takahashi and White 2010, Theorem 4.1 and Corollary 4.2]. It follows from
(3.7.4) and (3.7.5) that λ(Mg) is second syzygy and so it satisfies S̃2 by [Maşek
2000, Proposition 11]. By the exact sequence 0→λ(Mg)→ P ′→Tr(Mg)→0 and
the fact that TorR

1 (Tr(M
g),C)∼= HomR(M

g,C)= 0, it follows that λ(Mg)⊗R C
satisfies S̃1. As M satisfies S̃1, by Fact 2.9(ii), (iv), Lemma 3.5 and Theorem 2.6(iv),
G-dimRp((M

g)p)= 0 for all p∈ X1(R). Therefore, G-dimRp((λ(M
g))p)= 0 for all

p ∈ X1(R) by [Martsinkovsky and Strooker 2004, Theorem 1] and so (λ(Mg))p ∈
ACp for all p ∈ X1(R) by Fact 2.9(ii). Hence µ is an isomorphism by Lemma 3.4.
Now the assertion is clear by Lemma 3.3. �

Martsinkovsky and Strooker [2004, Corollary 2] proved that, over a Gorenstein
ring, horizontal linkage preserves the property of a module to be maximal Cohen–
Macaulay, while they showed in the example on page 601 of the same paper that over
non-Gorenstein rings, being maximal Cohen–Macaulay need not be preserved under
horizontal linkage. In the following, it is shown that, over a Cohen–Macaulay local
ring with the canonical module, horizontal linkage with respect to canonical module
preserves maximal Cohen–Macaulay-ness. Note that over a Gorenstein ring, every
module has finite Gorenstein injective dimension. Therefore, the following result can
be viewed as a generalization of [Martsinkovsky and Strooker 2004, Corollary 2].
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Corollary 3.8. Let R be a Cohen–Macaulay local ring with canonical module ωR .
Assume that M is a maximal Cohen–Macaulay R-module of finite Gorenstein
injective dimension. If M is ωR-stable then the following statements hold true:

(i) M is horizontally linked with respect to ωR .

(ii) λR(ωR,M) has finite Gorenstein injective dimension.

(iii) λR(ωR,M) is maximal Cohen–Macaulay.

Proof. (i) By Fact 2.9(ii), M ∈BωR . As M is maximal Cohen–Macaulay, it is a
ωR-syzygy and also Ext1R(M, ωR)= 0. Therefore, by Theorem 3.7, it is enough to
prove that HomR(HomR(ωR,M), ωR) = 0. Note that G-dimR(HomR(ωR,M)) =
0 by Theorem 2.6 and Lemma 3.6. Hence G-dimR(Tr HomR(ωR,M)) = 0 and
Tr HomR(ωR,M) ∈ AωR by Fact 2.9(ii) so that TorR

i (Tr HomR(ωR,M), ωR) = 0
for all i > 0. Indeed, by (2.10.1),

HomR(HomR(ωR,M), ωR)∼= TorR
1 (Tr HomR(ωR,M), ωR)= 0.

Therefore, by Theorem 3.7, M is horizontally linked with respect to ωR .

(ii) As we have seen in part (i), Tr(HomR(ωR,M))∈AωR . Hence by Fact 2.9(iv) and
Remark 2.11(i), TrωR (HomR(ωR,M)) ∈BωR . Therefore, GidR(λR(ωR,M)) <∞
by Fact 2.9(i) and the exact sequence (3.1.1).

(iii) By Lemma 3.5, HomR(ωR,M) is maximal Cohen–Macaulay. Therefore
TrωR (HomR(ωR,M)) is maximal Cohen–Macaulay by Theorem 2.6(ii). It follows
from the exact sequence (3.1.1) that λR(ωR,M) is maximal Cohen–Macaulay. �

To prove Theorem A, we first bring the following lemma and recall a definition.

Lemma 3.9. Let R be a Cohen–Macaulay local ring and let I be an unmixed ideal
of R. Assume that K is a semidualizing R/I -module and that M is an R-module
which is linked by I with respect to K. Then gradeR(M)= gradeR(I ).

Proof. First note that gradeR(M) = inf{depth Rq | q ∈ SuppR(M)}. Therefore,
gradeR(M) = depth Rp for some p ∈ MinR(M) and so p/I ∈ MinR/I (M). As M
is linked by I with respect to K , it is a first K -syzygy module and so p/I ∈
AssR/I (R/I ), because AssR/I (K ) = AssR/I (R/I ). As I is unmixed, grade(I ) =
depth Rp. �

Let (R,m, k) be a local ring and let M be an R-module. For every integer n ≥ 0
the n-th Bass number µn

R(M) is the dimension of the k-vector space ExtnR(k,M).

Definition 3.10 [Avramov and Foxby 1997]. An ideal a of a local ring R is called
quasi-Gorenstein if G-dimR(R/a) <∞ and for every i ≥ 0 there is an equality of
Bass numbers

µ
i+depth R
R (R)= µi+depth R/a

R/a (R/a).
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Theorem 3.11 [Avramov and Foxby 1997, Corollary 7.9]. Let R be a Cohen–
Macaulay local ring with canonical module ωR and let a be a quasi-Gorenstein ideal
of R. For an R/a-module M, we have GidR(M)<∞ if and only if GidR/a(M)<∞.
Also, G-dimR(M) <∞ if and only if G-dimR/a(M) <∞.

We now present Theorem A.

Theorem 3.12. Let R be a Cohen–Macaulay local ring of dimension d with canon-
ical module ωR and let a be a Cohen–Macaulay quasi-Gorenstein ideal of grade n,
R = R/a. Assume that M is a Cohen–Macaulay R-module of grade n and of finite
Gorenstein injective dimension such that a⊆ AnnR(M). If M is ωR-stable then the
following statements hold true:

(i) M is linked by ideal a with respect to ωR .

(ii) λR(ωR,M) has finite Gorenstein injective dimension.

(iii) λR(ωR,M) is Cohen–Macaulay of grade n.

Proof. (i) As R is Cohen–Macaulay,

d − n = d − grade(a)= dim(R/a).

On the other hand, as M is Cohen–Macaulay of grade n,

depthR(M)= depthR(M)= dimR(M)= d − n.

Therefore, M is a maximal Cohen–Macaulay R-module. By Theorem 3.11, GidR(M)
is finite and so M is horizontally linked with respect to ωR as an R-module by
Corollary 3.8.

(ii) By Corollary 3.8, GidR(λR(ωR,M))<∞, which by Theorem 3.11 is equivalent
to GidR(λR(ωR,M)) <∞.

(iii) By Corollary 3.8, λR(ωR,M) is a maximal Cohen–Macaulay R-module. Hence

depthR(λR(ωR,M))= depthR(λR(ωR,M))= dim(R/a).

Also, by Lemma 3.9, gradeR(λR(ωR,M))= n. Hence,

dimR(λR(ωR,M))= d − n = dim R/a.

Therefore, λR(ωR,M) is Cohen–Macaulay as an R-module. �

Let R be a Cohen–Macaulay local ring with canonical module ωR . Set

X := CM(R)∩AωR and Y := CM(R)∩BωR ,

where CM(R) is the category of Cohen–Macaulay R-module. Now we prove
Theorem B.
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Theorem 3.13. Let R be a Cohen–Macaulay local ring with canonical module ωR

and let a be a Cohen–Macaulay quasi-Gorenstein ideal of grade n, R = R/a. There
is an adjoint equivalence{

M ∈X
∣∣∣ M is linked

by the ideal a

} −⊗RωR
−−−−−−−→

HomR(ωR,−)
←−−−−−−−

{
N ∈ Y

∣∣∣ N is linked by the ideal
a with respect to ωR

}
.

Proof. Let M ∈X, which is linked by the ideal a. By Theorem 3.11, M ∈ AωR
.

Note that a is a G-perfect ideal and so gradeR(M)= gradeR(a) by [Sadeghi 2017,
Lemma 3.16]. Therefore

depthR(M)= dimR(M)= dim R− gradeR(M)= dim R− gradeR(a).

Hence M is a maximal Cohen–Macaulay R-module. Set N =M⊗RωR . By [Dibaei
and Sadeghi 2015, Lemma 2.11], N is a maximal Cohen–Macaulay R-module.
Therefore N ∈ CM(R). Also, by Fact 2.9(iv) and Theorem 3.11, N ∈BωR . Hence
N ∈ Y . As M ∈ AωR

,

(3.13.1) M ∼= HomR(ωR, N ).

Note that M is stable R-module by Theorem 2.2. It follows from (3.13.1) that N is
ωR-stable. Hence, by Theorem 3.12, N is linked by the ideal a with respect to ωR .

Conversely, assume that N ∈Y , which is linked by the ideal a with respect to ωR .
As N is Cohen–Macaulay, by Lemma 3.9,

depthR(N )= dimR(N )= dim R− gradeR(N )= dim R− gradeR(a).

Therefore N is a maximal Cohen–Macaulay R-module. Set M = HomR(ωR, N ).
Note that by Theorem 3.11, N ∈ BωR

. Hence M ∈ AωR by Fact 2.9(iv), and
Theorem 3.11. Also, by Lemma 3.5, M is a maximal Cohen–Macaulay R-module.
Thus M ∈X. Set X = HomR(ωR, λR(ωR, N )). It follows from Theorem 3.12(ii),
Fact 2.9(ii), (iv), and Theorem 3.11 that X ∈ AωR

. Also, by Theorem 3.12(iii)
and Lemma 3.5, X is a maximal Cohen–Macaulay R-module. Therefore, by
Theorem 2.6(ii), (iv) and Fact 2.9(ii), G-dimR(λR X)=0. In other words, λR X ∈AωR

.
Hence,

(3.13.2) λR X ∼= HomR(ωR, λR X ⊗R ωR).

As λR X is a first syzygy of TrR X , by Fact 2.9(i), TrR X ∈ AωR
. Therefore

HomR(X, ωR)
∼= TorR

1 (TrR X, ωR)= 0. As N is linked by the ideal a with respect
to ωR , it follows from Remark 2.11(iii) that

(3.13.3) N ∼=�ωR
TrωR

X ∼= λR X ⊗R ωR.

It follows from (3.13.2) and (3.13.3) that M ∼= λR X . Hence, by [Avramov 1998,
Corollary 1.2.5], M is a stable R-module. By [Martsinkovsky and Strooker 2004,
Theorem 1], M is linked by the ideal a. �
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Let a be an ideal of R an let M be an R/a-module. Recall that M is said
to be self-linked by the ideal a if M ∼= λR/aM. Let K be a semidualizing R/a-
module. An R/a-module N is called self-linked by the ideal a with respect to K if
N ∼= λR/a(K, N ).

Theorem 3.14. Let R be a Cohen–Macaulay local ring with canonical module ωR

and let a be a Cohen–Macaulay quasi-Gorenstein ideal of grade n, R = R/a. There
is an adjoint equivalence{

M∈AωR

∣∣∣M is self -linked
by the ideal a

} −⊗RωR
−−−−−−−→

HomR(ωR,−)
←−−−−−−−

{
N ∈BωR

∣∣∣ N is self -linked by the
ideal a with respect to ωR

}
.

Proof. Let M ∈AωR and let M ∼= λR M. It follows from Theorem 3.11 that M ∈AωR
.

Set N = M ⊗R ωR . Therefore,

(3.14.1) M ∼= HomR(ωR, N ).

As M ∼=�RTrR M, we have TrR M ∈ AωR
. Hence,

HomR(M, ωR)
∼= TorR

1 (TrR M, ωR)= 0.

It follows from (3.14.1) and Remark 2.11(iii) that

λR(ωR, N )=�ωR
TrωR

(HomR(ωR, N ))
∼=�ωR

TrωR
(M)

∼= λR M ⊗R ωR

∼= M ⊗R ωR = N .

In other words, N is self-linked by the ideal a with respect to ωR . Also, by
Fact 2.9(iv), Theorem 3.11, N ∈BωR .

Conversely, assume that N ∈BωR which is self-linked by the ideal a with respect
to ωR . Set M = HomR(ωR, N ). It follows from Fact 2.9(iv), Theorem 3.11 that
M ∈ AωR . As N ∼= λR(ωR, N ), we have TrωR

(M) ∈ BωR
by the exact sequence

(3.1.1), Fact 2.9(i) and Theorem 3.11. It follows from Remark 2.11(i) and Fact 2.9(iv)
that TrR(M) ∈AωR

. Therefore HomR(M, ωR)
∼= TorR

1 (TrR(M)ωR)= 0. Hence, by
Remark 2.11(iii),

(3.14.2) N ∼= λR(ωR, N )∼= λR(M)⊗R ωR.

As TrR(M) ∈ AωR
, we have λR M ∈ AωR

. Hence

(3.14.3) λR M ∼= HomR(ωR, λR M ⊗R ωR).

It follows from (3.14.2) and (3.14.3) that M ∼= λR M. �
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4. Serre condition and vanishing of local cohomology

In this section, for a linked module, we study the relation between the Serre
condition S̃n and the vanishing of certain relative cohomology modules of its linked
module. As a consequence, [Schenzel 1982, Theorem 4.1] is generalized. We start
with the following lemma, which will be used in the proof of Theorem 4.2.

Lemma 4.1. Let M be a C-syzygy module. Then Ext1R(TrC(M
g),C)= 0. In par-

ticular, if M is horizontally linked with respect to C , then Ext1R(TrC(M
g),C)= 0.

Proof. Consider the exact sequence 0→ M→ P ⊗R C , where P is a projective
R-module. Applying the functor (−)g to the above exact sequence, we get the
exact sequence 0→ Mg→ P. Therefore, Ext1R(TrM

g, R)= 0. By [Rotman 2009,
Theorem 10.62], there is a third quadrant spectral sequence

Ep,q
2 = Ext

p
R(Tor

R
q (Tr(M

g),C),C)⇒ Ext
p+q
R (Tr(Mg), R).

Hence we obtain the following exact sequence

0→ Ext1R(Tr(M
g)⊗R C,C)→ Ext1R(Tr(M

g), R),

by [Rotman 2009, Theorem 10.33]. Hence, by Remark 2.11,

Ext1R(TrC(M
g),C)∼= Ext1R(Tr(M

g)⊗R C,C)= 0. �

The following is a generalization of [Martsinkovsky and Strooker 2004, Theo-
rem 1].

Theorem 4.2. Let M be an R-module which is horizontally linked with respect to C.
Assume M ∈BC . Then GC-dimR(M)= 0 if and only if G-dimR((λR(C,M))g)= 0.

Proof. Set N = λR(C,M). Consider the exact sequence

(4.2.1) 0→ M→ P∗⊗R C→ TrC(Ng)→ 0,

where P is a projective R-module; see (3.1.1). As M ∈BC , we know TrC(Ng)∈BC

by the exact sequence (4.2.1) and Fact 2.9(i). Hence Tr(Ng) ∈AC by Remark 2.11
and Fact 2.9(iv). In particular,

(4.2.2) Tr(Ng)∼= HomR(C,Tr(Ng)⊗R C)∼= HomR(C,TrC(Ng)).

It follows from Theorem 2.6(ii), Lemma 3.6 and (4.2.2) that

(4.2.3) G-dimR(Ng)= 0 ⇐⇒ GC-dimR(TrC(N
g))= 0.

On the other hand, by the exact sequence (4.2.1)
(4.2.4)
GC-dimR(M)= 0 and Ext1R(TrC(N

g),C)= 0 ⇐⇒ GC-dimR(TrC(N
g))= 0.

Now the assertion is clear by (4.2.3), (4.2.4) and Lemma 4.1. �
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The class PC is precovering and then each R-module M has an augmented
proper PC -resolution; that is, there is an R-complex

X+ = · · · → C ⊗R P1→ C ⊗R P0→ M→ 0

such that HomR(Y, X+) is exact for all Y ∈PC . The truncated complex

X = · · · → C ⊗R P1→ C ⊗R P0→ 0

is called a proper PC -projective resolution of M. Proper PC -projective resolutions
are unique up to homotopy equivalence.

Definition 4.3 [Takahashi and White 2010]. Let M and N be R-modules. The n-th
relative cohomology module is defined as ExtnPC

(M, N )=Hn HomR(X, N ), where
X is a proper PC -projective resolution of M.

Theorem 4.4 [Takahashi and White 2010, Theorem 4.1 and Corollary 4.2]. Let M
and N be R-modules. Then there exists an isomorphism

Exti
PC
(M, N )∼= Exti

R(M
g, Ng)

for all i ≥ 0. Moreover, if M and N are in BC then Exti
PC
(M, N )∼= Exti

R(M, N )
for all i ≥ 0.

For a positive integer n, a module M is called an n-th C-syzygy module if there
is an exact sequence 0→ M→ C1→ C2→ · · · → Cn , where Ci ∈PC for all i .
The following results will be used in the proof of Theorem 4.7.

Lemma 4.5. Let M be an R-module such that GCp-dimRp(Mp) <∞ for all p ∈
Xn−2(R). Then the following statements are equivalent:

(i) M is an n-th C-syzygy module.

(ii) Exti
R(TrC M,C)= 0 for 0< i < n.

Proof. The proof is analogous to [Maşek 2000, Theorem 43]. �

Theorem 4.6 [Dibaei and Sadeghi 2015, Proposition 2.4]. Let C be a semidualizing
R-module and M an R-module. For a positive integer n, consider the following
statements:

(i) Exti
R(TrC M,C)= 0 for all i , 1≤ i ≤ n.

(ii) M is an n-th C-syzygy module.

(iii) M satisfies S̃n .

Then the following implications hold true:

(a) (i)=⇒ (ii)=⇒ (iii).

(b) If M has finite GC -dimension on Xn−1(R), then (iii)=⇒ (i).
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The following is a generalization of [Schenzel 1982, Theorem 4.1].

Theorem 4.7. Let M be an R-module which is horizontally linked with respect to C.
Assume that M ∈BC . For a positive integer n, consider the following statements:

(i) Exti
PC
(λR(C,M),C)= 0 for 0< i < n.

(ii) M is an n-th C-syzygy module.

(iii) M satisfies S̃n .

Then the following implications hold true:

(a) (i)=⇒ (ii)=⇒ (iii).

(b) If M has finite GC -dimension on Xn−2(R), then the statements (i) and (ii) are
equivalent.

(c) If M has finite GC -dimension on Xn−1(R), then all the statements (i)–(iii) are
equivalent.

Proof. Set N = λR(C,M). Consider the exact sequence

(4.7.1) 0→ M→ P ⊗R C→ TrC(Ng)→ 0,

where P is a projective R-module. By Lemma 4.1,

(4.7.2) Ext1R(TrC(N
g),C)= 0.

Therefore, by [Dibaei and Sadeghi 2015, Lemma 2.2], the exact sequence (4.7.1)
induces the exact sequence

(4.7.3) 0→ TrCTrC(Ng)→ Q⊗R C→ TrC M→ 0,

where Q is a projective R-module. Moreover, by [Sadeghi 2017, Lemma 2.12],
there exists the following exact sequence

(4.7.4) 0→ Ng→ TrCTrC(Ng)→ X→ 0,

where GC-dimR(X) = 0. As M is horizontally linked with respect to C , it is a
C-syzygy module and so Ext1R(TrC M,C)= 0. Therefore, by the exact sequences
(4.7.3) and (4.7.4), we obtain

(4.7.5) Exti
R(TrC M,C)= 0 for 1≤ i ≤ n

⇐⇒ Exti
R(N

g,C)= 0 for 1≤ i ≤ n− 1.

As M ∈BC , by Fact 2.9(i) and the exact sequence (4.7.1), TrC(Ng) ∈BC . Hence,
by Fact 2.9(iv) and Remark 2.11(i), Tr(Ng) ∈ AC . It follows from [Sadeghi 2017,
Theorem 4.1] that

(4.7.6) Exti
R(N

g,C)= 0 for 0< i < n ⇐⇒ Exti
R(N

g, R)= 0 for 0< i < n.
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Note that, by Theorem 4.4, we have the isomorphism

(4.7.7) Exti
PC
(N ,C)∼= Exti

R(N
g, R) for all i ≥ 0.

Implications (a) and (c) follow from (4.7.5), (4.7.6), (4.7.7) and Theorem 4.6,
and (b) follows from (4.7.5), (4.7.6), (4.7.7) and Lemma 4.5. �

Corollary 4.8. Let C be a semidualizing R-module with idRp(Cp) < ∞ for all
p ∈ Xn−1(R). Assume that M is an R-module which is horizontally linked with
respect to C and that M ∈BC . Then the following are equivalent:

(i) M satisfies S̃n .

(ii) M is an n-th C-syzygy module.

(iii) Exti
R(λR(C,M),C)= 0 for 0< i < n.

(iv) Exti
PC
(λR(C,M),C)= 0 for 0< i < n.

Proof. (i)=⇒ (iii): Set N = λR(C,M). By Lemma 3.5,

(4.8.1) M satisfies S̃n ⇐⇒ Mg satisfies S̃n.

By Lemma 4.1, Ext1R(TrC(M
g),C)= 0. It follows from the exact sequence (3.1.1)

that

(4.8.2) Exti
R(N ,C)= 0 for 0< i < n

⇐⇒ Exti
R(TrC(M

g),C)= 0 for 0< i < n+ 1.

Now the assertion follows from (4.8.1), (4.8.2) and Theorem 4.6.
The equivalence of (i), (ii) and (iv) follows from Theorem 4.7. �

Now we are ready to present the first part of Theorem C.

Corollary 4.9. Let (R,m) be a Cohen–Macaulay local ring of dimension d > 0
with canonical module ωR . Assume that M is an R-module of finite Gorenstein
injective dimension which is horizontally linked with respect to ωR . The following
are equivalent:

(i) M satisfies (Sn).

(ii) Hi
m(λR(ωR,M))= 0 for d − n < i < d.

In particular, M is maximal Cohen–Macaulay if and only if λR(ωR,M) is maximal
Cohen–Macaulay.

Proof. This is an immediate consequence of Corollary 4.8, Fact 2.9(ii) and the local
duality theorem. �

One may translate Corollary 4.9 to a change-of-rings result.



LINKAGE OF MODULES WITH RESPECT TO A SEMIDUALIZING MODULE 325

Corollary 4.10. Let (R,m) be a Cohen–Macaulay local ring with canonical mod-
ule ωR and let a be a Cohen–Macaulay quasi-Gorenstein ideal of R of grade n,
R = R/a. Assume that M is an R-module of finite Gorenstein injective dimension
which is linked by the ideal a with respect to ωR . The following are equivalent:

(i) M satisfies (Sn).

(ii) Hi
m(λR(ωR,M))= 0 for dim R/a− n < i < dim R/a.

Proof. This is an immediate consequence of Corollary 4.9 and Theorem 3.11. �

Recall that an R-module M of dimension d ≥ 1 is called a generalized Cohen–
Macaulay module if `(Hi

m(M)) <∞ for all i , 0≤ i ≤ d − 1, where ` denotes the
length. For an R-module M and positive integer n, set T C

n M := TrC�
n−1 M.

Theorem 4.11. Let R be a Cohen–Macaulay local ring of dimension d > 1 and
let C be a semidualizing R-module with idRp(Cp) <∞ for all p ∈ Spec(R) \ {m}.
Assume that M is a generalized Cohen–Macaulay R-module which is horizontally
linked with respect to C and that M ∈BC . Then Exti

R(M
g,C) ∼= Hi

m(λR(C,M))
for 0< i < d. In particular, λR(C,M) is generalized Cohen–Macaulay.

Proof. Set X = Mg and N = λR(C,M). As M is generalized Cohen–Macaulay, by
[Trung 1986, Lemmas 1.2 and 1.4] and Theorem 2.6(iv), GCp-dimRp(Mp)= 0 for all
p∈Spec R\{m}. Therefore G-dimRp(Xp)=0 for all p∈Spec R\{m} by Lemma 3.6.
Hence, Exti

R(X,C) has finite length for all i > 0. Consider the exact sequences

0→ Exti
R(X,C)→ T C

i X→ L i → 0,(4.11.1)

0→ L i →⊕
ni C→ T C

i+1 X→ 0(4.11.2)

for all i > 0. By applying the functor 0m(−) on the exact sequences (4.11.1) and
(4.11.2), we get

H j
m(T

C
i−1 X)∼= H j

m(L i−1) for all i and j, with j ≥ 1, i ≥ 2,(4.11.3)

Exti
R(X,C)= 0m(Ext

i
R(X,C))∼= 0m(T

C
i X) for all i ≥ 1,(4.11.4)

and also

(4.11.5) H j
m(T

C
i X)∼= H j+1

m (L i−1) for all i and j, 0≤ j < d − 1, i ≥ 2.

As M is horizontally linked with respect to C , we have the exact sequence

0→ N →⊕nC→ T C
1 X→ 0

for some integer n> 0. By applying the functor 0m(−) to the above exact sequence,
we get the isomorphism

(4.11.6) H j
m(T

C
1 X)∼= H j+1

m (N ) for all j, 0≤ j ≤ d − 2.

Now by using (4.11.3), (4.11.4), (4.11.5) and (4.11.6) we obtain the result. �
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Now we give a proof for part (ii) of Theorem C as the following corollary.

Corollary 4.12. Let (R,m, k) be a Cohen–Macaulay local ring of dimension d > 1
with canonical module ωR . Assume that M is an R-module of finite Gorenstein injec-
tive dimension which is horizontally linked with respect to ωR . If M is generalized
Cohen–Macaulay, then the following statements hold true:

(i) Hi
m(HomR(ωR,M))∼= HomR(Hd−i

m (λR(ωR,M)), ER(k)) for 0< i < d.

(ii) λR(ωR,M) is generalized Cohen–Macaulay.

(iii) If M is not maximal Cohen–Macaulay, then

depthR(M)= sup{i < d | Hi
m(λR(ωR,M)) 6= 0}.

Proof. Parts (i) and (ii) follow immediately from Theorem 4.11 and the local duality
theorem. Part (iii) follows from part (i) and Lemma 3.5. �

We end the paper with the following result, which is an immediate consequence
of Corollary 4.12 and Theorem 3.11.

Corollary 4.13. Let (R,m, k) be a Cohen–Macaulay local ring with canonical
module ωR , let c be a Cohen–Macaulay quasi-Gorenstein ideal of R, R = R/c
and dim R = d > 1. Assume that M is an R-module of finite Gorenstein injective
dimension which is linked by the ideal c with respect to ωR . If M is generalized
Cohen–Macaulay, then

Hi
m(HomR(ωR,M))∼= HomR(Hd−i

m (λR(ωR,M)), ER(k))

for 0< i < d.
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BIHARMONIC HYPERSURFACES WITH
CONSTANT SCALAR CURVATURE IN SPACE FORMS

YU FU AND MIN-CHUN HONG

Let Mn be a biharmonic hypersurface with constant scalar curvature in a
space form Mn+1(c). We show that Mn has constant mean curvature if c > 0
and Mn is minimal if c ≤ 0, provided that the number of distinct principal
curvatures is no more than 6. This partially confirms Chen’s conjecture and
the generalized Chen’s conjecture. As a consequence, we prove that there
exist no proper biharmonic hypersurfaces with constant scalar curvature in
Euclidean space En+1 or hyperbolic space Hn+1 for n < 7.

1. Introduction

In 1983, Eells and Lemaire [1983] introduced the concept of biharmonic maps
in order to generalize classical theory of harmonic maps. A biharmonic map φ
between an n-dimensional Riemannian manifold (Mn, g) and an m-dimensional
Riemannian manifold (N m, h) is a critical point of the bienergy functional

E2(φ)=
1
2

∫
M
|τ(φ)|2 dvg,

where τ(φ)= trace∇dφ is the tension field of φ that vanishes for a harmonic map.
More clearly, the Euler–Lagrange equation associated to the bienergy is given by

τ2(φ)=−1τ(φ)− trace RN (dφ, τ(φ))dφ = 0,

where RN is the curvature tensor of N m (see, e.g., [Jiang 1987]). We call φ to be a
biharmonic map if its bitension field τ2(φ) vanishes.

Biharmonic maps between Riemannian manifolds have been extensively studied
by geometers. In particular, many authors investigated a special class of biharmonic
maps named biharmonic immersions. An immersion φ : (Mn, g)→ (N m, h) is
biharmonic if and only if its mean curvature vector field EH fulfills the fourth-order
semilinear elliptic equations (see, e.g., [Caddeo et al. 2001]):

(1-1) 1 EH + trace RN (dφ, EH)dφ = 0.

MSC2010: primary 53C40, 53D12; secondary 53C42.
Keywords: biharmonic maps, biharmonic submanifolds, Chen’s conjecture, generalized Chen’s
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It is well known that any minimal immersion (satisfying EH = 0) is harmonic. The
nonharmonic biharmonic immersions are called proper biharmonic.

We should mention that biharmonic submanifolds in a Euclidean space Em were
independently defined by B. Y. Chen in the middle of 1980s (see [Chen 1991])
with the geometric condition 1 EH = 0, or equivalently 12φ = 0. Interestingly, both
biharmonic submanifolds and biharmonic immersions in Euclidean spaces coincide
with each other.

In recent years, the classification problem of biharmonic submanifolds has
attracted great attention in geometry. In particular, there is a longstanding conjecture
on biharmonic submanifolds due to Chen:

Chen’s conjecture [1991]. Every biharmonic submanifold in Euclidean space Em

is minimal.

Chen’s conjecture still remains open, even for hypersurfaces. In three decades,
only partial answers to Chen’s conjecture have been obtained, e.g., [Akutagawa and
Maeta 2013; Alías et al. 2013; Chen 2015; Ou 2012]. In the case of hypersurfaces,
Chen’s conjecture is true for the following special cases:

• Surfaces in E3 [Chen 1991; Jiang 1987].

• Hypersurfaces with at most two distinct principal curvatures in Em [Dimitrić
1992].

• Hypersurfaces in E4 [Hasanis and Vlachos 1995] (see also [Defever 1998]).

• δ(2)-ideal and δ(3)-ideal hypersurfaces in Em [Chen and Munteanu 2013].

• Weakly convex hypersurfaces in Em [Luo 2014].

• Hypersurfaces with at most three distinct principal curvatures in Em [Fu 2015a].

• Generic hypersufaces with irreducible principal curvature vector fields in Em

[Koiso and Urakawa 2014].

• Invariant hypersurfaces of cohomogeneity one in Em [Montaldo et al. 2016].

In 2001, Caddeo, Montaldo and Oniciuc [Caddeo et al. 2001] proposed the
following generalized Chen’s conjecture:

Generalized Chen’s conjecture. Every biharmonic submanifold in a Riemannian
manifold with nonpositive sectional curvature is minimal.

Recently, Ou and Tang [2012] constructed a family of counterexamples, where
the generalized Chen’s conjecture is false when the ambient space has nonconstant
negative sectional curvature. However, the generalized Chen’s conjecture remains
open when the ambient spaces have constant sectional curvature. For more recent
developments of the generalized Chen’s conjecture, we refer to [Chen 2014; 2015;
Montaldo and Oniciuc 2006; Oniciuc 2012; Nakauchi and Urakawa 2011; Ou 2016].
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The classification of proper biharmonic submanifolds in Euclidean spheres is
rather rich and interesting. The first example of proper biharmonic hypersurfaces
is a generalized Clifford torus S p(1/

√
2)× Sq(1/

√
2) ↪→ Sn+1 with p 6= q and

p + q = n, given by Jiang [1986]. The complete classifications of biharmonic
hypersurfaces in S3 and S4 were obtained in [Caddeo et al. 2001; Balmuş et al.
2010]. Moreover, biharmonic hypersurfaces with at most three distinct principal
curvatures in Sn were classified in [Balmuş et al. 2010; Fu 2015b]. For more details,
we refer the readers to [Balmuş et al. 2013; Loubeau and Oniciuc 2014; Oniciuc
2002; 2012; Ichiyama et al. 2010].

In general, the classification problem of proper biharmonic hypersurfaces in
space forms becomes more complicated when the number of distinct principal
curvatures is 4 or more.

In view of the above aspects, it is reasonable to study biharmonic submanifolds
with some geometric conditions. In geometry, hypersurfaces with constant scalar
curvature have been intensively studied by many geometers for the rigidity problem
and classification problem, for instance, see [Cheng and Yau 1977]. Some estimate
for scalar curvature of compact proper biharmonic hypersurfaces with constant
scalar curvature in spheres was obtained in [Balmuş et al. 2008]. Recently, it was
proved in [Fu 2015c] that a biharmonic hypersurface with constant scalar curvature
in the 5-dimensional space forms M5(c) necessarily has constant mean curvature.

Motivated by above results, in this paper we consider biharmonic hypersurfaces
Mn with constant scalar curvatures in a space form Mn(c). More precisely, we get:

Theorem 1.1. Let Mn be an orientable biharmonic hypersurface with at most six
distinct principal curvatures in Mn+1(c). If the scalar curvature R is constant, then
Mn has constant mean curvature.

In general, it is difficult to deal with the biharmonic immersion equation (1-1)
due to its high nonlinearity. In order to prove Theorem 1.1, we use some new ideas
to overcome the difficulty of treating the equation of a biharmonic hypersurface.
More precisely, we transfer the problem into a system of algebraic equations (see
Lemma 3.3), so we can determine the behavior of the principal curvature functions
by investigating the solution of the system of algebraic equations (see Lemma 3.4).
Then, we are able to prove that a biharmonic hypersurface with constant scalar
curvatures in a space form Mn(c) must have constant mean curvature, provided
that the number of distinct principal curvature is no more than 6. We would like
to point out that our approach in this paper is different from those in [Fu 2015b;
2015c; Defever 1998; Balmuş et al. 2010].

Remark 1.2. Balmuş, Montaldo and Oniciuc in [Balmuş et al. 2008] conjectured
that the proper biharmonic hypersurfaces in Sn+1 must have constant mean curvature.
Theorem 1.1 with c = 1 gives a partial answer to this conjecture.
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We should point out that the complete classification of proper biharmonic hyper-
surfaces with constant mean curvature in a sphere is still open in the case where
the number of distinct principal curvatures is more than 3 (see [Oniciuc 2012]).

Moreover, combining these results with the biharmonic equations in Section 2,
we have:

Corollary 1.3. Any biharmonic hypersurface with constant scalar curvature and
with at most six distinct principal curvatures in Euclidean space En+1 or hyperbolic
space Hn+1 is minimal.

Thus, this result gives a partial answer to Chen’s conjecture and the generalized
Chen’s conjecture.

Further, as a direct consequence, we get the following characterization result:

Corollary 1.4. Any biharmonic hypersurface with constant scalar curvature in
Euclidean space En+1 or hyperbolic space Hn+1 for n < 7 has to be minimal.

Remark 1.5. We could replace or weaken the constant scalar curvature condition in
Theorem 1.1 by constant length of the second fundamental form or linear Weingarten
type, i.e., the scalar curvature R satisfying R = aH +b for some constants a and b.
In fact, the discussion is extremely similar to the proof of Theorem 1.1 and the
same conclusion holds true as well.

The paper is organized as follows. In Section 2, we recall some necessary
background theory for hypersurfaces and equivalent conditions for biharmonic
hypersurfaces. In Section 3, we prove some useful lemmas (Lemmas 3.1–3.6),
which are crucial to prove the main theorem. Finally, in Section 4, we give a proof
of Theorem 1.1.

2. Preliminaries

In this section, we recall some basic material for the theory of hypersurfaces
immersed in a Riemannian space form.

Let φ : Mn
→Mn+1(c) be an isometric immersion of a hypersurface Mn into a

space form Mn+1(c) with constant sectional curvature c. Denote the Levi-Civita
connections of Mn and Mn+1(c) by ∇ and ∇̃, respectively. Let X and Y denote the
vector fields tangent to Mn and let ξ be a unit normal vector field. Then the Gauss
and Weingarten formulas (see [Chen 2015]) are given, respectively, by

∇̃X Y =∇X Y + h(X, Y ),(2-1)

∇̃Xξ =−AX,(2-2)

where h is the second fundamental form and A is the Weingarten operator. Note
that the second fundamental form h and the Weingarten operator A are related by

(2-3) 〈h(X, Y ), ξ〉 = 〈AX, Y 〉.
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The mean curvature vector field EH is defined by

EH = 1
n trace h.(2-4)

Moreover, the Gauss and Codazzi equations are given, respectively, by

R(X, Y )Z = c
(
〈Y, Z〉X −〈X, Z〉Y

)
+〈AY, Z〉AX −〈AX, Z〉AY,

(∇X A)Y = (∇Y A)X,

where R is the curvature tensor of Mn and (∇X A)Y is given by

(∇X A)Y =∇X (AY )− A(∇X Y )(2-5)

for all X, Y, Z tangent to Mn.
Assume that EH = Hξ and H denotes the mean curvature.
By identifying the tangent and the normal parts of the biharmonic condition (1-1)

for hypersurfaces in a space form Mn+1(c), the following characterization result
for Mn to be biharmonic was obtained (see also [Caddeo et al. 2002; Balmuş et al.
2010]):

Proposition 2.1. The immersion φ : Mn
→Mn+1(c) of a hypersurface Mn in an

n+1-dimensional space form Mn+1(c) is biharmonic if and only if

(2-6)
{
1H + H trace A2

= ncH,
2A grad H + nH grad H = 0.

The Laplacian operator 1 on Mn acting on a smooth function f is given by

1 f =− div(∇ f )=−
n∑

i=1

< ∇ei (∇ f ), ei >=−

n∑
i=1

(ei ei −∇ei ei ) f.(2-7)

The following result was obtained in [Fu 2015b]:

Theorem 2.2. Let Mn be an orientable proper biharmonic hypersurface with at
most three distinct principal curvatures in Mn+1(c). Then Mn has constant mean
curvature.

3. Some lemmas

We now consider an orientable biharmonic hypersurface Mn (n > 3) in a space
form Mn+1(c).

In general, the set MA of all points of Mn, at which the number of distinct
eigenvalues of the Weingarten operator A (i.e., the principal curvatures) is locally
constant, is open and dense in Mn. Since Mn with at most three distinct principal
curvatures everywhere in a space form Mn+1(c) is CMC, i.e., the mean curvature
is constant (Theorem 2.2), one can work only on the connected component of MA

consisting of points where the number of principal curvatures is more than 3 (by
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passing to the limit, H will be constant on the whole Mn). On that connected
component, the principal curvature functions of A are always smooth.

Suppose that, on the component, the mean curvature H is not constant. Thus,
there is a point p where grad H(p) 6= 0. In the following, we will work on a
neighborhood of p where grad H(p) 6= 0 at any point of Mn.

The second equation of (2-6) shows that grad H is an eigenvector of the Wein-
garten operator A with the corresponding principal curvature −nH/2. We may
choose e1 such that e1 is parallel to grad H, and with respect to some suitable
orthonormal frame {e1, . . . , en}, the Weingarten operator A of M takes the form

A = diag(λ1, λ2, . . . , λn),(3-1)

where λi are the principal curvatures and λ1 =−nH/2. Therefore, it follows from
(2-4) that

∑n
i=1 λi = nH, and hence

n∑
i=2

λi =−3λ1.(3-2)

Denote by R the scalar curvature and by B the squared length of the second
fundamental form h of M. It follows from (3-1) that B is given by

B = trace A2
=

n∑
i=1

λ2
i =

n∑
i=2

λ2
i + λ

2
1.(3-3)

From the Gauss equation, the scalar curvature R is given by

R = n(n− 1)c+ n2 H 2
− B = n(n− 1)c+ 3λ2

1−

n∑
i=2

λ2
i .(3-4)

Hence
n∑

i=2

λ2
i = n(n− 1)c− R+ 3λ2

1.(3-5)

Since grad H =
∑n

i=1 ei (H)ei and e1 is parallel to grad H, it follows that

e1(H) 6= 0, ei (H)= 0, 2≤ i ≤ n,

and hence

e1(λ1) 6= 0, ei (λ1)= 0, 2≤ i ≤ n.(3-6)

Put ∇ei e j =
∑n

k=1 ω
k
i j ek (1≤ i, j ≤ n). A direct computation concerning the com-

patibility conditions ∇ek 〈ei , ei 〉 = 0 and ∇ek 〈ei , e j 〉 = 0 (i 6= j) yields, respectively,
that

(3-7) ωi
ki = 0, ω

j
ki +ω

i
k j = 0, i 6= j.
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The Codazzi equation yields

ei (λ j )= (λi − λ j )ω
j
j i ,(3-8)

(λi − λ j )ω
j
ki = (λk − λ j )ω

j
ik,(3-9)

for distinct i, j, k.
Moreover, from (3-6) we have

[ei , e j ](λ1)= 0,

which yields directly

ω1
i j = ω

1
j i , 2≤ i, j ≤ n and i 6= j.(3-10)

Lemma 3.1. Let Mn be an orientable biharmonic hypersurface with nonconstant
mean curvature in Mn+1(c). Then the multiplicity of the principal curvature λ1

(which equals −nH/2) is 1, i.e., λ j 6= λ1 for 2≤ j ≤ n.

Proof. If λ j = λ1 for j 6= 1, by putting i = 1 in (3-8), we get

0= (λ1− λ j )ω
j
j1 = e1(λ j )= e1(λ1),

which contradicts (3-6). �

Lemma 3.2. The smooth real-valued functions λi and ω1
i i (2≤ i ≤ n) satisfy the

following differential equations:

e1e1(λ1)= e1(λ1)
(∑n

i=2
ω1

i i

)
+ λ1(n(n− 2)c− R+ 4λ2

1),(3-11)

e1(λi )= λiω
1
i i − λ1ω

1
i i ,(3-12)

e1(ω
1
i i )= (ω

1
i i )

2
+ λ1λi + c.(3-13)

Proof. Substituting H =−2λ1/n into the first equation of (2-6), and using (2-7),
(3-6), (3-3) and (3-5), we get (3-11). By putting i = 1 in (3-8), combining this with
(3-9) gives (3-12).

Next, we will prove (3-13).
For j = 1 and i 6= 1 in (3-8), by (3-6) we have ω1

1i = 0 (i 6= 1). Combining this
with (3-7), we have

ωi
11 = 0, for 1≤ i ≤ n.(3-14)

For j = 1, and k, i 6= 1 in (3-9) we have

(λi − λ1)ω
1
ki = (λk − λ1)ω

1
ik,

which together with (3-10) yields

(3-15) ω1
ki = 0, k 6= i, if λk 6= λi .
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For i 6= j and 2≤ i, j ≤ n, if λi = λ j , then by putting k = 1 in (3-9) we have

(λ1− λi )ω
j
i1 = 0,

which together with Lemma 3.1, (3-15) and (3-7) yields

ω
j
i1 = 0, i 6= j, and 2≤ i, j ≤ n.(3-16)

From the Gauss equation and (3-1), we have 〈R(e1, ei )e1, ei 〉 = −λ1λi − c. On the
other hand, the Gauss curvature tensor R is defined by

R(X, Y )Z =∇X∇Y Z −∇Y∇X Z −∇[X,Y ]Z .

Using (3-14), (3-16) and (3-7), a direct computation gives

〈R(e1, ei )e1, ei 〉 = −e1(ω
1
i i )+ (ω

1
i i )

2.

Thus, we obtain differential equation (3-13), completing the proof of Lemma 3.2. �

Consider an integral curve of e1 passing through p = γ (t0) as γ (t), t ∈ I. Since
ei (λ1)= 0 for 2≤ i ≤ n and e1(λ1) 6= 0, it is easy to show that there exists a local
chart (U ; t = x1, x2, . . . , xm) around p, such that λ1(t, x2, . . . , xm)= λ1(t) on the
whole neighborhood of p.

In the following, we begin our arguments under the assumption that the scalar
curvature R is always constant. The following system of algebraic equations is
important for us to proceed further.

Lemma 3.3. Assume that R is constant. We have
n∑

i=2

(ω1
i i )

k
= fk(t), for k = 1, . . . , 5,(3-17)

where fk(t) are some smooth real-valued functions with respect to t .

Proof. Since e1(λ1) 6= 0, λ1 = λ1(t) and R is constant, (3-11) becomes
n∑

i=2

ω1
i i = f1(t),(3-18)

where

f1(t)=
e1e1(λ1)− λ1

(
n(n− 2)c+ 4λ2

1− R
)

e1(λ1)
.

Taking the sum of (3-13) and (3-12) for i and taking into account (3-2) and (3-18),
respectively, we have

n∑
i=2

(
ω1

i i
)2
= f2(t),(3-19)

n∑
i=2

λiω
1
i i = g1(t),(3-20)
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where f2 = 3λ2
1− (n− 1)c+ e1( f1) and g1(t)= λ1 f1− 3e1(λ1).

Multiplying by ω1
i i on both sides of (3-13), we have

1
2 e1((ω

1
i i )

2)= (ω1
i i )

3
+ λ1λiω

1
i i + cω1

i i .

Using this and (3-18)–(3-20), we obtain
n∑

i=2

(ω1
i i )

3
= f3(t),(3-21)

where f3 =
1
2 e1( f2)− λ1g1− c f1.

Differentiating (3-20) with respect to e1 and using (3-12) and (3-13), we have

e1(g1)= 2
n∑

i=2

λi (ω
1
i i )

2
+ λ1

n∑
i=2

λ2
i + c

n∑
i=2

λi − λ1

n∑
i=2

(ω1
i i )

2.(3-22)

From (3-2), (3-5) and (3-19), this yields
n∑

i=2

λi (ω
1
i i )

2
= g2(t),(3-23)

where g2 =
1
2

{
e1(g1)− λ1

(
n(n− 1)c− R+ 3λ2

1

)
+ 3cλ1+ λ1 f2

}
.

Multiplying by (ω1
i i )

2 on both sides of (3-13), we have

1
3 e1((ω

1
i i )

3)= (ω1
i i )

4
+ λ1λi (ω

1
i i )

2
+ c(ω1

i i )
2.

Applying (3-19), (3-21) and (3-23) to this, we obtain
n∑

i=2

(ω1
i i )

4
= f4(t),(3-24)

where f4 =
1
3 e1( f3)− λ1g2− c f2.

Multiplying by λi on both sides of (3-12) gives

λ2
i ω

1
i i =

1
2 e1(λ

2
i )+ λ1λiω

1
i i ,

which together with (3-5) and (3-20) yields
n∑

i=2

λ2
i ω

1
i i = g3(t),(3-25)

where g3 = 3λ1e1(λ1)+ λ1g1.
Differentiating (3-23) with respect to e1 and using (3-12) and (3-13), we have

(3-26) e1(g2)= 3
n∑

i=2

λi (ω
1
i i )

3
− λ1

n∑
i=2

(ω1
i i )

3
+ 2λ1

n∑
i=2

λ2
i ω

1
i i + 2c

n∑
i=2

λiω
1
i i .
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Substituting (3-20), (3-21) and (3-25) into (3-26) gives
n∑

i=2

λi (ω
1
i i )

3
= g4(t),(3-27)

where
g4 =

1
3(e1(g2)+ λ1 f3− 2λ1g3− 2cg1).

Multiplying by (ω1
i i )

3 on both sides of (3-13), we have

1
4 e1((ω

1
i i )

4)= (ω1
i i )

5
+ λ1λi (ω

1
i i )

3
+ c(ω1

i i )
3.

Applying (3-21), (3-24) and (3-27) to this, we have
n∑

i=2

(
ω1

i i
)5
= f5(t),(3-28)

where f5 =
1
4 e1( f4)− λ1g4− c f3. �

Lemma 3.4. Assume that R is constant. If the number m of distinct principal
curvatures satisfies m ≤ 6, then ei (λ j ) = 0 for 2 ≤ i, j ≤ n, i.e., all principal
curvature λi depend only on one variable t .

Proof. Since the number m of distinct principal curvatures satisfies m ≤ 6, there
are at most five distinct principal curvatures for λi (2≤ i ≤ n) except λ1. It follows
easily from (3-12) and (3-13) that

λi 6= λ j ⇔ ω1
i i 6= ω

1
j j .

We now distinguish the following two cases:

Case A: Suppose that m = 6. We denote by λ̃i the five distinct principal curvatures
with the corresponding multiplicities ni for 1≤ i ≤ 5. Note that here ni are positive
integers and

∑5
i=1 ni = n− 1 (see Lemma 3.1). According to (3-12), let

ui :=
e1(λ̃i )

λ̃i − λ1
.

Thus, the ui are mutually different for 1≤ i ≤ 5.
In this case, the system of polynomial equations (3-17) becomes

(3-29)

n1u1+ n2u2+ n3u3+ n4u4+ n5u5 = f1,

n1u2
1+ n2u2

2+ n3u2
3+ n4u2

4+ n5u2
5 = f2,

n1u3
1+ n2u3

2+ n3u3
3+ n4u3

4+ n5u3
5 = f3,

n1u4
1+ n2u4

2+ n3u4
3+ n4u4

4+ n5u4
5 = f4,

n1u5
1+ n2u5

2+ n3u5
3+ n4u5

4+ n5u5
5 = f5.
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Since ei ( f1)= 0 for 2≤ i ≤ n, differentiating both sides of the equations in (3-29)
with respect to ei (2≤ i ≤ n), we obtain

(3-30)

n1ei (u1)+ n2ei (u2)+ n3ei (u3)+ n4ei (u4)+ n5ei (u5)= 0,

n1u1ei (u1)+ n2u2ei (u2)+ n3u3ei (u3)+ n4u4ei ((u4)+ n5u5ei (u5)= 0,

n1u2
1ei (u1)+ n2u2

2ei (u2)+ n3u2
3ei (u3)+ n4u2

4ei (u4)+ n5u2
5ei (u5)= 0,

n1u3
1ei (u1)+ n2u3

2ei (u2)+ n3u3
3ei (u3)+ n4u3

4ei (u4)+ n5u3
5ei (u5)= 0,

n1u4
1ei (u1)+ n2u4

2ei (u2)+ n3u4
3ei (u3)+ n4u4

4ei (u4)+ n5u4
5ei (u5)= 0.

Now consider this system of five linear equations with five unknowns ei (uk) for
1≤ k ≤ 5.

According to Cramer’s rule in linear algebra, for any k, ei (uk)≡ 0 holds true if
and only if the determinant of the coefficient matrix of (3-30) is not vanishing, i.e.,

(3-31)

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1
u1 u2 u3 u4 u5

u2
1 u2

2 u2
3 u2

4 u2
5

u3
1 u3

2 u3
3 u3

4 u3
5

u4
1 u4

2 u4
3 u4

4 u4
5

∣∣∣∣∣∣∣∣∣∣∣
6= 0.

We note that the determinant in (3-31) is the famous Vandermonde determinant
with order 5 and hence

(3-32)

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1
u1 u2 u3 u4 u5

u2
1 u2

2 u2
3 u2

4 u2
5

u3
1 u3

2 u3
3 u3

4 u3
5

u4
1 u4

2 u4
3 u4

4 u4
5

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤ j<i≤5

(ui − u j ).

Since the ui are mutually different for 1≤ i ≤ 5, (3-32) implies that (3-31) holds
true identically. Hence, we have ei (uk)= 0 for any 1≤ k ≤ 5 and 2≤ i ≤ n.

Therefore, by using ei (uk)= 0 and

ei e1(uk)− e1ei (uk)= [ei , e1](uk)=

n∑
j=2

(ω
j
i1−ω

j
1i )e j (uk),

we get

ei e1(uk)= 0.

Noting that with the notation uk , (3-13) becomes

e1(uk)= (uk)
2
+ λ1λk + c.
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Differentiating the above equation with respect to ei , by taking into account
ei (uk)= 0 and ei e1(uk)= 0 we derive

ei (λk)= 0

for any 1≤ k ≤ 5 and 2≤ i ≤ n.

