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A VARIANT OF A THEOREM BY AILON–RUDNICK
FOR ELLIPTIC CURVES

DRAGOS GHIOCA, LIANG-CHUNG HSIA AND THOMAS J. TUCKER

Given a smooth projective curve C defined over Q and given two elliptic sur-
faces E1 → C and E2 → C along with sections σPi , σQ i (corresponding to
points Pi, Q i of the generic fibers) of Ei (for i = 1, 2), we prove that if there
exist infinitely many t ∈ C(Q) such that for some integers m1,t,m2,t , we have
[mi,t](σPi (t)) = σQ i (t) on Ei (for i = 1, 2), then at least one of the following
conclusions must hold:
i. There exist isogenies ϕ : E1 → E2 andψ : E2 → E2 such that ϕ(P1)=ψ(P2).

ii. Q i is a multiple of Pi for some i = 1, 2.
A special case of our result answers a conjecture made by Silverman.

1. Introduction

Ailon and Rudnick [2004] showed that for two multiplicatively independent noncon-
stant polynomials a, b ∈C[x] there is a nonzero polynomial h ∈C[x], depending on
a and b such that gcd(an

−1, bn
−1) | h for all positive integer n. In this paper, we

prove a similar result for elliptic curves; instead of working with the multiplicative
group Gm , we work with the group law on an elliptic curve defined over a function
field. The result of Ailon–Rudnick relies crucially on the Serre–Ihara–Tate theorem
(see [Lang 1965]), while our result relies crucially on recent Bogomolov-type results
for elliptic surfaces due to DeMarco and Mavraki [2017].

Throughout our article, we work with elliptic surfaces over Q; more precisely,
given a projective, smooth curve C defined over Q, an elliptic surface E/C is given
by a morphism π : E→ C over Q where the generic fiber of π is an elliptic curve
E defined over K = Q(C), while for all but finitely many t ∈ C(Q), the fiber
Et := π

−1({t}) is an elliptic curve defined over Q. Recall that a section σ of π
(i.e., a map σ : C → E such that π ◦ σ = id|C ) gives rise to a K -rational point
of E . Conversely, a point P ∈ E(K ) corresponds to a section of π ; if we need
to indicate the dependence on P , we will denote it by σP . So, for all but finitely
many t ∈ C(Q), the intersection of the image of σP in E with the fiber above t

MSC2010: primary 11G50; secondary 11G35, 14G25.
Keywords: heights, elliptic surfaces, unlikely intersections in arithmetic dynamics.
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is a point Pt := σP(t) on the elliptic curve Et := π
−1({t}). For any integer k, the

multiplication-by-k map [k] on E extends to a morphism on E ; if there is no risk of
confusion, we still denote the extension by [k].

We prove the following result:

Theorem 1-1. Let πi : Ei → C be elliptic surfaces over a curve C defined over Q

with generic fibers Ei , and let σPi , σQi be sections of πi ( for i = 1, 2) corresponding
to points Pi , Qi ∈ Ei (Q(C)). If there exist infinitely many t ∈ C(Q) for which there
exist some m1,t ,m2,t ∈ Z such that [mi,t ]σPi (t)= σQi (t) for i = 1, 2, then at least
one of the following properties must hold:

(i) There exist isogenies ϕ : E1→ E2 and ψ : E2→ E2 such that ϕ(P1)=ψ(P2).

(ii) For some i ∈ {1, 2}, there exists ki ∈ Z such that [ki ]Pi = Qi on Ei .

We note here that, in contrast to similar results such as [Ailon and Rudnick 2004],
the ambient algebraic group (E1× E2 in our case, as opposed to Gm for Ailon and
Rudnick) need not be defined over the field of constants in k(C).

A special case of our result (when both Q1 and Q2 are the zero elements) answers
in the affirmative [Silverman 2004b, Conjecture 7]; this is carried out in a more gen-
eral setting (over the complex numbers and also, giving a more precise connection to
the original GCD problem of Ailon–Rudnick) in our Proposition 4-3 from Section 4.
We also note that the special case of Theorem 1-1 when Q1 = Q2 = 0 was solved
by Masser and Zannier [2014] when both elliptic surfaces are defined over C.

Silverman’s question [2004b, Conjecture 7] was motivated by work of Ailon
and Rudnick [2004], who showed that the greatest common divisor of an

− 1 and
of bn

− 1 for multiplicatively independent polynomials a, b ∈ C[T ] has bounded
degree (see also the generalization in [Corvaja and Zannier 2013b] along with the
related results from [Corvaja and Zannier 2008; 2011; 2013a]). In turn, the result
of Ailon and Rudnick was motivated by the work of Bugeaud–Corvaja–Zannier
[Bugeaud et al. 2003] who obtained an upper bound for gcd(ak

− 1, bk
− 1) (as

k varies in N) for given a, b ∈Q. On the other hand, Silverman [2004a] showed
that the degree of gcd(am

− 1, bn
− 1) could be quite large when a, b ∈ Fp[T ]; see

also the authors’ previous paper [Ghioca et al. 2017], where (using as technical
ingredient [Ghioca 2014] in place of [DeMarco and Mavraki 2017]) we study the
gcd(am

− 1, bn
− 1) when a and b are polynomials over arbitrary fields of positive

characteristic, along with other generalizations on the same theme. Finally, we
mention the work of Denis [2011] who studied the same problem of the greatest
common divisor in the context of Drinfeld modules.

As hinted in [Silverman 2004b], this greatest common divisor (GCD) problem
may be studied in much higher generality; for example, if one knew the result of
[DeMarco and Mavraki 2017] (see Theorem 2-3 below) in the context of abelian
varieties, then our method would extend to a similar conclusion for arbitrary abelian
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schemes over a base curve. DeMarco–Mavraki’s theorem can be interpreted as an
extension of Masser–Zannier’s theorem (see [Masser and Zannier 2012]) in the same
spirit as the Bogomolov conjecture is an extension of the classical Manin–Mumford
conjecture. So, even though the extension to arbitrary abelian varieties of the results
from [DeMarco and Mavraki 2017] is expected to be quite challenging, we mention
that there is some progress in this direction due to Cinkir [2011], Gubler [2007],
and Yamaki [2017], who proved various cases of the Bogomolov conjecture for
abelian varieties defined over function fields.

Our Theorem 1-1 is related also to [Barroero and Capuano 2016, Theorem 1.1]
(see also the extension from [Barroero and Capuano 2017]) where it is shown
that given n linearly independent sections Pi on the Legendre elliptic family y2

=

x(x − 1)(x − t), there are at most finitely many parameters t such that the points
(Pi )t satisfy two independent linear relations on the corresponding elliptic curve.
Therefore, a special case of the result by Barroero and Capuano is that given sections
P1, P2, Q1, Q2 on the Legendre elliptic surface, if these four sections are linearly
independent, then there are at most finitely many t such that for some mt , nt ∈Z we
have [mt ](P1)t = (Q1)t and [nt ](P2)t = (Q2)t . However, in our Theorem 1-1 we
obtain the same conclusion under the weaker hypothesis that Qi is not a multiple
of Pi for i = 1, 2 and also that P1 and P2 are linearly independent. We also note
that the constant case of Barroero and Capuano’s theorem is covered by the results
of Habegger and Pila [2016].

A special case of our Theorem 1-1 bears a resemblance to the classical Mordell–
Lang problem proven by Faltings [1994] (see also [Hrushovski 1996] for the case
of semiabelian varieties defined over function fields). Indeed, with the notation as
in Theorem 1-1, assume there exist infinitely many t ∈ C(Q) such that for some
mt ∈ Z we have

(1-2) [mt ](Pi )t = (Qi )t for i = 1, 2.

Also assume there is no m ∈ Z such that [m]Pi = Qi for i = 1, 2. Then the
conclusion of Theorem 1-1 yields the existence of isogenies ϕ : E1 → E2 and
ψ : E2→ E2 such that ϕ(P1)= ψ(P2). Thus, using that (1-2) holds for infinitely
many t ∈ C(Q) we see that

(1-3) ϕ(Q1)= ψ(Q2).

Therefore, if we let X ⊂A :=E1×E2 be the 1-dimensional subscheme corresponding
to the section (Q1, Q2), and we let 0 ⊂A be the subgroup spanned by (0, P2) and
(P1, 0), then the existence of infinitely many γ ∈ 0 such that for some t ∈ C(Q)
we have γt ∈ X implies that X is contained in a proper algebraic subgroup of
A (as given by (1-3)). Such a statement can be viewed as a relative version of
the classical Mordell–Lang problem; note that if E1 and E2 are constant elliptic
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surfaces with generic fibers E0
i defined over Q, while 0 ⊂ (E0

1 × E0
2)(Q), then

this question is a special case of Faltings’s theorem [1994] (formerly known as the
Mordell–Lang conjecture). It is natural to ask whether the above relative version
of the Mordell–Lang problem holds more generally when A→ C is an arbitrary
semiabelian scheme, X ⊂A is a 1-dimensional scheme and 0 ⊂A is an arbitrary
finitely generated group. This more general question is also related to the bounded
height problems studied in [Amoroso et al. 2017] in the context of pencils of finitely
generated subgroups of Gn

m .
In the next section of this paper, we review some preliminary material. Following

that, in Section 3, we prove Theorem 1-1. The proof in the case of nonconstant
sections is quite similar to the proofs of the main results of [Ailon and Rudnick
2004] and [Hsia and Tucker 2017], while the case of constant sections requires a
different argument. In Section 4, we give a positive answer to Silverman’s conjecture
[2004b, Conjecture 7].

2. Preliminaries

From now on, we fix an elliptic surface π : E→C , where C is a projective, smooth
curve defined over Q. We denote by E the generic fiber of E ; this is an elliptic curve
defined over Q(C). For all but finitely many t ∈ C(Q), we have Et := π

−1({t}) is
an elliptic curve defined over Q.

2.1. Isotriviality. We say that E is isotrivial if the j-invariant of the generic fiber
is a constant function (on C); for isotrivial elliptic surfaces E , all smooth fibers
of π are isomorphic (to the generic fiber E). If E is isotrivial, then there exists a
finite cover C ′→ C such that E ′ := E×C C ′ is a constant (elliptic) surface over C ′,
i.e., there exists an elliptic curve E0 defined over Q such that E ′ = E0

×Spec(Q) C ′.
Furthermore, for a constant elliptic surface E0

×Spec(Q) C ′, we say that σP is a
constant section if P ∈ E0(Q).

2.2. Canonical height on an elliptic surface. For each t ∈ C(Q) such that Et is
an elliptic curve, we let ĥEt be the Néron–Tate canonical height for the points in
Et(Q) (for more details, see [Silverman 1986]). There are two important properties
of the canonical height which we will use:

(i) ĥEt (Pt)= 0 if and only if Pt is a torsion point of Et , i.e., there exists a positive
integer k such that [k]Pt = 0; and

(ii) for each k ∈ Z we have ĥEt ([k]Pt)= k2
· ĥEt (Pt).

Also, we let ĥE be the Néron–Tate canonical height on the generic fiber E
constructed with respect to the Weil height on the function field Q(C); for more
details, see [Silverman 1994a]. Property (ii) above holds also on the generic fiber,
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i.e., ĥE([k]P)= k2
· ĥE(P). On the other hand, property (i) above holds only if E

is nonisotrivial. Furthermore, if E = E ×C C is a constant family (where E is an
elliptic curve defined over Q), then for any P ∈ E(Q(C)), we have that ĥE(P)= 0
if and only if P ∈ E(Q).

2.3. Variation of the canonical height. We let hC be a given Weil height for points
in C(Q) corresponding to a divisor of degree 1 on C .

Let σP be a section of the elliptic surface E→ C corresponding to a point P on
the generic fiber E . Then, for all but finitely many t ∈ C(Q), the intersection of
the image of σP in E with the fiber above t is a point Pt , on the elliptic curve Et .
The following important fact will be used in our proof (see [Tate 1983; Silverman
1983]):

(2-1) lim
hC (t)→∞

ĥEt (Pt)

hC(t)
= ĥE(P).

Furthermore, the following more precise result holds, as proven by Silverman
[1994b]:

(2-2) ĥEt (Pt)= hC,η(P)(t)+ OP(1),

where η(P) is a divisor on C of degree equal to ĥE(P) and hC,η(P) is a given Weil
height for the points in C(Q) corresponding to the divisor η(P), while the implicit
constant from the term OP(1) is only dependent on the section σP (and implicitly
on the divisor η(P)), but not on t ∈ C(Q).

2.4. Points of small height on sections. We will use [DeMarco and Mavraki 2017,
Theorem 1.4], which extends [DeMarco et al. 2016] (and in turn, uses the extensive
analysis from [Silverman 1994b] regarding the variation of the canonical height in
an elliptic fibration). We also note that the case of isotrivial elliptic curves from
Theorem 2-3 was previously proven by Zhang [1998], as part of Zhang’s famous
proof of the classical Bogomolov conjecture.

Theorem 2-3 [DeMarco and Mavraki 2017, Theorem 1.4]. Let E1, E2 be elliptic
fibrations over the same Q-curve C. Let Pi be a section of Ei ( for i = 1, 2) with the
property that there exists an infinite sequence {tn} ⊂ C(Q) such that

lim
n→∞

ĥ(Ei )tn
((Pi )tn )= 0 for i = 1, 2.

Then there exist group homomorphisms φ : E1 → E2 and ψ : E2 → E2, not both
trivial, such that φ(P1)= ψ(P2).

3. Proof of our main result

Propositions 3-1 and 3-9 are key to our proof.
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Proposition 3-1. Let C be a projective, smooth curve defined over Q, and let hC(·)

be a Weil height for the algebraic points of C corresponding to a divisor of degree 1.
Let P and Q be sections of an elliptic surface π : E→ C with generic fiber E , and
assume there exists no k ∈ Z such that [k]P = Q. In addition, assume ĥE(P) > 0.
If there exists an infinite sequence {ti } ⊂ C(Q) such that for each i ∈ N there
exists some mi ∈ Z such that [mi ]Pti = Qti , then hC(ti ) is uniformly bounded and
limi→∞ ĥEti

(Pti )= 0.

We note that the special case of Proposition 3-1 when π : E→ C is a constant
elliptic surface follows from [Silverman 1983].

Proof. Since [mi ]Pti = Qti , we have

(3-2) m2
i · ĥEti

(Pti )= ĥEti
(Qti ).

Since [k]P 6= Q for any k ∈ Z and the sequence {ti } is infinite, then

(3-3) lim
i→∞
|mi | =∞.

We claim first that hC(ti ) is uniformly bounded. Indeed, assuming (at the expense,
perhaps, of replacing {ti } by an infinite subsequence) that limi→∞ hC(ti )=∞, (2-1)
coupled with (3-2) and (3-3) yields a contradiction. To see this, we divide both
sides of (3-2) by hC(ti ) and then take limits. Because ĥE(P) > 0, (3-3) implies
that the left-hand side equals

(3-4) lim
i→∞

m2
i ·

ĥEti
(Pti )

hC(ti )
=∞,

while the right-hand side equals

(3-5) lim
i→∞

ĥEti
(Qti )

hC(ti )
= ĥE(Q) <∞,

which is a contradiction. So, indeed, hC(ti ) must be uniformly bounded.
Next we prove that also ĥEti

(Qti ) is uniformly bounded. Using (2-2) (see [Sil-
verman 1994b]) we know that there exists a divisor η(Q) of C of degree equal to
ĥE(Q) such that

(3-6) ĥEt (Qt)= hC,η(Q)(t)+ O(1),

where hC,η(Q) is a Weil height on C(Q) corresponding to the divisor η(Q). Since
hC is a Weil height associated to a divisor D on C of degree 1, then for any positive
integer m > deg(η(Q)), the divisor D1 := m D − η(Q) has positive degree and
therefore, is ample. Then [Hindry and Silverman 2000, Proposition B.3.2] implies
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that any Weil height hC,D1 associated to the divisor D1 satisfies hC,D1(t)≥ O(1)
for all t ∈ C(Q). So,

(3-7) mhC(t)+ O(1)≥ hC,η(Q)(t) for t ∈ C(Q).

Therefore hC,η(Q)(ti ) is uniformly bounded (since hC(ti ) is uniformly bounded).
Then (3-6) provides the desired claim that

(3-8) ĥEti
(Qti ) is bounded as i→∞.

Finally, the fact that limi→∞ ĥEi (Pi )= 0 follows easily from combining equations
(3-2), (3-3), and (3-8). �

Proposition 3-9. Let P and Q be sections of a constant elliptic fibration π : E→C ,
and assume there exists no k ∈ Z such that [k]P = Q. In addition, assume P is
a nontorsion, constant section. If there exists an infinite sequence {ti } ⊂ C(Q)
such that for each i ∈ N there exists some mi ∈ Z such that [mi ]Pti = Qti , then
limi→∞ hC(ti )=∞.

Proof. Each fiber Eti is isomorphic to the generic fiber E0, and so, because P is a
constant section,

(3-10) ĥEti
(Pti )= ĥE0(P0),

where P0 is the intersection of P with the generic fiber and ĥE0(·) is the Néron–Tate
canonical height of the elliptic curve E0 defined over Q (i.e., it is not the canonical
height on the generic fiber of E seen as an elliptic curve defined over the function
field Q(C)).

Furthermore, since P0 is not a torsion point of E0, then ĥE0(P0)> 0. Thus, from
the equality [mi ]Pti = Qti , along with (3-10) coupled with the fact that |mi | →∞

(because [k]P 6= Q for all integers k), we must have

(3-11) ĥEti
(Qti )= m2

i ĥE0(P0)→∞.

Then, using (2-2), we have

(3-12) ĥEti
(Qti )= hC,η(Q)(ti )+ O(1),

where hC,η(Q) is a Weil height on C corresponding to a certain divisor η(Q). So,
(3-11) and (3-12) yield hC,η(Q)(ti )→∞ and thus, hC(ti )→∞ (see [Hindry and
Silverman 2000, Proposition B.3.5], along with our similar argument from the proof
of Proposition 3-1). �

Now we can prove our main result.

Proof of Theorem 1-1. First we note that if Pi is a torsion section (for some
i ∈ {1, 2}), then conclusion (ii) holds trivially since then we would obtain that there
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exist infinitely many t ∈ C(Q) such that (Qi )t = [k](Pi )t for the same integer k.
So, from now on, we assume that both P1 and P2 are nontorsion sections on E1, E2,
respectively. In particular, this means that if ĥEi (Pi ) = 0, then Ei must be an
isotrivial elliptic surface.

We assume there exists an infinite sequence {ti } ⊂ C(Q) such that for each
i ∈N there exist mi,1,mi,2 ∈ Z with the property that [mi,1](P1)ti = (Q1)ti and also
[mi,2](P2)ti = (Q2)ti . In addition, we assume conclusion (ii) does not hold, i.e.,
there is no m ∈ Z such that [m]Pi = Qi for some i ∈ {1, 2}. We split our analysis
into two cases.

Case 1. ĥEi (Pi ) > 0 for each i = 1, 2.
Applying then Proposition 3-1 to the sections Pi and Qi , we obtain

(3-13) lim
i→∞

ĥ(E1)ti
((P1)ti )= lim

i→∞
ĥ(E2)ti

((P2)ti )= 0.

Equation (3-13) along with Theorem 2-3 implies that conclusion (i) must hold in
Theorem 1-1. Note that we obtain in this case that the morphisms ϕ : E1→ E2 and
ψ : E2→ E2 from the conclusion of Theorem 2-3 are both isogenies since P1 and
P2 are nontorsion sections.

Case 2. Either ĥE1(P1)= 0 or ĥE2(P2)= 0.
Without loss of generality, we assume ĥE1(P1) = 0. Therefore (since P1 is

not torsion) E1 is an isotrivial elliptic surface, and furthermore, at the expense of
replacing C by a finite cover (and also performing a base extension for E1 and E2),
we may assume that E1 is a constant family. Thus, E1 = E0

1 ×C C for some elliptic
curve E0

1 defined over Q. Then also P1 is a constant (nontorsion) section, because
ĥE1(P1) = 0. Finally, we let hC(·) be a Weil height for the algebraic points of C
with respect to a divisor of degree 1.

If ĥE2(P2) > 0, then Proposition 3-1 applied to P2 and Q2 implies that hC(ti ) is
uniformly bounded, which contradicts the conclusion of Proposition 3-9 applied
to P1 and Q1. Therefore, we must have ĥE2(P2) = 0, and also E2 is an isotrivial
elliptic surface. At the expense of (yet another) base extension, we may assume that
also E2 = E0

2 ×C is a constant fibration. Then P2 is a constant, nontorsion section
on E2. We let P0

i be the intersection of Pi (for i = 1, 2) with the generic fiber of Ei .
Now, if either Q1 or Q2 is also a constant section, then we get a contradiction

since we assumed conclusion (ii) does not hold. Indeed, if for some i = 1, 2 both Pi

and Qi are constant sections on the constant elliptic surface Ei , then the existence
of a point t ∈C(Q) such that for some k ∈ Z we have [k](Pi )t = (Qi )t implies that
actually [k]Pi = Qi on Ei . So, we may assume that Q1 and Q2 are both nonconstant
sections on E1, respectively E2. Then, there is a (neither vertical, nor horizontal)
curve X ⊂ E0

1×E0
2 containing all points ((Q1)t , (Q2)t) for t ∈C(Q). Furthermore,

our hypothesis means that this curve X intersects the subgroup 0⊂ E0
1×E0

2 spanned
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by the points (P0
1 , 0) and (0, P0

2 ) in an infinite set. The classical Mordell–Lang
conjecture (proven by Faltings [1994]) implies that X itself is a coset of an algebraic
subgroup of E0

1 × E0
2 . Hence, because X projects dominantly onto each coordinate,

there exists a nontrivial isogeny τ : E0
1→ E0

2 , and also there exist endomorphisms
φi of E0

i , not both trivial, such that

(3-14) τ(φ1(Q1))= φ2(Q2).

Then, using (for any i such that mi,1 and mi,2 are nonzero) that

[mi,1]P0
1 = (Q1)ti and [mi,2]P0

2 = (Q2)ti

along with the fact that τ
(
φ1((Q1)ti )

)
= φ2((Q2)ti ), we obtain the conclusion in

Theorem 1-1 with ϕ := τ ◦ [mi,1] ◦φ1 and ψ := [mi,2] ◦φ2. Finally, note that since
P1 and P2 are nontorsion, then also ϕ and ψ are dominant morphisms. Indeed, if ϕ
were trivial, then using that τ is an isogeny and that mi,1 6= 0, we would obtain that
φ1 must be trivial. But then φ2(Q2)= 0 (using (3-14)), which implies that φ2 = 0
because we assumed that Q2 is a nontorsion section. So, if ϕ were trivial (and a
completely similar argument works assuming ψ were trivial), we would get that
both φ1 and φ2 are trivial, a contradiction.

This concludes the proof of Theorem 1-1. �

4. Common divisors of elliptic sequences

In this section, we apply Theorem 1-1 to prove Silverman’s conjecture [2004b,
Conjecture 7] concerning common divisors of elliptic sequences; actually, our
Proposition 4-3 provides a slightly more general statement than the original conjec-
ture. We first recall the terminology and notation from [Silverman 2004b] that we
will use in this section.

Let k be an algebraically closed field of characteristic 0. Let C be a smooth
projective curve defined over k and let K = k(C) be the function field of C . For
any point γ ∈C(k), we let ordγ (D) denote the coefficient of γ in D ∈Div(C). The
greatest common divisor for any two effective divisors D1, D2∈Div(C) is defined as

GCD(D1, D2)=
∑
γ∈C

min{ordγ (D1), ordγ (D2)} · (γ ) ∈ Div(C).

For an elliptic curve E defined over K , let π : E → C be an elliptic surface
whose generic fiber is E and let P ∈ E(K ). Recall that the section corresponding
to P is denoted by σP : C→ E . We denote the image of σP by P := σP(C)⊂ E .

Let E1 and E2 be elliptic curves defined over K , let Ei/C be elliptic surfaces
with generic fibers Ei , and let Pi ∈ Ei (K ) for i = 1, 2. The greatest common divisor
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of P1 and P2 is given by

GCD(P1, P2)= GCD(σ ∗P1
(OE1), σ

∗

P2
(OE2)),

where OEi := σOi (C) is the zero section on Ei corresponding to the identity Oi of
Ei and σ ∗Pi

(OEi ) is the pull-back under σi : C → Ei of OEi as a divisor of Ei for
i = 1, 2. Thus, for any given Qi ∈ Ei (K ), GCD(P1− Q1, P2− Q2) is the greatest
common divisor of the two points Pi − Qi ∈ Ei for i = 1, 2. In the following,
points P1 and P2 are called (K -) dependent if there are morphisms ϕ : E1→ E2

and ψ : E2 → E2 not both trivial such that ϕ(P1) = ψ(P2); otherwise they are
called independent. Note that if one of P1 and P2 is a torsion point, then they are
automatically dependent.

Motivated by the result of [Ailon and Rudnick 2004], Silverman conjectured
that an elliptic analogue also exists. For the convenience of the reader, we recall
his conjecture.

Conjecture 4-1 Silverman [1994b, Conjecture 7]. Let K = k(C) be the function
field of a smooth projective curve C over an algebraically closed field k of character-
istic 0, let E1/K and E2/K be elliptic curves, and let P1 ∈ E1(K ) and P2 ∈ E2(K )
be K -independent points.

(i) There is a constant c = c(K , E1, E2, P1, P2) such that

deg GCD([n1]P1, [n2]P2)≤ c for all n1, n2 ≥ 1.

(ii) Further, there is an equality

GCD([n]P1, [n]P2)= GCD(P1, P2) for infinitely many n ≥ 1.

Remark 4-2. Silverman [1994b, Theorem 8] showed that Conjecture 4-1 is true pro-
vided that both E1 and E2 have constant j -invariant as a consequence of Raynaud’s
theorem [1983].

As an application of Theorem 1-1, we prove that Conjecture 4-1 holds (even in
a slightly stronger form); we strengthen further the conclusion from Conjecture 4-1
when k =Q.

Proposition 4-3. Let k be an algebraically closed field of characteristic 0. Let C
be a smooth projective curve defined over k, let K = k(C) and let Ei/K , i = 1, 2,
be elliptic curves defined over K . Let Pi , Qi ∈ Ei (K ) for i = 1, 2 and furthermore,
assume that P1 and P2 are K -independent.

(i) If k =Q, then there exists an effective divisor D ∈ Div(C) such that

GCD([n1]P1− Q1, [n2]P2− Q2)≤ D

for all integers ni such that [ni ]Pi 6= Qi , i = 1, 2.
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(ii) For an arbitrary algebraically closed field k of characteristic 0, there exists an
effective divisor D0 ∈ Div(C) such that

GCD([n1]P1, [n2]P2)≤ D0

for all nonzero integers ni .

(iii) The set {
n ≥ 1 : GCD([n]P1, [n]P2)= GCD(P1, P2)

}
has positive density in N.

(iv) For all but finitely many primes q, we have

GCD([q]P1, [q]P2)= GCD(P1, P2).

Remark 4-4. The conclusion of Proposition 4-3 (i) for an arbitrary algebraically
closed field k of characteristic 0 would follow from our method once the validity
of DeMarco–Mavraki’s result [DeMarco and Mavraki 2017] (see Theorem 2-3) is
extended over function fields. In turn, their result is contingent on establishing the
smooth variation of the canonical height in fibers of an elliptic surface defined over
a function field (over Q).

The proof of Proposition 4-3 relies on Theorem 1-1 and the following lemma
which is a variant of [Silverman 2004b, Lemma 4] bounding ordγ (σ ∗[n]P(OE)) for
γ ∈ C and all integers n 6= 0.

Lemma 4-5. Let k be an algebraically closed field of characteristic 0. Let E be
an elliptic curve defined over k(C) and let E → C be an elliptic surface whose
generic fiber is E. Let γ ∈ C(k) and let P, Q ∈ E(k(C)) be given. There exists a
constant m = m(γ, E, P, Q) such that ordγ (σ ∗[n]P(Q))≤ m for all integers n such
that [n]P 6= Q.

Proof. Observe that ordγ (σ ∗[n]P(Q))≥ 1 if and only if σ[n]P(γ )= σQ(γ ). Moreover,
σQ(γ ) is a torsion point of Eγ if and only if there are more than one n such that
ordγ (σ ∗[n]P(Q))≥ 1.

It suffices to prove the assertion when ordγ (σ ∗[n]P(Q)) ≥ 1 for more than one
integer n. Thus, we assume that σQ(γ ) is a torsion point of Eγ . Let ` be the order of
σQ(γ ) and assume that ordγ (σ ∗[n]P(Q))≥ 1 for some integer n such that [n]P 6= Q.
It follows that ordγ (σ ∗[n]P(Q)) is finite and

(4-6) σ[`n]P(γ )= [`]σ[n]P(γ )= [`]σQ(γ )= OEγ ,

which is the zero element for the elliptic curve Eγ .
If Q is the zero element of E , then it follows from [Silverman 2004b, Lemma 4]

that the value of ordγ (σ ∗[n]P(OE)) is bounded independently of n 6= 0 and we are
done in this case.
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Assume that Q 6= O . Then (4-6) yields the inequality

ordγ (σ ∗[n]P(Q))≤ ordγ (σ ∗[`n]P(OE)).

Note that the right-hand side of the above inequality involves only ordγ (σ ∗[m]P(OE)),
which is bounded independently of the integer m in question as remarked above.
Hence, we conclude that ordγ (σ ∗[n]P(Q)) is bounded independently of n 6= 0 (and
n such that [n]P 6= Q). As Q 6= O , we also have that ordγ (σ ∗[n]P(Q)) is finite if
n = 0. Thus we obtain that ordγ (σ ∗[n]P(Q)) is bounded independently of n such
that [n]P 6= Q, which concludes our proof. �

Proof of Proposition 4-3. We first prove part (i) in Proposition 4-3. So, for each
γ ∈ C(Q), let mi,γ be an upper bound for ordγ (σ ∗[n]Pi

(Qi )) as in Lemma 4-5. Set
mγ =min{m1,γ ,m2,γ }. Since P1 and P2 are independent, by Theorem 1-1 we may
take mγ = 0 for all but finitely many points γ ∈ C(Q); let S be the finite set of
points γ ∈ C(Q) for which mγ > 0. Let

D :=
∑
γ∈S

mγ (γ ).

Then, D is an effective divisor of C . Now it follows directly from Lemma 4-5
that GCD([n1]P1−Q1, [n2]P2−Q2)≤ D for all ni such that [ni ]P 6= Qi for both
i = 1, 2. Indeed,

GCD([n1]P1− Q1, [n2]P2− Q2)

= GCD(σ ∗
[n1]P1−Q1

(OE1), σ
∗

[n2]P2−Q2
(OE2))

= GCD(σ ∗
[n1]P(Q1), σ

∗

[n2]P2
(Q2))

=

∑
γ∈C(Q)

min
{
ordγ (σ ∗[n1]P1

(Q1)), ordγ (σ ∗[n2]P2
(Q2))

}
≤

∑
γ∈C(Q)

min{m1,γ ,m2,γ } · (γ )≤
∑
γ∈S

mγ (γ ).

For the proof of part (ii) in Proposition 4-3, we let Qi = Oi be the zero element
of Ei for i = 1, 2. If k =Q, then the result follows immediately from part (i). Now,
for the general case, we note that it suffices to prove the existence of at most finitely
many t ∈ C(k) such that both (P1)t and (P2)t are torsion points on the elliptic
fiber E1,t and E2,t respectively; indeed, the fact that the multiplicity of each such t
appearing in a divisor GCD([n1]P1, [n2]P2) is bounded follows exactly as in the
proof of part (i), using Lemma 4-5. On the other hand, if there exist infinitely many
t ∈ C(k) such that both (P1)t and (P2)t are torsion, then (according to [Masser and
Zannier 2014, Theorem, p. 117]) P1 and P2 are related, which yields a contradiction.
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The conclusion of part (iii) in Proposition 4-3 was proven by Silverman [2004b,
Theorem 8 (b)] in the case where both E1, E2 have constant j-invariants. We gen-
eralize his argument as follows. For each of the finitely many γ ∈ C(k) which does
not appear in the support of GCD(P1, P2), but for which there exists some positive
integer n such that γ is contained in the support of the divisor GCD([n]P1, [n]P2),
or equivalently,

(4-7) the divisor GCD([n]P1, [n]P2)− (γ ) is effective,

we let nγ be the smallest such positive integer n for which (4-7) holds. Then, it is
easy to see that γ is contained in the support of GCD([n]P1, [n]P2) if and only if
nγ | n. Also, for each of these points γ which are not in the support of GCD(P1, P2),
we have nγ > 1. This implies that for any positive integer n which is not divisible
by any of the finitely many integers nγ , we have

GCD([n]P1, [n]P2)= GCD(P1, P2).

The conclusion in part (iv) in Proposition 4-3 follows from the proof of part (iii)
since GCD([q]P1, [q]P2)=GCD(P1, P2) for all primes q which do not divide any
of the finitely many numbers nγ > 1. �
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ON THE EXACTNESS OF ORDINARY PARTS
OVER A LOCAL FIELD OF CHARACTERISTIC p

JULIEN HAUSEUX

Let G be a connected reductive group over a nonarchimedean local field
F of residue characteristic p, P be a parabolic subgroup of G, and R be a
commutative ring. When R is artinian, p is nilpotent in R, and char(F)= p,
we prove that the ordinary part functor OrdP is exact on the category of ad-
missible smooth R-representations of G. We derive some results on Yoneda
extensions between admissible smooth R-representations of G.

1. Results

Let F be a nonarchimedean local field of residue characteristic p. Let G be a
connected reductive algebraic F-group and G denote the topological group G(F).
We let P =M N be a parabolic subgroup of G. We write P =M N for the opposite
parabolic subgroup.

Let R be a commutative ring. We write Mod∞G (R) for the category of smooth
R-representations of G (i.e., R[G]-modules π such that for all v ∈ π the stabiliser
of v is open in G) and R[G]-linear maps. It is an R-linear abelian category. When R
is noetherian, we write Modadm

G (R) for the full subcategory of Mod∞G (R) consisting
of admissible representations (i.e., those representations π such that πH is finitely
generated over R for any open subgroup H of G). It is closed under passing to
subrepresentations and extensions, thus it is an R-linear exact subcategory, but
quotients of admissible representations may not be admissible when char(F)= p
(see [Abe et al. 2017b, Example 4.4]).

Recall the smooth parabolic induction functor IndG
P
:Mod∞M (R)→Mod∞G (R),

defined on any smooth R-representation σ of M as the R-module IndG
P
(σ ) of locally

constant functions f :G→σ satisfying f (mn̄g)=m· f (g) for all m∈M, n̄∈N, and
g∈G, endowed with the smooth action of G by right translation. It is R-linear, exact,
and commutes with small direct sums. In the other direction, there is the ordinary
part functor OrdP :Mod∞G (R)→Mod∞M (R) [Emerton 2010a; Vignéras 2016]. It

This research was partly supported by EPSRC grant EP/L025302/1.
MSC2010: 22E50.
Keywords: local fields, reductive groups, admissible smooth representations, parabolic induction,

ordinary parts, extensions.
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is R-linear and left exact. When R is noetherian, OrdP also commutes with small
inductive limits, both functors respect admissibility, and the restriction of OrdP to
Modadm

G (R) is right adjoint to the restriction of IndG
P

to Modadm
M (R).

Theorem 1. If R is artinian, p is nilpotent in R, and char(F) = p, then OrdP is
exact on Modadm

G (R).

Thus the situation is very different from the case char(F) = 0 (see [Emerton
2010b]). On the other hand, if R is artinian and p is invertible in R, then OrdP

is isomorphic on Modadm
G (R) to the Jacquet functor with respect to P (i.e., the

N -coinvariants) twisted by the inverse of the modulus character δP of P [Abe et al.
2017b, Corollary 4.19], so that it is exact on Modadm

G (R) without any assumption
on char(F).

Remark. Without any assumption on R, IndG
P :Mod∞M (R)→Mod∞G (R) admits a

left adjoint LG
P :Mod∞G (R)→Mod∞M (R) (the Jacquet functor with respect to P)

and a right adjoint RG
P :Mod∞G (R)→Mod∞M (R) [Vignéras 2016, Proposition 4.2].

If R is noetherian and p is nilpotent in R, then RG
P is isomorphic to OrdP on

Modadm
G (R) [Abe et al. 2017b, Corollary 4.13]. Thus under the assumptions of

Theorem 1, RG
P is exact on Modadm

G (R). On the other hand, if R is noetherian
and p is invertible in R, then RG

P is expected to be isomorphic to δP LG
P

(“second
adjointness”), and this is proved in the following cases: when R is the field of
complex numbers [Bernstein 1987] or an algebraically closed field of characteristic
` 6= p [Vignéras 1996, II.3.8(2)]; when G is a Levi subgroup of a general linear
group or a classical group with p 6= 2 [Dat 2009, Théorème 1.5]; when P is a
minimal parabolic subgroup of G (see also [Dat 2009]). In particular, LG

P and RG
P

are exact in all these cases.

Question. Are LG
P and RG

P exact when R is noetherian, p is nilpotent in R, and
char(F)= p?

We derive from Theorem 1 some results on Yoneda extensions between admissible
R-representations of G. We compute the R-modules Ext•G in Modadm

G (R).

Corollary 2. Assume R artinian, p nilpotent in R, and char(F)= p. Let σ and π
be admissible R-representations of M and G, respectively. For all n ≥ 0, there is a
natural R-linear isomorphism

ExtnM(σ,OrdP(π))−→
∼ ExtnG(IndG

P
(σ ), π).

This is in contrast with the case char(F)= 0 (see [Hauseux 2016a]). A direct
consequence of Corollary 2 is that under the same assumptions, IndG

P
induces an

isomorphism between the Extn for all n ≥ 0 (Corollary 5). When R = C is an
algebraically closed field of characteristic p and char(F) = p, we determine the
extensions between certain irreducible admissible C-representations of G using
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the classification of [Abe et al. 2017a] (Proposition 6). In particular, we prove that
there exists no nonsplit extension of an irreducible admissible C-representation π
of G by a supersingular C-representation of G when π is not the extension to G of
a supersingular representation of a Levi subgroup of G (Corollary 7). For G=GL2,
this was first proved by Hu [2017, Theorem A.2].

2. Proofs

2.1. Hecke action. In this subsection, M denotes a linear algebraic F-group and N
denotes a split unipotent algebraic F-group (see [Conrad et al. 2015, Appendix B])
endowed with an action of M that we identify with the conjugation in M n N . We
fix an open submonoid M+ of M and a compact open subgroup N0 of N stable
under conjugation by M+.

If π is a smooth R-representation of M+n N0, then the R-modules H•(N0, π),
computed using the homogeneous cochain complex C•(N0, π) (see [Neukirch et al.
2008, § I.2]), are naturally endowed with the Hecke action of M+, defined as the
composite

H•(N0, π)
m
−→H•(m N0m−1, π)

cor
−→H•(N0, π)

for all m ∈ M+. At the level of cochains, this action is explicitly given as follows
(see [Neukirch et al. 2008, § I.5]). Fix a set of representatives N0/m N0m−1 ⊆ N0 of
the left cosets N0/m N0m−1 and write n 7→ n̄ for the projection N0 � N0/m N0m−1.
For φ ∈ Ck(N0, π), we have

(1) (m ·φ)(n0, . . . , nk)=∑
n̄∈N0/m N0m−1

n̄m ·φ(m−1n̄−1n0n−1
0 n̄m, . . . ,m−1n̄−1nkn−1

k n̄m)

for all (n0, . . . , nk) ∈ N k+1
0 .

Lemma 3. Assume p nilpotent in R and char(F) = p. Let π be a smooth R-
representation of M+n N0 and m ∈ M+. If the Hecke action hN0,m of m on π N0

is locally nilpotent (i.e., for all v ∈ π N0 there exists r ≥ 0 such that hr
N0,m(v)= 0),

then the Hecke action of m on Hk(N0, π) is locally nilpotent for all k ≥ 0.

Proof. First, we prove the lemma when pR= 0, i.e., R is a commutative Fp-algebra.
We assume that the Hecke action of m on π N0 is locally nilpotent and we prove
the result together with the following fact: there exists a set of representatives
N0/m N0m−1 ⊆ N0 of the left cosets N0/m N0m−1 such that the action of

S :=
∑

n̄∈N0/m N0m−1

n̄m ∈ Fp[M+n N0]

on π is locally nilpotent.
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We proceed by induction on the dimension of N (recall that N is split so that it is
smooth and connected). If N=1, then the (Hecke) action of m on π N0=π is locally
nilpotent by assumption, so that the result and the fact are trivially true. Assume
N 6= 1 and that the result and the fact are true for groups of smaller dimension. Since
N is split, it admits a nontrivial central subgroup isomorphic to the additive group.
We let N ′ be the subgroup of N generated by all such subgroups. It is a nontrivial
vector group (i.e., isomorphic to a direct product of copies of the additive group)
which is central (hence normal) in N and stable under conjugation by M (since
it is a characteristic subgroup of N). We set N ′′ := N/N ′. It is a split unipotent
algebraic F-group endowed with the induced action of M and dim(N ′′) < dim(N).
Since N ′ is split, we have N ′′ = N/N ′. We write N ′0 and N ′′0 for the compact open
subgroups N ′ ∩ N0 and N0/N ′0 of N ′ and N ′′, respectively. They are stable under
conjugation by M+. We fix a set-theoretic section [−] : N ′′0 ↪→ N0.

Since N ′ is commutative and p-torsion, N ′0 is a compact Fp-vector space. Thus
for any open subgroup N ′1 of N ′0, the short exact sequence of compact Fp-vector
spaces

0→ N ′1→ N ′0→ N ′0/N ′1→ 0

splits. Indeed, it admits an Fp-linear splitting (since Fp is a field) which is auto-
matically continuous (since N ′0/N ′1 is discrete). In particular, with N ′1 = m N ′0m−1,
we may and do fix a section N ′0/m N ′0m−1 ↪→ N ′0. We write N ′0/m N ′0m−1 for
its image, so that N ′0 = N ′0/m N ′0m−1×m N ′0m−1, and n′ 7→ n̄′ for the projection
N ′0 � N ′0/m N ′0m−1. We set

S′ :=
∑

n̄′∈N ′0/m N ′0m−1

n̄′m ∈ Fp[M+n N ′0].

For all n′0 ∈ N ′0, we have n′0 = n̄′0(n̄
′−1
0 n′0) with n̄′−1

0 n′0 ∈ m N ′0m−1, thus

n′0S′ =
∑

n̄′∈N ′0/m N ′0m−1

(n̄′0n̄′)m(m−1(n̄′−1
0 n′0)m)= S′(m−1(n̄′−1

0 n′0)m)

with m−1(n̄′−1
0 n′0)m ∈ N ′0 (in the first equality we use the fact that N ′0 is commutative

and in the second one we use the fact that N ′0/m N ′0m−1 is a group). Therefore,
there is an inclusion Fp[N ′0]S

′
⊆ S′Fp[N ′0].

The R-module π N ′0, endowed with the induced action of N ′′0 and the Hecke action
of M+ with respect to N ′0, is a smooth R-representation of M+n N ′′0 (see the proof
of [Hauseux 2016b, Lemme 3.2.1] in degree 0). On π N ′0, the Hecke action of m
with respect to N ′0 coincides with the action of S′ by definition. On (π N ′0)N ′′0 = π N0,
the Hecke action of m with respect to N ′′0 coincides with the Hecke action of m with
respect to N0 (see the proof of [Hauseux 2016b, Lemme 3.2.2]) which is locally
nilpotent by assumption. Thus by the induction hypothesis, there exists a set of
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representatives N ′′0 /m N ′′0 m−1 ⊆ N ′′0 of the left cosets N ′′0 /m N ′′0 m−1 such that the
action of

S :=
∑

n̄′′∈N ′′0 /m N ′′0 m−1

[n̄′′]S′ ∈ Fp[M+n N0]

on π N ′0 is locally nilpotent. Moreover, there is an inclusion Fp[N ′0]S ⊆ SFp[N ′0]
(because N ′0 is central in N0 and Fp[N ′0]S

′
⊆ S′Fp[N ′0]).

We prove the fact. By [Hauseux 2016c, Lemme 2.1],

N0/m N0m−1 :=
{
[n̄′′]n̄′ : n̄′′ ∈ N ′′0 /m N ′′0 m−1, n̄′ ∈ N ′0/m N ′0m−1

}
⊆ N0

is a set of representatives of the left cosets N0/m N0m−1, and by definition,

S =
∑

n̄∈N0/m N0m−1

n̄m.

We prove that the action of S on π is locally nilpotent. We proceed as in the proof
of [Hu 2012, Théorème 5.1(i)]. Let v ∈ π and set πr := Fp[N ′0] · (S

r
· v) for all

r ≥ 0. Since Fp[N ′0]S ⊆ SFp[N ′0], we have πr+1 ⊆ S ·πr for all r ≥ 0. Since N ′0 is
compact, we have dimFp(πr ) <∞ for all r ≥ 0. If Sr

·v 6= 0, i.e., πr 6= 0, for some
r ≥ 0, then π N ′0r 6= 0 (because N ′0 is a pro-p group and πr is a nonzero Fp-vector
space) so that dimFp(S ·πr ) < dimFp πr (because the action of S on π N ′0 is locally
nilpotent). Therefore πr = 0, i.e., Sr

· v = 0, for all r ≥ dimFp(π0).
We prove the result. The R-modules H•(N ′0, π), endowed with the induced action

of N ′′0 and the Hecke action of M+, are smooth R-representations of M+n N ′′0 (see
the proof of [Hauseux 2016b, Lemme 3.2.1]1). At the level of cochains, the actions
of n′′ ∈ N ′′0 and m are explicitly given as follows. For φ ∈ C j (N ′0, π), we have

(n′′ ·φ)(n′0, . . . , n′j )= [n
′′
] ·φ(n′0, . . . , n′j )(2)

(m ·φ)(n′0, . . . , n′j )= S′ ·φ(m−1n′0n̄′−1
0 m, . . . ,m−1n′j n̄

′−1
j m)(3)

for all (n′0, . . . , n′j ) ∈ N ′ j+1
0 (for (2) we use the fact that N ′0 is central in N0, for (3)

we use (1) and the fact that n′ 7→ n̄′ is a group homomorphism N ′0→ N ′0/m N ′0m−1).
Using (2) and (3), we can give explicitly the Hecke action of m on H•(N ′0, π)

N ′′0 at
the level of cochains as follows. For φ ∈ C j (N ′0, π), we have

(m ·φ)(n′0, . . . , n′j )= S ·φ(m−1n′0n̄′−1
0 m, . . . ,m−1n′j n̄

′−1
j m)

for all (n′0, . . . , n′j ) ∈ N ′ j+1
0 . Since the action of S on π is locally nilpotent and

the image of a locally constant cochain is finite by compactness of N ′0, we deduce
that the Hecke action of m on H j (N ′0, π)

N ′′0 is locally nilpotent for all j ≥ 0. Thus

1We do not know whether [Emerton 2010b, Proposition 2.1.11] holds true when char(F)= p, but
[Hauseux 2016b, Lemme 3.1.1] does and any injective object of Mod∞M+nN0

(R) is still N0-acyclic.
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the Hecke action of m on Hi (N ′′0 ,H j (N ′0, π)) is locally nilpotent for all i, j ≥ 0 by
the induction hypothesis. Using the spectral sequence of smooth R-representations
of M+

Hi (N ′′0 ,H j (N ′0, π))⇒ Hi+ j (N0, π)

(see the proof of [Hauseux 2016b, Proposition 3.2.3] and the footnote on page 21),
we conclude that the Hecke action of m on Hk(N0, π) is locally nilpotent for
all k ≥ 0.

Now, we prove the lemma without assuming pR = 0. We proceed by induction
on the degree of nilpotency r of p in R. If r ≤ 1, then the lemma is already proved.
We assume r > 1 and that we know the lemma for rings in which the degree of
nilpotency of p is r−1. There is a short exact sequence of smooth R-representations
of M+n N0,

0→ pπ→ π→ π/pπ→ 0.

Taking the N0-cohomology yields a long exact sequence of smooth R-representations
of M+,

(4) 0→ (pπ)N0 → π N0 → (π/pπ)N0 → H1(N0, pπ)→ · · · .

If the Hecke action of m on π N0 is locally nilpotent, then the Hecke action of m on
(pπ)N0 is also locally nilpotent so that the Hecke action of m on Hk(N0, pπ) is
locally nilpotent for all k ≥ 0 by the induction hypothesis (since pπ is an R/pr−1 R-
module). Using (4), we deduce that the Hecke action of m on (π/pπ)N0 is also
locally nilpotent so that the Hecke action of m on Hk(N0, π/pπ) is locally nilpotent
for all k ≥ 0 (since π/pπ is an Fp-vector space). Using again (4), we conclude that
the Hecke action of m on Hk(N0, π) is locally nilpotent for all k ≥ 0. �

2.2. Proof of the main result. We fix a compact open subgroup N0 of N and we
let M+ be the open submonoid of M consisting of those elements m contracting N0

(i.e., m N0m−1
⊆N0). We let ZM denote the centre of M and we set Z+M := Z M∩M+.

We fix an element z ∈ Z+M strictly contracting N0 (i.e.,
⋂

r≥0 zr N0z−r
= 1).

Recall that the ordinary part of a smooth R-representation π of P is the smooth
R-representation of M

OrdP(π) :=
(
IndM

M+(π
N0)
)Z M−l.fin

,

where IndM
M+(π

N0) is defined as the R-module of functions f : M → π N0 such
that f (mm′)= m · f (m′) for all m ∈ M+ and m′ ∈ M, endowed with the action of
M by right translation, and the superscript Z M−l.fin denotes the subrepresentation
consisting of locally Z M -finite elements (i.e., those elements f such that R[Z M ] · f
is contained in a finitely generated R-submodule). The action of M on the latter
is smooth by [Vignéras 2016, Remark 7.6]. If R is artinian and π N0 is locally
Z+M -finite (i.e., it may be written as the union of finitely generated Z+M -invariant
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R-submodules), then there is a natural R-linear isomorphism,

(5) OrdP(π)−→
∼ R[z±1

]⊗R[z] π
N0

(cf. [Emerton 2010b, Lemma 3.2.1(1)], whose proof also works when char(F)= p
and over any artinian ring).

If σ is a smooth R-representation of M, then the R-module C∞c (N , σ ) of locally
constant functions f : N → σ with compact support, endowed with the action of
N by right translation and the action of M given by (m · f ) : n 7→ m · f (m−1nm)
for all m ∈ M, is a smooth R-representation of P. Thus we obtain a functor
C∞c (N ,−) :Mod∞M (R)→Mod∞P (R). It is R-linear, exact, and commutes with small
direct sums. The results of [Emerton 2010a, § 4.2] hold true when char(F) = p
and over any ring, thus the functors

C∞c (N ,−) :Mod∞M (R)
Z M−l.fin

→Mod∞P (R),

OrdP :Mod∞P (R)→Mod∞M (R)
Z M−l.fin

are adjoint and the unit of the adjunction is an isomorphism.

Lemma 4. Assume R artinian, p nilpotent in R, and char(F) = p. Let π be a
smooth R-representation of P. If π N0 is locally Z+M -finite, then the Hecke action of
z on Hk(N0, π) is locally nilpotent for all k ≥ 1.

Proof. We set σ :=OrdP(π). The counit of the adjunction between C∞c (N ,−) and
OrdP induces a natural morphism of smooth R-representations of P ,

(6) C∞c (N , σ )→ π.

Taking the N0-invariants yields a morphism of smooth R-representations of M+,

(7) C∞c (N , σ )
N0 → π N0 .

By definition, σ is locally Z M -finite so it may be written as the union of finitely
generated Z M -invariant R-submodules (σi )i∈I . Thus C∞c (N , σ )N0 is the union of
the finitely generated Z+M -invariant R-submodules (C∞(z−r N0zr , σi )

N0)r≥0,i∈I , so
it is locally Z+M -finite. By assumption, π N0 is also locally Z+M -finite. Therefore,
using (5) and its analogue with C∞c (N , σ ) instead of π , the localisation with respect
to z of (7) is the natural morphism of smooth R-representations of M

OrdP(C∞c (N , σ ))→ OrdP(π)

induced by applying the functor OrdP to (6), and it is an isomorphism since the
unit of the adjunction between C∞c (N ,−) and OrdP is an isomorphism.
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Let κ and ι be the kernel and image, respectively, of (6), hence two short exact
sequences of smooth R-representations of P ,

0→ κ→ C∞c (N , σ )→ ι→ 0,(8)

0→ ι→ π→ π/ι→ 0,(9)

such that the third arrow of (8) and the second arrow of (9) fit into a commutative
diagram of smooth R-representations of P whose upper arrow is (6):

C∞c (N , σ ) π

ι

Taking the N0-invariants yields a commutative diagram of smooth R-representations
of M+ whose upper arrow is (7):

C∞c (N , σ )N0 π N0

ιN0

Since the localisation with respect to z of the latter is an isomorphism, the local-
isation with respect to z of the injection ιN0 ↪→ π N0 is surjective, thus it is an
isomorphism (as it is also injective by exactness of localisation). Therefore the
localisation with respect to z of the morphism C∞c (N , σ )N0→ ιN0 is an isomorphism.

Since C∞c (N , σ )∼=
⊕

n∈N/N0
C∞(nN0, σ ) as a smooth R-representation of N0, it

is N0-acyclic (see [Neukirch et al. 2008, § I.3]). Thus the long exact sequence of N0-
cohomology induced by (8) yields an exact sequence of smooth R-representations
of M+,

(10) 0→ κN0 → C∞c (N , σ )
N0 → ιN0 → H1(N0, κ)→ 0,

and an isomorphism of smooth R-representations of M+,

(11) Hk(N0, ι)−→
∼ Hk+1(N0, κ),

for all k ≥ 1. Since the localisation with respect to z of the third arrow of (10) is an
isomorphism, the Hecke action of z on κN0 is locally nilpotent. Thus the Hecke
action of z on Hk(N0, κ) is locally nilpotent for all k ≥ 0 by Lemma 3. Using (11),
we deduce that the Hecke action of z on Hk(N0, ι) is locally nilpotent for all k ≥ 1.