Case B: Suppose m ≤ 5. Denote by λ̃i the distinct principal curvatures with the
corresponding multiplicities ni for 1 ≤ i ≤ 4. Then the number of different ui is
less than or equal to 4. In the case that four of the ui are mutually different, it is
only necessary to consider the system (3-17) for k = 1, 2, 3, 4. A similar discussion
to the one in Case A yields the conclusion. If less than four of the ui are mutually
different, then the conclusion follows by some arguments similar to the above.

Thus, we conclude Lemma 3.4. �

Lemma 3.5. For three arbitrary distinct principal curvatures λi , λ j and λk , where
2≤ i, j, k ≤ n, we have the following relations:

ωk
i j (λ j − λk)= ω

k
ji (λi − λk)= ω

i
k j (λ j − λi ),(3-33)

ωk
i jω

k
ji +ω

i
jkω

i
k j +ω

j
ikω

j
ki = 0,(3-34)

ωk
i j (ω

1
j j −ω

1
kk)= ω

k
ji (ω

1
i i −ω

1
kk)= ω

i
k j (ω

1
j j −ω

1
i i ).(3-35)

Proof. We recall from the beginning of this section that the number m of distinct
principal curvatures satisfies m ≥ 4. Hence, by taking into account the second
expression of (3-7) and (3-9) for three distinct principal curvatures λi , λ j and λk

(2≤ i, j, k ≤ n), we obtain (3-33) and (3-34) immediately.
Let us consider (3-35). It follows from the Gauss equation that

〈R(ei , e j )ek, e1〉 = 0.

Moreover, since ω1
i j = 0 for i 6= j from (3-7) and (3-16), from the definition of the

curvature tensor we have

ωk
i j (ω

1
j j −ω

1
kk)= ω

k
ji (ω

1
i i −ω

1
kk).(3-36)

Similarly, by considering 〈R(e j , ek)ei , e1〉 = 0 one also has

ωi
jk(ω

1
kk −ω

1
i i )= ω

i
k j (ω

1
j j −ω

1
i i ),

which together with (3-7) and (3-36) gives (3-35). �

Lemma 3.6. Under the assumptions as above, we have

ω1
i iω

1
j j −

n∑
k=2, k 6=l(i, j)

2ωk
i jω

k
ji =−λiλ j − c, for λi 6= λ j ,(3-37)

where l(i, j) stands for the indexes satisfying λl(i, j) = λi or λ j .
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Proof. In the following, we consider the case that the number m of distinct principal
curvatures is 6.

Without loss of generality, except in the case of λ1, we assume λp, λq , λr , λu, λv

are the five distinct principal curvatures in sequence with the corresponding multi-
plicities n1, n2, n3, n4, n5, respectively, i.e.,

λ1, λp, . . . , λp︸ ︷︷ ︸
n1

, λq , . . . , λq︸ ︷︷ ︸
n2

, λr , . . . , λr︸ ︷︷ ︸
n3

, λu, . . . , λu︸ ︷︷ ︸
n4

, λv, . . . , λv︸ ︷︷ ︸
n5

.

We now compute 〈R(ep, eq)ep, eq〉. On one hand, it follows from the Gauss
equation and (3-1) that

〈R(ep, eq)ep, eq〉 = −λpλq − c.(3-38)

On the other hand, since

∇ep∇eq ep =

n∑
k=1

ep
(
ωk

qp
)
ek +

n∑
k=1

ωk
qp

n∑
l=1

ωl
pkel,

∇eq∇ep ep =

n∑
k=1

eq
(
ωk

pp
)
ek +

n∑
k=1

ωk
pp

n∑
l=1

ωl
qkel,

∇[ep,eq ]ep =

n∑
k=1

(
ωk

pq −ω
k
qp
) n∑

l=1

ωl
kpel,

it follows that

(3-39) 〈R(ep, eq)ep, eq〉 =

ep(ω
q
qp)+

n∑
k=1

ωk
qpω

q
pk − eq(ω

q
pp)−

n∑
k=1

ωk
ppω

q
qk −

n∑
k=1

(ωk
pq −ω

k
qp)ω

q
kp.

Since λp 6= λq , from (3-8), (3-7) and Lemma 3.4 we have

ωq
qp = ω

p
qq = ω

q
pp = 0 and

n∑
k=2

ωk
ppω

q
qk = 0.(3-40)

Moreover, if 2≤ k ≤ n1+ 1, then λk = λp, by the second expression of (3-7) and
(3-9) we get

(λp − λk)ω
k
qp = (λq − λk)ω

k
pq and (λk − λq)ω

q
pk = (λp − λq)ω

q
kp,

which imply that

(3-41) ωk
pq = ω

q
pk = ω

q
kp = 0.
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Similarly, if n1+ 2≤ k ≤ n1+ n2+ 1, we also have

ωk
pq = ω

q
pk = ω

q
kp = 0.(3-42)

Hence, by taking (3-40)–(3-42) into account, (3-39) becomes

〈R(ep, eq)ep, eq〉 = ω
1
ppω

1
qq +

n∑
k=n1+n2+2

{
ωk

qpω
q
pk − (ω

k
pq −ω

k
qp)ω

q
kp

}
,

which together with (3-38), (3-7) and (3-34) gives

ω1
ppω

1
qq −

n∑
k=n1+n2+2

2ωk
pqω

k
qp =−λpλq − c.(3-43)

Similarly, we can deduce other equations for different pairs ω1
ppω

1
rr , ω

1
ppω

1
uu, . . . .

Hence we get (3-37).
In the case that the number m of distinct principal curvatures is equal to 4 or 5,

a very similar argument gives (3-37) as well. �

4. Proof of Theorem 1.1

Assume that the mean curvature H is not constant.
Differentiating (3-2) with respect to e1 and using (3-12) and (3-13), we obtain

3e1(λ1)=

n∑
i=2

(λ1− λi )ω
1
i i .(4-1)

Following the previous section, we only deal with the case where the number of
distinct principal curvatures is 6, i.e., m = 6. In fact, the proofs for the cases
m = 4, 5 are very similar, so we omit them here without loss of generality.

According to Lemma 3.5, we consider the following cases:

Case A: ωr
pq 6= 0, ωu

pq 6= 0, and ωvpq 6= 0. Since λp, λq , λr , λu, λv are mutually
different, equations (3-33) and (3-35) reduce to

ω1
pp −ω

1
qq

λp − λq
=
ω1

pp −ω
1
rr

λp − λr
=
ω1

qq −ω
1
rr

λq − λr

=
ω1

pp −ω
1
uu

λp − λu
=
ω1

qq −ω
1
uu

λq − λu

=
ω1

pp −ω
1
vv

λp − λv
=
ω1

qq −ω
1
vv

λq − λv
.

Thus, there exist two smooth functions ϕ and ψ depending on t such that

(4-2) ω1
i i = ϕλi +ψ.
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Differentiating with respect to e1 on both sides of (4-2), and using (3-12) and (3-13)
we get

e1(ϕ)= λ1(ϕ
2
+ 1)+ϕψ,(4-3)

e1(ψ)= ψ(λ1ϕ+ψ)+ c.(4-4)

Taking into account (4-2), and using (3-2), (3-5) one has

n∑
i=2

ω1
i i =−3λ1ϕ+ (n− 1)ψ,

and (4-1) and (3-11), respectively, become

3e1(λ1)=
(
R− n(n− 1)c− 6λ2

1
)
ϕ+ (n+ 2)λ1ψ,(4-5)

e1e1(λ1)= e1(λ1)(−3λ1ϕ+ (n− 1)ψ)+ λ1
(
n(n− 2)c− R+ 4λ2

1
)
.(4-6)

Differentiating (4-5) with respect to e1, we may eliminate e1e1(λ1) by (4-6). Using
(4-3), (4-4) and (4-6) we have

3(n− 4)e1(λ1)ψ = λ1
(
6R− (4n2

− 12n− 3)c− 27λ2
1
)
.(4-7)

Note here, n > 4 since the number of distinct principal curvatures is 6.
Eliminating e1(λ1) between (4-5) and (4-7) gives

(4-8) (n− 4)
{(

R− n(n− 1)c− 6λ2
1
)
ϕψ + (n+ 2)λ1ψ

2}
= λ1

(
6R− (4n2

− 12n− 3)c− 27λ2
1
)
.

Further, differentiating (4-7) with respect to e1, by (4-4), (4-6), (4-7), (4-5) we have(
432λ4

1+ a1λ
2
1+ a2

)
ϕ+

{
−54(n+ 3)λ3

1+ a3λ1
}
ψ = 12(n− 4)λ3

1+ a4λ1,(4-9)

where

a1 = (97n2
− 111n+ 60)c− 105R,

a2 = ((4n2
− 9n+ 9)c− 6R)(n(n− 1)c− R),

a3 = 12R− (4n2
− 6n+ 21)c,

a4 = 3n(n− 4)(n− 2)c.

Differentiating (4-9) with respect to e1 and using (4-3) and (4-4), we get

(1728λ3
1+ 2a1λ1)ϕe1(λ1)+ (432λ4

1+ a1λ
2
1+ a2){λ1(ϕ

2
+ 1)+ϕψ}

+{−162(n+ 3)λ2
1+ a3}ψe1(λ1)+{−54(n+ 3)λ3

1+ a3λ1}{ψ(λ1ϕ+ψ)+ c}

= (36(n− 4)λ2
1+ a4)e1(λ1).
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Multiplying by 3(n− 4) on both sides of the above equation and using (4-5) and
(4-7) we have

(4-10) (n− 4)
(
1728λ3

1+ 2a1λ1
)
ϕ
{(

R− n(n− 1)c− 6λ2
1
)
ϕ+ (n+ 2)λ1ψ

}
+ 3(n− 4)

(
432λ4

1+ a1λ
2
1+ a2

){
λ1(ϕ

2
+ 1)+ϕψ

}
+ λ1

{
−162(n+ 3)λ2

1+ a3
}{

6R− (4n2
− 12n− 3)c− 27λ2

1
}

+ 3(n− 4)
{
−54(n+ 3)λ3

1+ a3λ1
}{
ψ(λ1ϕ+ψ)+ c

}
= (n− 4)

(
36(n− 4)λ2

1+ a4
){(

R− n(n− 1)c− 6λ2
1
)
ϕ+ (n+ 2)λ1ψ

}
.

Note that Equation (4-10) could be rewritten as

q1(λ1)ϕ
2
+ q2(λ1)ϕψ + q3(λ1)ψ

2
+ q4(λ1)ϕ+ q5(λ1)ψ + q6(λ1)= 0,(4-11)

where qi are nontrivial polynomials concerning the function λ1 and given by:

(4-12)

q1 = (n− 4)
(
1728λ3

1+ 2a1λ1
)(

R− n(n− 1)c− 6λ2
1
)

+3(n− 4)
(
432λ4

1+ a1λ
2
1+ a2

)
λ1,

q2 = (n− 4)(n+ 2)λ1
(
1728λ3

1+ 2a1λ1
)

+3(n− 4)
(
432λ4

1+ a1λ
2
1+ a2

)
+ 3(n− 4)

{
−54(n+ 3)λ3

1+ a3λ1
}
λ1,

q3 = 3(n− 4)
{
−54(n+ 3)λ3

1+ a3λ1
}
,

q4 = (n− 4)
(
36(n− 4)λ2

1+ a4
)(

R− n(n− 1)c− 6λ2
1
)
,

q5 =−(n− 4)(n+ 2)
(
36(n− 4)λ2

1+ a4
)
λ1,

q6 =−3(n− 4)
(
432λ4

1+ a1λ
2
1+ a2

)
λ1

+ λ1
(
−162(n+ 3)λ2

1+ a3
){

6R− (4n2
− 12n− 3)c− 27λ2

1
}

+ 3c(n− 4)
{
−54(n+ 3)λ3

1+ a3λ1
}
.

In the same manner, (4-8) and (4-9) could be also rewritten, respectively, as:

p1(λ1)ϕψ + p2(λ1)ψ
2
= p3(λ1),(4-13)

h1(λ1)ϕ+ h2(λ1)ψ = h3(λ1),(4-14)

where pi , hi (i = 1, 2) are polynomials concerning the function λ1 and given by

(4-15)

p1 = (n− 4)
(
R− n(n− 1)c− 6λ2

1
)
,

p2 = (n− 4)(n+ 2)λ1,

p3 = λ1
(
6R− (4n2

− 12n− 3)c− 27λ2
1
)
,

h1 = 432λ4
1+ a1λ

2
1+ a2,

h2 =−54(n+ 3)λ3
1+ a3λ1,

h3 = 12(n− 4)λ3
1+ a4λ1.
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Multiplying by h2
1 on both sides of (4-11), by taking into account (4-14) we may

eliminate ϕ and get

P1ψ
2
+ P2ψ = P3,(4-16)

where

(4-17)

P1 = q1h2
2− q2h1h2+ q3h2

1,

P2 =−2q1h2h3+ q2h1h3− q4h1h2+ q5h2
1,

P3 =−q1h2
3− q4h1h3− q6h2

1.

Similarly, eliminating ϕ in (4-13) by using (4-14) yields

Q1ψ
2
+ Q2ψ = Q3,(4-18)

where

(4-19)

Q1 = p2h1− p1h2,

Q2 = p1h3,

Q3 = p3h1.

Moreover, multiplying by Q1 and P1 on both sides of the equations (4-16) and
(4-18), respectively, after eliminating the ‘ψ2’ part we obtain

(P2 Q1− P1 Q2)ψ = P3 Q1− P1 Q3.(4-20)

Multiplying (4-20) by P1ψ and then combining this with (4-16) gives{
P1(P3 Q1− P1 Q3)+ P2(P2 Q1− P1 Q2)

}
ψ = P3(P2 Q1− P1 Q2).(4-21)

At last, after eliminating ψ between (4-20) and (4-21) we get

(4-22) P1(P3 Q1− P1 Q3)
2
+ P2(P2 Q1− P1 Q2)(P3 Q1− P1 Q3)

= P3(P2 Q1− P1 Q2)
2.

We observe from (4-12), (4-15), (4-17) and (4-19) that both Pi and Qi (1≤ i ≤ 3)
are polynomials concerning λ1 with constant coefficients. Hence, it follows that

P1 =−10077696(n− 4)(n+ 3)(n− 1)λ11
1 + · · · ,

P2 =−839808(n− 4)2(11n+ 5)λ11
1 + · · · ,

P3 =−69984(19n+ 113)λ13
1 + · · · ,

Q1 = 108(n− 4)(n− 1)λ5
1+ · · · ,

Q2 =−72(n− 4)2λ5
1+ · · · ,

Q3 =−11664λ7
1+ · · · ,

where we only need to write the highest order terms of λ1.
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By substituting Pi and Qi into (4-22), we get a polynomial equation concerning
λ1 with constant coefficients ci = ci (n, c, R):∑47

i=0
ciλ

i
1 = 0,(4-23)

where the coefficient c47 of the highest order term satisfies

c47 =−10077696(n− 4)2(n+ 3)(n− 1)2
[
69984× 108(19n+ 113)

+10077696× 11664(n+ 3)
]2
6= 0.

Therefore, λ1 has to be constant and H =−2λ1/n is a constant, which is a contra-
diction.

Case B: ωr
pq 6= 0, ωu

pq 6= 0, and ωk
i j = 0 for all other distinct triplets {i, j, k} and

distinct principal curvatures λi , λ j , λk . Then, (3-37) implies that

ω1
ppω

1
vv =−λpλv − c,(4-24)

ω1
qqω

1
vv =−λqλv − c,(4-25)

ω1
rrω

1
vv =−λrλv − c,

ω1
uuω

1
vv =−λuλv − c.

Similar to Case A, since ωr
pq 6= 0 and ωu

pq 6= 0, (3-33) and (3-35) imply that

ω1
i i = ϕλi +ψ, for i = p, q, r, u,(4-26)

where ϕ and ψ satisfy the differential equations (4-3) and (4-4).
Substituting (4-26) into (4-24) and (4-25), we obtain

ω1
vv =−

1
ϕ
λv,(4-27)

λvψ = cϕ,(4-28)

which means that ω1
vv and λv are determined completely by ϕ and ψ .

Substitute (4-26)–(4-28) into (4-1), and then differentiate it with respect to e1. By
using (4-3), (4-4) and (3-11), a similar discussion as in Case A gives a polynomial
concerning the function λ1 with constant coefficients. Hence, λ1 has to be constant,
which yields a contradiction as well.

Case C: ωr
pq 6= 0 (or ωr

pq = 0), and all the ωk
i j = 0 for distinct triplets {i, j, k} and

distinct principal curvatures λi , λ j , λk . Then, (3-37) implies that

ω1
ppω

1
uu =−λpλu − c, ω1

ppω
1
vv =−λpλv − c,(4-29)

ω1
qqω

1
uu =−λqλu − c, ω1

qqω
1
vv =−λqλv − c,(4-30)

ω1
rrω

1
uu =−λrλu − c, ω1

rrω
1
vv =−λrλv − c,(4-31)

ω1
uuω

1
vv =−λuλv − c.(4-32)
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We first consider λi 6= 0 for i = p, q, r, u, v. Consequently, (4-29)–(4-32) reduce to

ω1
pp

λp
=
ω1

qq

λq
=
ω1

rr

λr
=−

λu − λv

ω1
uu −ω

1
vv

,

ω1
uu

λu
=
ω1
vv

λv
=−

λp − λq

ω1
pp −ω

1
qq
,

and hence

ω1
pp

λp
=
ω1

qq

λq
=
ω1

rr

λr
= ϕ,(4-33)

ω1
uu

λu
=
ω1
vv

λv
= ψ(4-34)

for two functions ϕ and ψ .
Substituting (4-33) and (4-34) back to (4-29) gives

(1+ϕψ)λpλu =−c,

(1+ϕψ)λpλv =−c,

which imply that λu = λv. This is impossible.
If λp = 0, then (3-12) and (4-29) imply that ω1

pp = 0 and c= 0. Then (4-30) and
(4-31) yield

ω1
uu

λu
=
ω1
vv

λv
= γ(4-35)

for some function γ . However, combining (4-35) with (4-32) gives γ 2
=−1. Hence

it is a contradiction.
Lastly, we consider λu = 0. Then (3-12) and (4-29) reduce to ω1

uu = c = 0. The
second equations of (4-29)–(4-31) show that

ω1
pp

λp
=
ω1

qq

λq
=
ω1

rr

λr
= ϕ,(4-36)

ω1
vv

λv
=−

1
ϕ
.(4-37)

By taking into account (4-36) and (4-37) together with (3-11) and (4-1), a very
similar and direct computation as in Case A also gives a polynomial concerning
the function λ1 with constant coefficients. Hence, this is a contradiction and the
mean curvature H must be constant.

In conclusion, the proof of Theorem 1.1 is completed.
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NONABELIAN FOURIER TRANSFORMS
FOR SPHERICAL REPRESENTATIONS

JAYCE R. GETZ

Braverman and Kazhdan have introduced an influential conjecture on lo-
cal functional equations for general Langlands L-functions. It is related
to L. Lafforgue’s equally influential conjectural construction of kernels for
functorial transfers. We formulate and prove a version of Braverman and
Kazhdan’s conjecture for spherical representations over an archimedean
field that is suitable for application to the trace formula. We then give a
global application related to Langlands’ beyond endoscopy proposal. It is
motivated by Ngô’s suggestion that one combine nonabelian Fourier trans-
forms with the trace formula in order to prove the functional equations of
Langlands L-functions in general.

1. Introduction

Let G be a split connected reductive group over an archimedean field F and let

(1-1) r : Ĝ→ GLn

be a representation of (the connected component of) its Langlands dual group,
which we regard as a connected reductive group over C. For simplicity we assume
that the neutral component of the kernel of r is trivial (this is the most interesting
case anyway). The local Langlands correspondence is a theorem of Langlands in
the archimedean case. Thus for every irreducible admissible representation π of
G(F) one has an irreducible admissible representation r(π) of GLn(F) that is the
transfer of (the L-packet of) π . One defines

γ (s, π, r, ψ) := γ (s, r(π), ψ) :=
ε(s, r(π), ψ)L(1− s, r(π)∨)

L(s, r(π))

for s ∈C and for any additive character ψ : F→C×, where the ε-factor on the right
is that defined by Godement and Jacquet [1972]. Let f ∈ C∞c (G(F)). In the case

The author is thankful for partial support provided by NSF grant DMS 1405708. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author and
do not necessarily reflect the views of the National Science Foundation.
MSC2010: primary 11F70; secondary 11F66, 22E45.
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where r is the standard representation of GLn and the representation π is unitary
one has an identity of operators

γ (s, π, r, ψ)π |det|(n−1)/2+s( f )= π anti
|det|(n−1)/2+1−s( f̂ ),(1-2)

where π anti(g) := π(g−1) and f̂ is the restriction to GLn(F) of the gln(F)-Fourier
transform of f determined by ψ ; see [Godement and Jacquet 1972, (9.5)]. Strictly
speaking, that book assumes f to be in a space of Gaussian functions, but there is
no need to make this precise here.

A conjecture of Braverman and Kazhdan [2000] states that (1-2) is but the first
case of a general phenomenon. To be more precise we need to place an additional
assumption on the representation r . Assume that there is a character

ω : G→ Gm(1-3)

such that, if we denote by ω∨ the dual cocharacter of the center ZĜ of Ĝ, then

r ◦ω∨ = [N ],

where [N ] : Gm→ GLn is the cocharacter given on points by

x 7→ x N In.

Here In is the n× n identity matrix. For complex numbers s, we let

ωs := |ω|
s/N and πs := π ⊗ωs .

The quasicharacter ωs plays the role of |det|s in the case considered by Godement
and Jacquet [1972].

Temporarily let F be an arbitrary local field. Braverman and Kazhdan gave a
conjectural construction of a nonabelian Fourier transform,

Fr,ψ : C∞c (G(F))→ C∞(G(F)),(1-4)

such that
γ (s, π, r, ψ)πs( f )= π anti

1−s(Fr,ψ( f )).(1-5)

In the case where r is the standard representation of G = GLn one can take

Fr,ψ( f )= |det|(n−1)/2(|det|(1−n)/2 f )∧.

In the nonarchimedean case, L. Lafforgue has given a spectral definition of Fr,ψ

using Paley–Weiner theory under suitable assumptions that are implied by the
local Langlands correspondence for G(F) [Lafforgue 2014, Définition II.15]. The
analytic properties of Fr,ψ( f ) (e.g., whether or not it is integrable after a suitable
twist by a quasicharacter of G(F)) are not obvious from his construction.

Assume again that F is archimedean, and let K ≤ G(F) be a maximal compact
subgroup. In this paper we prove the existence of a transform Fr,ψ( f ) such that
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(1-5) holds for unitary representations π provided that f is spherical and lies in
a naturally defined subspace C∞c (G(F)//K , r) of C∞c (G(F)//K ) depending on r .
We also prove that suitable twists of Fr,ψ( f ) by quasicharacters lie in a space of
functions for which the trace formula is valid.

In Section 4 we define the subspace C∞c (G(F)//K , r) ≤ C∞c (G(F)//K ). For
0< p ≤ 2 let

S p(G(F)//K )≤ C∞(G(F)//K )

be the L p-Harish-Chandra–Schwartz space; we recall its definition in Section 3C.
The following is the main theorem of this paper:

Theorem 1.1. Let f ∈ C∞c (G(F)//K , r) and 0< p ≤ 1. There is a function,

Fr,ψ( f ) ∈ C∞(G(F)//K ),

such that

(a) one has Fr,ψ( f )ωs ∈ S p(G(F)//K ) for Re(s) sufficiently large in a sense
depending only on G and r , and

(b) if π is unitary and irreducible then

γ (s, π, r, ψ) trπs( f )= trπ∨1−s(Fr,ψ( f ))(1-6)

in the sense of analytic continuation.

Remarks. (1) A more precise version of (a) is proved in Theorem 4.1.

(2) Elements of S p(G(F)//K ) for 0 < p ≤ 1 are in L1(G(F)//K ), so the fact
that π is unitary implies that the operator π∨s (Fr,ψ( f )) is bounded for Re(s)
sufficiently large.

(3) The functions f and Fr,ψ( f ) are assumed to be spherical, so for π unitary
and nonspherical (1-6) is just the equality 0= 0.

(4) The operator πs( f ) is holomorphic as a function of s, and γ (s, π, r, ψ) is mero-
morphic. Thus (1-6) provides a meromorphic continuation of trπ∨1−s(Fr,ψ( f ))
to the complex plane.

Assertion (a) in the theorem is important because the Arthur–Selberg trace
formula is valid for functions in (the global version of) S p(G(F)//K ) for 0< p≤ 1
due to work of Finis, Lapid, and Müller [Finis et al. 2011; Finis and Lapid 2011;
2016]. One can then use their results to provide an absolutely convergent expression
for the sum of residues of Langlands L-functions that Langlands has isolated for
study in his “beyond endoscopy” proposal. This will be discussed in Section 5.

It would be very interesting to extend the results in this paper to nonspherical rep-
resentations. Our approach might be applicable in this more general setting provided
one can prove a certain analytic result. More precisely, we use the characterization of
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the image of S p(G(F)//K ) under the Fourier transform due to Trombi and Varadara-
jan [1971]. A characterization of the image of the nonspherical analogue S p(G(F))
under the Fourier transform does not seem to be available in the literature, although
partial results are known [1981; 1990]. Hopefully the conjectures of Braverman and
Kazhdan [2000], Lafforgue [2014], and of course the beyond endoscopy proposal
of Langlands [2004] will provide motivation for giving such a characterization.

Remark. Arthur [1983] has characterized the image of the Fourier transform of
S2(G(F)), but this does not seem to be the right space from the point of view of
any of these proposals to move beyond endoscopy. It would be interesting to see if
the technique of Anker [1991] could be used to deduce the image of the Fourier
transform on S p(G(F)) for 0< p < 2 from this case.

We would be remiss not to recall that the fundamental aim of [Braverman and
Kazhdan 2000; Lafforgue 2014] is to provide a definition of the nonabelian Fourier
transform for which a version of Poisson summation is valid. As explained in these
papers, this would lead to a proof of the functional equation and meromorphic
continuation of the L-functions attached to r by Langlands. For this purpose it
would probably be desirable to have a definition of the Fourier transform Fr,ψ( f ),
which, unlike the approach of this paper and [Lafforgue 2014], does not rely on
Paley–Wiener theorems. For this we can only point to the hints provided in the
works [Altuğ 2015; Bouthier et al. 2016; Cheng and Ngô 2017; Cheng 2014; Frenkel
et al. 2010; Getz 2016; 2014; Getz and Herman 2015; Getz and Liu 2017; Li 2017;
Langlands 2013; Ngô 2014; Sakellaridis 2012].

We close the introduction by outlining the sections of this paper. In Section 2
we recall the notion of the transfer of a spherical representation. Preliminaries on
the characterization of the image of the spherical Fourier transform due to Trombi
and Varadarajan are given in Section 3C and in Section 4 we prove Theorem 4.1,
which immediately implies our main result, Theorem 1.1. Finally, in Section 5 we
give an application of the main theorem to Langlands’ beyond endoscopy proposal.

2. Tori and transfers of representations

Let F be a local field. In this section we set some notation and recall the notion
of the transfer r(π) of an irreducible admissible representation π of G(F) under
some simplifying assumptions. These assumptions are always true if π is spherical.
Before this we give a definition, from [Cheng and Ngô 2017], of a useful extension
W ′ of the Weyl group W of a split maximal torus T ≤ G by a subgroup of Sn , the
symmetric group on n letters. The whole point of the discussion below is to explain
how r induces a W ′-equivariant map,

r∨ : Tn→ T,
where Tn is a maximal torus in GLn .
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Let T ≤ G be a split maximal torus with Weyl group W. Moreover let T̂ ≤ Ĝ
be the dual torus; its Weyl group in Ĝ is isomorphic to W and we denote it by the
same letter. Let Vr be the space of r . We can decompose

Vr =⊕
m
i=1Vλi ,(2-1)

where the sum is over the nonzero weights λ1, . . . , λm ∈ X∗(T̂ ) of T̂ in Vr , Vλi is
the λi weight space, and dim Vλi = di . Fix a basis Ai ⊂ Vr for each Vλi (viewed as a
subspace of Vr ) and let A=

∐m
i=1 Ai ; this is a basis for Vr . This choice of basis gives

an embedding GA
m→ GL(Vr ). We let T̂n be its image and let 3= X∗(T̂n)= Z[A].

It comes equipped with a Z-linear map,

3→ X∗(T̂ )= X∗(T ),(2-2)

given by extending the set theoretic map sending each basis element in Ai to λi .
Thus r induces a map,

r : T̂ → T̂n,(2-3)

where T̂n ≤ GLn is the maximal torus with character group 3. In fact, upon
conjugating the representation r by an element of GLn(C) we can and do assume
that T̂n is the standard maximal torus of diagonal matrices. For F-algebras R we take

Tn(R)=3⊗ R×.

It is a torus over F with dual torus T̂n , and by construction there is a morphism

r∨ : Tn→ T(2-4)

over F whose dual is r .
The Weyl group Wn of GLn can be identified with the set of permutations of A

(which we also identify with Sn) and we let

6λ =Sr1 × · · ·×Srm ≤Sn =Wn(2-5)

denote the subgroup preserving the decomposition A =
∐m

i=1 Ai (i.e., those permu-
tations σ such that σ(Vλi )= Vλi for all i). We let

6′λ := {τ ∈Wn : there exists ξ ∈Sm such that τ(Ai )= Aξ(i) for all 1≤ i ≤ m}.

The map τ 7→ ξ implicit in this definition is in fact a homomorphism 6′λ→Sm

whose image is the set of permutations fixing the multiplicity function i 7→ di and
whose kernel is 6λ. The Weyl group W acts on X∗(T̂ ) and this action preserves the
weights λ1, . . . , λm and the multiplicity function i 7→ di . Thus the map W →Sm

induces a morphism,
ρW :W →6′λ/6λ

(this ρW has nothing to do with the sum of positive roots). We define W ′ to be the
following extension of W :
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W ′ := {(w, ξ) ∈W ×6′λ : ρW (w)≡ ξ (mod6λ)}.(2-6)

The group W ′ admits natural homomorphisms to both 6′λ and W by projection to
the two factors. We therefore obtain actions of W ′ via projection to 6′λ on 3, and
Tn and T̂n and actions of W ′ via projection to W on X∗(T̂ ), T and T̂ . One checks
that (2-2) is W ′ equivariant with respect to these actions, and hence so are the maps
(2-3) and (2-4).

For unramified quasicharacters χ : T (F)→C× extend χ to a character of a Borel
subgroup B containing T. Let J (χ) be the unique irreducible spherical subquotient
of the unitarily normalized induction IndG(F)

B(F)(χ) (see Theorem 3.1 for more details
and references).

Suppose that π = J (χ) where χ : T (F)→ C× is an unramified quasicharacter.
One defines r(χ) to be χ ◦ r∨ and one defines the transfer of π to be

r(π) := J (r(χ)).

This is an irreducible admissible representation of GLn(F). We note that if

r(χ)

(
a1 . . .

an

)
=

n∏
i=1

ηi (ai )

for some quasicharacters ηi : F×→ C× then

γ (s, π, r, ψ) := γ (s, r(π), ψ)=
n∏

i=1

γ (s, ηi , ψ);

see [Godement and Jacquet 1972, Corollaries 3.6 and 8.9].

3. Preliminaries on the Fourier transform

In this section we collect some notation related to Langlands decompositions of
Borel subgroups and recall some basic facts about the spherical Fourier transform.
All of these results will be used in Section 4. In this section F is an archimedean
local field.

3A. Langlands decompositions. Let T ≤ G and Tn ≤ GLn be maximal tori as
in Section 2 (so Tn is the diagonal torus, T is split and r maps T̂ into T̂n). Let
B ≥ T be a Borel subgroup of G and let Bn ≥ Tn be the Borel subgroup of upper
triangular matrices in GLn . We let N ≤ B and Nn ≤ Bn be the unipotent radicals.
Let K ≤ G(F) be a maximal compact subgroup and let Kn ≤ GLn(F) be the
standard maximal compact subgroup. Let

M := T (F)∩ K , Mn := Tn(F)∩ Kn.

We can and do assume that M is the maximal compact subgroup of T (F), and
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then one has r∨(Mn)≤ M. Let a= X∗(T )⊗Z R, an := X∗(Tn)⊗Z R and let

a∗ = Hom(T (F)/M,R×>0),

a∗n = Hom(Tn(F)/Mn,R×>0)

be their R-linear duals.
We require a norm on a∗

C
. To construct it, let ( , ) be a nondegenerate symmetric

bilinear form on g := Lie(ResF/R G) whose restriction to the derived algebra is the
Killing form. We assume that the +1 and −1 eigenspaces of the Cartan involution
2 attached to K are orthogonal under ( , ) and that X 7→ −(X,2X) is a positive
definite quadratic form on g. We then set ‖X‖2=−(X,2X). It induces a hermitian
inner product on gC and aC and we continue to denote by ‖·‖ the induced form on a∗

C
.

The map r∨ yields
r : a∗C→ a∗nC.

One has an isomorphism

Rn
−→∼ a∗n, (s1, . . . , sn) 7→ ηs1,...,sn ,

where

ηs1,...,sn

(
t1 . . .

tn

)
:= |t1|s1 · · · |tn|sn .

We let
(a∗n)+

be the image of Rn
>0 and let

a∗
+
:= {λ ∈ a∗ : r(λ) ∈ (a∗n)+}.(3-1-1)

By the existence of ω (see (1-3)) this is nonempty. Note that this is not a Weyl
chamber.

3B. Spherical functions. We now recall the definition of the Harish-Chandra map.
We define a function HT : T (F)/M→ HomZ(X∗(T ),R) via

〈χ, HT (x)〉 := log|χ(x)|.

Since there is a canonical identification HomZ(X∗(T ),R) = X∗(T ) ⊗Z R =: a

we can regard HT as taking values in a. For (k, t, n) ∈ K × T (F)× N (F), the
Harish-Chandra map is then defined to be

HB : G(F)→ a, ktn 7→ HT (t).

We choose Haar measures dk, dt , dn, dg on K, T (F), N (F), and G(F), respec-
tively, such that measdk(K )= 1 and for f ∈ C∞c (G(F)),∫

G(F)
f (g) dg =

∫
K×T (F)×N (F)

e〈2ρ,HB(t)〉 f (ktn) dk dt dn,
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where ρ ∈ a∗ is half the sum of the positive roots of T in B.
For λ ∈ a∗

C
we let

ϕλ(g)=
∫

K
e〈−(λ+ρ),HB(g−1k)〉 dk(3-2-1)

be the usual spherical function. It is a matrix coefficient of the representation
Ind(e〈λ,HB〉). One defines the spherical transform of suitable K -biinvariant continu-
ous functions f : G(F)→ C to be

f̃ (λ) :=
∫

G(F)
f (g)ϕ−λ(g) dg(3-2-2)

(here we are using the convention of [Anker 1991, §1], at least up to multiplication
by
√
−1).

3C. Spaces of functions. Let g := Lie(ResF/R G). For 0< p ≤ 2 let

S p(G(F)//K )(3-3-1)

denote the space of K -biinvariant functions f : G(F)→ C such that

sup
x∈G(F)

(|x | + 1)nϕ0(x)−2/p
|X ∗ f ∗ Y (x)|<∞

for all n ≥ 0 and all invariant differential operators X, Y on G(F), that is, all
elements of the universal enveloping algebra U (gC) of the complexification of
g. Here ϕ0 is the spherical function of (3-2-1) and |x | is the distance of x to K
(see, e.g., [Anker 1991, §1]).

It is known that for 0< p < p′ ≤ 2 there are continuous inclusions

S p(G(F)//K )≤ S p′(G(F)//K )≤ L p′(G(F));

see [Anker 1991, §1]. To check the continuity of the last inclusion one uses the
fact that (ϕ2/p

0 (x))/(|x | + 1)n ∈ L p(G(F)) for n sufficiently large [Gangolli and
Varadarajan 1988, Proposition 4.6.12].

3D. The Fourier transform. For 0 < p ≤ 2 let a∗p be the closed tube in a∗
C

of
points whose real part lies in the closed convex hull of

W ·
( 2

p − 1
)
ρ

in a∗. Here ρ denotes half the sum of the positive roots of T in B. Let

S(a∗p)

denote the space of all complex valued functions h : a∗p→ C such that

(a) all derivatives of the function h exist and are continuous on a∗p,

(b) the function h is holomorphic in the interior of a∗p,
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(c) for any polynomial P in the symmetric algebra of a∗ and any integer n ≥ 0,

sup
λ∈a∗p

(‖λ‖+ 1)n
∣∣∣P( ∂

∂λ

)
h(λ)

∣∣∣<∞.
Trombi and Varadarajan [1971] proved that the spherical Fourier transform

f 7→ f̃ (λ) extends to an isomorphism of Fréchet algebras

S p(G(F)//K )−→∼ S(a∗p)
W.(3-4-1)

The seminorms which make S p(G(F)//K ) and S(a∗p) into Fréchet spaces are the
obvious ones. A simpler proof of the isomorphism (3-4-1) is contained in [Anker
1991], which is a very nice reference for the facts above, though, strictly speaking,
it assumes that G is semisimple. Therein, a∗p is denoted ia∗2/p−1.

For 0< p ≤ 1 and f ∈ S p(G(F)//K ), let

f (B)(t)= e〈ρ,HB(t)〉
∫

N (F)
f (tn) dn

be the constant term of f along B. It is absolutely convergent [Gangolli and
Varadarajan 1988, Theorem 6.2.4].

Let χ : T (F)→ C× be a character. If χ = e〈λ,HB〉 for some λ ∈ a∗
C

whose real
part is in the closed Weyl chamber defined by the positive roots attached to B we
will abbreviate

J (λ) := J
(
e〈λ,HB〉

)
and Ind(λ) := IndG(F)

B(F)

(
e〈λ,HB〉

)
.

We recall the following special case of the Langlands classification:

Theorem 3.1. Any irreducible admissible spherical representation of G(F) is
infinitesimally equivalent to J (λ) for some λ ∈ a∗

C
whose real part is in the closed

positive Weyl chamber attached to B. Conversely, for every λ ∈ a∗
C

whose real
part is in the closed positive Weyl chamber with respect to B, the representation
Ind(λ) has a unique irreducible quotient (usually called the Langlands quotient). It
is spherical.

Proof. In the notation of [Vogan 1981] and [Barbasch et al. 2008] take δ = triv and
µ= triv. In their terminology, δ is a fine T (F)∩ K -type, µ is a fine K -type and
µ ∈ A(δ). The stabilizer Wδ of δ under the natural action of the Weyl group W is
all of W : Wδ =W. Thus the first assertion of the lemma follows from [Barbasch
et al. 2008, Theorem in §2.4].

On the other hand, since δ is trivial the R-group Rδ is trivial (see [Vogan 1981,
Definition 4.3.13]), hence the set A(δ) consists of one element, namely the trivial
K -type; see [Vogan 1981, Theorem 4.3.16]. In view of this, the final assertion of
the theorem is contained in [Barbasch et al. 2008, §2.11]. �
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We also give a proof of the following well-known result for the convenience of
the reader.

Lemma 3.2. Let λ ∈ a∗
C

have real part in the closed positive Weyl chamber with
respect to B. Suppose that J (λ) is unitary. If f ∈ C∞c (G(F)//K ) then J (λ)( f )
acts via the scalar

f̃ (−λ)= tr J (λ)( f )= tr Ind(λ)( f )= tr e〈λ,HB〉( f (B))

on the (unique) spherical vector in J (λ). Under the same assumptions on J (λ), if
0< p ≤ 1 and f ∈ S p(G(F)//K ) then J (λ)( f ) acts via the scalar

f̃ (−λ)= tr J (λ)( f )

on the spherical vector in J (λ).

Proof. Assume first that f ∈ C∞c (G(F)//K ). The identity

tr Ind(λ)( f )= tr e〈λ,HB〉( f (B))

is the descent formula; see, e.g., [Knapp 1986, (10.23)]. The vector ϕλ is spherical,
satisfies ϕλ(1)= 1, and is a matrix coefficient of the representation Ind(λ) (compare
[Anker 1991, §1]). It is also known that this representation, even if it is reducible,
contains a unique spherical line [Gangolli and Varadarajan 1988, 3.1.13]. It follows
that Ind(λ)( f ) acts via the scalar f̃ (−λ)= tr Ind(λ)( f ) on this spherical line. On
the other hand, one has a nonzero equivariant map

Ind(λ)→ J (λ).(3-4-2)

Since the irreducible representation J (λ), being spherical, has a unique spherical
line this line must be the image of the unique spherical line in Ind(λ) under (3-4-2).
Thus tr J (λ)( f )= tr Ind(λ)( f ).

In the following discussion we use basic facts recalled in [Anker 1991, §1]
without further comment. Let 0< p≤ 1 and f ∈ S p(G(F)//K ). Then f̃ is defined
on λ∈ a∗1. Since C∞c (G(F)//K ) is dense in S p(G(F)//K ) we can choose a Cauchy
sequence

{ fn}
∞

n=1 ⊂ C∞c (G(F)//K )

converging to f in S p(G(F)//K ). In particular, limn→∞ f̃n = f̃ pointwise on a∗1.
Now the inclusion

S p(G(F)//K )→ L1(G(F)//K )

is continuous. Since J (λ) is unitary, the fact that limn→∞ fn = f in L1(G(F))
implies that

lim
n→∞

tr J (λ)( fn)= tr J (λ)( f ).

Thus
f̃ (−λ)= lim

n→∞
f̃n(−λ)= lim

n→∞
tr J (λ)( fn)= tr J (λ)( f ). �
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4. Proof of Theorem 1.1

Recall that we have normalized r : Ĝ→GLn so that it induces a morphism r : T̂→ T̂n

and used it to construct a dual morphism,

r∨ : Tn→ T .

There are natural isomorphisms

Tn(F)/Mn ∼= X∗(Tn)⊗Z R=: an,

and T (F)/M ∼= a, so r∨ induces an R-linear map,

r∨ : an := Tn(F)/Mn→ T (F)/M =: a.

It is surjective, as the complexification of its dual is

r : a∗C→ a∗nC,

which is injective since we assumed r has zero-dimensional kernel. Recall the
group W ′ of Section 2. It acts naturally on a, an , a∗

C
, a∗nC

and the maps r and r∨

are W ′ equivariant (see Section 2). We therefore obtain a push-forward map,

r∨
∗
: C∞c (Tn(F)/Mn)

W ′
→ C∞c (T (F)/M)W

′

= C∞c (T (F)/M)W.(4-1)

We define

C∞c (G(F)//K , r) :=
{

f ∈C∞c (G(F)//K ) : f (B)∈ r∨
∗
(C∞c (Tn(F)/Mn)

W ′)
}
.(4-2)

Let dω∈a∗ be the point corresponding toω∨. In this section we prove Theorem 4.1.
It obviously implies Theorem 1.1; it is simply a version of Theorem 1.1 that makes
explicit how large Re(s) must be in terms of the representation r .

Theorem 4.1. Let f ∈ C∞c (G(F)//K , r) and 0< p ≤ 1. There is a function,

Fr,ψ( f ) ∈ C∞(G(F)//K ),

such that

(a) Fr,ψ( f )ωs ∈ S p(G(F)//K ) provided that Re(a∗p)+Re(s)dω ⊂ a∗
+

, and

(b) if π is unitary and irreducible then

γ (s, π, r, ψ) trπs( f )= trπ∨1−s(Fr,ψ( f ))(4-3)

in the sense of analytic continuation.

Now we give a diagram that outlines the construction of Fr,ψ( f ) from f . Let
s0 > 0 be large enough that Re(a∗p)+ s0dω ⊂ a∗

+
. Let S(a∗p)(−s0) (respectively,

S(a∗p)(−s0)
W ) denote the space of functions of the form

a∗p + s0dω→ C, λ 7→ f̃ (λ− s0dω)
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for some f̃ ∈ S(a∗p) (respectively, S(a∗p)W ). We note that ω is fixed by W, so
this space admits an action of W, and S(a∗p)W (−s0)= S(a∗p)(−s0)

W. Moreover,
(3-4-1) induces an isomorphism

S p(G(F)//K )ω−s0 −→
∼ S(a∗p)(−s0)

W , f ˜7−→ 1pt f̃ (λ),

where the C-vector space on the left is the space of functions of the form f ω−s0

for f ∈ S p(G(F)//K ). We will construct Fr,ψ( f ) so that the following diagram
commutes:

C∞c (Tn(F)/Mn)
W ′ S(tn(F)/Mn)

W ′

C∞c (T (F)/M)W S(a∗p)(−s0)
W

C∞c (G(F)//K ) S p(G(F)//K )ω−s0

̂
r∨∗ 9 7→9̃◦r

f 7→ f (B)

Fr,ψ

f 7→ f̃ (−λ)

Here the horizontal arrow marked ̂ is (4-7), which is just the Fourier transform
on Tn(F)⊂ tn(F) (the F-points of the Lie algebra of Tn). Moreover 9̃ is a Mellin
transform. The proof of Theorem 4.1 we now give amounts to filling in the details of
this diagram. The functional equation ultimately reduces to the familiar functional
equation of Tate zeta functions.

Before beginning the proof in earnest let us describe the map 9 7→ 9̃ ◦ r more
precisely and show that it is well defined. Let tn :=Lie(Tn) and denote by S(tn(F))
the usual Schwartz space. Assume that

9 ∈ S(tn(F)).
We then have that

9̃(λ) :=

∫
Tn(F)

e〈λ,HTn (t)〉9(t) dt(4-4)

is absolutely convergent and holomorphic if Re(λ) ∈ (a∗n)+. Here, as above, dt is
the Haar measure on Tn(F). In fact something stronger is true:

Lemma 4.2. For any polynomial P in the symmetric algebra of a∗n and any integer
n ≥ 0 the quantity

(‖λ‖+ 1)n
∣∣∣P( ∂

∂λ

)
9̃(λ)

∣∣∣
is bounded for Re(λ) in a fixed compact subset of (a∗n)+. Here ‖·‖ is any Hermitian
inner product on a∗nC

.

Proof. The lemma is a consequence of the following claim: for any f ∈ S(R), real
numbers 0< a < b, and nonnegative integers n, k one has

|s|n
∣∣∣∣ dk

dsk f̃ (s)
∣∣∣∣� f,a,b,n,k 1
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provided that a ≤ Re(s) ≤ b. Here f̃ (s) =
∫
∞

0 f (x)x s−1 dx is the usual Mellin
transform. To check this, let D := x d

dx . It is not difficult to see that xεDn(logk f )
is continuous on R>0 and in L1(R>0,

dx
x ) for any real number ε > 0, and thus the

Mellin transform (Dn(logk f ))∼ (σ + i t) is bounded as a function of t ∈ R for
a ≤ σ ≤ b. Thus ∣∣∣∣sn dk

dsk f̃ (s)
∣∣∣∣= |(Dn(logk f ))∼(s)|

is bounded for a ≤ Re(s)≤ b. �

Corollary 4.3. Suppose that s0 ∈R>0 is large enough that a∗p+s0dω ⊂ a∗
+

and that
9 ∈ S(tn(F)/Mn). Then the function

λ 7→ 9̃(r(λ))

is in S(a∗p)(−s0).

Proof. By assumption and the definition (3-1-1) of a+ one has r(a∗p+s0dω)⊂ (a∗n)+.
Therefore the corollary follows from Lemma 4.2 and the injectivity of the map
r : a∗

C
→ a∗nC

. �

The corollary implies that the map 9 7→ 9̃ ◦ r in the top right of the diagram is
well defined for s0 large enough.

We now begin the proof of Theorem 4.1. Let π be a given spherical unitary
irreducible representation of G(F). Thus there is a quasicharacter

χ : T (F)/M→ C×

so that π ∼= J (χ). Let f ∈ C∞c (G(F)//K , r). We will trace J (χ) and f along the
upper path from C∞c (G(F)//K ) to S p(G(F)//K )ω−s0 in the diagram. Lemma 3.2
implies that

tr J (χ)( f )= χ( f (B)).(4-5)

We choose a 8 ∈ C∞c (Tn(F)/Mn)
W ′ so that the push-forward r∨

∗
(8) is f (B).

Thus

tr J (χ)s( f )= χωs( f (B))= χωs(r∨∗ (8))= r(χ)|det|s(8).(4-6)

We are now at the top row of the diagram. The usual embedding GLn ↪→ gln
of algebraic monoids induces an embedding Tn ↪→ tn where tn := Lie(Tn). We can
therefore regard an element of C∞c (Tn(F)) as an element of C∞c (tn(F)). The pairing

tn(F)× tn(F)→ C, (X, Y ) 7→ ψ(tr(XY ))

is perfect. For t ∈ Tn(F) let

(4-7) 8̂(t)=
∫
tn(F)

8(x)ψ(tr(t x)) dx;
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it is just the Fourier transform. We then have

γ (s, J (r(χ)), ψ)r(χ)|det|s(8)= r(χ−1)|det|1−s(8̂)(4-8)

by the local functional equation of Tate’s thesis [1979, (3.2.1)]. Here the left-hand
side is meromorphic as a function of s, and

tr r(χ−1)|det|1−s(8̂)

is absolutely convergent for Re(s) sufficiently small in a sense depending on χ .
We are now at the upper right corner of the diagram. The representation

J (χ) is unitary, but χ need not be. However, there is a µ ∈ a∗
C

whose real
part lies in the closed convex hull of W · ρ in a∗ such that χ(t) = e〈µ,HT (t)〉 by
[Knapp 1986, p. 654]. In particular, since 0< p ≤ 1, one has µ ∈ a∗p. Then

r(χ−1)= e〈r(−µ),HT 〉.(4-9)

Combining this notation with (4-6) and (4-8) we arrive at

γ (s, J (r(χ)), ψ) tr J (χ)s( f )= γ (s, J (r(χ)), ψ)r(χ)|det|s(8)(4-10)

= r(χ−1)|det|1−s(8̂)

= 8̂∼(r(−µ+ (1− s)dω)).

Now λ 7→ 8̂∼(r(λ)) is in S(a∗p)(−s0) for s0 sufficiently large by Corollary 4.3.
Thus there is a unique h ∈ S p(G(F)//K ) so that for all λ ∈ a∗p one has

ĥ(−λ)= 8̂∼(r(λ+ s0dω))

by (3-4-1). In particular, if λ is chosen so that J (λ) is spherical and unitary then

tr J (λ)(h)= 8̂∼(r(λ+ s0dω))(4-11)

by Lemma 3.2. Set
Fr,ψ( f ) := hω−s0 .

By construction, h ∈ S p(G(F)//K ). We have now successfully traversed along the
upper path from C∞c (G(F)//K ) to S p(G(F)//K )ω−s0 in our diagram.

Combining (4-10) and (4-11) we deduce that (with µ as in (4-9)),

γ (s, J (χ), r, ψ) tr J (χ)s( f )= 8̂∼(r(−µ+ (1− s)dω))(4-12)

= Fr,ψ( f )∼(−µ+ (1− s)dω)

= tr J (χ)∨1−s(Fr,ψ( f )).

This completes the proof of the theorem. �
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5. A global application

Let F be a number field and let∞ be the set of infinite places of F. Let G=GLm for
some integer m. It is not strictly necessary to take G =GLm for what follows, but it
makes the discussion simpler. We also restrict ourselves to everywhere unramified
representations. We assume ω = det : G→ Gm .

Remark. We have already discussed how one might remove the unramified as-
sumption at the archimedean places in the introduction. To treat representations
that are ramified at finite places one would have to define nonarchimedean Fourier
transforms and give some analytic control on them similar to the control afforded
in the archimedean setting by Theorem 1.1. More specifically, one would need to
show that a twist of them by ωs is L1 for Re(s) sufficiently large. For G =GLm one
can define these nonarchimedean Fourier transforms spectrally using the Plancherel
formula since the local Langlands correspondence is known. This is the approach
of [Lafforgue 2014], where the analytic control is not established. Cheng and Ngô’s
approach [2017], if it is generalized from the finite field case to the local field case,
may also yield the desired Fourier transforms.