Taking the N0-cohomology of (9) yields a long exact sequence of smooth R-
representations of M+,

(12) 0→ ιN0 → π N0 → (π/ι)N0 → H1(N0, ι)→ · · · .
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Since the localisation with respect to z of the second arrow is an isomorphism and
the Hecke action of z on H1(N0, ι) is locally nilpotent, the Hecke action of z on
(π/ι)N0 is locally nilpotent. Thus the Hecke action of z on Hk(N0, π/ι) is locally
nilpotent for all k ≥ 0 by Lemma 3. Using (12) and the fact that the Hecke action of
z on Hk(N0, ι) is locally nilpotent for all k ≥ 1, we conclude that the Hecke action
of z on Hk(N0, π) is locally nilpotent for all k ≥ 1. �

Proof of Theorem 1. Assume R artinian, p nilpotent in R, and char(F)= p. Let

(13) 0→ π1→ π2→ π3→ 0

be a short exact sequence of admissible R-representations of G. Taking the N0-
invariants yields an exact sequence of smooth R-representations of M+,

(14) 0→ π
N0
1 → π

N0
2 → π

N0
3 → H1(N0, π1).

The representations π N0
1 , π

N0
2 , π

N0
3 are locally Z+M -finite (cf. [Emerton 2010b,

Theorem 3.4.7(1)], whose proof in degree 0 also works when char(F)= p and over
any noetherian ring) and the Hecke action of z on H1(N0, π1) is locally nilpotent
by Lemma 4. Therefore, using (5), the localisation with respect to z of (14) is the
short sequence of admissible R-representations of M

0→ OrdP(π1)→ OrdP(π2)→ OrdP(π3)→ 0

induced by applying the functor OrdP to (13), and it is exact by exactness of
localisation. �

2.3. Results on extensions. We assume R noetherian. The R-linear category
Modadm

G (R) is not abelian in general, but merely exact in the sense of Quillen [1973].
An exact sequence of admissible R-representations of G is an exact sequence of
smooth R-representations of G,

· · · → πn−1→ πn→ πn+1→ · · · ,

such that the kernel and the cokernel of every arrow are admissible. In particular,
each term of the sequence is also admissible.

For n ≥ 0 and π, π ′ two admissible R-representations of G, we let ExtnG(π
′, π)

denote the R-module of n-fold Yoneda extensions [1960] of π ′ by π in Modadm
G (R),

defined as equivalence classes of exact sequences,

0→ π→ π1→ · · · → πn→ π ′→ 0.

We let D(G) denote the derived category of Modadm
G (R) [Neeman 1990; Keller

1996; Bühler 2010]. The results of [Verdier 1996, § III.3.2] on the Yoneda con-
struction carry over to this setting (see, e.g., [Positselski 2011, Proposition A.13]),
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hence a natural R-linear isomorphism,

ExtnG(π
′, π)∼= HomD(G)(π

′, π[n]).

Proof of Corollary 2. Since IndG
P

and OrdP are exact adjoint functors between
Modadm

M (R) and Modadm
G (R) by Theorem 1, they induce adjoint functors between

D(M) and D(G), hence natural R-linear isomorphisms,

ExtnM(σ,OrdP(π))∼= HomD(M)(σ,OrdP(π)[n])
∼= HomD(G)

(
IndG

P
(σ ), π[n]

)
∼= ExtnG

(
IndG

P
(σ ), π

)
,

for all n ≥ 0. �

Remark. We give a more explicit proof of Corollary 2. The exact functor IndG
P

and
the counit of the adjunction between IndG

P
and OrdP induce an R-linear morphism,

(15) ExtnM(σ,OrdP(π))→ ExtnG
(
IndG

P
(σ ), π

)
.

In the other direction, the exact (by Theorem 1) functor OrdP and the unit of the
adjunction between IndG

P
and OrdP induce an R-linear morphism,

(16) ExtnG
(
IndG

P
(σ ), π

)
→ ExtnM(σ,OrdP(π)).

When n = 0, (16) is the inverse of (15) by the so-called “unit-counit equations”.
Assume n ≥ 1 and let

(17) 0→ OrdP(π)→ σ1→ · · · → σn→ σ → 0

be an exact sequence of admissible R-representations of M. By [Yoneda 1960, § 3],
the image of the class of (17) under (15) is the class of any exact sequence of
admissible R-representations of G

(18) 0→ π→ π1→ · · · → πn→ IndG
P
(σ )→ 0

such that there exists a commutative diagram of admissible R-representations of
G in which the upper row is obtained from (17) by applying the exact functor
IndG

P
, the lower row is (18), and the leftmost vertical arrow is the natural morphism

induced by the counit of the adjunction between IndG
P

and OrdP :

0 IndG
P
(OrdP(π)) IndG

P
(σ1) · · · IndG

P
(σn) IndG

P
(σ ) 0

0 π π1 · · · πn IndG
P
(σ ) 0

Applying the exact functor OrdP to the diagram and using the unit of the ad-
junction between IndG

P
and OrdP yields a commutative diagram of admissible
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R-representations of M in which the lower row is obtained from (18) by applying
the exact functor OrdP , the upper row is (17), and the rightmost vertical arrow is the
natural morphism induced by the unit of the adjunction between IndG

P
and OrdP :

0 OrdP(π) σ1 · · · σn σ 0

0 OrdP(π) OrdP(π1) · · · OrdP(πn) OrdP(IndG
P
(σ )) 0

The leftmost vertical arrow is the identity by one of the unit-counit equations. Thus
the image of the class of (18) under (16) is the class of (17) by [Yoneda 1960, § 3].
We have proved that (16) is a left inverse of (15). The proof that it is a right inverse
is dual.

Corollary 5. Assume R artinian, p nilpotent in R, and char(F)= p. Let σ and σ ′

be two admissible R-representations of M. The functor IndG
P

induces an R-linear
isomorphism

ExtnM(σ
′, σ )−→∼ ExtnG

(
IndG

P
(σ ′), IndG

P
(σ )

)
for all n ≥ 0.

Proof. The isomorphism in the statement is the composite

ExtnM(σ
′, σ )−→∼ ExtnM

(
σ ′,OrdP

(
IndG

P
(σ )

))
−→∼ ExtnG

(
IndG

P
(σ ′), IndG

P
(σ )

)
,

where the first isomorphism is induced by the unit of the adjunction between IndG
P

and OrdP , which is an isomorphism, and the second one is the isomorphism of
Corollary 2 with σ ′ and IndG

P
(σ ) instead of σ and π respectively. �

We fix a minimal parabolic subgroup B ⊆ G, a maximal split torus S ⊆ B,
and we write 1 for the set of simple roots of S in B. We say that a parabolic
subgroup P = M N of G is standard if B ⊆ P and S ⊆ M. In this case, we
write 1P for the corresponding subset of 1, and given α ∈1P (resp. α ∈1 \1P )
we write Pα = MαNα (resp. Pα = MαNα) for the standard parabolic subgroup
corresponding to 1P \ {α} (resp. 1P t {α}).

Let C be an algebraically closed field of characteristic p. Given a standard
parabolic subgroup P = M N and a smooth C-representation σ of M, there exists
a largest standard parabolic subgroup, P(σ )= M(σ )N (σ ), such that the inflation
of σ to P extends to a smooth C-representation eσ of P(σ ), and this extension is
unique [Abe et al. 2017a, II.7 Corollary 1]. We say that a smooth C-representation
of G is supercuspidal if it is irreducible, admissible, and does not appear as a
subquotient of IndG

P (σ ) for any proper parabolic subgroup P = M N of G and
any irreducible admissible C-representation σ of M. A supercuspidal standard
C[G]-triple is a triple (P, σ, Q) where P = M N is a standard parabolic subgroup,
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σ is a supercuspidal C-representation of M, and Q is a parabolic subgroup of G
such that P ⊆ Q⊆ P(σ ). Attached to such a triple in [Abe et al. 2017a] is a smooth
C-representation of G,

IG(P, σ, Q) := IndG
P(σ )

(eσ ⊗StP(σ )
Q

)
,

where
StP(σ )

Q := IndP(σ )
Q (1)

/ ∑
Q(Q′⊆P(σ )

IndP(σ )
Q′ (1)

(here 1 denotes the trivial C-representation) is the inflation to P(σ ) of the generalised
Steinberg representation of M(σ ) with respect to M(σ )∩ Q [Grosse-Klönne 2014;
Ly 2015]. It is irreducible and admissible [Abe et al. 2017a, I.3 Theorem 1].

Proposition 6. Assume char(F)= p. Let (P, σ, Q) and (P ′, σ ′, Q′) be two super-
cuspidal standard C[G]-triples. If Q 6⊆ Q′, then the C-vector space

Ext1G(IG(P ′, σ ′, Q′), IG(P, σ, Q))

is nonzero if and only if P ′ = P, σ ′ ∼= σ , and Q′ = Qα for some α ∈1Q , in which
case it is one-dimensional and the unique (up to isomorphism) nonsplit extension of
IG(P ′, σ ′, Q′) by IG(P, σ, Q) is the admissible C-representation of G

IndG
P(σ )α (IM(σ )α (M(σ )α ∩ P, σ,M(σ )α ∩ Q)).

Proof. There is a natural short exact sequence of admissible C-representations of G,

(19) 0→
∑

Q′(Q′′⊆P(σ ′)

IndG
Q′′(σ

′)→ IndG
Q′(σ

′)→ IG(P ′, σ ′, Q′)→ 0.

Note that we can restrict the sum to those Q′′ that are minimal, i.e., of the
form Q′α for some α ∈ 1P(σ ′) \ 1Q′ . Moreover, we deduce from [Abe et al.
2017b, Theorem 3.2] that its cosocle is isomorphic to

⊕
α∈1P(σ ′)\1Q′

IG(P ′, σ ′, Q′α).
Now if Q 6⊆ Q′, then OrdQ′(IG(P, σ, Q))= 0 by [Abe et al. 2017b, Theorem 1.1(ii)
and Corollary 4.13] so that, using Corollary 2, we see that the long exact sequence
of Yoneda extensions obtained by applying the functor HomG(−, IG(P, σ, Q)) to
(19) yields a natural C-linear isomorphism,

Extn−1
G

( ∑
Q′(Q′′⊆P(σ ′)

IndG
Q′′(σ

′), IG(P, σ, Q)
)
−→∼ ExtnG(IG(P ′, σ ′, Q′), IG(P, σ, Q)),

for all n ≥ 1. In particular, with n = 1 and using the identification of the cosocle of
the sum and [Abe et al. 2017a, I.3 Theorem 2], we deduce that the C-vector space
in the statement is nonzero if and only if P ′ = P, σ ′ ∼= σ , and Q = Q′α for some
α ∈1P(σ ′) \1Q′ (or equivalently Q′ = Qα for some α ∈1Q), in which case it is
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one-dimensional. Finally, using again [Abe et al. 2017b, Theorem 3.2], we see that
for all α ∈1Q the admissible C-representation of G in the statement is a nonsplit
extension of IG(P, σ, Qα) by IG(P, σ, Q). �

Corollary 7. Assume char(F) = p. Let π and π ′ be two irreducible admissible
C-representations of G. If π is supercuspidal and π ′ is not the extension to G of a
supercuspidal representation of a Levi subgroup of G, then Ext1G(π

′, π)= 0.

Proof. By [Abe et al. 2017a, I.3 Theorem 3], there exist two supercuspidal
standard C[G]-triples (P, σ, Q) and (P ′, σ ′, Q′) such that π ∼= IG(P, σ, Q) and
π ′ ∼= IG(P ′, σ ′, Q′). The assumptions on π and π ′ are equivalent to P = G
and Q′ 6= G. In particular, Q 6⊆ Q′ and P 6= P ′ so that Ext1G(π

′, π) = 0 by
Proposition 6. �
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STABILITY PROPERTIES OF POWERS OF IDEALS
IN REGULAR LOCAL RINGS OF SMALL DIMENSION

JÜRGEN HERZOG AND AMIR MAFI

Let (R,m) be a regular local ring or a polynomial ring over a field, and let I
be an ideal of R which we assume to be graded if R is a polynomial ring.
Let astab I, astab I and dstab I , respectively, be the smallest integers n for
which Ass I n, Ass I n and depth I n stabilize. Here I n denotes the integral
closure of I n.

We show that astab I = astab I = dstab I if dim R ≤ 2, while already in
dimension three, astab I and astab I may differ by any amount. Moreover,
we show that if dim R=4, there exist ideals I and J such that for any positive
integer c one has astab I −dstab I ≥ c and dstab J − astab J ≥ c.

Introduction

Let (R,m) be a commutative Noetherian ring and I be an ideal of R. Brodmann
[1979a] proved that the set of associated prime ideals Ass I k stabilizes. In other
words, there exists an integer k0 such that Ass I k

= Ass I k0 for all k ≥ k0. The
smallest such integer k0 is called the index of Ass-stability of I, and denoted by
astab I . Moreover, Ass I k0 is called the stable set of associated prime ideals of I. It
is denoted by Ass∞ I . For the integral closures I k of the powers of I, McAdam
and Eakin [1979] showed that Ass I k stabilizes as well. We denote the index of
stability for the integral closures of the powers of I by astab I , and denote its stable
set of associated prime ideals by Ass∞ I .

Brodmann [1979b] also showed that depth R/I k stabilizes. The smallest power
of I for which depth stabilizes is denoted by dstab I . This stable depth is called the
limit depth of I, and is denoted by limk→∞ depth R/I k . These indices of stability
have been studied and compared to some extent in [Herzog and Qureshi 2015;
Herzog et al. 2013]. The purpose of this work is to compare once again these
stability indices. The main result is that if (R,m) is a regular local ring with
dim R ≤ 2, then all 3 stability indices are equal, but if dim R = 3, then we still
have astab I = dstab I , while astab I and astab I may differ by any amount. On the
other hand, if dim R ≥ 4, we will show by examples that in general a comparison
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Keywords: associated primes, depth stability number.
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between these stability indices is no longer possible. In other words, any inequality
between these invariants may occur.

Quite often, but not always, depth R/I k is a nonincreasing function on n. In
the last section we prove that if (R,m) is a 3-dimensional regular local ring and
I satisfies I k+1

: I = I k for all k, then depth R/I k is nonincreasing. For any
unexplained notion or terminology, we refer the reader to [Bruns and Herzog 1993].

Several explicit examples were performed with help of the computer algebra
systems [CoCoA] and [Macaulay2], as well as with the program in [Bayati et al.
2011] which allows one to compute Ass∞ I of a monomial ideal I.

1. The case dim R ≤ 3

In this section we study the behavior of the stability indices for regular rings of
dimension ≤ 3. In the proofs we will use the following elementary and well known
fact: let I ⊂ R be an ideal of height 1 in the regular local ring R. Then there exists
f ∈ R such that I = f J where either J = R or otherwise height(J ) > 1. Indeed, let
I = ( f1, . . . , fm). Since R is factorial, the greatest common divisor of f1, . . . , fm

exists. Let f = gcd( f1, . . . , fm), and gi = fi/ f for i = 1, . . . , m. Then I = f J,
where J = (g1, . . . , gm). Suppose height(J )= 1; then there exists a prime ideal P
of height 1 with J ⊂ P. Since R is regular, P is a principal ideal, say P = (g). It
follows then that g divides all gi , but gcd(g1, . . . , gm)= 1, a contradiction.

Remark 1.1. Let (R,m) be a regular local ring with dim R ≤ 2 and let I be an
ideal of R. Then

astab I = astab I = dstab I = 1.

Proof. If dim R ≤ 1, then either R is a field or a principal ideal domain, and the
statement is trivial. Now suppose dim R = 2 that and I 6= 0. If height(I )= 2, then
m belongs to Ass I k and Ass I k for all k, and the assertion is trivial. Hence, we
may assume that height(I ) = 1. Then I = f J with J = R or height(J ) = 2. In
the first case I is a principal ideal, and the assertion is trivial. In the second case,
I k
= f k J k for all k, and J k is m-primary. Thus there exists g 6∈ J k with gm ∈ J k.

Then g f k
6∈ f k J k and g f km∈ f k J k. This shows that in the second case m∈Ass I k

for k, so that astab I = dstab I = 1.
Finally observe that in the second case, I k = f k J k for all k. This shows that

m ∈ Ass I k for all k, so that also in this case astab I = 1. �

Theorem 1.2. Let (R,m) be a regular local ring with dim R ≤ 3 and I be an ideal
of R. Then astab I = dstab I .

Proof. By Remark 1.1, we may assume that dim R = 3. If height(I ) ≥ 2, then
Ass I k

⊆Min(I )∪ {m} for all k. This implies at once that astab I = dstab I . Now
suppose that height(I ) = 1. If I is a principal ideal, then the assertion is again
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trivial. Otherwise, I = f J with height(J ) ≥ 2. Since I k is isomorphic to J k

as an R-module, it follows that proj dim I k
= proj dim J k for all k. This implies

that proj dim R/I k
= proj dim R/J k for all k, and consequently depth R/I k

=

depth R/J k , by the Auslander–Buchsbaum formula. Thus, dstab I = dstab J .
We claim that astab I = astab J . Since we have already seen that astab J =

dstab J if height(J )≥ 2, the claim then implies that astab I = dstab I , as desired.
The claim follows once we have that shown

Ass I k
= Ass f k J k

=Min( f )∪Ass J k .

For that we only need to prove the second equation. So let P ∈ Spec R with
f k J k

⊂ P. Then P ∈ Ass f k J k if and only if RP/ f k J k RP has depth 0. If
J 6⊂ P, then f k J k RP = f k RP, and hence depth RP/ f k J k RP = 0 if and only if
depth RP/ f k RP = 0, and this is the case if and only if P ∈Min( f ). If J ⊂ P, then
the RP -modules f k J k RP and J k RP are isomorphic, so that with the arguments
as above depth RP/ f k J k RP = depth RP/J k RP , which shows that in this case
P ∈ Ass f k J k if and only if P ∈ Ass J k . This completes the proof. �

The statements shown so far and its proofs made for ideals in a regular local ring
are valid as well for any graded ideal in a polynomial ring.

We now turn to some explicit examples. Hibi et al. [2016, Proposition 1.5] show
that for any integer t ≥ 2 the ideal I = (x t , xyt−2z, yt−1z) ⊂ K [x, y, z] satisfies
dstab I = t . Since by Theorem 1.2, astab I = dstab I , this example shows that in a
3-dimensional graded or local ring (we may pass to K [|x, y, z|]) both the index of
depth stability as well as the index of Ass-stability may be any given number.

The following example shows that already for an ideal I in a 3-dimensional
polynomial ring the invariants astab I and astab I may differ.

Example 1.3. Let R = K [x, y, z] be a polynomial ring over a field K and let
I = ((xy)2, (xz)2, (yz)2)⊂ R. Then astab I = 2 and astab I = 1.

Proof. We first claim that I n
: (xy)2

= I n−1
+ z2n(x2, y2)n−2. Indeed, let J =

((xz)2, (yz)2). Then I n
= J n
+(xy)2 I n−1, and hence I n

: (xy)2
= J n

: (xy)2
+ I n−1.

Since J n
: (xy)2

= z2n(x2, y2)n
: (xy)2

= z2n(x2, y2)n−2, the assertion follows.
By symmetry, we also have I n

: (xz)2
= I n−1

+ y2n(x2, z2)n−2 and I n
: (yz)2

=

I n−1
+ x2n(y2, z2)n−2. Thus, for all n ≥ 1 we obtain

I n
: I = (I n

: (xy)2)∩(I n
: (xz)2)∩(I n

: (yz)2)

= (I n−1
+z2n(x2,y2)n−2)∩(I n−1

+y2n(x2,z2)n−2)∩(I n−1
+x2n(y2,z2)n−2)

= I n−1
+(z2n(x2,y2)n−2)∩(y2n(x2,z2)n−2)∩(x2n(y2,z2)n−2)= I n−1.

In other words, I satisfies strong persistence in the sense of [Herzog and Qureshi
2015]. In particular, Ass I n

⊂ Ass I n+1 for all n ≥ 1. Now since Ass I =
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{(x, y), (x, z), (y, z)} and Ass I 2
= {(x, y), (x, z), (y, z), (x, y, z)}, we deduce

from this that astab I = dstab I = 2.
With Macaulay2 one checks that I =

(
(xy)2, (xz)2, (yz)2, xyz2, xy2z, x2 yz

)
and that Ass I = {(x, y), (x, z), (y, z), (x, y, z)}. By [McAdam 1983, Corollary
11.28], one has Ass I ⊂Ass I 2⊂· · ·⊂Ass∞ I . Since Ass I n is a subset of the mono-
mial prime ideals containing I, and since this set is {(x, y), (x, z), (y, z), (x, y, z)},
we see that Ass I = Ass I n for all n. Hence, astab I = 1. �

The difference astab I − astab I may in fact be as big as we want:

Theorem 1.4. Let R = k[x, y, z] be the polynomial ring over a field K, c be a
positive integer and I = (x2c+2, xy2cz, y2c+2z). Then astab I =c+2 and astab I =2.

Proof. Note that I = (x2c+2, z)∩ (x, y2c+2)∩ (y2c, x2c+2), from which it follows
that dim R/I = depth R/I = 1.

In the next step we prove that I n
: I = I n−1 for all n. Then [Herzog and Qureshi

2015, Theorem 1.3] implies that Ass I n
⊆ Ass I n+1 for all n. In particular, if

depth R/I k
= 0 for some k, then depth R/I r

= 0 for all r ≥ 0. Since depth R/I k
≤ 1

for all k, it then follows that depth R/I k
≥ depth R/I k+1 for all k.

In order to show that I n
: I = I n−1, observe that

I n
: x2c+2

= I n−1
+ ((y2cz)n(x, y2)n

: x2c+2)= I n−1
+ (y2cz)n(x, y2)n−2(c+1),

and that

I n
: xy2cz = I n−1

+ ((x2c+2, y2c+2z)n
: xy2cz)

⊆ I n−1
+ (((x2c+2, y2c+2z)n

: y2c+2z) : x2c+2)

= I n−1
+ (x2c+2, y2c+2z)n−2.

Similarly we have

I n
: y2c+2z = I n−1

+ (xn(x2c+1, y2cz)n
: y2c+2z)

⊆ I n−1
+ (xn(x2c+1, y2cz)n

: y4cz2)

= I n−1
+ xn(x2c+1, y2cz)n−2.

Now since

I n−1
⊆ (I n

: I )

⊆ I n−1
+ (y2cz)n(x, y2)n−2(c+1)

∩ (x2c+2, y2c+2z)n−2
∩ xn(x2n+1, y2cz)n−2

⊆ I n−1
+ I n
= I n−1,

it follows that I n
: I = I n−1 for all n, as desired.

Next we claim that I n
: x2c+2

= I n−1 for all n ≤ c+ 1.
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If n = 1, there is nothing to prove. Let 1 < n ≤ c+ 1. By a calculation as before
we see that

I n
: x2c+2

= I n−1
+ ((y2cz)n(x, y2)n

: x2c+2)= I n−1
+ (y2cz)n

= I n−1
+ (y(2c+2)(n−1)+2c+2−2nzn)= I n−1

+ (y2c+2z)n−1 y2c+2−2nz

= I n−1.

We proceed by induction on n to show that depth S/I n
= 1 for n ≤ c + 1.

We observed already that depth S/I = 1, Now let 1 < n ≤ c + 1. Then, since
I n
: x2c+2

= I n−1, we obtain the exact sequence

0→ R/I n−1 x2c+2
−−→ R/I n

→ R/(I n, x2c+2)→ 0.

Since by the induction hypothesis depth R/I n−1
= 1, it follows that

depth R/I n
≥min{depth R/I n−1, depth R/(I n, x2c+2)}

=min{1, depth R/(I n, x2c+2)}.

Note that (I n, x2c+2) = ((y2cz(x, y2)n, x2c+2), which implies that R/(I n, x2c+2

has depth 1. Thus we have depth R/I n
≥ 1. On the other hand, we have seen before

that depth R/I n
≤ depth R/I = 1, and so depth R/I n

= 1 for all n ≤ c+ 1.
In the next step we show that depth R/I c+2

= 0, which then implies that
depth R/I n

= 0 for all n ≥ c+ 2. In particular, it follows that astab I = c+ 2.
In order to prove that depth R/I c+2

= 0, we show that

x2c+2 y(c+1)(2c+2)−1zc+1
∈ (I c+2

:m) \ I c+2.

Indeed, let u = x2c+2 y(c+1)(2c+2)−1zc+1. Then

ux = x2c+2(xy2cz)(y2c+2z)c y2c,

uy = x2c+2(y2c+2z)c+1

uz = (xy2cz)c+1(xy2cz)(yxc).

This shows that u ∈ (I c+2
:m).

Assume that x2c+2 y(c+1)(2c+2)−1zc+1
∈ I c+2. Then

y(c+1)(2c+2)−1zc+1
∈ (I c+2

: x2c+2)= I c+1
+ (y2cz)c+2,

and so y(c+1)(2c+2)−1zc+1
∈ I c+1. Since I c+1

= (x2c+2, y2cz(x, y2))c+1, expansion
of this power implies that

y(c+1)(2c+2)−1
∈

c+1∑
i=0

(x2c+2)i (y2c(x, y2))c+1−i.

It follows that y(c+1)(2c+2)−1
∈ (y2c(x, y2))c+1, which is a contradiction.
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Now we compute astab I , and first prove that

I = (I, (x3 y2c−1z, x4 y2c−2z, . . . , x2c+1 yz)).

Let J= (I, (x3 y2c−1z, x4 y2c−2z, . . . , x2c+1 yz)). For all i ∈Z with 3≤ i≤2c+ 1,
we have

(x i y2c−i+2z)2c
= x2ic y2c(2c−i+2)z2c

= x2c(i−1)+i−2x2c−i+2 y2c(2c−i+2)z2c−i+2zi−2

= x2c(i−1)+i−2(xy2cz)2c−i+2zi−2

= (x2c+2)i−2(xy2cz)2c−i+2zi−2x2c+2−i
∈ I 2c.

Thus J ⊆ I . We have Ass I/J ⊆ Ass J . The primary decomposition of J shows
that Ass J = {(x, z), (x, y)}. Let P = (x, z). Then (I )P = IP = (x2c+2, z)P =

(x2c+2, z)P . The last equality follows by [Huneke and Swanson 2006, Proposi-
tion 1.3.5], and so (I/J )P = 0. Hence P /∈ Ass I/J . Now let P = (x, y). Then

(I )P = (x2c+2, xy2c, y2c+2)P ⊂ ((x, y)2c+2, xy2c)P = ((x, y)2c+2, xy2c)P = JP .

The second equality follows by [Huneke and Swanson 2006, Exercise 1.19]. Thus
we have (I/J )P = 0. This shows that Ass I/J =∅, and hence I = J, as desired.
In particular, we see that

Ass I = {(x, z), (x, y)}.

Since Ass I ⊆ Ass I k for all k, it follows that {(x, z), (x, y)} ⊂ Ass I k for all k.
Suppose that (y, z) ∈ Ass I k for some k. Then (y, z) is a minimal prime ideal of I.
However, this is not the case, as can be seen from the primary decomposition of I.

Next we show that m= (x, y, z) belongs to Ass I 2. Then it follows that

Ass I k = {(x, z), (x, y), (x, y, z)} for all k ≥ 2,

thereby showing that astab I = 2.
In order to prove that m∈Ass I 2, we first show that the ideal L , which is equal to(

I 2, (x4 y4c−1z2, x5 y4c−2z2, . . . , x2c+2 y2c+1z2), (x2c+5 y2c−1z, x2c+6 y2c−2z . . . , x4c+3 yz)
)
,

is contained in I 2.
Since

I 2
= (x4c+4, x2 y4cz2, y4c+4z2, x2c+3 y2cz, x2c+2 y2c+2z, xy4c+2z2),

it follows that for all integers i with 4≤ i ≤ 2c+ 2 the element

(x i y4c−i+3z2)4cx4ic y4c(4c−i+3)z8c
= x2(4c−i+3)y4c(4c−i+3)z2(4c−i+3)x4c(i−2)+2i−6z2i−6

= (x2 y4cz2)4c−i+3(x4c+4)i−3x4c−2i+6z2i−6
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belongs to (I 2)4c. Also, for all integers i with 5≤ i ≤ 2c− 2, the element

(x2c+i y2c+4−i z)4c
= x2(2c+4−i)y4c(2c+4−i)z2(2c+4−i)x8c2

+4ic+2i−4c−8z2i−8

= (x2 y4cz2)2c+4−i x (4c+4)(2c+i−4)x4c+8−2i z2i−8

= (x2 y4cz2)2c+4−i (x4c+4)2c+i−4x4c+8−2i z2i−8

belongs to (I 2)4c. This shows L ⊆ I 2.
By using primary decomposition for the ideal L , we see that

Ass L = {(x, z), (x, y), (x, y, z)}.

On the other hand, by easy calculation, one verifies that L : (x2c+2 y2c+1z) = m.
Finally we show that x2c+2 y2c+1z /∈ I 2, which then implies that m ∈ Ass I 2, as
desired.

In order to prove this we show by induction on n that (x2c+2 y2c+1z)n /∈ (I 2)n for
all n. For n = 1, if x2c+2 y2c+1z ∈ I 2, then y2c+1z ∈ I 2

: x2c+2
= I + (y2cz)2

= I,
which is a contradiction.

Now let n > 1. Assume that (x2c+2 y2c+1z)n−1 /∈ (I 2)n−1. using the induction
hypothesis. If (x2c+2 y2c+1z)n

∈ (I 2)n, then

x (2c+2)(n−1)(y2c+1z)n
∈ (I 2n

: x2c+2)= I 2n−1
+ (y2cz)2n(x, y2)2n−2(c+1),

and so x (2c+2)(n−1)(y2c+1z)n
∈ I 2n−1.

It follows that x (2c+2)(n−1)(y2c+1z)n−1
∈ (I 2n−1

: y2c+1z). Since

(I 2n−1
: y2c+1z)= y I 2n−2

+ ((x2c+2, xy2cz)2n−1
: y2c+1z)

= y I 2n−2
+ (x2n−1(x2c+1, y2cz)2n−2

: y)

= y I 2n−2
+ x2n−1(y2c−1z(x2c+1, y2cz)2n−3

+ (x2c+1)2n−2),

we see that x (2c+2)(n−1)(y2c+1z)n−1
∈ y(I 2)n−1, a contradiction.

Thus (x2c+2 y2c+1z)n /∈ (I 2)n for all n, as desired. �

The theorem says that for any positive integer c there exists a monomial ideal
in K [x, y, z] with astab I − astab I = c. However we do not know whether for all
ideals in I ⊂ K [x, y, z] one has astab I ≤ astab I .

2. The case dim R > 3

The purpose of this section is to show that for a polynomial ring S in more than 3
variables, for a graded ideal I ⊂ S the invariants astab I and dstab I may differ by
any amount.

We begin with two examples.
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Example 2.1. Let R = k[x, y, z, u] be the polynomial ring over a field k and
consider the ideal I = (xy, yz, zu) of R. Then astab I = 1 and dstab I = 2.

Proof. We have Ass I =Min(I ), and since I may be viewed as the edge ideal of
a bipartite graph it follows from [Herzog and Hibi 2011, Definition 1.4.5, Corol-
lary 10.3.17] that Ass I = Ass I n for all n ∈ N. Therefore astab I = 1. By [Herzog
and Hibi 2011, Corollary 10.3.18], limk→∞ depth R/I k

= 1. Moreover, it can
be seen that depth R/I = 2 and depth R/I 2

= 1. Since I has a linear resolution,
[Herzog and Hibi 2011, Theorem 10.2.6] implies that for all k ≥ 1, I k has a linear
resolution as well. Therefore, by [Herzog et al. 2013, Proposition 2.2] we have
depth R/I k+1

≤ depth R/I k for all k ∈N. Hence depth R/I k
= 1 for all k ≥ 2, and

so dstab I = 2. �

Example 2.2. Let R = K [x, y, z, u] be the polynomial ring in 4 variables over a
field K, and let I = (x2z, uyz, u3). Then astab I = 2 and dstab I = 1.

Proof. Set J = (uyz, u3). For all n ∈ N, it follows that

I n
: x2z = (J n

+ x2z I n−1) : x2z = I n−1
+ (J n

: x2z)= I n−1.

Hence, Ass I n
⊆ Ass I n+1 for all n ∈ N. By using Macaulay2 and the program in

[Bayati et al. 2011], we see that Ass∞I =Ass I 2
={(x,u),(z,u),(x, y,u),(x,z,u)}.

Therefore astab I = 2. As Ass I n
⊆ Ass I n+1 for all n ∈ N, it follows that m =

(x, y, z, u) /∈ Ass I n and so we have depth R/I n
≥ 1. Moreover y − z ∈ m is a

nonzerodivisor on R/I n for all n ∈ N. Set R = R/(y − z). Thus by [Bruns and
Herzog 1993, Lemma 4.2.16] we have R/I n = R/I n ∼= K [x, z, u]/(x2z, uz2, u3)n.
Since xzu3n−1

∈ (I n) : m \ I n , it follows depth R/I n = 0 and so depth R/I n
= 1

for all n ∈ N. Therefore dstab I = 1. �

Now we come to the main result of this section.

Theorem 2.3. Let R = k[x, y, z, u] be the polynomial ring over a field k. Then
for any nonnegative integer c, there exist two ideals I and J of R such that the
following statements hold:

(i) astab I − dstab I ≥ c.

(ii) dstab J − astab J ≥ c.

Proof. We may assume that c is a positive integer. Let I = (xc+1zc, u2c−1 yz, u2c+1)

and J = (xc yc−1, yc−1xc−1z, zcuc). We claim that astab I = dstab J = c+ 1 and
astab J = dstab I = 1.

(i) In this case, by using Example 2.2, we can assume that c≥ 2. For all n ∈N, we
have

(I n
: xc+1zc)= (((u2c−1 yz, u2c+1)n

+ xc+1zc I n−1) : xc+1zc)

= I n−1
+ ((u2c−1 yz, u2c+1)n

: xc+1zc).
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Since ((u2c−1 yz, u2c+1)n
: xc+1zc)= ((u2c−1 yz, u2c+1)n

: zc)⊆ I n−1, it follows that
(I n
: xc+1zc)= I n−1 and so Ass I n

⊆ Ass I n+1. By using Macaulay2 and [Bayati
et al. 2011], we have Ass I = {(x, u), (z, u), (y, z, u), (x, y, u)} and Ass∞ I =
{(x, u), (z, u), (y, z, u), (x, z, u), (x, y, u)}. Set p= (x, z, u). It is easily seen that
I i
: p = I i for all i ≤ c and xc yc+1zcu(2c+1)c

∈ (I c+1
p : p) \ I c+1

p . Hence Ass I =
Ass I 2

= · · · = Ass I c, Ass I c+1
= Ass∞ I and so astab I = c+ 1. By the same

argument as in the proof of Example 2.2, we see that m= (x, y, z, u) /∈Ass I n for all
n ∈N and so we have depth R/I n

≥ 1 and x−y−z ∈m is a nonzerodivisor on R/I n

for all n∈N. Therefore R/I n= R/I n∼=K [y, z, u]/((y+z)c+1zc, u2c−1 yz, u2c+1)n,
where R= R/(x−y−z). Since z2cu(2c+1)n−1

∈ (I n) :m\I n, it follows depth R/I n=

0 and so depth R/I n
= 1 for all n ∈ N. Therefore dstab I = 1.

(ii) For all n ∈ N, we have

(J n
: zcuc)= (((xc yc−1, yc−1xc−1z)n

+ zcuc J n−1) : zcuc)

= J n−1
+ ((xc yc−1, yc−1xc−1z)n

: zcuc)

= J n−1
+ ((xc yc−1, yc−1xc−1z)n

: zc).

Since ((xc yc−1, yc−1xc−1z)n
: zc)⊆ J n−1, for all n ∈N we have (J n

: zcuc)= J n−1.
Therefore, Ass J n

⊆Ass J n+1 for all n ∈N. By using Macaulay2 and [Bayati et al.
2011] we have Ass∞ J ={(x, z), (x, u), (y, z), (y, u)}=Min(J ) and so astab J =1.
Since m /∈ Ass J n for all n ∈ N, we have 2 = dim R/J ≥ depth R/J n

≥ 1 and
x− y ∈m is a nonzerodivisor on R/J n for all n ∈N. Again by the above argument,
R/J n = R/J n ∼= K [x, z, u]/(x2c−1, x2c−2z, zcuc)n, where R = R/(x − y). Since
J i : m = J i for all i ≤ c and x (2c−1)nzn−1uc−1

∈ J n : m \ J n for all n ≥ c+ 1, it
follows that depth R/J = depth R/J 2

= · · · = depth R/J c
= 2 and depth R/J n

= 1
for all n ≥ c+ 1. Hence dstab J = c+ 1. �

3. Nonincreasing depth functions

Theorem 3.1. Let (R,m) be a regular local ring with dim R = 3 and I be an ideal
of R. If I n+1

: I = I n for all n ∈ N, then depth R/I n is nonincreasing.

Proof. Suppose height(I ) ≥ 2. Since I n+1
: I = I n for all n ∈ N, it follows that

depth R/I n+1
≤ depth R/I n . Now, let height(I ) = 1. Then there exists an ideal

J of R and an element f ∈ R such that I = f J and height(J ) ≥ 2. As in the
proof of Theorem 1.2, depth R/I n

= depth R/J n for all n ∈N. Since I n+1
: I = I n

for all n ∈ N, we have J n+1
: J = J n. Thus depth R/J n+1

≤ depth R/J n and so
depth R/I n+1

≤ depth R/I n . This completes the proof. �

Corollary 3.2. (i) Let (R,m) be a regular local ring with dim R = 3. Then
depth R/I n is nonincreasing.
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(ii) Let R = k[x, y, z] be a polynomial ring in 3 indeterminates over a field k. If I
is an edge ideal of R, then depth R/I n is nonincreasing.

Example 3.3. Let R = k[x, y, z, u] be a polynomial ring and consider the ideal
I =

(
xy2z, yz2u, zu2(x+ y+ z+u), xu(x+ y+ z+u)2, x2 y(x+ y+ z+u)

)
of R.

Then depth R/I = depth R/I 4
= 0 and depth R/I 2

= depth R/I 3
= 1. Thus the

depth function is neither nonincreasing nor nondecreasing.

In view of Theorem 3.1 one may ask whether in a regular local ring (of any
dimension), depth R/I n is a nonincreasing function of n, if I n+1

: I = I n for all n.
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HOMOMORPHISMS OF FUNDAMENTAL GROUPS
OF PLANAR CONTINUA

CURTIS KENT

We prove that every homomorphism from the fundamental group of a planar
Peano continuum to the fundamental group of a planar or one-dimensional
Peano continuum is induced by a continuous map up to conjugation. This is
used to provide an uncountable family of planar Peano continua with pairwise
nonisomorphic fundamental groups each of which is not homotopy equivalent
to a one-dimensional space.

1. Introduction

Every continuous map between topological spaces induces a homomorphism be-
tween their respective homotopy and homology groups. This provides a method to
translate questions about continuous functions of topological spaces into questions
about homomorphisms of abstract groups. The converse statement is not true even
for relatively nice spaces. For example, RP∞ × S2 and RP2 have isomorphic
homotopy groups but there does not exist any continuous map which induces an
isomorphism on all homotopy groups; see [Hatcher 2002, p. 345]. When only
considering the first homotopy group, it is a classical result that any homomorphism
from the fundamental group of a connected CW complex into the fundamental
group of a K (G, 1) space is induced by a continuous map; see [Hatcher 2002,
Proposition 1B.9].

However, for spaces with local topological complications, the converse could
fail even when only considering homomorphisms of the fundamental group. For
example, an inner automorphism of the fundamental group of a one-dimensional
continuum which is not locally simply connected at the chosen basepoint cannot be
induced by a continuous map; see [Conner and Kent 2017, Proposition 3.12].

In the literature, the phrase induced by a continuous map has been used to mean
both strictly induced by a continuous map and induced by a continuous map up
to conjugation. To avoid confusion, we will say a homomorphism ϕ between
fundamental groups is induced by a continuous map if ϕ = f∗ for some continuous
map f . We will say that ϕ is conjugate to a homomorphism induced by a continuous
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Keywords: Peano continuum, fundamental group, planar.
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map if there exists a path α such that α̂ ◦ϕ = f∗ for some continuous map f where
α̂ is the change of basepoint isomorphism induced by the path α.

Katsuya Eda [1998] was the first to prove that arbitrary homomorphisms between
fundamental groups of certain spaces which are not locally simply connected are
induced by continuous maps up to conjugation by showing that any endomorphism
of the fundamental group of the Hawaiian earring is conjugate to one induced by a
continuous map. Later, Eda proved the following generalization.

Theorem A [Eda 2010]. Every homomorphism between fundamental groups of
one-dimensional Peano continua is conjugate to a homomorphism induced by a
continuous map.

Eda actually proves a stronger statement [2010, Theorem 1.2] by allowing the
range to be the fundamental group of any one-dimensional metric space. Under-
standing the extent to which homomorphisms of fundamental groups are induced
by continuous maps of the underlying topological spaces provides an additional
tool to understand the homotopy type of locally complicated spaces using their
fundamental groups, see [Cannon and Conner 2006; Eda 2002; Conner and Kent
2011]. Knowing when homomorphisms are induced by continuous maps allowed
Eda to prove that the fundamental group is a perfect invariant of homotopy type for
one-dimensional Peano continua [Eda 2010] and is the key tool to prove that the set
of points at which a space is not semilocally simply connected is constructible from
the fundamental group for one-dimensional and planar Peano continua [Conner and
Eda 2005; Conner and Kent 2011].

In [Conner and Kent 2011], Greg Conner and the author show that many of the
known results about fundamental groups of one-dimensional spaces extend to planar
spaces. Specifically, it is proved that any homomorphism from the fundamental
group of a one-dimensional Peano continuum to the fundamental group of a planar
Peano continuum is induced by a continuous map after composing with a change of
basepoint isomorphism (Theorem A when the range is a planar Peano continuum).
Here we will prove the following theorem.

Theorem 2.7. Let ϕ : π1(X, x0)→ π1(Y, y0) be a homomorphism from the fun-
damental group of a planar Peano continuum X into the fundamental group of a
one-dimensional or planar Peano continuum Y . Then there exists a continuous
function f : X → Y and a path α : (I, 0, 1)→ (Y, y0, y), with the property that
f∗ = α̂ ◦ϕ.

In one-dimensional spaces every path class contains a unique (up to reparametriza-
tion) minimal representative and every other representative can be homotoped to
the unique minimal one by removing backtracking; see [Curtis and Fort 1959,
Lemma 3.1] or [Cannon and Conner 2006, Theorem 3.9] for the existence and
uniqueness of reduced representatives. We will say that a loop in a one-dimensional
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space is reduced if it is the unique minimal representative in its path class. Every
one-dimensional Peano continuum deformation retracts to a one-dimensional Peano
continuum in which every point is contained in some reduced loop [Conner and
Meilstrup 2012, Theorems 4.3 and 3.1]. With these tools in hand, to prove that
homomorphisms from the fundamental group of one-dimensional Peano continua are
continuous up to conjugation, one starts with a one-dimensional Peano continuum
such that each point is contained in a reduced loop and then uses the homomorphism
to understand where to send each reduced loop.

Two of the difficulties of the planar case are the lack of a canonical deformation
retract and the lack of representatives for path classes which are analogous to
reduced paths in one-dimensional spaces. To prove Theorem 2.7, we will find a one-
dimensional core of a planar Peano continuum to which we can apply Theorem A.
We will show how to continuously extend this map to all of the planar continuum.

The property that homomorphisms are induced by continuous maps up to conju-
gation does not hold for more general spaces. For example there exists uncountable
many homomorphisms from the fundamental group of the Hawaiian earring into the
fundamental group of the projective plane which are not induced by a continuous
function [Conner and Spencer 2005].

Homotopy dimension. The homotopy dimension of a space X is the smallest cov-
ering dimension of a space homotopy equivalent to X . A space is homotopically at
most k-dimensional if its homotopy dimension is at most k.

Cannon and Conner [2007] asked the following question:

Question. If X is a planar Peano continuum whose fundamental group is isomorphic
to the fundamental group of some one-dimensional Peano continuum, is it true that
X is homotopy equivalent to a one-dimensional Peano continuum?

Let S be the Sierpinski curve in R2 obtained by the standard Cantor construction
performed on the unit square in the plane. Let Si be the planar Peano continuum
obtained from S by filling in i of the removed discs, i.e.,

Si = S∪
( i⋃

n=1
Dn

)
,

where Dn are distinct bounded components of R2
\ S. Cannon, Conner and Zastrow

showed that S1 is not homotopy equivalent to any one-dimensional space [Cannon
et al. 2002]. Their example, S1, illustrates that there exists some rigidity in planar
sets and at least provides some motivation as to why the previous question is interest-
ing. Karimov, Repovš, Rosicki, and Zastrow [Karimov et al. 2005] give additional
examples of planar sets spaces which are not homotopically one-dimensional.

By applying Theorem 2.7, we will show that Si cannot have the same fundamental
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group as any one-dimensional Peano continua and that the Si , S j do not have
isomorphic fundamental groups for i 6= j .

As an application of Theorem 2.7, we prove the following result.

Theorem 2.18. There exists an uncountable family of planar Peano continua whose
fundamental groups are pairwise nonisomorphic and also not isomorphic to the
fundamental group of any one-dimensional Peano continuum.

Our family of examples is constructed by filling infinitely many of the removed
squares of S in a discrete fashion and then studying the limit set of the filled squares.

2. Planar to one-dimensional or planar

We will use D to denote the unit disc in the Euclidean plane R2 and I to denote
the interval [0, 1]. For a metric space X , let B X

r (x) = {y ∈ X | d(x, y) < r}
and SX

r (x) = {y ∈ X | d(x, y) = r}. For planar sets X , B X
r (x) = BR2

r (x) ∩ X
and SX

r (x) = SR2

r (x) ∩ X . For A a subset of a metric space X , we let Nε(A) =
{x ∈ X | d(x, A) < ε}, the open ε-neighborhood of A.

For a path f : I → X , let f (t) denote the path f (t) = f (1− t). For a path
α : (I, 0, 1)→ (X, x0, x1), let α̂ : π1(X, x0)→ π1(X, x1) by the standard change of
base point isomorphism, i.e., α̂([g])= [α ∗ g ∗α]. This isomorphism has inverse α̂.

We will use int(X) to denote the interior of X as a subset of the plane, cl(X) for
the closure of X in the plane and ∂X for cl X \ int(X).

Theorem 2.1 [Eda 2010; Conner and Kent 2011]. Let ϕ : π1(X, x0)→ π1(Y, y0)

be a homomorphism from the fundamental group of a one-dimensional Peano
continuum X into the fundamental group of a one-dimensional or planar Peano
continuum Y . Then there exists a continuous function f : X → Y and a path
α : (I, 0, 1)→ (Y, y0, y), with the property that f∗ = α̂ ◦ϕ.

Lemma 2.2. Suppose that f : ∂D → X is a nullhomotopic loop into a planar
or one-dimensional set. Then f is nullhomotopic in the B X

r ( f (0)) for every r >
2 diam(im f ).

Cannon and Conner [2007, Section 6: proof of Theorem 1.4] prove that every
nullhomotopic loop in a planar Peano continuum bounds a disc contained in the
convex hull of its image (in which case the multiplicative constant is unnecessary).
However, they do not explicitly state this corollary of their proof. Another proof
using the Riemann mapping theorem can be found in [Fischer and Zastrow 2005,
Lemma 13]. Here we will prove a slightly weaker bound, which will be sufficient
for our needs, using the Phragmén–Brouwer properties.

Proof. The lemma is trivial when X is one-dimensional since every nullhomotopic
loop factors through a dendrite [Cannon and Conner 2006, Theorem 3.7] which
implies that it is nullhomotopic inside of its image.
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Suppose that f : ∂D→ X is a nullhomotopic loop into a planar set X . We will
denote the smallest convex set containing a set A by Hull(A).

Claim. Suppose that l is a line in the plane which is disjoint from im f and A is the
component of R2

\ l containing im f . For every ε > 0 and any extension h :D→ X
of f, there exists an extension h̃ : D→ X of f such that

h̃({x ∈ D | h(x) 6= h̃(x)})⊂ X ∩Hull(l ∩ h(D)) and im h̃ ⊂ X ∩ cl(Nε(A)).

Proof of claim. Suppose that h : D→ X is a nullhomotopy of f . Let C be the
components of h−1(R2

\ A) which intersect R2
\Nε(A). Since D is compact, C

is finite. For each C ∈ C, let ∂MC be the boundary of the unbounded component
of R2

\ C . Then ∂MC is a closed connected subset of D such that the closure
of the bounded components of R2

\ ∂MC contains C . (This is the second of the
Phragmén–Brouwer properties in [Wilder 1949, p. 47] applied to the unbounded
component of R2

\C .) We will denote the closure of the bounded components of
R2
\ ∂MC by wHull(C).
By passing to a subset of C, we may assume that for any two distinct elements

C,C ′ ∈ C we have that C ′ is contained in the unbounded component of R2
\ C

while still maintaining the property that h−1
(
R2
\Nε(A)

)
⊂
⋃

c∈C wHull(C).
Since ∂MC is connected, h(∂MC) is contained in a connected component of

l ∩ X .
By the Tietze extension theorem, there exists hC : wHull(C) → l ∩ X such

that hC(x) = h(x) for all x ∈ ∂MC . Since h(∂MC) is contained in a connected
component of l∩ X , we have that X ∩Hull(h(∂MC))⊂ l∩ X and hC can be chosen
to have image contained in X ∩Hull(h(∂MC)).

By the pasting lemma for continuous functions, the function h̃ : D→ X defined
by h̃(x) = hC(x) if x ∈ wHull(C) for some C ∈ C and h̃(x) = h(x) otherwise is
a continuous function which extends f . By our choice of C, im h̃ is contained in
X ∩ cl(Nε(A)). �

Fix ε > 0 such that 2 diam(im f ) >
√

2 diam(im f )+ (1+
√

2)ε. Let l1, l2 be
the two distinct vertical lines and l3, l4 the two distinct horizontal lines such that
d( f (0), li ) = diam(im f )+ ε for i ∈ {1, . . . , 4}. Notice this implies that im f is
contained in the unique bounded component of R2

\ {l1, . . . , l4}. By applying the
previous claim to each li in turn, we obtain a nullhomotopy of f which is contained
in the closure of an ε-neighborhood of the bounded component of R2

\ {l1, . . . , l4}.
By our choice of ε, this is contained in the ball of radius r for any r >

2 diam(im f ) which completes the proof of the lemma. �

Lemma 2.3. Every bounded open set U of R2 is the union of a sequence of dyadic
squares with disjoint interiors whose diameters form a null sequence. In addition,
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the squares can be chosen such that if Ai is the union of squares with side length at
least 1/2i , then U \ Ai ⊂N1/2i−1(∂U ).

This is standard and well known. We present a proof to introduce notation that
we will use later.

Proof. Set χi = {(x, y) | 0≤ x ≤ 1/2i , 0≤ y ≤ 1/2i
} and let

Qi = {(n,m)+χi | n,m ∈ (1/2i )Z}

be the set of closed squares in the standard tiling of the plane by squares with side
length 1/2i .

Let D0 be the maximal subset of Q0 such that A0 ⊂ U where A0 =
⋃

s∈D0
s.

Then U \ A0 ⊂N1/2−1(∂U ).
We will inductively define Di and Ai as follows. Let Di be the maximal subset

of Qi such that
⋃

s∈Di
s ⊂ U \ int(Ai−1). Let Ai =

(⋃
s∈Di

s
)
∪ Ai−1. Suppose

x ∈U\Ai , then there exists some s∈Qi such that x ∈s. Since the tilings are nested, if
s∩ int(Ai−1) 6=∅, then s⊂ Ai−1. Thus s∩ int(Ai−1)=∅. Since s is not in Di and is
disjoint from int(Ai−1), we have s 6⊂U and d(x, ∂U )≤ diam(s)=

√
2/2i < 1/2i−1.

Thus U \ Ai ⊂N1/2i−1(∂U ) and
⋃
∞

i=1 Ai =U . �

Lemma 2.4. Let f : I → X be a continuous function into a metric space X and V
be a covering of I by closed, possibly degenerate, intervals with disjoint interiors.
Suppose that g : I → X is a mapping such that, for every V ∈ V , the maps g and f
agree on the endpoints of V and g|V is continuous. If there exists an L such that,
for every V ∈ V , diam(g(V ))≤ L diam( f (V )) then g is continuous.

In addition; if there exists a K such that g|V is homotopic to f |V rel endpoints,
for every V ∈ V , by a homotopy of diameter at most K diam( f (V )), then g is
homotopic rel endpoints to f .

Proof. Let f , g, V , and L be defined as in the lemma. Fix ε > 0. Since the
elements of V have disjoint interiors and f is uniformly continuous, there exists
a cofinite subset V0 ⊂ V such that the diam( f (V )) < ε/(3L) for all V ∈ V0. Thus
diam(g(V ))≤ ε/3 for all V ∈ V0.

Fix δ > 0 satisfying these conditions:

(i) d( f (x), f (y)) < ε/3 for all x, y ∈ I such that |x − y|< δ.

(ii) d(g(x), g(y)) < ε/3 for all x, y ∈ V for some V ∈ V \V0 such that |x− y|< δ.

Take x, y ∈ I such that |x − y|< δ. If x, y ∈ V ∈ V , then d(g(x), g(y)) < ε/3
by our choice of δ and V0. We may assume x, y are in distinct elements of V and
without loss of generality x < y. There exist points x ′, y′ such that x ≤ x ′ ≤ y′ ≤ y
where x ′, y′ are endpoints of the intervals of V containing x , y respectively. Then
|x − x ′|, |y− y′|, |x ′− y′|< δ. Thus

d(g(x), g(y))≤ d(g(x), g(x ′))+ d( f (x ′), f (y′))+ d(g(y′), g(y)) < ε.
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Therefore g is uniformly continuous.
Suppose g|V is homotopic to f |V rel endpoints, for each V ∈ V , by a homotopy

of diameter at most K diam( f (V )). For each V ∈ V , let hV : V × I be a homotopy
rel endpoints of f |V to g|V such that diam(hV (V × I ))≤ K diam( f (V )).