We retain the obvious analogues of the notation above in this global setting;
for example T ≤ GLm is a maximal split torus which we take to be the diagonal
matrices for simplicity. For v -∞ let

S : C∞c (G(Fv)//G(OFv ))→ C[T̂ ]W(5-1)

be the Satake isomorphism. Let

r : Ĝ→ GLm

be an irreducible representation. Let A∞F denote the ring of finite adeles of F and let

Lr :=
∏
v-∞

Lr,v ∈ C∞ac (G(A
∞

F )//G(ÔF )),

where

Lr,v :=

∞∑
k=0

S−1(tr Symk(r(t))
)
∈ C∞ac (G(Fv)//G(OFv ))

with t ∈ T̂ (C). Here the subscript “ac” denotes the space of functions that are almost
compactly supported, in other words, when restricted to a subset of G(A∞F ) with
determinant lying in a compact subset of (A∞F )

× they are compactly supported (and
similarly in the local setting). Then if π∞ is an irreducible unramified admissible
representation of G(A∞F ) one has

trπ∞s (Lr )= L(s, π∞, r)(5-2)

for Re(s) large enough. Here π∞s := π
∞(|ω|∞)s/N.
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Let A be the connected component of the real points of the maximal Q-split
torus in the center of ResF/Q G and

G(AF )
1
:= ker(|·|AF ◦ det : G(AF )→ R>0).

Langlands [2004] proposed a method to prove Langlands functoriality in general
via the trace formula. His point of departure was that for f̄ ∈ C∞c (A \G(AF∞))

one can use the trace formula to provide an absolutely convergent expression for

(5-3)
∑
π

trπ∞( f̄ )π∞s (Lr )

for Re(s) large. Here the sum over π is over cuspidal automorphic representa-
tions of A \G(AF ). We note that the sum here is infinite, but since trπ∞s (Lr ) is
bounded independently of s and π for Re(s) sufficiently large (compare the proof of
Corollary 5.1 below) and the regular action of any element of C∞c (A\G(AF )) on the
cuspidal spectrum is trace class, the sum is absolutely convergent. Strictly speaking,
Langlands used logarithmic derivatives of L-functions. Sarnak [2001] proposed the
current formulation because it appears to be more tractable analytically.

One can then hope to use the trace formula to give an expression for

(5-4)
∑
π

Ress=1 trπ∞( f̄ )L(s, π∞, r)

in terms of orbital integrals (and automorphic representations on Levi subgroups).
The residues ought to be nonzero for representations whose L-parameter, upon
composition with r , fixes a vector in V. These ought to be transfers from smaller
groups, and one hopes to compare the sum of residues (5-4) with corresponding
sums on smaller groups. Since every algebraic subgroup of Ĝ is the fixed points of
a line in some representation of Ĝ by a theorem of Chevalley, in principle executing
this approach would lead to a proof of functoriality in general.

However, Langlands gave no absolutely convergent geometric expression for
(5-4) nor any indication of how to obtain one, even assuming Langlands functoriality.
In practice this seems to be an extremely difficult analytic hurdle that has only been
overcome in a handful of cases [Altuğ 2015; Getz 2016; Getz and Herman 2015;
Herman 2011; Venkatesh 2004; White 2014] that are essentially those isolated as
tractable by Sarnak in his letter [2001].

In this section we use Theorem 1.1 and work of Finis, Lapid, and Müller to give
an absolutely convergent expression in terms of orbital integrals and automorphic
representations of Levi subgroups that is equal to (5-4) if one assumes Langlands
functoriality (what we need is given precisely in Conjecture 5.3 below). We em-
phasize that the expression makes sense without any assumption in place, so one
could try to use it to study Langlands’ beyond endoscopy proposal. At the very
least it allows us to replace (5-4) with a quantity which is well defined without any
assumptions.
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Remark. For some time Ngô has advocated combining Braverman and Kazhdan’s
proposal [2000] with the trace formula to prove functional equations of L-functions.
The author first learned of this idea from Ngô at IAS in 2010, and Ngô has given a
progress report on his perspective at the 2016 Takagi lectures. The construction we
now propose, which is due to the author, amounts to understanding the residues that
occur when one follows Ngô’s suggestion. In particular one can give an absolutely
convergent expression for the sum of residues that is the focus of Langlands’ beyond
endoscopy proposal.

For a compact open subgroup K ≤ G(A∞F ), let

C(G(AF ), K )= { f : G(AF )/K → C : | f ∗ X |L1(G(AF )) <∞ for all X ∈U (gC)}.

Here g is the Lie algebra of
G(AF∞)

(viewed as a real Lie algebra) and U (gC) is its universal enveloping algebra. This
is the space of test functions treated in [Finis et al. 2011; Finis and Lapid 2011].
A slightly different space of test functions (called C(G(AF )

1, K )) is considered in
[Finis and Lapid 2016]. In any case, the main result of these papers is that Arthur’s
noninvariant trace formula is valid for functions in C(G(AF ), K ).

Let K∞ ≤ G(AF∞) be a maximal compact subgroup and let

f ∈ ⊗v|∞C∞c (G(Fv)//Kv, r);

see (4-2). Let Fr,ψ( f ) : G(AF∞)→ C be its nonabelian Fourier transform. For
g ∈ G(AF ) and s ∈ C we set

f Lrωs(g) := f ωs∞(g∞)Lrωs(g∞),

Fr,ψ( f )Lrωs(g) := Fr,ψ( f )ωs∞(g∞)Lrω
∞

s (g
∞).

Fix a nontrivial additive character ψ : F \AF → C× and choose d ∈ A×F such that
ψ∞(d ·) is unramified and d∞ ∈ AGm , the copy of R>0 embedded diagonally in
F×
∞

. We assume, moreover, that ωs(d N Im)= |d∞|ns. Choose σ ∈ R and let

f1(g)= f Lrωσ ,

f2(g)= |d∞|−nFr,ψ( f )Lrωσ (d N Im g).

The role of the d here is explained by Conjecture 5.3 below.
The key consequence of Theorem 4.1 we use here is the following corollary:

Corollary 5.1. If σ is sufficiently large then f1, f2 ∈ C(G(AF ),G(ÔF )).

Proof. For σ sufficiently large one has

(5-5)
∫

G(A∞F )
|Lr (g)|ωσ (g)dg <∞
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by [Li 2017, Proposition 3.11]. Combining this with Theorem 4.1 we immediately
deduce the corollary. �

For a G(F)-conjugacy class o in G(F) and an h ∈ C(G(AF ), K ) Finis and Lapid
[2016] have shown that one can define the noninvariant orbital integral Jo(h).
Technically speaking they work with a slightly coarser notion than conjugacy, but
it reduces to conjugacy for the case at hand since we have assumed G is a general
linear group.

Together with Müller [Finis et al. 2011], they have also shown that for functions
in the same space one can define a trace∫

ia∗Ls

tr(ML(P, λ)M(P, s)ρ(P, λ, h))dλ(5-6)

that is again absolutely convergent. Unfortunately, it would take several pages to
define the notation used in (5-6); we refer the reader to [Finis et al. 2011, Corollary 1]
and the discussion preceding it. This is the contribution of the Levi subgroup Ls to
the trace formula.

Call a parabolic subgroup of G standard if it contains T. For each standard
parabolic subgroup P , let MP be the unique Levi subgroup of P containing T. For
a cuspidal automorphic representation π of A \G(AF ), let

πs := π |ω|
s/N.

The transfer r(π) of π to GLn(AF ) is an irreducible admissible representation
(which of course, we do not yet know to be automorphic). We let ωr(π) be its central
character.

Using Corollary 5.1 we can now apply the work of Finis, Lapid and Müller to
prove the following theorem:

Theorem 5.2. Consider

(5-7)
∑
π

(
1

2π i

∫
Re(s)=σ

(
trπs( f Lr )−

|d∞|n(s−1)

ωr(π)(d∞)
tr(π∨)s(Fr,ψ( f )Lr )

)
ds
)

where the sums are over isomorphism classes of cuspidal automorphic representa-
tions of A \G(AF ). It is equal to

(5-8)
∑
o

Jo( f1− f2)

−

∑
[P]6=G

1
|W (MP)|

∑
s∈W (MP )

ιs

∫
iaLs

tr(ML(P,λ)M(P,s)ρ(P,λ, f1− f2)dλ,

where the sum over o is over conjugacy classes in G(F), the sum over [P] is over
associate classes of standard proper parabolic subgroups of G, W (MP) is the Weyl
group of MP in G, and ιs is the normalizing factor of [Finis et al. 2011, Corollary 1].
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Moreover for each i and each [P] and s,∑
o

|Jo( fi )|<∞ and
∫

iaLs

|tr(ML(P, λ)M(P, s)ρ(P, λ, fi )|dλ <∞.

Remark. The sum over [P] and s above is finite.

Proof. Let h ∈ C(G(AF ),G(ÔF )). In [Finis et al. 2011; Finis and Lapid 2016] the
authors extended the Arthur–Selberg trace formula to obtain the equality

(5-9)
∑
o

Jo(h)=
∑
[P]

1
|W (MP)|

∑
s∈W (MP )

ιs

∫
iaLs

tr(ML(P,λ)M(P,s)ρ(P,λ,h)dλ

together with the absolute convergence of the sum over o and the integral over iaLs .
Here the sum is over all association classes of standard parabolic subgroups of G,
including G itself. Thus the absolute convergence statements in the theorem follow.

Provided that the measure on A is chosen appropriately, the contribution of
[P] = G to the spectral side of (5-9) here is just∑

π

1
2π i

∫
Re(s)=0

trπs(h)ds,

where the sum is over isomorphism classes of cuspidal automorphic representations
of A \G(AF ). Thus, pulling the contribution of the [P] = G summand to one side,
we see that the quantity (5-8) is equal to∑

π

1
2π i

∫
Re(s)=0

(trπs( f1)− trπ∨s ( f2)) ds,(5-10)

where the sums are over isomorphism classes of cuspidal automorphic represen-
tations of A \G(AF ). We now note that ωr(π)(aIn)= ωπ (aN Im). It follows from
this and our choice of d that (5-10) is equal to (5-7), proving the theorem. �

In the remaining pages of this paper we prove that (5-7) is equal to (5-4), assuming
a special case of Langlands’ functoriality. Before we do this we emphasize again that
it makes perfect sense to study (5-7) using (5-8) without assuming any conjecture,
and we hope that some progress towards the conjecture we are about to state can
be made by proceeding in this manner.

Here is the conjecture we will invoke:

Conjecture 5.3 (Langlands). Let ψ : F \AF → C× be a nontrivial character, and
choose d∞ ∈ A∞×F such that x 7→ ψ(d∞x) is unramified at every finite place. For
each everywhere unramified cuspidal automorphic representation π of G(AF )

1, the
function

L(s, π∞, r)

admits a meromorphic continuation to the plane, holomorphic except for a possible
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pole at s = 1. It satisfies the functional equation

L(s, π∞, r)= ωr(π)(d∞)−1
|d∞|n(1−s)γ (s, π∞, r, ψ∞)L(1− s, π∞∨, r).

In stating the conjecture in this manner, we are using the fact that

ε(s, π∞, r, ψ∞) := ε(s, r(π∞), ψ∞)

=ωr(π)(d∞)−1
|d∞|n(1−s)ε(s, r(π∞), ψ∞(d∞·))

=ωr(π)(d∞)−1
|d∞|n(1−s)

(compare [Tate 1979, (3.2.3)]), where r(π∞) is the transfer of π∞ to GLm(A
∞

F ). It
is known to exist as an admissible representation.

Theorem 5.4. If Conjecture 5.3 is true for all unramified cuspidal automorphic
representations of A \G(AF ) then (5-7) is equal to the absolutely convergent sum∑

π

Ress=1 trπ∞s( f )L(s, π∞, r).(5-11)

Remark. We remark that the proof of Theorem 5.4 requires Theorem 1.1 in partic-
ular at the archimedean places; working outside a finite set of places including the
archimedean ones where one can assume an unramified functional equation is not
enough.

For an admissible irreducible representation π of G(AF ), let C(π,Re(s)) be its
analytic conductor as defined by Iwaniec and Sarnak ([Brumley 2006, §1] is a nice
reference). We have the following corollary of Conjecture 5.3:

Corollary 5.5. Assume Conjecture 5.3 for the unramified cuspidal automorphic
representation π . For any real numbers A < B and A ≤ Re(s) ≤ B one has an
estimate

(s− 1)ords=1 L(s,π∞,r)L(s, π∞, r)�A,B,M C(π, Im(s))M

for some M > 0.

Proof. Notice that
C(r(π), Im(s))�N C(π, Im(s))N

for some integer N depending only on r . Thus, since we are assuming Conjecture 5.3,
to prove the corollary it suffices to prove that

(s− 1)ords=1 L(s,π∞,r)L(s, π∞, r)�A,B,M C(r(π), Im(s))M .

This is a standard preconvexity estimate; see, e.g., [Brumley 2006, (10)]. �

Proof of Theorem 5.4. Since f ∈ C∞c (G(F∞)), the trace trπ∞s( f ) is entire as
a function of s. We also note that if A ≤ Re(s) ≤ B then trπ∞s( f ) is rapidly
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decreasing as a function of C(π, Im(s)); see [Getz 2012, Lemma 4.4]. Thus for σ
sufficiently large ∑

π

∫
Re(s)=σ

∣∣trπs( f Lr )
∣∣ ds <∞.(5-12)

Applying Corollary 5.5 we see that (5-11) also converges absolutely.
Now consider∑

π

1
2π i

∫
Re(s)=σ

|d∞|n(s−1)

ωr(π)(d∞)
tr(π∨)s(Fr,ψ( f )Lr ) ds.

By Theorem 4.1 and Conjecture 5.3 this is equal to

(5-13)
∑
π

1
2π i

∫
Re(s)=σ

|d∞|n(s−1)

ωr(π)(d∞)
γ (1−s,π∞,r,ψ) trπ∞1−s( f ) tr(π∞∨)s(Lr )ds

=

∑
π

1
2π i

∫
Re(s)=σ

trπ∞1−s( f )L(1−s,π∞,r)ds

=

∑
π

1
2π i

∫
Re(s)=1−σ

trπ∞s( f )L(s,π∞,r)ds.

Applying Corollary 5.5 and (5-12) we deduce that this converges absolutely. We
now shift the contour in (5-13) to the line Re(s)= σ , picking up the contribution
of (5-11) from the poles at s = 1, and deduce the theorem. �
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ENTROPY OF EMBEDDED SURFACES
IN QUASI-FUCHSIAN MANIFOLDS

OLIVIER GLORIEUX

We compare critical exponents for quasi-Fuchsian groups acting on the hy-
perbolic 3-space and entropy of invariant disks embedded in H3. We give
a rigidity theorem for all embedded surfaces when the action is Fuchsian
and a rigidity theorem for negatively curved surfaces when the action is
quasi-Fuchsian.

1. Introduction

The aim of this paper is to compare two geometric invariants of Riemannian
manifolds: critical exponent and volume entropy. The first one is defined through
the action of the fundamental group on the universal cover, the second one is defined
for compact manifolds as the exponential growth rate of the volume of balls in the
universal cover. These two invariants have been studied in many cases; we pursue
this study for quasi-Fuchsian manifolds.

Let 0 be a group acting on a simply connected Riemannian manifold (X, g). If
the action on X is discrete we define the critical exponent by

(1) δ(0) := lim sup
R→∞

1
R

Card{γ ∈ 0 | d(γ · o, o)≤ R},

where o is any point in X. It does not depend on this particular base point thanks to
triangle inequality. If we want to insist on the space on which 0 acts we will write
δ(0, X).

The volume entropy h(g) of a Riemannian compact manifold (6, g) is defined by

(2) h(g) := lim
R→∞

log Volg(Bg(o, R))
R

,

where Bg(o, R) is the ball of radius R and center o in the universal cover of 6. We
will also use the notation h(X) for the exponential growth rate of ball volumes in a
a simply connected manifold X .

It is a classical fact, using a simple volume argument that the volume entropy
coincides with the critical exponent of π1(6) acting on 6̃. Moreover, a famous
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theorem of G. Besson, G. Courtois and S. Gallot [Besson et al. 1995] said that
the entropy allows us to distinguish the hyperbolic metric in the set of all metrics,
Met(6). Note that entropy is sensitive to homothetic transformations: for any λ> 0
we have h(λ2g) = 1

λ
h(g). Assume that 6 admits a hyperbolic metric g0 and let

Met0(6) be the set of metrics on 6 whose volume is equal to Vol(6, g0), then the
theorem of Besson, Courtois, and Gallot says that for all g ∈Met0(6)

(3) h(g)≥ h(g0),

with equality if and only if g = g0.
Our aim is to study the behavior of the volume entropy for a subset of all

the metrics on a surface. This subset is the metrics induced by an incompressible
embedding into quasi-Fuchsian manifolds. It has not the cone structure of Met(6): it
is not invariant by all homothetic transformations. Hence we will look at the behavior
of h(g) without normalization by the volume.

Let S be a compact surface of genus g ≥ 2 and 0 = π1(S) its fundamental group.
A Fuchsian representation of 0 is a faithful and discrete representation in PSL2(R).
A quasi-Fuchsian representation is a perturbation of Fuchsian representation in
PSL2(C). More precisely it is a discrete and faithful representation of 0 into
Isom(H3) such that the limit set on ∂H3 is a Jordan curve. A celebrated theorem
of R. Bowen [1979] asserts that for quasi-Fuchsian representations, the critical
exponent is minimal and equal to 1 if and only if the representation is Fuchsian.

We choose an isometric, totally geodesic embedding of H2 in H3 (the equatorial
plane in the ball model for example). This embedding gives an inclusion i :
Isom(H2)→ Isom(H3).

Let ρ be a Fuchsian representation of 0. The group 0 acts naturally on H2 and
H3 by ρ and i ◦ ρ, respectively. For every point o ∈ H2 we have

dH3(i ◦ ρ(γ )o, o)= dH2(ρ(γ )o, o),

since H2 is totally geodesic in H3. The critical exponents for these two actions of 0
are then equal

δ(0,H3)= δ(0,H2)= 1.

In light of this trivial example, two questions rise up. What is the entropy of a
0-invariant disk which is not totally geodesic? What happens when we modify the
Fuchsian representation in PSL2(C)?

We will answer the first question. Since ρ is a Fuchsian representation, the
critical exponent of 0 acting on H3 through i ◦ ρ is 1, and we have the following:

Theorem 1.1. Suppose 0 is Fuchsian. Let 6 be a 0-invariant disk embedded in H3.
We have

(4) h(6)≤ δ(0,H3),



ENTROPY OF EMBEDDED SURFACES IN QUASI-FUCHSIAN MANIFOLDS 377

with equality if and only if 6 is the totally geodesic hyperbolic plane preserved
by 0.

Note that δ(0,H3)=h(6, g0), hence the last theorem can be rewritten as follows:

Theorem 1.2. For all metrics g obtained as induced metrics by an incompressible
embedding in a Fuchsian manifold we have

(5) h(g)≤ h(g0)

with equality if and only if g = g0.

We did not renormalize by the volume; this explains the dichotomy between (3)
and (5).

We will prove this theorem in the next section. The inequality is trivial since
the induced distance between two points is always greater than the distance in H3:
d6 ≥ dH3 , but the rigidity is not. We have no geometrical (curvature) hypothesis
on 6, therefore it is not obvious at all to show that the inequality is strict as
soon as 6 is not totally geodesic. Indeed we cannot use the “usual” techniques
of negative curvature like Bowen–Margulis measure, or even the uniqueness of
geodesic between two points.

We obtain an answer to the second question under a geometrical hypothesis on
the curvature:

Theorem 1.3. Let 0 be a quasi-Fuchsian group and 6 ⊂ H3 a 0-invariant em-
bedded disk. We suppose that 6 endowed with the induced metric has negative
curvature. We then have

h(6)≤ I (6,H3)δ(0,H3),

where I (6,H3) is the geodesic intersection between 6 and H3. Moreover, equality
occurs if and only if the length spectrum of 6/0 is proportional to that of H3/0.

The geodesic intersection will be defined in Section 3A. Roughly, it is the average
ratio of the length between two points of 6 for the extrinsic and intrinsic distance.
We need the curvature assumption to define and use this invariant.

This theorem implies Theorem 1.1 only for negatively curved embedded disks
but not in its full generality. Indeed, when 0 is Fuchsian, and 6/0 has the same
length spectrum as H3/0 it follows directly by the work of J-P. Otal [1990] that
6 = H2/0. However, using the fact that 6 is embedded in H3 we will be able to
prove without the Fuchsian hypothesis that if the two marked length spectra are
equal then 6 is totally geodesic, and therefore we obtain the following corollary of
Theorem 1.3:

Corollary 1.4. Under the assumptions of Theorem 1.3 we have
h(6)≤ δ(0,H3),

with equality if and only if 0 is fuchsian and 6 is the totally geodesic hyperbolic
plane, preserved by 0.
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The proof of this corollary raises the following question generalizing this result:
if a quasi-Fuchsian manifold has the same length spectrum as a negatively curved
surface, does it imply that it is in fact Fuchsian? We answer this question using a
well-known result of Y. Benoist, showing the following theorem:

Theorem 1.5. Let M be a quasi-Fuchsian manifold and 6 a hyperbolic (in the
sense that it has constant curvature −1) surface. Suppose that M and 6 have
proportional length spectrum (i.e., there exists k ∈ R+ such that for all γ ∈ 0,
`M(γ ) = k`6(γ )), then M is Fuchsian and 6 is isometric to the totally geodesic
surface in M.

Theorem 1.3 has to be compared to results obtained by G. Knieper who com-
pared entropy for two different metrics on the same manifolds, and our proof of
Theorem 1.3 follows his paper [Knieper 1995]. As in his paper, we obtain that the
intersection is larger than 1 as soon as 0 is not Fuchsian.

The theorem is also related to the work of M. Bridgeman and E. Taylor [2000];
indeed, we answer in the negative Question 2 of their paper. And finally, we can
see our work as an extension of U. Hamenstadt’s [2002], where she compared
the geodesic intersection between the boundary of convex hulls and H3 for quasi-
Fuchsian manifolds.

As we said, the two proofs are very different from one another. For the Fuchsian
case, we give precise estimates for the length of some paths of the hyperbolic plane.
We show that in some sense the length between two points on 6 is much greater
than the extrinsic distance between those two points. For quasi-Fuchsian manifolds,
we use well-known techniques of negative curvature geometry: we compare the
Patterson–Sullivan measures for H3 and for 6.

2. Fuchsian case

In this section we are going to prove Theorem 1.1. This theorem has a strong
condition on 0, i.e., it is conjugate to a subgroup of PSL2(R) but we make no
geometrical assumptions on 6. As we said, there could be more than one geodesic
between two points on 6.

We already remarked that the inequality is trivial, as is the equality when 6 is
totally geodesic. Therefore, the only thing left to prove is the strict inequality when
6 is not totally geodesic or in other words if 6 6= H2 then h(6) < 1.

The proof of the theorem is based on the comparison between the distances
on equidistant surfaces of the totally geodesic 0-invariant hyperbolic plane. We
are going to prove several lemmas which together give Theorem 1.1. The strict
inequality follows directly from Lemmas 2.2 and 2.8. We denote by D the totally
geodesic, 0-invariant plane. The induced metric on D is the usual hyperbolic metric,
and we will denote it by H2. We are first going to see that between all the equidistant
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surfaces, H2 has the biggest entropy. Then we will make this argument work when
only one part of the surface is “above” D. The idea to prove it, is to consider another
distance dm on D, which will be used as an intermediary between 6 and H2. We
will explain, after the definition of dm , how the two comparisons will be proved.

Let us begin to parametrize H3 by H2
× R as follows: take an orientation

for the unit normal tangent space of H2, then to a point x ∈ H3 we associate
s(x) the orthogonal projection from H3 to H2. This is the first parameter of the
parametrization. The oriented distance along this geodesic gives the second one.
Hence the parametrization, called Fermi coordinates, is defined by

H3
7→ H2

×R, z→ (s(z), d̂(z, s(z))),

where d̂ is the oriented distance defined by the choice of the orientation on the unit
normal tangent of H2. With this parametrization, the metric on H3 is

gH3 = cosh2(r)g0+ dr2.

Look at S(r) the equidistant disk at distance r of H2; its metric, induced by the
one on H3, is gr = cosh2(r)g0. It is isometric to a hyperbolic plane of curvature
1/cosh(r), and its volume entropy is h(S(r))= h(0)/cosh(r)= 1/cosh(r), hence
the entropy is maximal if and only if r = 0. For the general case, we are going to
refine this argument showing that it is sufficient that a small part of 6 is over H2

for the entropy to be strictly less than 1.
Let 6 be a embedded 0-invariant disk in H3. We assume that 6 6= D, and

we endow 6 with its induced metric. Let x, y be two points on 6. Let c6 be a
geodesic on 6 linking x to y. We parametrize c6 by its Fermi coordinates, (c, r).
We then have

d6(x, y)=
∫ L

0
‖c′6(t)‖6 dt

=

∫ L

0

√
r ′(t)2+ cosh2(r(t))‖c′(t)‖2g0

dt.(6)

≥

∫ L

0
cosh(r(t))‖c′(t)‖g0 dt.

We now endow D with a different distance to the one coming from hyperbolic metric.
It will play the role of intermediary to compare d6(x, y) on 6 with dg0(s(x), s(y))
on H2.

We call σ the restriction of s on 6. Since 6 6= D, there exist x0 ∈ D \6, ε > 0
and η > 0 such that

dH3(σ−1 B(x0, 2ε),D) > η.

This means that all the points in the pre-image of B(x0, 2ε) by σ are at distance
greater than η from D. We will assume that 2ε is smaller than the injectivity radius
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of H2/0 so that the translations of B(x0, 2ε) by 0 are disjoint. We have taken 2ε
in order to simplify the proof of Lemma 2.4.

We now consider on D the metric gm defined by putting weight on the translations
of B(x0, 2ε) by 0.

Definition 2.1. We define gm by

gm :=

{
cosh(η)2g0 on 0 · B(x0, 2ε),

g0 elsewhere.

We will index by m objects which depend on this metric. Note that this metric is
not continuous but it still defines a length space. Let c : [0, 1] → D be a C1 path,
we then have

`m(c)=
∫ 1

0
‖ċ(t)‖gm dt.

This gives a distance dm on D by choosing

dm(x, y) := inf
c
{`m(c) | c(0)= x, c(1)= y}.

In order to prove Theorem 1.1 we will compare the entropy of (D, dm) with
the one of 6 and the one of H2. The comparison with the entropy of 6 is quite
easy and follows quickly from the definition of dm and the inequality (6). The
comparison with the entropy of H2 is more subtle. Indeed, there exist geodesics
of H2 which are geodesics for (D, dm) (any lift of a closed geodesic which does
not cross the ball B(x0, 2ε)/0) on H2/0). We will first prove that two points of D

which are joined by a geodesic of H2 which often crosses 0 · B(x0, 2ε) are much
farther away from each other for dm distance, see Lemma 2.4. Then, we will use a
large deviation theorem for the geodesic flow (Theorem 2.6), to show that there are
few geodesics which do not cross 0 · B(x0, 2ε) (Lemma 2.7). It will follow from
these two results that the balls of radius R for dm are almost completely included
in balls of radius R/C of H2 for C > 1 (Lemma 2.8). The two comparisons give
the proof of Theorem 1.1.

The comparison between h(6) and the critical exponent of (D, dm) follows from
the inequality (6) and the definition of dm .

Lemma 2.2. We have
h(6)≤ δ((D, dm)).

Proof. Let x ∈6 and o= σ(x) ∈ D. Since 6/0 is compact, we have

h(6)= lim
R→∞

1
R

log Card{γ ∈ 0 | d6(γ x, x)≤ R}.

And by definition

δ((D, dm))= lim
R→∞

1
R

log Card{γ ∈ 0 | dm(γ o, o)≤ R}.
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It is sufficient to prove that d6(x, y) ≥ dm(s(x), s(y)), for all x, y ∈ 6. Let
c6 = (c, r) be a geodesic on 6 joining x to y. Recall that we have

d6(x, y)≥
∫ L

0
cosh(r(t))‖c′(t)‖g0 dt.

If c(t) /∈ 0 · B(x0, 2ε), then ‖c′(t)‖gm = ‖c
′(t)‖g0 . In particular,

‖c′(t)‖gm ≤ cosh(r(t))‖c′(t)‖g0 .

If c(t) ∈ 0 · B(x0, 2ε), then by definition of gm , ‖c′(t)‖gm = cosh(η)‖c′(t)‖g0 and
since 6 is “far” from D, r(t) > η. In particular,

‖c′(t)‖gm ≤ cosh(r(t))‖c′(t)‖g0 .

Finally,

d6(x, y)≥
∫ L

0
‖c′(t)‖gm dt

≥ lm(c)

≥ dm(s(x), s(y)). �

Our next aim is to compare the distances dm and dH2 . Let us fix some notations
before stating the first lemma. For all v ∈ T 1H2, let ζ vR be the probability measure
on T 1H2, defined for all Borel sets E ⊂ T 1H2 by

ζ vR(E)=
1
R

∫ R

0
χE(φ

H2

t (v)) dt,

where χE is the indicator function of E . For a Borel set E which is a unitary tangent
bundle of a subset of D, E := T 1 A, we have

ζ vR(E)=
1
R

Leb{t ∈ [0, R] | cv(t) ∈ A}

since φH2

t (v) ∈ E is equivalent to cv(t)= πφH2

t (v) ∈ A.
Let L be the Liouville measure on the unitary tangent bundle of the quotient

surface T 1H2/0. Recall that the metric gm is given by gm = cosh2(η)g0 on
T 10B(x0, 2ε). We fix K := T 1(0 · B(x0, ε)).1

Definition 2.3. Let κ > 0 be such L(K/0)− 2κ > 0. We define the sets

E(R) := {v ∈ T 1H2
| ζ vR(K ) > L(K/0)− κ},

and for all points o ∈ H2, we note

Eo(R) := {v ∈ T 1
o H2
| ζ vR(K ) > L(K/0)− κ}.

1We use a ball of half the size, for a technical reason that appears at the beginning of the proof of
Lemma 2.4.
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B(xi , ε)

v ∈ Eo(R)

v /∈ Eo(R)

•o

Figure 1. 0 · B(x0, ε), Eo(R) and Ec
o(R).

A geodesic of length R whose direction is given by a vector v ∈ E(R) crosses
πK “often”, that is, at least a number of times proportional to R; see Figure 1.
Indeed, if v ∈ E(R) we have

1
R

Leb{t ∈ [0, R] | c0(t)∩πK 6=∅}> L(K/0)− κ > κ > 0,

since ċ0(t) ∈ K is equivalent to c0(t) ∈ πK by definition of K .
The next argument is the key in the proof of Theorem 1.1. It shows that we can

compare the length of a geodesic in H2 which often crosses πK with its dm-length.

Lemma 2.4. There exists C > 1, such that for all R > 0, for all v ∈ Eo(R) and for
all x ∈ {exp(tv) | t ∈ [R, 2R]}, we have

(7) dm(o, x)≥ CdH2(o, x).

Proof. Let c0 be the geodesic for g0 and cm be a minimizing geodesic for gm

between o and x . Let d be the hyperbolic distance between o and x , d = dH2(o, x),
and we parametrize c0 by unit speed; we thus have c0(d) = x . Let N (R) be
the number of intersections between πK and c0([0, R]), that is N is the number
of connected components of c0([0, R]) ∩ πK . On one hand, all components of
c0([0, R])∩πK are inside balls of radius ε, hence c0 “stays” at most 2ε in each
components. On the other hand, the hypothesis v ∈ Eo(R), implies

1
R

Leb{t ∈ [0, R] | c0(t)∩πK 6=∅}> L(K/0)− κ = κ > 0.

These two facts imply that 2εN (R)≥ κR, that is to say,

(8) N (R)≥ κ

2ε
R.

For i ≤ N (R), let ti ∈ [0, d] such that c0(ti ) ∈ πK and c0[ti−1, ti ] \ πK is
connected: we just have chosen a point xi = c0(ti ) in each ball of πK crossing c0.
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•

•

xi = c0(ti ))c0

B(xi , ε)

B(γi x0, ε) B(γi x0, 2ε)

γi x0

Figure 2. c0 meets B(γi x0, ε). B(xi , ε)⊂ B(γi x0, 2ε).

There exists γi ∈ 0 such that xi ∈ B(γi x0, ε), hence B(xi , ε) ⊂ B(γi x0, 2ε) on
which the metric gm is gm = cosh2(η)g0. See Figure 2. Therefore the geodesic c0 is
divided into N (R) segments: [xi , xi+1], such that for every i we know that on the
ball B(xi , ε) the metric gm is given by gm = cosh2(η)g0. We want a lower bound
on dm(o, x), therefore we can estimate the length of cm with the metric given by
cosh2(η)g0 on the smaller balls B(xi , ε) ⊂ B(γi x0, 2ε) and g0 on the rest of the
plane.

We call yi the middle of [xi , xi+1]. We now restrict our attention to one segment
[yi , yi+1]. Let 0< a < 1 whose dependence on η will be made clear in the rest of
the proof. We are going to analyze two different cases.

Case 1: cm crosses B(xi , aε). Let 1i be the lines (geodesics in H2 ) orthogonal
to c0 and passing through yi . Let z1

i and z2
i be the end points of the diameter of

B(xi , ε) defined by z1
i = c0(ti−ε) and z2

i = c0(ti+ε), and call D1
i and D2

i the lines
orthogonal to c0 and passing through z1

i and z2
i . See Figure 3.

We want to consider the intersections between cm and the lines 1i , D1
i and D2

i .
There might be many intersections. We will call the first intersection of cm with a
line D the point cm(t f ) where t f := inf{t | cm(t) ∈ D}, and the last intersection of
cm with D the point cm(tl), where tl := sup{t | cm(t) ∈ D}.

Let A′i , B ′i and C ′i be the last intersections of cm with 1i , D1
i and D2

i , respec-
tively. Let Bi ,Ci and Ai+1 be the first intersections of cm with D1

i , D2
i and 1i+1,

respectively. This divides cm into five connected components:

[A′i , Bi ], [Bi , B ′i ], [B
′

i ,Ci ], [Ci ,C ′i ], [C
′

i , Ai+1].

Our work will be to give a lower bound for the length of each component; see
Figure 3. Since it might happen that Bi = B ′i and Ci = C ′i the bound on the length
of those two components will be trivial: dm(Bi , B ′i )≥ 0 and dm(Ci ,C ′i )≥ 0.

The gm-length of cm from A′i to Bi is equal to (or larger than) its g0-length since
the metric gm is equal to the metric g0 outside K . Moreover the g0-length of cm
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•
xi

1i D1
i D2

i 1i+1

yi c0 z1
i z2

i
yi+1
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B(xi , ε)

Ai

A′i

Bi = B ′i

Ci

C ′i
Ai+1

cm

•

•

•
•

•

•

Figure 3. cm crosses B(xi , aε).

from A′i to Bi is greater than dg0(yi , z1
i ) since the orthogonal projection decreases

lengths. We then have
dm(A′i , Bi )≥ dg0(yi , z1

i ).

For the same reasons we have

dm(C ′i , Ai+1)≥ dg0(z
2
i , yi+1).

We want to give a lower bound for the gm-length of cm between B ′i and Ci . We
made the assumption that cm crosses the ball B(xi , aε) hence cm stays at least
2ε − 2aε in the ball B(xi , ε). In other words if cm is unitary for g0 we have
Leb{t | cm(t)∩ B(xi , ε) 6= ∅} ≥ 2ε− 2aε. In the ball B(xi , ε), the metric gm is
equal to cosh(η)2g0 hence the gm-length satisfies

dm(B ′i ,Ci )≥

∫
{t |cm(t)∩B(xi ,ε)6=∅}

‖ċm(t)‖m dt =
∫
{t |cm(t)∩B(xi ,ε) 6=∅}

cosh(η)

≥ ε cosh(η)(2− 2a).

Choose a > 0 such that cosh(η)(2ε− 2aε) > 2ε, that is to say a ≤ 1− 1/cosh(η).
In order to fix the idea we set a := 1

2(1− 1/cosh(η)). This implies

dm(B ′i ,Ci )≥ ε cosh(η)(2− 2a)

= ε cosh(η)
(

2−
(

1− 1
cosh(η)

))
= (cosh(η)+ 1)ε

= 2ε+ ε[cosh(η)− 1)]

= dg0(z
1
i , z2

i )+ ε[cosh(η)− 1)].

Thus, we have proven

(9) dm(Ai , Ai+1)≥ dm(A′i , Ai+1)≥ dg0(yi , yi+1)+ ε[cosh(η)− 1].
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•

•

• •xi

�i1i

yi c0

ei

1i

cm

•

• •

Ai

A′i Ei = E ′i

Figure 4. cm does not cross B(xi , aε).

Case 2: cm does not cross B(xi , aε). Let 1i be the line orthogonal to c0 and
passing through yi , and �i the one through xi . Call A′i the last intersection of
cm and 1i and Ei the first intersection of cm with �i . Since cm does not cross
B(xi aε), Ei is in one of the connected components of �i \ B(xi , aε). Named ei

the intersection of S(xi , aε) (the sphere of center xi and diameter aε) and �i in the
same connected component as Ei , this is also the orthogonal projection of Ei on
B(xi , aε). See Figure 4.

We parametrize the geodesic �i by R; we give ω :R→H2 such that ω(R)=�i .
We suppose that ω(0)= xi and the orientation is chosen in order to have ω(aε)= ei .
The function t → dg0(ω(t),1i ) is convex, and has a minimum at 0; it is hence
increasing on R+. Therefore, dg0(1i , Ei )≥ dH2(1i , ei ). It follows that

dm(A′i , Ei )≥ dH2(A′i , Ei )≥ dg0(1i , Ei )≥ dg0(1i , ei ).

Let us compute dg0(1i , ei ). We fix some notation:

L = dg0(1i , ei ), l = dg0(yi , xi ), H = dg0(yi , ei ).

Now Pythagoras’ theorem in hyperbolic geometry for the triangle (yi xi ei ) gives

cosh(l) cosh(aε)= cosh(H).

Let θ be the angle x̂i yi ei . We have

cos(θ)=
tanh(l)

tanh(H)
and

sin(π/2− θ)=
sinh(L)
sinh(H)

.

Hence

sinh(L)= sinh(H)
tanh(l)

tanh(H)
= cosh(H) tanh(l)= cosh(aε) sinh(l).
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From this equation, we cannot conclude that L > l + u for some u > 0. Indeed
if L goes to 0 so does l. To avoid this problem we are going to assume that l is
greater than the injectivity radius of S.

Note the following property of sinh which is a consequence of easy calculus.
For all x0 > 0 and $ > 1, there exists u > 0, such that for all x > x0, we have
$ sinh(x)≥ sinh(x + u). Now we can choose yi on c0 in order to have

dg0(xi , yi )≥ s/2,

where s is the injectivity radius of H2/0. Consequently, applying the previous
property with $ = cosh(aε) and x0 = s/2, there exists u > 0 such that

cosh(aε) sinh(l)≥ sinh(l + u).

Since sinh is increasing we deduce that

L ≥ l + u.

Altogether, we show that there exists u > 0 such that

dm(A′i , Ei )≥ dg0(yi , xi )+ u.

By the same arguments we can show that

dm(E ′i , Ai+1)≥ dg0(xi , yi+1)+ u.

(E ′i is the last intersection of cm with �i ). Hence, if cm does not meet B(xi , aε),
the gm-length of cm between Ai and Ai+1 satisfies, (taking trivial bounds for first
and last intersections)

(10) dm(Ai , Ai+1)≥ dg0(yi , yi+1)+ 2u.

Now, let α :=min{ε[cosh(η)− 1]; 2u}. From (9) and (10) we have

dm(Ai , Ai+1)≥ dg0(yi , yi+1)+α.

Summing on i we get
dm(o, x)≥ dg0(o, x)+ N (R)α.

Equation (8) and the fact that dg0(o, x)≤ 2R2 imply that

N (R)≥ κ

2ε
R ≥ κ

4ε
dg0(o, x).

Consequently,
dm(o, x)≥

(
1+ ακ

4ε

)
dg0(o, x).

This proves the lemma with C =
(

1+ ακ
4ε

)
. �

2This is where we use the upper bound on dg0(o, x).
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We now compare the entropy of (D, dm) with that of H2. Let us define

Fo(R)= {exp(tv) | t ∈ R+, v ∈ Eo(R)}.

We denote by Bm(o, 2R) the ball of radius 2R for the dm distance.

Lemma 2.5. Let C ′ :=min(2,C) where C satisfies Lemma 2.4. For all o ∈ D, and
all R > 0,

Bm(o, 2R)⊂ BH2(o, 2R/C ′)∪
(
BH2(o, 2R)∩F c

o (R)
)
.

Proof. We have Bm(o, 2R) = (Bm(o, 2R)∩Fo(R))∪ (Bm(o, 2R)∩Fc
o (R)). Let

x ∈ Bm(o, 2R)∩Fo(R). Since dH2(o, x)≤ dm(o, x), it follows that dH2(o, x)≤ 2R.
There are only two possibilities. If dH2(o, x)≤ R, we have in particular dH2(o, x)≤
2R/C ′. However, if dH2(o, x)≥ R, we apply Lemma 2.4 and we get dH2(o, x)≤
2R/C ≤ 2R/C ′. Therefore,

Bm(o, 2R)∩Fo(R)⊂ BH2

(
o, 2R

C ′
)
∩Fo(R)⊂ BH2

(
o, 2R

C ′
)
.

Since we also have for R > 0, Bm(o, 2R)⊂ BH2(o, 2R), this gives

Bm(o, 2R)∩Fc
o (R)⊂ BH2(o, 2R)∩Fc

o (R),

and proves the lemma. �

The Liouville measure on T 1H2 is the product of the riemannian measure of
H2 with the angular measure on every fiber. We denote this product by L =
dµ(x)× dθ(x). Our aim is to show that the set Ec

o(R) is small and the volume of
(BH2(o, 2R)∩Fc

o (R)) is small compared to the one of BH2(o, 2R). For this we are
going to use a large deviation theorem of Y. Kifer [1990] which gives an upper
bound on the mass of the vectors which do not behave as the Liouville measure.

Let P be the set of probability measures on T 1H2/0 endowed with the weak
topology. Let P t be the subset of P of probability measures invariant by the geodesic
flow. We also denote by L the Liouville measure on the quotient T 1H2/0. Recall
that for a vector v ∈ T 1H2/0 we denote by ζ R

v the probability measure given for
all Borel subsets E ⊂ T 1H2/0 by

ζ vR(E)=
1
R

∫ R

0
χE(φ

H2/0
t (v)) dt.

Theorem 2.6 [Kifer 1990, Theorem 3.4]. Let A be a compact subset of P ,

lim sup
T→∞

1
T

log L
{
v ∈ T 1H2/0 | ζ T

v ∈ A
}
≤− inf

µ∈A∩P t
f (µ),

where f (µ) = 1− hµ(φ
H2/0
t ) and hµ(φ

H2/0
t ) is the entropy of the geodesic flow

φ
H2/0
t with respect to µ.
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The fact that the theorem can be applied in this setting is explained after the
Theorem 3.4 in [Kifer 1990]. In this reference the function f is given by a formula
which seems different. One can look at [Paulin et al. 2015, Chapter 7], where the
authors explain in detail why the geodesic flow of negatively curved surfaces satisfies
the hypothesis of Kifer’s theorem, and that one can take f (µ)= 1− hµ(φ

H2/0
t ).

Lemma 2.7. There exist o ∈ H2, α > 0 and R0 > 0 such that for all R > R0,

θo(Ec
o(R))≤ e−αR.

Proof. Let us keep the notations of Lemma 2.4. K = T 10 · B(x, ε) and we consider
the following subset of P:

A := {µ ∈ P | µ(K/0)≤ L(K/0)− κ}.

This set is not closed for the weak topology. Its closure satisfies

A ⊂ {µ ∈ P | µ(T 10 · B◦(x, ε)/0)≤ L(K/0)− κ},

where B◦(x, ε) is the open ball. There might be equality between the two sets, but
we won’t use it.

However, since the unitary tangent bundle of the sphere S(x, ε) is transverse to
the flow, we have

{v ∈ T 1H2/0 | ζ R
v ∈ A} = {v ∈ T 1H2/0 | ζ R

v ∈ A}.

Since L /∈ A and L is the unique measure of maximal entropy satisfying h(L)= 1,
we have

− inf
µ∈A

f (µ)=−α < 0.

Besides, it is clear that the set Ec(R)= {v ∈ T 1H2
| ζ vR(K ) ≤ L(K/0)− κ} is 0-

invariant from the 0 invariance of K . By definition and the previous remark we get

Ec(R)/0 = {v ∈ T 1H2/0 | ζ R
v ∈ A}

= {v ∈ T 1H2/0 | ζ R
v ∈ A}.

Theorem 2.6 says that there exists R0 > 0 such that for all R > R0 we have

L(Ec(R)/0)≤ e−αR.

The product structure of L implies the existence of a point o ∈ H2/0 such that

θo(Ec
o(R)/0)≤ e−αR.

The lemma follows, choosing any lift of o in H2. �

We finish the proof of Theorem 1.1 with Lemma 2.8, which compares the critical
exponent between dm and hyperbolic distance. Lemmas 2.2 and 2.8 conclude the
proof.
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Lemma 2.8. There exists u > 0 such that

δ((D, dm))≤ 1− u.

Proof. We are going to show that the volume entropy of (D, dm) satisfies the
inequality, which implies a similar result on the critical exponent.

Let o ∈ D be a point satisfying Lemma 2.7. From Lemma 2.5, we have

Bm(o, 2R)⊂ BH2

(
o, 2R

C ′
)
∪ (BH2(o, 2R)∩Fc

o (R)).

On one hand we have the classical upper bound Vol(BH2(o, 2R/C ′))= O(e2R/C ′).
On the other hand the volume form on H2 can be written in polar coordinates as
sinh(r)drdθ , hence for all R > R0 we get

Vol
(

BH2(o, 2R)∩Fc
o (R)

)
=

∫ 2R

0

∫
Ec

o (R)
sinh(r) dθ dr ≤

∫ 2R

0
e−αRer dr

≤ e(2−α)R.

Let u > 0, defined by 1− u = max(1/C ′, (1− α/2)) < 1. The last two upper
bounds give

Vol(Bm(o, 2R))= O(e2R/C ′)+ O(e(2−α)R)= O(e2(1−u)R).

We finish by taking the log and the limit. �

3. Quasi-Fuchsian case

3A. Geodesic intersection. Let 6 be an incompressible surface in M . We des-
ignate by φH3

t , φ6t the geodesic flows on the unitary tangent spaces T 1H3, T 16

respectively. We denote by π the projection from T 1H3 to H3. The restriction of π
to T 16 will still be denoted by π . There are two distances we can consider on 6.
The intrinsic one, defined as the infimum of the length of curves staying on 6 and
the extrinsic one, where we take the distance in H3. We will denote by d6 and d
these two distances.

First let us remark that there is no riemanniann metric on 6 which induces d.
If such a metric existed, our Theorem 1.3 would be a particular case of [Knieper
1995].

Proposition 3.1. If 6 is not totally geodesic, there is no riemannian metric on 6
which induces d.

Proof. Assume there is such a riemannian metric, named g′. Let ε > 0 be such that
the exponential map for g′ is an embedding at every point. Let cg′ : [0, ε] →6 be
a minimizing geodesic for g′ on 6, then for all t ∈ [0, ε],

dg′(cg′(0), cg′(t))+ dg′(cg′(t), cg′(ε))= dg′(cg′(0), cg′(ε)).
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But since we suppose that g′ induces d we have the same equality for d ,

d(cg′(0), cg′(t))+ d(cg′(t), cg′(ε))= d(cg′(0), cg′(ε)),

and this implies that cg′ is a geodesic for H3. Hence every point of 6 is included in
a totally geodesic disc, therefore 6 is totally geodesic. �

Consider the function a defined by

T 16×R→ R, (v, t) 7→ d(πφ6t (v), π(v)).

Letting t1, t2 ∈ R and v ∈ T 16, we have by the triangle inequality,

a(v, t1+ t2)= d(πφ6t1+t2(v), π(v))

≤ d(πφ6t1+t2(v), πφ
6
t1 (v))+ d(πφ6t1 (v), π(v))

≤ d(πφ6t2 (φt1v), πφ
6
t1 (v))+ d(πφ6t1 (v), π(v))

≤ a(φ6t1 v, t2)+ a(v, t1).

Hence a is a subadditive cocycle for the geodesic flow φ6t . Since a is 0-invariant
it defines a subadditive cocycle on T 16, still denoted by a.

The following is a consequence of Kingman’s subadditive ergodic theorem
[Kingman 1973].

Theorem 3.2. Les µ be a φ6t invariant probability measure on T 16. Then

Iµ(6,M, v) := lim
t→∞

a(v, t)
t

exists for µ-almost v ∈ T 16 and defines a µ-integrable function on T 16, invariant
under the geodesic flow and we have∫

T 16

Iµ(6,M, v) dµ= lim
t→∞

∫
T 16

a(v, t)
t

dµ.

Moreover if µ is ergodic, Iµ(6,M, v) is constant µ-almost everywhere. In this
case, we write Iµ(6,M).

3B. Patterson–Sullivan measures. We call3 the limit set of 0 acting on H3. Since
0 acts cocompactly on 6, and on the convex core C(3), the three geometric spaces
0 (seen as its Cayley graph), 6 and C(3) are quasi-isometric. We assume from
now on that (6, g) has negative curvature, hence there is a unique geodesic in
each homotopy class of curves, and for every pair of points in 6 there is a unique
geodesic which joins them. Let c6 be a geodesic on 6, and denote by c6(±∞) its
limit points on3. There is a unique H3-geodesic cH3 whose endpoints are c6(±∞).
Since 6 is quasi-isometric to C(3), the two geodesics cH3 and c6 are at bounded
distance.
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Let p ∈6 and call pr6p the projection from 6 to 3 defined as follows. For any
point x ∈6 call c6p,x the geodesic on 6 which joins p to x , then

pr6p (x)= c6p,x(+∞).

We will denote the equivalent projection in H3 by prH3

p . There are two small
distinctions to notice between prH3

p and pr6p . First, prH3

p is defined for every point
in H3, whereas pr6p is only defined for points in 6. Second is that the codomain of
pr6p is exactly 3 whereas the codomain of prH3

p is all S2.
As we have just stated, for all ξ ∈3 the geodesics, c6p,ξ and cH3

p,ξ are at bounded
distance, and this bound depends only on the quasi-isometry between 6 and C(3).
There exists C1 such that for all ξ ∈3 the Hausdorff distance between geodesics
c6p,ξ and cH3

p,ξ is less than C1.
Let x ∈6, R> 0 and consider the ball BH3(x, R) in H3 of center x and radius R.

Now take ξ ∈ prH3

p (B(x, R−C1))∩3; this means that the H3-geodesic from p to
ξ crosses the ball BH3(x, R−C1). This H3-geodesic is at bounded distance C1 of
the 6-geodesic joining p to ξ . Hence,

c6p,ξ ∩ (BH3(x, R)∩6) 6=∅,

which proves that
ξ ∈ pr6p (BH3(x, R)∩6).

The same argument shows that

pr6p (BH3(x, R)∩6)⊂ prH3

p (BH3(x, R+C1))∩3⊂ prH3

p (BH3(x, R+C1)).

The distances on 6 and on H3 are locally equivalent: for every R > 0 there
exists C2 such that all balls satisfy

B6(x, R−C2)⊂ BH3(x, R)∩6 ⊂ B6(x, R+C2).

Set C =max(C1,C2), which leads to the following theorem:

Theorem 3.3. pr6p (B6(x, R−C))
∩

prH3

p (BH3(x, R−C))∩3⊂ pr6p (BH3(x, R)∩6)⊂ prH3

p (BH3(x, R+C))
∩

pr6p (B6(x, R+C)).

Before proving Theorem 1.3, we will recall some basic facts about Patterson–
Sullivan measure. Some classical references for this are [Patterson 1976] and
[Sullivan 1979], the lecture of J-F. Quint [2006] and the monograph of T. Roblin
[2003]. Let (X, g) be a simply connected manifold with negative curvature and
X (∞) its geometric boundary. If 0 is a discrete group acting on (X, g) we can



392 OLIVIER GLORIEUX

associate to it a family of measures {µg
p}p∈X on X (∞) constructed as follows. Let

x, y be two points of X and consider the Poincaré series

P(s) :=
∑
γ∈0

e−sd(γ x,y).

The convergence of P(s) is independent of x and y by the triangle inequality.
It converges for s > δ(0) and diverges for s < δ(0). If the action is cocompact,
δ(0)= h(g) and the series diverges at h(g). Then we define the probability measure

µg
p,x(s) :=

∑
γ∈0 e−sd(γ x,p)δγ x∑
γ∈0 e−sd(γ p,p) .

By compactness of the set of probability measures on X (∞), we obtain a measure
on X (∞) by taking a weak limit of a sequence µg

p,x(sn)
3,

µg
p := lim

sn→h(g)
µg

p(sn).

It is supported on the accumulation points of G, that is to say the limit set.
These measures, called Patterson–Sullivan measures, have the following proper-

ties. They are quasiconformal, i.e., for all p ∈ X and all ξ, η ∈3, we have

dµg
p

dµg
q
(ξ)= e−h(g)βξ (p,q),

where βξ (p, q)= limz→ξ dg(p, z)− dg(q, z).
They are also 0-equivariant, i.e., for all γ ∈ 0 and all p ∈ X, we have

µg
p ◦ γ = µ

g
γ−1 p.

Moreover we know these measures behave locally like h(g)−Hausdorff measures.
See [Quint 2006, Lemma 4.10], for example.

Lemma 3.4 (shadowing). For R > 0 sufficiently large, there exists c > 1 such that
for all x ∈ X ,

1
c

e−h(g)dg(x,p) ≤ µg
p(pr g

p(Bg(x, R)))≤ ce−h(g)dg(x,p).

Suppose that X/0 is compact; from the Patterson–Sullivan measure, we can
construct an invariant measure on T 1 X/0. Let 3(2) := {(x, y)∈32

| x 6= y}. There
is a natural identification of 3(2)×R and T 1 X; a vector v ∈ T 1 X is identified with
(cv(+∞), cv(−∞), βcv(+∞)(p, πv)). The Bowen–Margulis measure is defined by

dµB M(ξ, η, t)= e2h(g)〈ξ |η〉p dµg
p(ξ)dµ

g
p(η) dt,

3It is a classical result of Sullivan that there is in fact a unique limit, up to normalization. It is
equivalent to the ergodicity of Bowen–Margulis measure [Roblin 2003, Chapter 1]
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where 〈ξ | η〉p is the Gromov product:

〈ξ | η〉p =
1
2

(
βξ (z, p)+βη(z, p)

)
,

where z is any point on the geodesic (ξ, η).
Let us recall the classical fact that the measure µB M is 0-invariant and define

therefore a measure on T 1 X/0. Letting z ∈ (ξ, η),

〈γ ξ | γ η〉p =
1
2

(
βγ ξ (γ z, p)+βγ η(γ z, p)

)
=

1
2

(
βγ ξ (γ z, γ p)+βγ ξ (γ p, p)+βγ η(γ z, γ p)+βγ η(γ p, p)

)
=

1
2

(
βξ (z, p)+βη(z, p)+βγ ξ (γ p, p)+βγ η(γ p, p)

)
= 〈ξ | η〉p +

1
2

(
βγ ξ (γ p, p)+βγ η(γ p, p)

)
.

By the quasiconformal behavior of µg
p, we have

e2h(g)〈γ ξ |γ η〉p dµg
p(γ ξ)dµ

g
p(γ η)

= e2h(g)〈ξ |η〉p eh(g)βγ ξ (γ p,p))dµg
p(γ ξ)e

h(g)βγ η(γ p,p))dµg
p(γ η)

= e2h(g)〈ξ |η〉p dµg
p(ξ)dµ

g
p(η).

The invariance by the geodesic flow is clear by definition and it is shown in
[Nicholls 1989] that µB M is ergodic.

Finally we will need the following theorem, which is classical for compact
manifolds endowed with two different negatively curved metrics. Since we treat a
slightly different case, we give a proof.

Theorem 3.5. If µ6p and µH3

p are equivalent, then the marked length spectrum of
6 is proportional to the marked length spectrum of M.

Note that in the Fuchsian case, any surface equidistant to the totally geodesic one
has a metric proportional to H2 and therefore satisfies the hypothesis of the theorem.
It seems likely that it is the only case where the length spectrum is proportional to
the one of the ambient manifold, however this is still uncertain.

Definition 3.6. For all ξ, η ∈ ∂X (2), we define the function DX by

DX (ξ, η)= exp(−〈ξ | η〉p).

It is shown in [Ghys and de la Harpe 1990] that Da
X for a > 0 small enough is a

distance, called Gromov distance. However, we do not need such renormalization
here.

The proof of Theorem 3.5 is in two steps. In the first, we prove that if the
Patterson Sullivan measures are equivalent then the functions D6 and DH3 are
Hölder equivalent. In the second, we prove that this last condition implies the
proportionality of the length spectrum.
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Lemma 3.7. If µ6p and µH3

p are equivalent, then the functions DH3 and D6 are
Hölder equivalent.

Proof. Let us consider on 3(2) the Bowen–Margulis currents defined by

ν6(ξ, η)=
dµp

6(ξ)dµ
p
6(η)

D6(ξ, η)2δ(6)
,

νH3(ξ, η)=
dµp

H3(ξ)dµ
p
H3(η)

DH3(ξ, η)2δ(H
3)
.

These two measures are 0-invariant by the previous computations for the Bowen–
Margulis measures.

By assumption, µp
6 and µH3

p are equivalent, therefore ν6 and νH3 are also equiv-
alent. The ergodicity and the 0-invariance imply the existence of c > 0 such that

ν6 = cνH3 .

Since µ6p and µH3

p are equivalent, there exists a function f :3→ R+ such that

µ6p (ξ)= f (ξ)µH3

p . We have

f (ξ) f (η)Dδ(H3)

H3 (ξ, η)= cDδ(6)
6 (ξ, η).

We see that f is equal almost everywhere to a continuous function. We can therefore
suppose that f is continuous on 3 and hence strictly positive. By compacity, there
exists C > 1 such that 1

C ≤ f (ξ)≤ C . Finally we get what we stated:

c
C2 Dδ(6)

6 (ξ, η)≤ Dδ(H3)

H3 (ξ, η)≤ C2cDδ(6)
6 (ξ, η). �

We now show the second part.

Lemma 3.8. If D6 and DH3 are Hölder equivalent the marked length spectra of
6 and M = H3/0 are proportional.

Proof. In [Paulin et al. 2015, Section 3.5], the authors show that in a very general
setting we have

lim
n→∞

1
n

log[g−, g+, gn(ξ), ξ ] = `(g),

where `(g) is the displacement of g and

[g−, g+, gn(ξ), ξ ] =
D(g−, gn(ξ))D(g+, ξ)
D(g−, ξ)D(g+, gn(ξ))

.

In particular, we can apply this result to 6 and H3 to get

lim
n→∞

1
n

log[g−, g+, gn(ξ), ξ ]6 = `6(g)

and
lim

n→∞

1
n

log[g−, g+, gn(ξ), ξ ]H3 = `H3(g).
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By assumption on the distances D6, DH3 , there exists C > 1 such that

1
C
[g−, g+, gn(ξ), ξ ]r

H3 ≤ [g−, g+, gn(ξ), ξ ]6 ≤ C[g−, g+, gn(ξ), ξ ]r
H3 .

Hence,
`6(g)= r`H3(g). �

Theorem 3.5 follows directly from Lemmas 3.7 and 3.8.
We will show at the very end of this article that if6 has the same length spectrum

as M = H3/0 then 0 is Fuchsian, to prove Corollary 1.4. It might be also true
even when we only suppose that they are proportional, however this does not follow
from our proof.

3C. Entropy comparison. We finally get to the proof of Theorem 1.3. First we
prove the inequality using the behavior of Patterson–Sullivan measures and a volume
comparison of a subset of 6; the proof follows the same lines as [Knieper 1995,
Theorem 3.4]. Then we prove the equality case using Theorem 3.5.

Theorem 3.9. Let 6 ⊂H3 be a 0-invariant embedded disk, whose induced metric
g has negative curvature, then

h(g)≤ IµB M (6,M)δ(0).

Moreover, the equality occurs if and only if the marked length spectrum of 6 is
proportional to the marked length spectrum of M. In this case, the proportionality
factor is given by `6(g)I (6,M)= `M(g).

Proof. The geodesic flow is ergodic with respect to the Bowen–Margulis measure
µB M , hence for µB M -almost all v ∈ T 16 we have

lim
t→∞

a(v, t)
t
= Iµ(6,M).

Let v and v′ be two unit vectors on the same weak stable manifold. Then

d(cv′(t), cv′(0))≤ d(cv′(t), (cv(t))+ d(cv(t), (cv(0))+ d(cv(0), (cv′(0)),

and the same inequality holds interchanging the role of v and v′. Moreover
d(cv′(t), (cv(t)) decreases exponentially since v and v′ are on the same weak stable
manifold. Hence limt→∞

1
t a(v, t) exists if and only if limt→∞

1
t a(v′, t) does.

Let vp(ξ) denote the unitary vector in T 1
p6 such that cvp(ξ)(∞)= ξ . The previous

fact and the product structure of dµB M ensure that for µg
p-almost all ξ ∈ ∂6,

lim
t→∞

a(vp(ξ), t)
t

= Iµ(6,M).

For all ε > 0 and T > 0, we define the set
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AT,ε
p =

{
ξ ∈ ∂6

∣∣ ∣∣∣a(vp(ξ), t)
t

− Iµ(6,M)
∣∣∣≤ ε, t ≥ T

}
.

For all d ∈ ]0, 1[ and all ε > 0, there exists T > 0 such that µ6p (A
T,ε
p )≥ d. For

t > T , consider the subset {cp,ξ (t) | ξ ∈ AT,ε
p } ⊂ Sg(p, t) of the geodesic sphere of

radius t and center p on 6.
Choose {B6(xi , R) | i ∈ I } a covering of this subset of fixed radius R > 0

such that xi ∈ S6(p, t) and B6(xi , R/4) are pairwise disjoint. Then, by the local
behavior of µ6p , there exists a constant c > 1, independent of t , such that

1
c

e−h(g)t
≤ µ6p (pr6p (B6(xi , R)))≤ ce−h(g)t .

It is clear that AT,ε
p ⊂

⋃
i∈I pr6p (B6(xi , R)) and therefore,

d ≤ µ6p
(⋃

i∈I

pr6p (B6(xi , R))
)
≤

∑
i∈I

µ6p (pr6p (B6(xi , R)))≤ c Card(I )e−h(g)t .

Since H3/0 is convex cocompact, CQ(3)/0 is compact, where CQ(3) is the
Q neighborhood of the convex core of 3. Hence for any Q > 0,

δ(0)= lim
R→∞

Vol(BH3(o, R)∩CQ(3)).

Now take Q sufficiently large such that 6 is inside CQ(3). There exists K such
that B6(xi , R/4)⊂ BH3(xi , R+ K )∩CQ(3).

From the definition of the set AT,ε
p , we then have that the disjoint union⋃

i∈I

B6(xi , R/4)⊂ BH3(p, t (IµB M (6,H3)+ ε)+ R+ K )∩CQ(3).

It follows that

eh(g)t
≤

c
d

Card(I )≤ c
dV

∑
i∈I

VolH3(BH3(xi , R/4))∩CQ(3))

≤
c

dV
VolH3

(
BH3(p, t (IµB M (6,H3)+ ε)+ R+ K )∩CQ(3)

)
.

Hence,

h(g)≤ 1
t

(
log c

dV
+ log VolH3(BH3(p, t (IµB M (6,H3)+ ε)+ R+ K )∩CQ(3))

)
.

Taking the limit t→∞, we get

h(g)≤ (IµB M (6,H3)+ ε)δ(0),

which concludes the proof since ε is arbitrary. �

For the proof of the equality case in Theorem 1.3 we will use the result equivalent
to [Knieper 1995, Corollary 3.6] in our context, that is:
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Lemma 3.10 [Knieper 1995]. Letting p ∈ 6 and µg
p be the Patterson–Sullivan

measure with respect to p and g, there exists a constant L such that for µg
p-almost

all ξ ∈ ∂6 there is a sequence tn→∞ such that

|d(p, πφ6tn vp(ξ))− IµB M (6,H3)tn| ≤ L .

Proof. It follows from Lemma 3.5 of [Knieper 1995], that our lemma is true
provided there exists a constant C > 0 such that, for all t1, t2 > 0 and all v ∈ T 16,

a(v, t1)+ a(φ6t1 v, t2)≤ C + a(v, t1+ t2).

Let v ∈ T 16 and c6v be the geodesic on 6 directed by v. Recall that there exists
C1 such that the H3-geodesic from π(v) to c6v (t1+ t2) is at bounded distance C1 of
c6v (t1+ t2), independent of t1 and t2. The H3-geodesic from p to c6v (t1) and the
one from c6v (t1) to c6v (t1+ t2) are also at bounded distance C1 of c6v . This implies
the desired property with C = 2C1. �

Proof of the equality case in 1.3. Suppose that h(g)= IµB M (6,H3)δ(0). Choose a
point p ∈6 and ξ ∈3, set yn :=πφ

6
tn vp(ξ). From the above lemma, for µ6p -almost

all ξ we have
|d(p, yn)− IµB M (6,H3)tn| ≤ L .

Setting a fixed constant, R > 0, by the local property of the Patterson–Sullivan
measure on H3, there is c1 such that

1
c1

e−δ(0)d(p,yn) ≤ µH3

p (prH3 BH3(yn, R))≤ c1e−δ(0)d(p,yn),

and by Theorem 3.3,

prH3(BH3(x, R−C))∩3⊂ pr6(BH3(x, R)∩6)⊂ prH3(BH3(x, R+C)).

Hence there is a constant c2 such that

1
c2

e−δ(0)d(p,yn) ≤ µH3

p (pr6BH3(yn, R)∩6)≤ c1e−δ(0)d(p,yn).

By the local property of the Patterson–Sullivan measure on6, there is c3 such that

1
c3

e−h(6)d6 (p,yn) ≤ µ6p (pr6B6(yn, R))≤ c3e−h(6)d6 (p,yn),

and by Theorem 3.3,

pr6(B6(x, R−C))⊂ pr6(BH3(x, R)∩6)⊂ pr6(B6(x, R+C)).

Hence there is c4 such that

1
c4

e−h(6)d6 (p,yn) ≤ µ6p (pr6BH3(yn, R)∩6)≤ c4e−h(6)d6 (p,yn).
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From the choice of yn and since h(6)= IµB M (6,H3)δ(0),

e−Le−δ(0)d(p,yn) ≤ e−h(g)d6(p,yn) ≤ eLe−δ(0)d(p,yn).

Hence there is c5 > 0 such that

1
c5

e−δ(0)d(p,yn) ≤ µ6p (pr6BH3(yn, R)∩6)≤ c5e−δ(0)d(p,yn).

Finally we have a constant c6 such that

c6 ≤
µ6p (pr6BH3(yn, R)∩6)

µH3
p (pr6BH3(yn, R)∩6)

≤ c6.

Since pr6(BH3(yn, R) ∩ 6) → ξ , the measures µ6p and µH3

p are equivalent.
Theorem 3.5 concludes the proof. �

We finish this article with the proof of Corollary 1.4:

Corollary 1.4. Under the assumptions of Theorem 1.3 we have

h(6)≤ δ(0,H3),

with equality if and only if 0 is fuchsian and 6 is the totally geodesic hyperbolic
plane, preserved by 0.

Proof. The inequality is obvious. Suppose the equality occurs. Then by Theorem 1.3,
we have that the length spectrum is proportional to the one of H3/0 and moreover
that I (6,M)= 1. In other words the two length spectra are equal.

Since 6 is embedded in H3, we can prove that the equality between the spectra
implies that 6 is totally geodesic by the following argument:

Let γ ∈ 0, and consider A its axis in 6. Then for all p ∈ A, we have

`6(γ )= d6(γ p, p)≥ dH3(γ p, p)≥ `H3(γ ).

Since the two spectra are equal, these inequalities are equalities. In particular, it
implies that p lies in the axis of γ in H3. Therefore A is a geodesic of H3.

Let c be the closed geodesic on 6 represented by g and consider c′ any geodesic
that intersects c. Let g′ be a representative of this closed geodesic such that the axis
A′ of g′ on 6 intersects A. By similar computations as before, we see that A′ is a
geodesic of H3.

Since the two geodesics intersect, the endpoints of A and A′ are cocyclic on
the boundary of H3, and in particular bound a copy of H2 inside H3. By similar
arguments for any element g ∈ 0 such that its axis Ag intersects A and A′ we see
that Ag is a geodesic of H3 and therefore that Ag is included in the copy of H2.
This last fact implies that 6 is included, therefore equal, to this copy of H2 and
finishes the proof of the corollary. �
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3C1. A remark on length spectrum rigidity. As we said in the introduction, the
proof of the last corollary raises the following question: If a quasi-Fuchsian has the
same length spectrum as a negatively curved surface, is it Fuchsian? Or more gener-
ally, if the two length spectra are proportional does it imply that it is Fuchsian? The
latter question seems to be unanswered even if we suppose that the surface has con-
stant negative curvature equal−1, and the problem in general seems to be quite hard.

We answer the case of constant negative curvature:

Theorem 1.5. Let M be a quasi-Fuchsian manifold and 6 a hyperbolic (in the
sense that it has constant curvature −1) surface. Suppose that M and 6 have pro-
portional length spectrum (i.e., there exists k ∈R+ such that for all γ ∈0, `M(γ )=

k`6(γ )), then M is Fuchsian, k = 1 and 6 is isometric to the totally geodesic
surface in M.

In this case we cannot use the entropy argument that is used when we suppose
the equality of the two spectra. Our proof is inspired by the work of F. Dal’bo and
I. Kim [2000] and based on the following theorem of Benoist:

Theorem 3.11 [Benoist 1997]. Let G be a semisimple linear connected Lie group.
Let 0<G be a Zariski dense subgroup. Then the limit cone is convex with nonempty
interior.

The limit cone is the smallest closed cone of a Cartan subspace of g containing
log(λ(0)) where λ(γ ) is the Jordan projection.

Proof of Theorem 1.5. Consider 0 a surface group and ρQF a quasi-Fuchsian repre-
sentation into PSL2(C) and ρ0 a Teichmüller representation in PSL2(R). Consider
the diagonal representation,

ρ = (ρQF , ρ0) : 0→ PSL2(C)×PSL2(R).

The group PSL2(C)×PSL2(R) is a semisimple linear connected Lie group of
rank 2. The Jordan projection of an element (γ1, γ2) is given by (`H3(γ1), `H2(γ2))

where `X is the translation length in X.
Therefore if the two representations have proportional length spectra, then the

limit cone of ρ(0) is a line, in particular it has empty interior. Using Benoist’s
theorem we conclude that ρ(0) is not Zariski dense, which implies that M is
Fuchsian. Therefore the length spectrum of 6 is k times the length spectrum of the
hyperbolic surface 60 = H2/ρ(0). By Otal’s theorem [1990] we get

(6, g)= (60, k2gH),

hence since 6 is hyperbolic, we have k = 1 and 6 =60. �
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SMOOTH SCHUBERT VARIETIES
AND GENERALIZED SCHUBERT POLYNOMIALS

IN ALGEBRAIC COBORDISM OF GRASSMANNIANS

JENS HORNBOSTEL AND NICOLAS PERRIN

We provide several ingredients towards a generalization of the Littlewood–
Richardson rule from Chow groups to algebraic cobordism. In particu-
lar, we prove a simple product formula for multiplying classes of smooth
Schubert varieties with any Bott–Samelson class in algebraic cobordism of
Grassmannians. We also establish some results for generalized Schubert
polynomials for hyperbolic formal group laws.

1. Introduction

Throughout the article, we fix an algebraically closed base field k with char(k)= 0.
Recall that for G a reductive group over k and P a parabolic subgroup of G, there
exists a Borel-type presentation of the algebraic cobordism ring �∗(G/P) for the
homogeneous space G/P; see [Hornbostel and Kiritchenko 2011; Hudson and
Matsumura 2016]. For a smooth projective variety X over k, we refer to [Levine
and Morel 2007; Levine and Pandharipande 2009] for the foundations on �∗(X).

In this article, we adopt an alternative, more geometric point of view. Namely, it
is known that an additive basis of any of these cobordism rings may be described via
geometric generators, using resolutions of Schubert varieties; see below. Schubert
calculus consists in multiplying these basis elements. One of the new features when
passing from Chow groups to cobordism is the need to resolve the singularities
of Schubert varieties. There are therefore many possible bases since a given basis
element depends on the choice of a resolution of a Schubert variety. In this paper we
shall mostly consider Bott–Samelson resolutions. Let us mention that some formulas
for the multiplication with divisor classes are already available, see [Calmès et al.
2013; Hornbostel and Kiritchenko 2011], and that in the recent preprints of Hudson
and Matsumura [2016; 2017], Giambelli-type formulas are obtained for special
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classes and for a group G of type A. There are several other recent preprints on
related questions; see, e.g., [Lenart and Zainoulline 2017].

We also focus on groups of type A. In the first part we consider the classes
of smooth Schubert varieties in Grassmannians and prove a formula for multiply-
ing the class of a smooth Schubert variety with the class of any Bott–Samelson
resolution. Several years ago, Buch [2002] achieved a beautiful generalization of
the classical Littlewood–Richardson rule for K -theory instead of Chow groups,
building on previous work of Lascoux and Schutzenberger, Fomin and Kirillov
and others. In the language of formal group laws (FGL), Buch has generalized
the Littlewood–Richardson rule from the additive FGL to the multiplicative FGL.
In the second part, we analyse the work of Fomin and Kirillov [1996a; 1996b]
used by Buch, and generalize parts of it to other formal group laws. One might
hope that ultimately this will be part of a Littlewood–Richardson rule for the
universal case, that is, a complete Schubert calculus for algebraic cobordism of
Grassmannians.

Recall [Levine and Morel 2007] that algebraic cobordism is the universal oriented
algebraic cohomology theory on smooth varieties over k. Its coefficient ring is the
Lazard ring L; see [Lazard 1955]. For any homogeneous space X = G/P with
G reductive and P a parabolic subgroup of G, we have a cellular decomposition
of X given by the B-orbits (B ⊂ P a Borel subgroup of G) called Schubert cells
and denoted by (X̊w)w∈W P , where W P is a subset of the Weyl group W. Choosing
resolutions X̃w→ Xw of the closures Xw of X̊w defines an additive basis of �∗(X);
see [Hornbostel and Kiritchenko 2011, Theorem 2.5]. Schubert calculus aims at
understanding the product in terms of these basis elements.

Write X = Gr(k, n) for the Grassmannian variety of k-dimensional linear sub-
spaces in kn. This is a homogeneous space of the form G/P with G = GLn(k) and
P a maximal parabolic subgroup of G. In the first part of the article, we prove some
simple product formulas in �∗(X). For Grassmannians, there is another indexing
set for Schubert cells and their closures in terms of partitions, and we shall use
this notation in the Grassmannian case. In the following statement, λ is a partition
associated to a Schubert variety Xλ, that is, the closure of the Schubert cell X̊λ (see
Section 2A). Recall also that for the Grassmannian X , all Bott–Samelson resolutions
of the Schubert variety Xλ are isomorphic over X. We denote by X̃λ this unique
Bott–Samelson resolution. Finally, recall that any smooth Schubert variety in X is
of the form Xba with ba the partition with a parts of size b.

Before stating the main result of Section 2, recall the definition of the dual
partition (see Section 2A for more details): for a partition λ contained in the
k× (n− k) rectangle R, we denote by λ∨ the dual partition obtained by taking the
complement of λ in R. For a partition µ in the a× b rectangle, we write µ∨Z for
its dual partition in the a× b rectangle.
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Theorem 1.1 (Corollary 2.15). Let λ ∈ P(k, n). Then in �∗(X), we have

[Xba ] · [X̃λ] =
{
[X̃(λ∨)∨Z ] for λ≥ (ba)∨,

0 for λ 6≥ (ba)∨.

Note that for Chow groups or for K -theory, the above results are well known
and follow from the Pieri formulas (see for example [Manivel 2001] for the Chow
group case and [Buch 2002] for K -theory, by which we always mean K0).

Note also that there are other natural resolutions of Schubert varieties considered
in the literature, such as Zelevinskiı̆’s resolutions [1983]. We believe that for
those resolutions (which contain as a special case the resolutions considered in the
cobordism Giambelli formulas of [Hudson and Matsumura 2016]) similar formulas
should exist for the multiplication with the class of a smooth Schubert variety.

In the second part (Sections 3 and 4), inspired by Buch’s method for giving a
Littlewood–Richardson rule for K -theory, we have a closer look at generalized
Schubert polynomials for cobordism. Let us recall first that for the full flag variety
X = G/B with G = GLn(k) and B a Borel subgroup, there is a Borel-type presen-
tation of the cobordism ring; see [Hornbostel and Kiritchenko 2011, Theorem 1.1]:

Theorem 1.2. There exists an isomorphism �∗(X) ' L[x1, . . . , xn]/S, where
deg(xi )= 1 for all i ∈ [1, n] and S is the ideal generated by homogeneous symmetric
polynomials of positive degree.

In particular, given a Schubert variety Xw and a Bott–Samelson resolution
X̃w→ Xw (here w is a reduced expression of the permutation w), we may write the
class [X̃w]∈�∗(X) as a polynomial Lw in the (xi )i∈[1,n]. Fomin and Kirillov [1996a;
1996b] gave a very nice description of such polynomials for the K -theory case,
and [Buch 2002] builds on these results. In Section 3, we compare the generalized
Schubert polynomials for cobordism with those for K -theory (called Grothendieck
polynomials); see Corollary 3.15. For this, we have to restrict to hyperbolic formal
group laws, that is, to elliptic cohomology. Choosing a suitable generalization of
the Hecke algebra, we are also able to generalize the main theorem of [Fomin and
Kirillov 1996a] from K -theory to elliptic cohomology; see Theorem 3.13.

In the last section, we combine techniques and results from Sections 2 and 3
to compute some explicit generalized Schubert polynomials. In particular, we
show that some of the smooth Schubert varieties satisfy a certain symmetry; see
Corollary 4.3. For generalized Schubert polynomials associated to other cells, this
is no longer true already when looking at Gr(2, 4); see Proposition 4.5.

We have tried to present the first two parts in a way that they can be read essentially
independently of each other. However, we emphasize that they both are partial
solutions to the quest of a Schubert calculus for arbitrary orientable cohomology
theories. Both parts reflect that for general formal group laws with operators not
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satisfying the naive braid relation, Schubert cells will lead to different elements in
the corresponding generalized cohomology theory. On the geometric side, we have
different resolutions of a given Schubert variety, and on the combinatorial side we
have different reduced words for a given permutation. We hope that forthcoming
work will combine these two aspects, leading to a better understanding of general
Schubert calculus.

2. Product with smooth Schubert varieties

2A. Notation. Let X =Gr(k, n) be the Grassmannian of k-dimensional subspaces
in E = kn. Denote by (ei )i∈[1,n] the canonical basis of kn. Denote by B the subgroup
of upper-triangular matrices in GLn(k), by B− the subgroup of lower-triangular
matrices and by T = B ∩ B− the subgroup of diagonal matrices. For any subset
I ⊂ [1, n] write E I for the span 〈ei | i ∈ I 〉. Set Ei = E[1,i] and E i

= E[n+1−i,n] for
i ∈ [1, n].

Call any nonincreasing sequence λ= (λi )i≥1 of nonnegative integers a partition.
The length of a partition is `(λ)=max{i | λi 6= 0}. For λ of length k, we identify
λ with its first k parts, i.e., with (λi )i∈[1,k]. The weight of λ is |λ| =

∑
i λi . We

will also use the pictorial description via Young diagrams, which are left-aligned
arrays of |λ| boxes with λi boxes on the i-th line for all i ≥ 1. A partition λ fits
in the k× (n− k) rectangle if its Young diagram does or equivalently if `(λ)≤ k
and λ1 ≤ n− k. Denote by P(k, n) the set of partitions fitting in the k × (n− k)
rectangle. For λ ∈ P(k, n) denote by λ∨ ∈ P(k, n) its dual partition defined by
λ∨i = n− k−λk+1−i for i ∈ [1, k]. We have |λ∨| = k(n− k)−|λ|. Define λ≤ µ if
λi ≤ µi for all i .

Recall the Bruhat decomposition: the B-orbits (X̊λ)λ∈P(k,n) form a cellular
decomposition of X . The same result holds for the B−-orbits (X̊λ)λ∈P(k,n). Indeed
these orbits are isomorphic to affine spaces: X̊w ' A

|λ|
k and X̊λ

' A
dim X−|λ|
k . This

can easily be deduced from their explicit descriptions:

X̊λ =
{

Vk ∈ X
∣∣ dim(Vk ∩ Ei+λk+1−i )= i for all i ∈ [1, k]

}
,

X̊λ
=
{

Vk ∈ X
∣∣ dim(Vk ∩ E i+n−k−λi )= i for all i ∈ [1, k]

}
.

Note that with this definition we have X̊λ∨
= wX · X̊λ, where wX is the matrix

permutation associated to the permutation i 7→ n+ 1− i of [1, n]. Denote by Xλ
the closure of X̊λ and by Xλ the closure of X̊λ. We have

Xλ =
{

Vk ∈ X
∣∣ dim(Vk ∩ Ei+λk+1−i )≥ i for all i ∈ [1, k]

}
,

Xλ
=
{

Vk ∈ X
∣∣ dim(Vk ∩ E i+n−k−λi )≥ i for all i ∈ [1, k]

}
.

Inclusion induces the order on partitions: Xλ ⊂ Xµ⇐⇒ λ≤ µ.
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Remark 2.1. The bases ([Xλ])λ∈P(k,n) and ([Xλ
])λ∈P(k,n) are dual bases in

CH∗(X); see [Manivel 2001, Proposition 3.2.7]. Since Xλ∨
= wX · Xλ we see that

([Xλ])λ∈P(k,n) and ([Xλ∨])λ∈P(k,n) are also dual bases. Note that this is no longer
true in K -theory.

2B. Smooth Schubert varieties, Bott–Samelson resolution and cobordism. The
smooth Schubert varieties in X are sub-Grassmannians; see for example [Lakshmibai
and Brown 2015, Theorem 6.4.2] or [Gasharov and Reiner 2002, Theorem 1.1], and
[Brion and Polo 1999] or [Perrin 2009] for more details on the singular locus and
the type of singularities. The partitions corresponding to these smooth Schubert
varieties are of the form λ= (λ1, . . . , λk) with λi = b for i ∈ [1, a] and λi = 0 for
i > a for some integers a ∈ [1, k] and b ∈ [1, n−k]. Denote this partition by λ= ba.
As a variety we have

Xba = {Vk ∈ X | Ek−a ⊂ Vk ⊂ Ek+b},

Xba∨
= {Vk ∈ X | Ek−a

⊂ Vk ⊂ Ek+b
}.

Moreover we have Xba ' Gr(a, a+ b)' Xba∨
.

As already mentioned, Schubert varieties are in general singular. There exist
several resolutions of singularities. We recall here the Bott–Samelson resolutions
of Schubert varieties, which were first introduced by Bott and Samelson [1958],
as well as by Hansen [1973] and Demazure [1974] for full flag varieties. These
constructions and their properties carry over easily to partial flags G/P = Gr(k, n).
See, e.g., [Fulton 1998; Lakshmibai and Brown 2015] for more details. We give
here an explicit description of these resolutions in the spirit of configuration spaces;
see [Magyar 1998] or [Perrin 2007]. Note also that for Schubert varieties in X ,
these resolutions are canonical in the sense that they do not depend on the choice
of a reduced expression.

For a partition λ and a pair of integers (i, j) write (i, j) ∈ λ if i ∈ [1, k] and
j ∈[1, λi ] and (i, j) 6∈λ else. Define V(i, j)= Ek+ j−i for all (i, j) 6∈λ, where Ei is the
zero space for i ≤0 and Ei = kn

= En for i ≥n. Define Yλ=
∏
(i, j)∈λ Gr(k+ j−i, n).

Set

X̃λ =
{
(V(i, j))(i, j)∈λ ∈ Yλ

∣∣ V(i+1, j) ⊂ V(i, j) ⊂ V(i, j+1) for all (i, j) ∈ λ
}
.

The projection πλ : X̃λ→ X defined by πλ((V(i, j))(i, j)∈λ)=V1,1 induces a birational
morphism onto Xλ. Furthermore, one easily checks that X̃λ has the structure of a
tower of P1-bundles so that X̃λ is smooth. The morphisms πλ : X̃λ→ Xλ are called
the Bott–Samelson resolutions of Xλ.

These resolutions define classes [πλ : X̃λ→ X ] in the cobordism �∗(X) of X.
We write [X̃λ] for these classes. The classes ([X̃λ])λ∈P(k,n) form a basis in any
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oriented cohomology theory and especially in cobordism:

�∗(X)=
⊕

λ∈P(k,n)

L[X̃λ],

where L is the Lazard ring; see [Hornbostel and Kiritchenko 2011].

2C. Products in cobordism. We want to understand the products with the classes
[Xba ] in �∗(X). Note that the class [Xba ] is well defined without considering any
resolution since Xba

' Gr(a, a+ b) is smooth; hence its cobordism class is well
defined.

2C1. Sub-Grassmannians. Let Z =Gr(a, a+b) be the Grassmannian of a-dimen-
sional vector subspaces of ka+b. Let ( fi )i∈[1,a+b] be the canonical basis of ka+b.
Define Fi = 〈 f j | j ∈ [1, i]〉 and F i

= 〈 f j | j ∈ [a + b + 1 − i, a + b]〉. For
λ ∈ P(a, a + b) a partition contained in the a × b rectangle define the Schubert
variety in Z (as above in X ):

Zλ = {Va ∈ Z | dim(Va ∩ Fi+λa+1−i )≥ i for all i ∈ [1, a]},

Zλ = {Va ∈ Z | dim(Va ∩ F i+b−λi )≥ i for all i ∈ [1, a]}.

If wZ : k
a+b
→ ka+b is the endomorphism defined by fi 7→ fa+b+1−i , then Zλ =

wZ · Zλ∨Z with µ= λ∨Z defined by µi = b− λa+1−i for all i ∈ [1, a].
Now define Bott–Samelson resolutions in Z . Define W(i, j) = Fa+ j−i for all

(i, j) 6∈ λ, where Fi is the zero space for i ≤ 0 and Fi = ka+b
= Fa+b for i ≥ a+b.

Define Aλ =
∏
(i, j)∈λ Gr(a+ j − i, a+ b). Set

Z̃λ =
{
(W(i, j))(i, j)∈λ ∈ Aλ

∣∣ W(i+1, j) ⊂W(i, j) ⊂W(i, j+1) for all (i, j) ∈ λ
}
.

The projection π Z
λ : Z̃λ → Z defined by π Z

λ ((W(i, j))(i, j)∈λ) = W1,1 induces a
birational morphism onto Zλ.

Embed Z in X with image X(ba) as follows. Let u : ka+b
→ kn be the linear map

defined by u( fi )= ek−a+i for all i ∈ [1, a+ b]. Note that u(ka+b)= E[k−a+1,k+b].
Denote by v : Z→ X the closed embedding defined by Wa 7→ Ek−a ⊕ u(Wa).

Embed Z in X with image X (ba)∨ as follows. Let u′ : ka+b
→ kn be the linear

map defined by u′( fi ) = en−k−b+i for all i ∈ [1, a + b]. Note that u′(ka+b) =

E[n−k−b+1,n−k+a]. Denote by v′ : Z→ X the closed embedding defined by Wa 7→

Ek−a
⊕ u′(Wa).

2C2. Intersection with Schubert varieties. In this subsection we consider the classes
of closed subvarieties Y ⊂ X in Chow groups or in K -theory. To avoid introducing
more notation we denote both theses classes by [Y ] and specify in which theory we
are working. The product with the class [Xba ] in Chow groups or for K -theory is
easy to compute.
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Lemma 2.2. Let λ ∈ P(k, n). We have

v(Z)∩ Xλ
= Xba ∩ Xλ

=

{
∅ for λ 6≤ ba,

v(Zλ) for λ≤ ba.

Proof. Let µ= ba. As is well known, the intersection Xµ ∩ Xλ is nonempty if and
only if λ≤µ. Assume this holds. We also know that Xµ∩Xλ is a Richardson variety
thus reduced, irreducible of dimension |µ| − |λ|. Since Zλ has dimension |µ| − |λ|
it is enough to prove the inclusion v(Zλ) ⊂ Xba ∩ Xλ. By construction, we have
v(Z) = Xba thus v(Zλ) ⊂ Xba. We prove the inclusion v(Zλ) ⊂ Xλ. Recall the
definition

Xλ
= {Vk ∈ X | dim(Vk ∩ E i+n−k−λi )≥ i for all i ∈ [1, k]}.

Since λ is contained in the a× b rectangle, we have `(λ)≤ a; thus the conditions
dim(Vk ∩ E i+n−k−λi )≥ i for i > a become dim(Vk ∩ E i+n−k)≥ i and are trivially
satisfied. We need to check the conditions dim(Vk ∩ E i+n−k−λi )≥ i for i ∈ [1, a]
and Vk = v(Wa) with Wa ∈ Zλ. For all i ∈ [1, a], we have dim(Va ∩ F i+b−λi )≥ i .
Applying v we get the inequality

dim
(
v(Va)∩ v(F i+b−λi )∩ E[k−a+1,k+b]

)
≥ i.

But

v(F i+b−λi ∩ E[k−a+1,k+b])= E[k+1−λi−i,k+b] ⊂ E[k+1−λi−i,n] = E i+n−k−λi .

In particular dim(v(Va)∩ E i+n−k−λi )≥ i for i ∈ [1, a] proving the result. �

Remark that v(wZ (F i ))= Ek−a⊕u(Fi )= Ei ; thus for λ∈P(a, a+b), we have
v(Zλ)= Xλ. In particular, we have v(wZ · Zλ)= v(Zλ∨Z )= Xλ∨Z . Consider ka+b

as a subspace of kn via the embedding u and let wZ be the endomorphism of kn

obtained by extendingwZ with the identity on the complement 〈ei | i 6∈ [k−a, k+b]〉.
We have wZ

◦ v = v ◦wZ .

Corollary 2.3. Let λ ∈ P(a, a+ b). We have

v(Z)∩ Xλ
= Xba ∩ Xλ

=

{
∅ for λ 6≤ ba,

wZ
· Xλ∨Z for λ≤ ba.

Corollary 2.4. Let λ ∈ P(a, a+ b). We have

Xλ ∩ v′(Z)= Xλ ∩ Xba∨
=

{
∅ for λ 6≥ (ba)∨,

wXw
Z
· X(λ∨)∨Z for λ≥ (ba)∨.

Proof. Set µ= λ∨, apply Corollary 2.3 to µ and multiply with wX . �

Corollary 2.5. Let λ ∈ P(a, a+ b). In CH∗(X), we have

[Xλ] ∪ [Xba ] =

{
[X(λ∨)∨Z ] for λ≥ (ba)∨,

0 for λ 6≥ (ba)∨.
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Remark 2.6. The same result holds for K -theory; see [Buch 2002].

Our aim is to generalize the above results to Bott–Samelson resolutions and to
cobordism. For this, the dual point of view of Corollary 2.4 is better suited.

2C3. Fiber product. Let µ be a partition in the a×b rectangle and let µ′= (µ∨Z )∨.
We construct an embedding of Z̃µ → X̃µ′ . We denote by v′ : Gr(i, a + b) →
Gr(i+k−a, n) the embeddings induced by u′ as follows: v′(Wi )= u′(Wi )⊕ Ek−a.

First remark that µ≤ µ′ and that we get µ′ from µ by adding k− a lines (with
n− k boxes) and n− k− b columns (with k boxes). In other words, µ′i = n− k for
i ∈ [1, k− a] and µ′i = µi + n− k− b for i ∈ [k− a+ 1, k].

Let (W(i, j))(i, j)∈µ ∈ Z̃µ. We define (V(i, j))(i, j)∈µ′ as follows:

• For i ∈ [1, k− a] and j ∈ [1, n− k− b], set

V(i, j) = (v
′(W(1,1))⊕ E j−1)∩ En+1−i .

• For i ∈ [k− a+ 1, k] and j ∈ [1, n− k− b], set

V(i, j) = (v
′(W(i−(k−a),1))⊕ E j−1)∩ En+a−k .

• For i ∈ [1, k− a] and j ∈ [n− k− b+ 1, n− k], set

V(i, j) = (v
′(W(1, j−(n−k−b)))⊕ En−k−b)∩ En+1−i .

• For i ∈ [1, k− a] and j ∈ [1, n− k− b], set

V(i, j) = (v
′(W(i−(k−a), j−(n−k−b)))⊕ En−k−b)∩ En+a−k .

• For (i, j) 6∈ µ′, set

V(i, j) = (v
′(W(i−(k−a), j−(n−k−b)))⊕ En−k−b)∩ En+a−k .

Lemma 2.7. We have (V(i, j))(i, j)∈µ′ ∈ X̃µ′ .

Proof. Recall that u′(ka+b)= En−k−b,n−k+a , that Ek−a
⊂ v′(W ) and that v′(W )⊂

Ek+b for any subspace W ⊂ ka+b. In particular, in the above definition all sums are
direct and all intersections are transverse. This implies dim V(i, j) = k+ j − i ; thus
(V(i, j))(i, j)∈λ′ ∈ Yµ′ . For (i, j) 6∈ µ′ we have

V(i, j) =
(
v′(W(i−(k−a), j−(n−k−b)))⊕ En−k−b

)
∩ En+a−k = Ek+ j−i .

One easily proves that V(i+1, j) ⊂ V(i, j) ⊂ V(i, j+1). The result follows. �

Lemma 2.8. The map ϕ : Z̃µ→ X̃µ′ is a closed embedding.

Proof. We have u′(W(i, j)) = V(i+k−a, j+n−k−b)) ∩ Ek+b. Since u is injective, the
result follows. �

Lemma 2.9. The map ψ : Z̃µ → X defined by (W(i, j))(i, j)∈µ 7→ V(1,1) factors
through v′(Z).
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Proof. We have V(1,1) = v′(W(1,1)) = u′(W(1,1))⊕ Ek−a. In particular Ek−a
⊂

V(1,1) ⊂ Ek+b. The result follows. �

Proposition 2.10. Let µ ∈P(a, a+b) and consider Z̃µ as an X-scheme via ψ . We
have X̃µ′ ×X v

′(Z)= X̃µ′ ×X X (ba)∨
' Z̃µ.

Proof. We have morphisms ϕ : Z̃µ→ X̃µ′ and ψ : Z̃µ→ v′(Z) with ϕ a closed
embedding. Furthermore the map πµ′ : X̃µ′→ X is given by (V(i, j))(i, j)∈µ′ 7→ V(1,1)
so the composition πµ′ ◦ϕ is the map ψ . In particular we have a morphism ϕ×ψ :

Z̃µ→ X̃µ′ ×X v
′(Z). This is a closed embedding since ϕ is a closed embedding.

To prove that this is an isomorphism, it is enough to prove that X̃µ′ ×X v
′(Z)

is irreducible and smooth of dimension |µ| = dim Z̃µ. But v′(Z) = X (ba)∨ and
X̃µ′ are in general position. By Kleimann–Bertini [Kleiman 1974] any irreducible
component is of dimension |µ| − codimX v

′(Z)= |µ|. By Bertini again, the fiber
product of v′(Z) with the locus in X̃µ′ where πµ′ is not an isomorphism, has
dimension strictly less than |µ| and is therefore never an irreducible component.
Now since v′(Z)∩Xµ′ is irreducible, the same holds for X̃µ′×X v

′(Z). Furthermore
by Bertini again this fiber product is smooth and therefore reduced. �

Corollary 2.11. Let λ ∈ P(k, n). As X-schemes, we have

X̃λ×X v
′(Z)= X̃λ×X Xba

'

{
∅ for λ 6≥ (ba)∨,

Z̃µ for λ≥ (ba)∨,

with µ= (λ∨)∨Z for λ≥ (ba)∨ and Z̃µ is considered as an X-scheme via ψ .

2C4. Cobordism. We construct another X -scheme isomorphism between Z̃µ and
wXw

Z
· X̃µ. Here Z̃µ is an X -scheme via ψ , while wXw

Z
· X̃µ is an X -scheme via

wXw
Z
◦πµ. The actions of wX and wZ on X̃µ being defined via the embedding

of X̃µ in Yµ and the actions on the later are given by the diagonal action on each
factor (recall that Yµ is a product of Grassmannians Gr(i, n) on which wX and wZ

act).
Let (W(i, j))(i, j)∈µ ∈ Z̃µ. We define (V(i, j))(i, j)∈µ as follows. For (i, j) ∈ µ, set

V(i, j) = v
′(W(i, j)). For (i, j) 6∈ µ, set V(i, j) = wXw

Z
· Ek+ j−i .

Lemma 2.12. We have (V(i, j))(i, j)∈µ ∈ wXw
Z
· X̃µ.

Proof. For (i, j), (i + 1, j) and (i, j + 1) in µ, the conditions V(i+1, j) ⊂ V(i, j) ⊂

V(i, j+1) are clearly satisfied. We only need to check these conditions for (i + 1, j)
or (i, j + 1) not in µ. But for (i, j) 6∈ µ, we have W(i, j) = Fa+ j−i ; thus

v′(W(i, j))=v
′(Fa+ j−i )=Ek−a

⊕E[n−k−b+1,n−k−b+a+ j−i]=wXw
Z
·Ek+ j−i=V(i, j)

and the result follows. �

Proposition 2.13. Let µ∈P(a, a+b). The X-schemes Z̃µ (via ψ) and wXw
Z
· X̃µ

are isomorphic.
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Proof. The above morphism sending (W(i, j))(i, j)∈µ ∈ Z̃µ to (V(i, j))(i, j)∈µ ∈ X̃µ is
a closed embedding. Since both schemes are smooth are irreducible of the same
dimension, this map is an isomorphism. We need to check that the morphisms to X
coincide. But the composition Z̃µ→wXw

Z
· X̃µ→ X is given by (W(i, j))(i, j)∈µ 7→

(V(i, j))(i, j)∈µ 7→ V(1,1) and therefore maps (W(i, j))(i, j)∈µ ∈ Z̃µ to v′(W(1,1)) =

ψ(W(1,1)). It coincides with ψ . �

Corollary 2.14. Let λ ∈ P(k, n). As X-schemes, we have

X̃λ×X v
′(Z)= X̃λ×X Xba

'

{
∅ for λ 6≥ (ba)∨,

wXw
Z
· X̃(λ∨)∨Z for λ≥ (ba)∨.

Corollary 2.15. Let λ ∈ P(k, n). Then in �∗(X), we have

[Xba ] · [X̃λ] =
{
[X̃(λ∨)∨Z ] for λ≥ (ba)∨,

0 for λ 6≥ (ba)∨.

Proof. The product [Xba ] · [X̃λ] is given by pulling back the exterior product
Xba × X̃λ → X × X along the diagonal map 1 : X → X × X ; see [Levine and
Morel 2007, Remark 4.1.14]. We thus have [Xba ] · [X̃λ] =1∗[Xba × X̃λ→ X× X ].
Applying Corollary 6.5.5.1 of the same book, we get 1∗[Xba × X̃λ→ X × X ] =
[Xba ×X X̃λ] in �∗(X). �

Remark 2.16. (1) These results were inspired by several similar results for other
cohomology theories. In particular, the results explained in Corollary 2.5 are the
classical part of Seidel symmetries [1997] in quantum cohomology. The results of
Seidel are not explicit but were made explicit in [Chaput et al. 2007; 2009]. These
results extend to quantum K -theory. This will be presented in a forthcoming work
[Buch et al. ≥ 2018]. We expect the same results to be valid in quantum cobordism
once the latter is defined.

(2) We expect more general results of the same type for other homogeneous spaces.
These will be studied by the second author in forthcoming work.

3. Generalized Schubert polynomials and generalized Hecke algebras

Recall that classical Grothendieck polynomials are representatives of Schubert
classes in Borel’s presentation of K -theory. In this section, we discuss the difference
between classical Grothendieck polynomials and the representatives in Borel’s
presentation of algebraic cobordism of Bott–Samelson resolutions of Schubert
varieties. For K -theory (that is K0), the computation of polynomial representatives
for classes of Schubert varieties has been done in [Fomin and Kirillov 1996a; 1996b].
We establish a generalization of the main theorem of [Fomin and Kirillov 1996a].
Building on their work, Buch [2002] computed Littlewood–Richardson rules for
K -theory.
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3A. Divided difference operators. Recall that K -theory corresponds to the mul-
tiplicative formal group law. The methods of Buch and Fomin and Kirillov do
not generalize to the universal formal group law, that is, to algebraic cobordism.
However, we will show that they apply in a much weaker form to hyperbolic formal
group laws (see Definition 3.6 below) since we need to impose one more relation
in the Hecke algebra (see Definition 3.11 below). For i ∈ [1, n− 1], let si be the
transposition of [1, n] exchanging i and i + 1.

Definition 3.1. Let F be a formal group law over R with inverse χ :

(1) For i ∈ [1, n− 1], define σi ∈ End(R[[x1, . . . , xn]]) by

(σi f )(x1, . . . , xn)= f (xsi (1), . . . , xsi (n)).

(2) For i ∈ [1, n− 1], define Ci ,1i ∈ End(R[[x1, . . . , xn]]) by

Ci = (Id+σi )
1

F(xi , χ(xi+1))
and 1i =

1
F(xi+1, χ(xi ))

(Id−σi ).

Remark 3.2. Note that the above operators are well defined in R[[x1, . . . , xn]]

since F(x, χ(y)) can be written (x− y)g(x, y) with g(x, y) invertible in R[[x, y]].

This definition is taken from [Hornbostel and Kiritchenko 2011, p. 71] and
[Calmès et al. 2013, Section 3]. When applying it to the additive formal group law,
one recovers the usual definition as, e.g., in [Manivel 2001, Section 2.3.1] up to
a sign (observe that σi ◦ F(xi+1, χ(xi ))= F(xi , χ(xi+1))). For the multiplicative
formal group law F(x, y)= x + y+βxy, the definition of Ci yields the β-DDO
π
(β)

i of [Fomin and Kirillov 1996a], which for β =−1 specializes to the isobaric
DDO of [Buch 2002]. Moreover, still for the multiplicative formal group law
F(x, y)= x + y+βxy, the operator 1i above, which equals the one of [Calmès
et al. 2013, Section 3], coincides up to sign with the operator π (β)i +β which appears
in [Fomin and Kirillov 1996a, Lemma 2.5].

Recall [Bressler and Evens 1990] that the braid relations for the operators Ci

only hold if the FGL is additive or multiplicative. We therefore need to keep track
of reduced expressions to define generalized Schubert polynomials, which is not
necessary in [Fomin and Kirillov 1996a, Definition 2.1].