Define h : I× I→ X by h(x, t)= hV (x, t) for any V ∈ V such that x ∈ V . Since
hV (x, t) = f (x) for all t if x is an endpoint of V, h is well defined. Notice that
h(x, 0)= f (x) and h(x, 1)= g(x).

As before, there exists a cofinite subset V1 of V such that diam(im hV ) < ε/3 for
all V ∈ V1. Fix δ > 0 satisfying the following:

(i) d( f (x), f (y)) < ε/3 for all x, y ∈ I such that |x − y|< δ.

(ii) d(h(x, t), h(y, s)) < ε/3 for all x, y ∈ V for some V ∈ V \ V1 such that
|x − y| + |s− t |< δ.

Suppose that (x, s), (y, t) ∈ I × I such that |x − y|+ |s− t |< δ. If x, y ∈ V for
some V ∈ V , then d(h(x, t), h(y, s)) < ε/3 by our choice of δ and V1. Thus we
may assume x, y are in distinct elements of V and without loss of generality x < y.
There exist points x ′, y′ such that x ≤ x ′ ≤ y′ ≤ y where x ′, y′ are endpoints of the
intervals of V containing x and y, respectively. Then |x− x ′|, |y− y′|, |x ′− y′|< δ.
Thus

d(h(x, t),h(y,s))≤ d(h(x, t),h(x ′, t))+ d(h(x ′, t),h(y′,s))+ d(h(y′,s),h(y,s))

< ε/3+ d( f (x ′), f (y′))+ ε/3< ε. �

Remark 2.5. For a planar Peano continuum X considered as a subset of R2, int(X)
is on open bounded subset of the plane. By Lemma 2.3, int(X) can be tiled by a
null sequence of dyadic squares with disjoint interiors. If Ai is the union of squares
from the tiling of int(X) with side length at least 1/2i , then Ai has a natural CW
structure given by the tiling and we will denote the one-skeleton of Ai by A(1)i .
Then X (1)

= ∂X ∪
(⋃

i A(1)i

)
can be considered as a type of one-skeleton for X .

The following lemma is immediate from the construction of Ai and the diameter
condition of the squares composing Ai . Alternatively, given a surjective map
f : I → X , it is a straightforward exercise to show how to modify it to construct a
surjective map from I to X (1).

Lemma 2.6. Let X be a planar Peano continuum and X (1)
= ∂X ∪

(⋃
i A(1)i

)
,

where Ai is as in Lemma 2.3 for the bounded open set int(X). Then X (1) is a
one-dimensional Peano continuum.

Theorem 2.7. Let ϕ : π1(X, x0)→ π1(Y, y0) be a homomorphism from the fun-
damental group of a planar Peano continuum X into the fundamental group of a
one-dimensional or planar Peano continuum Y . Then there exists a continuous
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function f : X → Y and a path α : (I, 0, 1)→ (Y, y0, y), with the property that
f∗ = α̂ ◦ϕ.

Proof. Let X (1)
=∂X∪

(⋃
i A(1)i

)
, where Ai is as in Lemma 2.3 for the bounded open

set int(X), and let i : X (1)→ X be the inclusion map. Since we are only concerned
about the homomorphism up to conjugation, we may assume that x0 ∈ X (1).

Let B = int(X) \ X (1). Then B is the disjoint union of open square discs whose
diameters form a null sequence.

Fix a loop β : I → X in X . Notice that β−1(B) is the disjoint union of open
intervals in I . Let V be the covering of I by disjoint intervals consisting of two
types: (1) the closure of a component of β−1(B) and (2) a point not contained in
the closure of any interval of β−1(B). Then V is a cover of I by intervals with
disjoint interiors.

For every nondegenerate V ∈ V there exists sV a closed square from the tiling
of int(X) such that β(V ) ⊂ sV . For every degenerate V ∈ V , let sV = V . Define
β ′ : I → X by letting β ′|V be a shortest path from β(a) to β(b) contained in ∂sV

where V = [a, b]. It is an elementary computation to show that diam(β ′(V )) ≤
2d(β(a), β(b))≤ 2 diam(β(V )). Since sV is convex and contained in X , the map
h : I ×V → X given by h(t, v)= tβ(v)+ (1− t)β ′(v) is a homotopy rel endpoints
from β|V to β ′|V with diam (im hV )≤ 4 diam ( f (V )). Lemma 2.4 implies that β ′

is continuous and homotopic to β. Hence i∗ is surjective.
By Theorem 2.1, ϕ ◦ i∗ : π1(X (1), x0)→ π1(Y, y0) is conjugate to being induced

by a continuous map, i.e., ϕ ◦ i∗ = α̂ ◦ f∗ where f : X (1)
→ Y is a continuous map

and α : I → Y is a continuous path.
Let s be a square for our tiling of int(X). Then f |∂s is a nullhomotopic loop

in Y . Thus we can extend f to all of s such that diam ( f (s)) ≤ 2 diam ( f (∂s)).
Doing this for all the components of B defines an extension f of f to all of X .
The diameter condition guarantees the continuity of f (the details are analogous to
those of Lemma 2.4).

Let β be a loop in X . Then there exists a loop β ′ in X (1) homotopic (in X ) to β.
Then

ϕ([β])= ϕ ◦ i∗([β ′])= α̂ ◦ f∗([β ′])

= α̂([ f ◦β ′])= α̂([ f ◦β ′])

= α̂([ f ◦β])= α̂ ◦ f ∗([β])

as desired. �

Applications. The Sierpinski curve in R2, which we will denote by S, is constructed
by iterating the process of subdividing [0, 1]× [0, 1] into 9 squares, removing the
center one and repeating on each of the remaining 8 squares.
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To be explicit, let C0 = ([0, 1]× [0, 1]) and define Cn inductively as follows.

Cn = Cn−1
∖ { ⋃

0≤i, j<3n−1

(1+3i
3n ,

2+3i
3n

)
×

(1+3 j
3n ,

2+3 j
3n

)}
.

Then S =
⋂

n Cn . Notice that R2
\ S is the union of countably many open

squares with disjoint closures and a single unbounded component. Let {Dn} be an
enumeration of the bounded components of the complement of S.

For A ⊂ N, let SA = S∪
(⋃

n∈A Dn
)
; i.e., SA is the space obtained from S by

filling in the squares with indices in A. For i ∈ N, let Si = S∪
(⋃i

n=1 Dn
)
.

We will say that a sequence of subsets An of X converges to a set A ⊂ X , if for
every ε > 0 there exists an N such that An ⊂Nε(A) and A⊂Nε(An) for all n > N .

Lemma 2.8. For every x ∈ S, there exists a subsequence of natural numbers (in)

such that Din converges to {x}. Thus S is one-dimensional and
⋃
∞

n=1 ∂Dn is dense
in S.

Proof. Notice that Cn is contained in the closed
√

2/3n-neighborhood of the
boundaries of the open squares removed from Cn−1 to obtained Cn . Thus every
point in S is at most

√
2/3n from the boundary of an open square contained in

R2
\ S with side length 1/3n . For every n, we can choose an in such that Din is a

square with side length 1/3n which is at most
√

2/3n from x . Then ∂Din converges
to x . Thus S is one-dimensional and

⋃
∞

n=1 ∂Dn is dense in S. �

Zastrow’s example in [Cannon et al. 2002] and Example (2) in [Karimov et al.
2005] appear to suggest the following lemma.

Lemma 2.9. Suppose that h : X → X is a continuous map of a planar Peano
continuum such that every loop is freely homotopic to its image under h. Then h
fixes the set of points at which X is not semilocally simply connected.

Proof. Suppose that X is not semilocally simply connected at x and h(x) 6= x .
Then we would be able to find an ε > 0 such that the balls BR2

ε (x) and BR2

ε (h(x))
are disjoint and SX

ε (x)( SR2

ε (x). This implies that SX
ε (x) is the disjoint union of

closed intervals.
Since any loop is freely homotopic to its image under h, any sufficiently small

loop in B X
ε (x) can be homotoped into B X

ε (h(x)). However, any map of an annulus
which takes one boundary component into B X

ε (x) and the other into B X
ε (h(x))

can be cut along SX
ε (x) to construct a nullhomotopy of the boundary loops. The

details for the cutting procedure are analogous to the proof of the claim on page 47.
Thus any sufficiently small loop in Bε(x) must be nullhomotopic. However this
contradicts the assumption that X is not semilocally simply connected at x . �

Cannon, Conner, and Zastrow showed that S1 is not homotopy equivalent to any
one-dimensional Peano continuum. We can now use Theorem 2.7 to show even
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more, that the fundamental group of S1 is not one-dimensional in the following
sense.

Theorem 2.10. For any s0 ∈ S, the fundamental group π1(Si , s0) is not isomorphic
to the fundamental group of any one-dimensional Peano continuum.

Proof. Suppose that there exists X a one-dimensional Peano continuum such that
π1(X, x0) is isomorphic to π1(Si , s0). By Theorem 2.7, there exists a continuous
map f : Si → X which induces an isomorphism f∗ of fundamental groups.

By applying Theorem 2.1 to the homomorphism f −1
∗

, we can find a map g :
X→ Si such that g ◦ f ◦β is freely homotopic to β for every loop β based at x0.
(Note that β might not be homotopic to g ◦ f ◦β relative to endpoints.)

Since Si is obtained by only adding finitely many discs, every neighborhood of
every point in S contains a loop which is essential in Si . Thus g ◦ f must fix S by
Lemma 2.9.

Let Dk be a square which was filled in the construction of Si . Since f maps
∂Dk to a nullhomotopic loop in a one-dimensional space, the map f must identify
two distinct points x, y on the boundary of Dk . However this is a contradiction
since ∂Dk ⊂ S. �

Corollary 2.11. For any s0 ∈ S and any pair of distinct natural numbers i and j ,
the groups π1(Si , s0) and π1(S j , s0) are not isomorphic.

Proof. We will assume that i > j and proceed by way of contradiction. As in
the proof of Theorem 2.10, we may assume that there are maps f : Si → S j and
g : S j → Si such that g ◦ f ◦β is freely homotopic to β for any loop β based at s0.
As before, g ◦ f must fix S.

Let Dk be a square which was filled in the construction of Si . Notice that ∂Dk

must map to a simple closed curve which is nullhomotopic in S j ( f |S must be
injective). Hence it must map to the boundary of a square which was filled in the
construction of S j . (A simple closed curve α in the plane is nullhomotopic if and
only if the bounded component of R2

\ imα is simply connected.) Since i > j ,
f must map two boundary circles to the same boundary circle which contradicts
that fact that f restricted to S must be injective. �

We will now show how to extend Corollary 2.11 to certain nice fillings of S.

Definition 2.12. Let A⊂N. We will use B(SA) to denote the set of points at which
SA is not semilocally simply connected. Let K (SA) be the set of accumulation
points of {Dn | n ∈ A}, i.e.,

K (SA)=
{

x ∈ S | {n ∈ A | Dn ⊂ Br (x)} is infinite for every r > 0
}
.

We will say that SA is a discrete filling of S if cl(Dn)∩K (SA)=∅ for all n ∈ A.
We will say that Y is sparse in S if Y ⊂Nδ(S \ Y ) for every δ > 0.



HOMOMORPHISMS OF FUNDAMENTAL GROUPS OF PLANAR CONTINUA 53

Lemma 2.13. If SA is a discrete filling then ∂Dn ⊂ B(SA) for all n ∈ A and
B(SA)= S.

Proof. It is clear that B(SA) ⊂ S. By construction, cl(Dn)∩ cl(Dm) = ∅ for all
n 6= m. For n ∈ A, let εn be the distance from cl(Dn) to K (SA)∪

(⋃
i∈A\{n} Di

)
.

Since cl(Dn)∩ K (SA) = ∅, εn is strictly positive. This implies that Nεn (Dn) is
not simply connected. Even more, B(SA)∩Nεn (Dn) = Nεn (Dn) \ Dn . Thus the
only points of S which might possibly have simply connected neighborhoods in SA

are those in K (SA).
Suppose that x ∈ S∩ K (SA) and let U be a neighborhood of x . We must show

that U is not simply connected. Since x ∈ K (SA), we can find n ∈ A such that
cl(Dn) ⊂ U . Therefore Nε(Dn) ⊂ U for some choice of n ∈ A and 0 < ε ≤ εn

which implies that U is not simply connected since ∂Dn ⊂ B(SA). �

The proof of the following lemma is similar to the proof of Theorem 2.10.

Lemma 2.14. If SA is a discrete filling then π1(SA, s) is not isomorphic to the
fundamental group of a one-dimensional Peano continuum.

Lemma 2.15. Every simply connected subset of S is a sparse subset of S.

Proof. Let Y be a simply connected (not necessarily connected) subset of S. Since
S is one-dimensional, this implies that Y can contain no simply closed curves.
Fix y ∈ Y . Then there exists a sequence of natural numbers in such that ∂Din

converges to y. Since ∂Din cannot be entirely contained in Y , there exists an
xn ∈ ∂Din such that xn ∈ S \ Y . The diameter of ∂Din must converge to 0, thus xn

converges to y and Y ⊂Nδ(S \ Y ) for every δ > 0. �

Lemma 2.16. Let Y be a sparse closed subset of S. Then there exists a subset
A ⊂ N such that SA is a discrete filling of S and K (SA)= Y .

Proof. A subset B of a metric space X is δ-separated if d(x, y)≥ δ for all x, y ∈ B.
A δ-separated subset B of a space X is maximal if X ⊂Nδ(B). It is an exercise to
show that any δ-separated subset of X can be extended to a maximal δ-separated
subset.

Since Y is compact, any δ-separated subset of Y is finite. Let Y1 be a maximal
1-separated subset of Y . Define Yn to be a maximal 1

n -separated subset of Y which
extends Yn−1.

For every y ∈ Yn there exists sy,n ∈ S \Y such that d(sy,n, y)≤ 1/n. Fix δn > 0
such that δn < d(sy,n, Y ) for all y ∈ Yn . Then we may choose i(y, n) ∈ N such
that d(Di(y,n), sy,n)≤ δn/3 and Di(y,n) has side length less than δn/3. This implies
cl(Di(y,n))∩ Y =∅.

Let A = {i(y, n) | n ∈ N and y ∈ Yn}. By constructions K (SA)= Y . Thus SA is
a discrete filling. �
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Proposition 2.17. Suppose that SA, SB are discrete fillings of S. If π1(SA, s0) is
isomorphic to π1(SB, s1), then K (SA) is homeomorphic to K (SB).

Proof. Suppose that SA, SB are discrete fillings of S and π1(SA, s0) is isomorphic
to π1(SB, s1). Since the fundamental group is basepoint invariant, we may assume
that s0 = s1 ∈ S.

Using Theorem 2.7 and Lemma 2.9, we can find maps f : SA → SB and
g : SB → SA such that both g ◦ f and f ◦ g are the identity on S. (For discrete
fillings B(SA)= S by Lemma 2.13.) For n ∈ A, the loop ∂Dn is a nullhomotopic
simple closed curve in S ⊂ SA which implies that f (∂Dn) is a nullhomotopic
simple closed curve in SB . (A simple closed curve α in the plane is nullhomotopic
if and only if the bounded component of R2

\ imα is simply connected.) Thus
f (∂Dn)= Dm for some m ∈ B.

Thus f (K (SA))⊂ K (SB). We can similarly show g(K (SB))⊂ K (SA). Since
K (SA), K (SB)⊂ S and g◦ f is the identity on S, it follows K (SA) is homeomorphic
to K (SB). �

Theorem 2.18. There exists an uncountable family of planar Peano continua whose
fundamental groups are pairwise nonisomorphic and also not isomorphic to the
fundamental group of any one-dimensional Peano continuum.

Proof. Let {U1,U2, . . .} be a countable set of disjoint open subsets of (0, 1)× (0, 1)
such that Ui converges to a point. In each Ui we can find a subset X i such that
X i ⊂ S and X i is homeomorphic to the wedge of i closed intervals. Note that
Sierpinski [1916] showed that any one-dimensional planar continuum embeds into S.
Since every open set of S contains a scaled copy of S, it is always possible to find
X i in Ui ∩ S.

For every A⊂N, let X A= cl
(⋃

i∈A X i
)

which is simply connected. It is a trivial
exercise to show that X A is homeomorphic to X B if and only if A = B.

Notice that for any A⊂N, X A is sparse. Thus for A⊂N, we may choose Ã⊂N

such that K (SÃ)= X A. The corollary then follows from Proposition 2.17. �
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Part I. Introduction and background material

1. Introduction

Let M be a compact connected orientable 3-manifold and K ⊂M a knot. K is called
admissible if g(E(K )) > g(M) and inadmissible otherwise (throughout this paper
E( · ) denotes knot exterior and g( · ) denotes the Heegaard genus; see Section 2 for
these and other basic definitions). Let nK denote the connected sum of n copies
of K . In [Kobayashi and Rieck 2006b] we defined the growth rate of the tunnel
number of K to be:

grt(K )= lim sup
n→∞

g(E(nK ))− ng(E(K ))+ n− 1
n− 1

.

The main result of [Kobayashi and Rieck 2006b] shows that if K is admissible then
grt(K ) < 1, and grt(K )= 1 otherwise. This concept was the key to constructing
a counterexample to Morimoto’s conjecture [Kobayashi and Rieck 2008; 2009].
Unless explicitly stated otherwise, all knots considered are assumed to be admissible
(note that this is always the case for knots in the 3-sphere S3).

In this paper we continue our investigation of the growth rate of the tunnel
number. In Part II we give an upper bound on the growth rate of admissible knots
(this is an improvement of the bound given in [Kobayashi and Rieck 2006b]), and
in Part III we obtain a lower bound on the growth rate of admissible m-small knots
(a knot is called m-small if its meridian is not a boundary slope of an essential
surface). With this we obtain an exact calculation of the growth rate of m-small
knots. Before stating this result we define the following notation that will be used
extensively throughout the paper:

Notation 1.1. Let K ⊂ M be an admissible knot. We denote g(E(K ))− g(M) by
g and for i = 1, . . . , g we denote the bridge index of K with respect to Heegaard
surfaces of genus g(E(K ))− i by b∗i . That is, b∗i is the minimal integer so that K
admits a b∗i bridge position with respect to some Heegaard surface of M of genus
g(E(K ))− i ; we call such a decomposition a (g(E(K ))− i, b∗i ) decomposition.
Note that for a knot K ⊂ S3 we have that g = g(E(K )), b∗g(K ) is the bridge index
of K , and b∗g−1(K ) is the torus bridge index of K .

We note that, for any knot K ⊂ M , b∗i forms an increasing sequence of positive
integers: 0< b∗1 < · · ·< b∗g. To see this, fix i ≥ 1 and let 6 be a Heegaard surface
that realizes the bridge index b∗i , that is, 6 is a genus g(E(K )) − i Heegaard
surface for M with respect to which K has bridge index b∗i . By tubing 6 once
(see Definition 5.3) we obtain a Heegaard surface of genus g(E(K ))− (i − 1)
that realizes a (g(E(K ))− (i − 1), b∗i − 1) decomposition for K . This shows that
b∗i−1 ≤ b∗i − 1.

We are now ready to state the following theorem:
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Theorem 1.2. Let M be a compact connected orientable 3-manifold and K ⊂ M
be an admissible knot. Then grt(K )≤mini=1,...,g

{
1− i/b∗i

}
. If , in addition, K is

m-small then equality holds:

grt (K )= min
i=1,...,g

{
1− i

b∗i

}
.

Moreover, for m-small knots the limit of 1
n−1(g(E(nK ))−ng(E(K ))+n−1) exists.

Remark 1.3. Let X be a manifold whose boundary ∂X is a single torus. By
Hatcher [1982], only finitely many slopes on ∂X are boundary slopes of an essential
surface. Let M be a manifold obtained by filling any slope not in this finite set, and
K ⊂ M be the core of the attached solid torus. By construction, K is an m-small
knot; this shows that m-small knots are very common indeed.

As noted in Notation 1.1, the indices b∗i form an increasing series of positive
integers. It follows that b∗i ≥ i ; moreover, b∗i = i implies that b∗1 = 1. Applying
this to an index i that realizes that the equality grt(K ) = 1− i/b∗i we obtain the
following simple and useful consequence of Theorem 1.2 that strengthens the main
result of [Kobayashi and Rieck 2006b] in the case of m-small knots:

Corollary 1.4. If K ⊂ M is an admissible m-small knot, then

0≤ grt(K ) < 1.

Moreover, gr(K )= 0 if and only if b∗1 = 1.

There are several results about the spectrum of the growth rate and we summarize
them here. It is well known that there exist manifolds M that admit minimal genus
Heegaard splittings 6 of genus at least 2 and of Hempel distance at least 3. We
fix such M and 6 and for simplicity we assume that M is closed. Let C be a
handlebody obtained by cutting M along 6 and K a core of C , that is, K is a core
of a solid torus obtained by cutting C along appropriately chosen meridian disks.
Then 6 is a Heegaard surface for E(K ); it follows that K is inadmissible. Clearly,
the Hempel distance does not go down after drilling K . Hence the Hempel distance
of6⊂ E(K ) is at least 3. It is a well known consequence of the Thurston–Perelman
geometrization theorem that manifolds that admit a Heegaard surface of genus at
least 2 and Hempel distance at least 3 are hyperbolic. Thus K ⊂ M is a hyperbolic
knot in a hyperbolic manifold. As mentioned above, the growth rate of inadmissible
knots is 1. This proves the existence of hyperbolic knots in hyperbolic manifolds
with growth rate 1. It was shown in [Kobayashi and Rieck 2006b] that torus knots
and 2-bridge knots have growth rate 0. Kobayashi and Saito [2010] constructed
knots with growth rate −1

2 . Theorem 1.2 enables us to calculate the growth rate of
the knots constructed by Morimoto, Sakuma and Yokota in [Morimoto et al. 1996]
(perhaps with finitely many exceptions), which we denote by KMSY. We explain
this here. The knots KMSY enjoy the following properties:
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(1) KMSY are hyperbolic and m-small: this was announced by Morimoto [2008].

(2) g(E(KMSY))= 2: this was proved in [Morimoto et al. 1996].

(3) b∗1(KMSY)= 2 (in other words, the torus bridge index of KMSY is 2): it was
shown in [Morimoto et al. 1996] that b∗1 > 1, and it is easy to observe that
b∗1 ≤ 2 (see, for example, [Kobayashi and Rieck 2006b]).

(4) b∗2(KMSY)≥ 4 (in other words, the bridge index of KMSY is at least 4): since
b∗2(KMSY)> b∗1(KMSY), we only need to exclude the possibility b∗2(KMSY)= 3.
Assume for a contradiction that b∗2(KMSY)= 3. Then KMSY is a 3-bridge knot
of tunnel number 1. Kim [2005] proved that every 3-bridge knot of tunnel
number 1 has torus bridge index 1, contradicting the previous point. We note
that R. Bowman, S. Taylor and A. Zupan [Bowman et al. 2015] showed that
b∗2(KMSY)= 7 for all but finitely many of the knots KMSY (see Remark 1.7).

Using these facts, Theorem 1.2 implies that grt(KMSY) =
1
2 . This is the first

example of knots with growth rate in the open interval (0, 1) and provides a partial
answer to questions posed in [Kobayashi and Rieck 2006b]. In summary we have
the following; we emphasize that only (4) is new:

Corollary 1.5.

(1) There exist hyperbolic knots in hyperbolic manifolds with growth rate 1.

(2) There exist hyperbolic knots in S3 with growth rate 0.

(3) There exist knots in S3 with growth rate − 1
2 .

(4) There exist hyperbolic knots in S3 with growth rate 1
2 .

Remark 1.6. In joint work with K. Baker [Baker et al. 2016], we use Theorem 1.2 to
show that for any ε >0 there exists a hyperbolic knot K ⊂ S3 with 1−ε <grt(K )<1.
This implies, in particular, that the spectrum of the growth rate is infinite.

Remark 1.7. We take this opportunity to mention a few recent results about b∗i
that appeared since we first started writing this paper; for precise statements see
references.

(1) Given positive integers gM < i ≤ gK and n, K. Ichihara and T. Saito [2013]
constructed manifolds M and knots K ⊂M so that g(M)=gM , g(E(K ))=gK ,
and b∗i (K )− b∗i−1(K ) ≥ 2 (see [Ichihara and Saito 2013, Corollary 2]; the
notation there is different from ours); their arguments can easily be applied to
construct knots such that b∗i (K )− b∗i−1(K ) ≥ n (informally, we may phrase
this as an arbitrarily large gap).

(2) Zupan [2014] studied the bridge indices of iterated torus knots showing, in
particular, that there exist iterated torus knots realizing arbitrarily large gaps
between b∗i−1 and b∗i for any i in the range where both indices are defined.
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An easy argument shows that iterated torus knots are m-small; every knot K
considered by Zupan fulfills b∗1(K )= 1, and so has gr(K )= 0 by Corollary 1.4.

(3) Bowman, Taylor, and Zupan [2015] calculated the bridge indices of generic
iterated torus knots (see [Bowman et al. 2015] for definitions). They gave
conditions on the parameters that imply that b∗g = p, where here the knot
considered is obtained by twisting the torus knot Tp,q , p < q. (We note that
for the twisted torus knot g = 2). Applying this to KMSY we see that all but
finitely many of these knots have b∗2 = 7, improving on our estimate b∗2 ≥ 4.
We remark that in [Bowman et al. 2015] a linear lower bound on b∗1 was also
obtained, showing that many twisted torus knots have a gap between b∗1 and b∗2;
since b∗2 can be made arbitrarily large, this can be seen as a second gap.

Before describing the structure and contents of this paper in more detail we
introduce some necessary concepts. Let 6 be a Heegaard surface of a compact
3-manifold M , and A an essential annulus properly embedded in M . The annulus A
is called a Haken annulus for 6 (Definition 4.1) if it intersects 6 in a single simple
closed curve that is essential in A. For an integer c ≥ 0, the manifold obtained
by drilling c curves simultaneously parallel to meridians of K out of E(K ) is
denoted by E(K )(c) (note that E(K )(0)= E(K )). The c tori ∂E(K )(c) \∂E(K ) are
denoted by T1, . . . , Tc. There are c annuli properly embedded disjointly in E(K )(c),
denoted by A1, . . . , Ac, so that one component of ∂Ai is a meridian on ∂E(K )
and the other is a longitude of Ti (i = 1, . . . , c). (We note that in general these
annuli are not uniquely determined up to isotopy.) Annuli with these properties
are called a complete system of Hopf annuli (Definition 5.1). Let 6 be a Heegaard
surface for E(K )(c). The Hopf annuli A1, . . . , Ac are called a complete system of
Hopf–Haken Annuli for 6 (Definition 5.2) if 6∩ Ai is a single simple closed curve
that is essential in Ai (i = 1, . . . , c).

Part II starts with Section 4 where we describe basic behavior of Haken annuli
under amalgamation. In Section 5 we consider (g′, b) decomposition of K (that
is, b-bridge decomposition of K with respect to a genus g′ Heegaard surface) and
relate it to existence of Hopf–Haken Annuli. Specifically, we prove that K admits a
(g(E(K ))−c, c) decomposition if and only if E(K )(c) admits a complete system of
Hopf–Haken Annuli for some Heegaard surface of genus g(E(K )) (Theorem 5.4).

In Section 6 we prove that given knots K1, . . . , Kn and integers c1, . . . , cn ≥ 0
with

∑n
i=1 ci = n − 1, E(K1# · · · #Kn) admits a system of n − 1 essential tori

T (called swallow follow tori) so that the components of E(K1# · · · #Kn) cut
open along T are homeomorphic to E(K1)

(c1), . . . , E(Kn)
(cn). By amalgamating

Heegaard surfaces of E(K1)
(c1), . . . , E(Kn)

(cn) along the tori of T we obtain a
Heegaard surface for E(K1# · · · #Kn); this implies this special case of Corollary 6.4:

g(E(K1# · · · #Kn))≤
∑n

i=1
g(E(Ki )

(ci ))− (n− 1).
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In the final section of Part II, Section 7, we combine these facts to prove that for
each i we have:

grt(K )≤ 1− i/b∗i .

Thus we obtain the upper bound stated in Theorem 1.2.
To some degree, Part III complements Part II. We begin with Section 8 that comple-
ments Sections 4 and 5. As mentioned above, in Sections 4 and 5 we prove that K
admits a (g(E(K ))− c, c) decomposition if and only if E(K )(c) admits a complete
system of Hopf–Haken Annuli for some Heegaard surface of genus g(E(K )). We
are now ready to state the strong Hopf–Haken annulus theorem, which generalizes
the Hopf–Haken annulus theorem (Theorem 6.3 of [Kobayashi and Rieck 2006a]),
and is one of the highlights of this work. The proof is given in Section 8. For the
definition of a Heegaard splitting of (N ; F1, F2) (where N is a manifold and F1,
F2 are partitions of some of the components of ∂N ), see Section 2 .

Theorem 1.8 (Strong Hopf–Haken annulus theorem). For i = 1, . . . , n, let Mi be
a compact connected orientable 3-manifold and Ki ⊂ Mi be a knot. Suppose that
E(Ki ) 6∼= T 2

× I , that E(Ki ) is irreducible, and that ∂N (Ki ) is incompressible
in E(Ki ). Let F1, F2 be a partition of some of the components of ∂M , where
M = # n

i=1 Mi . Let c ≥ 0 be an integer. Then one of the following holds:

(1) There exists a minimal genus Heegaard surface for (E(# n
i=1Ki )

(c)
; F1, F2)

admitting a complete system of Hopf–Haken annuli.

(2) For some 1 ≤ i ≤ n, E(Ki ) admits an essential meridional surface S with
χ(S)≥ 6− 2g(E(# n

i=1Ki )
(c)
; F1, F2).

One curious consequence of Theorem 1.8 (which is proved in Section 8) is the
following, where b∗g is as in Notation 1.1:

Corollary 1.9. Let K ⊂ S3 be a connected sum of n ≥ 1 m-small knots. Then
for c ≥ b∗g,

g(E(K )(c))= c.

Section 9 complements Section 6. Recall that in Section 6 we used swallow
follow tori to show that given any collection of integers c1, . . . , cn ≥ 0 whose
sum is n− 1 we have that g(E(K1# · · · #Kn)) ≤

∑n
i=1 g(E(Ki )

(ci ))− (n− 1). In
Section 9 we prove that if Ki is m-small for each i , then any Heegaard splitting
for E(K1# · · · #Kn) admits an iterated weak reduction to n− 1 swallow follow tori.
This implies that any minimal genus Heegaard splitting admits an iterated weak
reduction to some n − 1 swallow follow tori that decompose E(K1# · · · #Kn) as
E(K1)

(c1), . . . , E(Kn)
(cn), giving some integers c1, . . . , cn ≥ 0 whose sum is n−1.

The integers c1, . . . , cn are very special (see Example 9.3).
In Section 10, which complements Section 7, we combine these results to give a

lower bound on the growth rate of the tunnel number of m-small knots. Given K ,
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we “expect” that g(E(K )(c)) = g(E(K ))+ c; so we define the function fK that
measures to what extent g(E(K )(c)) fails to behave “as expected”:

fK (c)= g(E(K ))+ c− g(E(K )(c)).

For any knot K and any integer c ≥ 0, we show that fK fulfills

fK (0)= 0 and fK (c)≤ fK (c+ 1)≤ fK (c)+ 1.

We study fK for m-small knots, calculating it exactly in terms of the bridge
indices of K (Proposition 10.4). In particular, for m-small knots, fK is bounded.
In fact, for large enough c, Proposition 10.4 implies

fK (c)= g(E(K ))− g(M).

We do not know much about the behavior of fK in general; for example, we do not
know if there exists a knot for which fK is unbounded (see Question 10.5).

We express the growth rate of tunnel number of m-small knots in terms of fK

by showing (Corollary 10.3) that

g(E(nK ))− ng(E(K ))+ n− 1
n− 1

= 1−
max

{∑n
i=1 fK (ci )

}
n− 1

,

where the maximum is taken over all collections of integers c1, . . . , cn ≥ 0 whose
sum is n − 1. The growth rate is then the limit superior of this sequence. We
combine this interpretation of the growth rate with the calculation of fK to obtain
the exact calculation of the growth rate of m-small knots stated in Theorem 1.2.

2. Preliminaries

By manifold we mean a smooth 3-dimensional manifold. All manifolds considered
are assumed to be connected orientable and compact. We assume the reader is famil-
iar with the basic terms of 3-manifold topology (see, for example, [Schultens 2014;
Jaco 1980; Hempel 1976]). Thus we assume the reader is familiar with terms such
as compression, boundary compression, boundary parallel, and essential surface.

We use the notation ∂ , cl, and int to denote boundary, closure, and interior,
respectively. For a submanifold H of a manifold M , N (H,M) denotes a closed
regular neighborhood of H in M . When M is understood from context we often
abbreviate N (H,M) to N (H).

By a knot K in a 3-manifold M we mean a smooth embedding of S1 into M ,
taken up to ambient isotopy. E(K ), the exterior of K , is cl(M \ N (K )). The
slope on the torus ∂E(K ) \ ∂M = ∂N (K ) that bounds a disk in N (K ) is called
the meridian of K . A knot K is called m-small if there is no essential meridional
surface in E(K ), that is, there is no essential surface S ⊂ E(K ) with nonempty
boundary so that ∂S consists of meridians of K .
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We assume the reader is familiar with the basic terms regarding Heegaard split-
tings, such as handlebody, compression body, meridian disk, etc. Recall that a
compression body C is a connected 3-manifold obtained from F ×[0, 1] (where
here F is a possibly empty disjoint union of closed surfaces) and a (possibly empty)
collection of 3-balls by attaching 1-handles to F×{1} and the boundary of the balls.
Following standard conventions, we refer to F ×{0} as ∂−C and ∂C \ ∂−C as ∂+C .
We use the notation C1 ∪6 C2 for the Heegaard splitting given by the compression
bodies C1 and C2. The basic concepts of reductions of a Heegaard splitting are
summarized here:

Definitions 2.1. (1) A Heegaard splitting C1 ∪6 C2 is called stabilized if there
exist meridian disks D1 ⊂ C1 and D2 ⊂ C2 such that ∂D1 intersects ∂D2

transversely (as submanifolds of 6) in one point. Otherwise, the Heegaard
splitting is called nonstabilized.

(2) A Heegaard splitting C1∪6 C2 is called reducible if there exist meridian disks
D1⊂C1 and D2⊂C2 such that ∂D1= ∂D2. Otherwise, the Heegaard splitting
is called irreducible.

(3) A Heegaard splitting C1∪6C2 is called weakly reducible if there exist meridian
disks D1⊂C1 and D2⊂C2 such that ∂D1∩∂D2=∅. Otherwise the splitting
is called strongly irreducible.

(4) A Heegaard splitting C1 ∪6 C2 is called trivial if C1 or C2 is a trivial com-
pression body, that is, a compression body with no 1-handles. Otherwise the
Heegaard splitting is called nontrivial.

Let C1 ∪6 C2 be a weakly reducible Heegaard splitting of a manifold M . Let
1i ⊂Ci be a non empty set of disjoint meridian disks so that11∩12=∅. By weak
reduction along 11 ∪12 we mean the (possibly disconnected) surface obtained
by first compressing 6 along 11 ∪12, and then removing any component that is
contained in C1 or C2. Casson and Gordon [1987] showed that if an irreducible
Heegaard splitting is weakly reducible, then an appropriately chosen weak reduction
yields a (possibly disconnected) essential surface, say, F.

With F as in the previous paragraph, let M1, . . . ,Mk be the components of M
cut open along F. It is well known that 6 induces a Heegaard surface on each Mi ,
say, 6i . We say that 6 is obtained by amalgamating 61, . . . , 6k . This is a special
case of amalgamation; the general definition will be given below as the converse of
iterated weak reduction. The genus after amalgamation is given in the following
lemma; see Remark 2.7 of [Schultens 1993] for the case m = 1 (we leave the proof
of the general case to the reader):

Lemma 2.2. Let C1 ∪6 C2 be a weakly reducible Heegaard splitting and suppose
that after weak reduction we obtain F (as above). Suppose that M cut open along
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F consists of two components, and denote the induced Heegaard splittings by
C (1)

1 ∪61 C (1)
2 and C (2)

1 ∪62 C (2)
2 . Let F1, . . . , Fm be the components of F. Then,

g(6)= g(61)+ g(62)−

m∑
i=1

g(Fi )+ (m− 1).

In particular, if F is connected then g(6)= g(61)+ g(62)− g(F).

It is distinctly possible that not all the Heegaard splittings induced by weak
reduction are strongly irreducible. When that happens we may weakly reduce some
(possibly all) of the induced Heegaard splittings, and repeat this process. We refer
to this as repeated or iterated weak reduction. The converse is called amalgamation.
Scharlemann and Thompson [1994] proved that any Heegaard splitting admits a
repeated weak reduction so that the induced Heegaard splittings are all strongly
irreducible; we refer to this as untelescoping.

Let N be a manifold and {F1, F2} be a partition of some components of ∂N .
Note that we do not require every component of ∂N to be in F1 or F2. We say
that C1 ∪6 C2 is a Heegaard splitting of (N ; F1, F2) if F1 ⊂ ∂−C1 and F2 ⊂ ∂−C2.
We extend the terminology of Heegaard splittings to this context, so, for example,
g(N ; F1, F2) is the genus of a minimal genus Heegaard splitting of (N ; F1, F2).

The following proposition allows us, in some cases, to consider weak reduction
instead of iterated weak reduction. The proof is simple and left to the reader.

Proposition 2.3. Let F be a component of the surface obtained by repeated weak
reduction of C1 ∪61 C2. If F is separating, then some weak reduction of C1 ∪61 C2

yields exactly F.

3. Relative Heegaard surfaces

In this section we study relative Heegaard surfaces. The results of this section will
be used in Section 8 and the reader may postpone reading it until that section. Let
b ≥ 1 be an integer and T be a torus. For 1 ≤ i ≤ 2b, let Ai ⊂ T be an annulus.
We say that {A1, . . . , A2b} gives a decomposition of T into annuli (or simply a
decomposition of T ) if the following two conditions hold:

(1)
⋃2b

i=1 Ai = T , and

(2) (a) If b > 1, then Ai ∩ A j =∅ whenever i 6= j are nonconsecutive integers
(modulo 2b), and Ai ∩ Ai+1= ∂Ai ∩∂Ai+1 is a single simple closed curve.

(b) If b = 1, then A1 ∩ A2 = ∂A1 = ∂A2.

We begin by defining a relative Heegaard surface; note that the definition can be made
more general by considering an arbitrary collection of boundary components (below
we only consider a single torus) and a decomposition into arbitrary subsurfaces
(below we only consider annuli); however Definition 3.1 suffices for our purposes:
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Definition 3.1 (relative Heegaard surface). Let M be a compact connected ori-
entable 3-manifold and T a torus component of ∂M . Let {A1, . . . , A2b} be a
decomposition of T into annuli. A compact surface S ⊂ M is called a Heegaard
surface for M relative to {A1, . . . , A2b} (or simply a relative Heegaard surface,
when no confusion may arise) if the following conditions hold:

(1) ∂S =
⋃2b

i=1 ∂Ai .

(2) M cut open along S consists of two components (say, C1 and C2).

(3) For i = 1, 2, Ci admits a set of compressing disks 1i with ∂1i ⊂ S, so that
Ci compressed along 1i consists of

(a) exactly b solid tori, each containing exactly one Ai as a longitudinal
annulus;

(b) a (possibly empty) collection of collar neighborhoods of components
of ∂M \ T ;

(c) a (possibly empty) collection of balls.

The genus of a minimal genus relative Heegaard surface is called the relative genus.

For an integer c ≥ 1, let Q(c) be (an annulus with c holes)×S1. (To avoid
confusion we remark that Q(c) can be described as (a sphere with c+ 2 holes)×S1,
but in the context of this paper an annulus is more natural.) Note that Q(c) admits
a unique Seifert fibration. Our goal is to calculate the genus of Q(c) relative to a
given decomposition of a component of ∂Q(c) into annuli. We say that slopes β
and γ of a torus are complementary if they are represented by simple closed curves
that intersect each other transversely once.

Proposition 3.2. Let {A1, . . . , A2b} be a decomposition of a component of ∂Q(c)

(say, T ) into annuli, and denote the slope defined by these annuli by β. Denote the
slope defined by the Seifert fibers on T by γ . Then,

(1) when β and γ are complementary slopes, the genus of Q(c) relative to
{A1,...,A2b} is c;

(2) when β and γ are not complementary slopes, the genus of Q(c) relative to
{A1,...,A2b} is c+ 1.

We immediately obtain:

Corollary 3.3. The surfaces in Figure 1 are minimal genus Heegaard splittings
for Q(c) relative to {A1, . . . , A2b}; Figure 1 (left) is of complementary slopes and
Figure 1 (right) is of noncomplementary slopes.

We postpone the proof of Proposition 3.2 to the end of this section, as it will
be an application of the next proposition which is of independent interest. We fix
the following notation: glue Q(b) to Q(c) along a single boundary component and



THE GROWTH RATE OF THE TUNNEL NUMBER OF m-SMALL KNOTS 67

Figure 1. Relative Heegaard surfaces.

denote the slope of the Seifert fiber of Q(b) on the torus Q(b)
∩ Q(c) by β and the

slope of the Seifert fiber of Q(c) by γ . The manifold obtained is denoted Q(b,c)
β,γ .

Proposition 3.4. The genus of Q(b,c)
β,γ satisfies the following:

(1) If β and γ are complementary slopes, then g(Q(b,c)
β,γ )= b+ c.

(2) If β and γ are not complementary slopes, then g(Q(b,c)
β,γ )= b+ c+ 1.

We immediately obtain:

Corollary 3.5. The surfaces in Figure 2 (left) and in Figure 2 (right) are minimal
genus Heegaard splittings for Q(b,c)

β,γ corresponding to (1) and (2) of Proposition 3.4,
respectively.

A surface in a Seifert fibered space is called vertical if it is everywhere tangent
to the fibers and horizontal if it is everywhere transverse to the fibers. It is well
known that given an essential surface in a Seifert fibered space we may assume it is
vertical or horizontal; see, for example, [Jaco 1980].

Proof of Proposition 3.4. The surfaces in Figure 2 are Heegaard surfaces for Q(b,c)
β,γ ,

showing the following, which we record here for future reference:

Remark 3.6. When β and γ are complementary, g(Q(b,c)
β,γ )≤ b+ c. When β and

γ are not complementary, g(Q(b,c)
β,γ )≤ b+ c+ 1.

Hence we only need to show that when β and γ are complementary, g(Q(b,c)
β,γ )≥

b+ c and when β and γ are not complementary, g(Q(b,c)
β,γ )≥ b+ c+ 1.

If β = γ then Q(b,c)
β,γ is a (b+ c)-times punctured annulus cross S1 and the result

was proved by Schultens [1993]. For the remainder of the proof we assume that
β 6= γ . Then Q(b,c)

β,γ is a graph manifold whose underlying graph consists of two
vertices connected by a single edge. We apply [Schultens 2004, Theorem 1.1]
and refer the reader to that paper for notation and details. Following Schultens’
notation, we decompose Q(b,c)

β,γ along two parallel copies of Q(b)
∩Q(c) as Q(b,c)

β,γ =

Qb ∪ Me ∪ Qc. Qb and Qc are called the vertex manifolds and Me is the edge
manifold. Note that Qb ∼= Q(b), Me ∼= T 2

×[0, 1], and Qc ∼= Q(c).
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Figure 2. Heegaard surfaces for Q(b,c)
β,γ .

Let S be a minimal genus Heegaard splitting for Q(b,c)
β,γ . In the following claim we

analyze completely what happens when g(S)= 2 or when S is strongly irreducible:

Claim 3.7. The following three conditions are equivalent:

(1) S is strongly irreducible.

(2) β and γ are complementary, g(S)= 2, and b = c = 1.

(3) g(S)= 2.

Proof of Claim 3.7. (1) implies (2). Suppose that S is strongly irreducible. By
[Schultens 2004] we may assume that S is standard. In particular, S ∩ Qb (respec-
tively, S ∩ Qc) is either horizontal, pseudohorizontal, vertical, or pseudovertical.
However, the first two cases are impossible as they require S to meet every boundary
component of Qb (respectively, Qc). Hence S ∩ Qb and S ∩ Qc consist of vertical
or pseudovertical components. In particular, the intersection of S with the torus
Qb ∩Me (respectively, Qc ∩Me) is a Seifert fiber of Qb (respectively, Qc).

Assume first that S∩Me is as in [Schultens 2004, Theorem 1.1(1)], that is, S∩Me

is obtained from a collection of incompressible annuli, say, A, by tubing along
at most one boundary parallel arc (in [Schultens 2004], tubings are referred to as
1-surgery). Suppose that A consists of boundary parallel annuli. Since the tubing
is performed, if at all, along a boundary parallel arc, we see that no component
of S ∩ Me connects the components of ∂Me. This contradicts the fact that S is
connected and must meet both Qb and Qc. Hence some component of A meets
both components of ∂Me, showing that β = γ , contradicting our assumption.

Hence [Schultens 2004, Theorem 1.1(2)] holds, and S ∩Me consists of a single
component that is obtained by tubing together two boundary parallel annuli, one at
each boundary component of Me; moreover, [Schultens 2004, Theorem 1.1] shows
that these annuli define complementary slopes. See Figure 3 (left). As argued above,
the slopes defined by these annuli are β and γ . This gives the first condition of (2).

On the right side of Figure 3 we see two surfaces. One is S ∩ Me, and in its
center we marked the boundary of the obvious compressing disk. It is easy to see
that the other surface is isotopic to S ∩Me. On it we marked the boundary of four
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Figure 3. Heegaard surfaces in Me.

disks, each shaped like a 90o sector. After gluing opposite sides of the cube to Me,
these sectors form a compressing disk on the opposite side of the obvious disk. This
demonstrates that S ∩Me compresses into both sides. If S ∩ Qb is pseudovertical
then it compresses, and together with one of the compressing disks for S ∩Me we
obtain a weak reduction, contradicting our assumption. Hence S ∩ Qb consists of
annuli; similarly, S ∩ Qc consists of annuli. Hence,

χ(S)= χ(S ∩Me)=−2.

The second condition of (2) follows.
Since g(S)= 2, ∂Q(b,c)

β,γ consists of at most four tori. On the other hand, ∂Q(b,c)
β,γ

consists of b+ c+ 2 tori, for b, c ≥ 1. Hence b = c = 1, fulfilling the third and
final condition of (2). This completes the proof that (1) implies (2).

It is trivial that (2) implies (3).
To see that (3) implies (1), assume that S weakly reduces. Since S is a minimal

genus Heegaard surface and g(S) = 2, an appropriate weak reduction yields an
essential sphere, which contradicts the fact that Q(b,c)

β,γ is irreducible.
This completes the proof of Claim 3.7. �

If S is strongly irreducible, Proposition 3.4 follows from Claim 3.7. For the
reminder of the proof we assume, as we may, that S weakly reduces to a (possibly
disconnected) essential surface, say, F. By the construction of Q(b,c)

β,γ we see that
every component of F separates; hence by Proposition 2.3 we may assume that F
is connected. Recall that we assumed that β 6= γ . This clearly implies that we may
suppose that (after isotopy if necessary) F is disjoint from the torus Q(b)

∩ Q(c);
without loss of generality we assume that F ⊂ Q(b).

We induct on b+ c.

Base case: b+ c = 2. Note that in the base case b = c = 1. It is easy to see that
the only connected essential surface in Q(1,1)

β,γ is the torus Q(b)
∩ Q(c). Hence F is

isotopic to this surface and the weak reduction induces Heegaard splittings 6b and
6c on Q(b) and Q(c), respectively; note that both Q(b) and Q(c) are homeomorphic
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to Q(1). By Schultens [1993], g(Q(1))= 2. By Lemma 2.2, amalgamation gives

g(Q(1,1)
β,γ )=g(S)=g(6b)+g(6c)−g(F)≥g(Q(1))+g(Q(1))−g(F)=2+2−1=3.

By Remark 3.6, if β and γ are complementary slopes then g(Q(1,1)
β,γ )≤ 2; hence β

and γ are not complementary slopes and together with Remark 3.6 the proposition
follows in this case.

Inductive case: b+ c > 2. Assume, by induction, that the proposition holds for
any integers b′, c′ > 0, with b′+ c′ < b+ c.

Case One: F is isotopic to Q(b)
∩ Q(c). Then weak reduction induces Heegaard

splittings on Q(b) and Q(c). Similar to the argument above (using that g(Q(b))=b+1
and g(Q(c))= c+ 1 by [Schultens 1993]) we have

g(Q(b,c)
β,γ )≥ g(Q(b))+ g(Q(c))− g(F)= b+ c+ 1.

As in the base case it follows from Remark 3.6 that β and γ are not complementary
slopes. Together with Remark 3.6, the proposition follows in this case.

Case Two: F is not isotopic to Q(b)
∩ Q(c). Then F is essential in Q(b) and

is therefore isotopic to a vertical or horizontal surface. Since F is closed and
∂Q(b)

6=∅, we have that F cannot be horizontal. We conclude that F is a vertical
torus and decomposes Q(b) as Q(b′) (for some b′<b) and a disk with b−b′+1 holes
cross S1. By induction, the genus of Q(b′,c)

β,γ fulfills the conclusion of Proposition 3.4;
by [Schultens 1993], the genus of a disk with b−b′+1 holes cross S1 is b−b′+1,
and similar to the argument above we get

g(Q(b,c)
β,γ )≥ g(Q(b′,c)

β,γ )+ (b− b′+ 1)− 1= g(Q(b′,c)
β,γ )+ b− b′.

Together with Remark 3.6, this completes the proof of Proposition 3.4. �

We are now ready to prove Proposition 3.2:

Proof of Proposition 3.2. The surfaces in Figure 1 are relative Heegaard surfaces
realizing the values given in Proposition 3.2. To complete the proof we only need
to show that these surfaces realize the minimal relative genus.

Let 6 be a minimal genus Heegaard surface for Q(c) relative to {A1, . . . , A2b}.
By tubing ∂6 along the annuli A2i and drilling a curve parallel to the core of
A2i (i = 1, . . . , b; recall Figure 1) we obtain a Heegaard surface for Q(b,c)

β,γ of
genus g(S) + b. Thus g(6)≥ g(Q(b,c)

β,γ )− b. By Proposition 3.4, when β and
γ are complementary g(Q(b,c)

β,γ ) = b+ c and when β and γ are not complemen-
tary g(Q(b,c)

β,γ )= b+ c+ 1. Thus we see that g(6) ≥ c (when the β and γ are
complementary) and g(6)≥ c+ 1 (otherwise).

This completes the proof of Proposition 3.2. �
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Part II. An upper bound on the growth rate of
the tunnel number of knots

4. Haken annuli

A primary tool in our study is the use of Haken annuli. Haken annuli were first
defined in [Kobayashi and Rieck 2006a], where only a single annulus was considered.
We generalize the definition to a collection of annuli below. Note the similarity
between a Haken annulus and a Haken sphere or Haken disk (by a Haken sphere we
mean a sphere that meets a Heegaard surface in a single simple closed curve that is
essential in the Heegaard surface, see [Haken 1968] or [Jaco 1980, Chapter 2], and
by a Haken disk we mean a disk that meets a Heegaard surface in a single simple
closed curve that is essential in the Heegaard surface [Casson and Gordon 1987]).

Definition 4.1. Let C1∪6C2 be a Heegaard splitting of a manifold M . A collection
of essential annuli A⊂ M are called Haken annuli for C1 ∪6 C2 (or simply Haken
annuli, when no confusion may arise) if for every annulus A ∈ A we have that
A∩6 consists of a single simple closed curve that is essential in A.

Remark 4.2. For an integer n ≥ 2, let D(n) be (a disk with n holes)×S1 and
denote the components of ∂D(n) by T0, T1, . . . , Tn . By the construction of minimal
genus Heegaard splittings given in the proof of Proposition 2.14 of [Kobayashi
and Rieck 2006a], we see that for each positive integer p with 1 ≤ p ≤ n there
is a genus n Heegaard surface of (D(n);

⋃p−1
i=0 Ti ,

⋃n
i=p Ti ) which admits a col-

lection {A1, . . . , Ap} of Haken annuli connecting Ti to Tn (i = 0, . . . , p− 1). By
Schultens [1993], we see that this is a minimal genus Heegaard splitting of D(n).
See Figure 4.

In Propositions 3.5 and 3.6 of [Kobayashi and Rieck 2006a] we studied the
behavior of Haken annuli under amalgamation. We generalize these proposi-
tions as Proposition 4.3 below. We first explain the construction that is used
in Proposition 4.3. Let C1 ∪6 C2 be a Heegaard splitting for a manifold M
that weakly reduces to a (possibly disconnected) essential surface F. Suppose
that M cut open along F consists of two components, say, M (i) (i = 1, 2). We

Figure 4. Heegaard surface in D(n).



72 TSUYOSHI KOBAYASHI AND YO’AV RIECK

denote the image of F in M (i) by F (i) and the Heegaard splitting induced on M (i)

by C (i)
1 ∪6(i) C (i)

2 . Suppose there are Haken annuli for C (i)
1 ∪6(i) C (i)

2 , say, A(i),
satisfying these conditions:

• There exists a unique component of A(1), say, A(1), which intersects F (1) in a
single simple closed curve, and other components are disjoint from F (1).

• Each component of A(2) intersects F (2) in a single simple closed curve isotopic
in F to A(1) ∩ F (1).