3B. Generalized Schubert polynomials. The following definition generalizes both
Schubert polynomials for Chow groups and Grothendieck polynomials for K -theory.

Definition 3.3. Let w be a permutation and w a reduced expression of w as product
in the (si )i∈[1,n−1]. Define the generalized Schubert polynomial Lw by induction:

(a) L1(x1, . . . , xn)= xn−1
1 xn−2

2 · · · xn−1.

(b) Lwsi := CiLw if wsi is a reduced word.
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Note that this notation is different from the one used in [Fomin and Kirillov
1996a] and elsewhere: our L1 corresponds to their Lw0 and our Lw to their Lw0w.
We decided to adopt this notation since there is a unique class for the point as well
as a unique reduced expression for 1, but there is a Bott–Samelson resolution and a
polynomial Lw0

for each reduced expression w0 of the element w0.
For any permutationw, the Bott–Samelson resolutions X̃w→ Xw of the Schubert

variety Xw are indexed by the reduced words w of w. It was proved in [Hornbostel
and Kiritchenko 2011, Theorem 3.2] that the polynomial Lw represents the class of
the resolution X̃w→ Xw in �∗(G/B).

Let S be the ideal in R[[x1, . . . , xn]] generated by symmetric polynomials of
positive degree. The polynomial L1 corresponds to the cobordism class of a point.
Modulo S, the polynomial n!L1 has several equivalent descriptions; compare to,
e.g., [Hornbostel and Kiritchenko 2011, Remark 2.7], where it differs by a scalar
from Dn below.

Lemma 3.4. Let A∗(−) be an oriented cohomology theory and F its FGL.

(a) We have

Dn :=
∏

1≤i< j≤n

(xi − x j )≡ n! xn−1
1 xn−2

2 · · · xn−1 = n!L1 mod S.

(b) Setting a−F b = F(a, χ(b)), we have

Dn ≡ DF
n :=

∏
1≤i< j≤n

(xi −F x j ) mod S.

Proof. To show (a), one first verifies that modulo S we have
∏

1<i≤n(x1−xi )≡nxn−1
1 ,

deriving the equality
∏

1≤i≤n(x − xi ) ≡ xn and setting x = x1. Then one shows
xn−1

1 p(x2, . . . , xn)≡ 0 for any symmetric nonconstant polynomial p(x2, . . . , xn),
writing p(x2, . . . , xn) ≡ x1q(x1, . . . , xn) and using that xn

1 ≡ 0 modulo S. Now
proceed by induction on n. The claim holds for n = 1. Using the factorization∏

1≤i< j≤n

(xi − x j )=
∏

1<i< j≤n

(xi − x j )
∏

1<i≤n

(x1− xi ),

the claim for n follows using the induction hypothesis for n− 1 and the above two
equalities modulo S.

For (b), note that xi −F x j = 0 if x j = xi , which implies that xi −F x j is divisible
by xi − x j . Hence xi −F x j = (xi − x j )a(xi , x j ) with a(xi , x j )= 1+ b(xi , x j ) and
b ∈ (xi , x j ). Thus DF

n = Dn + Dnq(x1, . . . , xn) with q(0, . . . , 0)= 0. Now using
part (a) and the equality xn

1 ≡ 0 mod S, we deduce that Dnxi ≡ 0 mod S for i = 1
and thus (use a suitable permutation) for all i . Hence Dnq(x1, . . . , xn)≡ 0 mod S
as claimed. �
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Remark 3.5. Some authors use xn−1
n xn−2

n−1 · · · x2 in place of xn−1
1 xn−2

2 · · · xn−1.
Modulo S these two classes only differ by the sign (−1)n(n−1)/2.

3C. Hyperbolic formal group laws. We now define hyperbolic formal group laws,
which generalize the additive and multiplicative ones.

Definition 3.6. The hyperbolic formal group law F over R = Z[µ1, µ2] and its
inverse χ are given by

F(x, y)=
x + y−µ1xy

1+µ2xy
and χ(x)=−

x
1−µ1x

.

Recall that formal group laws are by definition power series in two variables,
and all fractions here and below may be written as such. Note that any ring
homomorphism Z[µ1, µ2] → A induces a formal group law over A. Calling
these induced formal group laws hyperbolic as well, we find that additive and
multiplicative formal group laws are special cases of hyperbolic formal group laws.
See, e.g., [Buchstaber and Bunkova 2010; Hoffnung et al. 2014, Example 2.2(d);
Lenart and Zainoulline 2017, 2.2] for more on hyperbolic formal group laws.
Combining their computations, we see that

F(x, y)= x + y−µ1xy+µ2(x2 y+ xy2)+µ2µ1x2 y2
+ O(5).

In Section 4B below, we explain how these FGLs lead to certain elliptic cohomology
theories E∗(−). If µ2 = 0, these cohomology theories specialize to Chow groups
(if µ1 = 0), K0 (if µ1 is invertible, thus sometimes called periodic K -theory),
connective K0 and (if µ1 = 0 but µ2 6= 0) theories associated with Lorentz FGLs.

Definition 3.7. Let F be a formal group law. Define

κi = κ
F
i =

1
F(xi , χ(xi+1))

+
1

F(xi+1, χ(xi ))
.

Remark 3.8. In the above definition, κi is a formal series. Indeed, writing

F(x, χ(y))= (x − y)g(x, y)

with g a formal series with constant term equal to 1, we get

κi =
g(y, x)− g(x, y)

(x − y)g(x, y)g(y, x)
.

Since the numerator vanishes for x = y there exists a formal series h such that
g(y, x)− g(x, y)= (x − y)h(x, y) and we get

κi =
h(x, y)

g(x, y)g(y, x)
,

which can be written as a formal series.
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Remark 3.9. An easy computation shows that 1i = κi −Ci .

Example 3.10. The three formal group laws we have studied so far are Fa , Fm

and Fe, namely the additive, the multiplicative and the elliptic (or hyperbolic) formal
group laws:

Fa(x, y)= x + y, Fm(x, y)= x + y−µ1xy and Fe(x, y)=
x + y−µ1xy

1+µ2xy
.

In these cases, we have κFa
i = 0, κFm

i = κ
Fe
i =µ1. So in all these examples, κ := κi

is independent of i .

We now define a variant of the Hecke algebra generalizing [Fomin and Kirillov
1996a, Definition 2.2] with respect to a fixed hyperbolic formal group law F. Setting
µ2 = 0, we obtain the Hecke algebra of [Fomin and Kirillov 1996a], corresponding
to (connective or periodic) K -theory.

Definition 3.11. For the hyperbolic formal group law F defined over R=Z[µ1, µ2]

consider the commutative ring R := R[[x1, . . . , xn]]. The generalized Hecke algebra
An(κ) is the quotient of the associative R-algebra R〈u1, . . . , un−1〉 by the relations

• ui x j = x j ui for all i, j ,

• ui u j = u j ui for |i − j |> 1,

• ui ui+1ui = ui+1ui ui+1 for all i ,

• u2
i =−µ1ui for all i ,

• µ2xi xi+1ui = 0 for all i .

Although this algebra generalizes the ones of [Fomin and Kirillov 1996a; Buch
2002] and others, note that it is different from the formal Demazure algebras studied
in [Calmès et al. 2013; Hoffnung et al. 2014]. See Remark 3.18 below for more
details on this.

Remark 3.12. Note that the elements ui satisfy the braid relations. Hence for
any permutation w, we can define the element uw as uw = ui1 · · · uir , where w =
si1 · · · ssir

is any reduced expression of w.

We now generalize [Fomin and Kirillov 1996a, Theorem 2.3] from multiplicative
to hyperbolic formal group laws. Define

S(x1, . . . , xn−1)=

n−1∏
j=1

j∏
i=n−1

(1+ x j ui ),

where the interchanged bounds for i mean that the corresponding factors are multi-
plied in descending order, starting with i = n− 1.
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Theorem 3.13. For any hyperbolic FGL, in the generalized Hecke algebra An(κ)

of Definition 3.11, we have

S(x1, . . . , xn−1)=
∑
w∈6n

Lwuw0w,

where w is any reduced expression of w and w0(i)= n+ 1− i as usual.

Before proving this theorem, we compare the generalized Schubert polynomials
Lw with the corresponding Grothendieck polynomials for K -theory.

Definition 3.14. Let w be a permutation and w= si1 · · · ssir
any reduced expression:

(1) The support of w is the set Supp(w)= {i1, . . . , ir }. This is independent of the
chosen reduced expression since it is preserved by the braid relations.

(2) Define I (w) as the ideal in R generated by the polynomials µ2xi xi+1 for
i ∈ Supp(w0w).

(3) Let LK
w be the K -theoretic Grothendieck polynomial representing Xw.

Corollary 3.15. Let w = sαi1
· · · sαir

be a reduced expression of w. Then for w a
permutation and w any reduced expression for w, in R we have

Lw = LK
w mod I (w).

Some parts of the proof of [Fomin and Kirillov 1996a, Theorem 2.3] are formal
and immediately generalize to arbitrary formal group laws. Lemma 2.5 of the same
paper just rephrases Remark 3.9. Several other crucial parts of the proof do not
generalize to arbitrary FGLs. However, they do generalize to hyperbolic FGLs
when working with the generalized Hecke algebra An(κ). An important point in
choosing hyperbolic FGL is the fact that the κi are independent of i , so we have an
action of the symmetric group on An(κ) given by permutations on the variables xi .
From now on, we fix a hyperbolic formal group law F and a positive integer n.

Lemma 3.16. Set αi (x)= (1+ xun−1) · · · (1+ xui ). Then we have the following
equalities in An(κ):

(1) αi+1(xi+1)= αi (xi+1)(1+χ(xi+1)ui ).

(2) 1+χ(xi )ui = (1+ F(xi+1, χ(xi ))ui )(1+χ(xi+1)ui ).

(3) 1i (1+χ(xi+1)ui )=−(1+χ(xi+1)ui )ui .

Proof. (1) The equality αi+1(xi+1)(1+ xi+1ui )= αi (xi+1) implies

αi+1(xi+1)(1+ xi+1ui )(1+χ(xi+1)ui )= αi (xi+1)(1+χ(xi+1)ui ).

A straightforward computation shows that (1+ xi+1ui )(1+χ(xi+1)ui )= 1.
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(2) To prove the claim, it suffices to prove that(
F(xi+1, χ(xi ))+χ(xi+1)−χ(xi )

)
ui +χ(xi+1)F(xi+1, χ(xi ))u2

i = 0,

or equivalently that(
F(xi+1, χ(xi ))+χ(xi+1)−χ(xi )−µ1χ(xi+1)F(xi+1, χ(xi ))

)
ui = 0.

This holds by a computation using the explicit formulas for F and χ and the relation
µ2xi xi+1(xi − xi+1)ui = 0. We use the stronger relation µ2xi xi+1ui = 0 in the
definition of our Hecke algebra since we need xi − xi+1 to be a nonzero divisor for
the next computation.

(3) We have

−1i (1+χ(xi+1)ui )=
(1+χ(xi )ui )− (1+χ(xi+1)ui )

F(xi+1, χ(xi ))

=
1+ F(xi+1, χ(xi ))ui − 1

F(xi+1, χ(xi ))
(1+χ(xi+1)ui )

= (1+χ(xi+1)ui )ui .

The second equality follows from part (2). �

Proposition 3.17. In the above notation, for all i we have the commutation

αi (xi )αi (xi+1)= αi (xi+1)αi (xi ).

Proof. Since we have the same relations for the ui as in [Fomin and Kirillov 1996a],
the proof of their Lemma 2.6 generalizes to our situation. More precisely, we may
apply [Fomin and Kirillov 1996b, Corollary 5.4] as its assumptions (see Section 2
of that paper) are satisfied in our generalized Hecke algebra. �

Proof of Theorem 3.13. From S(x1, . . . , xn−1)= α1(x1) · · ·αn−1(xn−1) we get

S(x1, . . . , xn−1)= α1(x1) · · ·αi (xi+1)(1+χ(xi+1)ui )αi+2(xi+2) · · ·αn−1(xn−1).

Using Lemma 3.16(1), this implies 1i (S(x1, . . . , xn−1)) is equal to the following
formulas:

α1(x1) · · ·αi−1(xi−1)1iαi (xi )αi (xi+1)(1+χ(xi+1)ui )αi+2(xi+2) · · ·αn−1(xn−1)

=α1(x1) · · ·αi−1(xi−1)αi (xi )αi (xi+1)1i (1+χ(xi+1)ui )αi+2(xi+2) · · ·αn−1(xn−1)

=−α1(x1) · · ·αi (xi )αi (xi+1)(1+χ(xi+1)ui )uiαi+2(xi+2) · · ·αn−1(xn−1)

=−α1(x1) · · ·αi (xi )αi (xi+1)(1+χ(xi+1)ui )αi+2(xi+2) · · ·αn−1(xn−1)ui .

Here the first equality follows from Proposition 3.17 and the fact that, as an operator,
1i commutes with the operator given by multiplication with a polynomial which is
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symmetric in xi and xi+1. The second equality follows from Lemma 3.16(3). We
thus have shown

−1i (S(x1, . . . , xn−1))= (S(x1, . . . , xn−1))ui ,

which corresponds precisely to the induction step in Definition 3.3, using that
1i = κ−Ci and u2

i =−κui . More precisely, write S=
∑

L̂wuw0w, where the sum
is taken over all w ∈6n . We wish to show that L̂wuw0w =Lwuw0w by an ascending
induction on the length of w. For w= 1 the claim is obviously true. Now fix w 6= 1
and choose i such that wsi is reduced. Consider the coefficient of uw0w in

(Ci − κi )S=−1iS=Sui .

Using that u2
i =−κi ui and the fact that w0wsi <w0w, we deduce that

(Ci − κi )L̂wuw0w = (L̂wsi − κi L̂w)uw0w;

hence Ci L̂wuw0w = L̂wsi uw0w as required. �

Remark 3.18. Note that the computations from [Fomin and Kirillov 1996a] cannot
be done in the formal Demazure algebra of [Hoffnung et al. 2014]. E.g., the equality

(1+ xi+1ui )(1+χ(xi+1)ui )= 1,

which was used to prove Lemma 3.16 above, does not hold, even for the additive
FGL. This is related to the failure of κi1i =1iκi .

As for hyperbolic formal group laws, κi is independent of i (see Example 3.10);
several other parts in [Buch 2002] on the Littlewood–Richardson rule for K0 easily
generalize to hyperbolic formal group laws when working with the generalized
Hecke algebra An(κ) of Definition 3.11. For example, similar to [Buch 2002, p. 41],
it is possible to introduce a stable generalized Schubert polynomial colimL1m×w of
Lw and to try to analyze its behavior along the lines of [Fomin and Kirillov 1996b,
Section 6]. Also, there is a well-defined analog Lν/λ of the polynomial Gν/λ which
is crucial for [Buch 2002, Theorem 3.1], as the construction on pages 41–42 of the
same paper provides a reduced word w rather than just a permutation w. However,
for hyperbolic formal group laws the operators Ci no longer satisfy the classical braid
relation but a twisted version of it, namely Ci Ci+1Ci+µ2Ci=Ci+1Ci Ci+1+µ2Ci+1

[Hoffnung et al. 2014]. This will lead to additional difficulties when arguing
inductively using these Ci and the corresponding geometric operators as, e.g.,
in [Buch 2002, Section 8]. This is also related to the discussion in [Lenart and
Zainoulline 2017, Section 6]. On the other hand, Proposition 3.17 is wrong already
for small values of n and i when replacing the classical braid relation for the ui by
its twisted analog in the definition of An(κ). We hope to return to these questions
in future work.
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4. Some examples

4A. Polynomials representing some smooth Schubert varieties. We first compute
generalized Schubert polynomials for some of the smooth Schubert varieties consid-
ered in Section 2. Let X =Gr(k, n) be a Grassmannian and let λ be a partition of the
form ba. Denote by Gλ the polynomial in�∗(G/B)'L[x1, . . . , xn]/S representing
the pull-back along the canonical quotient map π : G/B→ X of the cobordism
class [Xλ → X ]. Recall [Heller and Malagón-López 2013, Section 3.2.4] that
the induced map π∗ :�∗(Gr(k, n))→�∗(G/B) is a ring monomorphism which
identifies �∗(Gr(k, n)) with an explicit subring of L[x1, . . . , xn]/S. The results in
the sequel may thus be stated in either of these rings. (Recall that there is a standard
map, see, e.g., [Buch 2002, p. 42], from partitions to permutations that corresponds
to π∗ and geometric operators for K -theory and Chow groups.)

Lemma 4.1. In �∗(X), we have [X(n−k)k−1]
a
= [X(n−k)k−a ] and [X(n−k−1)k ]

b
=

[X(n−k−b)k ].

Proof. We need to prove the formula [X(n−k)k−1] · [X(n−k)k−a ] = [X(n−k)k−a−1]. But
the first class is represented by the sub-Grassmannian Xn−k = {Vk ∈ X | E1 ⊂ Vk},
while the second class is represented by X (n−k)k−a∨

= X (n−k)a
= {Vk ∈ X | Ea

⊂ Vk}.
The product is represented by the intersection of these varieties and since E1 and
Ea do not meet we get

Xn−k ∩ X (n−k)a
= {Vk ∈ X | E1⊕ Ea

⊂ Vk}.

This last variety is a GLn(k)-translate of X(n−k)k−a−1={Vk ∈ X | Ea+1⊂Vk}, proving
the first formula. The second one is obtained along the same lines or deduced from
the first one using the isomorphism Gr(k, n)' Gr(n− k, n). �

Proposition 4.2. In �∗(G/B), we have the formulas

G(n−k)a = (xk+1 · · · xn)
k−a and Gbk = (x1 · · · xk)

n−k−b.

Proof. By the previous lemma, we only need to compute the class [X(n−k)k−1] in
�∗(X). Since X(n−k)k−1 is the zero locus of a section of the tautological quotient
bundle whose Chern roots are xk+1, . . . , xn , the first equality of the proposition
follows; see for example the proof of [Levine and Morel 2007, Lemma 6.6.7]. For
the second formula, we just need to remark that X(k−1)k is the zero locus of a global
section of the dual of the tautological subbundle and apply the same method (or
use the isomorphism Gr(k, n)' Gr(n− k, n) again). �

Corollary 4.3. The classes of [X(n−k)a → X ] and [Xbk → X ] are represented by
the same polynomial in any oriented cohomology theory.

Proof. Indeed we have [X(n−k)a → X ] =G(n−k)a and [Xbk → X ] =Gbk , so this is
independent of the FGL. �
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Remark 4.4. We will see in the next subsection that this is no longer the case
for the other classes of smooth Schubert varieties. Indeed, in Proposition 4.5, we
prove that the class of the line in the elliptic cohomology of Gr(2, 4) is given by
x1x2(x1+ x2)−µ1x2

1 x2
2 and therefore depends on the FGL.

4B. Elliptic cohomology of Gr(2, 4). We now present explicit results concerning
elliptic cohomology, i.e., for the hyperbolic FGL, of Gr(2, 4). We compute the
polynomial representatives for all Bott–Samelson classes as well as their products.

Let X = Gr(2, 4) and let λ be a partition. Denote by Lλ the polynomial in
�∗(G/B)'L[x1, x2, x3, x4]/S representing the pull-back along the map G/B→ X
of the cobordism class [X̃λ→ X ], where X̃λ is the Bott–Samelson resolution of Xλ.

Recall the hyperbolic FGL of [Buchstaber and Bunkova 2010, Example 63] as
in Section 3C above. By the universal property of the formal group law of �∗

established in [Levine and Morel 2007], we have a unique morphism of formal
group laws, which yields in particular a ring morphism L→ Z[µ1, µ2]. This map
is called the “Krichever genus” and is studied in detail in [loc. cit.]. In particular,
µi has cohomological degree −i for i = 1, 2. Note that (unlike in the bigraded
case, see, e.g., [Levine et al. 2013]) this always yields an oriented cohomology
theory, as there is no Landweber exactness condition to check. As the theory E∗(−)
is oriented in the sense of [Levine and Morel 2007], the analogs of the above
theorems also hold for E∗(G/B) and E∗(Gr(2, 4)), and the natural transformation
�∗(−)→ E∗(−) commutes in particular with the ring monomorphisms π∗. Below,
we use the notations X̃λ and Lλ for elements in E∗(−) as well.

Proposition 4.5. In E∗(Gr(2, 4)), we have the following formulas:

L(00) = x2
1 x2

2 ,

L(10) = x1x2(x1+ x2)−µ1x2
1 x2

2 ,

L(20) = x2
1 + x1x2+ x2

2 −µ1x1x2(x1+ x2)−µ2x2
1 x2

2 ,

L(11) = x1x2−µ2x2
1 x2

2 ,

L(21) = x1+ x2−µ1x1x2−µ2x1x2(x1+ x2)−µ1µ2x2
1 x2

2 ,

L(22) = 1−µ2(x1+ x2)
2
+µ2

1µ2x2
1 x2

2 .

Proof. Since the fiber of the map π : G/B → Gr(2, 4) is isomorphic to P1
×

P1, the pull-back π∗[X̃λ] ∈ E∗(G/B) of a Bott–Samelson class in Gr(2, 4) is
again a Bott–Samelson class Xw. (Note that this is not true anymore in higher
dimensions.) Moreover in this case, we can explicitly write down the reduced word
w corresponding to λ under π∗. Now we wish to compute Lλ ∈ E∗(Gr(2, 4)) ⊂
E∗(G/B). The above, together with the results of [Hornbostel and Kiritchenko
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2011], implies that both in �∗(G/B) and E∗(G/B), we have

π∗[X(00)] = C1C3(L1), π∗[X(11)] = C1C3C2C1(L1),

π∗[X(10)] = C1C3C2(L1), π∗[X(21)] = C1C3C2C1C3(L1),

π∗[X(20)] = C1C3C2C3(L1), π∗[X(22)] = C1C3C2C1C3C2(L1).

Now the results follow from L1 = x3
1 x2

2 x3 and explicit computations with the Ci

done with the help of a computer. �

We computed everything in elliptic cohomology for sake of simplicity, but a
similar computation can be done in �∗(X).

Remark 4.6. In elliptic cohomology, the multiplication formula for the square of
the hyperplane class in the Bott–Samelson basis is the same as the one in K -theory,
namely L2

(21) = L(20)+L(11)−µ1L(10).
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ON A WEIGHTED RIEMANNIAN MANIFOLD
OF POSITIVE BAKRY–ÉMERY CURVATURE

AND CONVEX BOUNDARY

SAÏD ILIAS AND ABDOLHAKIM SHOUMAN

To the memory of our friend A. El Soufi

In this paper, we study some nonlinear elliptic equations on a compact n-
dimensional weighted Riemannian manifold of positive m-Bakry–Émery–
Ricci curvature and convex boundary. Our main purpose is to find condi-
tions which imply that such elliptic equations admit only constant solutions.
As an application, we obtain weighted Sobolev inequalities with explicit
constants that extend the inequalities obtained by Ilias [1983; 1996] in the
Riemannian setting. In a last part of the article, as applications we derive
a new Onofri inequality, a logarithmic Sobolev inequality and estimates for
the eigenvalues of a weighted Laplacian and for the trace of the weighted
heat kernel.

1. Introduction and main result

Sobolev inequalities with sharp constants play an important role in Riemannian
and conformal geometries. For example, on the unit sphere Sn endowed with its
standard metric, we have (see [Aubin 1982]), for all f ∈ H 2

1 (S
n),

(1-1) ‖ f ‖2L2n/(n−2)(dv) ≤ K (n, 2)‖∇ f ‖2L2(dv)+ vol(Sn)−2/n
‖ f ‖2L2(dv),

where K (n, 2) := 4/(n(n− 2)) vol(Sn)−2/n , dv and vol(Sn) are respectively the
Riemannian measure and the Riemannian volume of Sn . This inequality has been
crucial in the study of the Yamabe problem on closed Riemannian manifolds. It
corresponds to the limiting case in the Sobolev embedding

H 2
1 ↪→ L p

(
2< p ≤ 2̂ := 2n

n−2

)
MSC2010: 35J60, 53C21, 58J32, 58J50, 58J60.
Keywords: Sobolev inequality, Onofri inequality, weighted Riemannian manifold, convex boundary,

manifold with density, weighted Laplacian, drifting Laplacian, Bakry–Émery–Ricci curvature,
Neumann boundary condition, eigenvalues.
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and the constants appearing in it are the best possible constants (see [Aubin 1982;
Lee and Parker 1987; Ilias 1983]). Note that, using a stereographic projection
and the conformal nature of this inequality, one can show its equivalence with the
Euclidean Sobolev inequality (see for instance [Lee and Parker 1987]),

(1-2) ∀ f ∈ H 2
1 (R

n), ‖ f ‖2L2n/(n−2)(dx) ≤ K (n, 2)‖∇ f ‖2L2(dx),

where dx is the Lebesgue measure and K (n, 2) is the best constant in this Euclidean
Sobolev inequality [Aubin 1982]. The conformal nature of inequality (1-1) can also
be used to deduce the following Sobolev inequality on the hyperbolic space:

(1-3) ‖ f ‖2L2n/(n−2)(dx) ≤ K (n, 2)‖∇ f ‖2L2(dx)− vol(Sn)−2/n
‖ f ‖2L2(dx)

for all f ∈ H 2
1 (H

n) (see [Hebey 1996] for another proof of this inequality).
Beckner [1993] extended the spherical inequality (1-1) to all the Sobolev expo-

nents, proving that for all p ∈ (2, 2̂],

(1-4) ‖ f ‖2L p(dv) ≤ vol(Sn)
−

p−2
p

(
p− 2

n
‖∇ f ‖2L2(dv)+‖ f ‖2L2(dv)

)
.

This inequality is attributed in the literature to Beckner but it was proved in 1991
independently by Bidaut-Véron and Véron [1991].

In 1983, the first author generalized the spherical inequality (1-1) to any closed
Riemannian manifold with positive Ricci curvature, see [Ilias 1983]. In fact,
if (M, g) is a compact n-dimensional Riemannian manifold of Ricci curvature
bounded-below by a positive constant k, then every function f ∈ H 2

1 (M) satisfies

(1-5) ‖ f ‖2L2n/(n−2)(dvg)
≤ volg(M)−2/n

(
4(n− 1)

n(n− 2)k
‖∇ f ‖2L2(dvg)

+‖ f ‖2L2(dvg)

)
,

where dvg and volg(M) are respectively the Riemannian measure and the Riemann-
ian volume of (M, g).

This last inequality is derived from (1-1) using the Levy–Gromov isoperimetric
inequality and an adapted symmetrization. Moreover, we observe that if we use
the inequality (1-4) instead of (1-1), the same arguments of symmetrization extend
(1-5) for all the Sobolev exponents p ∈ (2, 2̂].

Bidaut-Véron and Véron [1991] were able to give another proof of the inequal-
ity (1-5). Their proof is based on the Bochner formula and a uniqueness result for
some nonlinear elliptic equations strongly related to that Sobolev inequality. In fact,
they improve a technique developed by Gidas and Spruck [1981]. The technique
developed by Gidas and Spruck seems mysterious, but it is in fact inspired by that
of Obata in his study of the unicity of an Einstein metric in a conformal class [Yano
and Obata 1970]. And as we mentioned above, Bidaut-Véron and Véron [1991]
obtained simultaneously the Beckner inequality (1-4). Note that, Bakry and Ledoux
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[1996] obtained another important and different proof of the inequality (1-5), and
this “probabilistic” proof, generalizes in fact, that inequality to the so-called Markov
generators. Another recent generalization of the inequality (1-5) to metric measured
spaces is due to Profeta [2015].

A natural question that can be asked is

“Is there a similar Sobolev inequality when the manifold has a boundary?”

For the hemisphere Sn
+

endowed with its standard metric, using the exact value of its
relative Yamabe infimum (see for instance [Escobar 1988; 1992]), we immediately
get,

(1-6) ‖ f ‖2L2n/(n−2)(dv) ≤ vol(Sn
+
)−2/n

(
4

n(n−2)
‖∇ f ‖2L2(dv)+‖ f ‖2L2(dv)

)
for all f ∈ H 2

1 (S
n
+
).

In 1996, after a generalization of the method used by Bidaut-Véron and Véron,
the first author [Ilias 1996] gave an answer to the above question by obtaining the
same inequality as (1-5) for manifolds with convex boundary. More precisely, he
proved that, for a compact Riemannian manifold (M, g) with convex boundary and
of Ricci curvature bounded below by a constant k > 0, we have for any p ∈ (2, 2̂]
and any f ∈ H 2

1 (M),

(1-7) ‖ f ‖2L p(dvg)
≤ volg(M)

−
p−2

p

(
(n− 1)(p− 2)

nk
‖∇ f ‖2L2(dvg)

+‖ f ‖2L2(dvg)

)
.

The purpose of the present paper is to adapt the technique that has been used in
[Ilias 1996] to the setting of weighted Riemannian manifolds with positive Bakry–
Émery–Ricci curvature. More precisely, for a compact n-dimensional weighted
Riemannian manifold (Mn, g, σ ) of convex boundary and of m-Bakry–Émery–
Ricci curvature (for some m ∈ [n,∞)) bounded below by a positive constant k,
we prove the analogue of (1-7) for any p ∈ (2, 2∗ := 2 m/(m − 2)], where the
constant of the gradient term is (m− 1)(p− 2)/(mk). In fact, we prove a stronger
inequality where the constant of the gradient term depends on m, p, k, and the first
nonzero Neumann eigenvalue λh

1 of the weighted Laplacian (see Theorem 3.6 for
more details). Concerning the limiting case p = 2∗, our result shows that for any
f ∈ H 2

1 (dσ),

(1-8) ‖ f ‖2L2m/(m−2)(dσ) ≤ volh(M)−2/m
(

4(m− 1)
m(m− 2)k

‖∇ f ‖2L2(dσ)+‖ f ‖2L2(dσ)

)
,

where dσ is the weighted measure and volh(M) is the volume of M with respect
to dσ (see Corollary 3.7). These inequalities are a consequence of two uniqueness
results for some nonlinear elliptic equations involving the weighted Laplacian
(see Propositions 3.2 and 3.4) which are respectively generalizations to weighted
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manifolds with convex boundary of the result obtained by the first author [Ilias
1996] and that obtained by Licois and Véron [1995] (independently by Fontenas
[1997]) for closed manifolds.

Using inequality (1-8) we can extend many Riemannian results to weighted
Riemannian manifolds. Without being exhaustive, we will treat only applications
which seems to us the most important. More precisely, we can obtain an upper
bound with explicit constants (depending on the Sobolev constants) for the trace of
the weighted heat kernel (see Section 4) and deduce therefrom a lower bound for
the eigenvalues of the weighted Laplacian.

We also derive from our Sobolev inequalities, the analogue of the Onofri inequal-
ity. In fact, we prove in Corollary 4.1 that for any surface M of convex boundary
and of Gaussian curvature bounded below by a positive constant k, it holds that

log
(

1
volg(M)

∫
M

eϕ dvg

)
≤

1
volg(M)

(
1

4k

∫
M
|∇ϕ|2 dvg +

∫
M
ϕ dvg

)
for all ϕ ∈ H 2

1 (M). In the case of the unit sphere and the unit hemisphere, we
recover the classical Onofri inequalities (see [Onofri 1982; Chang and Yang 1988;
Osgood et al. 1988]). As another consequence of our Sobolev inequalities, we
obtain a logarithmic Sobolev inequality (Corollary 4.3) for weighted Riemannian
manifolds with boundary.

This paper is organized as follows. In Section 2, we establish two elementary
lemmas (Lemmas 2.1 and 2.2). The uniqueness results (Propositions 3.2 and 3.4) are
discussed in Section 3 as well as Theorem 3.6 and Corollary 3.7. Finally, Section 4
is dedicated to some applications.

2. Preliminaries

Throughout the paper, we consider (Mn, g) as a smooth compact n-dimensional
Riemannian manifold of boundary ∂M , endowed with a measure dσ := σdvg,
where σ = e−h is a positive density (h is a smooth real-valued function on M)
and dvg is the Riemannian measure associated to the metric g. We denote by
volg(M) and volh(M) respectively the volume of M with respect to dvg and that
with respect to dσ . Such a triplet (M, g, σ ) is known in the literature as a weighted
Riemannian manifold, a manifold with density, a Bakry–Émery manifold, or a
Riemannian measure space. The associated weighted Laplacian 1h (also called
drifted Laplacian, h-Laplacian or Bakry–Émery Laplacian) is given by

(2-1) 1hu =1u− 1
σ
〈∇σ,∇u〉 =1u+〈∇h,∇u〉,

where 1 and ∇ are respectively the nonnegative Laplacian and the gradient with
respect to g. It is self-adjoint on the space of square integrable functions on M



SOBOLEV INEQUALITIES ON A WEIGHTED RIEMANNIAN MANIFOLD 427

with respect to the weighted measure dσ , henceforth L2(dσ). We will denote
by H 2

1 (dσ), the Sobolev space of L2(dσ) functions, such that the norm of their
gradient is also in L2(dσ). Note that, since the manifold is compact and h is smooth,
this Sobolev space coincides with the Sobolev space H 2

1 (M) of the Riemannian
manifold (M, g), and these two spaces differ only in their norms.

The m-dimensional Bakry–Émery–Ricci curvature tensor (where m ∈ [n,∞)) is
a modified Ricci tensor more suitable to control the geometry of weighted manifolds
and is defined by

(2-2) Ricm
h := Ric+D2h− 1

m−n
dh⊗ dh

where D2 is the Hessian operator on M and Ric is the usual Ricci curvature
of (M, g). The equation Ricm

h = κg correspond to the so-called quasi-Einstein
metric, which has been studied by many authors (see for instance [Case et al. 2011]).
When m =∞, (2-2) gives the tensor Rich =Ric+D2h introduced by Lichnerowicz
[1970; 1971/72] and independently by Bakry and Émery [1985]. For m = n, (2-2)
makes sense only when the function h is constant and so Ricm

h is the usual Ricci
tensor of M and 1h in this case is nothing but the Laplace–Beltrami operator 1
of M .

Let {e1, . . . , en} be a local orthonormal frame of M such that at p ∈ ∂M , the
vectors e1, . . . , en−1 are tangent to the boundary and the remaining vector en := ν

is the outward unit normal vector to ∂M . The second fundamental form of ∂M at
p ∈ ∂M is defined as

II(X, Y ) := 〈AX, Y 〉 = 〈∇Xν, Y 〉

for any X, Y ∈ Tp(∂M), where A is the Weingarten endomorphism of Tp M . The
mean curvature H of ∂M is defined as the trace of the second fundamental form II:

H =
n−1∑
i=1

II(ei , ei ).

In the sequel, we will need the following two lemmas. The first one is nothing
but a little modification of the Bochner–Lichnerowicz–Weitzenböck formula for
functions on weighted Riemannian manifolds which generalizes the Reilly identity
([Reilly 1977; Ma and Du 2010]). The version we present here is better suited to
our purpose and its proof is a straightforward adaptation of that given by the first
author [Ilias 1996] to the weighted setting.

Lemma 2.1 (generalized Reilly formula). Let (Mn, g, σ ) be a compact weighted
Riemannian manifold with boundary ∂M. For any two smooth functions u and v on
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M , we have∫
M
v
(
|D2u|2− (1hu)2

)
dσ

=−

∫
M

{
(1hu)〈∇u,∇v〉+ 1

2 |∇u|21hv+Rich(∇u,∇u)v
}

dσ

+

∫
∂M

{
−

1
2 |∇u|2 ∂v

∂ν
+

〈
∇
∂
(
∂u
∂ν

)
,∇∂u

〉
v+ (1∂u)

(
∂u
∂ν

)
v

− II(∇∂u,∇∂u)v− Hv
(
∂u
∂ν

)2
+〈∇u,∇h〉v

(
∂u
∂ν

)}
dσ,

where ∇∂ and 1∂ denote the gradient and the Laplacian of ∂M and for the sake of
simplicity, we still denote by dσ the induced weighted measure on ∂M.

Proof. From the classical Riemannian Bochner formula applied to u, one can easily
deduce the following weighted one (see for instance [Setti 1998; Bakry and Émery
1985]):

(2-3) 〈∇(1hu),∇u〉 = |D2u|2+ 1
21h(|∇u|2)+Rich(∇u,∇u).

Multiplying (2-3) by v and integrating over M with respect to dσ , we get:∫
M
v〈∇(1hu),∇u〉 dσ

=

∫
M
v|D2u|2 dσ + 1

2

∫
M
v1h(|∇u|2) dσ +

∫
M
v Rich(∇u,∇u) dσ.

Integration by parts in the left hand side and in the second term of the right hand
side gives

(2-4)
∫

M
v
(
|D2u|2− (1hu)2

)
dσ

=−

∫
M

{
(1hu)〈∇u,∇v〉+ 1

2 |∇u|21hv+Rich(∇u,∇u)v
}

dσ

+

∫
∂M

{
−

1
2 |∇u|2 ∂v

∂ν
+ (1hu)∂u

∂ν
v+ 1

2
∂(|∇u|2)
∂ν

v

}
dσ.

Now in the calculations that follow (at a point x ∈ ∂M), we will use an orthonormal
local frame {e1, . . . , en} such that e1, . . . , en−1 are tangent to the boundary and
en = ν is the outward unit normal to ∂M . A direct calculation of the last two terms
in (2-4) at a point x ∈ ∂M yields

(2-5) (1hu)
(
∂u
∂ν

)
v+ 1

2
∂(|∇u|2)
∂ν

v

=

n−1∑
i=1

(
D2u(en, ei )ei (u)− D2u(ei , ei )en(u)

)
v+〈∇h,∇u〉

(
∂u
∂ν

)
v
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and

(2-6)

n−1∑
i=1

D2u(en, ei )ei (u)=
〈
∇
∂
(
∂u
∂ν

)
,∇∂u

〉
− II(∇∂u,∇∂u),

n−1∑
i=1

D2u(ei , ei )en(u)=−(1∂u)
(
∂u
∂ν

)
+ H

(
∂u
∂ν

)2
.

After incorporating the two identities of (2-6) in (2-5), and the obtained result in
(2-4), we conclude the proof of Lemma 2.1. �

The second lemma, which has an elementary proof, arises naturally when we
need to estimate the Hessian D2u in terms of 1hu (see for example [Li 2005] for a
proof):

Lemma 2.2. Let u be a smooth function on M. For every m ≥ n, we have

(2-7) |D2u|2+Rich(∇u,∇u)≥ 1
m
(1hu)2+Ricm

h (∇u,∇u).

Moreover, the equality in (2-7) holds if and only if

D2u =−1
n
(1u)g and 1hu = m

m−n
〈∇h,∇u〉.

3. Weighted Sobolev inequalities

Let (M, g, σ ) be a compact weighted Riemannian manifold of dimension n ≥ 2.
In this section, we seek conditions that guarantee the uniqueness of the positive
solution of a nonlinear elliptic PDE (see (3-17)). This is an important step towards
the Sobolev inequality.

We first start by giving the keystone of both uniqueness results (Propositions 3.2
and 3.4):

Proposition 3.1. Let q > 1, λ > 0 and ϕ be a positive solution of the following
system

(3-1)

{
1hϕ+ λϕ = ϕ

q in M,
∂ϕ

∂ν
= 0 on ∂M.

Put

(3-2) J := |D2u|2− 1
m
(1hu)2+Rich(∇u,∇u).

(i) For any two nonzero real numbers α and β, we have

(3-3)
∫

M
uβ J dσ +

∫
∂M

uβII(∇∂u,∇∂u) dσ

= A1

∫
M

uβ+(q−1)/α
|∇u|2 dσ + B1

∫
M

uβ |∇u|2 dσ + C1

∫
M

uβ−2
|∇u|4 dσ,
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where

A1 =

{
m−1

m
(αβ + q)− 3

2αβ

}
,

B1 =

{
−λ

m−1
m

(αβ + 1)+ 3
2αβλ

}
,

C1 =

{
m−1

m

(
α−1
α

)2
+

3
2β
(
α−1
α

)
+
β(β−1)

2

}
.

(ii) For any two nonzero real numbers α and β 6=−2, we have the following identity:

(3-4)
∫

M
uβJ dσ +

∫
∂M

uβII(∇∂u,∇∂u) dσ

= A2

∫
M

(
1hu(β+2)/2)2 dσ + B2

∫
M

uβ |∇u|2 dσ +C2

∫
M

uβ−2
|∇u|4 dσ,

where

A2 =−
2

m(β+2)2
{
(m+ 2)αβ

q
− 2(m− 1)

}
,

B2 =
αβ

q

(m+2
2m

)
λ(q − 1),

C2 =
αβ

q

[
m+2
2m

{(
β

4
+
α−1
α

)(
β +

q
α

)
+

(
α−1
α

)2
}
+

q(β−4)
8α

]
,

while if β =−2, we have

(3-5)
∫

M
u−2 J dσ +

∫
∂M

u−2II(∇∂u,∇∂u) dσ

= A3

∫
M
(1h ln u)2 dσ + B3

∫
M
|∇ ln u|2 dσ +C3

∫
M
|∇ ln u|4 dσ,

where

A3 =
1
m

{
(m+ 2)

α

q
+ (m− 1)

}
,

B3 =
−2α

q

(m+2
2m

)
λ(q − 1),

C3 =−
2α
q

[
m+2
2m

{(1
2
−

1
α

)(
−2+ q

α

)
+

(
α−1
α

)2
}
−

3q
4α

]
.

Proof. Let ϕ be a positive solution of (3-1). Let α and β be two nonzero real
numbers to be determined later and take u = ϕα and v = uβ . Using (3-1), a direct
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calculation gives

(3-6)

1hu = αu1+(q−1)/α
−αλu−

(
α−1
α

)
|∇u|2

u
in M,

∂u
∂ν
= 0 on ∂M.

Applying Lemma 2.1 with u and v as above, and using (3-6), we obtain

(3-7)
∫

M
uβ
(
|D2u|2− 1

m
(1hu)2+Rich(∇u,∇u)

)
dσ

=
m−1

m

∫
M

uβ(1hu)2 dσ −
∫

M
(1hu)〈∇u,∇uβ〉 dσ

−
1
2

∫
M
|∇u|21huβ dσ −

∫
∂M

II(∇∂u,∇∂u)uβ dσ,

which is equivalent to

(3-8)
∫

M
uβJ dσ +

∫
∂M

II(∇∂u,∇∂u)uβ dσ

=
m−1

m

∫
M

uβ(1hu)2 dσ − 3
2β

∫
M

uβ−1(1hu)|∇u|2 dσ

+
β(β−1)

2

∫
M

uβ−2
|∇u|4 dσ.

Proof of (i). To prove identity (3-3), let us calculate the first two terms on the right
hand side of (3-8). First:

I1 :=
m−1

m

∫
M

uβ(1hu)2 dσ

=
m−1

m

∫
M

uβ
(
αu1+(q−1)/α

−αλu−
(
α−1
α

)
|∇u|2

u

)
1hu dσ

= α
m−1

m

(
β + 1+ q−1

α

)∫
M

uβ+(q−1)/α
|∇u|2 dσ

−αλ
m−1

m
(β + 1)

∫
M

uβ |∇u|2 dσ

−
m−1

m

(
α−1
α

)∫
M

uβ−1
|∇u|2

(
αu1+(q−1)/α

−αλu−
(
α−1
α

)
|∇u|2

u

)
dσ

=
m−1

m
(αβ + q)

∫
M

uβ+(q−1)/α
|∇u|2 dσ − λm−1

m
(αβ + 1)

∫
M

uβ |∇u|2 dσ

+
m−1

m

(
α−1
α

)2
∫

M
uβ−2
|∇u|4 dσ,
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where we used integration by parts with respect to dσ . A similar type of calculation
yields

I2 := −
3
2β

∫
M

uβ−1(1hu)|∇u|2 dσ

= −
3
2β

∫
M

uβ−1
(
αu1+(q−1)/α

−αλu−
(
α−1
α

)
|∇u|2

u

)
|∇u|2 dσ

= −
3
2αβ

∫
M

uβ+(q−1)/α
|∇u|2 dσ + 3

2αβλ

∫
M

uβ |∇u|2 dσ

+
3
2β
(
α−1
α

)∫
M

uβ−2
|∇u|4 dσ.

Incorporating I1 and I2 in (3-8), we complete the proof of (3-3) by deducing that

(3-9)
∫

M
uβJ dσ +

∫
∂M

II(∇∂u,∇∂u)uβ dσ

=

{
m−1

m
(αβ + q)− 3

2αβ

}∫
M

uβ+(q−1)/α
|∇u|2 dσ

+

{
−λ

m−1
m

(αβ + 1)+ 3
2αβλ

}∫
M

uβ |∇u|2 dσ

+

{
m−1

m

(
α−1
α

)2
+

3
2β
(
α−1
α

)
+
β(β−1)

2

}∫
M

uβ−2
|∇u|4 dσ.

Proof of (ii). Let us now give the proof of (3-4). The main idea here is to replace
the second term on the right hand side of (3-8)

(
i.e.,

∫
M uβ−1(1hu)|∇u|2 dσ

)
by an

expression in which the sign is controllable. For that, we multiply the first equation
of (3-6) by uβ−1

|∇u|2, and we obtain after integrating with respect to dσ ,

(3-10)
∫

M
uβ−1(1hu)|∇u|2 dσ

= α

∫
M
(uβ+(q−1)/α

− λuβ)|∇u|2 dσ −
(
α−1
α

)∫
M

uβ−2
|∇u|4 dσ.

Similarly, multiplying the same equation of (3-6) by uβ1hu and integrating by
parts yields

(3-11)
∫

M
uβ(1hu)2 dσ

=−
α−1
α

∫
M

uβ−1(1hu)|∇u|2 dσ +α
∫

M

(
uβ+1+(q−1)/α

− λuβ+1)1hu dσ

=−
α−1
α

∫
M

uβ−1(1hu)|∇u|2 dσ+α
(
β+1+q−1

α

)∫
M

uβ+(q−1)/α
|∇u|2 dσ

−αλ(β + 1)
∫

M
uβ |∇u|2 dσ.
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In order to eliminate the term∫
M

uβ+(q−1)/α
|∇u|2dσ,

we multiply (3-10) by (β + 1+ (q − 1)/α) and subtract it from (3-11) to get

(3-12) λ(q − 1)
∫

M
uβ |∇u|2 dσ

=−

(
β +

q
α

)∫
M

uβ−1(1hu)|∇u|2 dσ +
∫

M
uβ(1hu)2 dσ

−

(
α−1
α

)(
β + 1+ q−1

α

)∫
M

uβ−2
|∇u|4 dσ.

On the other hand, by a straightforward calculation, we have for β 6= −2,

(3-13)
∫

M
uβ−1(1hu)|∇u|2 dσ =− 4

β(β+2)2

∫
M
(1hu(β+2)/2)2 dσ

+
β

4

∫
M

uβ−2
|∇u|4 dσ + 1

β

∫
M

uβ(1hu)2 dσ.

Now, we replace
∫

M uβ−1(1hu)|∇u|2 dσ by its expression given in (3-13) in the
equations (3-8) and (3-12) respectively. So (3-8) gives

(3-14)
∫

M
uβJ dσ +

∫
∂M

uβII(∇∂u,∇∂u) dσ

=−
m+2
2m

∫
M

uβ(1hu)2 dσ + 6
(β+2)2

∫
M
(1hu(β+2)/2)2 dσ

+
β(β−4)

8

∫
M

uβ−2
|∇u|4 dσ,

and the Equation (3-12) gives

(3-15) λ(q − 1)
∫

M
uβ |∇u|2 dσ

=
−q
αβ

∫
M

uβ(1hu)2 dσ +
4(β + q/α)
β(β + 2)2

∫
M
(1hu(β+2)/2)2 dσ

−

(
β

4

(
β +

q
α

)
+

(
α−1
α

)(
β + 1+ q−1

α

))∫
M

uβ−2
|∇u|4 dσ.

Thus in order to eliminate the term∫
M

uβ(1hu)2 dσ

from (3-14) and (3-15), we multiply (3-14) by (q/αβ) and (3-15) by (m+ 2)/2m
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and subtract them to obtain

(3-16) A
∫

M
uβ−2
|∇u|4 dσ

=−
q
αβ

(∫
M

uβ J dσ+
∫
∂M

uβII(∇∂u,∇∂u) dσ
)
−B

∫
M
(1hu(β+2)/2)2 dσ

+

(m+2
2m

)
λ(q − 1)

∫
M

uβ |∇u|2 dσ,

where the expressions of A and B are given by

A =−
m+ 2

2m

{(
β

4
+
α−1
α

)(
β +

q
α

)
+

(
α−1
α

)2
}
−

q(β − 4)
8α

,

B =
2

m(β + 2)2

{
(m+ 2)− 2(m− 1) q

αβ

}
This completes the proof of (3-4) in the case β 6= −2.

Concerning the case where β =−2, the second term on the right hand side of
(3-16) can be written as

B
∫

M
(1hu(β+2)/2)2 dσ

=
1

2m

{
(m+ 2)− 2(m− 1)

q
αβ

}∫
M

(
1h

(
u(β+2)/2

− u0

(β + 2)/2

))2

dσ,

and when β tends to −2 in (3-16), we obtain (3-5). Therefore the proof of
Proposition 3.1 is completed. �

The first uniqueness result in this paper is the following:

Proposition 3.2. Let (Mn, g, σ ) be a compact weighted Riemannian manifold of
dimension n ≥ 2 with convex boundary ∂M. Assume that for some m ∈ [n,∞), the
m-Bakry–Émery–Ricci curvature satisfies Ricm

h ≥ kg, for a positive constant k. Let
q > 1, λ > 0 and ϕ be a positive solution of the following system:

(3-17)

{
1hϕ+ λϕ = ϕ

q in M,
∂ϕ

∂ν
= 0 on ∂M.

Suppose that

q ≤
m+ 2
m− 2

with no restriction on q if m = 2,

λ≤
mk

(m− 1)(q − 1)

and one of these two inequalities is strict, then ϕ is constant equal to λ1/(q−1).
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In addition, if (M, g) is of constant scalar curvature R, nonisometric to the
hemisphere Sn

+
(
√

n(n− 1)/R), then

λ=
mk

(m− 1)(q − 1)
and q =

m+ 2
m− 2

ensure that ϕ is constant equal to λ1/(q−1).

Remark 3.3. • In the last Proposition, one can consider more generally an equation
of the form

1hϕ+ λϕ = µϕ
q ,

where µ is a positive constant. In fact, if we take ϕ̃ = µ1/(q−1) ϕ, we can easily
obtain 1hϕ̃+ λϕ̃ = ϕ̃

q .

• The solutions in the spherical case: In the Riemannian case (i.e., the case m = n),
the solutions are well known and they are related to the metrics conformal to the
standard metric on the sphere, respectively the hemisphere (see for instance [Aubin
1982; Escobar 1990; 1992; Lee and Parker 1987]).

• Unicity of an Einstein metric in a conformal class: For (Mn, g) a compact Einstein
manifold of totally geodesic boundary ∂M , Escobar [1990] proved that if g1 is a
metric conformally related to g with constant scalar curvature and for which ∂M is
minimal, then g1 is Einstein. Moreover, if (Mn, g) is not conformally equivalent to
Sn
+

, then g1 = cg for some positive constant c. In fact, one can easily see that if
g1 = u4/(n−2)g, then the scalar curvatures Rg and Rg1 satisfy1u+ n−2

4(n−1)
Rgu = n−2

4(n−1)
Rg1u(n+2)/(n−2) in M,

∂u
∂ν
= 0 on ∂M.

Now, when the scalar curvatures are positive (this is the difficult part in Escobar’s
result), using Proposition 3.2 one can easily deduce that u is constant. Note that
Escobar’s result is the generalization of the classical uniqueness result of Obata for
Einstein compact manifolds without boundary (see for instance [Obata 1962]).

The situation is more complicated in the case of weighted Riemannian manifolds
as one can see, for instance, in [Case et al. 2011; Case 2015; Chang et al. 2006;
2011]. Nevertheless, we expect that there is an analogue of Escobar’s theorem for
weighted Riemannian manifolds.

Proof of Proposition 3.2. One can easily infer from (3-3) the following:∫
M

uβ
(
J −Ricm

h (∇u,∇u)
)

dσ +
∫
∂M

II(∇∂u,∇∂u)uβ dσ

= A1

∫
M

uβ+(q−1)/α
|∇u|2 dσ + B1

∫
M

uβ |∇u|2 dσ

+C1

∫
M

uβ−2
|∇u|4 dσ −

∫
M

uβ Ricm
h (∇u,∇u).
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Using the hypothesis that the m-Bakry–Émery–Ricci curvature satisfies Ricm
h ≥ kg,

and the fact that ∂M is convex (i.e., II≥ 0), we obtain:

(3-18)
∫

M
uβ
(
J −Ricm

h (∇u,∇u)
)

dσ

≤ A1

∫
M

uβ+(q−1)/α
|∇u|2 dσ+(B1−k)

∫
M

uβ |∇u|2 dσ+C1

∫
M

uβ−2
|∇u|4 dσ,

where A1, B1 and C1 are as given in Proposition 3.1. Since Lemma 2.2 asserts that
J is bounded below by Ricm

h (∇u,∇u), it suffices to show the existence of α and β
such that A1≤ 0, (B1−k)≤ 0, C1≤ 0 and at least one of these three inequalities is
strict, in order to conclude from Equation (3-18) that u (and hence ϕ) is a constant.

By arguing as in [Ilias 1996], we see that if

q ≤
m+ 2
m− 2

and λ≤
mk

(m− 1)(q − 1)

then there exist α, β such that A1, (B1− k),C1 ≤ 0. Moreover, if one of the above
two inequalities is strict, we may choose α, β such that A1, (B1− k),C1 ≤ 0 and at
least one of these inequalities is strict.

Now suppose that (M, g) is of constant scalar curvature R, nonisometric to the
hemisphere Sn

+
(
√

n(n− 1)/R). If q = (m+2)/(m−2) and λ=mk/(m−1)(q−1),
then one can choose α and β such that A1 = B1− k = C1 = 0. From (3-18) we
conclude that J −Ricm

h (∇u,∇u)= 0, which is equivalent by Lemma 2.2, to

(3-19) D2u =−1
n
(1u)g and 1hu = m

m−n
〈∇u,∇h〉.

Suppose that u is not constant and consider the vector field Y = ∇u. First of
all, Y is a conformal vector field because the first equality of (3-19) is nothing but
LY g = (2/n)ρg, where ρ = div Y =−1u. Since Y is conformal and R is constant,
we have (see equation (1.11) of [Yano and Obata 1970])

LY (R)= Y (R)= 2(n−1)
n

1ρ−
2
n
ρR = 0,

and consequently

(3-20) 1u−
R

n− 1
u = constant.

We immediately deduce from (3-20) that ∂
∂ν
(1u) |∂M= 0.

Differentiating (3-20) two times we get

(3-21)

D2ρ+
R

n(n−1)
ρg = 0 in M,

∂ρ

∂ν
= 0 on ∂M.
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Since we have supposed that u is not constant, ρ =−1u is not identically zero on
M and we can deduce from Escobar’s theorem [1990, Theorem 4.2] that (M, g)
is isometric to the upper hemisphere Sn

+
(
√

n(n− 1)/R), which contradicts our
hypothesis. Thus u (hence ϕ) is constant. �

Now, we shall prove another kind of uniqueness result (under different conditions
on λ) for the same nonlinear elliptic PDE (3-17) which generalizes a result of Licois
and Véron [1995]. This result involves the first nonzero eigenvalue λh

1 of the
weighted Laplacian 1h under the Neumann boundary condition.

Proposition 3.4. Let (Mn, g, σ ) be a compact weighted Riemannian manifold of
dimension n ≥ 2 with convex boundary ∂M. Assume that for some m ∈ [n,∞), the
m-Bakry–Émery–Ricci curvature satisfies Ricm

h ≥ kg, for a positive constant k. Let
q > 1, λ > 0 and ϕ be a positive solution of the following system

(3-22)

{
1hϕ+ λϕ = ϕ

q in M,
∂ϕ

∂ν
= 0 on ∂M.

Suppose that

(3-23) q ≤
m+ 2
m− 2

with no restriction on q if m = 2,

(3-24) (q − 1)λ≤ λh
1 +

qm(m− 1)
q +m(m+ 2)

(
k−

m− 1
m

λh
1

)
and one of these two inequalities is strict, then ϕ is constant equal to λ1/(q−1).

In addition, if (M, g) is of constant scalar curvature R nonisometric to the
hemisphere Sn

+
(
√

n(n− 1)/R), then

(q − 1)λ= λh
1 +

qm(m− 1)
q +m(m+ 2)

(
k−

m− 1
m

λh
1

)
and q =

m+ 2
m− 2

ensure that ϕ is constant equal to λ1/(q−1).

Remark 3.5. We observe that the term (k − ((m − 1)/m)λh
1) in Equation (3-24)

is always nonpositive and this is due to the Escobar–Lichnerowicz theorem (see
[Escobar 1990, Theorem 4.3]) generalized to weighted Riemannian manifolds with
convex boundary and satisfying Ricm

h ≥ kg> 0 (see, for example, [Li and Wei 2015,
Theorem 3] or [Ma and Du 2010, Theorem 2]). Moreover, (3-24) can be rewritten
in the following form:

(3-25) (q − 1)λ≤
(

1−
q(m− 1)2

q +m(m+ 2)

)
λh

1 +

(
qm(m− 1)

q +m(m+ 2)

)
k.
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The coefficient of λh
1 in (3-25) is positive if q < (m+ 2)/(m− 2) and equal to zero

if q = (m+ 2)/(m− 2).

Proof of Proposition 3.4. From (3-4) of Proposition 3.1, we easily infer for β 6= −2,

(3-26) A
∫

M
uβ−2
|∇u|4 dσ

=−
q
αβ

(∫
M

uβ J dσ+
∫
∂M

uβII(∇∂u,∇∂u) dσ
)
−B

∫
M
(1hu(β+2)/2)2 dσ

+

(m+2
2m

)
λ(q − 1)

∫
M

uβ |∇u|2 dσ,

where the expressions of A and B are given by

A =−m+2
2m

{(
β

4
+
α−1
α

)(
β +

q
α

)
+

(
α−1
α

)2
}
−

q(β−4)
8α

,

B = 2
m(β+2)2

{
(m+ 2)− 2(m− 1)

q
αβ

}
.

The idea is to replace the integral associated to B by one of the form
∫

M uβ |∇u|2 dσ .
Since ∂u

∂ν
= 0 over the boundary ∂M , the variational characterization of λh

1 yields

(3-27)

∫
M
(1hu(β+2)/2)2dσ ≥ (β+2)2

4
λh

1

∫
M

uβ |∇u|2 dσ for β 6= −2,∫
M
(1h ln u)2 dσ ≥ λh

1

∫
M
|∇ ln u|2 dσ for β =−2.

Therefore if we can find a couple of nonzero real numbers (α, β) such that

(3-28) αβ > 0, A = 0 and B = 0,

then by using the relation (3-27), the hypothesis on the m-Bakry–Émery–Ricci
curvature and the convexity of ∂M , we deduce from (3-26),

(3-29)
0≤ A

∫
M

uβ−2
|∇u|4 dσ

≤
−q
αβ

∫
M

uβ
(
J −Ricm

h (∇u,∇u)
)

dσ +C
∫

M
uβ |∇u|2 dσ,

where

C :=
−q
αβ

k− (β+2)2

4
λh

1 B+
(m+2

2m

)
(q − 1)λ

=
m+2
2m

(λ(q − 1)− λh
1)−

q
αβ

(
k− m−1

m
λh

1

)
,

and using the hypothesis (3-23) as well as (3-24) concerning λ, we can find a
couple among the (α, β) satisfying the conditions (3-28) such that C is nonpositive.
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Moreover, when the equality is not achieved in (3-23) or in (3-24) we will be able
to conclude that u is constant.

For β =−2, an immediate modification where we use identity (3-5) instead of
(3-4) permits us to conclude.

In the rest of the proof we will show how to find such a couple (α, β) when
β 6= −2. First we simplify the expressions of A, B and C , by setting

X = −1
αβ
, δ =

1
β
+

1
2
, and Ã = 2m

(m+2)β2 A

to obtain

Ã =−δ2
+ 2q−(m+2)

m+2
Xδ+ (q − 1)X2

+
(m−1)Xq
2(m+2)

,

B = 2
m(β+2)2

(
(m+ 2)+ 2(m− 1)Xq

)
,

C = m+2
2m

(
λ(q − 1)− λh

1
)
+ Xq

(
k− m−1

m
λh

1

)
,

and then we maximize X in the interval

I :=
[
−

m+2
2(m−1)q

, 0
)

(which ensures that B ≥ 0 and αβ > 0) such that

Ã =−δ2
+ 2q−(m+2)

m+2
Xδ+ (q − 1)X2

+
(m−1)
2(m+2)

Xq ≥ 0.

The derivative of Ã with respect to δ is given by

d Ã
dδ
=−2

(
δ−

q − (m+ 2)
m+ 2

X
)
.

Therefore the maximum of Ã with respect to δ is achieved for

δ0 :=
q − (m+ 2)

m+ 2
X

and thus:

Ã(δ0, X)= δ2
0 + (q − 1)X2

+
(m− 1)
2(m+ 2)

Xq

=

(
q − 1+

(
q − (m+ 2)

m+ 2

)2)
X2
+
(m− 1)

2(m+ 2)
Xq,

which admits a nontrivial negative solution

X0 =−
(m− 1)(m+ 2)

2
(
q +m(m+ 2)

) .
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Using the hypothesis that q ≤ (m+ 2)/(m− 2), one has X0 ∈ I and therefore

Ã(δ0, X)≥ 0 on
[
−

m+2
2(m−1)q

, X0

]
⊆ I.

Moreover, a direct computation of C at the specific value X = X0 gives

C(X0)=
m+ 2

2m

(
λ(q − 1)− λh

1 −
qm(m− 1)

q +m(m+ 2)

(
k− m−1

m
λh

1

))
.

Thus, if we suppose that

(3-30) q ≤
m+ 2
m− 2

and

(3-31) λ(q − 1)≤ λh
1 +

qm(m− 1)
q +m(m+ 2)

(
k− m−1

m
λh

1

)
then we have two possibilities:

(1) The equality in (3-31) is not achieved (i.e., C(X0) < 0). In this case, we obtain
from (3-29) at X = X0,

C(X0)

∫
M

uβ |∇u|2 dσ = 0,

and since C(X0) < 0, we deduce that u is constant.

(2) The equality in (3-31) is achieved (i.e., C(X0)= 0) and the inequality (3-30) is
strict. In this case, one can deduce that all the inequalities used to obtain (3-29) are
in fact equalities. In particular, one has

B(X0)

∫
M
(1hu(β+2)/2)2dσ = B(X0)

(β+2)2

4
λh

1

∫
M

uβ |∇u|2 dσ

and since (3-30) is strict, B(X0) is positive. Therefore

(3-32)
∫

M
(1hu(β+2)/2)2 dσ = λh

1

∫
M
|∇u(β+2)/2

|
2 dσ.

Thus, if u is not constant, then u(β+2)/2 is an eigenfunction associated to λh
1 and

since ∂u
∂ν
|∂M = 0, we have ∫

M
u(β+2)/2 dσ = 0,

which contradicts the fact that u is positive. In conclusion u is constant.

To prove the last assertion in the proposition, suppose that (M, g) is of constant
scalar curvature R, nonisometric to the hemisphere Sn

+
(
√

n(n− 1)/R). If (3-30) and
(3-31) are equalities, then we can conclude from (3-29) that J −Ricm

h (∇u,∇u)= 0.



SOBOLEV INEQUALITIES ON A WEIGHTED RIEMANNIAN MANIFOLD 441

Similar arguments as those used in the proof of Proposition 3.2 allow us to conclude
that u is constant. �

Now we will deduce our Sobolev inequalities from the previous uniqueness
results.

Theorem 3.6. Let (Mn, g, σ ) be a compact weighted Riemannian manifold of
dimension n ≥ 2 with convex boundary (i.e., II ≥ 0). Assume that for some m ∈
[n,∞), the m-Bakry–Émery–Ricci curvature satisfies Ricm

h ≥ kg for a positive
constant k. Then every function f ∈ H 2

1 (dσ) satisfies

(3-33) ‖ f ‖2L p(dσ) ≤ volh(M)−(p−2)/p
(

1
θ(m, p)

‖∇ f ‖2L2(dσ)+‖ f ‖2L2(dσ)

)
,

for any p ∈ (2, 2∗] with 2∗ = 2m/(m−2) if m > 2 and for any p ∈ (2,∞) if m = 2
(i.e., n = 2 and h is constant) with θ(m, p) ∈ {θ1(m, p), θ2(m, p)} where

θ1(m, p)=
mk

(m− 1)(p− 2)
,

θ2(m, p)=
λh

1

(p− 2)
+

m(m− 1)(p− 1)(
(p− 1)+m(m+ 2)

)
(p− 2)

(
k− m−1

m
λh

1

)
.

Using the Escobar–Lichnerowicz theorem (see Section 4), we note that for m > 2

θ1(m, p)− θ2(m, p)=
m(m+ 2)−m(m− 2)(p− 1)(
(p− 1)+m(m+ 2)

)
(p− 2)

( mk
m−1

− λh
1

)
≤ 0

and for m = 2,

θ1(2, p)− θ2(2, p)=
8

((p− 1)+ 8)(p− 2)
(2k− λh

1)≤ 0

therefore, (3-33) is better with θ(m, p)= θ2(m, p) than with θ1(m, p).
On the other hand, when m > 2 and p tends to the critical exponent 2∗ =

2m/(m− 2), we have

θ1(m, 2∗)= θ2(m, 2∗)=
m(m− 2)k
4(m− 1)

.

Therefore, one limiting case of Theorem 3.6 gives the following:

Corollary 3.7. Let (Mn, g, σ ) be a compact weighted Riemannian manifold of
dimension n ≥ 2 and of convex boundary (i.e., II ≥ 0). Assume that for some
m ∈ [n,∞), the m-Bakry–Émery–Ricci curvature satisfies Ricm

h ≥ kg, for a positive
constant k. If m > 2, then every f ∈ H 2

1 (dσ) satisfies

(3-34) ‖ f ‖2L2m/(m−2)(dσ) ≤ volh(M)−2/m
(

4(m−1)
m(m−2)k

‖∇ f ‖2L2(dσ)+‖ f ‖2L2(dσ)

)
.
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Proof of Theorem 3.6. Suppose that m > 2, and consider the following family of
functionals Jq , defined by

Jq(ϕ)=

∫
M
|∇ϕ|2 dσ +2(m, q)

∫
M
ϕ2 dσ for 1< q < m+2

m−2

with 2(m, q) ∈ {21(m, q),22(m, q)} where

21(m, q)= mk
(m−1)(q−1)

22(m, q)=
λh

1

(q − 1)
+

qm(m− 1)
(q − 1)

(
q +m(m+ 2)

)(k− m−1
m

λh
1

)
and consider µq := inf{Jq(ϕ), ϕ ∈Hq}, where

Hq :=

{
ϕ ∈ H 2

1 (dσ) :
∫

M
ϕq+1 dσ = 1

}
.

Another crucial key here is the fact that the real-valued function

g : x 7−→ x+2
x−2

is decreasing. So
m+2
m−2

= g(m) < g(n)= n+2
n−2

as n < m.
Using the compactness of the inclusions

H 2
1 (dσ) ↪→ L2(dσ) and H 2

1 (dσ) ↪→ Lq+1(dσ)

for any q+1< 2n/(n−2), we can prove that µq is achieved by a positive function
ψq ∈Hq and therefore, one can easily check that ψq verifies weakly the following
system:

(3-35)

{
1hψq +2(m, q)ψq = µqψ

q
q in M,

∂ψq

∂ν
= 0 on ∂M.

Since h is smooth, the regularity result of Cherrier [1984, Theorem 1] shows that
ψq is smooth, and hence by applying Proposition 3.2 if 2(m, q) = 21(m, q) or
Proposition 3.4 if 2(m, q) = 22(m, q), we deduce that ψq is constant. Since
ψq ∈Hq , we get

ψq = (volh(M))−1/(q+1) and µq =2(m, q)(volh(M))(q−1)/(q+1).
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Therefore, one can deduce from the definition of µq , that any f ∈ H 2
1 (dσ) satisfies

(3-36)
(∫

M
| f |q+1 dσ

)2/(q+1)

≤ volh(M)−(q−1)/(q+1)
(

1
2(m, q)

∫
M
|∇ f |2 dσ +

∫
M
| f |2 dσ

)
.

If we put p = q + 1, then 2(m, q) = 2(m, p − 1) = θ(m, p) and thus (3-36)
completes the proof of Theorem 3.6 for m > 2. The case where m = 2, can be
treated in a similar manner. �

4. Some applications

We can derive many interesting applications from the weighted Sobolev inequalities
we obtain. The list is long but for brevity we will limit ourselves to a few and more
significant examples.

(I) The classical Escobar–Lichnerowicz lower bound: As in [Bakry and Ledoux
1996], if we apply (3-34) to f = 1+ tφ (t > 0), where

∫
M φ dσ = 0, and use the

Taylor expansion (1+x)p
'x→0 1+ px+ 1

2 p(p−1)x2, then we obtain the analogue
of the classical Escobar–Lichnerowicz theorem for measured spaces with convex
boundary:

(4-1) λh
1 ≥

mk
m− 1

.

We should also point out that many authors have obtained this estimate (see, for
example, [Li and Wei 2015, Theorem 3; Ma and Du 2010, Theorem 2]).

Similarly, one can look for lower bounds depending on k for higher eigenvalues:

(II) Lower bounds of higher eigenvalues with explicit constants: Inspired by the
work of Cheng and Li [1981] in the case of a Riemannian manifold and using
Poincaré and Hölder inequalities, we can easily derive from (3-34) that any f ∈
H 2

1 (dσ) such that
∫

M f dσ = 0 satisfies

(4-2)
∫

M
|∇ f |2 dσ ≥ C1

(∫
M

f 2 dσ
)m+2

m
(∫

M
| f | dσ

)− 4
m

,

where C1=λ
h
1/(λ

h
1C0+1)(volh(M))2/m with C0= 4(m−1)/(m(m−2)k). Applying

this last inequality (4-2) to the weighted heat kernel Hh(t, x, y) with Neumann
condition on the boundary and after using its semigroup property (see for instance
the book of Grigor’yan [2009] for the properties of such heat kernel), we are able
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to obtain an explicit upper bound for its trace. In fact, we obtain

(4-3)
∫

M

(
Hh(t, x, x)−

1
volh(M)

)
dσ =

∞∑
i=1

e−λ
h
i t
≤ 4

( m
2C1

)m/2
volh(M)t−m/2.

From this upper bound, taking t = 1/λh
` , where λh

` is the `-th Neumann eigenvalue
of 1h on M , we can easily deduce a lower bound of λh

` as follows:

(4-4) λh
` ≥

( 1
4e

)2/m( 2
m

)
C1

(
`

volh(M)

)2/m
.

In the particular case, where the manifold is without boundary (respectively with
convex boundary) and the density function is constant (hence m = n), λh

` is nothing
but λ` , the `-th eigenvalue of the usual Laplacian (resp. the Neumann Laplacian),
and thus we recover the lower bound obtained in [Cheng and Li 1981] but with
explicit constants. It’s worthwhile to point out that if we use the estimate (4-1) for
λh

1 obtained above, then the constant C1 in (4-2) can be replaced by the constant

C2 :=
m−2
m+2

(volh(M))2/m mk
m−1

and thus (4-4) becomes

λh
` ≥ 2

( 1
4e

)2/m (m−2)k
(m+2)(m−1)

`2/m .

In the same spirit, but inspired this time by the work of Li and Yau [1983], one
can consider the Neumann heat kernel of the operator 1h/q , where q is a positive
potential on M . In this case, using (4-2), one can deduce that

λh
`

(∫
M

q
m
2 dσ

)2
m
≥

(
C1

e

)
`2/m

and as above C1 can be replaced by C2. Using this last inequality, the same arguments
as in Corollary 2 of [Li and Yau 1983] gives an explicit estimate of the number of
eigenvalues for a weighted Schrödinger operator 1h + V which are less than or
equal to a given value.

(III) Lower bound for the Yamabe invariant: • The case of a compact Riemannian
manifold without boundary: Let (M, g) be a compact Riemannian manifold without
boundary of dimension n > 2, and as before denote by dvg its Riemannian measure
and by Rg its scalar curvature. Let [g] be the class of conformal metrics to g. The
Yamabe invariant of the conformal class [g] (see for instance [Aubin 1982; Hebey
and Vaugon 1996; Lee and Parker 1987]) is given by

(4-5) µ(M, [g])= inf
u∈C1(M)\{0}

(
4(n− 1)/(n− 2)

∫
M |∇u|2 dvg +

∫
M Rgu2 dvg

)(∫
M u2n/(n−2) dvg

)(n−2)/n
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and under the condition Ric(M, g)≥ kg (with k > 0), using the Sobolev inequality
of Corollary 3.7 and the fact that Rg ≥ nk, we obtain the following lower bound of
(4-5):

(4-6) µ(M, [g])≥ nk(vol(M))2/n.

Note that since

µ(M, [g])≤ µ(Sn, [can])= n (n− 1) (vol(Sn))2/n

(see [Aubin 1982]), we obtain the Bishop inequality:

volg(M)≤
(n−1

k

)n/2
vol(Sn).

We also observe that Petean [2005] deduced from (4-6) that if g0 is the Fubini–
Study metric on CP2 and g is any other metric on CP2 with Ricg ≥ Ricg0 then
volg(CP2)≤ volg0(CP2).

• The case of a compact Riemannian manifold with boundary: This case is more
complicated than the first one (see [Cherrier 1984; Escobar 1992; Akutagawa 2001])
even if the strategy is the same. In this case the boundary Yamabe invariant is given
by

(4-7) µ(M, [g])

= inf
u∈C1(M)\{0}

(
4(n−1)/(n−2)

∫
M |∇u|2 dvg+

∫
M Rgu2 dvg+2

∫
∂M Hu2 dvg

)(∫
M u2n/(n−2) dvg

)(n−2)/n ,

where H is the mean curvature of ∂M and dvg denotes the induced Riemannian
measure on ∂M . As before, under the conditions Ric(M, g)≥ kg (with k > 0) and
∂M convex, we deduce since, in this case, Rg ≥ n k and H ≥ 0, the following lower
bound for the boundary Yamabe invariant, similar to that for the Yamabe invariant:

(4-8) µ(M, [g])≥ nk(vol(M))2/n.

Note that since

µ(M, [g])≤ µ(Sn
+
, [can])= n(n− 1)(vol(Sn

+
))2/n

(see [Escobar 1992]), we obtain the equivalent of the Bishop inequality when the
boundary of the manifold is convex:

volg(M)≤
(n−1

k

)n/2
1
2 vol(Sn).

• The case of a measured Riemannian space: Here we consider a weighted Rie-
mannian manifold of dimension n > 2, and when the manifold is with boundary,
H denotes the mean curvature of its boundary. As we observed in Remark 3.3,
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the situation is more complicated. We don’t know if there’s an equivalent of the
Yamabe invariant related to our Sobolev inequality of Corollary 3.7. If we consider
the following infimum:

(4-9) µ(M,m, g, σ )

:= inf
u∈C1(M)\{0}

(
4(m−1)/(m−2)

∫
M |∇u|2 dσ+

∫
M Rm

h u2 dσ+2
∫
∂M Hu2 dσ

)(∫
M u2m/(m−2) dσ

)(m−2)/m ,

where Rm
h =

m
n trace(Ricm

h ) and as before, if we suppose that Ricm
h ≥ kg > 0 and

the boundary is convex in the case where ∂M 6=∅, we obtain

µ(M,m, g, σ )≥ mk(volh(M))2/m .

For an extension of the Yamabe invariant in the case of weighted manifolds, one
can consult [Chang et al. 2011; Case 2015].

(IV) Onofri and logarithmic Sobolev inequalities: Another interesting application is
the Onofri inequality (see for example [Onofri 1982; Beckner 1993]), which appears
as an endpoint of various families of interpolation inequalities in dimension two,
exactly like Sobolev inequality in higher dimensions. The following corollary gives
the analogue of Onofri’s inequality on any 2-dimensional compact Riemannian
manifold (M2, g) with positive curvature and convex boundary (see also [Ilias
1983] for nonsharp Onofri inequalities in all dimensions). Since in this case we
take m = 2, we must have h constant, and finally the measure dσ is just a multiple
of the Riemannian measure. The inequality being invariant by homothety on the
measure, we can restrict ourselves to the Riemannian case.

Corollary 4.1. Let (M, g) be a compact Riemannian surface of convex boundary
and such that Ricg ≥ kg for a positive constant k. We have for any ϕ ∈ H 2

1 ,

log
(

1
volg(M)

∫
M

eϕ dvg

)
≤

1
volg(M)

(
1

4k

∫
M
|∇ϕ|2 dvg +

∫
M
ϕ dvg

)
.

Proof. For any p ∈ (2,∞) and f ∈ H 2
1 (M), (3-33) yields

(4-10)
(∫

M
| f |p dvg

)2
p
≤volg(M)

−
p−2

p

(
1

θ(2, p)

∫
M
|∇ f |2 dvg+

∫
M
| f |2 dvg

)
,

where θ(2, p) ∈ {θ1(2, p), θ2(2, p)} as defined in Theorem 3.6. Proceeding as in
[Beckner 1993], if we choose f = 1+ ϕ/p, then (4-10) gives after applying the
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logarithm function to both sides

2 log
(∫

M

∣∣∣1+ ϕp ∣∣∣p
dvg

)
≤ 2 log(volg(M))+ p

{
log

(
1

θ(2, p)
1
p2

∫
M
|∇ϕ|2 dvg + volg(M)

+
2
p

∫
M
ϕ dvg +

1
p2

∫
M
ϕ2 dvg

)
− log(volg(M))

}
.

Therefore when p tends to infinity, one can easily see that 1/θ(2, p)p2 converges
to zero, and thus the second term on the right hand side of the above equation
converges to

1
volg(M)

(
1

2k

∫
M
|∇ϕ|2 dvg + 2

∫
M
ϕ dvg

)
. �

Remark 4.2. • For any ϕ ∈ H 2
1 (S

2) (respectively, ϕ ∈ H 2
1 (S

2
+
)), Corollary 4.1

gives immediately

(4-11) log
(

1
4π

∫
S2

eϕ dv
)
≤

1
4π

(
1
4

∫
S2
|∇ϕ|2 dv+

∫
S2
ϕ dv

)
respectively,

(4-12) log
(

1
2π

∫
S2
+

eϕ dv
)
≤

1
2π

(
1
4

∫
S2
+

|∇ϕ|2 dv+
∫

S2
+

ϕ dv
)
,

where dv is the Riemannian measure of the unit 2-dimensional sphere S2 (respec-
tively, hemisphere S2

+
), see for instance [Chang and Yang 1988; Onofri 1982;

Osgood et al. 1988] for different proofs. It is worth noting that our method (which
is inspired by that of Beckner [1993] for the sphere) is the simplest among the
existing ones concerning surfaces with boundary.

• We also observe that as in the proofs of [Ilias 1983] for surfaces without boundary,
one can use the Levy–Gromov isoperimetric inequality and an adapted symmetriza-
tion to deduce the inequality of Corollary 4.1 from that of the 2-sphere.

In the last corollary, we give a logarithmic Sobolev inequality on a compact
weighted Riemannian manifold (M, g, σ ) of arbitrary dimension (for this kind of
inequalities one can see for instance [Gross 1975]). In fact:

Corollary 4.3. Let (Mn, g, σ ) be a compact weighted Riemannian manifold of di-
mension n≥ 2 with convex boundary (i.e., II≥ 0). Assume that for some m ∈ [n,∞),
the m-Bakry–Émery–Ricci curvature satisfies Ricm

h ≥ kg for a positive constant k.
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Then for any f ∈ H 2
1 (dσ), we have:∫

M
| f |2 log | f |2 dσ −

∫
M
| f |2 log

(
‖ f ‖2L2(dσ)

volh(M)

)
dσ

≤
p

p− 2
‖ f ‖2L2(dσ) log

(
1

θ(m, p)

∫
M |∇ f |2 dσ

‖ f ‖2L2(dσ)

+ 1
)

for any p ∈ (2, 2∗] with 2∗ = 2m/(m − 2) if m ≥ 3 and p ∈ (2,∞) if m = 2 (i.e.,
n = 2 and h is constant) with θ(m, p) as defined in Theorem 3.6.

Proof. It is equivalent to prove that∫
M
| f |2 log | f |2 dσ ≤

p
p− 2

log
(

1
θ(m, p)

∫
M
|∇ f |2 dσ + 1

)
− log(volh(M)),

for any f ∈ H 2
1 (dσ) with ‖ f ‖2L2(dσ) = 1. From Theorem 3.6, we have

(4-13) 2
p

log
(∫

M
| f |p dσ

)
≤−

p− 2
p

log(volh(M))+ log
(

1
θ(m, p)

∫
M
|∇ f |2 dσ + 1

)
.

Since the logarithmic function is concave, we use Jensen’s inequality and the fact
that

∫
M | f |

2 dσ = 1, to obtain

log
(∫

M
| f |p dσ

)
= log

(∫
M
| f |p−2

| f |2 dσ
)
≥

p− 2
2

∫
M
| f |2 log | f |2 dσ.

Replacing the above equation in (4-13), we finish the proof of Corollary 4.3. �

Remark 4.4. If we suppose that the weighted measure dσ is a probability measure
on M , that is volh(M)= 1, then one can reformulate Theorem 3.6 as follows:

(4-14) η(m, p)
F(p)− F(2)

p− 2
≤ ‖∇ f ‖2L2(dσ),

where F(p)= ‖ f ‖2L p(dσ) =
(∫

M | f |
p dσ

)2/p and η(m, p) ∈ {η1(m, p), η2(m, p)}
with

η1(m, p)=
mk

(m− 1)
,

η2(m, p)= λh
1 +

m(m− 1)(p− 1)(
(p− 1)+m(m+ 2)

)(k−
m− 1

m
λh

1

)
.

By taking the limit p→ 2 in (4-14), we obtain

(4-15) η(m, 2)F ′(2)≤
∫

M
|∇ f |2 dσ
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but

F ′(p)= 2
p

F(p)1−p/2
∫

M
| f |p log | f | dσ − 2

p2 F(p) log
(∫

M
| f |p dσ

)
.

Substituting in (4-15), we obtain the following analogue for weighted Riemannian
manifolds of the logarithmic Sobolev inequality:

1
2η(m, 2)

(∫
M
| f |2 log | f |2 dσ −

∫
M
| f |2 log

(∫
M
| f |2dσ

)
dσ
)
≤

∫
M
|∇ f |2 dσ.

In the case of a compact Riemannian manifold (without boundary), this last inequal-
ity was obtained by Fontenas [1997].
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ON THE EXISTENCE OF
CLOSED GEODESICS ON 2-ORBIFOLDS

CHRISTIAN LANGE

We show that on every compact Riemannian 2-orbifold there exist infinitely
many closed geodesics of positive length.

1. Introduction

Existence and properties of closed geodesics on Riemannian manifolds have been
the subject of intense research since Poincaré’s work [1905]. A prominent result in
the field is a theorem by Gromoll and Meyer [1969] that guarantees the existence
of infinitely many closed geodesics on compact Riemannian manifolds on some
cohomological assumption. This assumption is satisfied by a large class of manifolds
but not by spheres. Generalizing ideas of Birkhoff [1927], Franks [1992] and
Bangert [1993] together proved the existence of infinitely many closed geodesics
on every Riemannian 2-sphere.

Guruprasad and Haefliger [2006] generalized the result by Gromoll and Meyer
to the setting of Riemannian orbifolds. In this paper we generalize the result by
Bangert and Franks in the following way.

Theorem 1. On every compact Riemannian 2-orbifold there exist infinitely many
geometrically distinct closed geodesics of positive length.

For spindle orbifolds (see Figure 1), which also go by the name of football
orbifolds, this statement was previously only known to hold in the rotational
symmetric case [Borzellino et al. 2007]. In [Borzellino and Lorica 1996] the
existence of a closed geodesic in the regular part of any 2-orbifold with isolated
singularities is claimed. The alleged geodesic in the regular part is obtained as a
limit of locally length-minimizing curves contained in the complement of shrinking
δ-neighborhoods of the singular points. Note, however, that there are examples in
which such curves have a limit that is not contained in the regular part. For instance,
on a plane with two singular points of cone angle π which is otherwise flat, curves
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of minimal length that enclose both δ-neighborhoods converge to a straight segment
between the singular points.

To prove our result we first reduce its statement to the case of simply connected
spindle orbifolds (see Section 2). Using the curve-shortening flow we are able
to prove the existence of an embedded geodesic in the regular part of any simply
connected spindle orbifold and to apply ideas from Bangert’s proof and Frank’s
result in this case. Our proof relies on the observation that embedded loops in the
regular part that evolve under the curve-shortening flow either stay in the regular
part forever, or collapse into a singular point in finite time (see Section 4). The
possibility of a limit curve being not entirely contained in the regular part is then
excluded by topological arguments (see Proposition 4.5).

For spindle orbifolds with S1-symmetry, more is known, namely the existence
of infinitely many distinct (even modulo isometries) closed geodesics in the regular
part [Borzellino et al. 2007]. For general spindle orbifolds (and also in other cases)
this is not known to be true. For some 2-orbifolds, e.g., for a sphere with three
singular points of order 2, even the existence of a single closed geodesic in the
regular part does not seem to be rigorously proven, yet. In Section 6 we will add
some more comments on the following questions.

Question 1. Does there always exist a closed geodesic in the regular part of a
2-orbifold with isolated singularities? When do there exist infinitely many?

Note that there are examples of surfaces with more general conical singularities
that do not support infinitely many closed geodesics [Borzellino et al. 2007].

2. Preliminaries

2A. Orbifolds. Recall that a length space is a metric space in which the distance
of any two points can be realized as the infimum of the lengths of all rectifiable
paths connecting these points [Burago et al. 2001]. A Riemannian orbifold can be
defined as follows [Lange 2018b].

Definition 2.1. An n-dimensional Riemannian orbifold O is a length space such
that for each point x ∈O, there exists a neighborhood U of x in O, an n-dimensional
Riemannian manifold M and a finite group G acting by isometries on M such that
U and M/G are isometric.

Behind the above definition lies the fact that an effective isometric action of a
finite group on a simply connected Riemannian manifold can be recovered from
the corresponding metric quotient. In the case of spheres this is proven in [Swartz
2002]; the general case, see [Lange 2018b, Corollary 3.10], can be deduced from
it. In particular, the underlying topological space of a Riemannian orbifold in this
sense admits a smooth orbifold structure and a compatible Riemannian structure in
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the usual sense (see [Borzellino 1992; Bridson and Haefliger 1999; Guruprasad and
Haefliger 2006]) that in turn induces the metric. For a point x on a Riemannian
orbifold the linearized isotropy group of a preimage of x in a Riemannian manifold
chart is uniquely determined up to conjugation. Its conjugacy class in O(n) is
denoted as Gx and is called the local group of O at x . The points with trivial local
group form the regular part of O, which is a Riemannian manifold. All other points
are called singular. We will be particularly concerned with 2-orbifolds all of whose
singular points are isolated. In this case all local groups are cyclic and we refer to
their orders as the orders of the singular points.

We are interested in (orbifold) geodesics defined in the following way.

Definition 2.2. An (orbifold) geodesic on a Riemannian orbifold is a continuous
path that can locally be lifted to a geodesic in a Riemannian manifold chart. A
closed (orbifold) geodesic is a continuous loop that is an (orbifold) geodesic on
each subinterval.

In the following, by a (closed) geodesic we always mean a (closed) orbifold
geodesic. A geodesic that encounters an isolated singularity at an interior point is
not locally length-minimizing [Borzellino 1992, Theorem 3]. On a 2-orbifold such
a geodesic is either reflected or goes straight through the singular point depending
on whether the order of the singular point is even or odd. We say that two geodesics
are geometrically distinct if their geometric trajectories differ. Given a closed
geodesic c, the iterations cm(t) := c(mt), where m ∈ N, form a whole tower of
geometrically equivalent closed geodesics. In the following, by infinitely many
closed geodesics we always mean infinitely many geometrically distinct closed
geodesics of positive length.

We need the following concept; see [Lange 2018b] for a metric definition.

Definition 2.3. A covering orbifold or orbi-cover of a Riemannian orbifold O is
a Riemannian orbifold O′ together with a surjective map ϕ : O′→ O such that
each point x ∈O has a neighborhood U isometric to some M/G for which each
connected component Ui of ϕ−1(U ) is isometric to M/Gi for some subgroup
Gi < G such that the isometries respect the projections.

An orbifold is called simply connected, if it does not admit a nontrivial orbi-cover.
An orbifold is called good (or developable) if it is covered by a manifold; otherwise
it is called bad [Thurston 1980]. The only bad 2-orbifolds are depicted in Figure 1;
see [Scott 1983, Theorem 2.3]. In fact, every compact good 2-orbifold is very good,
meaning that it is finitely covered by a (necessarily compact) manifold [Scott 1983,
Theorem 2.5]. Clearly, if an orbifold is finitely covered by an orbifold with infinitely
many closed geodesics, then it has itself infinitely many closed geodesics. Since
all Riemannian surfaces have infinitely many closed geodesics (see, e.g., [Berger
2010, XII.5] for a survey), in view of proving our main result it suffices to treat
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p q

Figure 1. A (p, q)-spindle orbifold S2(p, q), i.e., a 2-orbifold with at
most two isolated singularities of order p and q (with p or q perhaps
being 1). Spindle orbifolds are also known as footballs and (p, 1)-spindle
orbifolds as teardrops. The orbifolds in the picture are bad if and only if
p 6= q and simply connected as orbifolds if and only if p and q are coprime.

simply connected spindle orbifolds, i.e., spindle orbifolds S2(p, q) with p and q
coprime (see Figure 1).

2B. Orbifold loop spaces. We would like to apply Morse theory and homological
methods to find closed geodesics on orbifolds. To this end a notion of a loop space
is needed. Such a notion is defined in [Guruprasad and Haefliger 2006]. To any
compact Riemannian orbifold O a free loop space 3O is associated and endowed
with a natural structure of a complete Riemannian Hilbert orbifold. We sketch this
construction in Appendix A.

Here we give an alternative description of 3O in the case in which O has only
isolated singularities. So in this section O will always be a Riemannian orbifold
with only isolated singularities. Let γ be a loop on O. In the following we always
assume that such a loop γ : S1

→ O is of class H 1, i.e., that it locally lifts to
absolutely continuous curves on manifold charts with square-integrable velocities.

Definition 2.4. A development of γ is a loop γ̂ on a Riemannian manifold M
together with a map M→O which is locally an orbi-covering and which projects
γ̂ to γ (respecting the parametrizations). The development is called geodesic if γ̂
is a geodesic on M.

Every loop on O can be locally lifted to Riemannian manifold charts. A de-
velopment of a loop γ on O can be obtained by gluing together the Riemannian
manifold charts that support the local lifts. In particular, this yields a loop after
having carried out the identifications. Two developments (M1, γ̂1) and (M2, γ̂2) are
said to be equivalent if there exist neighborhoods M ′1 of γ̂1 in M1 and M ′2 of γ̂2 in
M2 and an isometry M ′1→ M ′2 that maps γ̂1 to γ̂2 (respecting the parametrizations).

Definition 2.5. An orbifold loop is a loop γ on O together with an equivalence
class of developments of γ . The orbifold loop is called geodesic if the developments
are geodesic.

The notion of a geodesic orbifold loop is equivalent to the notion of a closed
orbifold geodesic. Every geodesic orbifold loop projects to a closed orbifold
geodesic in the sense of Definition 2.2 and every closed orbifold geodesic gives
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rise to a unique equivalence class of geodesic developments. However, viewing
a closed geodesic as a geodesic orbifold loop shows that it can be assigned local
invariants like the index or the nullity as in the manifold case. Moreover, as a set the
free loop space 3O is the collection of all orbifold loops and we can even recover
its metric structure using the concept of developments. Indeed, let D = (M, γ̂ )
be a development defining an orbifold loop γ . The free loop space 3M has a
natural structure of a Riemannian Hilbert manifold [Klingenberg 1978] and we
have γ̂ ∈3M. A loop γ̂ ′ ∈3M can be regarded as an orbifold loop represented
by the development (M, γ̂ ′). If γ is not a constant loop at a singular point of O,
then we can choose a neighborhood UD of γ̂ in 3M such that any pair of distinct
loops γ̂ ′, γ̂ ′′ ∈UD projects to distinct loops on O and hence corresponds to distinct
orbifold loops. The UD obtained in this way patch together to a Riemannian Hilbert
manifold 3regO by identifying elements that correspond to the same orbifold loop.
Indeed, if distinct γ̂ ′1 ∈ UD1 and γ̂ ′2 ∈ UD2 are identified, then, by the definition
of the equivalence relation on developments, a whole open neighborhood of γ̂ ′1
in UD1 is isometrically identified with an open neighborhood of γ̂ ′2 in UD2 . The
metric completion of 3regO is the Riemannian Hilbert orbifold 3O introduced in
[Guruprasad and Haefliger 2006]; see Appendix A, and the singular set 3O\3regO
corresponds to the constant loops at the singular points of O.

Given an atlas of O, the free loop space 3O can be written as a quotient of a
Riemannian Hilbert manifold �X (by a groupoid), where X is the disjoint union of
the manifold charts of the atlas, and this description provides local manifold charts
for 3O [Guruprasad and Haefliger 2006]; see Appendix A. On 3O, the energy
function E is defined and its critical points correspond to the closed geodesics.
Since all singular points of 3O have zero energy, an explicit knowledge of their
structure will not be relevant for our argument (see the Appendix). For some κ > 0
we write3κ :=3κO :=3O∩E−1([0, κ)) and for a geodesic loop c with E(c)= κ
we set 3(c) :=3O(c) :=3κO. The spaces �X and 3O admit finite-dimensional
approximations much as in the manifold case, see Proposition A.1.

From our description of 3O it is clear that the index ind(c) and the nullity ν(c)
of a nontrivial orbifold geodesic can be defined as in the manifold case. Moreover,
it shows that the statements used in [Gromoll and Meyer 1969] on the index and
the nullity of iterated geodesics and on local loop space homology remain valid in
the following form since their proofs involve only local arguments. Note that there
is a natural S1-action on 3O given by reparametrization.

Lemma 2.6. For a Riemannian orbifold with isolated singularities and a nontrivial
orbifold geodesic c on it, the following statements hold true:

(i) Either ind(cm) = 0 for all m or ind(cm) grows linearly in m [Gromoll and
Meyer 1969, Lemma 1].
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(ii) There are positive integers k1, . . . , ks and a sequence mi
j ∈ N, with i > 0

and j = 1, . . . , s, such that the numbers mi
j k j are mutually distinct, m1

j = 1,
{mi

j k j } = N, and ν(cmi
j k j )= ν(ck j ) [Gromoll and Meyer 1969, Lemma 2].

(iii) There exists some k such that Hp(3(cm)∪ S1cm,3(cm))= 0 except possibly
for ind(cm)≤ p ≤ ind(cm)+ k [Gromoll and Meyer 1969, Corollary 1].

3. Homology generated by iterated geodesics

We will need the following slight generalizations of statements in [Bangert and
Klingenberg 1983]. Our proofs are essentially the same as those contained in that
paper. For convenience we summarize the arguments in the Appendix. Recall that
a geodesic c is called homologically invisible if H∗(3(c)∪ S1c,3(c))= 0.

Theorem 3.1 (cf. [Bangert and Klingenberg 1983, Theorem 3]). Let O be a compact
orbifold with isolated singularities and let c be a closed geodesic on O such that
ind(cm)= 0 for all m ∈N, i.e., c does not have conjugate points when defined on R.
Suppose c is neither homologically invisible nor an absolute minimum of E in its
free homotopy class. Then there exist infinitely many closed geodesics on O.

Note that if O is simply connected, then a nontrivial geodesic c is never an
absolute minimum in its free homotopy class.

Lemma 3.2 (cf. [Bangert and Klingenberg 1983, Lemma 2]). Let O be a compact
orbifold with isolated singularities and let {S1ci | i ∈N} be a sequence of pairwise
disjoint critical orbits such that the ci are not absolute minima of E in their free ho-
motopy classes. Suppose there exists p ∈N such that Hp(3(ci )∪ S1ci ,3(ci ))) 6= 0
for all i ∈ N. Then there exist infinitely many closed geodesics on O.

Note that the geodesics ci in the lemma do not need to be geometrically distinct.

4. Existence of simple closed geodesics

The curve-shortening flow can be used to prove the existence of a simple closed
geodesic on any Riemannian 2-sphere [Grayson 1989]. In this section we discuss
properties of the curve-shortening flow on Riemannian 2-orbifolds that allow us to
prove the existence of a separating geodesic on every simply connected Riemannian
spindle orbifold. Here a loop embedded in the regular part of a spindle orbifold
is called separating if each connected component of its complement contains at
most one singular point. Let us first recall some well-known properties of the curve-
shortening flow (see [Grayson 1989; Chou and Zhu 2001; Huisken and Polden
1999; Colding et al. 2015]). For a smoothly embedded curve γ = 00 : S1

→ M in a
closed Riemannian surface there exists a unique maximal smooth curve-shortening
flow 0t : S1

→ M for t ∈ [0, T ), T > 0, satisfying ∂0t/∂t = k N where k is the
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curvature of 0t and N is its normal vector, which moreover depends continuously
on the initial condition γ . This flow can be considered as the negative gradient flow
of the length functional. An important feature of the curve-shortening flow is that it
is a geometric flow meaning that the evolution of the geometric image of γ does
not depend on the initial parametrization. In the situation above, the curve 0t is
embedded for each t ∈ [0, T ). Moreover, if T is finite, then 0t converges to a point.
If T is infinite, then the curvature of 0t converges to zero in the C∞-norm and a
subsequence of 0t converges to a closed embedded geodesic on M. In particular, T
is finite if the length of γ is sufficiently small [Grayson 1989, Lemma 7.1]. If M is
not complete but the curvature is still bounded there is a single other alternative for
finite T , namely that points on γ do not have a limit on M for t→ T. In particular,
we see that the curve-shortening flow of an embedded curve in the regular part
of a compact 2-orbifold is (a priori) defined until the flow hits a singular point or
collapses to a point. In fact, if the 2-orbifold has only isolated singularities more is
true as will be discussed below. One possibility to analyze the local behavior of
a curve-shortening flow 0t : S1

→ M on a manifold at a space-time point (x, T ),
T <∞, is to blow up the flow at (x, T ) by a sequence of parabolic rescalings

((M, g), t)→ ((M, λ1g), λ2
i (t − T )+ T ), λi →∞,

where g denotes the Riemannian metric. Such a blow-up sequence subconverges to a
self-shrinking tangent flow of an embedded curve on Tx M (see [Colding et al. 2015])
which, according to a result of Abresch and Langer [1986], is either a self-shrinking
circle or a static straight line through the origin. In the first case 0t converges to x
as a “round point” and in the second case 0t is regular at (x, T ). Another feature
of the curve-shortening flow is that it satisfies the so-called avoidance principle,
meaning that two initially disjoint curves remain disjoint under the flow. This
is a consequence of the maximum principle. Moreover, by the strong maximum
principle for parabolic PDEs [Evans 1998, Theorem 7.1.12], it is impossible for a
closed curve to be disjoint from a (possibly noncompact) geodesic for t < t0 and to
touch it tangentially at t = t0.

The following statement is proven in [Grayson 1989, Corollary 1.7] and says
that the curve-shortening flow cannot spread out arbitrarily in finite time.

Lemma 4.1 [Grayson 1989]. If T <∞, then for every ε > 0 there exists t1 < T,
and an open set U in M such that U contains every 0t(S1), t1 < t < T, and U is
contained in the ε-neighborhood of each 0t(S1), t1 < t < T.

Now we analyze the evolution under the curve-shortening flow of a separating
loop on a simply connected spindle orbifold.

Lemma 4.2. Let O ∼= S2(p, q) be a Riemannian spindle orbifold, let γ be a sep-
arating loop on O and let 0 : S1

× [0, T )→ Oreg be the evolution of γ under the
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curve-shortening flow in the regular part of O. If 0 hits a singular point x of order
p > 2 in finite time T, then the flow converges to this point.

Proof. By Lemma 4.1 we can assume that there exists a point y 6= x on O which
is avoided by 0 such that each 0t separates x and y. If O has two singular points,
we choose y to be a singular point. The open subset O \ {y} of O admits a p-fold
manifold covering M with a cyclic group of deck transformations G of order p that
acts by rotations around the preimage x̂ of x in M. The preimages 0̂t of 0t(S1)

in M are embedded G-invariant loops (or loops after choosing a parametrization,
which does not make a difference for us since we are dealing with a geometric
flow) and are solutions of the curve-shortening flow. By parabolically blowing
up this flow at (x̂, T ) as discussed above, we obtain a G-invariant tangent flow.
Since p = |G|> 2, this tangent flow must be a circle and so 0̂t converges to x̂ , as,
by transversality, we would otherwise obtain a contradiction to the embeddedness
of the circles 0̂t for t < T. In particular, it follows that 0t converges to x in the
limit t→ T. �

Lemma 4.3. Let O∼= S2(p, q) be a simply connected Riemannian spindle orbifold,
let γ be a separating loop on O and let 0 : S1

× [0, T )→ Oreg be the maximal
evolution of γ under the curve-shortening flow in the regular part of O. Then the
curve γ either

(i) shrinks to a round point in the regular part of O in finite time T, or

(ii) collapses into a singular point of O in finite time T, or

(iii) T =∞ and γ stays in the regular part of O forever.

Note that the first case can only occur if O has at most one singular point.

Proof. We only have to exclude the case that 0 hits a singular point x of O in finite
time T <∞ without collapsing into this point. Suppose this were the case. By
Lemma 4.2 we can assume that the order p of x is even and that the flow does
not approach a singular point of odd order at time T. Since p and q are coprime
by assumption, the order q must be odd. We can assume that there exists a point
y 6= x on O such that the flow avoids a whole neighborhood of y, such that each 0t

separates x and y, and such that O \ {x, y} lies in the regular part of O. In fact, for
q > 1 we can choose y to be the singular point of odd order q, and otherwise we
can apply Lemma 4.1. As in the proof of Lemma 4.2 the open subset O \ {y} of O
admits a p-fold manifold covering M with a cyclic group of deck transformations
G of order p that acts by rotations around the preimage x̂ of x in M. Also, the
preimages 0̂t of 0t(S1) in M are embedded G-invariant circles (or loops after
choosing a parametrization) and are solutions of the curve-shortening flow. Since
0 avoids a neighborhood of y and since 0̂t does not converge to a point at time T,
the flow 0̂t can be extended to a flow 0̂ : S1

×[0, T ′)→ M with T < T ′. Now the
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fact that 0 hits x at time T implies by G-equivariance that the extended flow 0̂

develops a self-crossing at time T. This contradicts embeddedness and hence the
claim follows. �

Using compactness and the fact that the curvature converges to zero in infinite
time, the following lemma can be proven as in the manifold case [Grayson 1989,
Section 7].