Then let Ã(1) be a collection of mutually disjoint annuli obtained from A(1) by
substituting A(1) with |A(2)

| parallel copies of A(1) whose boundaries are identified
with A(2)

∩ F (2). Finally, let Ã equal Ã(1)
∪A(2). Note that Ã is a system of

mutually disjoint annuli properly embedded in M . It is easy to adopt the proofs
of Propositions 3.5 and 3.6 of [Kobayashi and Rieck 2006a] and obtain:

Proposition 4.3. Let M , C1 ∪6 C2, and Ã be as above. Then the components of Ã

form Haken annuli for C1 ∪6 C2.

5. Various decompositions of knot exteriors

In this section we compare two structures: Hopf–Haken annuli and (h, b) decom-
positions. After defining the two we prove (Theorem 5.4) that they are equivalent.

Let K be a knot in a 3-manifold M and h ≥ 0, b ≥ 1 be integers. We say that
K admits a (h, b) decomposition (some authors use the term genus h, b-bridge
position) if there exists a genus h Heegaard splitting C1 ∪6 C2 of M such that
K ∩Ci is a collection of b simultaneously boundary parallel arcs (i = 1, 2; note
that in this paper we do not consider (h, 0) decomposition).

Let K be a knot in a compact manifold M . Recall that E(K )(c) is obtained
from E(K ) by removing c curves that are simultaneously isotopic to meridians
of K . The trace of the isotopy forms c annuli which motivates the definition below
(Definitions 5.1 and 5.2 generalize Definition 6.1 of [Kobayashi and Rieck 2006a]):

Definition 5.1 (a complete system of Hopf annuli). Let K ⊂ M be a knot in a
compact manifold and c > 0 be an integer. Let A1, . . . , Ac be annuli disjointly
embedded in E(K )(c) so that for each i , one component of ∂Ai is a meridian of
∂N (K ) and the other is a longitude of Ti (recall T1, . . . , Tc denote the components
of ∂E(K )(c) \ ∂E(K )). Then {A1, . . . , Ac} is called a complete system of Hopf
annuli. We emphasize that the complete system of Haken annuli for E(K )(c) is not
unique up to isotopy.

Definition 5.2 (a complete system of Hopf–Haken annuli). Let K ⊂ M be a knot
in a compact manifold, c > 0 be an integer, 6 be a Heegaard surface for E(K )(c),
and {A1, . . . , Ac} be a complete system of Hopf annuli. {A1, . . . , Ac} is called a
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Figure 5. Tubing a (h− c, c)-decomposition.

complete system of Hopf–Haken annuli for 6 if for each i , 6∩ Ai is a single simple
closed curve that is essential in Ai .

Definition 5.3 (tubing bridge decomposition). Let K ⊂ M be a knot in a compact
manifold, 6 a Heegaard surface for E(K ), and c> 0 an integer. Suppose that there
exists a genus h − c Heegaard surface for M (say, S) so that K is c-bridge with
respect to S, and the surface obtained by tubing S along c arcs of K cut along S on
one side of S is isotopic to 6. Then we say that 6 is obtained by tubing S to one
side (along K ). See Figure 5.

Theorem 5.4. Let M be a compact manifold and K ⊂ M be a knot and suppose
the meridian of K does not bound a disk in E(K ). Let c and h be positive integers.
The following two conditions are equivalent:

(1) K admits an (h− c, c) decomposition.

(2) E(K )(c) admits a genus h Heegaard splitting that admits a complete system of
Hopf–Haken annuli.

Proof. (1) =⇒ (2): Let S ⊂ M be a surface defining a (h − c, c) decomposition.
Then S separates M into two sides, say, “above” and “below”. Pick one, say, above.
Since the arcs of K above S form c boundary parallel arcs (say, α1, . . . , αc), there
are c disjointly embedded disks above K (say, D1, . . . , Dc) so that ∂Di consists
of two arcs, one αi and the other along S (for this proof, see Figure 5). Tubing S
c times along α1, . . . , αc, we obtain a Heegaard surface for E(K ) (say, 6). We
may assume that the tubes are small enough so that they intersect each Di in a
single spanning arc. Denote the compression bodies obtained by cutting E(K )
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along 6 by C1 and C2 with ∂N (K ) ⊂ ∂−C1. Then each Di ∩C2 is a meridional
disk. Let A1, . . . , Ac be c meridional annuli properly embedded in C1 near the
maxima of K . Then

(⋃
i Ai

)
∩∂N (K ) consists of c meridians, say, α′1, . . . , α

′
c. For

each i , we isotope α′i along the annulus Ai to the curve Ai ∩6 and then push it
slightly into C2, obtaining c curves, say, β1, . . . , βc, parallel to meridians. Drilling⋃

i βi out of E(K ) gives E(K )(c). Using the disks Di ∩C2 it is easy to see that 6
is a Heegaard surface for E(K )(c). Clearly, the trace of the isotopy from

⋃n
i=1 α

′

i
to
⋃n

i=1 βi forms a complete system of Hopf annuli, and by construction every one
of these annuli intersects 6 in a single curve that is essential in the annulus. This
completes the proof of (1)=⇒ (2).

(2) =⇒ (1): Assume that E(K )(c) admits a Heegaard surface of genus h, say, 6,
with a complete system of Hopf–Haken annuli, say, {A1, . . . , Ac}. Let

E(K )′ = cl
(
E(K )(c) \

⋃
i N (Ai )

)
.

Note that E(K )′ is homeomorphic to E(K ). Let S′ be the meridional surface
6 ∩ E(K )′. We may consider M as obtained from E(K )′ by meridional Dehn
filling and K as the core of the attached solid torus. By capping off S′ we obtain a
closed surface S ⊂ M . The following claim completes the proof of (2)=⇒ (1):

Claim 5.5. S defines a (h− c, c) decomposition for K .

Proof of claim. Recall that the components of ∂E(K )(c) \ ∂E(K ) were denoted by
T1, . . . , Tc, as in Definition 5.2, so that Ai ∩ Ti 6=∅ and Ai ∩ T j =∅ (for i 6= j).
Let C1, C2 be the compression bodies obtained from E(K )(c) by cutting along 6,
where ∂N (K ) ⊂ ∂−C1. Since 6 ∩ Ai is a single simple closed curve which is
essential in Ai we have Ti ⊂ ∂−C2 (i = 1, . . . , c). Denote the annulus A j ∩Ci by
Ai, j (i = 1, 2, j = 1, . . . , c).

Let C ′i = Ci ∩ E(K )′ (i = 1, 2). It is clear that S′ cuts E(K )′ into C ′1 and C ′2.
Since Ai∩∂N (K ) is a meridian of K , and by assumption the meridian of K does not
bound a disk in E(K ), we have that Ai, j is incompressible in Ci . Hence a standard
innermost disk, outermost arc argument shows that there is a system of meridian
disks Di of Ci which cuts Ci into ∂−Ci ×[0, 1] such that Di ∩

(⋃
Ai, j

)
=∅.

Now we consider C2 cut along
⋃

A2, j . Since D2 ∩
(⋃

A2, j
)
=∅, there are

components T1×[0, 1], . . . , Tc×[0, 1] of C2 cut along D2, where A2, j ⊂ T j×[0, 1]
( j = 1, . . . , c). Here we note that T j×[0, 1] cut along A2, j is a solid torus in which
the image of T j ×{0} is a longitudinal annulus (note that the image of T j ×{0} is
exactly T j ∩C ′2). This shows that {T1 ∩C ′2, . . . , Tc ∩C ′2} is a primitive system of
annuli in C ′2, that is, there is a system of meridian disks D2,1, . . . , D2,c in C ′2 such
that D2, j ∩(T j ∩C ′2) consists of a spanning arc of T j ∩C ′2, and D2, j ∩(Tk∩C ′2)=∅
( j 6= k). Let C ′′2 be the manifold obtained from C ′2 by adding c 2-handles along
T1 ∩ C ′2, . . . , Tc ∩ C ′2. Since {T1 ∩ C ′2, . . . , Tc ∩ C ′2} is primitive, C ′′2 is a genus
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(h− c) compression body, and the union of the co-cores of the attached 2-handles,
which can be regarded as K ∩C ′′2 , are simultaneously isotopic (through the disks⋃

D2, j ) into ∂+C ′′2 .
Analogously since D1 ∩

(⋃
A1, j

)
= ∅, there are c components of C1 cut by

D1 ∪
(⋃

A1, j
)

which are solid tori such that ∂N (K ) intersects each solid torus in
a longitudinal annulus. Then the arguments in the last paragraph show that K ∩C ′′1
consists of c arcs which are simultaneously parallel to S.

These show that S gives a (h− c, c) decomposition for K , completing the proof
of the claim, and thus also of Theorem 5.4. �

Corollary 5.6. Let K be a knot in a compact manifold M , and suppose that for
some positive integers h and c, K admits a (h− c, c) decomposition. Then,

g(E(K )(c))≤ h.

Proof. This follows immediately from (1) =⇒ (2) of Theorem 5.4. �

6. Existence of swallow follow tori and bounding g(E(K1# · · · #Kn)
(c)) above

Definition 6.1 (swallow follow torus). Let K ⊂ M be a knot and c ≥ 0 an integer.
An essential separating torus T ⊂ E(K )(c) is called a swallow follow torus if there
exists an embedded annulus A ⊂ E(K )(c) with one component of ∂A a meridian
of E(K )(c) and the other an essential curve of T , so that int(A)∩ T =∅.

In this definition (and throughout this paper) we allow K to be the unknot in S3,
in which case E(K )(c) is homeomorphic to a disk with c holes cross S1, and it
admits swallow follow tori whenever c ≥ 3.

Given a swallow follow torus T and an annulus A as above, we can surger T
along A to obtain a separating meridional annulus. It is easy to see that since T is
an essential torus, the annulus obtained is essential as well. Conversely, given an
essential separating meridional annulus we can tube the annulus to itself along the
boundary obtaining a swallow follow torus (this can be done in two distinct ways).

How does a swallow follow torus decompose a knot exterior? We first consider
the case c = 0. Let K = K1#K2 be a composite knot (here we are not assuming
that K1 or K2 is prime). Let A be a decomposing annulus corresponding to the
decomposition of K as K1#K2. Thus E(K )= E(K1)∪A E(K2). Tubing A along
the boundary (say, into E(K2)) we obtain a swallow follow torus, say, T . Clearly,
one component of E(K ) cut open along T is homeomorphic to E(K2). The
other component is homeomorphic to E(K1) with two meridional annuli identified,
and hence homeomorphic to E(K1)

(1). Thus we see that a swallow follow torus
T ⊂ E(K ) decomposes E(K ) as E(K1)

(1)
∪T E(K2). More generally, given

K , K1, and K2 as above and integers c, c1, c2 ≥ 0 with c1+ c2 = c, let A be a
decomposing annulus for E(K )(c), so that E(K )(c) = E(K1)

(c1)∪A E(K2)
(c2). The
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swallow follow torus obtained by tubing A into E(K2)
(c2) decomposes E(K )(c)

as E(K1)
(c1+1)

∪T E(K2)
(c2). Since the components of E(K )(c) cut open along a

swallow follow torus are themselves of the form E(K1)
(c1+1) and E(K2)

(c2), we
may now extend Definition 6.1 inductively:

Definition 6.2 (swallow follow tori). Let K and c be as in the previous paragraph.
Let T1, . . . , Tr (for some r ) be disjointly embedded tori in E(K )(c). Then T1, . . . , Tr

are called swallow follow tori if the following two conditions hold, perhaps after
reordering the indices:

(1) T1 is a swallow follow torus for E(K )(c).

(2) For each i ≥ 2, Ti is a swallow follow torus for some component of E(K )(c)

cut open along
⋃i−1

j=1 T j .

We are now ready to state and prove:

Proposition 6.3 (existence of swallow follow tori). For i = 1, . . . , n, let Ki be a
(not necessarily prime) knot in a compact manifold and let c ≥ 0 be an integer.
Suppose that E(Ki ) 6∼= T 2

×[0, 1] and ∂N (Ki ) is incompressible in E(Ki ).
Then given any integers c1, . . . , cn ≥ 0 whose sum is c+ n− 1, there exist n− 1

swallow follow tori, denoted T, that decompose E(# n
i=1Ki )

(c) as

E(# n
i=1Ki )

(c)
=

⋃
T

E(Ki )
(ci ).

Proof. We use the notation as in the statement of the proposition and induct on n. If
n = 1 there is nothing to prove. We assume, as we may, that n > 1. We first claim
that for some i we have that ci ≤ c. Assume, for a contradiction, that ci > c for
every 1≤ i ≤ n. Since ci and c are integers, ci ≥ c+ 1. Then we have:

c+ n− 1=
n∑

i=1

ci ≥ n(c+ 1)= nc+ n.

Moving all term to the right we get that

0≥ (n− 1)c+ 1,

which is absurd, since n ≥ 1 and c ≥ 0. By reordering the indices if necessary we
may assume that cn ≤ c.

Let A be an annulus in E(# n
i=1Ki ) so that the components of E(# n

i=1Ki ) cut open
along A are identified with E(K1# · · · #Kn−1) and E(Kn). Since the tori ∂N (Ki ) are
incompressible, A is essential in E(# n

i=1Ki ). Recall that E(# n
i=1Ki )

(c) is obtained
from E(# n

i=1Ki ) by drilling c curves that are parallel to the meridian; since cn ≤ c
we may choose the curves so that exactly cn components are contained in E(Kn).
After drilling, the components of E(# n

i=1K )(c) cut open along A are identified
with E(K1# · · · #Kn−1)

(c−cn) and E(Kn)
(cn). Let T be the torus obtained by tubing
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A into E(K )(cn); clearly the components of E(# n
i=1K )(c) cut open along T are

identified with E(K1# · · · #Kn−1)
(c−cn+1) and E(Kn)

(cn). Since A is essential and
E(Ki ) 6∼= T 2

×[0, 1], we have that T is essential in E(# n
i=1Ki )

(c). By construction,
there is an essential curve on T that cobounds an annulus with a meridian of
E(# n

i=1Ki )
(c) and we conclude that T is a swallow follow torus.

We induct on K1, . . . , Kn . Let c′ = c− cn + 1. Then we have

n−1∑
i=1

ci =

n∑
i=1

ci − cn = c+ n− 1− cn

= (c− cn + 1)+ n− 2= c′+ (n− 1)− 1.

By induction, E(K1# · · · #Kn−1)
(c′) admits n − 2 swallow follow tori, which we

will denote by T′, so that T′ decomposes

E(K1# · · · #Kn−1)
(c′)
= E(K1# · · · #Kn−1)

(c−cn+1),

as ⋃
T′

E(Ki )
(ci ).

It follows that T= T ∪T′ are swallow follow tori for E(K )(c), and the components
of E(K )(c) cut open along T are homeomorphic to E(K1)

(c1), . . . , E(Kn)
(cn). �

By Proposition 6.3 and repeated use of Lemma 2.2 we obtain the following.

Corollary 6.4. With notation as in Proposition 6.3 (and in particular for any integer
c ≥ 0 and any integers c1, . . . , cn whose sum is c+ n− 1), we get:

g(E(K )(c))≤6n
i=1g(E(Ki )

(ci ))− (n− 1).

7. An upper bound for the growth rate

Using the results in the previous sections we can easily bound the growth rate:

Proposition 7.1. Let K be an admissible knot in a closed manifold M. Let g =
g(E(K ))− g(M) and the bridge indices {b∗1, . . . , b∗g} be as in Notation 1.1. Then,

grt (K )≤ min
i=1,...,g

{
1− i

b∗i

}
.

Proof. Fix 1 ≤ i ≤ g and a positive integer n. Let ki > 0 and 0 ≤ r < b∗i be the
quotient and remainder when dividing (n− 1) by b∗i ; that is:

ki b∗i + r = n− 1.

Consider the nonnegative integers b∗i , . . . , b∗i , r, 0, . . . , 0 (where b∗i appears ki times
and the symbol 0 appears n− (ki + 1) times). Applying Corollary 6.4 to E(nK )(0)
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we get (recalling that E(nK )(0) = E(nK )):

g(E(nK ))≤ ki g(E(K )(b
∗

i ))+ g(E(K )(r))+ (n− (ki + 1))g(E(K ))− (n− 1).

By definition of b∗i , K admits a (g(E(K ))− i, b∗i ) decomposition. Applying
Corollary 5.6 with h− c = g(E(K ))− i and c = b∗i gives

g(E(K )(b
∗

i ))≤ g(E(K ))− i + b∗i .

Thus we get:

g(E(nK ))≤ ki (g(E(K ))−i+b∗i )+g(E(K )(r))+(n−(ki+1))g(E(K ))−(n−1)

= (n−1)g(E(K ))+g(E(K )(r))−ki i+(ki b∗i −(n−1))

= (n−1)g(E(K ))+g(E(K )(r))−ki i−r.

By denoting the n-th element of the sequence in the definition of the growth rate
by Sn , we get:

Sn =
g(E(nK ))− ng(E(K ))+ (n− 1)

n− 1

≤
1

n−1

[
(n− 1)g(E(K ))+ g(E(K )(r))− ki i − r − ng(E(K ))+ (n− 1)

]
=

1
n−1

[
g(E(K )(r))− g(E(K ))− r − ki i + (n− 1)

]
=

g(E(K )(r))− g(E(K ))− r
n− 1

+ 1−
ki i

ki b∗i + r
.

In the last equality we used ki b∗i + r = n− 1. Recall that E(K )(r) is obtained by
drilling r curves parallel to ∂E(K ) out of E(K ). Therefore, by [Rieck 2000],

g(E(K )(r))≤ g(E(K ))+ r.

Hence the first summand above is nonpositive, and we may remove that term.
Further, since r < b∗i , ki b∗i + r < (ki + 1)b∗i , which implies

(1) Sn < 1− i
b∗i

ki
ki+1

.

Since limn→∞ ki =∞ we have:

grt(K )= lim sup
n→∞

Sn ≤ lim
ki→∞

(
1− i

b∗i

ki
ki+1

)
= 1− i

b∗i
.

As i was arbitrary, we get

grt(K )≤ min
i=1,...,g

{
1− i

b∗i

}
.

This completes the proof of Proposition 7.1. �
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Part III. The growth rate of m-small knots

This part is devoted to calculating the growth rate of m-small knots, completing
the proof of Theorem 1.2. Section 8 contains the main technical result of this paper,
the strong Hopf–Haken annulus theorem (Theorem 1.8). This result guarantees the
existence of Hopf–Haken annuli, and complements Sections 4 and 5. In Section 9
we prove existence of “special” swallow follow tori; this section complements
Section 6. Finally, in Section 10 we calculate the growth rate of m-small knots by
finding a lower bound that equals exactly the upper bound found in Section 7.

8. The strong Hopf–Haken annulus theorem

Given a knot K in a compact manifold M and an integer c > 0, recall that the
exterior of K is denoted by E(K ), the manifold obtained by drilling out c curves
simultaneously parallel to the meridian of E(K ) is denoted by E(K )(c), and the
components of ∂E(K )(c) \ ∂E(K ) are denoted by T1, . . . , Tc. Recall also the defi-
nitions of Haken annuli for a given Heegaard splitting (Definition 4.1), a complete
system of Hopf annuli (Definition 5.1), and a complete system of Hopf–Haken
annuli for a given Heegaard splitting (Definition 5.2).

In this section we prove the strong Hopf–Haken annulus theorem (Theorem 1.8),
stated in the introduction. Before proving Theorem 1.8 we prove three of its main
corollaries:

Corollary 8.1. Suppose that the assumptions of Theorem 1.8 are satisfied with
F1 = F2 = ∅ and in addition, for each i , E(Ki ) does not admit an essential
meridional surface S with χ(S)≥ 6− 2g(E(K )(c)). Let h ≥ 0 be an integer. Then
K admits an (h− c, c) decomposition if and only if g(E(K )(c))≤ h.

Proof of Corollary 8.1. Assume first that K admits an (h − c, c) decomposition.
Then by Corollary 5.6, we have g(E(K )(c))≤ h. Note that this direction holds in
general and does not require the assumption about meridional surfaces.

Next assume that g(E(K )(c))≤ h and let 6 ⊂ E(K )(c) be a genus h Heegaard
surface. By the assumptions of the corollary, Theorem 1.8(2) does not hold. Hence
by that theorem E(K )(c) admits a genus h Heegaard surface that admits a complete
system of Hopf–Haken annuli. By (2)⇒ (1) of Theorem 5.4, K admits an (h−c, c)
decomposition. �

Corollary 8.2. Suppose that the assumptions of Theorem 1.8 hold and in addition,
that each Ki is m-small. Then for any c and any choice of F1 and F2, there is a
minimal genus Heegaard splitting of (E(# n

i=1Ki )
(c)
; F1, F2) that admits a complete

system of Hopf–Haken annuli.

Proof of Corollary 8.2. This follows immediately from Theorem 1.8. �

Next we prove Corollary 1.9 which was stated in the introduction:
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Proof of Corollary 1.9. We fix the notation in the statement of the corollary. First
we show that for any knot K (not necessarily the connected sum of m-small knots),
if c ≥ b∗g, then the inequality g(E(K )(c))≤ c holds: by definition of b∗g, K admits
a (0, b∗g) decomposition (recall that K ⊂ S3 and hence b∗g is the bridge index of K
with respect to S2). Thus for c ≥ b∗g, K admits a (0, c) decomposition. By viewing
this as a (c− c, c) decomposition, Corollary 5.6 implies that g(E(K )(c))≤ c.

Next we note that the inequality g(E(K )(c))≥ c holds for K that is a connected
sum of m-small knots, and any c ≥ 0: by Corollary 8.2, E(K )(c) admits a minimal
genus Heegaard surface (say, 6) admitting a complete system of Hopf–Haken
annuli. Hence the c tori, T1, . . . , Tc, are on the same side of 6, which implies
g(6)≥ c; hence g(E(K )(c))= g(6)≥ c. �

Proof of Theorem 1.8. We first fix the notation that will be used in the proof (in
addition to the notation in the statement of the theorem). Let K denote # n

i=1Ki .
For c > 0, E(K )(c) admits an essential torus T that decomposes E(K )(c) as

E(K )(c) = X ∪T Q(c),

where X ∼= E(K ) and Q(c)∼= (an annulus with c holes)× S1. Note that Q(c) fibers
over S1 in a unique way, and the fibers in T are meridian curves in X ∩ Q(c). Since
Q(c) is Seifert fibered it is contained in a unique component J of the characteristic
submanifold [Jaco 1980; Jaco and Shalen 1979; Johannson 1979]. Since ∂N (Ki ) is
incompressible in E(Ki ), using Miyazaki’s result [1989] it was shown in [Kobayashi
and Rieck 2006a, Claim 1] that K admits a unique prime decomposition. Therefore
the number of prime factors of K is well defined. We suppose, as we may, that
each knot Ki is prime; consequently, the integer n appearing in the statement of the
theorem is the number of prime factors of K .

The structure of the proof. The proof is an induction on (n, c) ordered lexico-
graphically. We begin with two preliminary special cases. In Case One we consider
strongly irreducible Heegaard splittings. In Case Two we consider weakly reducible
Heegaard splittings so that no component of the essential surface obtained by
untelescoping is contained in J . In both cases we prove the theorem directly and
without reference to the complexity (n, c). We then proceed to the inductive step
assuming the theorem for (n′, c′) < (n, c) in the lexicographic order. By Cases
One and Two we may assume that a minimal genus Heegaard surface for E(K )(c)

is weakly reducible and some component of the essential surface obtained by
untelescoping it is contained in J ; this component allows us to induct.

Case One: (E(K )(c); F1, F2) admits a strongly irreducible minimal genus Hee-
gaard splitting. Let C1 ∪6 C2 be a minimal genus strongly irreducible Heegaard
splitting of (E(K )(c); F1, F2). The swallow follow torus theorem [Kobayashi and
Rieck 2006a, Theorem 4.1] implies that if n > 1, either 6 weakly reduces to a
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swallow follow torus (contradicting the assumption of Case One) or Theorem 1.8(2)
holds. We assume, as we may, that n = 1 in the remainder of the proof of Case One.

Recall the notation E(K )(c) = X ∪T Q(c). Since T ⊂ E(K )(c) is essential and
6 ⊂ E(K )(c) is strongly irreducible, we may isotope 6 so that 6 ∩ T is transverse
and every curve of 6 ∩ T is essential in T . Minimize |6 ∩ T | subject to this
constraint. If 6 ∩ T =∅ then T is contained in a compression body C1 or C2, and
hence T is parallel to a component of ∂−C1 or ∂−C2. But then T is parallel to a
component of ∂E(K )(c), a contradiction. Thus 6 ∩ T 6=∅.

Let F be a component of 6 cut open along T . Minimality of |6∩T | implies that
F is not boundary parallel. Then ∂F ⊂ T ; since T is a torus, boundary compression
of F implies compression into the same side; this will be used extensively below. A
surface in a Seifert fibered manifold is called vertical if it is everywhere tangent to
the fibers and horizontal if it is everywhere transverse to the fibers (see, for example,
[Jaco 1980] for a discussion). We first reduce Theorem 1.8 as follows:

Assertion 1. One of the following holds:

(1) 6∩X is connected and compresses into both sides, and6∩Q(c) is a collection
of essential vertical annuli.

(2) Theorem 1.8 holds.

Proof. A standard argument shows that one component of 6 cut open along T
compresses into both sides (in X or Q(c)) and all other components are essential
(in X or Q(c)); for the convenience of the reader we sketch it here: Let D1 be
a compressing disk for C1. After minimizing |D1 ∩ T | either D1 ∩ T = ∅ (and
hence some component of 6 cut open along T compresses into C1) or an outermost
disk of D1 provides a boundary compression for some component of 6 cut open
along T ; since boundary compression implies compression into the same side,
we see that in this case too some component of 6 cut open along T compresses
into C1. Similarly, some component of 6 cut open along T compresses into C2.
Strong irreducibility of 6 implies that the same component compresses into both
sides and all other components are incompressible and boundary incompressible.
Minimality of |6 ∩ T | implies that no component is boundary parallel, and hence
the incompressible and boundary incompressible components are essential.

The proof of Assertion 1 breaks up into three subcases:

Subcase 1: no component of 6 ∩ X is essential. Then 6 ∩ X is connected and
compresses into both sides, and therefore 6 ∩ Q(c) consists of essential surfaces.
Since Q(c) is Seifert fibered, every component of 6 ∩ Q(c) is either horizontal or
vertical (see, for example, [Jaco 1980, VI.34]). Any horizontal surface in Q(c)

must meet every component of ∂Q(c); by construction 6 ∩ ∂N (K ) = ∅; thus
every component of 6 ∩ Q(c) is vertical (we will use this argument below without
reference). This gives Assertion 1(1).
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Subcase 2a: some component of6∩X is essential and some component of6∩Q(c)

is essential. Let F denote an essential component of 6∩ X . Since T is incompress-
ible and the components of 6 ∩ T are essential in T , no component of 6 cut open
along T is a disk; hence χ(F) ≥ χ(6). Let S denote an essential component of
6 ∩ Q(c). Then S is a vertical annulus. In particular, S ∩ T consists of fibers in the
Seifert fibration of Q(c). By construction, the fibers on T are meridians of X . We
see that F is meridional, giving Theorem 1.8(2).

Subcase 2b: some component of 6 ∩ X is essential and no component of 6 ∩ Q(c)

is essential. As above let F be an essential component of 6∩X . By assumption, no
component of 6 ∩ Q(c) is essential. Hence 6 ∩ Q(c) is connected and compresses
into both sides. Let 11 be a maximal collection of compressing disks for 6 ∩ Q(c)

into Q(c)
∩ C1 and S1 the surface obtained by compressing S along 11. Since

11 6=∅, maximality of 11 and the no nesting lemma [Scharlemann 1998] imply
that S1 is incompressible. Suppose first that some nonclosed component of S1, say,
S′1, is not boundary parallel (this is similar to Subcase 2a). Then S′1 is an essential
and hence vertical annulus and we see that F is meridional, giving Theorem 1.8(2)
and the assertion follows. We assume from now on that S1 consists of boundary
parallel annuli and, perhaps, closed boundary parallel surfaces and ball-bounding
spheres. Furthermore, we see that:

(1) No two closed components of S1 are parallel to the same component of ∂Q(c):
this follows from the connectivity of 6 ∩ Q(c) and strong irreducibility of 6.

(2) No two boundary parallel annuli of S1 are nested: otherwise, it follows from the
connectivity of 6 ∩ Q(c) and strong irreducibility of 6 that 6 can be isotoped
out of Q(c); for more details see [Kobayashi and Rieck 2004, page 249].

We assume, as we may, that the analogous conditions hold after compressing
6∩Q(c) into Q(c)

∩C2. Hence6∩Q(c) is a Heegaard surface for Q(c) relative to the
annuli {C1∩ T,C2∩ T } (relative Heegaard surfaces were defined in Definition 3.1).
We may replace 6 ∩ Q(c) with the minimal genus relative Heegaard surface for
Q(c) relative to {C1 ∩ T , C2 ∩ T } given in Corollary 3.3. By pasting this surface to
6 ∩ X we obtain a closed surface, say, 6′, satisfying the four following conditions:

(1) 6′ is a Heegaard surface for E(K )(c): the components of X cut open along
6 ∩ X are the same as the components of C1 and C2 cut open along {C1 ∩ T ,
C2∩T } that are contained in X . Since T is essential, the annuli Ci∩T are incom-
pressible in Ci . It is well known that cutting a compression body along incom-
pressible surfaces yields compression bodies; we conclude that the components
of X cut open along6∩X are compression bodies. By definition of the relative
Heegaard surface, the annuli of {C1∩ T,C2∩ T } are primitive in the compres-
sion bodies obtained by cutting Q(c) open along any relative Heegaard surface;
it follows that E(K )(c) cut open along 6′ consists of two compression bodies.
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(2) 6′ is a Heegaard surface for (E(K )(c); F1, F2): in addition to (1) above, we
must show 6′ respects the same partition of ∂E(K )(c) \ (∂N (K ), T1, . . . , Tc)

as 6. This follows immediately from the facts that the changes we made are
contained in Q(c), every component of F1 is contained in C1 ∩ X , and every
component of F2 is contained in C2 ∩ X . Note that (1) and (2) hold for any
relative Heegaard surface for Q(c) relative to {C1 ∩ T , C2 ∩ T }.

(3) g(6′)= g(6): minimality of the genus of the relative Heegaard splitting used
implies that g(6′)≤g(6), and since6 is a minimal genus Heegaard surface for
(E(K )(c); F1, F2), equality holds: g(6′)= g(6). Note that (3) holds for any
minimal genus relative Heegaard surface for Q(c) relative to {C1∩ T , C2∩ T }.

(4) 6′ admits a complete system of Hopf–Haken annuli: by Figure 1 we see
directly that 6′ admits a complete system of Hopf–Haken annuli.

Remark 8.3. As noted, in the construction above, (1), (2), and (3) hold for any
minimal genus relative Heegaard surface. This is quite different in (4), when
considering Hopf–Haken annuli: it is not hard to construct relative Heegaard
surfaces that result in a minimal genus Heegaard surface for (E(K )(c); F1, F2) so
that all the tori T1, . . . , Tc are in the compression body containing ∂N (K ), and
hence cannot admit even one Hopf–Haken annulus. This shows that in the course
of the proof of Theorem 1.8 the given Heegaard surface must be replaced.

The Heegaard surface 6′ fulfills the conditions of Theorem 1.8(1). This com-
pletes that proof of Assertion 1. �

Before proceeding, we fix the following notation and conventions: denote 6∩ X
by 6X . By Assertion 1 we may assume that 6X is connected and compresses into
both sides and every component of 6 ∩ Q(c) is an essential vertical annulus. Note
that X cut open along 6X consists of exactly two components, denoted by Ci,X ,
where Ci,X = Ci ∩ X (i = 1, 2). Denote the collection of annuli T ∩Ci,X by Ai ,
and the annuli in Ai by Ai,1, . . . , Ai,b, where b denotes the number of annuli in
Ai . We assume from now on that Theorem 1.8(2) does not hold.

Assertion 2. The number b satisfies c ≤ b ≤ g(6).

Proof. Assume for a contradiction that b < c. Since 6 ∩ Q(c) consists of b annuli,
Q(c) cut open along 6 ∩ Q(c) consists of b+ 1< c+ 1 components. Hence some
component of Q(c) cut open along 6 ∩ Q(c) contains two of the components of
∂Q(c)

\ T . Hence there is a vertical annulus connecting these components which
is disjoint from 6. Since this annulus is disjoint from 6 it is contained in a
compression body Ci and connects two components of ∂−Ci , which is impossible.

Since 6X is obtained by removing the b annuli 6 ∩ Q(c) and is connected,
b ≤ g(6). �

Assertion 3. The surface 6X defines a (g(6)− b, b) decomposition of K .
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Proof. For i = 1, 2, let 1i be a maximal collection of compressing disks for 6X

into Ci,X ; by assumption, 1i 6=∅. Let Si be the surface obtained by compressing
6X along 1i . By maximality and the no nesting lemma [Scharlemann 1998] Si is
incompressible. Since the components of 6∩Q(c) are vertical annuli, the boundary
components of Si are meridians. Hence, if some nonclosed component of Si is
essential, we obtain Theorem 1.8(2), contradicting our assumption. Thus Si consists
of boundary parallel annuli and, perhaps, closed boundary parallel surfaces and
ball-bounding spheres. As above, strong irreducibility of 6 and connectivity of
6X imply that these annuli are not nested. We see that Ci,X is a compression body
and T ∩Ci,X consists of b mutually primitive annuli. In fact, we see that 6X is a
Heegaard surface relative to {A1,A2}. By the argument of Claim 5.5, 6X gives a
(g(6)− b, b) decomposition. �

By Assertion 3 and Theorem 5.4, E(K )(b) admits a genus g(6) Heegaard surface
admitting a complete system of Hopf–Haken annuli, say, 6′. By Assertion 2, c≤ b.
Hence E(K )(c) is obtained from E(K )(b) by filling the tori Tc+1, . . . , Tb. Clearly,
6′ is a Heegaard surface for E(K )(c), admitting a complete system of Hopf–Haken
annuli. This completes the proof of Theorem 1.8 in Case One.

Before proceeding to Case Two we introduce notation that will be used in that
case. Recall that since Q(c) is Seifert fibered, it is contained in a component
of the characteristic submanifold of E(K )(c) denoted by J . Since X ∼= E(K )
and K = # n

i=1Ki , X admits n− 1 decomposing annuli which we will denote by
A1, . . . , An−1 (A1, . . . , An−1 are not uniquely defined). The components of X cut
open along

⋃n−1
i=1 Ai are homeomorphic to E(K1), . . . , E(Kn). Let

V = Q(c)
∪ N (A1)∪ · · · ∪ N (An−1).

Then V is Seifert fibered and contains Q(c), and hence after isotopy V ⊂ J . Note
that V ∩ cl(E(K )(c) \ V ) consists of n tori, say, T ′1, . . . , T ′n . Finally note that X (c)

cut open along
⋃n

i=1 Ti
′ consists of n+ 1 components, one is V , and the others are

homeomorphic to E(K1), . . . , E(Kn). We denote the component that corresponds
to E(Ki ) by X i . After renumbering if necessary we may assume that T ′i is a
component of ∂X i . By construction T ′i corresponds to ∂N (Ki ).

The proof of Assertion 4 is a simple argument using essential arcs in base
orbifolds, and we leave it to the reader.

Assertion 4. If V is not isotopic to J then some E(Ki ) contains a meridional
essential annulus.

For future reference we remark:

Remark 8.4. By Assertion 4, either we have Theorem 1.8(2), or J = V . Hence,
in the following, we may assume that J = V ; we will use the notation J from here
on. By construction, J is homeomorphic to (a (c+ n)-times punctured disk)×S1

and hence admits no closed nonseparating surfaces.
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Case Two: (E(K )(c); F1, F2) admits a weakly reducible minimal genus Heegaard
surface6, and no component of the essential surface obtained by untelescoping6 is
isotopic into J . Let F be the (not necessarily connected) essential surface obtained
by untelescoping 6. The assumptions of Theorem 1.8 imply that E(K )(c) does not
admit a nonseparating sphere; hence the Euler characteristic of every component of
F is bounded below by χ(6)+ 4. After an isotopy that minimizes |F ∩ ∂ J |, every
component of F∩ J is essential in J and every component of F∩cl(E(K )(c)\ J ) is
essential in cl(E(K )(c)\ J ). By the assumption of Case Two, if some component F ′

of F meets J , then F ′ 6⊂ J and hence each component of F ′∩ J is a vertical annulus
and each component of F ′∩cl(E(K )(c)\ J ), say, S, is a meridional essential surface
with χ(S)≥χ(F ′∩E(K )(c))=χ(F ′)≥χ(F)≥ 6−2g(6), giving Theorem 1.8(2).
Thus we may assume F ∩ J =∅.

Let MJ be the component of E(K )(c) cut open along F containing J , and let
6J be the strongly irreducible Heegaard surface induced on MJ by untelescoping.
Then 6J defines a partition of ∂MJ \(T1∪· · ·∪Tc∪∂N (K )), say, FJ,1, FJ,2. Since
6 is minimal genus, 6J is a minimal genus splitting of (MJ ; FJ,1, FJ,2).

For i = 1, . . . , n, denote X i ∩MJ by X ′i . Note that X ′i ∩ J = T ′i ; the meridian
of X i defines a slope of T ′i , denoted by µ′i . By filling X ′i along µ′i we obtain a
manifold, say, M ′i , and the core of the attached solid torus is a knot, say, K ′i ⊂ M ′i .
Then MJ is naturally identified with E(# n

i=1K ′i )
(c), and 6J is a strongly irreducible

Heegaard surface for (E(# n
i=1K ′i )

(c)
; FJ,1, FJ,2). It is easy to see that the knots K ′i

fulfill the assumptions of Theorem 1.8; in particular, the assumptions of Case Two
imply that E(K ′i ) 6∼= T 2

× I . Therefore, by Case One, one of the following holds:

(1) Theorem 1.8(1): there exists a Heegaard surface 6′J for MJ so that the follow-
ing three conditions hold:

(a) g(6′J )= g(6J ),
(b) 6′J is a Heegaard splitting for (E(# n

i=1K ′i )
(c)
; FJ,1, FJ,2),

(c) 6′J admits a complete system of Hopf–Haken annuli.

(2) Theorem 1.8(2): for some i , X ′i admits a meridional essential surface F ′i with
χ(F ′i )≥ 6− 2g(6J )≥ 6− 2g(6).

Assume first that (1) holds. By condition (1b), 6′J induces the same partition on
the components of ∂M j \ {T1, . . . , Tc, ∂N (K )} as 6J . Thus we may amalgamate
the Heegaard surfaces induced on the components of cl(E(K )(c) \MJ ) with 6′J ,
obtaining a Heegaard surface for (E(K )(c); F1, F2), say, 6′′. By Proposition 4.3,
6′′ admits a complete system of Hopf–Haken annuli. Since g(6′J ) = g(6J ),
we have that g(6′′) = g(6); hence 6′′ is a minimal genus Heegaard surface for
(E(K )(c); F1, F2). This gives Theorem 1.8(1).

Assume next that (2) happens. Since X ′i is a component of X i cut open along the
(possibly empty) surface F ∩ X i , and every component of F ∩ X i is incompressible,
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Figure 6. Subcase 1a.

we have that F ′i is essential in X i . By construction, the meridians of X i and X ′i
are the same. Finally, χ(F ′i )≥ 6− 2g(6)= 6− 2g(E(K )(c); F1, F2). This gives
Theorem 1.8(2), completing the proof of Theorem 1.8 in Case Two.

With these two preliminary cases in hand we are now ready for the inductive
step. For the remainder of the proof we assume that Theorem 1.8(2) does not hold.
Fix K1, . . . , Kn and c ≥ 0 and assume, by induction, that Theorem 1.8 holds for
any example with complexity (n′, c′) < (n, c) ordered lexicographically. Let 6 be
a minimal genus Heegaard surface for E(# n

i=1Ki )
(c). By Case One, we may assume

that 6 is not strongly irreducible; hence 6 admits an untelescoping. By Case Two,
we may assume that some component F ′ of the essential surface F obtained by
untelescoping 6 is isotopic into J . By Remark 8.4, J is a Seifert fibered space
over a punctured disk and the components of E(#Ki )

(c)
\ J are identified with

E(K1), . . . , E(Kn). After isotopy we may assume that F ′ is horizontal or vertical
(see, for example, [Jaco 1980, VI.34]; recall that a surface in a Seifert fibered
space is horizontal if it is everywhere transverse to the fibers and vertical if it is
everywhere tangent to the fibers). However ∂ J 6=∅ and ∂F ′ =∅, and therefore
F ′ cannot be horizontal. We conclude that F ′ is a vertical torus that separates J
and hence E(# n

i=1Ki )
(c). Thus F ′ decomposes E(# n

i=1Ki )
(c) as:

E(# n
i=1Ki )

(c)
= E(#i∈I Ki )

(c1) ∪F ′ E(#i 6∈I Ki )
(c2),

where c1+ c2 = c+1 and I ⊂ {1, . . . , n}. Since F ′ is connected and separating, by
Proposition 2.3, 6 weakly reduces to F ′ and the weak reduction induces (not neces-
sarily strongly irreducible) Heegaard splittings on E(#i∈I Ki )

(c1) and E(#i 6∈I Ki )
(c2).

We divide the proof into Cases 1 and 2 below:

Case 1: I =∅ or I ={1, . . . , n}. By symmetry we may assume that I ={1, . . . , n}.
Then F ′ decomposes E(# n

i=1Ki )
(c) as E(# n

i=1Ki )
(c1)∪F ′ D(c2) where D(c2) is a c2

times punctured disk cross S1. There are two possibilities: ∂N (K )⊂ E(#n
i=1Ki )

(c1)

(Subcase 1a) and ∂N (K )⊂ D(c2) (Subcase 1b).

Subcase 1a: I = {1, . . . , n} and ∂N (K ) ⊂ E(#n
i=1Ki )

(c1). For this subcase, see
Figure 6. Recall that E(# n

i=1Ki )
(c)
= E(# n

i=1Ki )
(c1) ∪F ′ D(c2) with c1+c2= c+1;

reordering T1, . . . , Tc if necessary we may assume T1, . . . , Tc1−1 ⊂ ∂E(# n
i=1Ki )

(c1)
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Figure 7. Subcase 1b.

and Tc1, . . . , Tc ⊂ ∂D(c2). Since F ′ is not boundary parallel, c2 ≥ 2; thus c1 < c.
Thus (n, c1) < (n, c) (in the lexicographic order) and hence we may apply induc-
tion to E(# n

i=1Ki )
(c1). Let 6′1 be the Heegaard surface induced on E(# n

i=1Ki )
(c1)

by the weak reduction of 6. By assumption, Theorem 1.8(2) does not hold; it
is easy to see that E(# n

i=1Ki )
(c1) satisfies the assumptions of Theorem 1.8, and

since g(6′1) < g(6), Theorem 1.8(2) does not hold for E(# n
i=1Ki )

(c1). Therefore
the inductive hypothesis shows that E(# n

i=1Ki )
(c1) admits a Heegaard surface 61

fulfilling the following three conditions:

(1) g(61)= g(6′1).

(2) 61 and 6′1 induces the same partition of the components of ∂E(#n
i=1Ki )

(c1) \

{T1, . . . , Tc1−1, F ′, ∂N (K )}.

(3) 61 admits a complete system of Hopf–Haken annuli.

Denote the union of the c1 − 1 Hopf–Haken annuli connecting ∂N (# n
i=1Ki ) to

T1, . . . , Tc1−1 by A1 and the Hopf–Haken annulus connecting ∂N (# n
i=1Ki ) to F ′

by A (note that c1−1= 0 is possible; in that case A1 =∅). There exists a minimal
genus Heegaard surface 62 for D(c2) that admits c2 Haken annuli Ac1, . . . , Ac so
that one component of ∂Ai is a longitude of Ti and the other is on F ′ and parallel
to A ∩ F ′ there (recall Remark 4.2). We denote

⋃c
i=c1

Ai by A2. As shown in
Proposition 4.3, the annuli obtained by attaching a parallel copy of A to each
annulus of A2 union A1 are Haken annuli for the Heegaard surface obtained by
amalgamating 61 and 62; we will denote this surface by 6̂. By construction,
these annuli form a complete system of Hopf–Haken annuli for 6̂. Since g(6̂)=
g(61)+ g(62)− 1 and g(6) = g(6′1)+ g(62)− 1, by condition (1) above we
have g(6̂)= g(6). By construction, 6 and 6̂ induce the same partition of the
components of ∂E(K )(c) \ {T1, . . . , Tc, ∂N (K )}. Theorem 1.8 holds in Subcase 1a.

Subcase 1b: I = {1, . . . , n} and ∂N (K )⊂ D(c2). For this subcase, see Figure 7.
Since Subcase 1b is similar to Subcase 1a we omit some of the easier details of the
proof. As in Subcase 1a, F ′ decomposes E(# n

i=1Ki )
(c) as E(# n

i=1Ki )
(c1) ∪F ′ D(c2)

with c1+ c2 = c+ 1; we reorder T1, . . . , Tc so that T1, . . . , Tc1 ⊂ ∂E(# n
i=1Ki )

(c1)

and Tc1+1, . . . , Tc ⊂ ∂D(c2). By induction there exists a minimal genus Heegaard
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Figure 8. Case 2.

surface 61 for E(# n
i=1Ki )

(c1) fulfilling conditions analogous to (1)–(3) listed in
Subcase 1a. In particular, 61 admits a complete system of c1 Hopf– Haken annuli,
say, A1, so that one boundary component of each annulus of A1 is a longitude of Ti

(i=1, . . . , c1) and the other is a curve of F ′. As in Subcase 1a, there exists a minimal
genus Heegaard surface 62 for D(c2) admitting a system of c2 Haken annuli (recall
Remark 4.2), denoted by A2 ∪ A, so that A2 consists of c2− 1 annuli connecting
meridians of ∂N (#Ki ) to the longitudes of Tc1+1, . . . , Tc, and A connects a meridian
of ∂N (#Ki ) to a curve of F ′; by construction, this curve is parallel to the curves of
A1 ∩ F ′. As shown in Proposition 4.3, the annuli obtained by attaching a parallel
copy of A to each annulus of A1 union A2 are Haken annuli for the Heegaard
surface obtained by amalgamating 61 and 62; we will denote this surface by 6̂. By
construction, these annuli form a complete system of Hopf–Haken annuli for 6̂. As
in Subcase 1a, g(6̂)= g(6) and 6̂ induces the same partition on the components
of ∂E(K )(c) \ {T1, . . . , Tc, ∂N (K )} as 6. Theorem 1.8 holds in Subcase 1b.

Case 2: ∅ 6= I 6= {1, . . . , n}. See Figure 8 for this case. Since Case 2 is similar to
Subcase 1a we omit some of the easier details of the proof. By symmetry we may
assume that ∂N (K ) ⊂ ∂E(#i∈I Ki )

(c1). Let 6′1 and 6′2 be the Heegaard surfaces
induced on E(#i∈I Ki )

(c1) and E(#i 6∈I Ki )
(c2) (respectively) by 6. Since both |I |

and n− |I | are strictly less than n, we may apply induction to both E(#i∈I Ki )
(c1)

and E(#i 6∈I Ki )
(c2). By induction, there exist minimal genus Heegaard surfaces 61

and 62 for E(#i∈I Ki )
(c1) and E(#i 6∈I Ki )

(c2) (respectively) fulfilling the following
three conditions:

(1) g(61)= g(6′1) and g(62)= g(6′2).

(2) The partition of the components of ∂E(#i∈I Ki )
(c1) \ {∂N (K ), T1, . . . , Tc1−1}

which 61 induces is the same as that induced by 6′1. Similarly, 62 induces the
same partition of the components of ∂E(#i 6∈I Ki )

(c2) \ {Tc1, . . . , Tc2, F ′} as 6′2.

(3) 61 admits a complete system of Hopf–Haken annuli, say, A ∪ A1, where
A connects ∂N (K ) to F ′ and the components of A1 connect ∂N (K ) to
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T1, . . . , Tc1−1; similarly 62 admits complete systems of Hopf–Haken annuli
A2 whose components connect F ′ to Tc1, . . . , Tc.

As shown in Proposition 4.3, the annuli obtained by attaching a parallel copy of
A to each annulus of A2 union A1 are Haken annuli for the Heegaard surface
obtained by amalgamating 61 and 62; we will denote this surface by 6̂. By
construction, these annuli form a complete system of Hopf–Haken annuli for 6̂.
As above g(6̂) = g(6) and 6̂ induces the same partition of the components of
∂E(K )(c) \ {T1, . . . , Tc, ∂N (K )} as 6. Theorem 1.8 holds in Case 2.

This completes the proof of Theorem 1.8. �

9. Weak reduction to swallow follow tori and calculating g(E(K )(c))

Let K1⊂ M1, . . . , Kn ⊂ Mn be knots in compact manifolds and c> 0 be an integer.
When convenient, we will denote # n

i=1Ki by K . Let c1, . . . , cn ≥ 0 be integers
such that

∑n
i=1 ci = c+ n− 1. By Proposition 6.3 there exist n− 1 swallow follow

tori T⊂ E(K )(c) that decompose it as E(K )(c) =
⋃

T E(Ki )
(ci ). By amalgamating

minimal genus Heegaard surfaces for E(Ki )
(ci ) we obtain a Heegaard surface for

E(K )(c); however, it is distinctly possible that the surface obtained is not of minimal
genus. This motivates the following definition:

Definition 9.1 (natural swallow follow tori). Let K1 ⊂ M1, . . . , Kn ⊂ Mn be prime
knots in compact manifolds and c ≥ 0 an integer. Let T ⊂ E(# n

i=1Ki )
(c) be a

collection of n− 1 swallow follow tori giving the decomposition E(# n
i=1Ki )

(c)
=⋃

T E(Ki )
(ci ), for some integers ci ≥ 0. We say that T is natural if it is obtained

from a minimal genus Heegaard surface for E(# n
i=1Ki )

(c) by iterated weak reduction;
equivalently, T is called natural if

g(E(# n
i=1Ki )

(c))=

n∑
i=1

g(E(Ki )
(ci ))− (n− 1).

Remark. As explained in Section 6, given any collection of n− 1 swallow follow
tori T⊂ E(# n

i=1Ki )
(c) that give the decomposition E(# n

i=1Ki )
(c)
=
⋃

T E(Ki )
(ci ),

the integers c1, . . . , cn satisfy
∑n

i=1 ci =c+n−1. We will often use this fact without
reference; compare this to Proposition 6.3 where the converse was established.

Example 9.2 (knots with no natural swallow follow tori). In Theorem 9.4 below,
we prove the existence of natural swallow follow tori under certain assumptions.
The following example shows that a knot does not necessarily have swallow follow
tori. We first analyze basic properties of knots that admit natural swallow follow
tori: let K1, K2 ⊂ S3 be prime knots and T ⊂ E(K1#K2) be a natural swallow
follow torus. By exchanging the subscripts if necessary we may assume that T
decomposes E(K1#K2) as E(K1)

(1)
∪T E(K2). By definition of naturality,

g(E(K1#K2))= g(E(K1)
(1))+ g(E(K2))− 1.
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It is easy to see that g(E(K1)
(1)) ≥ g(E(K1)). Combining these, we see that

g(E(K1#K2))≥ g(E(K1))+g(E(K2))−1. Morimoto [1995] constructed examples
of prime knots K1, K2 for which g(E(K1#K2)) = g(E(K1)) + g(E(K2)) − 2.
We conclude that for these knots, E(K1#K2) does not admit a natural swallow
follow torus.

Example 9.3 (knots where only certain swallow follow tori are natural). This
example is of a more subtle phenomenon. It shows that even when E(K1#K2) does
admit a natural swallow follow torus, not every swallow follow torus is natural. In
this sense, the weak reduction found in Theorem 9.4 is special as it finds natural
swallow follow tori.

Let KMSY⊂ S3 be the knot constructed by Morimoto, Sakuma and Yokota [1996]
and recall the notation 2KMSY = KMSY#KMSY. It was shown in [Morimoto et al.
1996] that g(E(KMSY))= 2 and g(E(2KMSY))= 4.

We claim that g(E(KMSY)
(1))= 3. By [Rieck 2000], g(E(KMSY)

(1))= 2 or 3.
Assume for a contradiction that g(E(KMSY)

(1))= 2. By Corollary 6.4 (with c = 0,
c1 = 1, and c2 = 0) we have

g(E(2KMSY))≤ g(E(KMSY)
(1))+ g(E(KMSY))− 1= 2+ 2− 1= 3,

a contradiction. Hence g(E(KMSY)
(1))= 3.

Let K be any nontrivial 2-bridge knot. It is well known that g(E(K )) = 2.
We claim that g(E(KMSY#K )) = 3. Since knots of tunnel number 1 are prime
[Norwood 1982], g(E(KMSY#K )) ≥ 3. On the other hand, since K admits a
(1, 1) decomposition, by Theorem 5.4 we have that g(E(K )(1)) = 2. As above,
Corollary 6.4 gives

g(E(KMSY#K ))≤ g(E(KMSY))+ g(E(K )(1))− 1= 2+ 2− 1= 3.

Hence g(E(KMSY#K ))= 3.
E(KMSY#K ) admits two swallow follow tori, say, T1 and T2, that decompose it

as follows:

(1) g(E(KMSY#K ))= E(KMSY)
(1)
∪T1 E(K ).

(2) g(E(KMSY#K ))= E(KMSY)∪T2 E(K )(1).

In each case, amalgamating minimal genus Heegaard surfaces for the manifolds
appearing on the right-hand side yields a Heegaard surface for E(KMSY#K ) whose
genus fulfills (Lemma 2.2):

(1) g(E(KMSY)
(1))+ g(E(K ))− g(T1)= 3+ 2− 1= 4.

(2) g(E(KMSY))+ g(E(K )(1))− g(T2)= 2+ 2− 1= 3.

We conclude that T2 is a natural swallow follow torus but T1 is not.
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In this section we show that if Ki is m-small for all i , then any minimal genus
Heegaard surface for E(# n

i=1Ki )
(c) weakly reduces to a natural collection of swallow

follow tori. The statement of Theorem 9.4 is more general and allows for nonminimal
genus Heegaard surfaces.