Lemma 4.4. In the situation of Lemma 4.3(iii), the loop subconverges to a nontrivial
(orbifold) geodesic.

Note that the limit geodesic obtained in Lemma 4.4 is a priori not necessarily
contained in the regular part of O.

Proposition 4.5. On every simply connected Riemannian spindle orbifold O ∼=
S2(p, q) there exists a separating geodesic. In particular, there exists a closed
geodesic in the regular part of any spindle orbifold.

Remark 4.6. The first statement is optimal in the sense that there exist Riemannian
metrics on S2(p, q) all of whose geodesics are closed but with only one embedded
geodesic [Lange 2018a].

Proof. Choose distinct x, y ∈O such that O \ {x, y} is contained in the regular part
of O. We smoothly foliate O \{x, y} by circles separating x and y. Then, under the
curve-shortening flow, small circles near x flow to a point in finite time, and so do
small circles near y [Grayson 1989, Lemma 7.1]. However, the orientations of the
limiting points will be opposite in both cases. Hence, by continuous dependence
of the flow on the initial conditions there must be some circle γ in the middle that
does not flow to a point in finite time, but instead stays in the regular part of O
forever by Lemma 4.2. By Lemma 4.4 this circle subconverges to some nontrivial
orbifold geodesic c.

It remains to show that c is contained in the regular part. In fact, in this case c is
embedded and separating as a limit of embedded and separating loops. Let γi be
a subsequence of the curve-shortening flow 0t that converges to c. Suppose that
c hits a singular point, say x of order p. We can assume that the γi and c avoid a
neighborhood of a point y′ on O. The open subset O \ {y′} of O admits a p-fold
orbi-cover Ô with a cyclic group of deck-transformations G of order p that acts
by rotations around the preimage x̂ of x in Ô. Let si ∈ S1 be a sequence such that
γi (si ) converges to some c(s) 6= x , s ∈ S1. The restrictions of γi to S1

\ {si } and of
c to S1

\ {s} can be lifted to embedded curves γ̂ j
i : S

1
\ {si } → Ôreg, j = 1, . . . , p,

and to geodesics ĉ j
: S1
\ {s} → Ô, j = 1, . . . , p, that are permuted by the deck

transformation group G. We can choose the si , s and the j-numbering in such a
way that γ̂ j

i converges to ĉ j. Note that for fixed i the γ̂ j
i have disjoint images in Ô

since γi is embedded in O. For p> 2 this yields a contradiction since the geodesics
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ĉ j intersect transversally at x̂ in this case. Suppose that p = 2. In this case O is
rotated by π around x̂ by the deck transformation group and the orbifold geodesic c
is reflected at the singular point x on O. The only way for c to reverse its direction is
by being reflected at a singular point of even order. Hence, by periodicity it has to be
reflected at singular points of even order twice during a single period. Since p and q
are coprime by assumption, this second reflection also has to occur at x . Moreover,
this second reflection has to occur from a different direction, because otherwise
there would have to be an additional encounter with the singularity of even order in
between. Therefore, the ĉ j have transverse self-intersections at x̂ . Now, in this case
the transversality argument from the case p ≥ 3 yields a contradiction since the γ̂ j

i
are embedded and hence the claim follows. �

5. Proof of the main result

As seen in Section 2A, it is sufficient to prove our main result for simply connected
spindle orbifolds. Given the results from the preceding section, in this case a proof
can be given similarly as in [Bangert 1993] in the case of a 2-sphere:

5A. Outline of the proof. Let O ∼= S2(p, q) be a simply connected Riemannian
spindle orbifold. By Proposition 4.5 there exists a separating geodesic,

c : S1
= R/Z→O.

Suppose the following two conditions are satisfied:

(i) For every geodesic d : [0,∞)→O with initial point d(0) on c(S1) there exists
t > 0 with d(t) ∈ c(S1).

(ii) When we consider c as defined on R there exists a pair of conjugate points
of c.

Note that the second statement is equivalent to the condition that for every t0 ∈ R

there exists t1 > t0 such that c(t0) and c(t1) are conjugate points of c [Lytchak
2009, Corollary 1.3]. In this case Birkhoff’s annulus map Bc can be defined on the
closed annulus S1

×[0, π] as follows (see [Bangert 1993; Franks 1992; Birkhoff
1927, VI.10]). For t ∈ S1 and α ∈ (0, π), consider a geodesic γ starting at c(t)
in a direction that forms an angle of α with ċ(t). Condition (i) guarantees the
existence of some time t2 at which γ returns to an encounter with c for the second
time, say at c(t ′). Then γ̇ (t2) and c(t ′) enclose some angle α′ ∈ (0, π) and one sets
Bc(t, α)= (t ′, α′). Moreover, second conjugate points can be used to extend the
map Bc to all of S1

× [0, π] in a continuous way. The map Bc is isotopic to the
identity and preserves a canonical area measure related to the Liouville measure on
the unit tangent bundle of S2 which is invariant under the geodesic flow. Moreover,
the restrictions of Bc to the two boundary components are inverse to each other.
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In this case the work of Franks [1992] implies that Birkhoff’s annulus map has
infinitely many periodic points (see [Franks 1992, Theorem 4.1]) and these points
correspond to closed geodesics on O.

In the following we show that the existence of infinitely many geodesics can still
be shown if Birkhoff’s annulus map cannot be defined.

5B. Simple closed geodesics without conjugate points.

Proposition 5.1. Suppose on a Riemannian spindle orbifold O ∼= S2(p, q) there
exists a separating geodesic c without conjugate points. Then there exist infinitely
many closed geodesics.

Proof. The proof works similarly to the proof of [Bangert 1993, Theorem 1]. We
choose Riemannian manifold charts X0=Oreg, Xx , X y of O where O\{x, y}⊂Oreg

and where Xx and X y cover O \ {y} and O \ {x}, respectively. Moreover, we
choose finite-dimensional approximations (see Proposition A.1) �=�κX (k) and
P =3Oκ(k) of �κX and 3Oκ containing S1c. Since c is separating, there exists a
tubular neighborhood V of c(S1) in the regular part of O which is homeomorphic
to an annulus. For every ε > 0 we let U (V, ε) denote the set of γ ∈ P which
have energy E(γ ) < E(c)+ ε and whose projections to O lie in V and are freely
homotopic to c in V. Since we are looking for infinitely many closed geodesics
we may assume that the only closed geodesics freely homotopic to c in V are
those in S1c. Moreover, we can choose V so small that every γ ∈ U (V, ε) with
E(γ ) < E(c) is disjoint from c(S1). This follows from the assumption that c
does not have conjugate points and the Gauss lemma, see the proof of [Bangert
1993, Theorem 1]. If we choose arbitrarily small V and ε, the sets U (V, ε) form a
fundamental system of neighborhoods of S1c in P. Therefore, we have that either
(see [Bangert 1993, Theorem 1])

(i) c is a local minimum of E , or

(ii) c can be approximated by curves γ ∈ P with E(γ ) < E(c) from both sides, or

(iii) c can be approximated by curves γ ∈ P with E(γ ) < E(c) precisely from one
side.

In the second case it follows as in [Bangert 1993, Theorem 1] that

H1(3(c)∪ S1c,3(c)) 6= 0

and this implies the existence of infinitely many closed geodesics by Theorem 3.1.
In the first or third cases, let D be a disk bounded by c(S1) such that c cannot

be approximated by closed curves in D with E(γ ) < E(c) and suppose that x ∈ D
has order p. The disk D is p-foldly covered by a disk D̂ in Xx . A parametrization
ĉ of the boundary of D̂ by arclength is a geodesic that covers c a total of p times.
For some sufficiently large κm we can choose finite-dimensional approximations
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�m of �κm
X containing a homotopy in D̂ from ĉm to a point curve. As above we

choose an annulus V ⊃ c(S1) so small that S1c are the only closed geodesics freely
homotopic to c in V. Moreover, we may assume that every γ ∈ U (V, ε) which
lies in the component V0 of V \ c(S1) contained in D has energy E(γ ) ≥ E(c).
Hence we have E(γ ) > E(c) for all γ ∈U (V, ε) \ S1c which are contained in D,
because otherwise such a γ with E(γ )= E(c) would be a closed geodesic freely
homotopic to c. The analogous statement also holds for cm [Bangert 1993, page 5].
In particular, the analogous statement also holds for ĉm

∈�m . In this very situation,
min-max methods applied to homotopies in D̂ from ĉm to a point curve are used
in the proof of [Bangert 1993, Theorem 1] to show the existence of a sequence
of closed geodesics d̂m in D̂ such that E(d̂m) tends to infinity and such that the
local groups H1(�X (d̂m)∪ S1c, �X (d̂m)) do not vanish. The gradient of the energy
functional restricted to the finite-dimensional approximation is used to deform the
homotopies, and so the fact that D̂ is bounded by a geodesic guarantees that the
construction remains in D̂. The resulting geodesics project to (orbifold) geodesics
dm in D with E(dm) tending to infinity and with

H1(3(dm)∪ S1c,3(dm))= H1(�X (d̂m)∪ S1c, �X (d̂m)) 6= 0.

Therefore there exist infinitely many closed geodesics on O by Lemma 3.2. �

5C. The non-Birkhoff case. In this section we study the case of a Riemannian
spindle orbifold with a separating geodesic for which the corresponding Birkhoff
map is not defined. We reduce this case to Proposition 5.1. Finally we summarize
why this implies our main result.

The following lemma is a special case of [Bangert 1993, Lemma 2].

Lemma 5.2. Suppose c is a separating geodesic with conjugate points on a Rie-
mannian spindle orbifold. Then c can be approximated from either side by closed
curves γ which are disjoint from c and satisfy E(γ ) < E(c). In particular, c can
be approximated from either side by shorter, disjoint curves.

Now we can prove the following proposition.

Proposition 5.3. Suppose c is a separating geodesic with conjugate points on a
simply connected Riemannian spindle orbifold O ∼= S2(p, q) and d : (0,∞)→O
is a geodesic disjoint from c. Then there exist infinitely many closed geodesics.

Proof. The proof is similar to the proof of [Bangert 1993, Theorem 2]. However,
we use the curve-shortening flow instead of Birkhoff’s curve shortening process
and simplify the second part of the argument.

Let D be the component of O \ c(S1) that contains d(R). Since c is separating
by assumption, there exists an open neighborhood V of the closure of D in O
that admits a Riemannian manifold chart V̂. The geodesic d lifts to a geodesic d̂
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on V̂ and the geodesic c is covered p times by a geodesic ĉ disjoint from d̂. In
[Bangert 1993, Theorem 2] it is proven that the closure of every limit geodesic d̄
of d̂ , that is, every geodesic of the form d̄ : R→ V̂, d̄(t)= expp(tv) where (p, v)
is an accumulation point of (d̂, d̂ ′) in T V̂, is disjoint from ĉ(S1). In particular, the
closure of the image d̃ in V of such a limit geodesic of d̂ is disjoint from c(S1). Let
U1 be the component of D \ closure(d̃(R)) that contains c(S1) in its closure. Since
the closure of d̃(R) is disjoint from c(S1), by Lemma 5.2 there is an embedded
loop γ1 in U1 that is freely homotopic in the regular part of U1 to c and shorter
than c. We claim that the evolution 0t of γ1 under the curve-shortening flow does
not leave U1. Otherwise there would exist some t1 minimal with the property that
0t1(S

1) is not contained in U1. Let x ∈ 0t1(S
1)∩U C

1 . By the avoidance principle
applied to c and γ1 the only possibility could be that x is contained in the closure
of d̃(R). Since γ1 is noncontractible in U1 and since d̃(R) is not a point, the point
x is regular by Lemma 4.2 and so is the loop 0t1 by Lemma 4.3. Let d0 : R→O
be the geodesic which is tangent to 0t1 at x . By minimality of t1 the geodesic d0 is
contained in the closure of d̃(R). In particular, the flow of γ1 and the (static) flow of
d0 touch at (x, t1) for the first time. This is impossible by the maximum principle
(see Section 4) and hence the evolution of γ1 stays in U1 as claimed. Moreover, since
γ1 is noncontractible in U1 by assumption, it evolves in the regular part forever, i.e.,
we are in case (iii) of Lemma 4.2. By Lemma 4.4 the flow subconverges to a simple
closed geodesic d̃1 contained in the closure of U1. The proof of Proposition 4.5
shows that this limit geodesic actually lies in the regular part of O. It is distinct
from c since γ1 is shorter than c and the curve-shortening flow does not increase
the arclength. By the choice of γ1 the geodesic d̃1 is separating and so we are done
in this case by Proposition 5.1 if d̃1 does not have conjugate points. Otherwise
we define U2 to be the component of D \ d̃1(S1) whose closure contains c. This
component is bounded by two geodesics with conjugate points and contained in the
regular part of O by the construction of d̃1. Moreover, it contains a noncontractible
embedded loop γ2 which is shorter than d̃1 by Lemma 5.2 and hence also shorter
than c. Again, letting γ2 evolve under the curve-shortening flow, the same argument
as above yields a separating limit geodesic d̃2 in U 2 which is now distinct from
both c and d̃1 and hence contained in U2. This process can be iterated. It either
yields infinitely many (simple) closed geodesics on O with conjugate points or
terminates at a separating geodesic without conjugate points which in turn implies
the existence of infinitely many closed geodesics by Proposition 5.1. �

Together with Section 5A, we see Propositions 5.3 and 5.1 imply the following:

Proposition 5.4. Let c be a separating geodesic on a Riemannian spindle orbifold
O ∼= S2(p, q) for which Birkhoff’s annulus map Bc is not defined. Then there exist
infinitely many closed geodesics.
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Recall from Section 5A that Frank’s work implies the existence of infinitely
many closed geodesics in the case in which Birkhoff’s annulus map Bc can be
defined. Therefore, in any case there are infinitely many closed geodesics on a
Riemannian spindle orbifold. By the remark at the end of Section 2A our main
result, Theorem 1, follows.

6. Closed geodesics in the regular part

In this section we sketch some ideas and make some speculations on the question,
posed in the introduction, of when there exists one, or even infinitely many closed
geodesics in the regular part of a Riemannian 2-orbifold O with isolated singularities.

Let us begin with a general remark. In Section 4 we have shown that an em-
bedded loop in the regular part of a simply connected spindle orbifold cannot
flow into a singular point in finite time under the curve-shortening flow unless it
collapses into this point entirely. The simply-connectedness assumption was used
to handle the case of singular points of order 2 (see proof of Lemma 4.3). Using a
local noncollapsing result of Brian White this avoidance of singularities principle
can actually be shown to be true for embedded loops in the regular part of any
Riemannian 2-orbifold. More precisely, if such a loop were to flow into a singular
point in finite time, then we could locally lift the flow to a manifold chart and look
at a tangent flow of a blow-up limit at the singular space-time point in question as
in the proof of Lemma 4.2. Recall from that argument that such a tangent flow can
only either be a self-shrinking circle or a static line, and that we used equivariance
with respect to the deck transformation group in case of a singular point of order at
least 3 in order to exclude the latter case. In case of a singular point of order 2 the
blow-up sequence could in principle converge to a line, but this line would have
to have multiplicity 2, i.e., two strands of the lifted flow that are permuted by the
deck transformation group would converge to it in the blow-up limit. However, this
possibility is ruled out by the noncollapsing result of White [2000, Theorem 9.1]
(see also [White 2015, Section 7] for more details).

The discussed argument not only works for embedded loops, but also for loops
that stay δ-embedded in the regular part under the curve-shortening flow for some
δ > 0 as long as it remains in the regular part. Here a loop is called δ-embedded if its
restriction to each subinterval of length δ with respect to arclength parametrization
is embedded. If the 2-orbifold O has at least 4 singular points, then one can
find infinitely many loops in the regular part with this property that are pairwise
homotopically different in the regular part. This is because the property of having
a “minimal number of transverse self-intersections” in one’s homotopy class is
preserved under the curve-shortening flow. Each such loop subconverges to a closed
(orbifold) geodesic on O and one is left to decide whether the limits lie in the
regular part. If all singular points have orders at least 3, this is the case by the
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same argument as in the proof of Proposition 4.5, and so there exist infinitely many
distinct closed geodesics in the regular part in this case. We believe that the same
conclusion can be drawn in the presence of singular points of order 2 by arguments
similar to the one in the proof of Proposition 4.5. For instance, if a limit geodesic
hit a singular point of order 2, then, by the above arguments, it would have to
oscillate between two singular points of order 2 and avoid all other singularities.
By choosing the initial loops in a clever way, this limit behavior could possibly be
ruled out in advance.

In the case that O has 3 singular points one should still be able to infer the
existence of infinitely many closed geodesics if the orders of the singular points are
sufficiently large by observing that the avoidance of singularities principle discussed
above still holds for loops that “wind around a singular point of order 2n up to
n−1 times”. Otherwise, one might be able to use the existence of a finite manifold
cover in this case to find at least one closed geodesic in the regular part.

In the case of (simply connected) spindle orbifolds the above arguments break
down and we do not know how to find infinitely many closed geodesics in the
regular part. There might also exist metrics without this property.

Appendix A: Orbifold loop spaces

We summarize the description of an orbifold loop space from [Guruprasad and
Haefliger 2006]. For a Riemannian orbifold O let X be the disjoint union of
Riemannian manifold charts covering O and let G be the small category with the
set of objects X and arrows being the germs of change of charts of X . Then (G, X)
with the usual topology of germs on G is an étale groupoid and O can be represented
as a quotient O = G \ X [Guruprasad and Haefliger 2006, Section 2.1.4]. A G-loop
based at x ∈ X over a subdivision 0= t0 < t1 · · ·< tk = 1 of the interval [0, 1] is a
sequence c = (g0, c1, g1, . . . , ck, gk) where:

(i) ci : [ti−1, ti ] → X is of class H 1, i.e., ci is absolutely continuous and the
velocity functions t 7→ |ċi (t)| are square integrable.

(ii) gi is an element of G such that α(gi ) = ci+1(ti ) for i = 0, 1, . . . , k − 1,
ω(gi )= ci (ti ) for i = 1, . . . , k and ω(g0)= α(gk)= x . Here α(g) and ω(g)
denote the source and the target of g ∈ G; see [Guruprasad and Haefliger 2006,
Section 2.1.4].

A G-loop is called geodesic if all the ci are geodesics and their velocities match up
at the break points ti via the gi . A geodesic G-loop gives rise to a closed geodesic on
O in the sense of Definition 2.2. The space �x is defined as the set of equivalence
classes of G-loops based at x under the equivalence relation generated by the
following operations [Guruprasad and Haefliger 2006, Sections 2.3.2 and 3.3.2]:
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(i) Given a G-loop c = (g0, c1, g1, . . . , ck, gk) over the subdivision

0= t0 < · · ·< tk = 1,

we can add a subdivision point t ′ ∈ (ti−1, ti ) together with the unit element
g′ = 1ci (t ′) to get a new sequence, replacing ci in c by c′i , g′, c′′i , where c′i and
c′′i are the restrictions of ci to the intervals [ti−1, t ′] and [t ′, ti ] and where 1y ,
y ∈ X is the germ of the identity map at y.

(ii) Replace a G-loop c by a new loop c′ = (g′0, c′1, g′1, . . . , c′k, g′k) over the same
subdivision as follows: for each i = 1, . . . , k choose H 1-maps

hi : [ti−1, ti ] → G

such that α(hi (t))= ci (t), and define c′i : t 7→ω(hi (t)), g′i = hi (ti )gi hi+1(ti )−1

for i = 1, . . . , k− 1, g′0 = g0h1(0)−1 and g′k = hk(1)gk .

The space �X is defined to be �X =
⋃

x∈X �x . It admits a natural structure of
a Riemannian Hilbert manifold [Guruprasad and Haefliger 2006, Section 3.3.2].
A G-loop c gives rise to a development (M, γ̂ ) in the sense of Definition 2.4. A
neighborhood of the equivalence class of c in �X is isometric to a neighborhood of
γ̂ in 3M. If O is compact, then �X is complete with respect to the induced metric
(see the proof of [Klingenberg 1978, Theorem 1.4.5]). An energy function can be
defined on �X whose critical points correspond to geodesic G-loops [Guruprasad
and Haefliger 2006, Section 3.4.1]. The groupoid G acts isometrically on the left
on�X . If [c] ∈�X is represented by the G-loop c= (g0, c1, g1, . . . , ck, gk) based at
x and g is an element of G with α(g)= x and ω(g)= y, then g[c] is represented by

gc := (gg0, c1, g1, . . . , ck, gk g−1)

[Guruprasad and Haefliger 2006, Section 2.3.3]. The quotient |3O| = G \�X is
called the free loop space of O. The quotient map �X → G \�X induces a natural
structure of a Riemannian Hilbert orbifold on |3O| denoted as 3O [Guruprasad
and Haefliger 2006, Section 3.3.4]. Since �X is complete as a metric space, so is
3O. The space3(Oreg) is naturally a subset of3O and coincides with the ordinary
loop space of Oreg as a Riemannian manifold; see [Klingenberg 1978]. If O has only
isolated singularities, then the only elements of �X with nontrivial G-isotropy are
the loops that project to a singular point of O. In this case G-equivalence classes of
G-loops correspond to equivalence classes of developments discussed in Section 2B
and the regular part of 3O is isometric to the Riemannian Hilbert manifold 3regO
constructed in Section 2B. In particular, 3O is the metric completion of 3regO, as
3regO is dense in the complete metric space 3O.

As in the manifold case, the spaces

�κX =�X ∩ E−1([0, κ)) and 3Oκ
=3Oκ

∩ E−1([0, κ))

admit finite-dimensional approximations [Guruprasad and Haefliger 2006, v.1].
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Proposition A.1 (finite-dimensional approximation). Let O be a compact orbifold
and let κ ≥ 0 be given.

(i) There exist ε > 0 and a big enough k such that every element of �κX can be
represented by a G-path c = (g0, c1, g1, . . . , ck, gk) defined over the subdivi-
sion 0= t0 < t1 < · · ·< tk = 1, where ti = i/k, and each ci (ti−1) is the center
of a convex open geodesic ball of radius ε containing the image of ci .

(ii) The space�κX retracts by energy-nonincreasing deformation onto the subspace
�κX (k) whose elements are represented by G-loops as above for which each ci

is a geodesic segment.

(iii) The restrictions of the energy function to �κX and to �κX (k) have the same
critical points, and at each such point the nullity and the index (which can still
be defined in this case [Guruprasad and Haefliger 2006]) are the same.

(iv) The orbifold 3Oκ
:= G \�κX retracts by energy-nonincreasing deformation

onto the finite-dimensional orbifold 3Oκ(k)= G \�κX (k).
For a Riemannian spindle orbifold O= S2(p, q) with a separating geodesic c we

can choose the following convenient charts. Let x, y ∈O be two points in different
components of the complement of c such that O \ {x, y} lies in the regular part
of O. We choose X to be the disjoint union of X0 =Oreg and Riemannian manifold
charts Xx and X y covering O \ {y} p-foldly and O \ {x} q-foldly, respectively.
With respect to this choice any G-loop based at z ∈ X0 that projects to Oreg can be
represented as (1z, c, 1z) for an H 1-loop in X0 with c(0)= z = c(1) and can thus
be identified with c. Any G-equivalence class of G-loops based at z ∈ Xx which is
represented by a G-loop that projects to O \ {y} can be represented as (1z, c, gz) for
an H 1-loop in X0 with c(0)= z and c(1)= gz and a deck transformation g ∈ Gx

of the covering Xx →O \ {y}.

Appendix B: Homology generated by iterated geodesics

In this section we explain why the proofs of [Bangert and Klingenberg 1983,
Theorem 3; Bangert and Klingenberg 1983, Lemma 2] also work in the slightly
more general situation of Theorem 3.1 and Lemma 3.2, which allow for isolated
orbifold singularities. The first step is to obtain [Bangert and Klingenberg 1983,
Theorem 1] in the following version. Here the map ψm

:3→3 sends a loop γ to
its m-fold iteration γ m.

Theorem B.1. Let 3 be the free loop space of a compact Riemannian orbifold O
with isolated singularities. For some κ > 0 let [g] be a class in πp(|3|, |3

κ
|). Then

[gm
] := [ψm

◦ g] ∈ πp(|3|, |3
κm2
|) is trivial for almost all m ∈ N.

In the manifold case the idea of the proof is the following. Given a homotopy
h : [a, b]→3, then hm

:=ψm
◦h is a naturally associated homotopy from hm(a) to
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hm(b). One can replace this homotopy, which pulls the m loops of hm(a) to hm(b)
as a whole, by another homotopy hm : [a, b]→3 from hm(a)= hm(a) to hm(b)=
hm(b) that pulls the m loops from hm(a) to hm(b) successively. The advantage of the
new homotopy over the old one is that the energy of hm(t) depends only on h(a) and
h(b) in the limit of large m and can thus be bounded appropriately. This construction
can be applied fiberwise to a map g : (I p, ∂ I p)→ (|3|, |3κ |) with respect to a
splitting I p

= I p−1
× I and yields a homotopic map with image in 3κ. The same

construction can be carried out in the case of an orbifold with isolated singularities.
In fact, all regularity issues occurring in [Bangert and Klingenberg 1983] can be
handled in the same way in this case since finite-dimensional approximations are
also available for orbifold loop spaces (see Proposition A.1) and since the whole
construction can be assumed to take place away from the energy zero level set, and
hence in the manifold part of 3.

The next step is to obtain a related result in homology as in [Bangert and
Klingenberg 1983, Theorem 2].

Theorem B.2. Let 3 be the free loop space of a compact Riemannian orbifold O
with isolated singularities. Let H be an element of H∗(3κ ,3κ), where κ > 0 and
3κ is the union of all components of 3 intersecting 3κ. Let K be a finite set of
integers k ≥ 2. Then there exists m ∈ N such that no k ∈ K divides m and such that
ψm
∗
(H) vanishes in H∗(3κ ,3κm2

).

The proof of [Bangert and Klingenberg 1983, Theorem 2] can be taken verbatim
as a proof for Theorem B.2. For sufficiently large m one can construct a homotopy
from a representative of ψm

∗
(H) to a representative in 3κm2

by using Theorem B.1
inductively.

Now we explain the proof of [Bangert and Klingenberg 1983, Theorem 3] and
why it generalizes to the setting of Theorem 3.1. Suppose that there exist only
finitely many towers of closed geodesics on O. Then all critical S1-orbits on 3 are
isolated. Moreover, by Lemma 2.6(iii), and perhaps after choosing a different c, one
can find p ∈N such that Hp(3(c)∪S1c,3(c)) 6= 0 and Hq(3(d)∪S1d,3(d))= 0
for every q > p and every closed geodesic d with ind(dm) = 0 for all m. In the
manifold case Lemma 2.6(ii) implies that there exist integers {k1, . . . , ks}, ki ≥ 2,
such that

ψm
∗
: Hp(3(c)∪ S1c,3(c))→ Hp(3(cm)∪ S1cm,3(cm))

is an isomorphism whenever none of the ki divides m (for details see the proof of
[Bangert and Klingenberg 1983, Theorem 2]). The same conclusion holds in the
present situation since its proof involves only local arguments. By Lemma 2.6(i) and
the assumption of only finitely many towers of closed geodesics, there exists some
A>0 such that every closed geodesic d with E(d)> A either satisfies ind(d)> p+1
or ind(dm)= 0 for all m. Hence one has Hp+1(3(d)∪ S1d,3(d))= 0 whenever
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d is a closed geodesic with E(d) > A. Therefore, as in [Bangert and Klingenberg
1983], standard arguments from Morse theory imply that

i∗ : Hp(3(cm)∪ S1cm,3(cm))→ Hp(3,3(cm))

is one-to-one if E(cm) > A. In particular, the composition

i∗ ◦ψm
∗
: Hp(3(c)∪ S1c,3(c))→ Hp(3,3(cm))

is one-to-one. Since c is not an absolute minimum in its free homotopy class, this
contradicts Theorem B.2.

Hence Theorem 3.1 holds. The proof of [Bangert and Klingenberg 1983,
Lemma 2] and Lemma 3.2 works as follows. Hp(3(ci )∪ S1ci ,3(ci )) 6= 0 implies
ind(ci ) ≤ p by Lemma 2.6(iii). Since for every closed geodesic c either ind(cm)

grows linearly with m or ind(cm) = 0 for all m, the ci can be iterates of a finite
number of prime closed geodesics only if ind(cm

i )= 0 for some i and all m. In this
case Theorem 3.1 proves the existence of infinitely many closed geodesics.
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A CASSELMAN–SHALIKA FORMULA
FOR THE GENERALIZED SHALIKA MODEL OF SO4n

MIYU SUZUKI

We compute the explicit formula (sometimes called the Casselman–Shalika
formula) of the generalized Shalika model for unramified principal series
of p-adic SO4n. The method mainly used is the Casselman–Shalika method,
modified by Y. Hironaka and applied by Y. Sakellaridis to the case of the
Shalika model of GL2n.

1. Introduction

Let G = SO4n(F), the F-split 4n-dimensional special orthogonal group, where F
is a nonarchimedean local field of characteristic 0.

By P, we denote the Siegel parabolic subgroup of G and by N, the unipotent
radical of P. Once we identify G with a subgroup of the isotropy group of the
quadratic form defined by

ξ =
(

12n
12n

)
,

N is identified with the subgroup consisting of matrices of the form(
12n X

12n

)
with X + tX = 02n.

Let M be the Levi component of P consisting of matrices of the form(A
tA−1

)
with A ∈ GL2n(F).

Jiang and Qin [2007] introduced the notion of a generalized Shalika model for
representations of G as follows. Take any nontrivial additive character ψ of F with
conductor 0. The expression

ψ
(1

2 tr(J X)
)

defines a character 9 on N, where

J =
(

1n
−1n

)
.
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The stabilizer of this character in M is naturally isomorphic to Sp2n(F), the sym-
plectic group with respect to J,

Sp2n(F)= {x ∈ GL2n(F) | tx J x = J }.

Define the subgroup (called the “generalized Shalika subgroup”) H of P by

H := StabM(9)N ∼= Sp2n(F)n N

and extend 9 to a character of H, which will be again denoted by 9.
An admissible representation π of G is said to have a generalized Shalika model

if there is a nonzero G-morphism from π to IndG
H (9). Because of Frobenius reci-

procity, this is equivalent to saying that there is a nonzero H -morphism from π to9.
In this article, we will treat the case of unramified principal series I (χ) of G

and determine a necessary and sufficient condition for I (χ) to have a generalized
Shalika model. Moreover, we will give an explicit formula (a Casselman–Shalika
formula) for the spherical vector in the generalized Shalika model of I (χ).

We will explain our results more precisely. Take any nonzero H -morphism 3

from I (χ) to 9. Let K = SO4n(o), the standard maximal compact subgroup of
G, where o is the ring of integers of F. There is a unique K -invariant vector φK

in I (χ) which satisfies φK (1)= 1. Let �(g)=3(RgφK ). Our goal is to give an
explicit formula for this function �.

The Weyl group of G is denoted by W. The main result involves the subgroup
0 of W. Let 6 = {ei ± e j , 1 ≤ i, j ≤ 2n, i 6= j} be the root system of G and
Ei = e2i−1 + e2i . Then, 8 = {Ei − E j , ±Ek, 1 ≤ i, j, k ≤ n, i 6= j} is a root
system of type Bn and 0 is the Weyl group of 8 realized by the subgroup of W. For
each root α ∈6, Casselman defined a certain constant cα(χ) (see [Casselman 1980,
Section 3]). If β ∈8 is a short root, then β is in 6 and aβ is already defined. In this
case, let dβ(χ)= χ(aβ). If β = Ei−E j is a long root of 8, define aβ = ae2i−1−e2 j−1 .
In this case, let

dβ(χ)= χ(aβ)
1− q−2χ(a−β)
1− q−2χ(aβ)

.

Our main result is as follows.

Theorem 1.1. For every λ= (λ1,...,λn) ∈ Zn with λ1 ≥ λ2 ≥ ··· ≥ λn ≥ 0,

�(gλ)=
∏
α>0

cα(χ)
∑
w∈0

(−1)l0(w)(wχ)−1δ1/2(hλ)
∏

β>0, wβ<0

dβ(χ),

where gλ = diag($ λ1,...,$ λn ,1,...,1), hλ = diag($ λ1,1,$ λ2,1,...,$ λn ,1) ∈ M
and l0 is the length function of 0.

Note that � satisfies �(hgk)=9(h)�(g) for every h ∈ H, k ∈ K, g ∈ G and
hence we only need to compute the value of � for representatives {gλ} of H \G/K.
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The method we will use is based on works of Casselman and Shalika (see
[Casselman 1980; 1980]) and the outline of this paper is essentially the same as that
of [Sakellaridis 2006], where an explicit formula for the Shalika model is given.

2. Preliminaries

Notation. Let F be a nonarchimedean local field of characteristic 0. Let $ be
a uniformizer, q the order of the residue field, o the ring of integers, and p the
maximal ideal of F.

Let G = SO4n(F), the F-split 4n-dimensional special orthogonal group. The
group G is identified with the subgroup of SL4n(F) consisting of matrices satisfying

tgξg = ξ, ξ =

(
12n

12n

)
.

Denote by Mat2n(F) the set of matrices of degree 2n.
By P, we denote the Siegel parabolic subgroup of G, consisting of matrices of

the form

(2-1)
(

x
tx−1

)(
12n X

12n

)
with x ∈ GL2n(F) and X ∈Mat2n(F), X + tX = 0. Let N be the unipotent radical
of P and M the Levi component with Levi decomposition P = M N as (2-1). We
will frequently identify M with GL2n(F) without notice.

The Bruhat–Tits building of G is denoted by B(G). Each maximal F-split torus
defines an apartment of B(G). We denote the split maximal torus consisting of
diagonal matrices by T and corresponding apartment by A(T ). Fix a special point
o ∈A(T ) and identify A(T ) with 2n-dimensional Euclid space with origin o.

Let 6 be the set of roots of G with respect to T. By taking differentials, we
identify elements of 6 with linear functions on t, the Lie algebra of T. We will
naturally identify t with an F-linear space of diagonal matrices:

t= {diag(t1, . . . , t2n,−t1, . . . ,−t2n) | t1, . . . , t2n ∈ F}.

For 1≤ i ≤ 2n, the element ei of the dual space of t is defined by

ei : diag(t1, . . . , t2n,−t1, . . . ,−t2n) 7→ ti .

Then, under identifications mentioned above, 6 = {ei ± e j | 1≤ i 6= j ≤ 2n}. Let
5 = {αi := ei − ei+1 | 1 ≤ i ≤ 2n− 1, α2n := e2n−1+ e2n}; this is a basis of the
root system 6. Elements of 6 are regarded as linear functions on A(T ) and the set
6aff of affine roots of G as a subset of affine functions on A(T ):

6aff = {α+m | α ∈6,m ∈ Z}.
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Let C = {x ∈A(T ) | 0< α(x) < 1 for all α ∈5} be an alcove of B(G). Let B
be the Iwahori subgroup of G stabilizing C.

We denote the Weyl group of G by W. By si ∈W, we denote the simple reflection
attached to the simple root αi .

Generalized Shalika model. Following [Jiang and Qin 2007], we define the gener-
alized Shalika model for representations of G as follows. Let A be the set of nonsin-
gular skew-symmetric matrices of degree 2n. Take any nontrivial additive character
ψ of F with conductor 0 and a skew-symmetric matrix b ∈ A . The expression

ψ
( 1

2 tr(bX)
)

defines a character 9b on N. The stabilizer of this character in M is naturally
isomorphic to Spb

2n(F), the symplectic group with respect to b,

Spb
2n(F)= {x ∈ GL2n(F) | txbx = b}.

Form a group
H b
:= Spb

2n(F)n N

and extend 9b to a character of H b, which is again denoted by 9b.
Let J =

(
−1n

1n
)
∈ A. We will simply denote 9b, H b and Spb

2n(F) by 9 (or
sometimes by 9H ), H and Sp2n(F) when b = J.

Definition. Let (π, V ) be an irreducible admissible representation of G. We say
that π has a generalized Shalika model if HomHb(π,9b) is nonzero for some b ∈A .

Nien proved the uniqueness of generalized Shalika models:

Theorem 2.1 [Nien 2010]. For any irreducible admissible representation π of
SO4n(F) and b ∈ A ,

dim HomHb(π,9b)≤ 1.

We will consider the generalized Shalika model for unramified principal series of
G. The Borel subgroup of G consisting of matrices in the form of (2-1) with upper tri-
angular x ∈GL2n(F)will be denoted by Pφ . Let χ= (|·|z1, |·|z2 |, . . . , |·|z2n ) be an un-
ramified character of Pφ (i.e., χ : diag(t1, . . . , t2n, t−1

1 , . . . , t−1
2n ) 7→ |t1|

z1 · · · |t2n|
z2n )

and I (χ) the smooth unramified principal series of G. The representation space of
I (χ) is realized by the space of locally constant functions on G which satisfy

f (pg)= χδ1/2(p) f (g)

for every p ∈ Pφ , g ∈G, where δ= (| · |4n−2, | · |4n−4, . . . , | · |2, | · |0) is the modular
character of Pφ . Then G acts on this space by right translations R. There is a
surjective map Pχ to this space from C∞c (G) defined by

Pχ ( f )(g)=
∫

Pφ
χ−1δ1/2(p) f (pg) dp
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for f ∈ C∞c (G) and g ∈ G. We will always assume that Pφ(o) has total measure 1.
Let K = SO4n(o) be the standard maximal compact subgroup of G and φK = φK ,χ

be the unique K -invariant element of I (χ) satisfying φK (1)= 1. It is easy to see
that φK is the image under Pχ of the characteristic function of K.

Definition. Take a nontrivial element 3(=3H =3H,χ ) ∈ HomH (I (χ),9)). We
define a generalized Shalika function

�(g)(=�H (g)=�H,χ (g))=3(RgφK ).

The aim of this paper is to give an explicit formula of this function.

The main results. We will briefly explain the statement of the main results in this
subsection. At first, we need to introduce some more notation.

Since the function � satisfies

�(hgk)=9(h)�(g)

for every h ∈ H, g ∈ G and k ∈ K, it suffices to compute it for a set of double coset
representatives in H \G/K. By Iwasawa decomposition,

H \G/K = H \ P K/K ∼= Sp2n(F) \GL2n(F)/GL2n(o).

Considering transitive right action of GL2n(F) on A defined by X∗g := tgXg, we can
naturally identify these double cosets with orbits in A under the action of GL2n(o).

Proposition 2.2. We have the following double coset decomposition:

GL2n(F)=
⊔
λ

Sp2n(F)gλ GL2n(o),

where gλ :=diag($ λ1,$ λ2, . . .$ λn , 1, . . . , 1)with λ=(λ1, λ2, . . . , λn)∈Zn, λ1≥

λ2 ≥ . . .≥ λn .

Proof. The elementary divisor theorem shows that representatives of orbits in A
under the action of GL2n(o) can be taken as follows:

Xλ =



$ λ1

$ λ2

. . .
$ λn

−$ λ1

−$ λ2

. . .
−$ λn


.

Since Xλ = J ∗ gλ, we obtain the double coset decomposition. �

By an abuse of notation, we will write gλ as diag(g−1
λ , gλ) ∈ G. Then we only

have to compute �(gλ) for each λ.
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Lemma 2.3. If some λi is negative, then �(gλ)= 0.

Proof. Assume that λn < 0 and let X ∈Mat2n(o) be a matrix whose only nonzero
entries are Xn,2n = u and X2n,n =−u, where u ∈ o×. Then

a =
(

12n X
12n

)
is an element of K and we have �(gλ)=�(gλa)= ψ−1(u$ λn )�(gλ). Since the
conductor of ψ is 0, we can choose u so that ψ(u$ λn ) 6= 1. �

Consequently, we only have to treat the case where λ is a dominant partition of
some positive integer. Hereafter, we assume that λ denotes these partitions.

For each w ∈ W, there is an intertwining operator Tw : I (χ)→ I (wχ) which
satisfies the following relations (see [Casselman 1980]):

Tw(φK ,χ )= cw(χ)φK ,wχ ,

where

cw(χ)=
∏

α>0, wα<0

cα(χ), cα(χ)=
1− q−1χ(aα)

1−χ(aα)
.

Here α is a root of G and aα is a diagonal matrix attached to α. For details, see
[Casselman 1980]. Taking the adjoint, we get a G-morphism T ∗w : I (wχ)

∗
→ I (χ)∗,

where ∗ denotes the dual space of a complex linear space.
Denote the space of distributions on G by D(G). By Pχ : C∞c (G)→ I (χ), we

obtain the adjoint G-morphism P∗χ : I (χ)∗→ D(G). Let 1(= 1H = 1H,χ ) :=

P∗χ (3) ∈ D(G). Based on the work of Sakellaridis [2006] (also see [Casselman
1980] and [Hironaka 1999]), we get

(2-2) �(g)= Q−1
∑
w

( ∏
α>0, wα>0

cα(χ)
)

T ∗
w−11(Rg chB),

where chB denotes the characteristic function of B, Q the volume of Bwl B and
wl is the longest element of W. Hence the problem is reduced to computing
T ∗
w−11(Rg chB) for w ∈W and g = gλ.

The statement of our formula involves the subgroup 0 of W, which is isomorphic
to the Weyl group of type Bn , and its root system. Therefore, let us fix some
notation.

Let Ei = e2i−1 + e2i , βi = Ei − Ei+1 (1 ≤ i < n) and βn = En . Then, 8 :=
{Ei−E j ,±Ek | 1≤ i, j, k≤ n, i 6= j} is a root system of type Bn and {βi | 1≤ i ≤ n}
is a basis of 8.
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The subgroup 0 is generated by

wi :=



i
∨

12
...

. . .
...

02 12

12 02
. . .

12


∈ M, (1≤ i ≤ n− 1)

and

wn :=


12(n−1)

02 ε

12(n−1)

ε 02

 ∈ G, where ε =
(

0 1
−1 0

)
.

Note that 0 is naturally identified with the Weyl group of the root system 8 and
under this identification, wi is the simple reflection corresponding to βi .

Definition. For each long root β = Ei − E j ∈8, let aβ = ae2i−1−e2 j−1 . For a short
root β ∈8, aβ is already defined since β ∈6.

We define dβ(χ) for each β ∈8 as follows: if β is a short root,

dβ(χ)= χ(aβ)

and if β is a long root,

dβ(χ)= χ(aβ)
1− q−2χ(a−β)
1− q−2χ(aβ)

.

Our main theorem is as follows.

Theorem 2.4. Let χ = (| · |z1, | · |z2, . . . , | · |z2n ) be an unramified character on Pφ
and assume that this character satisfies z2i−1 = 1+ z2i for all a ≤ i ≤ n.

(i) If χ is not of the form as above (or its W -translate), then I (χ) does not have a
generalized Shalika model.

(ii) For every λ= (λ1, . . . , λn) ∈ Zn with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

�(gλ)= Q−1
∏
α>0

cα(χ)
∑
w∈0

(−1)l0(w)(wχ)−1δ1/2(hλ)
∏
β>0
wβ<0

dβ(χ),

where hλ=diag($ λ1, 1,$ λ2, 1, . . . ,$ λn , 1)∈M and l0 is the length function
of 0.
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3. The open coset

In this section, we will determine which double cosets in Pφ \G/H are open (if they
exist). We don’t analyze this quotient space directly but consider Pφ \G/P, which is
easily described by using Weyl groups. Since the unique open coset in Pφ \G/P is
Pφξ P, the open cosets in Pφ \G/H are in this coset (if they exist). So we will treat
the following quotient space: Pφ \ Pφξ P/H ∼= (ξ−1 Pφξ ∩ P)\ P/H ∼= P0 \G0/H0,
where G0=GL2n(F), H0=Sp2n(F) and P0 is the Borel subgroup of G0 consisting
of lower triangular matrices.

The transitive left action of G0 on A is defined by g ∗ X := gX tg. Then there
is a natural surjective map θ from G0 to A defined by θ(g) = g ∗ J. For X ∈ G0

and each 1 ≤ i ≤ n, X i denotes the top left 2i × 2i-block and di (X) its Pfaffian.
Let A ′ = {X ∈ A | di (X) 6= 0 (1 ≤ i ≤ n)} be an open set in A . We will show
that the inverse image of this set under the map θ is a double coset in P0 \G0/H0.
Identifying W0, the Weyl group of G0, with the symmetric group of degree 2n,
define the element w0 of W0 as a permutation such that

w0(i)=
{

2i − 1 (1≤ i ≤ n)
2i − 2n (n+ 1≤ i ≤ 2n).

Let ε =
(
−1

1). Then

θ(w0)= w0 ∗ J =

(
ε
ε
. . .
ε

)
∈ A ′.

Lemma 3.1. A ′ = θ(P0w0 H0). In particular, P0w0 H0 = θ
−1(A ′) is open.

Proof. Since

p ∗ X =
(

pi

∗ ∗

)(
X i ∗

∗ ∗

)(tpi ∗

∗

)
=

(
pi ∗ X i ∗

∗ ∗

)
,

we have di (p ∗ X)= det(pi )
2di (X) 6= 0 and this shows that A ′ is P0-stable. Hence

θ(P0w0 H0)⊂ A ′. By induction on i , we have to show that if X i is of the form(
ε
. . .
ε

)
,

there is a lower triangular matrix p ∈ GL2(i+1)(F) such that

p ∗ X i+1 =

(
ε
. . .
ε

)
.
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Let A j be 2× 2-matrices and assume that X i+1 is expressed as ε A1
. . .

...
ε Ai

−
tA1 · · · −

tAi Ai+1

 .
Let p1 ∈ GL2(i+1)(F) denote a lower triangular matrix of the form

12
. . .

12

B1 · · · Bi 12

 ,
where Bj :=

tA jε
−1. Then there is a skew-symmetric matrix C ∈GL2(F) satisfying

p1 ∗ X i+1 =

(ε
. . .
ε

C

)
.

It is clear that there is a diagonal matrix p2 of degree 2(i+1) so that (p2 p1)∗ X i+1

becomes the desired form. �

Remark. From the proof of Lemma 3.1, we easily obtain the following slight
refinement. For any X ∈A ′, there is a p ∈ P0 with diagonal component (c1, . . . , c2n)

which sends X to θ(w0) and satisfies

c2i = 1, c2i+1 =
di+1(X)
di (X)

.

Let

B0 =

o× p
. . .

o o×


be the standard Iwahori subgroup corresponding to P0 and

Yλ =

$
λ1ε 0

. . .

0 $ λnε


be an element of A ′.

Lemma 3.2. For all b ∈ B0 and λ, 1≤ i ≤ n,

|di (b ∗ Y−λ)| = |di (Y−λ)|.

In particular, A ′ = P0 B0 ∗ Y−λ = θ(P0 B0w0 H0).
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Proof. By Lemma 3.1, A ′ = P0 ∗ Y−λ ⊂ P0 B0 ∗ Y−λ = θ(P0 B0w0 H0). The other
inclusion follows once we prove the first equation. This is clear for elements in
P0 ∩ B0. Thus, by Iwahori decomposition, it suffices to prove this equation for
elements in

N0 :=

1 p
. . .

1

 .
This will be proved by induction on the size of matrices. Let n ∈ N0 and X = n∗Y−λ.
Then for 1≤ i ≤ n− 1,

X i ∈ ni ∗ (Y−λ)i +$−λi+1+2M2i (o).

Since −λi ≤ −λi+1, any component of ni ∗ (Y−λ)i does not lie in $−λi+1+2o =

p−λi+1+2. Hence we see by induction hypothesis,

|di (X)| = | det X i |
1/2
= | det(ni ∗ (Y−λ)i )|1/2 = |di (Y−λ)|. �

From the two lemmas above, we have θ(P0w0 H0)= A ′ = P0 B0 ∗Y−λ. Let hλ =
diag($ λ1,1,$ λ2,1,...,$ λn ,1). Then θ(hλw0)=Yλ and P0w0 H0= P0 B0h−λw0 H0.
In other words, B0w0g−λ ⊂ P0w0 H0 since g−λ = w−1

0 h−λw0.

Lemma 3.3. For all λ, Bξw0g−λ ⊂ Pφξw0 H.

Proof. Identifying G0 with M by

g 7→
(

g
tg−1

)
,

we see that ξ P0ξ
−1
⊂ Pφ , H0 ⊂ H and ξ B0ξ

−1
⊂ B. From the previous argument,

Pφξ B0w0g−λH ⊂ Pφξ P0w0 H0 H.
Since ξ and w0 are commutative, we obtain

Pφξ P0w0 H0 H = Pφ(ξ P0ξ
−1)ξw0 H = Pφξw0 H.

On the other hand, Pφξ B0w0g−λH = Pφ(ξ B0ξ
−1)ξw0g−λH. By Iwahori de-

composition, B= (B∩Pφ)(ξ B0ξ
−1)(B∩ξNξ−1) and sincew0g−λ∈G0, ξNξ−1

=

(ξw0g−λ)N (ξw0g−λ)−1. Therefore, Pφ(ξ B0ξ
−1)ξw0g−λH = PφBξw0g−λH and

the desired inclusion follows. �

Let η = ξw0, S = ηHη−1. Hereafter, we will treat S instead of H and so we
need to translate all things defined above as follows:

9S(s)=9H (η
−1sη), 3S =3H ◦ Rη−1 ∈ HomS(I (χ),9S),

1S = P∗χ (3S) ∈ D(G), �S(g)=�H (η
−1g)=�H (η

−1gη).
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We have to compute �H (gλ) = �S((ξw0)gλ(ξw0)
−1) = �S(h−λ). Since by

Lemma 3.3, we have supp(Rh−λ chB)= Bhλ ⊂ PφS, and taking (2-2) into consid-
eration, we obtain the following result:

Proposition 3.4. Let χ = (| · |z1, | · |z2, . . . , | · |z2n ) be an unramified character on
Pφ and assume that this character satisfies z2i−1 = 1+ z2i for all 1≤ i ≤ n.

(i) If χ is not of the form above (or its W -translate), then I (χ) does not have a
generalized Shalika model.

(ii) Forw 6∈0, we have T ∗
w−11S(Rh−λ chB)=0 for every λ, where 0 is the subgroup

of W generated by

wi :=



i
∨

12
...

. . .
...

02 12

12 02

. . .

12


∈ G0, (1≤ i ≤ n− 1) and

wn:=


12(n−1)

02 ε

12(n−1)

ε 02

 ∈ G.

Proof. (essentially the same as [Sakellaridis 2006, Proposition 5.2])

(i) Let IS(wχ) be the subspace of I (wχ) consisting of elements supported in PφS.
Then the restriction map induces an isomorphism IS(wχ)→ c-indS

Pφ∩S(wχ)δ
1/2.

On the other hand, there is a surjective map Pr : C∞c (S)→ c-indS
Pφ∩S(wχ)δ

1/2

defined by

Pr ( f )(s)=
∫

Pφ∩S
(wχ)δ1/2(p)−1 f (ps) dr p

where dr p is a right Haar measure on Pφ ∩ S. Composed with these maps, T ∗
w−13S

can be taken as a distribution on S. Then 9S · T ∗w−13S is a right S-invariant
distribution, which must be a Haar measure on S:

T ∗
w−13S =9

−1
S ds.
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For x ∈ Pφ ∩ S, f ∈ C∞c (S),

(wχ)δ1/2δ−1
Pφ∩S(x)

∫
S

f (s)T ∗
w−13S(s) ds =

∫
S

f (xs)T ∗
w−13S(s) ds

=

∫
S

f (xs)9−1
S (s) ds

=9S(x)
∫

S
f (s)9−1

S (s) ds

=9S(x)
∫

S
f (s)T ∗

w−13S(s) ds,

where δPφ∩S is the modular character of Pφ ∩ S. Since Pφ ∩ S consists of matrices
of the form

p =

(A1
. . .