Theorem 9.4. Let Ki ⊂ Mi be prime knots in compact manifolds so that E(Ki )

not homeomorphic to T 2
× I , E(Ki ) is irreducible, and ∂N (Ki ) is incompressible

in E(Ki ). Let 6 be a (not necessarily minimal genus) Heegaard surface for
E(# n

i=1Ki )
(c). Then one of the following holds:

(1) 6 admits iterated weak reductions that yield a collection of n − 1 swallow
follow tori, say, T, giving the decomposition

E(# n
i=1Ki )

(c)
=

⋃
T

E(Ki )
(ci ),

where c1, . . . , cn are integers such that
∑n

i=1 ci = c+ n− 1.

(2) For some i , Ki admits an essential meridional surface S with χ(S)≥6−2g(6).

The main corollary of Theorem 9.4 allows us to calculate g(E(# n
i=1Ki )

(c)) in
terms of g(E(Ki )

(ci )).

Corollary 9.5. In addition to the assumptions of Theorem 9.4, suppose that no Ki

admits an essential meridional surface S with χ(S)≥ 6− 2g(E(# n
i=1Ki )

(c)). Then
E(# n

i=1Ki )
(c) admits a natural collection of n− 1 swallow follow tori; equivalently,

there exist integers c1, . . . , cn ≥ 0 so that
∑n

i=1 ci = c+ n− 1 and

g(E(# n
i=1Ki )

(c))=

n∑
i=1

g(E(Ki )
(ci ))− (n− 1).

Proof. Apply Theorem 9.4 to a minimal genus Heegaard splitting of E(# n
i=1Ki )

(c)

and apply Lemma 2.2. �

Corollary 9.6. In addition to the assumptions of Theorem 9.4, suppose that no Ki

admits an essential meridional surface S with χ(S)≥ 6− 2g(E(# n
i=1Ki )

(c)). Then

g(E(# n
i=1Ki )

(c))=min
{ n∑

i=1

g(E(Ki )
(ci ))− (n− 1)

}
,

where the minimum is taken over all integers c1, . . . , cn ≥ 0 with 6ci = c+ n− 1.

Proof. By Corollary 6.4, for any collection of integers c1, . . . , cn such that
∑n

i=1 ci=

c+ n− 1 we have that

g(E(# n
i=1Ki )

(c))≤

n∑
i=1

g(E(Ki )
(ci ))− (n− 1)

and by Corollary 9.5, there exist integers c1, . . . , cn for which equality holds. The
corollary follows. �
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Proof of Theorem 9.4. We induct on (n, c) ordered lexicographically. Recall that in
the beginning of the proof of Theorem 1.8 we showed that (n, c) is well defined. If
n = 1 there is nothing to prove; assume from now on n > 1.

Assume Theorem 9.4(2) does not hold, that is, for each i , E(Ki ) does not admit
an essential meridional surface S with χ(S) ≥ 6− 2g(6). Then by the swallow
follow torus theorem [Kobayashi and Rieck 2006a, Theorem 4.1] 6 weakly reduces
to a swallow follow torus, say, T. T decomposes E(# n

i=1Ki )
(c) as E(K I )

(cI ) ∪T

E(K J )
(cJ ), where I ⊆{1, . . . , n} (possibly empty), where cI and cJ are nonnegative

integers whose sum is c+1, K I = #i∈I Ki , and K J = #i 6∈I Ki . Denote the Heegaard
surfaces induced on E(K I )

(cI ) and E(K J )
(cJ ) by 6I and 6J , respectively.

Case One: ∅ 6= I 6= {1, . . . , n}. In this case both E(K I )
(cI ) and E(K J )

(cJ )

are exteriors of knots with strictly less than n prime factors and hence we may
apply induction to both. Since g(6I ) < g(6), Theorem 9.4(2) does not hold for
E(K I )

(cI ). Hence, by induction, 6I admits iterated weak reduction that yields a
collection of |I |−1 swallow follow tori (say, TI ⊂ E(K I )

(cI )) so that the following
conditions hold:

(1) TI decompose E(K I )
(cI ) as

⋃
TI

E(Ki )
(ci ) (for i ∈ I ).

(2)
∑

i∈I ci = cI + |I | − 1.

Similarly, 6J admits iterated weak reduction that yields a collection of (n−|I |)−1
swallow follow tori (say, TJ ⊂ E(K J )

(cJ )) so that the following conditions hold:

(1) TJ decompose E(K J )
(cJ ) as

⋃
TJ

Ei (Ki )
(ci ) (for i 6∈ I ).

(2)
∑

i 6∈I ci = cJ + (n− |I |)− 1.

Thus, after iterated weak reduction of 6 we obtain T= T ∪TI ∪TJ . By the above,
T decomposes E(# n

i=1Ki )
(c) as

⋃
T E(Ki )

(ci ), so that (recalling that cI+cJ = c+1)

n∑
i=1

ci =
∑
i∈I

ci +
∑
i 6∈I

ci

= cI + |I | − 1+ cJ + (n− |I |)− 1= c+ n− 1.

This proves Theorem 9.4 in Case One.

Case Two: I = ∅ or I = {1, . . . , n}. By symmetry we may assume that I =
{1, . . . , n}. In that case, E(K J )

(cJ ) ∼= D(cJ ), (where D(cJ ) is a disk with cJ holes
cross S1), and T gives the decomposition:

E(# n
i=1Ki )

(c)
= E(# n

i=1Ki )
(cI ) ∪T D(cJ ).

Since T is essential (and in particular, not boundary parallel), cJ ≥ 2. Since
cI + cJ = c + 1, we have that cI < c. Thus the complexity of E(# n

i=1Ki )
(cI )

is (n, cI ) < (n, c) and we may apply induction to E(# n
i=1Ki )

(cI ). Let 6I be the
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Heegaard surface for E(# n
i=1Ki )

(cI ) induced by weak reduction. By induction, 6I

admits a repeated weak reduction that yields a system of n− 1 swallow follow tori,
say, TI , that decomposes E(# n

i=1Ki )
(cI ) as

E(# n
i=1Ki )

(cI ) =

⋃
TI

E(Ki )
(ci )

with
∑n

i=1 ci = cI + n− 1. Let T ′ be a component of TI . Then T ′ decomposes
E(# n

i=1Ki )
(cI ) as

E(# n
i=1Ki )

(cI ) = E(#i∈I ′Ki )
(b1) ∪T ′ E(#i 6∈I ′Ki )

(b2),

for some I ′ ⊆ {1, . . . , n} and some integers b1, b2 ≥ 0 with b1+b2 = cI +1. Since
T ′ ⊂ TI , we have that ∅ 6= I ′ 6= {1, . . . , n}. By Proposition 2.3, we see that 6
weakly reduces to T ′. This reduces Case Two to Case One, completing the proof
of Theorem 9.4. �

10. Calculating the growth rate of m-small knots

In this final section we complete the proof of Theorem 1.2. Let K ⊂M be an m-small
admissible knot in a compact manifold. Recall the notation nK and E(K )(c).

The difference between g(E(K )(c)) and g(E(K ))+ c is measured by a function
denoted fK that plays a key role our work:

Definition 10.1. Given a knot K , we define the function fK : Z≥0→ Z to be

fK (c)= g(E(K ))+ c− g(E(K )(c)).

We immediately see that fK has the following properties, which we will often
use without reference:

(1) fK (0)= 0.

(2) For c≥ 0, fK (c)≤ fK (c+1)≤ fK (c)+1: this follows from the fact (proved
in [Rieck 2000]) that for all c ≥ 0,

g(E(K )(c))≤ g(E(K )(c+1))≤ g(E(K )(c))+ 1.

(3) For c ≥ 0, 0≤ fK (c)≤ c (this follows easily from (2)).

Before proceeding, we rephrase Corollaries 9.5 and 9.6 in terms of fK :

Corollary 10.2. Let K ⊂M be a knot in a compact manifold and let n be a positive
integer. Suppose that E(K ) does not admit a meridional essential surface S with
χ(S)≥ 6− 2g(E(nK )). Then there exist integers c1, . . . , cn ≥ 0 with 6ci = n− 1
so that:

g(E(nK ))= ng(E(K ))−
n∑

i=1

fK (ci ).
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Proof. By Corollary 9.5 (with c = 0) there exist c1, . . . , cn ≥ 0 with 6ci = n− 1,
so that g(E(nK ))=

∑n
i=1 g(E(K )(ci ))− (n− 1). We get:

g(E(nK ))=
[ n∑

i=1

g(E(K )(ci ))
]
− (n− 1)

=

[ n∑
i=1

g(E(K ))+ ci − fK (ci )
]
− (n− 1)

= ng(E(K ))+
[ n∑

i=1

ci

]
−

[ n∑
i=1

fK (ci )
]
− (n− 1)

= ng(E(K ))+ (n− 1)−
[ n∑

i=1

fK (ci )
]
− (n− 1)

= ng(E(K ))−
n∑

i=1

fK (ci ). �

A similar argument shows that Corollary 9.6 gives:

Corollary 10.3. Let K ⊂M be a knot in a compact manifold and let n be a positive
integer. Suppose that E(K ) does not admit a meridional essential surface S with
χ(S)≥ 6− 2g(E(nK )). Then,

g(E(nK ))=min
{

ng(E(K ))−
∑n

i=1
fK (ci )

}
= ng(E(K ))−max

{∑n

i=1
fK (ci )

}
,

where the minimum and maximum are taken over all integers c1, . . . , cn ≥ 0 with∑n
i=1 ci = n− 1.

Recall (Notation 1.1) that we denote g(E(K ))−g(M) by g and the bridge indices
of K with respect to Heegaard surfaces of genus g(E(K ))− i by b∗i (i = 1, . . . , g),
so that 0< b∗1 < · · ·< b∗i < · · ·< b∗g. We formally set b∗0 = 0 and b∗g+1 =∞. Note
that these properties imply that for every c≥ 0 there is a unique index i (0≤ i ≤ g),
depending on c, so that b∗i ≤ c< b∗i+1; we will use this fact below without reference.

In the following proposition we calculate fK (c) when E(K ) does not admit an
essential meridional surface S with χ(S)≥ 6− 2g(E(K )(c)).

Proposition 10.4. Let K be a knot and c ≥ 0 be an integer. Let 0 ≤ i ≤ g be the
unique index for which b∗i ≤ c < b∗i+1. Then fK (c) ≥ i . If , in addition, E(K )
does not admit an essential meridional surface S with χ(S)≥ 6− 2g(E(K )(c))
then equality holds:

fK (c)= i.
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Proof of Proposition 10.4. We first prove that fK (c)≥ i holds for any knot. Since fK

is a nonnegative function we may assume i ≥ 1. By the definition of b∗i , K admits
a (g(E(K ))− i , b∗i ) decomposition. Since c ≥ b∗i , K admits a (g(E(K ))− i, c)
decomposition. By Corollary 5.6 we have that g(E(K )(c)) ≤ g(E(K ))− i + c.
Therefore,

fK (c)= g(E(K ))+ c− g(E(K )(c))≥ g(E(K ))+ c− (g(E(K ))− i + c)= i.

Next we assume, in addition, that E(K ) does not admit an essential meridional
surface S with χ(S)≥ 6−2g(E(K )(c)). We will complete the proof of the proposi-
tion by showing that fK (c) < i + 1; suppose for a contradiction that fK (c)≥ i + 1.
Thus g(E(K )(c))= g(E(K ))+ c− fK (c)≤ g(E(K ))+ c− (i + 1).

Assume first that i = g. Then by Corollary 8.1 (with g(E(K ))+c−(g+1) corre-
sponding to h) we see that k admits a (g(E(K ))+c−(g+1)−c, c) decomposition.
In particular, M admits a Heegaard surface of genus (g(E(K )))+ c− (g+ 1)− c.
Hence we see:

g(M)≤ (g(E(K ))+ c− (g+ 1)− c

= g(E(K ))− g− 1

= g(E(K ))− (g(E(K ))− g(M))− 1

= g(M)− 1.

This contradiction completes the proof when i = g.
Next assume 0≤ i < g. Applying Corollary 8.1 again (with g(E(K ))+c−(i+1)

corresponding to h in Corollary 8.1) we see that K admits a (g(E(K ))− (i+1), c)
decomposition. By definition, b∗i+1 is the smallest integer such that K admits a
(g(E(K ))− (i + 1), b∗i+1) decomposition; hence c ≥ b∗i+1. This contradicts our
choice of i in the statement of the proposition, showing that fK (c) < i + 1. This
completes the proof of Proposition 10.4. �

As an illustration of Proposition 10.4, let K be an m-small knot in S3. Suppose
that g = 3, b∗1 = 5, b∗2 = 7, and b∗3 = 23. (We do not know if a knot with these
properties exists.) Then

fK (c)=


0 if 0≤ c ≤ 4,
1 if 5≤ c ≤ 6,
2 if 7≤ c ≤ 22,
3 if 23≤ c.

Not much is known about fK for knots that are not m-small.

Question 10.5. Does there exist a knot K in a manifold M with unbounded fK ?
Does there exist a knot K with fK (c) > g(E(K ))−g(M) (for sufficiently large c)?
What can be said about the behavior of the function fK ?

With the preparation complete, we are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Fix the notation of Theorem 1.2. Since the upper bound
was obtained in Proposition 7.1, we assume from now on that K is m-small. By
Corollary 10.3, g(E(nK ))=ng(E(K ))−max

{∑n
i=1 fK (ci )

}
, where the maximum

is taken over all integers c1, . . . , cn ≥ 0 with
∑n

i=1 ci = n− 1.
Fix n and let c1, . . . , cn ≥ 0 be integers with

∑n
i=1 ci = n − 1 that maximize∑n

i=1 fK (ci ).

Lemma 10.6. We may assume that the sequence c1, . . . , cn fulfills the following
conditions for some 1≤ l ≤ n:

(1) ci ≥ ci+1 (i = 1, . . . , n− 1).

(2) For i ≤ l, ci ∈ {b∗1, . . . , b∗g}.

(3) cl+1 < b∗1 .

(4) For i > l + 1, ci = 0.

Proof. By reordering the indices if necessary we may assume (1) holds.
Let l be the largest index for which fK (cl) 6= 0. For i = 1, . . . , l, let 0≤ j (i)≤ g

be the unique index for which b∗j (i) ≤ ci < b∗j (i)+1 (recall that we set b∗0 = 0 and
b∗g+1 =∞). Define c′1, . . . , c′n as follows:

(1) For i ≤ l, set c′i = b∗j (i) (i.e., c′i is the largest b∗j that does not exceed ci ).

(2) Set c′l+1 = n− 1−
(∑l

i=1 c′i
)
.

(3) For i > l + 1, set c′i = 0.

By Proposition 10.4, for i ≤ l, fK (ci )= fK (b∗j (i))= fK (c′i ). We get:

n∑
i=1

fK (c′i )=
l∑

i=1

fK (c′i )+
n∑

i=l+1

fK (c′i )

=

l∑
i=1

fK (ci )+

n∑
i=l+1

fK (c′i )

≥

l∑
i=1

fK (ci )=

n∑
i=1

fK (ci ).

(For the last equality, recall that fK (ci )= 0 for i > l.)
Since c1, . . . , cn maximizes

∑n
i=1 fK (ci ), we conclude that

n∑
i=1

fK (ci )=

n∑
i=1

fK (c′i )

and hence fK (c′l+1)= 0; so c′l+1 < b∗1 . Thus c′1, . . . , c′n is a maximizing sequence;
it is easy to see that it fulfills conditions (1)–(4). �
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We will denote the n-th term of the defining sequence of the growth rate by Sn:

Sn =
g(E(nK ))− ng(E(K ))+ n− 1

n− 1
.

By Corollary 10.3

(2) Sn = 1−
max

{∑n
i=1 fK (ci )

}
n− 1

.

In order to bound Sn below we need to understand the following optimization
problem, where here we are assuming that the maximizing sequence fulfills the
conditions listed in Lemma 10.6, and in particular, fK (ci )= 0 for i > l.

Problem 10.7. Find nonnegative integers l and c1,...,cl that maximize
∑l

i=1 fK (ci )

subject to the constraints

(1)
∑l

i=1 ci ≤ n− 1,

(2) ci ∈ {b∗1, . . . , b∗g} (for 1≤ i ≤ l).

For i = 1, . . . , g, let ki be the number of times that b∗i appears in c1, . . . , cl . By
Proposition 10.4, fK (b∗i )= i ; thus Problem 10.7 can be rephrased as follows:

Problem 10.8. Maximize
∑g

i=1 ki i subject to the constraints

(1)
∑g

i=1 ki b∗i ≤ n− 1,

(2) ki is a nonnegative integer.

We first solve this optimization problem over R; we use the variables x1, . . . , xg

instead of k1, . . . , kg.

Problem 10.9. Given n ∈ R, n > 1, maximize
∑g

i=1 xi i subject to the constraints

(1)
∑g

i=1 xi b∗i ≤ n− 1,

(2) x1 ≥ 0, . . . , xg ≥ 0.

It is easy to see that for any sequence x1, . . . , xg that realizes the maximum we
have that

∑g
i=1 xi b∗i = n− 1, for otherwise we can increase the value of x1, thus

increasing
∑g

i=1 xi i and contradicting maximality. Problem 10.9 is an elementary
linear programming problem (known as the standard maximum problem) and is
solved using the simplex method which gives:

Lemma 10.10. There is a (not necessarily unique) index i0, which is independent
of n, such that a solution of Problem 10.9 is given by

xi0 =
n−1
b∗i0

, xi = 0 (i 6= i0).

Hence the maximum is
(n− 1)i0

b∗i0

.



98 TSUYOSHI KOBAYASHI AND YO’AV RIECK

Proof of Lemma 10.10. The notation used in this proof was chosen to be consistent
with notation often used in linear programming texts. Let EN , EF and Ex ∈ Rg denote
the vectors

EN = (b∗1, . . . , b∗g), EF = (1, . . . , g), and Ex = (x1, . . . , xg).

For n ∈ R, n > 1, let 1n be

1n =
{
Ex ∈ Rg

| EN · Ex = n− 1, x1 ≥ 0, . . . , xg ≥ 0
}
.

Note that 1n is a simplex and its codimension k faces are obtained by setting k
variables to zero. Problem 10.9 can be stated as:

maximize EF · Ex, subject to Ex ∈1n.

Since the gradient of EF · Ex is EF and the normal to 1n is EN , the gradient of the
restriction of EF · Ex to 1n is the projection

EP = EF −
EF · EN
| EN |2

EN .

Note that EP is independent of n. The maximum of EN · Ex on 1n is found by moving
along 1n in the direction of EP . This shows that the maximum is obtained along a
face defined by setting some of the variables to zero, and the variables set to zero
are independent of n. Lemma 10.10 follows by picking i0 to be one of the variables
not set to zero. �

Fix an index i0 as in Lemma 10.10. If b∗i0
| n − 1 then the maximum (over R)

found in Lemma 10.10 is in fact an integer and hence is also the maximum for
Problem 10.7. This allows us to calculate Sn in this case:

Lemma 10.11. If b∗i0
| n− 1 then Sn = 1− i0/b∗i0

.

Proof. Sn = 1−
max

{∑n
i=1 fK (ci )

}
n− 1

= 1−
(n− 1)i0

(n− 1)b∗i0

= 1−
i0

b∗i0

. �

We now turn our attention to the general case, where b∗i0
may not divide n− 1.

We will only consider values of n for which n > b∗i0
. As in Section 7, let ki0 and r

be the quotient and remainder when dividing n− 1 by b∗i0
, so that

(3) n− 1= ki0b∗i0
+ r, 0≤ r < b∗i0

.

Let c j ≥0 (1≤ j≤n) be integers with
∑n

j=1 c j =n−1 that maximize
∑n

j=1 fK (c j ).
We denote n− r by n′. Let c′j ≥ 0 (1≤ j ≤ n′) be integers with

∑n′
j=1 c′j = n′− 1

that maximize
∑n′

j=1 fK (c′j ).

Claim 10.12.
∑n

j=1 fK (c j )≤
∑n′

j=1 fK (c′j )+ r .
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Proof. Starting with the sequence c1, . . . , cn , we obtain a new sequence by subtract-
ing 1 from exactly one c j (with c j >0). Let c′′′j be a sequence of nonnegative integers
obtained by repeating this process r times. Then

∑n
j=1 c′′′j = n− 1− r = n′− 1.

Let c′′j be the sequence obtained from c′′′j by removing r zeros (note that this is
possible as there indeed are at least r zeros). We get

n′∑
j=1

fK (c′j )+ r ≥
n′∑

j=1

fK (c′′j )+ r (since c′j maximizes)

=

n∑
j=1

fK (c′′′j )+ r (since fK (0)= 0)

≥

n∑
j=1

fK (c j ) (since fK (c)+ 1≥ fK (c+ 1)). �

Note that b∗i0
|n′− 1 and so we may apply Lemma 10.11 to calculate Sn′ . Using

Equation (2) from page 97 for the first line, we get:

Sn = 1−
max

{∑n
i=1 f (ci )

}
n−1

(Equation (2) for Sn)

≥ 1−
max

{∑n′
j=1 f (c′j )+r

}
n−1

(Claim 10.12)

= 1− n′−1
n−1

max
{∑n′

j=1 f (c′j )
}

n′−1
−

r
n−1

=
n′−1
n−1

(
1−

max
{∑n′

j=1 f (c′j )
}

n′−1

)
+

(
1− n′−1

n−1

)
−

r
n−1

=
n′−1
n−1

Sn′+

(
1− n′−1

n−1

)
−

r
n−1

(Equation (2) for Sn′)

=
n′−1
n−1

(
1−

i0

b∗i0

)
+

(
1− n′−1

n−1
)
−

r
n−1

(Lemma 10.11)

=
n′−1
n−1

(
1−

i0

b∗i0

)
+

(
1− n′+r−1

n−1

)
=

n−r−1
n−1

(
1−

i0

b∗i0

)
(substituting n′= n−r).

Recall that in the proof of Proposition 7.1 we proved Equation (1) (see page 78)
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which says (recalling that ki0 was defined in Equation (3) above):

Sn < 1−
i0

b∗i0

ki0

ki0 + 1
.

Combining these facts we obtain

n−r−1
n−1

(
1−

i0

b∗i0

)
≤ Sn < 1−

i0

b∗i0

ki0

ki0 + 1
.

By Equation (3) above, r < b∗i0
and limn→∞ ki0 =∞. We conclude that as n→∞

both bounds limit on 1− i0/b∗i0
, and thus limn→∞ Sn exists and equals 1− i0/b∗i0

.
This completes the proof of Theorem 1.2. �
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EXTREMAL PAIRS OF YOUNG’S INEQUALITY
FOR KAC ALGEBRAS

ZHENGWEI LIU AND JINSONG WU

In this paper, we prove a sum set estimate and the exact sum set theorem for
unimodular Kac algebras. Combining the characterization of minimizers
of the Donoso–Stark uncertainty principle and the Hirschman–Beckner un-
certainty principle, we characterize the extremal pairs of Young’s inequality
and extremal operators of the Hausdorff–Young inequality for unimodular
Kac algebras.

1. Introduction

Young’s inequality for the real line R was first studied by Young [1912]. Beckner
[1975] characterized the extremal pairs of Young’s inequality for R with the sharp
constant and consequently characterized the extremal functions of the Hausdorff–
Young inequality. For general cases, Fournier [1977] characterized the extremal pairs
of Young’s inequality and the extremal functions of the Hausdorff–Young inequality
for unimodular locally compact groups. (Note that Russo [1974] characterized
the extremal functions of the Hausdorff–Young inequality directly.) For a long
time, Young’s inequality was showed for commutative algebras. Recently, S. Wang
and the authors [Liu et al. 2017] proved Young’s inequality for locally compact
quantum groups. Bobkov, Madiman and Wang [Bobkov et al. 2011] conjectured
that a fractional generalization of Young’s inequality for R is true.

Kac algebras were introduced independently by L. I. Vainerman and G. I. Kac
[Vaı̆nerman 1974; Vaı̆nerman and Kac 1973] and by Enock and Nest [Enock and
Schwartz 1973; 1974; 1975]. These algebras generalized locally compact groups
and their duals. Locally compact quantum groups introduced by J. Kustermans and
S. Vaes [Kustermans and Vaes 2000; 2003] generalized Kac algebras. It is natural
to ask what extremal pairs of Young’s inequality for locally compact quantum
groups are. Unfortunately, the methods to characterize extremal pairs of Young’s
inequality for locally compact groups [Fournier 1977] can not be applied to locally
compact quantum groups. We plan to characterize the extremal pairs of Young’s
inequality for locally compact quantum groups. Our first aim in this direction is

MSC2010: 46L89, 58B32.
Keywords: Young’s inequality, Kac algebras, sum set, uncertainty principles.
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to characterize extremal pairs of Young’s inequality for unimodular Kac algebras.
Our proof for noncommutative algebras is quite different from the classical proof
for commutative algebras.

In this paper, we will characterize extremal pairs of Young’s inequality and
extremal operators of the Hausdorff–Young inequality for unimodular Kac algebras.
We show that extremal pairs and extremal operators are exactly bishifts of biprojec-
tions introduced in [Liu and Wu 2017] and we will use the notations therein. Prior
to the characterization, we prove a sum set theorem for unimodular Kac algebras.

Main Theorem (sum set theorem1, Theorem 3.1, Theorem 3.9). Suppose G is a
unimodular Kac algebra with a Haar tracial weight '. Let p; q be projections in
L1.G/. Then

maxf'.p/; '.q/g � S.p � q/;

where S.x/D '.R.x// and R.x/ is the range projection of x, x 2L1.G/. More-
over the following are equivalent:

(1) S.p � q/D '.p/ <1;

(2) '.q/�1p � q is a projection in L1.G/;

(3) S.p � .q �R.q/�.m//� q�.j//D '.p/ for some m� 0, j 2 f0; 1g, mC j > 0,
q�.0/ means q vanishes;

(4) there exists a biprojection B such that q is a right subshift of B and p D

R.x �B/ for some x > 0.

Combining the results above and the characterization of minimizers of the
Hirschman–Beckner and the Donoho–Stark uncertainty principles for unimodular
Kac algebras, we are able to characterize the extremal pairs of Young’s inequality.

Theorem 4.8. Suppose G is a unimodular Kac algebra. Let x;y be '-measurable.
Then the following are equivalent:

(1) kx�ykr Dkxktkyks for some 1< r; t; s <1 such that 1=rC1D 1=tC1=s;

(2) kx �ykr D kxktkyks for any 1� r; t; s �1 such that 1=r C 1D 1=t C 1=s;

(3) there exists a biprojection B such that xD .hBax/�F. QBg/ and y DF. QBg/�

.Bf ay/, where QB is the range projection of F.B/; Bg, Bf are right shifts of
B; hB is left shift of B, and ax , ay are elements such that x;y are nonzero.

Furthermore, we characterize the extremal operators of the Hausdorff–Young
inequality for unimodular Kac algebra.

Theorem 5.2. Suppose G is a unimodular Kac algebra. Let x be '-measurable.
Then the following are equivalent:

1We refer the reader to [Tao and Vu 2006] for a classical sum set theorem
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(1) kF.x/kt=.t�1/ D kxkt for some 1< t < 2;

(2) kF.x/kt=.t�1/ D kxkt for any 1� t � 2;

(3) x is a bishift of a biprojection.

This paper is organized as follows. In Section 2, we recall some basic notations
and properties of unimodular Kac algebras. In Section 3, we prove the sum set
estimate and the exact inverse sum set theorem for unimodular Kac algebras. In
Section 4, we characterize extremal pairs of Young’s inequality for unimodular Kac
algebras. In Section 5, we characterize extremal operators of the Hausdorff–Young
inequality for unimodular Kac algebras.

2. Preliminaries

Let M be a von Neumann algebra acting on a Hilbert space H with a normal
semifinite faithful tracial weight '.

A closed densely defined operator x affiliated with M is called '-measurable if
for all � > 0 there exists a projection p 2M such that pH�D.x/, and '.1�p/� �,
where D.x/ is the domain of x. Denote by eM the set of '-measurable closed densely
defined operators. Then eM is �-algebra with respect to strong sum, strong product,
and adjoint operation. If x is a positive self-adjoint '-measurable operator, then
x˛ log x is '-measurable for any ˛ 2C with <˛ > 0, where <˛ is the real part of ˛.

For any positive self-adjoint operator x affiliated with M, we put

'.x/D sup
n2N

'

�Z n

0

t det

�
;

where x D
R1

0 t det is the spectral decomposition of x. Then for t 2 Œ1;1/, the
noncommutative Lt space Lt .M/ with respect to ' is given by

Lt .M/D fx densely defined, closed, affiliated with M j '.jxjt / <1g:

The t-norm kxkt of x in Lt .M/ is given by kxkt D '.jxjt /1=t . We have that
Lp.M/ � eM. For more details on noncommutative Lp space we refer to [Terp
1981; 1982].

Now let us recall the definition of locally compact quantum groups in [Kustermans
and Vaes 2000].

Let M be a von Neumann algebra with a normal semifinite faithful weight '.
Then N'Dfx 2M j'.x�x/<1g, M'DN�'N' , MC' Dfx�0 jx 2M'g. Denote
by H' the Hilbert space by taking the closure of N' . The map ƒ' WN' 7!H' is
the inclusion map.

A locally compact quantum group GD .M; �; ';  / consists of

(1) a von Neumann algebra M,
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(2) a normal, unital, *-homomorphism � WM!M˝M such that .�˝ �/ ı�D
.�˝�/ ı�,

(3) a normal, semifinite, faithful weight ' such that .�˝'/�.x/D '.x/1;8x 2

MC' ; a normal, semifinite, faithful weight  such that . ˝ �/�.x/D  .x/1;
8x 2MC

 
,

where˝ denotes the von Neumann algebra tensor product and � denotes the identity
map. The normal, unital, *-homomorphism � is a comultiplication of M, ' is the
left Haar weight, and  is the right Haar weight.

We assume that M acts on H' . There exists a unique unitary operator W 2

B.H' ˝H'/ which is known as the multiplicative unitary defined by

W �.ƒ'.a/˝ƒ'.b//D .ƒ' ˝ƒ'/.�.b/.a˝ 1//; a; b 2N' :

Moreover for any x 2M, �.x/DW �.1˝x/W .
For the locally compact quantum group G, there exists an antipode S , a scaling

automorphism group � , and a unitary antipode R and there also exists a dual locally
compact quantum group OGD . OM; O�; O'; O / of G. The antipode, the scaling group,
and the unitary antipode of OG are denoted by OS , O� , and OR respectively. We refer to
[Kustermans and Vaes 2000; 2003] for more details.

For any ! 2M�, �.!/D .!˝ �/.W / is the Fourier representation of !, where
M� is the Banach space of all bounded normal functionals on M. For any !, � in
M�, the convolution ! � � is given by

! � � D .!˝ �/�:

S. Wang and the authors [Liu et al. 2017] defined the convolution of x 2Lt .G/ and
y 2Ls.G/ for 1� t; s � 2. If the left Haar weights ', O' of G and OG respectively
are tracial weights, we have that the convolution is well-defined for 1� t; s �1

by the results in [Liu et al. 2017].
For any locally compact quantum group G, the Fourier transforms Ft WL

t .G/!

Ls. OG/ are well-defined, where 1=tC1=sD1, 1� t�2. (See [Cooney 2010; Caspers
2013] for the definition of Fourier transforms and [Van Daele 2007] for the definition
of the Fourier transform for algebraic quantum groups.) For any x in L1.G/, we
denote by x' the bounded linear functional on L1.G/ given by .x'/.y/D '.yx/

for any y in L1.G/. Recall that a projection p in L1.G/\L1.G/ is a biprojection
if F1.p'/ is a multiple of a projection in L1. OG/. A projection x in L1.G/\L2.G/

is called a left shift of a biprojection B if '.x/ D '.B/ and x � B D '.B/x.
A projection x in L1.G/ \ L2.G/ is called a right shift of a biprojection B if
'.x/D '.B/ and B �x D '.B/x. Denote by QB the range projection of F.B/. A
nonzero element x in L1.G/ is said to be a bishift of a biprojection B if there
exists a right shift Bg of the biprojection B and a right shift QBh of the biprojection
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QB and an element y in L1.G/ such that

x DbF. QBh/� .Bgy/:

(We refer to [Jiang et al. 2017; Liu and Wu 2017; Liu et al. 2017] for more properties
of biprojections and bishifts of biprojections.)

Throughout this paper, we focus on a unimodular Kac algebra G, which is a
locally compact quantum group subject to the condition that ' D  is tracial. (See
[Enock and Schwartz 1992] for more details.) For a unimodular Kac algebra G, we
denote by F the Fourier transform for simplicity.

Proposition 2.1. Suppose G is a unimodular Kac algebra and a 2 Lt .G/, b 2

Ls.G/, c 2Lr .G/ such that 1� r; t; s �1 and 1=r C 1=t C 1=s D 2. Then

'..a� b/c/D '
�
.R.c/� a/R.b/

�
D '

�
.b �R.c//R.a/

�
:

Proof. Suppose that a; b; c 2L1.G/\L1.G/. Then

'..a� b/c/D .a'˝ b'/.�.c//

D .a'R/
�
.�˝'/.�.c/.1˝ b//

�
D .a'R˝'c/.�.b// strong left invariance

D .a'R˝R.c/'R/.�.b//

D .R.c/'˝ a'/.�.R.b///

D '
�
.R.c/� a/R.b/

�
D '

�
.b �R.c//R.a/

�
:

By Young’s inequality [Liu et al. 2017], we see that the proposition is true for a 2

Lt .G/, b 2Ls.G/, c 2Lr .G/ such that 1� r; t; s�1 and 1=rC1=tC1=sD 2. �

Proposition 2.2. Suppose G is a unimodular Kac algebra. Let x 2 Lt .G/, y 2

Ls.G/ be positive such that 1� t; s �1, 1=t C 1=s D 1 Then

R.x �y/D supfR.p � q/ j p �R.x/; q �R.y/;p; q are projections in L1.G/g:

Proof. Let en be the spectral projection of x corresponding to Œ1=n; n� and fm the
spectral projection of y corresponding to Œ1=m;m� for n;m 2 N. Then we have
that en; fm 2L1.G/ and

1

nm
en �fm � enxen �fmyfm �mnen �fm:

Hence R.en �fm/�R.x �y/. Let QD supfR.p �q/ j p �R.x/; q �R.y/;p; q

are projections in L1.G/g. Then we have that QD supn;m R.en �fm/. Therefore
Q � R.x � y/. Assume that there is a nonzero vector � 2 H' such that Q� D 0

and R.x � y/� D �. We have that .en � fm/� D 0 for any n;m 2 N and then
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.enxen � fmyfm/� D 0. Therefore .x �y/� D 0, which leads a contradiction and
QDR.x �y/. �

Definition 2.3. Suppose G is a unimodular Kac algebra and x 2Lt .G/, y 2Ls.G/

are positive for 1� t; s �1. We define the symbol R.x �y/ in terms of x;y as

R.x �y/D supfR.p � q/ j p �R.x/; q �R.y/;p; q are projections in L1.G/g;

and
S.x �y/D '.R.x �y//:

Remark 2.4. In Definition 2.3, R.x�y/ and S.x�y/ are symbols. Proposition 2.2
shows that the symbol R.x �y/ is the usual one when x �y is well-defined.

3. The exact inverse sum set theorem

The sum set estimate is a theory of counting the cardinalities of additive sets in
additive combinatorics [Tao and Vu 2006]. The sum set estimate for Kac algebras
has a different behavior, because of the different types of topology. In this section,
we prove a sum set estimate and the exact inverse sum set theorem for unimodular
Kac algebras.

Theorem 3.1 (sum set estimate). Suppose G is a unimodular Kac algebra. Let p; q

be projections in L1.G/. Then

maxf'.p/; '.q/g � S.p � q/:

Moreover, S.p � q/ D '.p/ <1 if and only if '.q/�1p � q is a projection in
L1.G/.

Proof. First, we assume that p; q are projections in L1.G/. If S.p � q/D1, then
the inequality is true. We assume that S.p � q/ <1. By Hölder’s inequality,

kp � qk1 � kR.p � q/k2kp � qk2:

Note that
kp � qk1 D '.p � q/D '.p/'.q/;

and
kR.p � q/k22 D S.p � q/:

By Young’s inequality [Liu et al. 2017], we have

kp � qk2 � kpk1kqk2 D '.p/'.q/
1=2;

and
kp � qk2 � kqk1kpk2 D '.q/'.p/

1=2:
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Now we obtain that

'.p/'.q/� S.p � q/1=2'.p/'.q/1=2;

i.e., S.p � q/� '.q/. Similarly, we have S.p � q/� '.p/. Hence

maxf'.p/; '.q/g � S.p � q/:

For arbitrary projections p; q in L1.G/, by Definition 2.3, we have that

maxf'.p/; '.q/g � S.p � q/:

If S.p � q/ D '.p/ <1, the inequalities above are equalities. Thus p � q D

�R.p � q/ for some � > 0 (by the equality of Hölder’s inequality) and kp � qk2 D

kpk1kqk2. Now we see that p � q D '.q/�1R.p � q/.
If '.q/�1p �q is a projection, we have S.p �q/D '.q/�1'.p �q/D '.p/. �

Remark 3.2. By the results in [Jiang et al. 2016], there is an upper bound for the
finite dimensional case. But this is not always true for unimodular Kac algebras.
For the real line R, we let p be the characteristic function on the interval Œ0; 1� and q

the characteristic function on the set [k2ZŒk; kC 1=.k2C 1/�. Then R.p � q/D 1.

Corollary 3.3. Suppose G is a unimodular Kac algebra. Let v;w be partial isome-
tries in L1.G/\L1.G/ such that kv �wk1 D kvk1kwk1. Then

maxf'.jvj/; '.jwj/g � S.v �w/:

Moreover S.v�w/D '.jwj/ <1 if and only if 1='.jvj/ v�w is a partial isometry
in L1.G/.

Proof. The proof is similar to the one of Theorem 3.1. �
Proposition 3.4. Suppose G is a unimodular Kac algebra. Let p; q be projections
in L1.G/\L1.G/. Then the following are equivalent:

(1) kp � qkt D kpktkqk1 for some 1< t <1;

(2) kp � qkt D kpktkqk1 for any 1� t �1;

(3) S.p � q/D '.p/.

Proof. .1/) .3/: Suppose that kp � qkt D kpktkqk1 for some 1< t <1. Note
that kp � qk1 � kqk1. By the spectral decomposition, we have

1

'.q/
p � q D

Z 1

0

� dE�;

where fE�g� is a resolution of the identity for p � q. By the assumption, we obtainZ 1

0

�t'.dE�/D '.p/:
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Note that kp � qk1 D kpk1kqk1, i.e.,Z 1

0

�'.dE�/D '.p/:

Combining the two equations above, we see that E.f1g/ D 1='.q/p � q and
'.E.f1g//D '.p/, i.e., S.p � q/D '.p/.

.3/) .2/: Suppose that S.p�q/D'.p/. By Theorem 3.1, we have that 1='.q/p�

q is a projection. Hence for any 1� t �1,

1

'.q/
kp �qkt D

 1

'.q/
p �q


t
D kR.p �q/kt D S.p �q/1=t

D '.p/1=t
D kpkt ;

i.e., kp � qkt D kpktkqk1.

.2/) .1/: It is obvious. �
Proposition 3.5. Suppose G is a unimodular Kac algebra. Let x;y 2 L1.G/\

L2.G/ be nonzero positive elements. Then the following are equivalent:

(1) kx �yk2 D kxk1kyk2;

(2) there exists a biprojection B such that R.R.x/ � x/ � B, .y �R.y//B D

ky �R.y/k1B and ky �R.y/k1 D kyk
2
2
.

Proof. .1/) .2/: Note that

kx �yk22 D '..x �y/.x �y//

D '
�
R.y/..R.y/�R.x//�x/

�
D '

�
.R.x/�x/.y �R.y//

�
� kR.x/�xk1ky �R.y/k1

� kxk21kyk
2
2:

If kx � yk2 D kxk1kyk2, then '..R.x/ � x/.y � R.y/// D kR.x/ � xk1ky �

R.y/k1 and ky �R.y/k1 D kyk
2
2
. Let B be the spectral projection of y �R.y/

corresponding to ky � R.y/k1. By [Liu and Wu 2017, Proposition 3.14 and
Corollary 3.16], we have that B is a biprojection.

.2/) .1/: It follows by the argument above. �
Proposition 3.6. Suppose G is a unimodular Kac algebra. If there exists a nonzero
positive element x 2 L1.G/ \Lt .G/ for some t > 1 such that x � x D x, then
1= O'.F.x//x is a biprojection.

Proof. By assumption, we obtain that kxk1 D 1 and F.x/2 D F.x/. By the
Hausdorff–Young inequality [Cooney 2010], we have that kF.x/k1 � kxk1 D 1.
Hence F.x/ is a contractive idempotent, i.e., F.x/ is a projection. We see that
F.x/D F.x/� and x DR.x/.
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If t � 2, we have that x 2L1.G/\L2.G/. If 1< t < 2, we let � D t � 1, then
kxk1C� <1. We show that x 2 L2.G/. Let K.s/D 2s=.1C s/. Then K.s/ < s

when s > 1 and Kn.s/! 1 as n!1 for any s � 1. By Young’s inequality [Liu
et al. 2017], we have that

kxk2 D kx �xk2 � kxk
2
K.2/ D kx �xk2K.2/ � � � � � kxk

2n

K n.2/ � kxk
2n

1C� <1

for some n large enough. Hence x 2 L1.G/\L2.G/. Note that kx �R.x/k2 D

kxk2 D kxk2kxk1. By Proposition 3.5, we see that there exists a biprojection B

such that R.R.x/�x/� B and .R.x/�x/B D kR.x/�xk1B. Hence

x DR.x/�x D kR.x/�xk1B D kxk22B D O'.F.x//B: �

Definition 3.7. Suppose G is a unimodular Kac algebra and there exists a biprojec-
tion B in L1.G/. A projection q in L1.G/ is said to be a right (left) subshift of the
biprojection B if there exists a right (left) shift Bg of B such that q � Bg.

Proposition 3.8. Suppose G is a unimodular Kac algebra and B is a biprojection
in L1.G/\L1.G/. Let q be a projection in L1.G/. Then

R.q �R.q//� B if and only if q is a right subshift of B;

and
R.R.q/� q/� B if and only if q is a left subshift of B:

Proof. Suppose that R.q �R.q//�B. Let p1 DR.B � q/. We shall show that p1

is a projection in L1.G/. Since

R.B � q �R.q/�B/�R.B �B �B/D B;

by Theorem 3.1, we see that p1, R.p1 �R.p1// 2L1.G/, and

'.p1/� S.p1 �R.p1//� '.B/ <1:

On the other hand, '.p1/� '.B/ by Theorem 3.1. Then we obtain that '.p1/D

'.B/. By Theorem 3.1, we have that 1='.q/B � q is a projection and p1 D

1='.q/B � q.
Suppose q is a right subshift of B. Let p1 be the right subshift of B such that

q � p1. Then q �R.q/� p1 �R.p1/D '.B/B. �

Theorem 3.9 (exact inverse sum set theorem). Suppose G is a unimodular Kac
algebra. Let p; q be projections in L1.G/ \ L1.G/. Then the following are
equivalent:

(1) S.p � q/D '.p/;

(2) S.p � .q �R.q//�.m//� q�.j/ D '.p/ for some m� 0, j 2 f0; 1g, mC j > 0,
q�.0/ means q vanishes;
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(3) there exists a biprojection B such that q is a right subshift of B and p D

R.x �B/ for some x > 0.

Proof. .1/) .3/: By Proposition 3.4, we have that kp � qk2 D kpk2kqk1. By
Proposition 3.5, we see that there is a biprojection B such that R.q �R.q//� B

and .R.p/�p/B D kpk2
2
B. Since

'..p �B/p/D '.B.R.p/�p//D '.p/'.B/D '.p �B/;

we obtain that R.p �B/� p. By Theorem 3.1, we have that R.p �B/D p.

.3/) .2/: Let pDR.x �B/. Then R.p �B/D p and hence p �B D '.B/p by
Theorem 3.1. Note that

R..q �R.q//�.mCj//�R.B�.mCj//D B:

By Theorem 3.1, we have

'.p/� S.p � .q �R.q//�.m/ � q�.j//

� S
�
R.p � .q �R.q//�.m/ � q�.j//�R.q/�.j/

�
� S.p �B/D '.p/;

i.e.,
S.p � .q �R.q//�.m/ � q�.j//D '.p/:

.2/) .1/: By Theorem 3.1, we have that

'.p/D S.p � .q �R.q//�.m/ � q�.j//� S.p � q/� '.p/:

Hence S.p � q/D '.p/. �

4. Extremal pairs of Young’s inequality

In this section, we characterize extremal pairs of Young’s inequality for unimodular
Kac algebras.

Proposition 4.1. Suppose G is a unimodular Kac algebra. Let v;w be partial
isometries in L1.G/\L1.G/. Then the following are equivalent:

(1) kv �wkt D kvktkwk1 for some 1< t <1;

(2) kv �wkt D kvktkwk1 for any 1� t �1;

(3) 1=.'.jwj// jv �wj is a projection and kv �wk1 D kvk1kwk1.

Proof. By Corollary 3.3 and a similar argument of Proposition 3.4, we have the
proposition proved. �
Proposition 4.2. Suppose G is a unimodular Kac algebra. Let v;w be partial
isometries. Then the following are equivalent:
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(1) kv�wkr Dkvktkwks for some 1< t; r; s <1 such that 1=rC1D 1=tC1=s;

(2) kv �wkr D kvktkwks for any 1� r; t; s �1 such that 1=r C 1D 1=t C 1=s.

(3) there exists a biprojection B such that vD .hByv/� OF. QBg/ and wD OF. QBg/�

.Bf yw/, where Bg;Bf are right shifts of B, hB is a left shift of B and yv;yw
are elements such that v;w are nonzero partial isometries.

Proof. .1/) .2/: Suppose that kv �wkr D kvktkwks for some 1 < r; t; s <1

such that 1=rC1D 1=tC1=s. By Young’s inequality in [Liu et al. 2017], we have

kv �wkr � kvkrkwk1; kv �wkr � kvk1kwkr ;

and hence '.jvj/D'.jwj/. By Proposition 4.1, we see that kv�wkQr D'.jvj/1C1=Qr

for any 1� Qr �1. Therefore kv �wkQr D kvkQtkwkQs for any 1� Qr ; Qt ; Qs �1 with
1= Qr C 1D 1=Qt C 1=Qs.

.2/) .3/: Let r D 2. Then 1� t; s � 2. By Hölder’s inequality and the Hausdorff–
Young inequality [Cooney 2010], we obtain that

kvktkwks D kv �wk2

D kF.v/F.w/k2 � kF.v/kt=.t�1/kF.w/ks=.s�1/ � kvktkwks:

Hence for any 1� t , s � 2,

(1) kF.v/kt=.t�1/ D kvkt ; kF.w/ks=.s�1/ D kwks;

and

(2) kF.v/F.w/k2 D kF.v/kt=.t�1/kF.w/ks=.s�1/:

For (1), by [Liu and Wu 2017, Proposition 3.6], we have that v;w are minimizers
of the Hirschman–Beckner uncertainty principle for unimodular Kac algebras. By
[Liu and Wu 2017, Theorem 3.15], we see that v;w are bishifts of biprojections.
By Lemma 4.4, we have that

kvktkwks D kv �wkr � kjvj � jwjk
1=2
r kjv

�
j � jw�jk1=2r � kvktkwks:

For (2), we have that
jF.v/j D jF.w/�j;

i.e., R..F.v//�/DR.F.w//.
By Theorem 3.9, we have that there exists a biprojection B such that jvj is a left

shift hB of B and jwj is a right shift Bf of B. By the definition of a bishift of a
biprojection, we have that wD OF. QBg/� .Bf yw/ for some right shift of QB. By [Liu
and Wu 2017, Proposition 3.11], R.F.w//D QBg. Hence R..F.v//�/D QBg. By
[Liu and Wu 2017, Theorem 3.18], we have that v D .hByv/� OF. QBg/.
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.3/) .2/: Since v;w are bishifts of the biprojection B, we have that system of
equations (1) are true. By [Liu and Wu 2017, Proposition 3.11], we have

R.F.w//DR..F.v//�/D QBg:

Note that '.jvj/ D '.hB/ D '.Bf / D '.jwj/ and F.v/;F.w/ are multiples of
partial isometries. We see jF.v/j D jF.w/�j and that

kv �wk2 D kvktkwks

for any 1 � t; s � 2 from the argument for “.2/) .3/”. By Proposition 4.1, we
have kv �wkr D kvkrkwk1 for any 1� r �1. Therefore .2/ is true.

.2/) .1/: It is obvious. �
Lemma 4.3. Suppose G is a unimodular Kac algebra. For any a, b in L2.G/\

L1.G/, we define va;b WL
2.G/˝L2.G/!L2.G/ given by

va;b.ƒ'.x1/˝ƒ'.x2//Dƒ'.ax1 � bx2/

for any x1, x2 in L2.G/\L1.G/. Then va;b is bounded and va;bv
�
a;b
D aa��bb�.

Moreover,
kva;bk1 D kaa� � bb�k

1=2
1 :

Proof. For any y 2L2.G/\L1.G/, we have that

hva;b.ƒ'.x1/˝ƒ'.x2//;ƒ'.y/i D hƒ'.ax1�bx2/;ƒ'.y/i

D '.y�.ax1�bx2//

D .'˝'/..1˝y�/.R˝�/.�.bx2//.ax1˝1//

D .'˝'/..R˝�/.�.bx2//.ax1˝y�//

D '.R..�˝'/.�.bx2/.1˝y�//ax1/

D .'˝'/..ax1˝bx2/�.y
�//

D .'˝'/..x1˝x2/�.y
�/.a˝b//:

Note that

.'˝'/.�.y�/.aa�˝bb�/�.y//D .'˝'/..aa�˝bb�/�.yy�//

D '..yy�/.aa��bb�//� kaa��bb�k1'.yy�/

� kyk22kak
2
2kbk

2
1I

the last inequality follows from Young’s inequality in [Liu et al. 2017]. Then we
have that˝
va;b.ƒ'.x1/˝ƒ'.x2//;ƒ'.y/

˛
D
˝
ƒ'.x1/˝ƒ'.x2/; .ƒ' ˝ƒ'/..a

�
˝ b�/�.y//

˛
:
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Therefore

kva;bk � kak2kbk1 and v�a;bƒ'.y/D .ƒ' ˝ƒ'/..a
�
˝ b�/�.y//

whenever y 2L2.G/\L1.G/.
Now we have to check that vv�D aa��bb�. First, write�.y/D

P
ˇ yˇ1˝yˇ2.

Then
va;bv

�
a;bƒ'.y/D va;b..ƒ' ˝ƒ'/..a

�
˝ b�/�.y///

D

X
ˇ

va;b.ƒ'.a
�yˇ1/˝ƒ'.b

�yˇ2//

D

X
ˇ

ƒ'..aa�yˇ1/� .bb�yˇ2//

D

X
ˇ

Oƒ.�..aa�yˇ1'/� .bb�yˇ2'///

D

X
ˇ

Oƒ.�..aa�yˇ1'/˝ .bb�yˇ2'/�//

D Oƒ.�..aa� � bb�/y'//

D .aa� � bb�/ƒ'.y/;

i.e., va;bv
�
a;b
D aa� � bb�. �

For any element x in a von Neumann algebra, x D wxjxj is the polar decompo-
sition of x.

Lemma 4.4. Suppose G is a unimodular Kac algebra. Let x 2 Lt .G/ and y 2

Ls.G/ such that 1C 1=r D 1=t C 1=s. Then

kx �ykr � kjxj � jyjk
1=2
r kjx

�
j � jy�jk1=2r :

Proof. We assume that x;y are in L1.G/\L1.G/. By Lemma 4.3, we define
vwx jxj1=2;wy jyj1=2 and vjxj1=2;jyj1=2 . Then by Lemma 4.3 again,

vwx jxj1=2;wy jyj1=2v�
jxj1=2;jyj1=2 D x �y:

Let Qx D vwx jxj1=2;wy jyj1=2 and Qy D vjxj1=2;jyj1=2 . Then by the polar decomposition,
we obtain that

Qx D j Qx�jw Qx; Qy D j Qy�jw Qy :

By Lemma 4.3, we have

j Qx�j2 D jx�j � jy�j; j Qy�j2 D jxj � jyj:
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By Hölder’s inequality, we have

kx�ykr D k Qx Qy
�
kr D kj Qx

�
jw Qxw

�
Qy j Qy
�
jkr

� k.jxj�jyj/1=2k2rk.jx
�
j�jy�j/1=2k2r D kjxj�jyjk

1=2
r kjx

�
j�jy�jk1=2r :

For any x in Lt .G/ and y in Ls.G/ such that 1C1=rD1=tC1=s, there exists nets
fx˛g˛ and fyˇgˇ such that x˛;yˇ 2L1.G/\L1.G/ are positive and lim˛ x˛Djxj,
limˇ yˇ D jyj in Lt .G/ and Ls.G/ respectively. Therefore we have that

kx �ykr � kjxj � jyjk
1=2
r kjx

�
j � jy�jk1=2r

is true for any x 2Lt .G/, y 2Ls.G/, 1C 1=r D 1=t C 1=s. �

Proposition 4.5. Suppose G is a unimodular Kac algebra. Let x 2 Lt .G/, y 2

L1.G/ for some 1< t <1. If kx �ykt D kxktkyk1 for some 1< t < 2, then for
any 0�<z � 1,

kwxjxj
t.1Cz/=2

�yk2=.1C<z/ D kwxjxj
t.1Cz/=2

k2=.1C<z/kyk1:

If kx �ykt D kxktkyk1 for some 2< t <1, then for any 0�<z � 1,

kwxjxj
t.1�z/=2

�yk2=.1�<z/ D kwxjxj
t.1�z/=2

k2=.1�<z/kyk1:

Proof. Suppose that kxkt D 1 and kyk1D 1. When 1< t < 2, we define a complex
function F1.z/ given by

F1.z/D '..wxjxj
t.1Cz/=2

�y/jx �yjt.1�z/=2w�x�y/;

jF1.z/j � kwxjxj
t.1Cz/=2

�yk2=.1C<z/kjx �yjt.1�z/=2w�x�yk2=.1�<z/

� kjxjt.1Cz/=2
k2=.1C<z/kyk1'.jx �yjt /.1�<z/=2

D 1:

Hence F1.z/ is a bounded analytic function on 0<<z < 1. Note that

F1

�
2

t
� 1

�
D '..x �y/jx �yjt�1w�x�y/D 1:

Therefore F1.z/� 1 on 0�<z � 1 by the maximum modulus theorem.
When 2< t <1, we consider the function F2.z/ given by

F2.z/D '
�
.wxjxj

t.1�z/=2
�y/jx �yjt.1Cz/=2w�x�y

�
:

Similarly, we have the proposition proved. �

Proposition 4.6. Suppose G is a unimodular Kac algebra. Let x 2 Lt .G/;y 2

Ls.G/ be such that kx�ykr Dkxktkyks for some 1< r; t; s<1, where 1=rC1D

1=t C 1=s. Then for any �r C 1�<z � r � 1,

kwxjxj
t rC1�z

2r �wy jyj
s rC1Cz

2r kr Dkwxjxj
t rC1�z

2r k 2r
rC1�<z

kwy jyj
s rC1Cz

2r k 2r
rC1C<z

:
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Proof. Suppose that kxkt D kyks D 1. We define a function F.z/ on �r C 1 �

<z � r � 1 given by

F.z/D '
�
.wxjxj

t rC1Cz
2r �wy jyj

s rC1�z
2r /jx �yjr�1w�x�y

�
:

jF.z/j � kwxjxj
t rC1Cz

2r �wy jyj
s rC1�z

2r krkjx �yjr�1
k r

r�1

� kwxjxj
t rC1Cz

2r k 2r
rC1C<z

kwy jyj
s rC1�z

2r k 2r
rC1�<z

'.jx �yjr /
r�1

r D 1:

Hence F.z/ is a bounded analytic function on �r C 1�<z � r � 1. Since

F
�

2r

t
� r � 1

�
D '..x �y/jx �yjr�1w�x�y/D '.jx �yjr /D 1;

we have that F.z/� 1 on �rC1�<z � r �1 by the maximum modulus theorem.
Therefore we have the proposition proved. �

Proposition 4.7. Suppose G is a unimodular Kac algebra. If there exist positive
elements x 2 Lt .G/;y 2 Ls.G/ such that kx � ykr D kxktkyks for some 1 <

r; t; s <1 and 1=r C1D 1=tC1=s, then there exists a biprojection B such that x

is a multiple of left shift of B and y is a multiple of a right shift of B.

Proof. By Proposition 4.6, we have

kxt=r
�ys
kr D kx

t=r
krky

s
k1; kx

t
�ys=r

kr D kx
t
k1ky

s=r
kr :

By Proposition 4.5, we have that

kxt=2
�ys
k2 D kx

t=2
k2ky

s
k1; kx

t
�ys=2

k2 D ky
s=2
k2kx

t
k1:

By Proposition 3.5, we have that there exist projections B1;B2 such that

R.ys
�R.ys//� B1; .R.xt=2/�xt=2/B1 D kR.x

t=2/�xt=2
k1B1;

and

R.xt
�R.xt //� B2; .ys=2

�R.ys=2/B2 D ky
s=2/�R.ys=2/k1B2;

and

kR.xt=2/�xt=2
k1 D kx

t=2
k

2
2; ky

s=2
�R.ys=2/k1 D ky

s=2
k

2
2:

Then we see that B1 DB2.DB/. In Proposition 3.5, to obtain that B is a biprojec-
tion, it requires that xt=2 2 L1.G/, but we only have xt=2 2 L2.G/ here. To see
that B is a biprojection, we focus on

(3) R.xt=2/�xt=2
D kR.xt=2/�xt=2

k1B:

Note that B DR.B/.
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Let q � B be a projection in L1.G/. Then

kxt=2
k

2
2'.q/D '

�
.R.xt=2/�xt=2/R.q/

�
D '.xt=2.xt=2

� q// (by Proposition 2.1)

� kxt=2
k2kx

t=2
� qk2

� kxt=2
k

2
2'.q/:

Thus xt=2 � q D '.q/xt=2. Then we have that F.xt=2/F.q/D '.q/F.xt=2/. So

(4) R.F.xt=2//�E;

where E is the spectral projection of F.q/ corresponding to '.q/.
Recall that q is a projection in L1.G/, so q is in L2.G/. Thus

1

'.q/
D

F.q/
'.q/

2

2
� kR.F.xt=2//k22 D S.F.xt=2/:

Then we have that

(5) '.B/D sup
q�B

f'.q/g �
1

S.F.xt=2/
:

So xt=2 is in L1.G/\L2.G/. By [Liu and Wu 2017, Proposition 3.14], B is a
biprojection.

Note that since S.B/S.F.B// D 1, we obtain that S.F.xt=2// � S.F.B//.
Applying Theorem 3.1 to (3), we see that S.xt=2/� S.B/. Thus

S.F.xt=2//S.xt=2/� S.F.B//S.B/D 1:

By [Liu and Wu 2017, Proposition 3.6 and Theorem 3.15], xt=2 is a multiple of
left shift of B. So is x. Similarly, y is a multiple of right shift of B. �

Theorem 4.8. Suppose G is a unimodular Kac algebra. Let x;y be '-measurable
and nonzero. Then the following are equivalent:

(1) kx�ykr Dkxktkyks for some 1< r; t; s <1 such that 1=rC1D 1=tC1=s;

(2) kx �ykr D kxktkyks for any 1� r; t; s �1 such that 1=r C 1D 1=t C 1=s;

(3) there exists a biprojection B such that xD .hBax/� OF. QBg/ and y D OF. QBg/�

.Bf ay/, where Bg;Bf are right shifts of B, hB is a left shift of B and ax; ay

are elements such that x;y are nonzero.

Proof. .1/) .3/: By Lemma 4.4, we have that kjxj � jyjkr D kxktkyks . By
Proposition 4.7, we have that jxj; jyj are multiples of projections. By Proposition 4.2,
we see .3/ is true.

.3/) .2/: It is true from Proposition 4.2.
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.2/) .1/: It is obvious. �

5. Extremal operators of the Hausdorff–Young inequality

In this section, we will characterize the extremal operators of the Hausdorff–Young
inequality for unimodular Kac algebras.

Proposition 5.1. Suppose G is a unimodular Kac algebra. Let x 2Lt .G/ for some
1< t < 2. If kF.x/kt=.t�1/ D kxkt , then for any complex number z, we have

kF.wxjxj
t.1Cz/=2/k2=.1�<z/ D kwxjxj

t.1Cz/=2
k2=.1C<z/:

Proof. We assume that kxkt D 1, t 0 D t=.t � 1/, and consider the function F.z/

given by
F.z/D '

�
F.wxjxj

t.1Cz/=2/jF.x/jt
0.1Cz/=2w�F.x/

�
:

Since

jF.z/j � kF.wxjxj
t.1Cz/=2/k2=.1�<z/kkjF.x/j

t 0.1Cz/=2w�F.x/k2=.1C<z/

� kwxjxj
t.1Cz/=2

k2=.1C<z/kjF.x/j
t 0.1Cz/=2

k2=.1C<z/ D 1;

we see that F.z/ is a bounded analytic function on 0�<z � 1. Note that

F
�

2

t
� 1

�
D '.F.x/jF.x/j1=.t�1/w�F.x//D kF.x/k

t 0

t 0 D 1:

By the maximum modulus theorem, we have that F.z/� 1 on 0�<z � 1 and the
proposition is proved. �

Theorem 5.2. Suppose G is a unimodular Kac algebra. Let x be measurable. Then
the following are equivalent:

(1) kF.x/kt=.t�1/ D kxkt for some 1< t < 2;

(2) kF.x/kt=.t�1/ D kxkt for any 1� t � 2;

(3) x is a bishift of a biprojection.

Proof. .1/) .3/: By Proposition 5.1, we have that

kF.wxjxj
3t=4/k4 D kwxjxj

3t=4
k4=3:

Let y D wxjxj
3t=4. Then

ky� �R.y/k2 D kjF.y/j
2
k2 D kF.y/k

2
4 D kyk

2
4=3:

By Theorem 4.8, we have that y is a bishift of a biprojection and so is x.

.3/) .2/: It can be checked directly.

.2/) .1/: It is obvious. �
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EFFECTIVE RESULTS ON LINEAR DEPENDENCE
FOR ELLIPTIC CURVES

MIN SHA AND IGOR E. SHPARLINSKI

Given a subgroup 0 of rational points on an elliptic curve E defined over Q

of rank r ≥ 1 and any sufficiently large x ≥ 2, assuming that the rank of 0

is less than r , we give upper and lower bounds on the canonical height of a
rational point Q which is not in the group 0 but belongs to the reduction of
0 modulo every prime p ≤ x of good reduction for E.

1. Introduction

1A. Detecting linear dependence. Let A be an abelian variety defined over a
number field F , and let 0 be a subgroup of the Mordell–Weil group A(F). For any
prime p (of F) of good reduction for A and any point Q ∈ A(F), we denote by Qp

and 0p the images of Q and 0 via the reduction map modulo p respectively, and
Fp stands for the residue field of F modulo p. The following question was initiated
in 2002 and was considered at the same time but independently by Wojciech Gajda
in a letter to Kenneth Ribet in 2002 [Gajda and Górnisiewicz 2009, §1] and by
Kowalski [2003], and it is now called detecting linear dependence.

Question 1.1. Suppose that Q is a point of A(F) such that for all but finitely many
primes p of F we have Qp ∈ 0p. Does it then follow that Q ∈ 0?

An early result related to this question is due to Schinzel [1975], who has
answered affirmatively the question for the multiplicative group in place of an
abelian variety. Question 1.1 has been extensively studied in recent years and much
progress has been made; see [Banaszak 2009; Banaszak et al. 2005; Banaszak and
Krasoń 2011; Gajda and Górnisiewicz 2009; Jossen 2013; Jossen and Perucca 2010;
Perucca 2010; Sadek 2016; Weston 2003] for more details and developments.

The answer is affirmative for all abelian varieties if the group 0 is cyclic, as
proven by Kowalski [2003] (for elliptic curves) and by Perucca [2010] (in general).
Banaszak, Gajda and Krasoń [Banaszak et al. 2005] established the result for all
abelian varieties with the endomorphism ring EndF A = Z if the group 0 is free

MSC2010: 11G05, 11G50.
Keywords: elliptic curve, linear dependence, pseudolinearly dependent point, pseudomultiple,

canonical height.
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and the point Q is nontorsion. More generally, Gajda and Górnisiewicz [2009]
have solved the problem in the case when 0 is a free EndF A-submodule and the
point Q generates a free EndF A-submodule, while Perucca [2010] has removed
the assumption on the point Q. We remark that the answer of Question 1.1 is not
always positive; see a counterexample due to Jossen and Perucca [2010].

We want to emphasize that Jossen [2013] has given an affirmative answer when
A is a geometrically simple abelian variety, which automatically includes elliptic
curves. Moreover, the result of [Jossen 2013] requires Qp ∈ 0p to hold only for a
set of primes p with natural density 1 (rather than for all but finitely many primes p
as in the settings of Question 1.1). Due to the crucial role of [Jossen 2013] in our
paper, we reproduce this result as follows.

Theorem 1.2 [Jossen 2013]. Assume that A is a geometrically simple abelian
variety over F. Then, if the set of primes p of F for which Qp ∈ 0p has natural
density 1, we have Q ∈ 0.

In addition, to achieve the aforementioned results, one needs to apply the Cheb-
otarev density theorem. So, it suffices to verify the condition for all primes up to
a certain finite bound, which depends on the initial data (including the point Q).
Banaszak and Krasoń [2011, Theorem 7.7] have established the finiteness result
in a qualitative manner for certain abelian varieties which includes elliptic curves.
Then, most recently Sadek [2016] has given a quantitative version for a large class
of elliptic curves under the generalized Riemann hypothesis (GRH). However, the
results in this paper (see Section 2) go in a different direction, because they imply
that there is no such a bound independent of the point Q.

1B. Pseudolinear dependence. Following the setup of [Akbary et al. 2010], which
is crucial for some of our approaches, we restrict ourselves to the case of elliptic
curves over the rational numbers Q; see Definitions 1.3 and 1.4 below. In particular,
we consider Question 1.1 for an elliptic curve E over Q.

Let r be the rank of E(Q) and s the rank of 0. We denote by 1E the minimal
discriminant of E and by OE the point at infinity of E .

For a prime p of good reduction for E (that is, p -1E ), we let E(Fp) be the
group of Fp-points in the reduction of E to the finite field Fp of p elements, and
E(Q)p stands for the reduction of E(Q) modulo p.

Definition 1.3 (Fp-pseudolinear dependence). Given a prime p of good reduction
for E , we call a point Q ∈ E(Q) an Fp-pseudolinearly dependent point with respect
to 0 if Q 6∈ 0 but Q p ∈ 0p.

We remark that such a point Q is Fp-pseudolinear dependent if and only if Q 6∈0
but Q ∈ 0+ kerp, where kerp denotes the kernel of the reduction map modulo p.



EFFECTIVE RESULTS ON LINEAR DEPENDENCE FOR ELLIPTIC CURVES 125

Definition 1.4 (x-pseudolinear dependence). We say that a point Q ∈ E(Q) is
an x-pseudolinearly dependent point with respect to 0 if Q 6∈ 0 but it is an Fp-
pseudolinearly dependent point with respect to 0 for all primes p ≤ x of good
reduction for E .

We remark that the x-pseudolinear dependence trivially holds if there is no prime
p of good reduction such that p ≤ x .

If 0 = 〈P〉, we call a point Q as in Definition 1.4 an x-pseudomultiple of P .
This notion is an elliptic curve analogue of the notions of x-pseudosquares and
x-pseudopowers over the integers, which dates back to the classical results of
Schinzel [1960; 1970; 1997] and has recently been studied in [Bach et al. 1996;
Bourgain et al. 2009; Konyagin et al. 2010; Pomerance and Shparlinski 2009].

1C. Overview. We give an explicit construction of an x-pseudolinearly dependent
point Q with respect to 0 provided that s< r and give upper bounds for its canonical
height, and then we also deduce lower bounds for the canonical height of any x-
pseudolinearly dependent point in some special cases. These upper and lower bounds
are formulated in Sections 2A and 2B and proved in Sections 5 and 6, respectively.

Furthermore, we also consider the existence problem of x-pseudolinearly depen-
dent points, with some explicit constructions; see Section 4 for precise details.

There is little doubt that one can extend [Akbary et al. 2010], and thus our results
to elliptic curves over number fields, but this may require quite significant efforts.

1D. Convention and notation. Throughout the paper, we use the Landau symbols
O and o and the Vinogradov symbol� (sometimes written as�). We recall that
the assertions U = O(V ) and U� V are both equivalent to the inequality |U | ≤ cV
with some absolute constant c, while U = o(V ) means that U/V → 0. Here, all
implied constants in the symbols O and� depend only possibly on E and 0.

The letter p, with or without subscripts, always denotes a prime. As usual, π(x)
denotes the number of primes not exceeding x .

We use ĥ to denote the canonical height of points on E ; see Section 3A for a
precise definition. For a finite set S, we use #S to denote its cardinality.

For any group G, if it is generated by some elements g1, . . . , gm , then we write
G = 〈g1, . . . , gm〉.

From now on, we say that a prime is of good reduction, which means that the
prime is of good reduction for E . When a point Q is said to be x-pseudolinearly
dependent, it is automatically with respect to 0.

2. Main results

2A. Upper bounds. We first state a primary result on the existence of pseudolin-
early dependent points.
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Theorem 2.1. Suppose that r ≥ 1 and s < r . Then for any sufficiently large x , there
is a rational point Q ∈ E(Q) of height

ĥ(Q)≤ exp
(
2x + O(x/(log x)2)

)
such that Q is an x-pseudolinearly dependent point.

With more efforts we can improve the result in Theorem 2.1 for various cases.

Theorem 2.2. Suppose that r ≥ 1 and s = 0. Then for any sufficiently large x , there
is a rational point Q ∈ E(Q) of height

ĥ(Q)≤ exp
(

2x − 2 log(#0) x
log x

+ O(x/(log x)2)
)

such that Q is an x-pseudolinearly dependent point.

Theorem 2.3. Assume that r ≥ 2 and 1≤ s < r . Then for any sufficiently large x ,
there is a rational point Q ∈ E(Q) of height

ĥ(Q)≤ exp
( 4

s+2
x + O(x/ log x)

)
such that Q is an x-pseudolinearly dependent point.

Theorem 2.4. Suppose that either 19≤ s < r if E is a non-CM curve, or 7≤ s < r
if E is a CM curve. Then under the GRH and for any sufficiently large x , there is a
rational point Q ∈ E(Q) of height

ĥ(Q)≤ exp
(
4x(log log x)/ log x + O(x/ log x)

)
such that Q is an x-pseudolinearly dependent point.

The above results are proved in Section 5.

2B. Lower bounds. Notice that by Definition 1.4 the condition for x-pseudolinearly
dependent points is quite strong when x tends to infinity. This convinces us that
there may exist some lower bounds for the height of such points. Here, we establish
some partial results. Define

(2-1) 0̃ = {P ∈ E(Q) : m P ∈ 0 for some nonzero m ∈ Z}.

Theorem 2.5. Suppose that r ≥ 1 and s = 0. For any sufficiently large x and any
x-pseudolinearly dependent point Q, we have

ĥ(Q)≥ 1
#0

x/ log x + O(x/(log x)2).
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Theorem 2.6. Assume that EndQ E = Z, r ≥ 2, 1≤ s < r , and 0 is a free subgroup
of E(Q). Suppose further that 0 ≡ 0̃ modulo the torsion points of E(Q). For any
sufficiently large x and any x-pseudolinearly dependent point Q, we have

ĥ(Q)≥ exp((log x)1/(2s+6)+o(1)),

and furthermore assuming the GRH, we have

ĥ(Q)≥ exp(x1/(4s+12)+o(1)).

The above results are proved in Section 6.
We want to remark that for a non-CM elliptic curve E with no torsion points

in E(Q), assuming the GRH and some other wild conditions, Sadek [2016, The-
orem 4.4] has shown that to detect whether a point Q ∈ E(Q) is contained in 0
it suffices to determine whether Q ∈ 0p for primes p of good reduction up to an
explicit constant B satisfying (using only K ≥ 2 in [Sadek 2016, Theorem 4.4])

(2-2) B� ĥ(Q)3r/2+3(log ĥ(Q))2.

If Q is an x-pseudolinearly dependent point, then to detect Q 6∈ 0 as the above,
testing primes p of good reduction up to x is not enough, and thus the constant B
must satisfy B> x , which is consistent with the second lower bound of Theorem 2.6
and (2-2). On the other hand, the inequality B > x restricts how much Theorem 2.6
and [Sadek 2016, Theorem 4.4] can be improved.

3. Preliminaries

3A. Heights on elliptic curves. We briefly recall the definitions of the Weil height
and the canonical height for points in E(Q); see [Silverman 2009, Chapter VIII, § 9]
for more details.

For a point P = (x, y) ∈ E(Q) with x = a/b, with coprime integers a and b, we
define the Weil height and the canonical height of P as

h(P)= log max{|a|, |b|} and ĥ(P)= lim
n→+∞

h(2n P)
4n ,

respectively. These two heights are related because they satisfy

ĥ(P)= h(P)+ O(1),

where the implied constant depends only on E . In addition, for any P ∈ E(Q) and
m ∈ Z, we have:

• ĥ(m P)= m2ĥ(P);

• ĥ(P)= 0 if and only if P is a torsion point.
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Furthermore, for any P, Q ∈ E(Q), we have

(3-1) ĥ(P + Q)+ ĥ(P − Q)= 2ĥ(P)+ 2ĥ(Q).

Following the hints in [Silverman 2009, Chapter IX, Exercise 9.8] and using
[Silverman 2009, Chapter VIII, Proposition 9.6], one can show that if P1, . . . , Pr is
a basis for the free part of E(Q) (assuming r ≥ 1), then for any integers m1, . . . ,mr ,
we have

(3-2) ĥ(m1 P1+ · · ·+mr Pr )≥ c max
1≤i≤r

m2
i ,

where c is a constant depending on E and P1, . . . , Pr .

3B. A useful fact about elliptic curves. Every rational point P 6= OE in E(Q) has
a representation of the form

(3-3) P =
(

m
k2 ,

n
k3

)
,

where m, n, and k are integers with k ≥ 1 and gcd(m, k) = gcd(n, k) = 1; see
[Silverman and Tate 1992, p. 68]. So, for any prime p of good reduction for E ,
P ≡ OE modulo p if and only if p | k.

3C. Counting primes related to the size of 0 under reduction. Here, we repro-
duce some results on counting primes p such that the size of 0p is less than some
given value. For any prime p, if it is of good reduction for E , we define

Np = #E(Fp) and Tp = #0p,

otherwise we let Np = Tp = 1. Note that there are only finitely many primes p
such that Np = 1.

We first quote the following result from [Akbary et al. 2010, Proposition 5.4]
(see [Gupta and Murty 1986, Lemma 14] for a previous result). Recall that s is the
rank of 0.

Lemma 3.1. Assume that s ≥ 1. For any x ≥ 2, we have

#{p : Tp < x} � x1+2/s/ log x .

We then restate two general results from [Akbary et al. 2010, Theorems 1.2
and 1.4] in a form convenient for our applications.

Lemma 3.2. Assume that E is a non-CM curve and s ≥ 19. Under the GRH, for
any x ≥ 2 we have

#{p ≤ x : Tp < p/(log p)2} � x/(log x)2.
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Proof. We can clearly only consider the primes of good reduction. Here, we directly
use the notation and follow the arguments in [Akbary et al. 2010, Proof of Part (a)
of Theorem 1.2] by choosing the functions f and g as

(3-4) f (x)= (log x)2, g(x)= f (x/ log x)/3.

Let i p = [E(Fp) : 0p] for any prime p of good reduction. Let B1 and B2 be the two
sets defined in [Akbary et al. 2010, p. 381]:

B1 = {p ≤ x : p -1E , i p ∈ (x2/(s+2) log x, 3x]},

B2 = {p ≤ x : p -m1E ,m | i p for some m ∈ (g(x), x2/(s+2) log x]},

such that

#{p ≤ x : p -1E , Tp < p/(log p)2} ≤ #B1+ #B2+ O(x/(log x)2),

where the term O(x/(log x)2) comes from π(x/ log x)= O(x/(log x)2). We note
that the choice of the sets is motivated by

• for B1, the bound on the number of primes p ≤ x with a small value of Tp

given by [Akbary et al. 2010, Proposition 5.4] which we have presented in
Lemma 3.1;

• for B2, the range of m compared to x in which the divisibility m | i p for p ≤ x
can be controlled via the Chebotarev density theorem as given by [Akbary
et al. 2010, Proposition 5.3].

In particular, we have

#B1�
x

(log x)(s+2)/s · (s(s+ 2)−1 log x − log log x)
and

#B2�
x

log x · g(x)1−α
+ O(x1/2+α+(5+α/2)·(2/(s+2)+α)),

where the positive real number α is chosen such that

1
2 +α+

(
5+ 1

2α
)
·

( 2
s+2
+α

)
< 1,

which at least requires that 1
2 + 6α < 1, that is α < 1

12 . Note that such α indeed
exists because s ≥ 19.

It is easy to see that

#B1� x/(log x)2 and #B2� x/(log x)2,

where the second upper bound comes from 2(1−α)> 1. Collecting these estimates,
we get the desired upper bound. �
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Lemma 3.3. Assume that E is a CM curve and s ≥ 7. Under the GRH, for any
x ≥ 2 we have

#{p ≤ x : Tp < p/(log p)2} � x/(log x)2.

Proof. We follow the arguments in [Akbary et al. 2010, Proof of Theorem 1.4] with
only minor modifications by choosing the functions f and g there as in (3-4). Let
i p = [E(Fp) : 0p] for any prime p of good reduction. The following can be derived
as in [Akbary et al. 2010, Proof of Part (a) of Theorem 1.2]:

#
{

p ≤ x : p -1E , Tp < p/(log p)2
}
≤ #B̃1+ #B̃2+ O(x/(log x)2),

where
B̃1 = {p ≤ x : p -1E , i p ∈ (xκ , 3x]},

B̃2 = {p ≤ x : p -m1E ,m | i p, for some m ∈ (g(x), xκ ]},

with some real κ > 0 to be chosen later on. The reason for the choice of B̃1 and B̃2

is the same as that for B1 and B2, which is explained in the proof of Lemma 3.2.
However, in the CM-case we have stronger versions of the underlying results which
allow us a better choice of parameters and in turn enable us to handle smaller values
of the rank s of 0.

Applying Lemma 3.1, we have

#B̃1 = #{p ≤ x : p -1E , Tp < Np/xκ}

≤ #{p ≤ x : p -1E , Tp < 3x1−κ
} �

x (1−κ)(s+2)/s

(1− κ) log x
.

For any positive integer m, let ω(m) and d(m) denote, respectively, the number
of distinct prime divisors of m and the number of positive integer divisors of m.

Now, #B̃2 can be estimated as in [Akbary et al. 2010, p. 393] as follows:

#B̃2�
x

log x · g(x)1−α
+ O

(
x1/2 log x ·

∑
1≤m≤xκ

maω(m)/2d(m)
)
,

where α is an arbitrary real number in the interval (0, 1) such that 2(1− α) > 1,
and a is the absolute constant of [Akbary et al. 2010, Proposition 6.7]. Now, using
[Akbary et al. 2010, Equation (6.21)] we obtain

#B̃2�
x

log x · g(x)1−α
+ O(x1/2+2κ(log x)1+β)

�
x

(log x)2
+ O(x1/2+2κ(log x)1+β),

where β > 2 is some positive integer.
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Moreover, we choose the real number κ such that

(1− κ)(s+ 2)/s < 1 and 1
2 + 2κ < 1.

Thus, we get

(3-5) 2
s+2

< κ < 1
4 .

Since s ≥ 7, such real number κ indeed exists.
Therefore, gathering the above estimates, for any fixed real number κ satisfy-

ing (3-5) (for example, κ = 11
45 ) we obtain

#{p ≤ x : p -1E , Tp < p/(log p)2} � x/(log x)2, �

which completes the proof of this lemma.

3D. Kummer theory on elliptic curves. Following [Akbary et al. 2010; Bach-
makov 1970; Bertrand 1981; Gupta and Murty 1986], we recall some basic facts
about the Kummer theory on elliptic curves. Here, we should assume that E(Q) is
of rank r ≥ 2.

Let ` be a prime, and let P1, P2, . . . , Pn ∈ E(Q) be linearly independent points
over EndQ E . Consider the number field

L =Q(E[`], `−1 P1, . . . , `
−1 Pn),

where E[`] is the set of `-torsion points on E , and each `−1 Pi (1≤ i ≤ n) is a fixed
point whose `-multiple is the point Pi . Moreover, we denote K = Q(E[`]) and
Ki =Q(E[`], `−1 Pi ) for every 1≤ i ≤ n.

Now, both extensions K/Q and L/Q are Galois extensions. For the Galois
groups, Gal(K/Q) is a subgroup of GL2(F`), and Gal(L/K ) is a subgroup of
E[`]n . Clearly, we have

(3-6) [K :Q]< `4 and [L : K ] ≤ `2n.

As an analogue of the classical Kummer theory, the results of Bashmakov [1970]
show that (see also the discussions in [Bertrand 1981, p. 85]):

Lemma 3.4. Assume that the residue classes of points P1, . . . , Pn in E(Q)/`E(Q)
are linearly independent over EndQ E/`EndQ E. Then, we have

Gal(L/K )∼= E[`]n.

For each field Ki with 1 ≤ i ≤ n, the primes which ramify in the extension
Ki/Q are exactly those primes dividing `1E . Then, the primes which ramify in
the extension L/Q are exactly those primes dividing `1E . Now, pick a prime
p -`1E which splits completely in K , and let pi be a prime ideal of OKi above p
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for i = 1, . . . , n, where OKi the ring of integers of Ki . By the construction of Ki

and noticing the choice of p, we have:

Lemma 3.5. For each 1≤ i ≤ n, the equation

(3-7) `X = Pi

has a solution in E(Fp), where X is an unknown, if and only if [OKi /pi : Fp] = 1,
that is, p splits completely in Ki .

Note that given an arbitrary finite Galois extension M/F of number fields, for
each unramified prime p of F , p splits completely in M if and only if the Frobenius
element corresponding to p is the identity map. Then, we can obtain the following
lemma:

Lemma 3.6. Under the assumption in Lemma 3.4, we further assume that n ≥ 2.
Then, for any integer m with 1≤m < n, there is a conjugation class C in the Galois
group Gal(L/Q) such that every prime number p with the Artin symbol

[ L/Q
p

]
= C

is unramified in L/Q, p is a prime of good reduction for E , and p splits completely
in the fields Ki , 1 ≤ i ≤ m, but it does not split completely in any of the fields
K j ,m+ 1≤ j ≤ n.

Proof. One only needs to note that by Lemma 3.4, for any nonempty subsets I, J
of {1, 2, . . . , n} if I ∩ J =∅, we have∏

i∈I
Ki ∩

∏
j∈J

K j = K ,

where “
∏

” means the composition of fields. �

Combining Lemma 3.5 with Lemma 3.6, we know that for the primes p in
Lemma 3.6, Equation (3-7) has a solution in E(Fp) for 1≤ i ≤m but for the others
there is no such solution.

3E. The Chebotarev density theorem. For the convenience of the reader, we re-
state two useful results. The first one is an upper bound on the discriminant of a
number field due to Hensel, see [Serre 1981, Proposition 6], while the second is
about the least prime ideal as in the Chebotarev density theorem due to Lagarias,
Montgomery and Odlyzko; see [Lagarias and Odlyzko 1977, p. 462] and [Lagarias
et al. 1979, Theorem 1.1 and Equation (1.2)].

Lemma 3.7. Let L/Q be a Galois extension of degree d and ramified only at the
primes p1, . . . , pm . Then, we have

log |DL | ≤ d log d + d
m∑

i=1

log pi ,

where DL is the discriminant of L/Q.
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Lemma 3.8. There exists an effectively computable positive absolute constant c1

such that for any number field K , any finite Galois extension L/K and any conju-
gacy class C in Gal(L/K ), there exists a prime ideal p of K which is unramified
in L , for which the Artin symbol [(L/K )/p] = C and the norm NmK/Q(p) is a
rational prime satisfying the bound

NmK/Q(p)≤ 2|DL |
c1;

furthermore, under the GRH, there is an effectively computable positive absolute
constant c2 such that we can choose p as above with

NmK/Q(p)≤ c2(log |DL |)
2.

3F. Effective version of Theorem 1.2. The following result can be viewed as an
effective version of Theorem 1.2 in some sense for a specific case. Recall that r
and s are the ranks of E(Q) and 0 respectively.

Lemma 3.9. Assume that EndQ E = Z, 0 is a free subgroup of E(Q), and 0 ≡ 0̃
modulo the torsion points of E(Q). Let Q ∈ E(Q) \0 be a point of infinite order
such that 〈Q〉∩0= {OE }. Then, there exists a prime p of good reduction satisfying

log p� (log ĥ(Q))2s+6 log log ĥ(Q)

such that Q 6∈ 0p. Assuming the GRH, we further have

p� (log ĥ(Q))4s+12(log log ĥ(Q))2.

Proof. Let P1, . . . , Pr be a basis of the free part of E(Q). Since 0 ≡ 0̃ modulo the
torsion points, we can assume that P1, . . . , Ps form a basis of 0. Note that, since
the point Q is of infinite order, it can be represented as

Q = Q0+m1 P1+ · · ·+mr Pr ,

where Q0 is a torsion point of E(Q), and there is at least one mi 6= 0 (1≤ i ≤ r).
Moreover, by the choice of Q, there exists j with s+ 1≤ j ≤ r such that m j 6= 0.

By (3-2), we have
ĥ(Q− Q0)� max

1≤i≤r
m2

i .

Noticing that Q0 is a torsion point, by (3-1) we obtain

(3-8) ĥ(Q)≥ 1
2 ĥ(Q− Q0)� max

1≤i≤r
m2

i .

Now, let ` be the smallest prime such that `-m j . Since the number ω(m) of distinct
prime factors of an integer m ≥ 2 satisfies

ω(m)� log m
log log m
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(because we obviously have ω(m)! ≤ m), using the prime number theorem we get

`� log |m j |,

which together with (3-8) yields that

(3-9) `� log ĥ(Q).

By the choice of `, we see that there is no point R ∈ E(Q) such that Q = `R.
This implies that the number field Q(E[`], `−1 Q) is not a trivial extension of
Q(E[`]). Furthermore, by noticing ` -m j , it is straightforward to see that the
residue classes of Q, P1, . . . , Ps in E(Q)/`E(Q) are linearly independent over
EndQ E/`EndQ E = Z/`Z.

Consider the number field

L =Q(E[`], `−1 Q, `−1 P1, . . . , `
−1 Ps),

and set K =Q(E[`]). Now, combining Lemma 3.5 with Lemma 3.6, we can choose
a conjugation class C in the Galois group Gal(L/Q) such that every prime number
p with Artin symbol [(L/Q)/p] = C is unramified in L/Q, p is a prime of good
reduction for E , and especially the equation `X = Pi has solution in E(Fp) for
each 1≤ i ≤ s but the equation `X = Q has no such solution. This implies that

Q 6∈ 0p.

By Lemma 3.8, we can choose such a prime p such that

(3-10) log p� log |DL |;

if under the GRH, we even have

(3-11) p� (log |DL |)
2.

From Lemma 3.7 and noticing that only the primes dividing `1E ramify in the
extension L/Q, we get

(3-12) log |DL | ≤ d log d + d log(`1E)� d log d + d log `,

where d = [L :Q]. Using (3-6), we obtain

(3-13) d ≤ `2s+6.

Combining (3-9), (3-10), (3-11), and (3-12) with (3-13), we unconditionally have

log p� (log ĥ(Q))2s+6 log log ĥ(Q),

and under the GRH we have

p� (log ĥ(Q))4s+12(log log ĥ(Q))2. �
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4. The existence and construction of x-pseudolinearly dependent points

4A. Existence. Before proving our main results, we want to first consider the
existence problem of pseudolinearly dependent points. Recall that r is the rank of
E(Q) and s is the rank of 0.

If s < r , then x-pseudolinearly dependent points with respect to 0 do exist.
Indeed, since s < r , we can take a point R ∈ E(Q) of infinite order such that
〈R〉 ∩0 = {OE }. Pick an arbitrary point P ∈ 0; it is easy to see that the point

(4-1) Q = P + lcm{#E(Q)p #0p : p ≤ x of good reduction}R

is an x-pseudolinearly dependent point for any x > 0, where the least common
multiple of the empty set is defined to be 1.

In the construction (4-1), we can see that 〈Q〉 ∩0 = {OE }. Actually, when x
is sufficiently large, any x-pseudolinearly dependent point with respect to 0 must
satisfy this property.

Proposition 4.1. There exists a constant M depending on E and 0 such that for
any x > M , every x-pseudolinearly dependent point Q is nontorsion and satisfies
〈Q〉 ∩0 = {OE }.

Proof. Consider the subgroup 0̃ defined in (2-1). Notice that 0̃ is a finitely generated
group containing the torsion points of E(Q), and by construction each element in
the quotient group 0̃/0 is of finite order. So, 0̃/0 is a finite group. Then, we let
n = [0̃ : 0] and assume that 0̃/0 = {P0 = OE , P1, . . . , Pn−1}. If n = 1, that is
0̃ = 0, then for any P ∈ E(Q) \0 we have 〈P〉 ∩0 = {OE }, and thus everything
is done. Now, we assume that n > 1.

For any Pi , 1≤ i ≤ n− 1, since Pi 6∈ 0, by Theorem 1.2 there exists a prime pi

of good reduction such that Pi 6∈ 0pi . Then, we choose a constant, say M , such that
M ≥ pi for any 1≤ i ≤ n− 1. Thus, when x > M , any Pi (1≤ i ≤ n− 1) is not an
x-pseudolinearly dependent point with respect to 0, and then any point P ∈ 0̃ is
also not such a point. So, the x-pseudolinearly dependent point Q is not in 0̃. This
actually completes the proof. �

The above result clearly implies the following:

Corollary 4.2. If 0 is a full rank subgroup of E(Q) (that is s = r), then there
exists a constant M depending on E and 0 such that for any x > M , there is no
x-pseudolinearly dependent point.

In other words, the case (that is s < r ) in (4-1) is the only one meaningful case
for x-pseudolinearly dependent points when x is sufficiently large. We also remark
that directly by Theorem 1.2, any fixed point in E(Q) is not an x-pseudolinearly
dependent point with respect to 0 for x sufficiently large.
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4B. Construction. In this section, we assume that the rank r of E(Q) and the rank
s of 0 satisfy r ≥ 1 and s < r .

In order to get upper bounds on the height of pseudolinearly dependent points,
the following construction is slightly different from what we give in (4-1).

Recalling Np and Tp defined in Section 3C, given any x ≥ 2, we define

L x = lcm{Np/Tp : p ≤ x}.

Take a point R ∈ E(Q) of infinite order such that 〈R〉 ∩0 = {OE }, then pick an
arbitrary point P ∈ 0 and set

Q = P + L x R.

It is easy to see that Q 6∈ 0 but Q p ∈ 0p for every prime p ≤ x of good reduction,
and so Q is an x-pseudolinearly dependent point.

Since the coordinates of points in E(Q) are rational numbers, for any subset
S ⊆ E(Q) there exists a point with smallest Weil height among all the points in S.
So, noticing s < r , we choose a point with smallest Weil height in the subset
consisting of nontorsion points R in E(Q) \0 with 〈R〉 ∩0 = {OE }; we denote
this point by Rmin.

Now, we define a point Qmin ∈ E(Q) as follows:

(4-2) Qmin = L x Rmin.

As before, Qmin 6∈ 0 but Qmin ∈ 0p for every prime p ≤ x of good reduction. We
also have

(4-3) ĥ(Qmin)= L2
x ĥ(Rmin)= L2

x(h(Rmin)+ O(1))� L2
x ,

which comes from the fact that h(Rmin) is fixed when E and 0 are given.
The point Qmin is exactly the point we claim in Theorems 2.1, 2.2, 2.3, and 2.4.

So, it remains to prove the claimed upper bounds for ĥ(Qmin).

5. Proofs of upper bounds

5A. Outline. As mentioned above, to achieve our purpose, it suffices to bound the
canonical height of Qmin given by (4-2), that is, ĥ(Qmin).

By definition, we directly have

L x ≤
∏
p≤x

Np/Tp.

In view of (4-3), our approach is to get upper and lower bounds respectively for∏
p≤x

Np and
∏
p≤x

Tp.
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5B. Proof of Theorem 2.1. Recalling the Hasse bound

|Np − p− 1| ≤ 2p1/2

for any prime p of good reduction (see [Silverman 2009, Chapter V, Theorem 1.1]),
we derive the inequality

(5-1)
∏
p≤x

Np ≤
∏
p≤x

(p+ 2p1/2
+ 1)=

∏
p≤x

p(1+ p−1/2)2

= exp
(∑

p≤x

log p+ 2
∑
p≤x

log(1+ p−1/2)

)

≤ exp
(∑

p≤x

log p+ 2
∑
p≤x

p−1/2
)

= exp(O(
√

x/ log x))
∏
p≤x

p.

Now using the prime number theorem in a simple form:

(5-2)
∑
p≤x

log p = x + O(x/(log x)2),

we obtain

(5-3)
∏
p≤x

Np ≤ exp(x + O(x/(log x)2)).

Combining (5-3) with (4-3), we derive the following upper bound for ĥ(Qmin):

(5-4) ĥ(Qmin)� L2
x ≤

∏
p≤x

N 2
p ≤ exp(2x + O(x/(log x)2)).

This completes the proof.
We remark that a better error term for the prime number theorem such as that of

[Iwaniec and Kowalski 2004, Corollary 8.30] would improve the result, however,
the improvement is not substantial, as seen by regarding the main term.

5C. Proof of Theorem 2.2. Since 0 has rank zero, by the injectivity of the re-
duction map restricted to the torsion subgroup, we can see that Tp = #0 for any
prime p of good reduction and coprime to the size of the torsion subgroup.

We also recall the prime number theorem in the following simplified form

(5-5) π(x)= x
log x

+ O(x/(log x)2),

which follows from (5-2).
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Now, using (5-3) and (5-5) we have

L x � (#0)−π(x)
∏
p≤x

Np ≤ exp
(

x − log(#0) x
log x

+ O(x/(log x)2)
)
.

From (4-3) we conclude that for any sufficiently large x > 0, we have

ĥ(Qmin)≤ exp
(

2x − 2 log(#0) x
log x

+ O(x/(log x)2)
)
,

which completes the proof.

5D. Proof of Theorem 2.3. For any sufficiently large x , we define

J =
⌊ s

s+2
log x

⌋
≥ 1 and Z j = x s/(s+2)e− j , j = 0, . . . , J,

where e is the base of the natural logarithm. Note that 1≤ Z J < e.
Since s≥ 1, the number of primes p such that Tp = 1 or 2 is finite; we denote this

number by N , which depends on 0. Let M0 be the number of primes p ≤ x with
Tp ≥ Z0. Furthermore, for j = 1, . . . , J , we define M j as the number of primes
p ≤ x with Z j−1 > Tp ≥ Z j . Clearly

N +
J∑

j=0

M j ≥ π(x).

So, noticing Z0 = x s/(s+2) we now derive

∏
p≤x

Tp ≥

J∏
j=0

Z M j
j ≥ Zπ(x)−N

0

J∏
j=0

e− j M j = Zπ(x)−N
0 exp(−3),

where

3=

J∑
j=1

j M j .

Recalling the definition of Z0, and using (5-5), we obtain

(5-6)
∏
p≤x

Tp ≥ exp
( s

s+2
x −3+ O(x/ log x)

)
.

To estimate 3, we note that by Lemma 3.1, for any positive integer I ≤ J we have

J∑
j=I

M j ≤ #{p : Tp < Z0e−I+1
} �

(Z0e−I+1)1+2/s

log Z0− I + 1
.
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Thus for I ≤ 1
2 J , noticing J ≤ log Z0 we obtain

(5-7)
J∑

j=I

M j �
(Z0e−I )1+2/s

log Z0
� e−I (1+2/s) x

log x
,

while for any 1
2 J < I ≤ J we use the bound

(5-8)
J∑

j=I

M j � (Z0e−I+1)1+2/s
� (

√
Z0)

1+2/s
= x1/2.

Hence, via partial summation, combining (5-7) and (5-8), we derive

3=

J∑
I=1

J∑
j=I

M j �
x

log x

∑
1≤I≤J/2

e−I (1+2/s)
+ x1/2

∑
J/2<I≤J

1

�
x

log x
+ J x1/2

�
x

log x
.

This bound on 3, together with (5-6), implies∏
p≤x

Tp ≥ exp
( s

s+2
x + O(x/ log x)

)
.

Therefore using (5-3), we obtain

L x ≤
∏
p≤x

Np/Tp ≤ exp
( 2

s+2
x + O(x/ log x)

)
.

Therefore, the desired result follows from the bound (4-3).

5E. Proof of Theorem 2.4. First, we have∏
p≤x

Tp ≥
∏
p≤x

Tp≥p/(log p)2

p
(log p)2

·

∏
p≤x

Tp<p/(log p)2

Tp

=

∏
p≤x

p
(log p)2

·

∏
p≤x

Tp<p/(log p)2

Tp(log p)2

p
.

Using the trivial lower bound Tp ≥ 1, we derive∏
p≤x

Tp ≥
∏
p≤x

p ·
∏
p≤x

(log p)−2
·

∏
p≤x

Tp<p/(log p)2

(log p)2/p

≥

(
(log x)2

x

)O(x/(log x)2)∏
p≤x

p ·
∏
p≤x

(log p)−2,
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where the last inequality follows from Lemma 3.2 and Lemma 3.3.
Thus, using (5-1), we obtain

L x ≤
∏
p≤x

Np/Tp ≤ exp(O(x/ log x))
∏
p≤x

(log p)2

≤ exp
(

2 x log log x
log x

+ O(x/ log x)
)
,

where the last inequality is derived from (5-5) and the trivial estimate∑
p≤x

log log p ≤ π(x) log log x .

Therefore, the desired result follows from the bound ĥ(Qmin)� L2
x .

6. Proofs of lower bounds

6A. Proof of Theorem 2.5. By assumption, 0 is a torsion subgroup of E(Q). Let
Q ∈ E(Q) be an arbitrary x-pseudolinearly dependent point for a sufficiently large x .
Let m be the number of primes of bad reduction for E . Then, since Q ∈ 0p for any
prime p ≤ x of good reduction, there exists a rational point P ∈ 0 such that for at
least (π(x)−m)/#0 primes p ≤ x of good reduction we have

Q ≡ P (mod p).

In view of (3-3), this implies that

h(Q− P)≥ 2 log
∏

p≤(π(x)−m)/#0

p ≥ 2
#0

x/ log x + O(x/(log x)2),

where the last inequality follows from (5-2) and (5-5). Note that P is a torsion
point; then using (3-1) we obtain

(6-1) ĥ(Q)= ĥ(Q)+ ĥ(P)≥ 1
2 ĥ(Q− P)≥ 1

2h(Q− P)+ O(1)

≥
1

#0
x/ log x + O(x/(log x)2),

which gives the claimed lower bound for the height of the point Q.

6B. Proof of Theorem 2.6. For any sufficiently large x , by Proposition 4.1, any
x-pseudolinearly dependent point Q of 0 is nontorsion and satisfies 〈Q〉∩0={OE }.
Then, from Lemma 3.9, there is an unconditional prime p of good reduction for E
satisfying

log p� (log ĥ(Q))2s+6 log log ĥ(Q)
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such that Q 6∈ 0p. Since x < p, by definition we obtain

log x � (log ĥ(Q))2s+6 log log ĥ(Q),

which implies that ĥ(Q)≥ exp((log x)1/(2s+6)+o(1)).
Similarly, assuming the GRH, we obtain

ĥ(Q)≥ exp(x1/(4s+12)+o(1)),

which completes the proof.

7. Comments

In Section 6, we get some partial results on the lower bound for the height of
x-pseudolinearly dependent points. In fact, the height of such points certainly tends
to infinity as x→+∞.

Indeed, let E be an elliptic curve over Q of rank r ≥ 1, and let 0 be a subgroup
of E(Q) with rank s < r . We have known that for any sufficiently large x , there
exist infinitely many x-pseudolinearly dependent points with respect to 0. For any
x > 0, if such points exist, as before we can choose a point, denoted by Qx , with
smallest Weil height among all these points; otherwise if there are no such points,
we let Qx = OE . Thus, we get a subset

S = {Qx : x > 0}

of E(Q), and for any x < y we have h(Qx)≤ h(Q y). By Theorem 1.2, we know
that for any fixed point Q ∈ E(Q), it can not be an x-pseudolinearly dependent
point for any sufficiently large x . So, S is an infinite set. Since it is well-known
that there are only finitely many rational points of E(Q) with bounded height, we
obtain

lim
x→+∞

h(Qx)=+∞,

which implies that limx→+∞ ĥ(Qx)=+∞. This immediately implies that for the
point Qmin constructed in Section 4B, its height ĥ(Qmin) also tends to infinity as
x→+∞.

Moreover, let pn denote the n-th prime, that is p1= 2, p2= 3, p3= 5, . . . For any
n ≥ 1, denote by Tn the set of pn-pseudolinearly dependent points of 0. Obviously,
Tn+1 ⊆ Tn and h(Q pn+1)≥ h(Q pn ) for any n ≥ 1. For any sufficiently large n, we
conjecture that Tn+1 ( Tn . If furthermore one could prove that h(Q pn+1) > h(Q pn )

for any sufficiently large n, this would lead to a lower bound of the form

h(Qx)≥ log x + O(log log x),



142 MIN SHA AND IGOR E. SHPARLINSKI

as the values of h(Qx) are logarithms of rational integers and there are about
x/ log x primes not greater than x .

In Lemma 3.9, if we choose 0 as a torsion subgroup, we can also get a similar
unconditional upper bound. Indeed, for a prime p of good reduction for E , suppose
that Q ∈ 0p. Then, Q− P ≡ OE modulo p for some P ∈ 0. According to (3-3),
we have p ≤ exp(h(Q − P)/2). Since P is a torsion point, as in (6-1) we get
p≤ exp(ĥ(Q)+O(1)). Thus, we can choose a prime p of good reduction satisfying

p ≤ exp(ĥ(Q)+ O(1))

such that Q 6∈ 0p.
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FOR DYNAMICAL SYSTEMS

WITH PORTRAIT LEVEL STRUCTURES
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Let K be a number field, let S be a finite set of places of K , and let RS be the
ring of S-integers of K . A K -morphism f :P1

K→P1
K has simple good reduc-

tion outside S if it extends to an RS-morphism P1
RS
→ P1

RS
. A finite Galois

invariant subset X ⊂ P1
K (K̄ ) has good reduction outside S if its closure in

P1
RS

is étale over RS. We study triples ( f, Y, X) with X = Y ∪ f (Y). We
prove that for a fixed K , S, and d, there are only finitely many PGL2(RS)-
equivalence classes of triples with deg( f )= d and

∑
P∈Y e f (P)≥ 2d+1 and

X having good reduction outside S. We consider refined questions in which
the weighted directed graph structure on f : Y → X is specified, and we
give an exhaustive analysis for degree 2 maps on P1 when Y = X .
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1. Introduction

Let K be a number field, let S be a finite set of places of K including all archimedean
places, and let RS be the ring of S-integers of K . We recall that an abelian
variety A/K is said to have good reduction outside S if there exists a proper RS-
group scheme A/RS whose generic fiber is K-isomorphic to A/K . Then we have
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the following famous conjecture of Shafarevich, which was proven by Shafarevich
in dimension 1 and by Faltings in general.

Theorem 1 [Faltings 1983]. There are only finitely many K-isomorphism classes
of abelian varieties A/K having good reduction outside S.

Our goal in this paper is to study an analogue of Shafarevich’s conjecture for
dynamical systems on projective space. The first requirement is a definition of good
reduction for self-maps of PN, such as the following.

Definition [Morton and Silverman 1995]. Let f : PN
K → PN

K be a nonconstant
K-morphism. Then f has (simple) good reduction outside S if there exists an
RS-morphism PN

RS
→ PN

RS
whose generic fiber is PGLN+1(K )-conjugate to f .

If f has simple good reduction outside S, and if ϕ ∈ PGLN+1(RS), then it is
clear that the conjugate map

f ϕ := ϕ−1
◦ f ◦ϕ : PN

K → PN
K

also has simple good reduction. But even modulo this equivalence, it is easy to see
that a dynamical analogue of Shafarevich’s conjecture using simple good reduction
is false. For example, every map f : P1

K → P1
K of the form

f (X, Y )= [Xd
+ a1 Xd−1Y + · · ·+ adY d , Y d

] with ai ∈ RS

has simple good reduction outside S, and these maps represent infinitely many
PGL2(RS)-conjugacy classes. And as noted in [Morton and Silverman 1995, Ex-
ample 4.1], there are also infinite nonpolynomial families such as

[aX2
+ bXY + Y 2, X2

] with a, b ∈ RS .

It is thus of interest to formulate alternative definitions of good reduction for which a
Shafarevich conjecture might hold in the dynamical setting. The literature contains
several papers [Petsche 2012; Petsche and Stout 2015; Stout 2014; Szpiro and
Tucker 2008] along these lines. We refer the reader to Section 2 for a description
of these earlier results and a comparison with the present paper.

Our approach is to study pairs consisting of a map f and a set of points Y ∈ PN

such that the map f : Y → f (Y ) “does not collapse” when it is reduced modulo p

for primes not in S; see Remark 5 for a discussion of why this is a natural analogue
of the classical Shafarevich–Faltings result. To make this precise, we need to define
good reduction for sets of points.

Definition. Let X ⊂ PN (K̄ ) be a finite Gal(K̄/K )-invariant subset, say X =
{P1, . . . , Pn}. Then X has good reduction outside S if for every prime p /∈ S,
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and every prime P of K (P1, . . . , Pn) lying over p, the reduction map1

X→ X̃ mod P is injective.

We observe that good reduction is preserved by the natural action of PGLN+1(RS)

on PN (K̄ ).

Our dynamical analogue of the Shafarevich–Faltings theorem is a statement
about triples ( f, Y, X) consisting of a morphism f and sets of points that have
good reduction. We restrict attention to P1, since this is the setting for which we
are currently able to prove a strong Shafarevich-type theorem; but see Section 8 for
a brief discussion of possible extensions to PN and why the naive generalization
fails.

Definition. We define GR1
d [n](K , S) to be the set of triples ( f, Y, X), where f :

P1
K → P1

K is a degree d morphism defined over K and Y ⊆ X ⊂ P1(K̄ ) are finite
sets, satisfying the following conditions:

• X = Y ∪ f (Y ),

• X is Gal(K̄/K )-invariant,

•
∑

P∈Y e f (P)= n, where e f (P) is the ramification index of f at P,

• f and X have good reduction outside S.

We also define a potentially larger set G̃R1
d [n](K , S) by dropping the requirement

that f has good reduction. We observe that if Y = X , then the points in X have
finite f -orbits, in which case we say that ( f, X, X) is a preperiodic triple.

There is a natural action of PGL2(RS) on GR1
d [n](K , S) and on G̃R1

d [n](K , S)
given by

ϕ · ( f, Y, X) :=
(

f ϕ, ϕ−1(Y ), ϕ−1(X)
)
.

Our dynamical Shafarevich-type theorem for P1 says that if n is sufficiently large,
then G̃R1

d [n](K , S) has only finitely many PGL2(RS)-orbits.

Theorem 2 (dynamical Shafarevich theorem for P1). Let d ≥ 2.