An

)
, Ai =

(
ai bi

a−1
i

)
∈ SL2(F)

and is contained in G0 ∼= M, 9S is trivial on Pφ ∩ S. So we have

(3-1) δPφ∩S(x)= (wχ)δ1/2(x)

for all x ∈ Pφ ∩ S.
An easy calculation shows that δPφ∩S(p) = δ(p) =

∏
i |ai |

2 and hence we
get (wχ)(p) =

∏
i |ai |. If we put wχ = (| · |z1, . . . , | · |z2n ), then (wχ)(p) =∏

i |ai |
z2i−1−z2i and so it is necessary for the existence of a generalized Shalika

model that z2i−1− z2i = 1 for every 1≤ i ≤ n.

(ii) Note that 0 is isomorphic to the Weyl group of type Bn , in particular, it is a
Coxeter group. It is easy to see that 0 consists of elements which preserves the
condition (3-1) and the claim follows immediately. �

This proposition proves the first half of the main theorem. Throughout this paper,
assume that χ satisfies the conditions stated in Proposition 3.4.

Since χδ1/2δ−1
Pφ∩S = 1 on Pφ ∩ S and S is unimodular, there exists a nonzero

right S-invariant linear functional I : c-indS
Pφ∩S χδ

1/2
→ C (where the action of S

on C is trivial). We habitually use an integral expression

I (ϕ)=
∫

Pφ∩S\S
ϕ(s) dṡ

for ϕ ∈ c-indS
Pφ∩S χδ

1/2. Note that this is not an integral in the usual sense since
“integrands” are twisted by characters. This functional is uniquely determined by
right S-invariance up to a positive constant factor (see [Bushnell and Henniart 2006,
Proposition 3.4]). For an element ϕ of c-indS

Pφ∩S χδ
1/2, ϕ ·9−1

S is also an element
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of c-indS
Pφ∩S χδ

1/2 and it follows that∫
Pφ∩S\S

ϕ(s)9−1
S (s) dṡ

is well defined. On the other hand, P∗r I is a right S-invariant distribution on S, which
is a Haar measure on S. Therefore, by the argument in the proof of Proposition 3.4,

P∗r3S =9
−1
S P∗r I = P∗r (9

−1
S I ).

In other words, the restriction of 3S to IS(χ) has an integral expression:

Lemma 3.5. For ϕ ∈ IS(χ),

(3-2) 3S(ϕ)=

∫
Pφ∩S\S

ϕ(s)9−1
S (s) dṡ.

In a similar way, using uniqueness of invariant distributions and the linear
functional C∞c (Pφ × S)→ C∞c (PφS) defined by

PφS 3 ps 7→
∫

pφ∩S
f (px−1, xs) dr x, f ∈ C∞c (Pφ × S),

we obtain the following result:

Lemma 3.6. The map2χ : PφS→C defined by2χ (ps)= χ−1δ1/2(p)9−1
S (s) for

ps ∈ PφS is well defined and for every f ∈ C∞c (PφS) and

(3-3) 1S( f )=
∫

Pφ S
2χ (x) f (x) dx,

where dx is a suitably normalized Haar measure on G.

Proposition 3.7. Assume that Re zi > 0 for all i . Then (3-2) converges absolutely
for every ϕ ∈ I (χ).

Proof. (essentially the same as [Sakellaridis 2006, Proposition 7.1])
We will treat 3H in place of 3S . The equation (3-2) is equivalent to saying that

for every ϕ ∈ I (χ) with support contained in PφηH,

(3-4) 3H (ϕ)=

∫
H Pφ\H

ϕ(ηh)9−1
H (h) dḣ.

Here, H Pφ = η−1 Pφη∩H. Hence we need to prove that (3-4) converges absolutely
for every ϕ ∈ I (χ).

Since every element of I (χ) is dominated by some multiple of φK , it suffices to
treat the case ϕ = φK . By Iwasawa decomposition and K -invariance of φK , (3-4)
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is reduced to∫
φK

(
η

(
12n X

12n

)(
m

tm−1

))
ψ
( 1

2 tr(J X)
)

d X dm,

where X is a skew-symmetric matrix and

m =
(

a
ta−1

)(
12n Y

12n

)
∈ Sp2n(F)

with an upper triangular unipotent matrix a ∈ GL2n(F) and a symmetric matrix
Y ∈Matn(F). The integral over a is taken modulo matrices of the form(

1n b
1n

)
∈ GL2n(F),

where b ∈Matn(F) is a diagonal matrix. Then∫
φK

(
η

(
12n X

12n

)(
m

tm−1

))
ψ

(
1
2 tr(J X)

)
d X dṁ

=

∫
φK

(
η

(
m

tm−1

)(
12n m−1 X tm−1

12n

))
ψ
( 1

2 tr(J X)
)

d X dṁ.

Then m−1 X tm−1 can be replaced by X since H is unimodular and m ∈ Sp2n(F).
Since φK ∈ I (χ), m on the left factor can be assumed to be of the form(

c d
1n

)
,

with an upper triangular unipotent matrix c ∈ GLn(F) and an upper triangular
nilpotent matrix d ∈Matn(F) (here, the integral is taken in the usual sense, not
in that of Lemma 3.5). Therefore, the integral above is dominated absolutely
by the integral representing the intertwining operator Tη (see [Casselman 1995,
Lemma 6.4.2]), which converges absolutely when Re zi > 0 for all i by [Casselman
1980, Lemma 3.2]. �

Thanks to Proposition 3.7, exactly the same argument given in [Sakellaridis 2006,
Section 7] suggests that for any f ∈ C∞c (G), 1S,χ ( f ) is a rational function of χ .

4. End of calculations

Normalize the Haar measure on G so that vol(B)= 1.

Lemma 4.1. For any λ, 1S(chBhλ)= χ
−1δ1/2(hλ).

Proof. Since Bhλ ⊂ PφS and (3-3), 1S(chBhλ) =
∫

Bhλ
2χ (x) dx . Using Iwahori

decomposition of B and B0, every b ∈ B can be expressed in the form b = pqr ,



A CASSELMAN–SHALIKA FORMULA FOR THE SHALIKA MODEL OF SO4n 487

where

p =
(

12n ∗

12n

)
∈ B ∩ N ⊂ Pφ, q=

(
∗ 02n

02n ∗

)
∈ ξ B0ξ

−1,

r =
(

12n

∗ 12n

)
∈ B ∩ ξNξ−1.

Then

bhλ = pqrηg−λη−1
= pξ · ξ−1qξ︸ ︷︷ ︸

∈B0

·w0g−λ · (ηg−λ)−1r(ηg−λ)︸ ︷︷ ︸
∈N

·η−1.

Since B0w0g−λ ⊂ P0w0 H0, there are p0 ∈ P0 and h0 ∈ H0 satisfying b0w0g−λ =
p0w0h0, where b0 := ξ

−1qξ . In other words,

b0Y−λt b0 = θ(b0w0g−λ)= θ(p0w0h0)= p0Y0
tp0 =: X ∈A.

By this and Lemma 3.2,

|di (X)| = |di (b0 ∗ Y−λ)| = |di (Y−λ)| = |di (p0 ∗ Y0)| = | det(p0)i |.

Denote the diagonal component of p0 by (c1, . . . , c2n). Then we have |di (X)| =∏2i
j=1 |cj | = qλ1+···+λi and therefore the remark on page 481 shows that p0 can be

chosen so that c2i = 1, |c2i−1| = qλi for each i .
Let n0 = (ηg−λ)−1r(ηg−λ). Then

bhλ = pξp0w0h0n0η
−1
= p · ξp0ξ

−1︸ ︷︷ ︸
∈Pφ

· ηh0n0η
−1︸ ︷︷ ︸

∈S

Hence,

2χ (bhλ)= χ−1δ1/2(pξp0ξ
−1)9H (h0n0)=

n∏
i=1

q−(2n−2i+1−z2i−1)λi9H (n0)

Express r in the form (
12n

X 12n

)
,

where X is an element of Mat2n(p). Since

n0 = (w0g−λ)−1
(

12n X
12n

)
(w0g−λ)=

(
12n gλtw0 Xw0gλ

12n

)
and the conductor of ψ is assumed to be 0,

9H (n0)= ψ
( 1

2 tr(Jgλtw0 Xw0gλ)
)
= ψ

( 1
2 tr(X · Yλ)

)
= 1.

Some additional simple computations show that 1S(chBhλ)= χ
−1δ1/2(hλ). �
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Proposition 4.2.

�S(h−λ)= Q−1
∑
w∈0

( ∏
α>0
wα>0

cα(χ)
)
(wχ)−1δ1/2(hλ)T ∗w−11S,χ (chB).

Proof. By the uniqueness of the generalized Shalika model, T ∗
w−13S,χ is a scalar

multiple of 3S,wχ . Hence,

T ∗
w−11S,χ (Rh−λ chB)

T ∗
w−11S,χ (chB)

=
T ∗
w−13S,χ (Rh−λφB)

T ∗
w−13S,χ (φB)

=
3S,wχ (Rh−λφB)

3S,wχ (φB)

=
1S,wχ (Rh−λ chB)

1S,wχ (chB)

= (wχ)−1δ1/2(hλ).

Applying this to (2-2), the desired result follows. �

We denote the length function of W by l and that of 0 by l0. The following
lemma suggests that we only have to treat the case w = wi in the notation of
Proposition 3.4.

Lemma 4.3. For w,w′ ∈ 0, l0(ww′) = l0(w) + l0(w′) implies that l(ww′) =
l(w)+ l(w′).

Notice that a reduced expression of each wi is given as follows:

wi = s2i s2i−1s2i+1s2i , (1≤ i ≤ n− 1), wn = s2n.

Following [Casselman 1980], we denote Pχ (chBwB) by φw,χ for each w ∈W.
Let Nφ be the unipotent radical of Pφ and N−φ be that of the opposite of Pφ . For

α ∈ 6, Nα
φ (resp. N−,αφ ) will denote the image of standard embedding F → Nφ

(resp. F→ N−φ ) corresponding to α. We will use N α̂
φ (resp. N−,−̂αφ ) to denote the

product (in any order) of all Nβ
φ (resp. N−,−βφ ), (0<β 6= α). Similarly, for a subset

6′ ⊂6, we define N6′

φ , N 6̂′

φ , etc. Let Pαφ = T · Nα
φ and so on.

We use the following fundamental equation of intertwining operators Tw and
functions φ (see [Casselman 1980, Theorem 3.4]): for each simple reflection sk

and w ∈W with l(skw)= l(w)+ 1, we have

Tsk (φw,skχ )= (cαk (skχ)− 1)φw,χ + q−1φskw,χ ,(4-1)

Tsk (φw,skχ )= φw,χ + (cαk (skχ)− q−1)φskw,χ .(4-2)

Lemma 4.4. Let w = wn and β = βn . Then, T ∗
w−11S,χ (chB)=−cβ(χ)χ(aβ).

Proof. Since w = s2n is a simple reflection, we can apply (4-1) and obtain
Tw−1(φB,wχ )= (cβ(wχ)− 1)φ1,χ + q−1φw,χ . Using the integral expression (3-3),
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it follows that 3S(φ1,χ )= 1 (with Haar measure normalized so that the volume of
B is 1). Therefore, it remains to compute 3S,χ (φw,χ ).

Assume Re zi > 0 for all i so that 1S is given by (3-3). In order to use the
integral expression (3-3) again, we need to express elements of BwB in the form
PφS. Note that BwB need not be contained in PφS, but almost all (i.e., except
elements in certain set of measure 0) elements must be contained.

We use the following measure-preserving decomposition where all compact
groups which appear are assumed to be total measure 1:

BwB = Pφ(o)wNβ(o)N−,−̂β(p).

An easy calculation shows that Lie(N−,−̂β)(p)⊂ Lie(P β̂φ )(p)+Lie(S)(p), and
by an argument similar to the proof of [Sakellaridis 2006, Lemma 5.1], we have
N−,−̂β(p)⊂ P β̂φ (o)S(o). Consequently,

3S(φw,χ )=1S(chBwB)=

∫
BwB

2χ (x) dx = q
∫
wNβ

φ (o)
2χ (x) dx .

The domain of the integral wNβ
φ (o) consists of elements of the form

12(n−1)

02 ε

12(n−1)

ε −x ·12

=: A(x),

with x ∈ o. If x 6= 0,

A(x)=


12(n−1)

x−1
·12 −ε

12(n−1)

x ·12




12(n−1)

−12

12(n−1)

x−1ε −12

∈ PφS.

Therefore,

2χ (A(x))= |x |z2n−1+z2n−1ψ
( 1

2 tr(x−1ε2)
)
= |x |z2n−1+z2n−1ψ−1(x−1)

and

3S(φw,χ)=q
∫
o
|x |z2n−1+z2n−1ψ−1(x−1)dx=q

∞∑
i=0

(qχ(aα))i
∫
pi−pi+1

ψ−1(x−1)dx .

Substituting ∫
pi−pi+1

ψ−1(x−1) dx =


1− q−1 (i = 0)
−q−2 (i = 1)
0 (i ≥ 2)
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for the above equation, it follows that

3S(φw,χ )= q(1− q−1
− q−1χ(aβ)).

By putting all this together and after some simple algebraic manipulation, the
desired equation follows. By rationality, we can drop the assumption of Re zi > 0
and the result follows for all χ . �

Lemma 4.5. Let w = wi for fixed 1≤ i ≤ n− 1. Then

T ∗
w−11S(chB)=

q−1(q−2x − 1)(x − q−1)

(q−1x − 1)(x − 1)
,

where x = χ(aα2i ).

Proof. Applying (4-1), we obtain Ts−1
j
φ1,s jχ = (cα j (s jχ)− 1)φ1,χ + q−1φs jχ for

each 2i − 1≤ j ≤ 2i + 1. Since s j 6∈ 0, T ∗s−1
j
3S,χ (φ1,s jχ )= 0 and we get

(4-3) q−13S,χ (φs j ,χ )=−(cα j (s jχ)− 1).

Repeating the same argument gives us the following equations: for every distinct
j, k, l ∈ {2i − 1, 2i, 2i + 1},

q−23S,χ (φsks j ,χ )= (cαk (skχ)− 1)(cα j (s jχ)− 1),(4-4)

q−33S,χ (φsl sks j ,χ )=−(cαl (slχ)− 1)(cαk (skχ)− 1)(cα j (s jχ)− 1).(4-5)

For j ∈ {2i − 1, 2i + 1}, we also obtain

(4-6) q−33S,χ (φs2i s j s2i , χ)

= (cα2i+1(s2i+1s2iχ)− 1)(cα2i (s2iχ)− q−1)(cα2i (s2iχ)− 1)

− q−1(cα2i+1(s2i+1s2χ)− 1)− (cα2i (s2iχ)− 1)2(cα2i+1(s2i+1χ)− 1).

Using (4-1) and (4-2) repeatedly, we can express Tw−1(φ1,wχ ) as a linear combi-
nation of functions φ. Substituting (4-3), (4-4) and (4-5), we obtain

3S(Tw−1(φ1,wχ ))= (cα2i (s2iχ)− 1)2(cα2i−1(s2i−1χ)− 1)(cα2i+1(s2i+1s2iχ)− 1)

+ (cα2i−1(s2i−1s2iχ)− 1)(cα2i (s2iχ)− q−1)

(cα2i (s2iχ)− 1)(cα2i+1(s2i+1s2iχ)− 1)

− q−1(cα2i−1(s2i−1s2iχ)− 1)(cα2i+1(s2i+1s2iχ)− 1)

− (cα2i (s2iχ)− 1)2(cα2i−1(s2i−1χ)− 1)(cα2i+1(s2i+1s2iχ)− 1)

− (cα2i (s2iχ)− 1)2(cα2i−1(s2i−1χ)− 1)(cα2i+1(s2i+1χ)− 1)

+ q−43S(φw,χ ).
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Simple computations using

cα2i+1(s2i+1χ)= cα2i−1(s2i−1χ)= 0,

cα2i (s2iχ)− 1=
1− q−1

χ(aα2i )− 1
,

cα2i+1(s2i+1s2iχ)− 1= cα2i−1(s2i−1s2i+1s2iχ)− 1=
1− q−1

q−1χ(aα2i )− 1
,

cα2i (s2iχ)− q−1
=

1− q−1

χ(aα2i )− 1
χ(aα2i )

show that

3S(Tw−1(φ1,wχ ))=
(1− q−1)4

(q−1x − 1)2(x − 1)2
x − q−1 (1− q−1)2

(q−1x − 1)2

−
(1− q−1)2

(x − 1)2
+ q−43S(φw,χ )

=−
(1+ q−1)(1− q−1)2

(q−1x − 1)(x − 1)
+ q−43S(φw,χ ),

where x = χ(aα2i ).
It remains to compute 3S(φw,χ ). This can be done by essentially the same

method as the proof of Lemma 4.4.
Assume Re z1 > Re z2 > · · ·> Re z2n > 0 so that 1S is given by (3-3). For later

use, we make a stronger assumption. Let

6i ={α∈6 |α>0, wα<0}={e2i−1−e2i+1, e2i−1−e2i+2, e2i−e2i+1, e2i−e2i+2}.

Then BwB = Pφ(o)wN6i
φ (o)N

−,−̂6i
φ (p). An easy calculation shows that

Lie(N−,−̂6i
φ )(p)⊂ Lie(S)(p)+Lie(P6̂i

φ )(p),

and by an argument similar to the proof of Lemma 5.1 of [Sakellaridis 2006], we
have N−,−̂6i

φ (p)⊂ P6̂i
φ (o)S(o). Therefore,

3S(φw,χ )=1S(chBwB)=

∫
BwB

2χ (x) dx = q4
∫
wN

6i
φ (o)

2χ (x) dx

Then wN6i
φ (o) consists of elements of the form

B(a)=

12(i−1)
02 12
12 a

12(n−i−1)

 ∈ G0
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with a ∈Mat2(o). If det a 6= −1, let

b =
(

1+ det a 0
0 1

)
.

Then 12(i−1)
b εb−1taε

b−1

12(n−i−1)

 B(a) ∈ S ∩G0.

Thus,
2χ (B(a))= |1+ det a|z2i−1−z2i+1−2

and

3S(φw,χ )= q4
∫(

x
z

y
w

)
∈Mat2(o)

|1+ xw− yz|z2i−1−z2i+1−2 dx dy dz dw

= q4
· vol(Mat2(o)−GL2(o))

+ q4
∫(

x
z

y
w

)
∈GL2(o)

|1+ xw− yz|z2i−1−z2i+1−2 dx dy dz dw.

The first term can be computed as follows. Since the restriction of a Haar measure
on Mat2(o) to GL2(o) is equal to the restriction of a Haar measure on GL2(F),

vol(GL2(o))= (q + 1) · vol
(
o× o

p o×

)
= q−3(q − 1)2(q + 1),

and hence vol(Mat2(o)−GL2(o))= 1− q−3(q − 1)2(q + 1).
Next, we need to compute the second term. There is a diffeomorphism f between

GL2(o) and o××SL2(o) given by

o××SL2(o) 3

(
t,
(

x y
z w

))
7→

(
t x ty
z w

)
∈ GL2(o).

The Jacobian of f on the region o××{w 6= 0} ⊂ o××SL2(o) is J f = t/w. Since
the complement of this region is a set of measure 0, we can transform the second
term into an integral on o××SL2(o):∫(

x
z

y
w

)
∈GL2(o)

|1+ xw− yz|z2i−1−z2i+1−2 dx dy dz dw

=

∫
o×

∫
{w 6=0}

|1+ t |z2i−1−z2i+1−2
|tw−1

| d×t dy dz dw

=

∫
o×
|1+ t |z2i−1−z2i+1−2 dt ·

∫
{w 6=0}

|w|−1 dy dz dw.
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First, we consider the integral
∫
o× |1+ t |z2i−1−z2i+1−2 dt . Split the integral into

1+ t ∈ o× and 1+ t ∈ p. The former contributes 1− 2q−1 and the latter meshing
∞∑
j=1

|$ j
|
z2i−1−z2i+1−2

· (1− q−1)q− j
= (1− q−1)

∞∑
j=1

χ(aα2i )
j

= (1− q−1)χ(aα2i )(1−χ(aα2i )
−1.

Here, we used the assumption Re z1 > Re z2 > · · · > Re z2n > 0. This implies
|χ(aα2i )|< 1, which is necessary for convergence of the above power series.

Therefore, we have∫
o×
|1+ t |z2i−1−z2i+1−2 dt =−q−1

+ (1− q−1)(1−χ(aα2i ))
−1.

Second, we compute the integral
∫
{w 6=0} |w|

−1 dy dz dw. Splitting the integral
into w ∈ o× and w ∈$ jo×, we get∫
{w 6=0}

|w|−1 dy dz dw

=

∫
w∈o×

∫
y,z∈o

dy dz dw+
∞∑
j=1

∫
w∈$ jo×

∫
yz∈−1+p j

|$ j
|
−1 dy dz dw

= 1− q−1
+

∞∑
j=1

(1− q−1)2q− j

= 1− q−2.

Consequently, we obtain

3S(φw,χ )= q2
− q(q − 1)2(q + 1)(χ(aα2i )− 1)−1.

Putting all this together, the desired equation follows. By rationality, we can drop the
assumption of Rez1 > Rez2 > ···> Rez2n > 0, and the result follows for all χ . �

Some more computation enables us to rewrite these results.

Corollary. For w = wn we have:

T ∗
w−13S,χ =−χ(aβ)cβ(χ)3S,wχ ,

where β = βn .
For w = wi (1≤ i < n) we have:

T ∗
w−13S,χ =−χ(aβ)

1− q−2χ(a−β)
1− q−2χ(aβ)

∏
α∈6i

cα(χ)3S,wχ ,

where β = βi .
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More compactly, for every w ∈ 0,

T ∗
w−13S,χ = (−1)l0(w)

∏
α>0
wα<0

cα(χ)
∏
β>0
wβ<0

dβ(χ)3S,wχ ,

where α ∈6, β ∈8.

These complete the proof of Theorem 2.4.
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NONTAUTOLOGICAL BIELLIPTIC CYCLES

JASON VAN ZELM

Let [B2,0,20] and [B2,0,20] respectively be the classes of the loci of stable
and of smooth bielliptic curves with 20 marked points where the bielliptic
involution acts on the marked points as the permutation (1 2) · · · (19 20).
Graber and Pandharipande proved that these classes are nontautological.
In this note we show that their result can be extended to prove that [Bg] is
nontautological for g ≥ 12 and that [B12] is nontautological.

1. Introduction

The system of tautological rings {R•(Mg,n)} is defined (see [Faber and Pand-
haripande 2005]) to be the minimal system of Q-subalgebras of the Chow rings
A•(Mg,n) closed under pushforward along the natural gluing and forgetful mor-
phisms

Mg1,n1+1×Mg2,n2+1→Mg1+g2,n1+n2,

Mg,n+2→Mg+1,n,

Mg,n+1→Mg,n.

The tautological ring R•(Mg,n) of the moduli space of smooth curves is the im-
age of R•(Mg,n) under the localization morphism A•(Mg,n)→ A•(Mg,n). We
denote the image of R•(Mg,n) under the cycle map A•(Mg,n)→ H 2•(Mg,n) by
RH 2•(Mg,n) and define RH 2•(Mg,n) accordingly. We say a cohomology class is
tautological if it lies in the tautological subring of its cohomology ring; otherwise we
say it is nontautological. In this note we work over C and all Chow and cohomology
rings are assumed to be taken with rational coefficients.

The tautological rings are relatively well understood. An additive set of gener-
ators for the vector spaces R•(Mg,n) is given by decorated boundary strata and
there exists an algorithm for computing the intersection product; see [Graber and
Pandharipande 2003]. The class of many “geometrically defined” loci can be shown
to be tautological. For example, this is the case for the class of the locus Hg of
hyperelliptic curves in Mg; see [Faber and Pandharipande 2005, Theorem 1].

MSC2010: primary 14H10; secondary 14H30, 14H37.
Keywords: nontautological, bielliptic.
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Any odd cohomology class of Mg,n is nontautological by definition. Deligne
proved that H 11(M1,11) 6= 0, thus providing a first example of the existence of
nontautological classes. In fact, it is known that H•(M0,n) = RH•(M0,n) [Keel
1992] and that H 2•(M1,n)= RH 2•(M1,n) [Petersen 2014, Corollary 1.2].

Examples of geometrically defined loci which can be proven to be nontautolog-
ical are still relatively scarce. In [Graber and Pandharipande 2003], Graber and
Pandharipande hunt for algebraic classes in H 2•(Mg,n) and in H 2•(Mg,n) which
are nontautological. In particular, they show that the classes of the loci Bg,n,2m

and Bg,n,2m of, respectively, stable and smooth bielliptic curves of genus g, with
n marked points fixed by the bielliptic involution and 2m marked points pairwise
switched by the bielliptic involution, are nontautological when g = 2, n = 0 and
2m = 20 (i.e., [B2,0,20] /∈ RH•(M2,20) and [B2,0,20] /∈ RH•(M2,20)). They also
show that for sufficiently high odd genus h, the class of the locus of stable curves
of genus 2h admitting a map to a curve of genus h is nontautological in M2h . Their
result relies on the existence of odd cohomology in H•(Mh,1), which was proven
in [Pikaart 1995] for all h ≥ 8069. See [Faber and Pandharipande 2013] for a recent
survey of different methods of detecting nontautological classes.

In [Petersen and Tommasi 2014; Petersen 2016], Petersen and Tommasi proved
that H 2•(M2,n) is tautological for all n < 20 and that H 2•(M2,20) is additively
generated by tautological classes, by the class [B2,0,20], and by its conjugates under
the action of the symmetric group on 20 elements. In this sense the result of Graber
and Pandharipande for the bielliptic locus is sharp.

In this note we prove the following two new results.

Theorem 1. The cohomology class [Bg,n,2m] is nontautological for all g+m ≥ 12,
0≤ n ≤ 2g− 2 and g ≥ 2.

Theorem 2. The cohomology class [Bg,0,2m] is nontautological when g+m = 12
and g ≥ 2.

Theorem 1 reduces the genus for which algebraic nontautological classes on Mg

are known to exist from 16138 to 12. As far as the author is aware, Theorem 2
provides the first example of a nontautological algebraic class on Mg.

2. Preliminaries

Let Bg,n,2m ⊂Mg,n+2m be the locus of smooth bielliptic curves for which the biellip-
tic involution acts on the last 2m markings as the involution (1 2) · · · (2m− 1 2m)
and fixes the remaining points, and let Bg,n,2m ⊂Mg,n+2m be its closure. A modular
interpretation of Bg,n,2m can be given by admissible double covers [Abramovich
et al. 2003].

Definition 3. We define Adm(g, h)2m to be the stack parameterizing admissible
double covers from curves of genus g to curves of genus h with 2m points switched
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by the involution. Specifically, Adm(g, h)2m parameterizes tuples

(C, D, f, y1, . . . , y2m)

together with a total ordering of the smooth ramification points of f such that

• f : C→ D is a double cover of connected nodal curves of arithmetic genus g
and h, respectively,

• y1, . . . , y2m are points in the smooth locus of C such that the covering involu-
tion swaps the points y2k−1 and y2k pairwise,

• the image of each node of C under f is a node,

• the curve C , equipped with the markings given by the set of all ramification
points and the points y1, . . . , y2m , is stable, and so is the curve D, equipped
with the markings given by the ordered set of all smooth branch points and
the images of the points y1, . . . , y2m .

There is a natural map φn : Adm(g, h)2m → Mg,n+2m which assigns to an
admissible double cover (C, D, f, y1, . . . , y2m) the stabilization of the curve

(C, x1, . . . , xn, y1, . . . , y2m),

where the (xi )
n
i=1 are the first n smooth ramification points of f . The space Bg,n,2m

equals the image of Adm(g, 1)2m under φn .
By using the Riemann–Hurwitz formula inductively on the number of nodes

of D, we see that the map f must have 2g+ 2− 4h ramification points. The map
Adm(g, h)2m→Mh,2g+2−4h+m , mapping each admissible cover to its target curve
together with its marked points, is finite. In the bielliptic case it follows that the
dimension of Bg,n,2m is 2g− 2+ 2m. The classes of these loci are denoted by

[Bg,n,2m] ∈ Ag−1+n+2m(Mg,2m+n) and [Bg,n,2m] ∈ Ag−1+n+2m(Mg,2m+n).

Similarly, we let Hg,n,2m be the locus of smooth hyperelliptic curves with n
marked points fixed and 2m points pairwise permuted by the hyperelliptic involution.
We denote its closure inside Mg,n+2m by Hg,n,2m . This closure equals the image
of Adm(g, 0)2m under φn .

Our proof of Theorem 1 relies on the following result for pullbacks along gluing
morphisms.

Proposition 4 [Graber and Pandharipande 2003, Proposition 1]. Let

ξ :Mg1,n1+1×Mg2,n2+1→Mg1+g2,n1+n2

be the gluing morphism and γ ∈ RH•(Mg1+g2,n1+n2). Then

ξ∗(γ ) ∈ RH•(Mg1,n1+1)⊗ RH•(Mg2,n2+1).
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We say that a cycle λ∈ H•(Mg1,n1)⊗H•(Mg2,n2) admits a tautological Künneth
decomposition if λ ∈ RH•(Mg1,n1)⊗ RH•(Mg2,n2). Proposition 4 says that the
pullback of a tautological class admits a tautological Künneth decomposition. It
can be shown that the pullback of a tautological class under the gluing morphism
Mg,n+2→Mg+1,n and the forgetful morphism Mg,n+1→Mg,n is tautological.
In this sense the tautological ring is also closed under pullbacks along the gluing
and the forgetful morphisms.

3. Proof of Theorems 1 and 2

We are now ready to prove Theorem 1. We start by proving the following weaker
result.

Proposition 5. We have

[Bg,0,2m] 6∈ RH•(Mg,2m)

for g+m = 12 and g ≥ 2.

Proof. Let

(†) i :M1,11×M1,11→Mg,2m

be the gluing morphism that pairwise identifies the first g−1 points on the first curve
with the first g− 1 points on the second curve. In Lemma 6 we will prove that the
restriction of i∗[Bg,0,2m] to the interior M1,11×M1,11 is a positive scalar multiple
α of the class [1] of the diagonal. Let ∂(M1,11×M1,11) denote the normalization
of (M1,11×M1,11)\(M1,11×M1,11). It follows from the localization sequence

A10(∂(M1,11×M1,11))→ A11(M1,11×M1,11)→ A11(M1,11×M1,11)→ 0

that i∗[Bg,0,2m] = α ·1+ B, with B supported on the image of ∂(M1,11×M1,11).
The class B admits a tautological Künneth decomposition by Lemma 7(i). Given

a homogeneous basis {ei }i∈I for H•(M1,11)with dual basis {êi }i∈I , the cohomology
class of the diagonal can be written as

[1] =
∑
i∈I

(−1)deg ei ei ⊗ êi .

In particular, since H 11(M1,11) 6= 0, the diagonal [1] does not admit a tautological
Künneth decomposition. Since the pullback of a tautological class along a (composi-
tion of) gluing morphisms admits a tautological Künneth decomposition by repeated
application of Proposition 4, this shows that [Bg,0,2m] is nontautological. �

Lemma 6. Let g+m = 12 and g ≥ 2. The pullback of [Bg,0,2m] to M1,11×M1,11,
under the restriction j of the gluing map i defined in (†), is a scalar multiple α of
the class of the diagonal 1.
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involution

P1 P1 P1 P1 y1 · · · y2m−1

ramification
points

y2 · · · y2m

C

C

P1 P1 P1 P1

C

Figure 1. The image of C under η.

Proof. Let η be the map M1,11→Adm(g, 1)2m which maps a curve (C, x1, . . . , x11)

to the admissible cover which has as a source curve two copies of C glued together
by rational bridges attached to the first g− 1 points of each copy of C , as covering
involution the bielliptic involution which switches around the two copies of C and
has two fixed points on each of the rational bridges, and as target curve a single
copy of C with a rational component attached to the first g−1 points (see Figure 1).
Let δ :M1,11→M1,11×M1,11 be the diagonal morphism. Consider the diagram

(‡)

M1,11

F Adm(g, 1)2m

M1,11×M1,11 Mg,2m

η

ζ

δ φ̃0 φ0�

j

By unwrapping definitions one verifies that j ◦δ= φ0 ◦η. By the universal property
of fiber products this defines a unique map ζ :M1,11→ F , making diagram (‡)
commute.

Claim: The morphism ζ is surjective on closed points.

Assuming the claim, it follows that φ̃0∗[F] is a positive scalar multiple of
δ∗[M1,11] = [1]. Since

codimM1,11×M1,11 1= 11= codimMg,2m
Bg,0,2m,

it follows that there is no excess of intersection between M1,11 ×M1,11 and
Bg,0,2m = φ0(Adm(g, 1)2m) in diagram (‡). We deduce that j∗[Bg,0,2m] = α[1] for
some α ∈Q>0.
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τ

τ

Q̂i τ(Q̂i ) Q̂ j τ(Q̂ j ) S

Pi Pj

T

Figure 2. The admissible cover S→ T when τ fixes C1 and C2.

Proof of the claim. By definition, an object of F(C) consists of a curve C̃ := (C̃1, C̃2)

in M1,11×M1,11(C), an object (S→ T ) ∈ Adm(g, 1)2m(C) and an isomorphism
γ : j (C̃)

∼
−→ φ0(S→ T ). To prove the claim, we show that (C̃, (S→ T ), γ ) is

isomorphic to an object in the image of ζ . Let f : C̃1 ∪ C̃2→ j (C̃) be the map of
curves induced by j , set C := j (C̃), C1 := f (C̃1) and C2 := f (C̃2), let τ be the
involution on C induced by the bielliptic involution of S→ T and let Qi be the
node of C corresponding to the i-th marking of C̃1 and C̃2 via the morphism f .

Since C1 and C2 are smooth, there are two possibilities for the action of τ on C :
either it fixes C1 and C2 or it switches the whole of C1 with the whole of C2.

Suppose τ fixes C1 and C2. By construction the involution τ maps marked
points lying on C1 to marked points lying on C2 so this is only possible if C has
no marked points at all. In this case τ must fix the different branches of C at
each Qi . If the preimage of Qi in S were to be a genus 0 curve Ri , contracted
by the stabilization map, then Ri would have 2 marked ramification points which
are not nodes. But this would imply that τ switches the nodes on Ri and it would
therefore also switch the branches of C at Qi . It follows that the preimage of each
Qi in S is a single node Q̂i . Since C1 and C2 are smooth, τ induces an involution
on the set of nodes {Q̂1, . . . , Q̂11}. We can thus find distinct Q̂i , Q̂ j 6= τ(Q̂i )

such that S−{Q̂i , τ (Q̂i ), Q̂ j , τ (Q̂ j )} is connected. If Pi and Pj are the images of
Qi and Q j , respectively, under the admissible cover S→ T then this means that
T − {Pi , Pj } is connected (see Figure 2). This implies that the arithmetic genus
of T is at least 2, which is a contradiction.

We can therefore assume τ maps C1 to C2. Let us first suppose that τ does not
fix all nodes, so there exist some distinct i , j such that τ(Qi )= Q j (see Figure 3).
If the preimage of Qi in S is a component of S contracted by the stabilization map,
then this component must contain a ramification point. This would be a fixed point
of the involution, contradicting the assumption that τ(Qi )= Q j . So the preimage
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τ

Q̂i Q̂ j

Figure 3. Nodes in S not fixed by τ .

of Qi and Q j in S are nodes Q̂i and Q̂ j . Let P be the image of {Q̂i , Q̂ j } under
the bielliptic map. Arguing as at the end of the last paragraph, we see that T \{P}
is connected. Therefore, since T has arithmetic genus 1, it has geometric genus 0.
However, if S1 is the irreducible component of S which surjects onto C1 under
the stabilization map, then S1 is a smooth curve of geometric genus 1. This is a
contradiction because S1→ T1 is a birational map.

We have thus proven that τ switches the components C1 and C2 and fixes the
nodes Qi , which implies that ((C̃1, C̃2), (S→ T ), γ ) is isomorphic to an object
in the image of M1,11(C). This concludes the proof that the map M1,11→ F is
surjective on closed points. �

Lemma 7. (i) Every algebraic class of codimension 11 in M1,11 ×M1,11 sup-
ported on ∂(M1,11×M1,11) admits a tautological Künneth decomposition.

(ii) Every algebraic class on M1,11×M1,11 of codimension less than 11 admits a
tautological Künneth decomposition.

Proof. This is a slightly weaker version of [Graber and Pandharipande 2003,
Lemma 3]; the proof given there requires that RH 2•(M1,n) = H 2•(M1,n) and
H odd(M1,n)= 0 for n < 11, for which there was no reference at the time of their
paper. The first equation is [Petersen 2014, Corollary 1.2]. The second condition
follows from the computations for n < 11 in [Getzler 1998]. �

We have now concluded the proof of Proposition 5. To prove Theorem 1 it
remains to show that [Bg,n,2m] is nontautological for all g, n, m with 0≤ n≤ 2g−2
and g+m > 12.

Proof of Theorem 1. We will show in Lemma 8 and 9 that if [Bg,n,2m] is nontautolog-
ical then so are [Bg,n+1,2m] for n ≤ 2g− 3, and [Bg,n,2m+2]. In Lemma 10 we will
show that if [Bg,1,0] is nontautological then so is [Bg+1]. Using these statements,
and by induction with the statement of Proposition 5 as the base case, we conclude
that [Bg,n,2m] is nontautological for all g+m ≥ 12. �

Lemma 8. If [Bg,n,2m] is nontautological and n ≤ 2g− 3, then so is [Bg,n+1,2m].

Proof. Let π :Mg,n+1+2m →Mg,n+2m be the morphism that forgets the first
point and stabilizes. By definition π∗([Bg,n+1,2m]) is a positive scalar multiple
of [Bg,n,2m]. Because the pushforward of a tautological class by the forgetful
morphism is tautological by definition, the result follows. �
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Lemma 9. If [Bg,n,2m] is nontautological, then so is [Bg,n,2m+2].

Proof. If n ≤ 2g− 3 then [Bg,n+1,2m] is nontautological by Lemma 8. Consider the
gluing morphism

σ :Mg,n+2m+1×M0,3→Mg,n+2m+2

which glues the first points of both curves together; then σ−1(Bg,n,2m+2)=Bg,n+1,2m .
Since

codimMg,n+2m+2
Bg,n,2m+2 = codimMg,n+2m+1

Bg,n+1,2m,

it follows that σ ∗[Bg,n,2m+2] = α[Bg,n+1,2m] for some α ∈Q>0. Since σ is a gluing
morphism and the pullback of a tautological class along σ admits tautological
Künneth decomposition, [Bg,n,2m+2] is nontautological.

If n = 2g− 2 we first prove that [Bg,n−1,2m+2] is nontautological as above by
pulling back along the map Mg,n+2m ×M0,3 →Mg,n+2m+1 and then applying
Lemma 8. �

Lemma 10. If [Bg,1,0] is nontautological, then so is [Bg+1].

Proof. Let ε :Mg,1×M1,1→Mg+1 be the gluing morphism. From the description
of the boundary divisors of BAdm

g+1 [Pagani 2016, pp. 1275–1276], it follows that
there exist α, β ∈Q>0 such that

ε∗[Bg+1] = α[Bg,1,0×M1,1] +β[(Hg−1,0,2,M1,1)] ∈ H•(Mg,1×M1,1),

where (Hg−1,0,2,M1,1) denotes the locus of pairs (C, E) ∈Mg,1×M1,1, where
C consists of a genus g − 1 hyperelliptic curve C ′ glued to an elliptic curve E ′

isomorphic to E , with the hyperelliptic involution switching the marked point of
C ′ with the point of intersection with E ′. The class [(Hg−1,0,2,M1,1)] admits a
tautological Künneth decomposition because the diagonal inside M1,1×M1,1 does,
the class of the hyperelliptic locus is tautological by [Faber and Pandharipande
2005, Theorem 1], and the pushforward of tautological classes under a gluing
morphism is tautological by definition. The class [Bg,1×M1,1] does not admit a
tautological Künneth decomposition because [Bg,1] is nontautological. It follows
by Proposition 4 that [Bg+1] is nontautological. �

We now complete the proof of Theorem 2.

Proof of Theorem 2. The case g = 2 is treated in [Graber and Pandharipande 2003,
Section 3]. We use a similar argument to prove the remaining cases. The proof
runs by contradiction.

Suppose [Bg,0,2m] ∈ RH•(Mg,2m); then there is a collection of cycles Zk in
Mg,2m , of codimension 11 and supported on ∂Mg,2m , such that

∑
[Zk]+[Bg,0,2m]

is tautological. Consider again the gluing morphism i :M1,11×M1,11→Mg,2m

of (†). By assumption, the pullback of
∑
[Zk] + [Bg,0,2m] to M1,11 ×M1,11
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admits a tautological Künneth decomposition whereby the pullback of
∑
[Zk] to

M1,11×M1,11 must be nontautological (by Proposition 4 and since the pullback
of [Bg,0,2m] is nontautological, as we have shown in the proof of Theorem 1).

We denote by 1h the locus of curves in Mg,2m consisting of two curves, one
of which has genus h, glued together in a single node, and by 1irr the locus that
generically parameterizes irreducible singular curves. So ∂Mg,2m =1irr ∪

⋃
h 1h .

Suppose Zk is supported on 1h for some h. Since i(M1,11×M1,11) does not
have a separating node, we see that i(M1,11×M1,11) 6⊂1h . The intersection

1h ∩ (M1,11×M1,11)

therefore lies in the image of ∂(M1,11 ×M1,11). It follows by Lemma 7(i) that
i∗[Zk] admits a tautological Künneth decomposition.

Suppose now that Zk is supported on 1irr. We decompose the map i as

M1,11×M1,11
i1
−−→Mg−1,2m+2

i2
−−→Mg,2m .

Then there exist cycles Yk in Mg−1,2m+2 such that i2∗[Yk] = [Zk]. Now

i∗[Zk] = i∗1 i∗2 [Zk] = i∗1 (c1(NMg−1,2m+2
Mg,2m)∩ [Yk]).

We see that i∗[Zk] decomposes as a product of algebraic classes of codimension less
than 11, all of which admit tautological Künneth decomposition by Lemma 7(ii).

We conclude that all the cycles [Zk] have a tautological Künneth decomposition
when pulled back to M1,11×M1,11, which is a contradiction. �
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This is an addendum to the authors’ previous paper in which criteria for
cuspidal edges and swallowtails on surfaces are given by applying the so-
called Zakalyukin’s lemma. The original statement in Zakalyukin’s paper
assumed the properness of the mappings. However, the lemma in the ap-
pendix of our paper did not assume properness. Recently, we noticed that
the proof given in the appendix was implicitly relying on properness. In this
addendum, we prove that mappings satisfying the criteria of cuspidal edges
and swallowtails have properness. Consequently, the criteria are clarified.

In [Kokubu et al. 2005], to which this note is an addendum, we found an omitted
condition in the statement of Lemma 2.2, which was explained there as a lemma
given by Zakalyukin. The original statement in [Zakalyukin 1976] assumed the
properness of the mappings f1 and f2 in the lemma. We have discovered that
the proof given in the appendix of [Kokubu et al. 2005] was implicitly using the
properness of the mappings fi , (i = 1, 2).

In [Kokubu et al. 2005, Proposition 1.3], this lemma was applied to prove criteria
for cuspidal edges and swallowtails. In this paper, we show that these criteria still
remain valid. In fact, we prepare the following new lemma to replace Lemma 2.2
in [Kokubu et al. 2005].

Lemma. Let U (⊂ Rn) be a neighborhood of the origin, and let the mappings
fi : (U, o)→ (Rn+1, 0), with i = 1, 2, be wave fronts, where o and 0 are the origins
of Rn and Rn+1, respectively. Suppose that o is a singular point of fi and the set of
regular points of fi is dense in U for each i = 1, 2. Moreover, suppose that f −1

i (0)
is a finite set. Then the following two statements are equivalent:

(1) There exist neighborhoods V1, V2(⊂ Rn) of the origin o and a local diffeomor-
phism on Rn+1 which maps the image f1(V1) to f2(V2), namely the image of
f1 is locally diffeomorphic to that of f2.

MSC2010: primary 53C42, 57R45; secondary 53A05, 53A99.
Keywords: wave front, cuspidal edge, swallowtail.
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(2) There exists a local diffeomorphism h on Rn+1 and a local contact diffeo-
morphism 8 on the unit cotangent bundle T ∗1 Rn+1 of Rn+1 with respect to the
Euclidean metric of Rn+1 which sends fibers to fibers such that8◦L f1= L f2◦h,
namely the lift L f1 is Legendrian equivalent to the lift L f2 .

Remark 1. Instead of the properness in the original Zakalyukin lemma, we as-
sume the finiteness of the inverse images f −1

i (0), i = 1, 2, which was dropped in
Lemma 2.2 in [Kokubu et al. 2005]. The condition that f −1

i (0) is a finite set relates
to the K-finiteness of the map fi (cf. [Wall 1981]), which plays an important role
in singularity theory.

We prepare the following assertion:

Proposition. Let U (⊂ Rn) be a neighborhood of a point p ∈ Rn, and B0(r) be an
open ball of radius r(> 0) centered at the origin in RN, and let f : (U, p)→ (RN , 0)
(N ≥ n) be a continuous map such that f −1(0) is a finite set. Then for sufficiently
small r > 0, the connected component V of f −1(B0(r)) containing p satisfies
V ⊂U. Moreover, the restriction of the map f to V with image inside B0(r) is a
proper mapping.

Proof. Take a ball W := Dp(ε) of radius ε centered at p such that W is contained
in U. Since f −1(0) is a finite set, we may choose the radius ε so that

(1) f −1(0)∩W = {p}

holds. We denote by V (r) the connected component of f −1(B0(r)) containing p.
It is sufficient to show that V (1/k)⊂W for any sufficiently large integers k > 0.
If not, there exists a point qk 6∈ W lying in V (1/k). If qk 6∈ ∂W (:= W \W ), then
qk is an exterior point of W. Then we can find a point q ′k ∈ V (1/k) such that q ′k is
also an exterior point of W. Since V (1/k) is connected, there exists a continuous
curve on V (1/k) joining p and q ′k . By the intermediate value theorem, for each
positive integer k, there exists a point pk satisfying

(2) pk ∈ V (1/k)∩ ∂W.

On the other hand, if qk ∈ ∂W, then (2) trivially holds by setting pk := qk .
We then take a sequence {q j,k}

∞

j=1 lying in V (1/k) converging to pk . By defini-
tion, we have f (q j,k) ∈ B0(1/k). By the continuity of f ,

(3) f (pk) ∈ B0(1/k) (k = 1, 2, 3, . . .)

holds, where B0(1/k) is the closure of the open ball B0(1/k). Since ∂W is compact,
we can take a subsequence {pkm }

∞

m=1 of {pk} which converges to a point p∞ ∈ ∂W.
Letting m→∞, equation (3) yields that f (p∞)= 0, which contradicts (1).

We next prove the final assertion: Suppose that K is a compact subset of B0(r)
and f −1(K ) is not compact. Then we can take a sequence {xk} in f −1(K ) not
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accumulating to any point of V. Since V is compact, we may assume that {xk}

converges to a point x∞ on ∂V := V \ V. Since f is a continuous map on U and
V ⊂U, there exists a connected open neighborhood O of x∞ such that f (O)⊂ B0(r).
Then V ′ := V ∪ O is a connected open subset such that f (V ′) ⊂ B0(r), which
contradicts the definition of V, since V ( V ∪ O . �

Proof of Lemma. (1) follows from (2) immediately, so it is sufficient to show
(1) implies (2). By Fact A.3 in the appendix of [Kokubu et al. 2005], we may
assume f1(V1) = f2(V2). By the above proposition, we can take r > 0 such that
V (r) := f −1(B0(r)) satisfies V (r)⊂ V1 ∩ V2. Then we have that

f1(V (r))= f2(V (r)).

By [Kokubu et al. 2005, Fact A.1], we may assume that the associated Legendrian
immersion L fi : Ũi → T ∗1 Rn+1 (i = 1, 2) is an embedding. Since V (r) is compact,
we have

f1(V (r))= f1(V (r))= f2(V (r))= f2(V (r)).

Thus by [Kokubu et al. 2005, Proposition A.4], we have L f1(V1) = L f2(V2). In
particular, we have

L f1(V1)⊂ L f2(U2),

and by [Kokubu et al. 2005, Fact A.2], there exists a local diffeomorphism ϕ on Rn

such that L f2 = L f1 ◦ϕ, which proves the assertion. �

We next show the following claim, that is, that wave fronts satisfying our criteria
for cuspidal edges or swallowtails also satisfy the assumption of the above lemma.
Consequently, the statement of [Kokubu et al. 2005, Proposition 1.3] is clarified.

Claim 1. Let U be a domain in R2, and let f : (U, p)→ (R3, 0) be a wave front such
that p is a nondegenerate singular point. Take a regular curve γ (t) parametrizing
the singular set such that γ (0)= p. If f satisfies one of the two conditions

(1) the null vector η(0) is linearly independent of γ̇ (0), or

(2) η(0) is proportional to γ̇ (0), and

d
dt

∣∣∣∣
t=0

det(γ̇ (t), η(t)) 6= 0,

then the inverse image f −1(0) is a finite set.

Proof. Let ν0 be the unit normal vector of f at p, and T the plane passing through 0
perpendicular to ν0. We denote by π :R3

→ T the orthogonal projection. Then ϕ :=
π ◦ f :U→R2 is a smooth map having a singular point at p. Then the condition (1)
(respectively, (2)) turns out to be a well-known criterion for a fold singularity
(respectively, Whitney cusp singularity), see [Whitney 1955] or Theorem A1 in the
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appendix of [Saji et al. 2009] (A1-Morin singularity means fold singularity, and
A2-Morin singularity means Whitney cusp singularity). So ϕ is right-left equivalent
to the map germ (u, v) 7→ (u2, v) (respectively, (u, v) 7→ (u3

− 3uv, v)). Thus,
f −1(0) is a finite set. �

In [Saji et al. 2009], we gave a criterion for an Ak+1-singular point of a wave
front for k ≥ 1, as a generalization of the case of cuspidal edges and swallowtails.
Then the same problem has arisen in that case as well, that is, to clarify the criterion,
we must show that the map satisfies the condition that the inverse image of the
singular point is a finite set. However, by the following claim, this is actually true:

Claim 2. Let U be a domain in Rn, and let f : (U, p)→ (Rn+1, 0) be a wave front
such that p is a nondegenerate singular point. If f satisfies the criterion given in
[Saji et al. 2009, Theorem 2.4], then the inverse image f −1(0) consists of finitely
many points.

The proof is the same as for Claim 1: Taking the unit normal vector ν0 of f at p,
we define the orthogonal projection π : Rn+1

→ H, where H is the hyperplane
passing through p orthogonal to the vector ν0. Then ϕ :=π ◦ f :U→ H(=Rn) is a
smooth map having a singular point at p. Then the criterion for an Ak+1 singularity
on the wave front f corresponds to the criterion for an Ak-Morin singularity of ϕ
given in [Saji et al. 2009, Theorem A1]. Hence, the inverse image of the origin is a
finite set. �

Remark 2. In [Izumiya and Saji 2010; Izumiya et al. 2010; Saji 2011], criteria for
cuspidal lips, cuspidal beaks, cuspidal butterflies and D4 singularities are given. In
these cases as well, one can similarly show the finiteness of the inverse image of
the singular point, assuming that the criteria given in those papers hold. However,
the arguments are longer and will be given in a separate work by those authors.
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