(a) Let K/Q be a number field, and let S be a finite set of places of K . Then for
all n ≥ 2d + 1, the set

G̃R1
d [n](K , S)/PGL2(RS) is finite.

1In scheme-theoretic terms, the set X is a reduced 0-dimensional K-subscheme of PN
K . Let

X ⊂ PN
RS

be the scheme-theoretic closure of X . Then X has good reduction outside S if X is étale
over RS .
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(b) Let S be the set of rational primes less than 2d − 2. Then

GR1
d [2d](Q, S)/PGL2(ZS) is infinite.

Indeed, there are infinitely many PGL2(ZS)-equivalence classes of preperiodic
triples ( f, X, X) in GR1

d [2d](Q, S).

Proof. See Section 3 for the proof of (a), and Section 4, specifically Proposition 11,
for the proof of (b). �

In some sense, Theorem 2 is the end of the story for P1, since it says:

“The dynamical Shafarevich conjecture is true for sets of weight
at least 2d + 1, but it is not true for sets of smaller weight.”

However, rather than merely specifying the total weight, we might consider the
weighted graph structure that f : Y → X imposes on X , where each point P ∈ Y is
assigned an outgoing arrow P→ f (P) of weight e f (P). In dynamical parlance,
we want to classify triples ( f, Y, X) according to their portrait structure.2 The
following example of an (unweighted) portrait illustrates the general idea:

P : •
yy

• // • •
TT
•

��

A model for this portrait P is a triple ( f, Y, X) with Y = {P1, P2, P4, P5} and
X = {P1, P2, P3, P4, P5} satisfying

• P1 is a fixed point of f ,

• f (P2)= P3,

• P4 and P5 form a periodic 2-cycle for f .

If each point P ∈ P is assigned a weight ε(P), then we might further require that
e f (P)= ε(P), although there are other natural possibilities. Indeed, we consider
three ways to define good reduction for dynamical systems and weighted portraits.
We start with the largest set and work our way down:

Definition. Let P be a weighted portrait. We define GR1
d [P](K , S) to be the set of

triples ( f, Y, X), where f : P1
K → P1

K is a degree d morphism defined over K and
Y ⊆ X ⊂ P1(K̄ ) are finite sets, satisfying the conditions

• X = Y ∪ f (Y ) and f : Y → X looks like P (ignoring the weights),

• X is Gal(K̄/K )-invariant,

• f and X have good reduction outside S.

2Portrait structures, especially on critical point orbits, are important tools in the study of complex
dynamics on P1(C); see for example [Arfeux 2016].



SHAFAREVICH-TYPE THEOREMS FOR DYNAMICAL SYSTEMS 149

We then define three subsets of GR1
d [P](K , S) by imposing the following additional

conditions on the triple ( f, Y, X) that reflect the weights assigned by P:3

GR1
d [P]

•(K , S): e f (P)≥ ε(P) for all P ∈ Y ,

GR1
d [P]

◦(K , S): e f (P)= ε(P) for all P ∈ Y ,

GR1
d [P]

?(K , S): e f̃ (P̃ mod p)= ε(P) for all P ∈ Y and all p /∈ S.

We refer the reader to Section 6 for rigorous definitions of portraits, both weighted
and unweighted, and their models. See also the companion paper [Doyle and
Silverman ≥ 2018], in which we construct parameter spaces and moduli spaces for
dynamical systems with portraits via geometric invariant theory and study some of
their geometric and arithmetic properties.

This leads to fundamental questions:

Question 3. For a given d ≥ 2, classify the portraits P having the property that for
all number fields K and all finite sets of places S, the set

GRN
d [P]

x(K , S)/PGL2(RS) is finite, where x ∈ {•, ◦, ?}.

If P has this property, then we say that P is an (x, d)-Shafarevich portrait, or that
(x, d)-Shafarevich finiteness holds for P .

For example, Theorem 2(a) says that if the total weight of the points in P is at
least 2d+1, then (•, d)-Shafarevich finiteness holds for P . This is quite satisfactory.
But the converse result, which is Theorem 2(b), says only that there exists at least
one portrait of total weight 2d such that (•, d)-Shafarevich finiteness fails for P . It
says nothing about the full set of such portraits. And indeed, we will prove that
among the many portraits of total weight 4, (•, 2)-Shafarevich finiteness holds for
some and not for others! Thus the answer to Question 3 appears to be fairly subtle
for portraits of weight at most 2d .

In those cases that GR1
d [P]

x(K , S) is infinite, we might ask for a more refined
measure of its size. This is provided by looking at its image in the moduli space M1

d ,
where M1

d := End1
d // SL2 is the moduli space of dynamical systems of degree d

morphisms on P1. (See [Milnor 1993; Silverman 1998] for the construction of M1
d ,

and [Levy 2011; Petsche et al. 2009] for an analogous construction for PN.) This
prompts the following definition.

Definition. Let d ≥ 2, let x ∈ {•, ◦, ?}, and let P be a portrait. The (x, d)-
Shafarevich dimension of P is the quantity

ShafDim1
d [P]

x
= sup

K a number field
S a finite set of places

dim Image
(
GR1

d [P]x(K , S)→M1
d

)
,

where the overline denotes the Zariski closure.
3We note that ?-good reduction was first defined and studied by Petsche and Stout [2015], specifi-

cally for d = 2 and P consisting of two fixed points or one 2-cycle.
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P (1, 2)-Shafarevich finiteness true?

• // •
yy

•
yy

•
yy

yes

• // •
yy

• // •
yy

no

• // • // •
yy

•
yy

yes

• // • // • // •
yy

yes

•
yy

•
yy

•
UU
•

��
yes

• // •
yy

•
UU
•

��
no

•
yy

• // •
UU
•

��
yes

• // • // •
UU
•

��
yes

Table 1. Some weight 4 portraits for degree 2 maps.

By definition, we have

P is a (x, d)-Shafarevich portrait H⇒ ShafDim1
d [P]

x
= 0.

A natural generalization of Question 3 is to ask for a formula (or algorithm, or . . . )
for ShafDim1

d [P]x as a function of P .
In this paper we start to answer this refined question by performing an exhaustive

computation of ShafDim1
2[P]x for preperiodic portraits of weight up to 4, since

Theorem 2(a) says that the dimension is 0 for portraits whose weight is strictly
greater than 4.

To partially illustrate the complete results that are given in Section 7, we refer
the reader to Table 1. This table lists eight preperiodic portraits of weight 4 that
arise for degree 2 maps of P1. For six of them, the (•, 2)-Shafarevich finiteness
property holds, while for two of them it does not. It is not clear (to this author) how
to distinguish this dichotomy directly from the geometry of the portraits, other than
by performing a detailed analysis. It turns out that there are 34 possible portraits of
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weight at most 4 for degree 2 maps of P1. See Section 7 for an analysis of all 34
portraits and a computation of their various Shafarevich dimensions.

We can also turn the question around by fixing P and letting d→∞. We note
that the Shafarevich dimension is never more than dimM1

d = 2d − 2.

Question 4. For a given unweighted portrait P , what is the limiting behavior of
the Shafarevich discrepancy4

2d − 2−ShafDim1
d [P] as d→∞?

We note that Question 4 is quite interesting even for P =∅. We will show in
Proposition 12 that

d ≤ ShafDim1
d [∅] ≤ 2d − 2.

This gives the exact value for d = 2, a result that is also proven in [Petsche and
Stout 2015] using a slightly different argument.

Remark 5. Returning to the case of abelian varieties for motivation and inspiration,
we note that an abelian variety is really a pair (A,O) consisting of a variety and a
marked point. As noted by Petsche and Stout [2015], if we discard the marked point,
then Shafarevich finiteness is no longer true. For example, there may be infinitely
many K-isomorphism classes of curves of genus 1 having good reduction outside S.
Hence in order to prove Shafarevich finiteness for a collection of geometric object
(varieties, maps, etc.), it is very natural to add level structure in the form of one
or more points. We also remark that if we add further level structure to an abelian
variety, for example specifying an n-torsion point Q, then an ostensibly stronger
form of good reduction would require that the points Q and O remain distinct
modulo the primes not in S. But if we enlarge S so that n ∈ R∗S , then the two forms
of good reduction are actually identical due to the standard result on injectivity
of torsion under reduction; cf. [Hindry and Silverman 2000, Theorem C.1.4] or
[Mumford 1970, Appendix II, Corollary 1]. To make the dynamical analogy
complete, we note that torsion points are exactly the points of A that are preperiodic
for the doubling map.

2. Earlier results

It has long been realized that dynamical Shafarevich finiteness does not hold for
morphisms f :P1

→P1 if the definition of good reduction is simple good reduction;
cf. [Morton and Silverman 1995, Example 4.1]. This has led a number of authors
to impose additional good reduction conditions on f and to prove a variety of
finiteness theorems. We briefly mention a few of these results.

4If P has weights ε, it is more natural to consider the quantity 2d − 2−
∑

P∈Y
(
ε(P)− 1

)
−

ShafDim1
d [P]

x for x ∈ {•, ◦, ?}.
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Closest in spirit to the present paper is work of Petsche and Stout [2015] in
which they study good reduction of degree 2 maps of P1. They define (with similar
notation) the sets that we’ve denoted by GR1

d(K , S)[∅] and they pose the question
of whether the maps in this set are Zariski dense in the moduli space M1

d . They
prove that this is true for d = 2, which is a special case of our Proposition 12.
They also study maps with ?-good reduction relative to various portraits, i.e., the
sets GR1

d [P]
? defined earlier. For example, they prove that ShafDim1

2[P]? = 1
when P is a portrait consisting of two unramified fixed points, and similarly when P
is a portrait consisting of a single unramified 2-cycle. (These are the portraits
labeled P2,3 and P2,4 in Table 2.) We will show later that ShafDim1

2[P]◦ = 1
and ShafDim1

2[P]• = 2 for these two portraits. More generally, in Section 7 we
compute the three Shafarevich dimensions for the 34 preperiodic portraits of weight
at most 4 for degree 2 maps of P1.

Other approaches to a dynamical Shafarevich conjecture also consider pairs ( f, X)
or triples ( f, Y, X) of maps and points, but impose different function-theoretic
constraints. Thus in [Szpiro and Tucker 2008; Szpiro et al. 2017; Szpiro and West
2017], maps are classified according to what Szpiro characterizes as “differential
good reduction”. For a given map f :P1

→P1, let R( f ) denote the set of ramified
points of f and let B( f )= f (R( f )) denote the set of branch points.5

Definition. The map f has critical good reduction outside S if each of the sets R( f )
and B( f ) has good reduction outside S. The map f has critical excellent reduction
outside S if the union R( f )∪B( f ) has good reduction outside S.

Canci, Peruginelli, and Tossici [Canci et al. 2013] prove that f has critical good
reduction if and only if f has simple good reduction and the branch locus B( f )
has good reduction.

Theorem 6 [Szpiro et al. 2017; Szpiro and West 2017]. Fix a number field K , a
finite set of places S, and an integer d ≥ 2. Then up to PGL2(K )-conjugacy, there
are only finitely many degree d maps f : P1

K → P1
K that are ramified at 3 or more

points and have critically good reduction outside S.

Theorem 6 of Szpiro, Tucker, and West fits into the framework of our Theorem 2,
since their maps f correspond to triples(

f,R( f ),R( f )∪B( f )
)
∈ G̃R1

d [n](K , S),

where

n =
∑

P∈R( f )

e f (P)=
∑

P∈R( f )

(
e f (P)− 1

)
+ #R( f )= 2d − 2+ #R( f ).

5In dynamical terminology, R( f ) is the set of critical points and B( f ) is the set of critical values.
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If we assume that #R( f ) ≥ 3 as in Theorem 6, then n ≥ 2d + 1, so we see that
Theorem 6 follows from Theorem 2(a).

The proof of Theorem 6 in [Szpiro et al. 2017; Szpiro and West 2017] uses
a finiteness result for sets of points in P1(K ) having good reduction outside S,
similar to our Lemmas 7 and 8, which in turn rely on classical results of Hermite
and Minkowski together with the finiteness of solutions to the S-unit equation. The
other ingredient used by Szpiro, Tucker, and West in their proof of Theorem 6 is
a special case of a theorem of Grothendieck that computes the tangent space of
the parameter scheme of morphisms. We remark that [Szpiro et al. 2017; Szpiro
and West 2017; Szpiro and Tucker 2008] also deal with the case of function fields,
which can present additional complications.

The earlier paper of Szpiro and Tucker [2008] proved a result similar to Theorem 6,
but with a two-sided conjugation equivalence relation, i.e., f1 and f2 are considered
equivalent if there are maps ϕ,ψ ∈PGL2 such that f2=ψ ◦ f1◦ϕ. This equivalence
relation, while interesting, is not well suited for studying dynamics.

There is an article of Stout [2014] in which he proves that for a fixed rational
map f , there are only finitely many K̄/K twists of f having simple good reduction
outside of S. And a paper of Petsche [2012] proves a Shafarevich finiteness theorem
for certain families of critically separable maps, which he defines to be maps f of
degree d ≥ 2 such that for every prime not in S, the reduced map has 2d−2 distinct
critical points. In other words, #R( f ) = 2d − 2 and R( f ) has good reduction
outside S. This is not enough to obtain finiteness, so Petsche restricts to certain
codimension 3 families in Rat1d that are modeled after Lattès maps, and he proves
that the dynamical Shafarevich conjecture holds for these families.

A number of authors have studied the resultant equation Res(F,G)= c, where
the coefficients of F and G are viewed as indeterminates [Evertse and Győry 1993;
Győry 1990; 1993]. Taking c to be an S-unit, this is clearly related to the question
of simple good reduction of the map f = [F,G] ∈ End1

d . Rephrasing the results in
our notation,6 Evertse and Győry [1993, Corollary 1] prove that up to PGL2(RS)-
equivalence, there are only finitely many f = [F,G] ∈ End1

d having the property
that FG is square-free and splits completely over K . Alternatively, their conditions
may be phrased in terms of f as requiring that 0 and∞ are not critical values of f
and that the points in f −1(0)∪ f −1(∞) are in P1(K ), and their conclusion is that
Shafarevich finiteness is true for this collection of maps. We note that the condition
that f −1(0)∪ f −1(∞) ⊂ P1(K ) means, more or less, that the maps in question
correspond to S-integral points on a 2d-to-1 finite cover of an open subset of End1

d .
Finally, we mention two topics that seem at least tangentially related. There are a

number of papers that fix a map f and a wandering point P and ask which portraits

6We have restricted to the case that deg(F)= deg(G), although the cited papers do not require this.
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arise when one reduces the orbit of P modulo various primes; see for example
[Faber and Granville 2011; Ghioca et al. 2015]. And there are two articles of Doyle
[2016; 2018] in which he classifies periodic point portraits that are permitted for
unicritical polynomials, i.e., polynomials of the form axd

+ b. These results could
be useful in studying the geometry and arithmetic of our portrait moduli spaces
studied in [Doyle and Silverman ≥ 2018].

3. Dynamical Shafarevich finiteness holds on P1 for weight ≥ 2d+ 1

In this section we prove Theorem 2(a); namely we prove that the dynamical Sha-
farevich finiteness holds for maps f of P1 and f -invariant sets X of weight at
least 2d + 1. The first step is to show that there are only finitely many choices for
the set X .

Definition. Let K be a number field, let S be a finite set of places including all
archimedean places, and let n ≥ 1 be an integer. We define X [n](K , S) to be the
collection of subsets X ⊂ P1(K̄ ) satisfying

• #X = n,

• X is Gal(K̄/K )-invariant,

• X has good reduction outside S.

We note that if ϕ ∈ PGL2(RS) and X = {P1, . . . , Pn} ∈ X [n](K , S), then

(1) ϕ(X) := {ϕ(P1), . . . , ϕ(Pn)} ∈ X [n](K , S),

so there is a natural action of PGL2(RS) on X [n](K , S). More generally, we use (1)
to define an action of PGL2(K̄ ) on n-tuples of points in P1(K̄ ).

The following lemma is well known, but for lack of a suitable reference and as a
convenience to the reader, we include the proof.

Lemma 7. Fix a number field K , a finite set of places S including all archimedean
places, and an integer n ≥ 3. Then

X [n](K , S)/PGL2(RS)

is finite.

We start with a sublemma that will allow us to restrict attention to set of points
defined over a single field K .

Sublemma 8. Let K be a number field, let S be a finite set of places including all
archimedean places, and let n≥ 3 be an integer. Then there is a constant C(K , S, n)
such the map

X [n](K , S)/PGL2(RS)→ {X ⊂ P1(K̄ ) : #X = n}/PGL2(K̄ )

is at most C(K , S, n)-to-1.
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Proof. Let X = {P1, . . . , Pn} ∈ X [n](K , S). The fact that X is Galois invariant
implies that the field

K X := K (P1, . . . , Pn)

is a Galois extension of degree dividing n!. Further, the good reduction assumption
on X implies that K X/K is unramified outside S. It follows from the Hermite–
Minkowski theorem [Neukirch 1999, Section III.2] that there are only finitely many
possibilities for the field K X .7 It follows that the field

(2) K ′ :=
∏

X∈X [n](K ,S)

K X

is a finite Galois extension of K that depends only on K , S, and n.
We now fix an n-tuple X0 ∈ X [n](K , S), say X0 = {Q1, . . . , Qn}, and consider

the set of n-tuples in X [n](K , S) that are PGL2(K̄ )-equivalent to X0. Our goal is
to prove that the set

PGL2(K , S, X0) := {ϕ ∈ PGL2(K̄ ) : ϕ(X0) ∈ X [n](K , S)}

has the property that PGL2(K , S, X0)/PGL2(RS) is finite and has order bounded
solely in terms of K , S, and n.

Our first observation is that if ϕ ∈ PGL2(K , S, X0), then in particular we have
Qi ∈ P1(K ′) and ϕ(Qi ) ∈ P1(K ′) for all 1 ≤ i ≤ n, where K ′ is the field (2). A
fractional linear transformation is determined by its values at three points, so our
assumption that n ≥ 3 tells us that ϕ ∈ PGL2(K ′), i.e., every ϕ ∈ PGL2(K , S, X0)

is defined over the finite extension K ′ of K , where K ′ does not depend on X0.
Next let S′ be the places of K ′ lying over S. The good reduction assumption

on X0 and ϕ(X0) implies that Q1, . . . , Qn remain distinct modulo all primes P

of L with P /∈ S′, and similarly for ϕ(Q1), . . . , ϕ(Qn). Since n ≥ 3, we can apply
the following elementary result to conclude that ϕ has simple good reduction at P,
and since this holds for all P /∈ S′, we see that ϕ ∈ PGL2(RS′).

Sublemma 9. Let R be a discrete valuation ring with maximal ideal P and fraction
field K . Let P1, P2, P3 ∈ P1(K ) be points whose reductions modulo P are distinct,
and let Q1, Q2, Q3 ∈ P1(K ) also be points with distinct mod P reductions. Let
ϕ ∈ PGL2(K ) be the unique linear fractional transformation satisfying ϕ(Pi )= Qi

for 1≤ i ≤ 3. Then ϕ ∈ PGL2(R), i.e., ϕ has good reduction modulo P.

Proof. The fact that the reductions of P1, P2, P3 are distinct means that we can find
a linear fractional transformation ψ ∈ PGL2(R) satisfying ψ(P1)= 0, ψ(P2)= 1,
ψ(P3)=∞. Similarly, we can find a λ∈PGL2(R) satisfying λ(Q1)=0, λ(Q2)=1,

7More precisely, our assumptions imply that for p /∈ S, we have ordpDL/K = 0, while for all
primes p one has the standard estimate ordpDL/K ≤ [L : K ] − 1. This proves that NL/KDL/K is
bounded, and then for a fixed K , Hermite–Minkowski says that there are only finitely many L .
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λ(Q3)=∞. Then λ ◦ϕ ◦ψ−1 fixes 0, 1, and∞, so it is the identity map. Hence
ϕ = λ−1

◦ψ ∈ PGL2(R). �

We next observe that if ϕ ∈ PGL2(K , S, X0), then by definition and from what
we proved earlier, both of the sets X0 and ϕ(X0) are composed of points in P1(K ′)
and both are Gal(K ′/K )-invariant. Hence for any σ ∈ Gal(K ′/K ), we find that

ϕ(X0)= (ϕ(X0))
σ
= ϕσ (Xσ

0 )= ϕ
σ (X0).

Thus ϕ−1
◦ ϕσ : X0→ X0, i.e., the map ϕ−1

◦ ϕσ is a permutation of the set X0.
We thus obtain a map

PGL2(K , S, X0)→MapSet(Gal(K ′/K ),SX0),

ϕ 7→ (σ 7→ ϕ−1
◦ϕσ ),

where SX0 denotes the group of permutations of the set X0. (The map σ 7→
ϕ−1
◦ϕσ is actually some sort of cocycle, but that is irrelevant for our purposes.)

Since Gal(K ′/K ) and SX0 are both finite and have order bounded in terms of K , S,
and n, it suffices to fix some ϕ0 ∈ PGL2(K , S, X0) and to bound the number
of PGL2(RS) equivalence classes of maps ϕ ∈ PGL2(K , S, X0) that have the same
image in MapSet(Gal(K ′/K ),SX0). This means that for all σ ∈ Gal(K ′/K ), the
maps ϕ−1

◦ϕσ = ϕ−1
0 ◦ϕ

σ
0 have the same effect on X0; and since #X0 = n ≥ 3 and

linear fractional transformations are determined by their values on three points, it
follows that ϕ−1

◦ϕσ = ϕ−1
0 ◦ϕ

σ
0 as elements of PGL2(K ′). Thus

ϕ ◦ϕ−1
0 = ϕ

σ
◦ (ϕσ0 )

−1
= (ϕ ◦ϕ−1

0 )σ for all σ ∈ Gal(K ′/K ).

Hence ϕ ◦ϕ−1
0 ∈ PGL2(K ). But we also know that ϕ0 and ϕ are in PGL2(RS′), so

ϕ ◦ϕ−1
0 ∈ PGL2(K )∩PGL2(RS′).

It remains to show that

(3) PGL2(K )∩PGL2(RS′)= PGL2(RS),

since that will show that up to composition with elements of PGL2(RS), there
are only finitely many choices for ϕ. In order to prove (3), we start with some
ψ ∈ PGL2(K )∩ PGL2(RS′). Then for each prime p /∈ S, we need to show that ψ
has good reduction at p. We write ψ in normalized form as

(4) ψ(X, Y )= [aX + bY, cX + dY ] with a, b, c, d ∈ K and

min{ordp(a), ordp(b), ordp(c), ordp(d)} = 0,

i.e., a, b, c, d are all p-integral, and at least one of them is a p-unit. Now let P be a
prime of K ′ lying above p. We are given that ψ has good reduction at P, which
means that if we choose a P-normalized equation for ψ , its reduction modulo P
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has good reduction. But (4) is already normalized for P, since ordP = e(P/p) ordp.
Hence

ad − bc is a P-adic unit.

But ad− bc ∈ K , so ad− bc is a p-adic unit, and hence ψ has good reduction at p.
This holds for all p /∈ S, which completes the proof that ψ ∈ PGL2(RS), and thus
completes the proof of Sublemma 8. �

Proof of Lemma 7. Let L/K be a finite Galois extension, and let T be a finite of
places of L whose restriction to K contains S. Then we get a natural map

(5) X [n](K , S)/PGL2(RS)→ X [n](L , T )/PGL2(RT ),

since if X ⊂ P1(K̄ ) is Gal(K̄/K ) invariant and has good reduction outside S, it is
clear that X is also Gal(L̄/L) invariant and has good reduction outside T . However,
what is not clear a priori is that the map (5) is finite-to-one, since PGL2(RT ) may
be larger than PGL2(RS).

However Sublemma 8 says not only that the map

X [n](K , S)/PGL2(RS)→ {X ⊂ P1(K̄ ) : #X = n}/PGL2(K̄ )

is finite-to-one, but it also says that the number of elements in each PGL2(K̄ )-
equivalence class of X [n](K , S)/PGL2(RS) is bounded solely in terms of K , S,
and n. Hence using (5), it suffices to prove Lemma 7 for any such L and T .

As shown in the proof of Sublemma 8, there is a finite extension K ′/K such
that every X ∈ X [n](K , S) is an n-tuple of points in P1(K ′). We then let S′ be a
finite set of places of K ′ such that S′ restricted to K contains S and such that RS′

is a PID. Replacing K and S with K ′ and S′, we are reduced to studying the
PGL2(RS)-equivalence classes of the set of X ∈ X [n](K , S) such that

X = {P1, . . . , Pn} with P1, . . . , Pn ∈ P1(K ),

with the further condition that RS is a PID. This allows us to choose normalized
coordinates for the points in X , say

Pi = [ai , bi ] with ai , bi ∈ RS and gcdRS
(ai , bi )= 1.

The good reduction assumption says that P1, . . . , Pn are distinct modulo all primes
not in S, which given our normalization of the coordinates of the Pi , is equivalent
to the statement that

ai b j − a j bi ∈ R∗S for all 1≤ i < j ≤ n.

This means that we can find a linear fractional transformation ϕ ∈ PGL2(RS) that
moves the first three points in our list to the points

ϕ(P1)= [1, 0], ϕ(P2)= [0, 1], ϕ(P3)= [1, 1].
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Replacing X by ϕ(X), the remaining points in X are S-integral points of the scheme

(6) P1
RS
r {[1, 0], [0, 1], [1, 1]},

and it is well known that there are only finitely many such points. More precisely,
a normalized point P = [a, b] is an S-integral point of the scheme (6) if and only
if a, b, and a− b are S-units. But this implies that

( a
a−b ,

b
b−a

)
is a solution to the

S-unit equation U + V = 1, and hence that there are only finitely many values for
each of a

a−b and b
b−a [Silverman 2009, IX.4.1]. Further, each S-unit solution (u, v)

to u+ v = 1 gives one point P = [a, b] = [u,−v]. This concludes the proof that
there are only finitely many PGL2(RS)-equivalence classes of sets X having n
elements and good reduction outside S. �

The following geometric result is also undoubtedly well known, but for lack of a
suitable reference and the convenience of the reader, we include the short proof.8

Lemma 10. Let K be a field, and let f, g : P1
K → P1

K be rational maps of de-
gree d ≥ 1. Suppose that∑

P∈P1(K )
f (P)=g(P)

min{e f (P), eg(P)} ≥ 2d + 1.

Then f = g.

Proof. We may assume that K is algebraically closed. We fix a basepoint P0 ∈

P1(K ), and we take

H1 = {P0}×P1 and H2 = P1
×{P0}

as generators for Pic(P1
×P1)∼= Z⊕Z. We consider the divisors

1= {(P, P) : P ∈ P1(K )} ∈ Div(P1
×P1),

0 f,g = ( f × g)∗1 ∈ Div(P1
×P1).

We write |1| and |0 f,g| for the supports of1 and 0 f,g, respectively, and we note that
these supports are irreducible, since they are the images of P1 under, respectively,
the diagonal map and the map f × g.

We use the push-pull formula to compute the global intersection

0 f,g · H1 = ( f × g)∗(1) · H1 =1 · ( f × g)∗(H1)=1 · ( f ∗(P0)×P1)= d.

Similarly, we have 0 f,g · H2 = d . Hence

0 f,g = d H1+ d H2 in Pic(P1
×P1).

8Mike Zieve has pointed out that this lemma may also be proven by writing f and g as quotients
of polynomials f = f1/ f2 and g = g1/g2, and then analyzing the factorization of f1g2− f2g1.
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This allows us to compute

(7) 0 f,g ·1= d H1 ·1+ d H2 ·1= 2d.

Choose some P ∈P1(K ) satisfying f (P)= g(P), and let z be a local uniformizer
at P . We may assume that z( f (P)) 6= ∞, since otherwise we can replace z
by z/(z − 1). By assumption we have c := f (P) = g(P), so locally near P the
functions f and g satisfy

f (z) ∈ c+ aze f (P)+ ze f (P)+1K [[z]], g(z) ∈ c+ bzeg(P)+ zeg(P)+1K [[z]]

for some nonzero a and b. This allows us to estimate the following local intersection
index:

(8)
(
( f × g)∗1 ·1

)
( f (P),g(P)) = dimK

K [[x, y, z]](
x − f (z), y− g(z), x − y

)
= dimK

K [[z]](
f (z)− g(z)

)
≥min{e f (P), eg(P)}.

Suppose that |0 f,g| ∩ |1| is finite. Then we can calculate 0 f,g ·1 as a sum of
local intersections. Combined with (8), this yields

2d = 0 f,g ·1 from (7),

=

∑
Q∈P1(K )

(
( f × g)∗1 ·1

)
(Q,Q) since |0 f,g| ∩ |1| is finite,

=

∑
Q∈P1(K ) such that

∃P∈P1(K ) with f (P)=g(P)=Q

(
( f × g)∗1 ·1

)
(Q,Q)

≥

∑
P∈P1(K )

f (P)=g(P)

min{e f (P), eg(P)} from (8),

≥ 2d + 1 by assumption.

Thus the assumption that |0 f,g| ∩ |1| is finite leads to a contradiction. It follows
that |1| and |0 f,g| have a common positive dimensional component. But as noted
earlier, both |1| and |0 f,g| are irreducible curves, and hence |1| = |0 f,g|. Thus f
and g take on the same value at every point of P1(K ), and therefore f = g, which
completes the proof of Lemma 10. �

We now have the tools needed to prove dynamical Shafarevich finiteness for P1.

Proof of Theorem 2(a). Our goal is to prove that

G̃R1
d [n](K , S)/PGL2(RS) is finite.
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Let ( f, Y, X) ∈ G̃R1
d [n](K , S), and let `= #X . We note that

2d + 1≤ n =
∑
P∈Y

e f (P)≤ d · #Y ≤ d · #X = d`,

so `≥ 3. Further, the set X is Gal(K̄/K )-invariant and has good reduction outside
of S. Lemma 7 tells us that up to PGL2(RS)-equivalence, there are only finitely
many possibilities for X . So without loss of generality, we may assume that
X = {P1, . . . , P`} is fixed.

The set Y is subset of X , so there are only finitely many choices for Y . Relabeling
the points in X , we may thus also assume that Y = {P1, . . . , Pm} is fixed.

By definition, the map f satisfies X = f (Y )∪ Y , so in particular, f (Y ) ⊂ X .
Thus f induces a map

ν f : {1, . . . ,m} → {1, . . . , `} characterized by f (Pi )= Pν f (i).

There are only m` maps ν from the set {1, . . . ,m} to the set {1, . . . , `}, so again
without loss of generality, we may fix one map ν and restrict attention to maps f
satisfying ν f = ν. This means that the value of f is specified at each of the
points P1, . . . , Pm in Y .

We define the map

G̃R1
d [n](K , S)→ Zm, ( f, X) 7→

(
e f (P1), . . . , e f (Pm)

)
.

Since e f (P) is an integer between 1 and d , there are only finitely many possibilities
for the image. We may thus restrict attention to triples ( f, Y, X) such that the
ramification indices of f at the points in Y are fixed.

But now any two triples ( f, Y, X) and (g, Y, X) have the same values and the
same ramification indices at the points in Y , and by assumption the sum of those
ramification indices is at least 2d + 1, so Lemma 10 tells us that f = g. This
completes the proof that G̃R1

d [n](K , S) contains only finitely many PGL2(RS)-
equivalence classes of triples ( f, Y, X). �

4. Dynamical Shafarevich finiteness fails on P1 for weight ≤ 2d

In this section we prove Theorem 2(b). More precisely, we prove that the dynamical
Shafarevich finiteness is false for maps f : P1

→ P1 and f -invariant sets X
containing 2d points. We do this by analyzing a particular family of maps.

Proposition 11. Let d ≥ 2, let K/Q be a number field, and let S be the set of primes
of K dividing (2d − 2)! . For each a ∈ K̄ ∗, let fa(x) be the map

fa(x)=
ax(x − 1)(x − 2) · · · (x − d + 1)
(x + 1)(x + 2) · · · (x + d − 1)

∈ End1
d ,
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and let X ⊂ P1 be the set

X = {0, 1, 2, . . . , d − 1} ∪ {−1,−2, . . . ,−(d − 1)} ∪ {∞}.

(a) For all a ∈ R∗S , we have

( fa, X, X) ∈ GR1
d [2d](K , S).

(b) For a given a∈ K̄ ∗, there are only finitely many b∈ K̄ ∗ such that fb is PGL2(K̄ )-
conjugate to fa .

(c) #GR1
d [2d](K , S)/PGL2(RS)=∞.

Proof. (a) The resultant of fa is

Res( fa)= ad
d−1∏
i=0

d−1∏
j=1

(i + j).

In particular, if a ∈ R∗S , then our choice of S implies that Res( fa) ∈ R∗S , so the
map fa has simple good reduction outside S. We also observe that our choice of S
implies that the set X has good reduction outside S, and from the formula for fa

we see that fa(X)= {0,∞} ⊂ X . For example, the case d = 4 looks like

1

��

2 // 0
yy

3

@@

−1

!!

−2 // ∞
ww

−3

==
with S = {2, 3, 5}.

Since #X = 2d , this completes the proof that ( fa, X, X) ∈ GR1
d [2d](K , S).

(b) We consider the K̄ -valued points of the morphism

(9) K̄ ∗→M1
d(K̄ )= End1

d(K̄ )/PGL2(K̄ ), a 7→ [ fa].

We claim that the map (9) is nonconstant. To see this, we note that 0 is a fixed point
of fa , and that the multiplier of fa at 0 is

λ( fa, 0) := f ′a(0)= (−1)d−1a.

But for any rational map f ∈ End1
d , the set of fixed point multipliers {λ( f, P) :

P ∈ Fix( f )} is a PGL2-conjugation invariant [Silverman 2007, Proposition 1.9]. So
if (9) were constant, there would be a single map g ∈ End1

d(K̄ ) with the property
that for every a ∈ K̄ ∗, the map fa is PGL2(K̄ )-conjugate to g. In particular, for
every a ∈ K̄ ∗, the multiplier (−1)d−1a= λ( fa, 0) would be one of the finitely many
fixed-point multipliers of g. This contradiction completes the proof of (b).
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(c) It follows from (a) and (b) that {( fa,X,X) :a∈ R∗S} is contained in GR1
d [2d](K,S)

and that it contains infinitely many distinct PGL2(RS)-conjugacy classes. �

5. How large is the set of maps having simple good reduction?

As noted in the Introduction, it would be very interesting to know the behavior of
the “Shafarevich discrepancy”,

2d − 2−ShafDimN
d [P] as d→∞,

even for the case P =∅. It has long been noted that monic polynomial maps on P1

have everywhere simple good reduction. This gives a set of such maps in M1
d

whose Zariski closure has dimension d− 1. With a little work, we can increase this
dimension by 1 for d = 2 and by 2 for d ≥ 3.

Proposition 12. We have

ShafDim1
2[∅] = dimM1

2 = 2,

and for all d ≥ 3 we have

ShafDim1
d [∅] ≥ d + 1.

Proof. We fix a number field K and a set of places S so that R∗S is infinite. For
a = (a0, a2, . . . , ad−1, ad) we define a rational map

fa(x) :=
a0xd
+ a1xd−1

+ · · ·+ ad−2x2
+ ad−1x + ad

x(x − 1)
.

We have
Res( fa)= ad−2

0 ad(a0+ a1+ · · ·+ ad−1+ ad).

Hence fa will have simple good reduction if we take a0, ad ∈ R∗S , a2, . . . , ad−1 ∈ RS ,
and set a1 =w−a0−a2−· · ·−ad for some w ∈ R∗S . In other words, the image of
the map

(R∗S)
3
× Rd−2

S → Ad+1(K ),(
(u, v, w), (a2, . . . , ad−1)

)
7→ (u, w−u−a2−· · ·−ad−1−v, a2, . . . , ad−1, v),

gives values of a for which fa has simple good reduction. The image of this map
is Zariski dense in Ad+1, so it remains to show that the map Ad+1

→M1
d given by

a 7→ 〈 fa〉 is generically finite-to-one.
Suppose that ϕ ∈ PGL2(K̄ ) has the property that f ϕa = fb. We start with the

case d ≥ 4. Then fa is ramified at the fixed point∞, since e fa(∞)= d − 2, and
similarly for fb. Generically,∞ will be the only ramified fixed point of fa and fb,
so ϕ(∞)=∞. Next we use the fact that

f −1
a (∞)= f −1

b (∞)= {∞, 1, 0}
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to conclude that ϕ({0, 1})={0, 1}. Thus ϕ fixes∞ and either fixes or swaps 0 and 1,
so the only possibilities are ϕ(x)= x or ϕ(x)= 1− x . Thus fa is PGL2-conjugate
to only one other map of the same form. This concludes the proof for d ≥ 4. For
d = 3, the point∞ is fixed by fa and fb, but∞ is not a critical point, so we cannot
conclude that ϕ fixes∞. However, we can argue as follows. A generic map of the
form fa has 3 fixed points, say {∞, γ1, γ2}, and each fixed point has 3 points in its
inverse image, one of which is itself, say

f −1
a (∞)= {∞, 0, 1}, f −1

a (γ1)= {γ1, α1, β1}, f −1
a (γ2)= {γ2, α2, β2}.

It follows that ϕ(∞) ∈ {∞, γ1, γ2}, and that

ϕ({0, 1})=


{0, 1} if ϕ(∞)=∞,
{α1, β1} if ϕ(∞)= γ1,
{α2, β2} if ϕ(∞)= γ2.

Since ϕ is determined by its values at on {0, 1,∞}, we see that there are (at most) 6
maps ϕ for which f ϕa .

Finally, for d = 2, we first note that the above proof fails because∞ is no longer
a fixed point. And it is good that the proof fails, since otherwise we would conclude
that ShafDim1

2[∅] ≥ 3, which would contradict dimM1
2 = 2. So for d = 2 we

instead use the family of maps

ga,b(x) :=
ax2
+ x + b
x

.

These satisfy Res(ga,b) = ab, so they have good reduction for all a, b ∈ R∗S . We
could argue as above that there are only finitely many ϕ preserving this form, and
thus the image in M1

2 is 2-dimensional. But to illustrate an alternative method of
proof, we instead use the Milnor isomorphism s :M1

2 −→
∼ A2; see [Silverman 2007,

Theorem 4.5.6]. The map ga,b has Milnor coordinates

s(ga,b)=

(
4a2b− 2ab− a+ b

ab
,

4a3b− 4a2b− a2
+ 5ab− 2b− 1

ab

)
.

We used Magma [Bosma et al. 1997] to verify that these two rational functions are
algebraically independent in K (a, b). Hence under our assumption that #R∗S =∞,
we see that {s(a, b) : a, b ∈ R∗S} is Zariski dense in A2. �

6. Abstract portraits and models for portraits

In this section we briefly construct a category of portraits and use it to describe
dynamical systems that model a given portrait. See [Doyle and Silverman ≥ 2018]
for further development and the construction of parameter and moduli spaces for
dynamical systems with portraits.
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Definition. An (abstract) weighted portrait is a 4-tuple P = (W,V,8, ε), where

• W ⊆ V are finite sets (of vertices),

• 8 :W→ V is a map (which specifies directed edges),

• V =W ∪8(W),

• ε :W→ N is a map (assigning weights to vertices).

The weight of P is the total weight

wt(P) :=
∑
w∈W

ε(w).

We say that the portrait is unweighted if ε(w)=1 for everyw∈W , or equivalently
if wt(P) = #W , in which case we sometimes write P = (W,V,8). We say that
the portrait is preperiodic if W = V .

We now explain how a self-map of P1 can be used to model a portrait.

Definition. Let P = (W,V,8, ε) be a portrait. A model for P is a triple ( f, Y, X)
consisting of a morphism f : P1

→ P1 and subsets Y ⊂ X ⊂ P1 such that the
following diagram commutes:

(10)

W i
−−−→ P1

8

y f
y

V i
−−−→ P1

We say that ( f, Y, X) is a •-model if in addition

e f (i(w))≥ ε(w) for all w ∈W;

and similarly we say that ( f, Y, X) is a ◦-model if

e f (i(w))= ε(w) for all w ∈W .

With this formalism, we can now define our three Shafarevich-type sets.

Definition. Let P = (W,V,8, ε) be a portrait and let n = wt(P). Then

GR1
d [P]

•(K , S)= {( f, Y, X) ∈ GR1
d [n](K , S) : ( f, Y, X) is a •-model for P},

GR1
d [P]

◦(K , S)= {( f, Y, X) ∈ GR1
d [n](K , S) : ( f, Y, X) is a ◦-model for P},

GR1
d [P]

?(K , S)= {( f, Y, X) ∈ GR1
d [n](K , S) : e f̃p(

˜i(w) mod p)= ε(w)

for all w ∈W and all p /∈ S}.

It may happen that a portrait has no models using maps of a given degree. For
example, if the portrait P contains 4 fixed points, then it cannot be modeled by a
map of degree 2, and similarly if P contains a pair of 2-cycles. In order to describe
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more generally the constraints on a model, we set an ad hoc piece of notation.
(A better definition of M1

d [P]
• as a Z-scheme is given in [Doyle and Silverman

≥ 2018].)

Definition. Let P be a portrait and let d ≥ 2. We define

M1
d [P]

•
:= { f ∈M1

d(K̄ ) : there exist sets Y ⊆ X ⊆ P1(K̄ )
such that ( f, Y, X) is a •-model for P}.

Proposition 13. Let d ≥ 2, and let P = (W,V,8, ε) be a portrait such that
M1

d [P] 6=∅. Then P satisfies the following conditions:

(I) sup
v∈V

∑
w∈8−1(v)

ε(w)≤ d, (II)
∑
w∈W

(
ε(w)− 1

)
≤ 2d − 2.

For all n ≥ 1,

(IIIn) #{w∈W :8n(w)=w and8m(w) 6=w for all m < n}≤
∑
m|n

µ
( n

m

)
(dm
+1).

(Here µ is the Möbius function.)

Proof. Constraint I comes from the fact that f is a map of degree d, constraint II
follows from the Riemann–Hurwitz formula

∑(
e f (P)− 1

)
= 2d − 2 [Silverman

2007, Theorem 1.1], and constraint IIIn from the fact that a degree d map on P1

has at most the indicated number of points of exact period n [Silverman 2007,
Remark 43]. �

If we fix a preperiodic portrait P and allow the degree d to grow, then we expect
that M1

d [P]
• has exactly the expected dimension, as in the following conjecture.

This is in marked contrast to our uncertainty regarding the size of ShafDim1
d [P]•

as d→∞; cf. Question 4.

Conjecture 14. Let P= (W,V,8, ε) be a preperiodic portrait. There is a constant
d0(P) such that for all d ≥ d0(P) we have

dimM1
d [P]• = dimM1

d −
∑
w∈W

(
ε(w)− 1

)
= 2d − 2−wt(P)+ #W.

Remark 15. The local conditions used to define GR1
d [P]

?(K , S) reflect the view-
point adopted by Petsche and Stout [2015]. We note that since f and i(V) are
assumed to have good reduction outside S, there is a well-defined map f̃p :P1

→P1

defined over the residue field of p, and so it makes sense to look at the ramification
indices of f̃p at the p-reductions of the points in i(W).
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Remark 16. Since the primary goal of this paper is the study of Shafarevich-type
finiteness theorems, we have been content to define our sets of good reduction
purely as sets. In a subsequent paper [Doyle and Silverman ≥ 2018] we will take
up the more refined question of constructing moduli spaces for dynamical systems
with portraits, after which the results of the present paper can be reinterpreted as
characterizing the S-integral points on these spaces, with the caveat that there may
be field-of-moduli versus field-of-definition issues.

Since our goal is to understand the size of the various sets of good reduction
triples ( f, Y, X), we are prompted to make the following definitions.

Definition. Let x ∈ {•, ◦, ?}. The associated Shafarevich dimension is the quantity

ShafDim1
d [P]

x
= sup

K a number field
S a finite set of places

dim Image
(
GR1

d [P]x(K , S)→M1
d

)
.

We record some elementary properties for future reference.

Proposition 17. Let d ≥ 2, and let P = (W,V,8, ε) be a portrait.

(a) Let ε′ : V→ N be a weight function satisfying ε′ ≥ ε, let P ′ = (W,V,8, ε′),
and let x ∈ {•, ◦, ?}. Then

GR1
d [P
′
]
x(K , S)⊆ GR1

d [P]
x(K , S).

(b) We have

GR1
d [P]

?(K , S)⊆ GR1
d [P]

◦(K , S)⊆ GR1
d [P]

•(K , S).

(c) We have

ShafDim1
d [P]

?
≤ ShafDim1

d [P]
◦
≤ ShafDim1

d [P]
•
≤ dimM1

d = 2d − 2.

Proof. (a) and (b) are clear from the definitions of the various sets of good reduction,
and (c) follows (b) and the definition of Shafarevich dimension. We note that if
a map f has good reduction at p, then its ramification index can only increase
when f is reduced modulo p. �

Example 18. Consider the following two preperiodic portraits:

P1

• // •

��
•

OO

P2

• // •

��
•

2

OO

We note that the portrait P2 is strictly larger than the portrait P1 in the sense of
Proposition 17(a), so that result tells us that GR1

d [P2]
◦(K , S) ⊆ GR1

d [P1]
◦(K , S).

However, we will see in Section 7 that if #R∗S =∞, then

#GR1
2[P1]

◦(K , S) <∞ and #GR1
2[P2]

◦(K , S)=∞.
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In words, there are only finitely many degree 2 rational maps with good reduc-
tion outside S that have an unramified good reduction 3-cycle, but if we allow
one of the points in the 3-cycle to be ramified, then there are infinitely many
such maps. In terms of Shafarevich dimensions, we have ShafDim1

d [P1]
◦
= 0

and ShafDim1
d [P2]

◦
= 1. On the other hand, we will show that with the more

restrictive Petsche–Stout good reduction criterion, we have ShafDim1
d [P1]

?
=

ShafDim1
d [P2]

?
=0. Another example of this phenomenon, where more ramification

leads to more maps of good reduction, is given by portraits P3,3 and P4,7 in Tables 2
and 3, respectively.

7. Good reduction for preperiodic portraits of weight ≤ 4
for degree 2 maps of P1

We know from Theorem 2 with N = 1 and d = 2 that if a portrait P satisfies
wt(P)≥ 5, then ShafDim1

2[P]• = 0. In other words, dynamical Shafarevich finite-
ness holds for degree 2 maps f :P1

→P1 that model a portrait P of weight at least 5.
In this section we give a complete analysis of preperiodic portraits of weights 1 to 4.
For example, it turns out that there are 22 such portraits of weight 4, and dynamical
Shafarevich finiteness holds for some of them, but not for others. For notational
convenience, we label portraits as Pw,m , wherew is the weight and m ∈{1, 2, 3, . . . }.

Theorem 19. We consider moduli spaces of degree 2 maps P1
→P1 with weighted

preperiodic portraits.

(a) There is 1 portrait P of weight 1 such that M1
2 contains a map that can be

used to model P .

(b) There are 4 portraits P of weight 2 such that M1
2 contains a map that can be

used to model P .

(c) There are 8 portraits P of weight 3 such that M1
2 contains a map that can be

used to model P .

(d) There are 22 portraits P of weight 4 such that M1
2 contains a map that can be

used to model P .

These portraits are as catalogued in Tables 2, 3 and 4, which also give the values of
the following quantities:

MD: = dimM1
2[P]•, SD•: = ShafDim1

2[P]
•,

SD◦: = ShafDim1
2[P]

◦, SD?: = ShafDim1
2[P]

?.

Proof. Since we will be dealing entirely with preperiodic portraits, we write the
triple ( f, X, X) as a pair ( f, X). For degree 2 maps, we see that M1

2[P]
•
= ∅

unless the following four conditions are true; cf. Proposition 13.
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# P wt(P) MD SD• SD◦ SD?

P1,1 •
yy

1 2 2 2 2

P2,1 • 2
yy

2 1 1 1 1

P2,2 • // •
yy

2 2 2 2 2

P2,3 •
yy

•
yy

2 2 2 2 1

P2,4 •
UU
•

��
2 2 2 2 1

P3,1

• // •

��
•

OO

3 2 1 0 0

P3,2 • // •
UU
•

��
3 2 2 2 1

P3,3 •
yy

•
UU
•

��
3 2 1 0 0

P3,4 • // • // •
yy

3 2 2 2 1

P3,5 •
yy

• // •
yy

3 2 2 2 1

P3,6 •
yy

•
yy

•
yy

3 2 1 0 0

P3,7 •

2
UU
•

��
3 1 1 1 1

P3,8 •
yy

• 2
yy

3 1 1 1 1

Table 2. Weight 1, 2, and 3 preperiodic portraits for degree 2 maps.

(I) Each point has at most weight 2 worth of incoming arrows.

(II) There are at most 2 critical points.

(III1) There are at most 3 fixed points.

(III2) There is at most one periodic cycle of length 2.
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# P wt(P) MD SD• SD◦ SD?

P4,1 • 2
yy

• 2
yy

4 0 0 0 0

P4,2 •

2
UU
•

2
��

4 0 0 0 0

P4,3 • 2
yy

•
yy

•
yy

4 1 1 1 0

P4,4 • 2
yy

• // •
yy

4 1 1 1 1

P4,5 • 2
yy

•
UU
•

��
4 1 1 1 0

P4,6 •
2
// • // •

yy
4 1 1 1 1

P4,7 •
yy

•

2
UU
•

��
4 1 1 1 0

P4,8 • // •

2
UU
•

��
4 1 1 1 1

P4,9

• // •

��
•

2

OO

4 1 1 1 0

P4,10 • // •
yy

•
yy

•
yy

4 2 0 0 0

P4,11 • // •
yy

• // •
yy

4 2 1 1 1

P4,12 • // • // •
yy

•
yy

4 2 0 0 0

P4,13 •
yy

•
yy

•
UU
•

��
4 2 0 0 0

Table 3. Weight 4 preperiodic portraits for degree 2 maps (part 1).

Sublemma 8 says that in order to prove that GR1
2[P]

◦(K , S)/PGL2(RS) is finite
for all K and S, it suffices to prove finiteness after extending K and enlarging S.
And the definition of ShafDim1

d [P]• and its variants is a supremum over all K and
all S. So we may assume throughout our discussion that in every model ( f, X)
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# P wt(P) MD SD• SD◦ SD?

P4,14 • // • // • // •
yy

4 2 0 0 0

P4,15 • // •
yy

•
UU
•

��
4 2 0 0 0

P4,16 •
yy

• // •
UU
•

��
4 2 0 0 0

P4,17 •
yy

• // •

��
•

OO

4 2 0 0 0

P4,18

•

��
• // •

yy

•

?? 4 2 1 1 1

P4,19 • // • // •
UU
•

��
4 2 0 0 0

P4,20 • // •
UU
•

��
•oo 4 2 1 1 1

P4,21

• // • // •

��
•

OO

4 2 0 0 0

P4,22

• // •

��
•

OO

•oo

4 2 0 0 0

Table 4. Weight 4 preperiodic portraits for degree 2 maps (part 2).

for P , the points in X are in P1(K ), and further that S is chosen so that

RS is a PID; R∗S is infinite; 2, 3 ∈ R∗S .

Using the assumptions that the points in our portraits are in P1(K ) and that RS

is a PID, Sublemma 9 and the Chinese remainder theorem tell us that we can find
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an element of PGL2(RS) to move three of the points in X to the points 0, 1, and∞.
(Or just to 0 and∞ if #X = 2.)

As in the proof of Proposition 12, we will frequently use the Milnor isomorphism
[Silverman 2007, Theorem 4.5.6]

s = (s1, s2) :M1
2 −→
∼ A2,

which we implemented in PARI [2016], to help distinguish the PGL2(K̄ )-conjugacy
classes of our maps, and we often use Magma [Bosma et al. 1997] to verify that
the images of certain maps are Zariski dense in M1

2.

P1,1: This case was done by Petsche and Stout [2015, Remark 3], but for com-
pleteness, we include a proof. Let f (x) = (x2

+ ax)/(bx + 1) with Res( f ) =
1− ab, so ( f, {0}) ∈ GR1

2[P1,1]
•(K , S) for all a, b ∈ RS satisfying 1− ab ∈ R∗S .

Further, f ′(0) = a, so if we take a ∈ R∗S , then 0 is not critical modulo v for
all v /∈ S. This suggests that we change variables via b = (1 − u)a−1. Then
f (x) = (ax2

+ a2x)/((1 − u)x + a) with Res( f ) = a4u and f ′(0) = a, so
( f, {0}) ∈ GR1

2[P1,1]
?(K , S) for all a, u ∈ R∗S . The Milnor image of this map

in M2 ∼= A2 is

s
(

ax2
+ a2x

(1− u)x + a

)
=

(
a2(u− 1)+ 2a− (u− 1)2

au
,

−a4
+ 2a3

− a2(u− 1)(u− 2)− 2a(u− 1)− (u− 1)2

a2u

)
.

We used Magma to verify that the two rational functions s1(a, u) and s2(a, u) are
algebraically independent in K (a, u). Hence under our assumption that #R∗S =∞,
we see that {s(a, u) : a, u ∈ R∗S} is Zariski dense in A2. This completes the proof
that ShafDim1

2[P1,1]
?
= 2, and the other Shafarevich dimensions are also 2 by the

standard inequalities in Proposition 17(e).

P2,1: Moving the totally ramified fixed point to ∞, the map f has the form
f (x) = ax2

+ bx + c. It has good reduction if and only if a ∈ R∗S . Then we can
conjugate by a map of the form x 7→ a−1x+e to put f (x) in the form f (x)= x2

+c.
Since the ramification at∞ can’t increase when we reduce modulo primes not in S,
we see that

(x2
= c, {∞}) ∈ GR1

2[P2,1]
?(K , S) for all c ∈ R∗S .

The closure of the image in M1
2 is the line s1 = 2 of polynomials.

P2,2: Move the two points to 0,∞; then f has the form f (x)= (ax2
+bx+c)/dx .

This map has Res( f ) = acd2, so we can dehomogenize d = 1. Thus f (x) =
ax+b+cx−1 with ac∈ RS . Conjugating by x→ux gives u−1 f (ux)=ax+bu−1

+

cu−2x−1, so going to K (
√

c), which is unramified over S, we may assume that c= 1
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and f (x)= (ax2
+ bx + 1)/x . We also observe that f −1( f (∞))= {0,∞} and in

f −1( f (0))= {0,∞}, so 0 and∞ are unramified modulo all primes. (Alternatively,
one could compute derivatives, after moving∞ to a more amenable point.) Hence

( f, {0,∞}) ∈ GR1
2[P2,2]

?(K , S) for all a ∈ R∗S and b ∈ RS .

The Milnor image is

s
(

ax2
+ bx + 1

x

)
=

(
4a2
− ab2

− 2a+ 1
a

,
4a3
− a2b2

− 4a2
+ 5a− b2

− 2
a

)
.

We used Magma to verify that the rational functions s1(a, u) and s2(a, u) are
algebraically independent in K (a, u). Hence under our assumption that #R∗S =∞,
we see that {s(a, u) : a, u ∈ R∗S} is Zariski dense in A2. This completes the proof
that ShafDim1

2[P2,2]
?
= 2, and the other Shafarevich dimensions are also 2 by the

standard inequalities in Proposition 17(e).

P2,3: Moving the two fixed points to 0 and∞, the map f has the form f (x) =
(ax2
+bx)/(cx+d). The resultant is Res( f )=ad(ad−bc). Good reduction implies

in particular that a, d ∈ R∗S , so we can dehomogenize d = 1 and replace f with
a f (a−1x)= (x2

+ bx)/(a−1cx + 1). We can also replace a−1c with c, so f (x)=
(x2
+ bx)/(cx + 1) with Res( f )= 1− bc. Hence

( f, {0,∞}) ∈ GR1
2[P2,3]

◦(K , S) for all b, c ∈ RS satisfying 1− bc ∈ R∗S .

We note that this set of (b, c) is Zariski dense in A2, under our assumption
that #R∗S =∞. For example, if u ∈ R∗S has infinite order, then for every n ≥ 1 we
can take b = 1− u and c = 1+ u+ u2

+ · · ·+ un , and this set of points is Zariski
dense. The Milnor image is

s
(

x2
+ bx

cx + 1

)
=

(
−b2c− bc2

+ 2
1− bc

,
−b2c2

− b2
− bc+ 2b− c2

+ 2c
1− bc

)
.

We used Magma to verify that the rational functions s1(a, u) and s2(a, u) are
algebraically independent in K (a, u). Hence under our assumption that #R∗S =∞,
we see that {s(a, u) : a, u ∈ R∗S} is Zariski dense in A2. This completes the proof
that ShafDim1

2[P2,3]
◦
= 2.

However, the set GR1
2[P2,3]

?(K , S) is more restrictive, since we need the fixed
points to be unramified for all primes not in S. Thus ( f, {0,∞}) is in this set if
and only if f ′(0) = b ∈ R∗S and f ′(∞) = c ∈ R∗S . We thus need b, c, 1− bc to
be S-units. Then (bc, 1− bc) is a solution to the S-unit equation u + v = 1, so
there are only finitely many possible values for bc. On the other hand, any fixed
solution (u, v) gives a map f (x)= (x2

+ bx)/(b−1ux + 1) satisfying

( f, {0,∞}) ∈ GR1
2[P2,3]

?(K , S) for all b ∈ R∗S .
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Each (u, v) value gives points lying on a curve in M1
2. And there is at least one

such curve, since our assumption that 2 ∈ S says that we can take (u, v)= (−1, 2),
leading to the Milnor image

s
(

x2
+ bx

−b−1x + 1

)
=

(
b2
+ 2b− 1

2b
,
−b4
+ 2b3

− 2b− 1
2b2

)
.

Hence ShafDim[P2,3]
?
= 1, a result that was first proven by Petsche and Stout

[2015, Section 4].

P2,4: We move the two points to 0 and∞, so f (x)= (ax + b)/(cx2
+ dx) with

Res( f )=bc(ad−bc). Good reduction implies in particular that b, c∈ R∗S , so we can
dehomogenize b= 1. Conjugating f gives u−1 f (ux)= (aux+1)/(cu3x2

+du2x).
Going to the field K ( 3

√
c), which is unramified outside S, we can take u = c−1/3

and adjust a and d accordingly to put f in the form f (x) = (ax + 1)/(x2
+ dx).

Then

( f, {0,∞}) ∈ GR1
2[P2,4]

◦(K , S) for all a, d ∈ RS with 1− ad ∈ R∗S .

The map f is unramified at 0 if and only if d 6= 0 and f is unramified at∞ if and
only if a 6= 0. The Milnor image is

s
(

ax + 1
x2+ dx

)
=

(
a3
+ 4ad + d3

− 6
1− ad

,
−2a3

− a2d2
− 7ad − 2d3

+ 12
1− ad

)
.

We used Magma to verify that the rational functions s1(a, u) and s2(a, u) are
algebraically independent in K (a, u). Hence under our assumption that #R∗S =∞,
we see that {s(a, u) : a, u ∈ R∗S} is Zariski dense in A2. This completes the proof
that ShafDim1

2[P2,4]
◦
= 2.

The multiplier of the 2-cycle is ( f 2)′(0) = ad, so the points 0 and ∞ are
unramified modulo all primes not in S if and only if a, d ∈ R∗S . So in this case
(ad, 1− ad) is a solution to the S-unit equation u+ v = 1, and each of the finitely
many such solutions yields a family of maps f (x)= (ax + 1)/(x2

+ ua−1x) with

( f, {0,∞}) ∈ GR1
2[P2,4]

?(K , S) for all a ∈ R∗S .

The Zariski closure of these points form a nonempty finite collection of curves,
since for example (u, v)= (−1, 2) gives

s
(

ax + 1
x2− a−1x

)
=

(
a6
− 10a3

− 1
2a3 ,

−a6
+ 9a3

+ 1
a3

)
.

Hence ShafDim[P2,4]
?
= 1, a result that was first proven by Petsche and Stout

[2015, Section 5].

P3,1: We first note that almost all rational maps of degree 2 have a 3-cycle [Beardon
1991, Section 6.8]. Hence the image of M1

2[P3,1]
• omits only finitely many points,



174 JOSEPH H. SILVERMAN

and thus dimM1
2[P3,1]• = 2. We next move the 3-cycle to 0, 1,∞, so f has the

form f (x)= (ax2
− (a+c)x+c)/(ax2

+ex) with Res( f )= ac(a+e)(c+e). We
dehomogenize a = 1. Then

( f, {0, 1,∞}) ∈ GR1
2[P3,1]

•(K , S) ⇐⇒ c(1+ e)(c+ e) ∈ R∗S.

This leads to solutions to the 4-term S-unit equation

c+ (1+ e)− (c+ e)− 1= 0.

The multivariable S-unit sum theorem [Evertse 1984; van der Poorten and Schlick-
ewei 1991] says that there are finitely many solutions with no subsum equal to 0.
Ignoring those finitely many solutions, there are three subsum 0 cases:

(1) c+ (1+ e)= 0, which implies that e f (∞)= 2.

(2) c− (c+ e)= 0, which implies that e f (0)= 2.

(3) c− 1= 0, which implies that e f (1)= 2.

This gives three families of pairs ( f, X) in GR1
2[P3,1]

•(K , S), but every f is ramified
at one of the three points in X , so these pairs are not in GR1

2[P3,1]
◦(K , S). Instead,

they are in GR1
2[P4,9]

◦(K , S). These three families are in fact PGL2(RS)-conjugate
via permutation of the points in {0, 1,∞}. Taking, say, the e = 0 family, we have
good reduction for all c ∈ R∗S , and the Milnor image is

s
(

x2
− (1+ c)x + c

x2

)
=

(
−c3
− 5c2

+ c− 1
c2 ,

2c3
+ 7c2

− 2c+ 1
c2

)
.

This proves that ShafDim1
2[P3,1]

•
= 1 and ShafDim1

2[P3,1]
◦
= 0.

P3,2: We move the three points to 1, 0,∞, and then f has the form f (x) =
a(x−1)/(bx2

+cx). This map has Res( f )=−a2b(b+c), so we can dehomogenize
a= 1 and replace c with c−b. This gives the map f (x)= (x−1)/(bx2

+(c−b)x)
with Res( f )= bc. Hence

( f, {1, 0,∞}) ∈ GR1
2[P3,2]

◦(K , S) ⇐⇒ b, c ∈ R∗S,

and it is in GR1
2[P3,2]

◦(K , S) if further f is not ramified at the points {0, 1,∞}. The
map f is never ramified at 1, while its multiplier at the 2-cycle is ( f 2)′(0)= (b−c)/c.
The Milnor image is

s
(

x − 1
bx2+ (c− b)x

)
=

(
b3
− 3b2c− 2b2

+ 3bc2
− 4bc+ b− c3

bc
,

−2b3
+ 6b2c+ 4b2

− 6bc2
+ 9bc− 2b+ 2c3

− c2

bc

)
.
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We used Magma to verify that the rational functions s1(b, c) and s2(b, c) are
algebraically independent in K (b, c). Hence under our assumption that #R∗S =∞,
we find that ShafDim1

2[P3,2]
◦
= 2.

However, if we also require the reduction of f to be unramified at {0, 1,∞} for
all primes not in S, then we must also require that b− c ∈ R∗S . Then (c/b, 1− c/b)
is a solution to the S-unit equation u+v= 1, so there are only finitely many choices
for the ratio c/b. For each such choice, say c = ub with u fixed, the image in M1

2
lies on a curve. And taking, say, u =−1 gives the set of points

s
(

x − 1
bx2− 2bx

)
=

(
−8b2

− 2b− 1
b

16b2
+ 6b+ 2
b

)
, b ∈ R∗S.

The Zariski closure of this set in M1
2 is a curve, more precisely, it is the line

2s1+ s2 = 2. Hence ShafDim1
2[P3,2]

?
= 1.

P3,3: We move the fixed point to∞ and the 2-cycle to {0, 1}, which puts f into the
form f (x)= (x−1)(ax+b)/(cx−b). The resultant is Res( f )=ab(a+c)(b−c), so
we may dehomogenize b=1. This puts f in the form f (x)=(x−1)(ax+1)/(cx−1)
with resultant Res( f )= a(a+ c)(1− c). Thus f has good reduction if and only if
a, a+ c, 1− c ∈ R∗S , which gives a solution to the 4-term S-unit equation

a− (a+ c)− (1− c)+ 1= 0.

The multivariable S-unit sum theorem [Evertse 1984; van der Poorten and Schlick-
ewei 1991] says that there are finitely many solutions with no subsum equal to 0.
Ignoring those finitely many solutions, there are three subsum 0 cases:

(1) a− (a+ c)= 0, which implies that e f (∞)= 2.

(2) a− (1− c)= 0, which implies that e f (0)= 2.

(3) a+ 1= 0, which implies that e f (1)= 2.

This gives three families of pairs ( f, X) in GR1
2[P3,3]

•(K , S), but every f is ramified
at one of the three points in X , so these pairs are not in GR1

2[P3,3]
◦(K , S). Instead,

they are GR1
2[P4,5]

◦(K , S) in case (1) and in GR1
2[P4,7]

◦(K , S) in cases (2) and (3).
These give sets of points whose closures are curves:

P4,5 : s
(
−ax2

+ (a− 1)x + 1
)
= (2,−a2

− 3), a ∈ R∗S,

P4,7 : s
(
−x2
+ 2x − 1

cx − 1

)
=

(
−c3
+ 2

(c− 1)2
2c3
− 4

(c− 1)2

)
, c ∈ R∗S.

More precisely, they give the curves s1 = 2 and 2s1+ s2 = 0. This completes the
proof that ShafDim1

2[P3,3]
•
= 1 and ShafDim1

2[P3,3]
◦
= 0.

P3,4: We move the three points to 1, 0,∞, and then f has the form f (x) =
(x−1)(ax+b)/cx . This map has Res( f )=−abc2, so we can dehomogenize c= 1.
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Then f (x)= (x − 1)(ax + b)/x has good reduction if and only if a, b ∈ R∗S . The
multiplier at the fixed point is f ′(∞)= a−1, so f is not ramified at∞, and similarly
since f −1( f (0))= {0,∞}, the map f is not ramified at 0. And these statements
are true even modulo primes not in S. Finally we observe that f ′(1)= a+ b, so f
is ramified at 1 if and only if a+ b = 0. The Milnor image is

s
(
(x − 1)(ax + b)

x

)
=

(
a3
+ 2a2b+ ab2

− 2ab+ b
ab

,

a4
+ 2a3b+ a2b2

− 4a2b+ a2
+ 3ab+ b2

− 2b
ab

)
,

We used Magma to verify that the rational functions s1(b, c) and s2(b, c) are
algebraically independent in K (b, c). Hence under our assumption that #R∗S =∞,
we find that ShafDim1

2[P3,4]
◦
= 2.

However, if we also require the reduction of f to be unramified at {0, 1,∞} for
all primes not in S, then we must also require that a+b∈ R∗S . Then (−b/a, 1+b/a)
is a solution to the S-unit equation u+v= 1, so there are only finitely many choices
for the ratio b/a. For each such choice, say b = ua with u fixed, the image in M1

2
lies on a curve. And taking, say, u = 1 gives the set of points

s
(

a(x2
− 1)

x

)
=

(
4a2
− 2a+ 1

a
,

4a3
− 4a2

+ 5a− 2
a

)
, a ∈ R∗S.

The Zariski closure in M1
2 is a curve. Hence ShafDim1

2[P3,4]
?
= 1.

P3,5: We move the three points to 0, 1,∞, which puts f in the form f (x) =
(ax2
+ (b − a)x)/c(x − 1) with Res( f ) = abc2. We dehomogenize c = 1, so

f (x)= (ax2
+(b−a)x)/(x−1). We have f ′(∞)= a−1 and f −1( f (1))= {1,∞},

so a ∈ R∗S implies that f is unramified at∞ and at 1, even modulo primes not in S.
Further, f ′(0) = a− b, so f is unramified at 0 if and only if a 6= b. The Milnor
image is

s
(

ax2
+(b−a)x
x−1

)
=

(
−a3
+2a2b+2a2

−ab2
−a+b

ab
,

−a4
+2a3b+2a3

−a2b2
−2a2b−2a2

+3ab+2a−b2
−1

ab

)
.

We used Magma to verify that the rational functions s1(a, b) and s2(a, b) are
algebraically independent in K (a, b). Hence under our assumption that #R∗S =∞,
we find that ShafDim1

2[P3,5]
◦
= 2.

However, if we also require the reduction of f to be unramified at {0, 1,∞} for
all primes not in S, then we must also require that a−b ∈ R∗S . Then (b/a, 1−b/a)
is a solution to the S-unit equation u+v= 1, so there are only finitely many choices
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for the ratio b/a. For each such choice, say b = ua with u fixed, the image in M1
2

lies on a curve. And taking, say, u =−1 gives the set of points

s
(

a(x2
− 2x)

x − 1

)
=

(
4a2
− 2a+ 2

a
,

4a4
− 4a3

+ 6a2
− 2a+ 1

a2

)
, a ∈ R∗S.

The Zariski closure in M1
2 is a curve, so ShafDim1

2[P3,5]
?
= 1.

P3,6: We move the three fixed points to 0, 1,∞, so that f has the form f (x) =
(ax2
+bx)/((a− c)x+b+ c) with Res( f )= ac(a+b)(b+ c). We dehomogenize

a= 1, so f (x)= (x2
+bx)/((1−c)x+b+c), and we compute the three multipliers:

f ′(0)= b/(b+ c), f ′(1)= (b+ c+ 1)/(b+ c), f ′(∞)= 1− c. We have

( f, {0, 1,∞}) ∈ GR1
2[P3,6]

•(K , S) ⇐⇒ c, 1+ b, b+ c ∈ R∗S.

These maps give a solution to the 4-term S-unit equation

(b+ c)− c− (1+ b)+ 1= 0.

The multivariable S-unit sum theorem [Evertse 1984; van der Poorten and Schlick-
ewei 1991] says that there are finitely many solutions with no subsum equal to 0.
Ignoring those finitely many solutions, there are three subsum 0 cases:

(b+ c)− c = 0 H⇒ f (x)=
x2

(1− c)x + c
H⇒ e f (0)= 2,

(b+ c)− (1+ b)= 0 H⇒ f (x)=
x2
+ bx

b+ 1
H⇒ e f (∞)= 2,

(b+ c)+ 1= 0 H⇒ f (x)=
x2
+ bx

(b+ 2)x − 1
H⇒ e f (1)= 2.

This proves that ShafDim1
2[P3,6]

◦
= 0, since the subsum 0 cases have a ramified

point, and hence are actually in GR1
2[P4,3]

◦(K , S). The closure of these maps in M1
2

is a finite set of curves, since for example the family with c = 1 gives the family of
polynomials f (x)= (x2

+ bx)/(b+ 1) whose closure in M2 for b+ 1 ∈ R∗S is the
line s1 = 2. This proves that ShafDim1

2[P3,6]
•
= 1, and also (for future reference)

that ShafDim1
2[P4,3]

◦
= 1.

P3,7: Moving the two points to 0 and∞ with 0 critical, the map f has the form
f (x) = (ax + b)/cx2 with Res( f ) = b2c2. Dehomogenizing c = 1 gives the
map f (x) = (ax + b)/x2, which has good reduction if and only if b ∈ R∗S . We
conjugate u−1 f (ux) with u = 3

√
b, which is okay since K ( 3

√
b) is unramified

outside S. This puts f into the form f (x)= (ax+1)/x2 with Res( f )= 1. We also
note that f is ramified at∞ if and only if a = 0, so taking a ∈ R∗S gives maps such
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that∞ is unramified modulo all primes not in S. This map has Milnor coordinates

s
(

ax + 1
x2

)
= (a3

− 6,−2a3
+ 12),

so taking the Zariski closure for a ∈ R∗S gives the line 2s1 + s2 = 0. Hence
ShafDim1

2[P3,7]
•
= ShafDim1

2[P3,7]
?
= 1.

P3,8: Moving the totally ramified fixed point to ∞ and the other fixed point
to 0, we have f (x) = ax2

+ bx with Res( f ) = a2. Conjugating by x 7→ a−1x
puts f into the form f (x)= x2

+ bx , and then ( f, {0,∞}) is in GR1
2[P3,8]

◦(K , S)
for all b ∈ RS with b 6= 0, and GR1

2[P3,8]
?(K , S) for all b ∈ R∗S . The Zariski

closure of the Milnor image of these maps in M1
2
∼= A2 is the line s1 = 2. Hence

ShafDim1
2[P3,8]

•
= ShafDim1

2[P3,8]
?
= 1.

This completes our analysis of the 13 portraits of weights 1, 2, and 3 in Table 2.
We move on to analyzing the 22 portraits of weight 4 in Tables 3 and 4.

P4,1: Moving the two totally ramified fixed points to 0 and∞, the map has the
form f (x)= ax2. Good reduction forces a ∈ R∗S , and then conjugation a f (a−1x)
yields f (x)= x2. Hence GR1

2[P4,1]
•(K , S)/PGL2(RS) consists of a single element.

P4,2: Moving the two totally period 2 points to 0 and∞, the map has the form
f (x) = ax−2. Good reduction forces a ∈ R∗S , and then conjugation a−1 f (ax)
yields f (x) = x−2. Hence GR1

2[P4,2]
•(K , S)/PGL2(RS) consists of a single ele-

ment.

P4,3: Moving the fixed points to 0, 1,∞ with ∞ ramified, the map f has the
form f (x) = ax2

+ (1− a)x with Res( f ) = a2. Conjugating gives a f (a−1x) =
x2
+ (1− a)x . The multipliers at 0 and 1 are f ′(0) = 1− a and f ′(1) = 3− a.

The Milnor image is s
(
x2
+ (1− a)x

)
= (2, 1− a2), so a ∈ R∗S gives a Zariski

dense set of points in the line s1 = 2, and the same is true if we disallow a = 1 and
a = 3. This proves that ShafDim1

2[P4,3]
◦
= 1; cf. the analysis of P3,6. However, if

we also insist that 0 and 1 are unramified modulo all primes outside S, then we
need 1− a ∈ R∗S and 3− a ∈ R∗S . In particular, (a, 1− a) is a solution to the S-unit
equation u+ v = 1, so there are only finitely many values of a. This proves that
ShafDim1

2[P4,3]
?
= 0.

P4,4: Moving the ramified fixed point to∞, the unramified fixed point to 0, and
the other point to 1, we find that f has the form f (x)= ax2

−ax with Res( f )= a2.
Since f ′(0)=−a and f ′(1)= a, we see that f is unramified at 0 and 1 modulo all
primes not in S, and hence ( f, {0, 1,∞}) ∈ GR1

2[P4,4]
?(K , S) for all a ∈ R∗S . The

Milnor image is s(ax2
− ax)= (2,−a2

− 2a), so ShafDim1
2[P4,4]

?
= 1.

P4,5: We move the ramified fixed point to∞ and the other two points to 0 and 1.
Then f has the form f (x) = ax2

− (a + 1)x + 1 with Res( f ) = a2 and Milnor
image s(ax2

− (a + 1)x + 1) = (2,−a2
− 3). The multiplier for the 2-cycle is
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( f 2)′(0)= 1− a2. Hence

( f, {0, 1,∞}) ∈ GR1
2[P4,5]

◦(K , S) ⇐⇒ a ∈ R∗S and a 6= ±1.

In particular, we see that ShafDim1
2[P4,5]

◦
= 1; cf. the analysis of P3,3. However, if

we also require that the 2-cycle be unramified modulo all primes not in S, then we
need 1− a2

∈ R∗S . This gives solutions (a, 1− a) to the S-unit equation u+ v = 1,
so there are only finitely many maps, and hence ShafDim1

2[P4,5]
?
= 0.

P4,6: We move the points to 0, 1,∞ so that 1→0→∞→∞. Before imposing the
condition that f is ramified at 1, this put f in the form f (x)= (ax2

+ bx + c)/ex
with a + b + c = 0 and Res( f ) = ace2. We dehomogenize e = 1, and then
setting f ′(1)= 0, we find that f has the form f (x)= a(x−1)2/x . Then f ′(∞)=
a−1 and f −1( f (0)) = {0,∞}, so f is unramified at 0 and∞ modulo all primes
not in S. This gives

( f, {0, 1,∞}) ∈ GR1
2[P4,6]

?(K , S) ⇐⇒ a ∈ R∗S.

The Milnor image is

s
(

a(x − 1)2

x

)
=

(
−2a+ 1

a
,
−4a2

+ a− 2
a

)
,

so the Zariski closure is a curve, and hence ShafDim1
2[P4,6]

?
= 1.

P4,7: We move 0 to the fixed point and∞ and 1 to the 2-cycle with∞ ramified. Ig-
noring the ramification at∞ for the moment, we find that f has the form (ax2

+bx)/
(x − 1)(ax + c). Then we see that f is ramified at ∞ if and only if c = a + b,
so f (x) = (ax2

+ bx)/(x − 1)(ax + a + b). We compute Res( f ) = a2(a + b)2,
so we can dehomogenize a = 1, and for convenience replace b with b− 1, to get
f (x)= (x2

+ (b−1)x)/(x−1)(x+b) with Res( f )= b2. Further, we see that f is
unramified at 0 if and only if b 6= 1 and f is unramified at 1 if and only if b 6= −1.
Hence

( f, {0, 1,∞}) ∈ GR1
2[P4,7]

◦(K , S) ⇐⇒ b ∈ R∗S and b 6= ±1.

The Milnor image of f is

s
(

x2
+ (b− 1)x

(x − 1)(x + b)

)
=

(
b3
+ 3b2

− 3b+ 1
b

,
−2b3

− 6b2
+ 6b− 2

b

)
,

which proves that ShafDim1
2[P4,7]

◦
= 1. Indeed, we have again landed on the line

2s1 + s2 = 0; cf. the analysis of P3,3. However, if we want f to be unramified
at 0 and 1 modulo all primes not in S, then we need 1± b ∈ R∗S . In particular,
(b, 1− b) is one of the finitely many solutions of the S-unit equation u+ v = 1, so
ShafDim1

2[P4,7]
?
= 0.
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P4,8: We move the 2-cycle to 0 and∞ with 0 ramified and the other point to 1.
Then f has the form f (x)= a(x − 1)/bx2 with Res( f )= a2b2, so we can deho-
mogenize a = 1 to get f (x) = (x − 1)/bx2. Assuming that b ∈ R∗S , we observe
that f is unramified at 1 and∞, even modulo primes not in S. Hence

( f, {0, 1,∞}) ∈ GR1
2[P4,8]

?(K , S) for all b ∈ R∗S .

The Milnor image is

s
(

x − 1
bx2

)
=

(
−6b+ 1

b
,

12b− 2
b

)
,

so the Zariski closure in M1
2 of GR1

2[P4,8]
?(K , S) is the line 2s1+ s2 = 0.

P4,9: We move the 3-cycle to 1→ 0→∞→ 1 with 1 a ramification point. This
puts f in the form f (x) = a(x − 1)2/(ax2

+ ex) with Res( f ) = a2(a+ e)2. We
dehomogenize a= 1 and replace e with e−1 to get f (x)= (x−1)2/(x2

+(e−1)x)
with Res( f )= e2. The fact that 1 is a ramification point in a 3-cycle tells us that
( f 3)′(1)= 0, and one of the other points in the 3-cycle will also be ramified if and
only if ( f 3)′′(1)= 2(1− e2)/e = 0. Hence

( f, {0, 1,∞}) ∈ GR1
2[P4,9]

◦(K , S) ⇐⇒ e ∈ R∗S and e 6= ±1.

The Milnor image is

s
(

(x − 1)2

x2+ (e− 1)x

)
=

(
e3
− 5e2

− e− 1
e2 ,

−2e3
+ 7e2

+ 2e+ 1
e2

)
,

so the closure of GR1
2[P4,9]

◦(K , S) is a curve and ShafDim1
2[P4,9]

◦
= 1. However,

if we want the 3-cycle to contain only one ramification point modulo primes not
in S, then we need e2

−1∈ R∗S . This yields solutions (e, 1−e) to the S-unit equation
u+ v = 1, so there are only finitely many such maps and ShafDim1

2[P4,9]
?
= 0.

P4,10: We move the three fixed points to 0, 1, and∞, and let the fourth point be α
with f (α) = 0. Then f has the form f (x) = (ax2

+ bx)/(ex + a + b− e) with
α =−b/a and

Res( f )= a(a+ b)(a− e)(a+ b− e).

We dehomogenize a = 1, so f (x)= (x2
+bx)/(ex+1+b− e) and α =−b. Then

{0, 1,∞,−b} has good reduction ⇐⇒ b, 1+b ∈ R∗S,

f has good reduction ⇐⇒ 1+b, 1−e, 1+b−e ∈ R∗S,(
f (x), {0, 1,∞,−b}

)
∈ GR1

2[P4,10]
•(K , S) ⇐⇒ b, 1+b, 1−e, 1+b−e ∈ R∗S.

But this means that (−b, 1+b) is a solution to the S-unit equation u+v= 1, so there
are only finitely many values for b; and then the fact that

(
b−1(e−1), b−1(1+b−e)

)
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is also a solution to the S-unit equation proves that there are only finitely many
values for e. This completes the proof that GR1

2[P4,10]
•(K , S)/PGL2(RS) is finite.

P4,11: We move the points so that 0 and ∞ are fixed by f and f (1) = 0. This
puts f in the form f (x) = ax(x − 1)/(bx − c), with Res( f ) = a2c(c− b). We
dehomogenize c = 1, so f (x)= ax(x − 1)/(bx − 1). Then f −1(∞)= {∞, b−1

},
and our assumption that we have a good reduction model for P4,11 requires that b−1

be distinct from {0, 1,∞} for all primes not in S. Thus b−1
∈ R∗S and b−1

−1 ∈ R∗S .
The S-unit equation u− v = 1 has only finitely many solutions, so there are finitely
many values for b. We observe that for these b values, the map f is unramified mod-
ulo all primes not in S, since f −1( f (0))= f −1( f (1))= {0, 1} and f −1( f (∞))=
f −1( f (b−1)) = {∞, b−1

}. We also note that we can take b = 2, since 2 ∈ R∗S by
assumption. Thus for every a ∈ R∗S , we see that

(
ax(x−1)/(2x−1), {0, 1, 2−1,∞}

)
is in GR1

2[P4,11]
?(K , S). The Milnor image is

s
(

ax(x − 1)
2x − 1

)
=

(
2a2
− 2a+ 4

a
,

a4
− 2a3

+ 6a2
− 4a+ 4

a2

)
,

and hence the Zariski closure of GR1
2[P4,11]

◦(K , S) in M1
2 is a nonempty finite

union of curves. (We remark that the pairs ( f, X) studied in Section 4, when
restricted to the case d = 2, have portrait P4,11.)

P4,12: We move the points so that 0 and ∞ are fixed by f and f (1) = 0. This
puts f in the form f (x) = ax(x − 1)/(bx − c), with Res( f ) = a2c(c− b). We
dehomogenize a = 1, so f (x)= x(x − 1)/(bx − c). The portrait P4,12 includes a
point in f −1(1)= {x2

− (1+b)x+ c= 0}, and this point is in K , since the portrait
is assumed to be Gal(K̄/K )-invariant. Thus (1+ b)2 − 4c = t2 for some t ∈ K .
Then (1+b+ t)(1+b− t)= 4c ∈ R∗S , so if we have a good reduction portrait for f ,
then c, c− b, 1+ b± t ∈ R∗S . This gives us a 5-term S-unit sum

(1+ b+ t)+ (1+ b− t)+ 2(c− b)− 2c− 2= 0.

There are only finitely many solutions with no subsum equal to 0 [Evertse 1984;
van der Poorten and Schlickewei 1991], so it remains to analyze the 10 cases where
some subsum vanishes.

(1+ b+ t)+ (1+ b− t)= 0. So b =−1 and f (x)=−x(x − 1)/(x + c). Then c
and c+ 1 are in R∗S , so there are only finitely many choices for c.

(1+ b± t)+ 2(c− b)= 0. So a−b+2c±t=0. Substituting into (1+b)2−4c= t2

to eliminate t yields b= c(c+2)/(c+1), and from that we find that c/(b−c)=1+c.
We know that c, b−c ∈ R∗S , so this shows that 1+c ∈ R∗S . But then (1+c,−c) is a
solution to the S-unit equation u+v= 1, so there are only finitely many possibilities
for c.
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(1+ b± t)− 2c = 0. So 1+ b± t = 2c. Substituting into (1+ b)2 − 4c = t2 to
eliminate t yields c2

− bc = 0, so either c = 0 or c− b = 0. This contradicts the
fact that c and c− b are S-units.

(1+ b± t)− 2= 0. So 1 + b ± t = 2. Substituting into (1 + b)2 − 4c = t2 to
eliminate t yields c− b = 0, contradicting the fact that c− b ∈ R∗S .

2(c− b)− 2c = 0. So b=0 and f (x)= x(x−1)/c. We have c∈ R∗S and 1−4c= t2.
We write a = γ u3 with u ∈ R∗S and γ chosen from a finite set of representatives for
R∗S/(R

∗

S)
3. Then (u, t) is an RS-integral point on the genus 1 curve y2

= 1− 4γ x3.
Siegel’s theorem [Hindry and Silverman 2000, D.9.1] says that there are only finitely
many such points.

2(c− b)− 2= 0. So c= b+1 and f (x)= x(x−1)/(bx−b−1). We have c ∈ R∗S
and c2

− 4c = t2. We write c = γ u3 with u ∈ R∗S and γ chosen from a finite set of
representatives for R∗S/(R

∗

S)
2. Then (u, t/u) is an RS-integral point on the genus 1

curve y2
= γ 2x4

−4γ x . Siegel’s theorem [Hindry and Silverman 2000, D.9.1] says
that there are only finitely many such points.

−2c− 2= 0. So c =−1 and f (x)= x(x − 1)/(bx + 1). We have 1+ b ∈ R∗S and
(1+b)2+4= t2. We write 1+b= γ u2 with u ∈ R∗S and γ chosen from a finite set
of representatives for R∗S/(R

∗

S)
2. Then (u, t) is an RS-integral point on the genus 1

curve y2
= γ 2u4

+ 4. Siegel’s theorem [Hindry and Silverman 2000, D.9.1] says
that there are only finitely many such points.

P4,13: We move the 2-cycle to 0,∞, so f (x)= (ax+b)/(cx2
+dx). The resultant

is−bc(ad−bc), so we can dehomogenize c= 1. Moving a fixed point to 1, we have
a+b=d+1, so f (x)= (ax+b)/(x2

+(a+b−1)x)with Res( f )=−b(a−1)(a+b).
The good reduction assumption for f tells us that b, a−1, a+b ∈ R∗S , so we obtain
a 4-term S-unit equation

(a+ b)− (a− 1)− b− 1= 0.

The multivariable S-unit sum theorem [Evertse 1984; van der Poorten and Schlick-
ewei 1991] says that there are finitely many solutions with no subsum equal to 0.
Ignoring those finitely many solutions, there are three subsum 0 cases:

(1) (a+ b)− (a− 1)= 0, so b =−1.

(2) (a+ b)− b = 0, so a = 0.

(3) (a+ b)− 1= 0, so a = 1− b.

The portrait P4,13 has a second fixed point. The fixed points of f are the roots of

(x − 1)(x2
+ (a+ b)x + b)= 0.
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We have assumed that the points in P4,13 are defined over K , so the quadratic has
a root in K . Thus there is a t ∈ K such that

(a+ b)2− 4b = t2.

And since a, b ∈ RS , we have t ∈ RS . From earlier we know that a+ b and b are
in R∗S , so we can write a+ b = γ u2 and b = δv4, with u, v ∈ R∗S and γ, δ chosen
from a finite set of representatives for R∗S/(R

∗

S)
4. Then (uv−1, tv−2) is a RS-integral

point on the genus 1 curve y2
= γ 2x4

−4δ. Siegel’s theorem [Hindry and Silverman
2000, D.9.1] says that there are only finitely many such points. Hence there are only
finitely many possibilities for the ratio u/v, and thus only finitely many possibilities
for γ 2δ−1(u/v)4 = (a+b)2/b. But we know from the three cases described earlier
that either b = −1 or a = 0 or a = 1− b. Substituting these into (a+ b)2/b, we
find that there are finitely many values for, respectively, −(a− 1)2, b, and 1/b.

P4,14: We move the points to α→ 1→ 0→∞ with ∞ fixed. Ignoring α for
the moment, this means that f has the form f (x)= (ax2

− (a+ c)x + c)/ex . We
have Res( f )=−ace2, so good reduction forces a, c, e ∈ R∗S . We dehomogenize
by setting e = 1. At this stage the pair ( f, {0, 1,∞}) has good reduction. However,
we need to adjoin the point α to the set X . The point α is a root of the numerator
of f (x)− 1, so α is a root of the polynomial

(11) ax2
− (a+ c+ 1)x + c = 0.

Since we are assuming that α ∈ K , the discriminant of this quadratic polynomial
is a square in K , say

t2
= (a+ c+ 1)2− 4ac with t ∈ RS.

Then
(a+ c+ 1+ t)(a+ c+ 1− t)= 4ac ∈ R∗S,

so a+ c+ 1± t ∈ R∗S . So we now know four S-units,

a, c, a+c+1+ t, a+c+1− t ∈ R∗S,

which yields a 5-term S-unit sum

(a+ c+ 1+ t)+ (a+ c+ 1− t)− 2a− 2c− 2= 0.

There are only finitely many solutions with no subsum equal to 0 [Evertse 1984;
van der Poorten and Schlickewei 1991], so it remains to analyze the 10 cases where
some subsum vanishes.

(a+ c+ 1+ t)+ (a+ c+ 1− t)= 0. Substituting c = −a− 1, we find that t2
=

−4a(a−1). Since a ∈ R∗S , we may write a= γ u3 with u ∈ R∗S and γ chosen from a
finite set of representatives for R∗S/(R

∗

S)
3. Then (u, tu−1) is an S-integral point on
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the genus 1 curve y2
=−4γ 2x4

+ 4γ 2x . Siegel’s theorem [Hindry and Silverman
2000, D.9.1] says that there are only finitely many such points.

(a+ c+ 1± t)− 2a = 0. Then 0= (a+c+1)2−4ac−t2
=4a, contradicting a∈ R∗S .

(a+ c+ 1± t)− 2c = 0. Then 0= (a+c+1)2−4ac−t2
=4c, contradicting c∈ R∗S .

(a+ c+ 1± t)− 2= 0. Then

0= (a+ c+ 1)2− 4ac− t2
= 4(a+ c− ac).

Hence 1= (a−11)(c−1), so a−1 and c−1 are S-units. Thus (1−a, a) and (1−c, c)
are each solutions to the S-unit equation u+v=1, which has finitely many solutions.

−2a− 2c = 0. Substituting a =−c, we find that t2
= 1+ 4a2. Since a ∈ R∗S , we

may write a= γ u2 with u ∈ R∗S and γ chosen from a finite set of representatives for
R∗S/(R

∗

S)
2. Then (u, t) is an RS-integral point on the genus 1 curve y2

= 1+4γ 2x4.
Siegel’s theorem [Hindry and Silverman 2000, D.9.1] says that there are only finitely
many such points.

−2a− 2= 0. Substituting a = −1, we find that t2
= c2
+ 4c. Since c ∈ R∗S , we

may write c = γ u3 with u ∈ R∗S and γ chosen from a finite set of representa-
tives for R∗S/(R

∗

S)
3. Then (u, tu−1) is an S-integral point on the genus 1 curve

y2
= γ 2x4

+ 4γ x . Siegel’s theorem [Hindry and Silverman 2000, D.9.1] says that
there are only finitely many such points.

−2c− 2= 0. Substituting c =−1, we find that t2
= a2
+ 4a. The analysis is then

identical to the previous case with −2a− 2= 0.

P4,15: The portrait P4,15 contains the portrait P3,3 as a subportrait, and we already
proved that ShafDim1

2[P3,3]
◦
= 0, so the same is true for P4,15. On the other hand,

if we allow any of the points in P4,15 to have weight greater than 1, then the total
weight would be at least 5, in which case Theorem 2(a) gives us finiteness. Hence
ShafDim1

2[P4,15]
•
= 0.

P4,16: The portrait P4,16 contains the portrait P3,3 as a subportrait, and we already
proved that ShafDim1

2[P3,3]
◦
= 0, so the same is true for P4,16. On the other hand,

if we allow any of the points in P4,16 to have weight greater than 1, then the total
weight would be at least 5, in which case Theorem 2(a) gives us finiteness. Hence
ShafDim1

2[P4,16]
•
= 0.

P4,17: The portrait P4,17 contains the portrait P3,1 as a subportrait, and we already
proved that ShafDim1

2[P3,1]
◦
= 0, so the same is true for P4,17. On the other hand,

if we allow any of the points in P4,17 to have weight greater than 1, then the total
weight would be at least 5, in which case Theorem 2(a) gives us finiteness. Hence
ShafDim1

2[P4,17]
•
= 0.
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P4,18: Moving the four points to b, 1, 0,∞, we see that f (x)= a(x−1)(x−b)/ex
with Res( f )= a2be2, so we can dehomogenize a = 1. Then(

f (x), {b, 1, 0,∞}
)
∈ GR1

2[P4,18]
•(K , S) ⇐⇒ b, 1− b, e ∈ R∗S.

(Note that b, 1− b ∈ R∗S is the condition for {b, 0, 1,∞} to have good reduction
outside S.) Then (b, 1− b) is a solution to the S-unit equation u+ v = 1, so there
are finitely many values for b. Each value of b, for example b = 2, yields a curve
in M1

2, for example, the Milnor image with b = 2 is

s
(
(x − 1)(x − 2)

ex

)
=

(
2e2
− 4e+ 17

2e
,
−4e3

+ 19e2
− 8e+ 17

2e2

)
.

Hence ShafDim1
2[P4,18]

◦
= 1. However, since f −1( f (1)) = f −1( f (b)) = {1, b}

and f −1( f (0))= f −1( f (∞))= {0,∞}, we see that f modulo primes not in S is
unramified at the points in {b, 1, 0,∞}, so the above maps with b = 2 and e ∈ R∗S
are in GR1

2[P4,18]
?(K , S), and hence ShafDim1

2[P4,18]
◦
= 1.

P4,19: Moving 0,∞ to the 2-cycle and 1 to the incoming point, we see that
f (x) = a(x − 1)/(bx2

+ cx). This has Res( f ) = a2b(b+ c). We dehomogenize
b=1, so f (x)=a(x−1)/x(x+c)with a, 1+c∈ R∗S . The fourth point of the portrait
is in f −1(1), so it is a root of x2

+(c−a)x+a. Since that point is in K by assumption,
we see that the discriminant (c−a)2−4a must be a square in K , say equal to t2. Then

(c− a+ t)(c− a− t)= 4a ∈ R∗S,

so c− a± t ∈ R∗S . This gives us a 5-term S-unit sum

(c− a+ t)+ (c− a− t)− 2(1+ c)+ 2a+ 2= 0.

There are only finitely many solutions with no subsum equal to 0 [Evertse 1984;
van der Poorten and Schlickewei 1991], so it remains to analyze the 10 cases where
some subsum vanishes.

−2(1+ c)+ 2a = 0. Then a = c+ 1 and f (x)= a(x − 1)/x(x + a− 1). We have
1− 4a = t2. We write a = γ u4 with u ∈ R∗S and γ chosen from a finite set of
representatives for R∗S/(R

∗

S)
4. Then 1−4γ u4

= t2, so (u, t) is an RS-integral point
on the genus 1 curve Y 2

= 1− 4γ X4. Siegel’s theorem [Hindry and Silverman
2000, D.9.1] tells us that there are only finitely many solutions.

−2(1+ c)+ 2= 0. Then c = 0 and f (x)= a(x − 1)/x2. This map has e f (0)= 2,
so we do not get the portrait P4,19 in which every point has multiplicity 1.

2a+ 2= 0. Then a=−1 and f (x)= (−x+1)/x(x+c). We have (c+1)2+4= t2.
We write c+1= γ u2 with u ∈ R∗S and γ chosen from a finite set of representatives
for R∗S/(R

∗

S)
2. Then γ 2u4

+ 4= t2, so (u, t) is an RS-integral point on the genus 1
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curve Y 2
= γ 2 X4

+ 4. Siegel’s theorem [Hindry and Silverman 2000, D.9.1] tells
us that there are only finitely many solutions.

(c− a+ t)+ (c− a− t)= 0. Then a = c and f (x)= a(x−1)/x(x+a). We have
a, 1+ a ∈ R∗S , so (−a, 1+ a) is a solution to the S-unit equation u+ v = 1. Here
there are only finitely many choices for a.

(c− a± t)− 2(1+ c)= 0. Then±t =a+c+2, and the equation (c−a)2−4a= t2

becomes ac+ 2a+ c+ 1= 0. We rewrite this as a(c+ 1)+ (c+ 1)+ 1= 0. Thus(
a(c+ 1), c+ 1

)
is a solution to the S-unit equation u + v + 1 = 0, so has only

finitely many solutions.

(c− a± t)+ 2a = 0. Then±t =a+c, and the equation (c−a)2−4a= t2 becomes
4a(c+ 1)= 0. This contradicts the fact that a and c are in R∗S .

(c− a± t)+ 2= 0. Then ±t = c− a + 2, and the equation (c− a)2 − 4a = t2

becomes 4(c+ 1)= 0, contradicting c+ 1 ∈ R∗S .

This completes the proof that ShafDim1
2[P4,19]

◦
= 0. But if we assign a weight

greater than 1 to any of the points in P4,19, then the resulting portrait will have total
weight at least 5, so Theorem 2(a) gives us finiteness. Hence ShafDim1

2[P4,19]
•
= 0.

P4,20: Moving 0,∞ to the 2-cycle and 1 to an incoming point, we see that
f (x)= a(x−1)/(bx2

+cx). This has Res( f )= a2b(b+c). In particular, a, b∈ R∗S ,
so we can dehomogenize b=1 and f (x)=a(x−1)/x(x+c)with a, 1+c∈ R∗S . The
fourth point of the portrait in f −1(∞), so it is the point−c. Then {0, 1,∞,−c} has
good reduction if and only if c, 1+c ∈ R∗S , so (−c, 1+c) is a solution to the S-unit
equation u+ v = 1. There are thus only finitely many choices for c. For example,
since 2∈ R∗S , we may could take c=1. Then a(x−1)/x(x+1)∈GR1

2[P4,20]
◦(K , S)

for all a ∈ R∗S . The Milnor image is

s
(

a(x − 1)
x(x + 1)

)
=

(
a2
− 10a− 1

2a
,
−a2
+ 9a+ 1

a

)
,

which shows that the Zariski closure of GR1
2[P4,20]

◦(K , S) in M1
2 is a nonempty

finite union of curves. Further, since

f −1( f (1))= f −1( f (∞))= {1,∞},

f −1( f (0))= f −1( f (−1))= {0,−1},

we see that f modulo primes not in S is unramified at the points in {−1, 1, 0,∞},
so the above maps with c = 1 and a ∈ R∗S are in GR1

2[P4,20]
?(K , S), and hence

ShafDim1
2[P4,20]

?
= 1. Finally, we note that ShafDim1

2[P4,20]
•
=ShafDim1

2[P4,20]
◦,

since if we assign a weight greater than 1 to any of the points in P4,20, then the
resulting portrait will have total weight at least 5, so Theorem 2(a) gives us finiteness.
Hence ShafDim1

2[P4,20]
•
= 1.
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P4,21: The portrait P4,21 contains the portrait P3,1 as a subportrait, and we already
proved that ShafDim1

2[P3,1]
◦
= 0, so the same is true for P4,21. On the other hand,

if we allow any of the points in P4,21 to have weight greater than 1, then the total
weight would be at least 5, in which case Theorem 2(a) gives us finiteness. Hence
ShafDim1

2[P4,21]
•
= 0.

P4,22: We move three of the points in the 4-cycle to 0, 1, and∞, and we denote
the fourth point by c. The map f then has the form

f (x)=
c(x − 1)(x + a)

x
(
x − c+ (c− 1)(c+ a)

) ,
Res( f )= ac2(1− c)(2− c)(a+ c)(1− a− c).

The set {c, 0, 1,∞} has good reduction outside S if and only if c, 1−c ∈ R∗S . Hence
( f, {c, 0, 1,∞}) ∈ GR1

2[P4,22]
• if and only if

a, c, 1− c, 2− c, a+ c, 1− a− c ∈ R∗S.

Then (c, 1− c) is a solution to the S-unit equation u + v = 1, so there are only
finitely many values of c. Then the fact that (a+ c, 1− a− c) is also a solution
to the S-unit equation shows that there are only finitely many values of a. Hence
ShafDim1

2[P4,22]
•
= 0.

This completes our analysis of the 22 weight 4 portraits in Tables 3 and 4, and
with it, the proof of Theorem 19. �

8. Possible generalizations

It is natural to attempt to generalize Theorem 2(a) to self-maps of PN with N ≥ 2.
The naive generalization fails. Indeed, suppose that we define GRN

d [n](K , S) to be
the set of triples ( f, Y, X) such that f : PN

K → PN
K is a degree d morphism defined

over K and Y ⊆ X ⊂ P1(K̄ ) are finite sets satisfying the following conditions:9

• X = Y ∪ f (Y ),

• X is Gal(K̄/K )-invariant,

• #Y = n,

• f and X have good reduction outside S.

Then it is easy to see that for any fixed d and N , the set GRN
d [n](K , S) can be

infinite for arbitrarily large n. We illustrate with d = N = 2, since the general case
is then clear.

Consider the family of maps fa,b : P
2
→ P2 defined by

(12) fa,b(X, Y, Z)= [aX Z + X2, bY Z + Y 2, Z2
] with a, b ∈ RS .

9 This definition is not entirely consistent with our definition of GR1
d [n](K , S), since we’ve

replaced the earlier ramification condition on Y with the simpler condition that Y contain n points.
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Then fa,b has good reduction at all primes p /∈ S. And it is not an isotrivial family,
since for example the characteristic polynomial of fa,b acting on the tangent space
at the fixed point [0, 0, 1] is easily computed to be (T − a)(T − b). For a given n,
we take K =Q and we take S to be the set of primes dividing 2

∏n
i=1(2

i
− 1), and

we let
Xn := {[1, 2i , 0] ∈ PN (Q) : 0≤ i ≤ n}.

Then Xn has good reduction at all p /∈ S, and, since f ([1, y, 0]) = [1, y2, 0], we
see that fa,b(Xn−1)⊂ Xn . Hence

( fa,b, Xn−1, Xn) ∈ GR2
2[n](Q, S)/PGL3(ZS)

gives infinitely many inequivalent triples as a and b range over ZS .
One key step in the proof of Theorem 2(a) that goes wrong when we try to

generalize to PN is Lemma 10, which says that if two maps f, g : P1
→ P1 agree

at enough points, then f = g. This is false in higher dimension, and indeed, the
maps fa,b defined by (12) take identical values at all points on the line Z = 0.

This suggests two ways to rescue the theorem.
First, we might simply say that two maps are “the same” if they take the same

values on a nontrivial subvariety of PN. This is a somewhat drastic solution, but the
following partial generalization of Lemma 10, whose proof we leave to the reader,
makes it a reasonable solution.

Lemma 20. Let K be a field, and let f, g : PN
K → PN

K be morphisms of degrees d
and e, respectively. Suppose that

#{P ∈ PN (K ) : f (P)= g(P)} ≥ (d + e)N
+ 1.

Then there is a curve C ⊂ PN
K such that f (P)= g(P) for all P ∈ C.

Second, we might insist that the marked points in the set X are in sufficiently
general position to ensure that f |X = g|X forces f = g. Thus writing EndN

d for
the space of degree d self-morphisms of PN, we might say that a set Y ⊂ PN is in
d-general position for PN if the map

EndN
d → (PN )#Y , f 7→ ( f (P))P∈Y

is injective. Then a version of Theorem 2(a) might be true if we restrict to
triples ( f, Y, X) ∈ GRN

d [n](K , S) for which Y is in d-general position for PN.
In this paper, we will not further pursue these, or other potential, generalizations

of Theorem 2(a) to PN.
A second possible generalization of our results would be to extend them to other

types of fields, for example taking K = k(C) to be the function field of a curve over
an algebraically closed field k. If k has characteristic 0, then much of the argument
in this paper should carry over, although there may be issues with isotrivial maps;
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while if k has characteristic p > 0, then issues of wild ramification arise, as does
the fact that the theorem on S-unit equations is more restrictive in requiring more
than the simple “no vanishing subsum” condition. Again, we have chosen not to
pursue such function field generalizations in the present paper.
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tribute to Paul Erdős, edited by A. Baker et al., Cambridge University Press, 1990. MR Zbl
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BLOCKS IN FLAT FAMILIES OF
FINITE-DIMENSIONAL ALGEBRAS
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We study the behavior of blocks in flat families of finite-dimensional alge-
bras. In a general setting we construct a finite directed graph encoding a
stratification of the base scheme according to the block structures of the
fibers. This graph can be explicitly obtained when the central characters
of simple modules of the generic fiber are known. We show that the block
structure of an arbitrary fiber is completely determined by “atomic” block
structures living on the components of a Weil divisor. As a byproduct, we
deduce that the number of blocks of fibers defines a lower semicontinuous
function on the base scheme. We furthermore discuss how to obtain infor-
mation about the simple modules in the blocks by generalizing and estab-
lishing several properties of decomposition matrices by Geck and Rouquier.
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1. Introduction

It is a classical fact in ring theory that a nonzero noetherian ring A can be de-
composed as a direct product A =

∏n
i=1 Bi of indecomposable rings Bi . Such a

decomposition is unique up to permutation and isomorphism of the factors. Let us
denote by Bl(A) the set of the Bi , called the blocks of A. The decomposition of
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A into blocks induces the decomposition A-Mod=
⊕n

i=1 Bi -Mod of the category
of (left) A-modules. In particular, a simple A-module is a simple Bi -module for a
unique block Bi and so we get the induced decomposition Irr A =

∐n
i=1 Irr Bi of

the set of simple modules. Let us denote by Fam(A) the set of the Irr Bi , called
the families of A. The blocks and families of a ring are important invariants which
help to organize and simplify its representation theory. The aim of this paper is to
investigate how these invariants vary in a flat family of finite-dimensional algebras.

More precisely, we consider a finite flat algebra A over an integral domain R;
i.e., A is finitely generated and flat as an R-module. This yields a family of algebras
parametrized by Spec(R) consisting of the specializations (or fibers)

(1) A(p) := k(p)⊗R A ' Ap/ppAp,

where k(p) = Frac(R/p) is the residue field of p ∈ Spec(R) in R and Ap is the
localization of A in p. Note that the fiber A(p) is a finite-dimensional k(p)-algebra.
Now, the primary goal would be to describe for any p the blocks of A(p), e.g.,
the number of blocks, and to describe the simple modules in each block, e.g., the
number of such modules and their dimensions.

It is clear that there will be no general theory giving the precise solutions to these
problems for arbitrary A. For example, we can take the group ring A = ZSn of the
symmetric group. The fibers of A are precisely the group rings QSn and FpSn for all
primes p, and the questions above are still unanswered. Nonetheless, and this is the
point of this paper, there are some general phenomena, some patterns in the behavior
of blocks and simple modules along the fibers, which are true quite generally.

1A. The setting. We assume that R is noetherian and normal, and that the generic
fiber AK is a split K -algebra, where K is the fraction field of R; i.e., all simple
modules of AK remain simple under field extension. This setting includes many
interesting examples in representation theory, like Brauer algebras, Hecke algebras,
(restricted) rational Cherednik algebras, etc. We note that some results we mention
below actually hold more generally and refer to the main body of the paper.

At the very end we also establish a semicontinuity property of blocks in the
(important) case of a nonsplit generic fiber; see Theorem 1.6. This then applies
also to quantized enveloping algebras of semisimple Lie algebras at roots of unity,
enveloping algebras of semisimple Lie algebras in positive characteristic, quantized
function algebras of semisimple groups at roots of unity, etc. More generally, this
applies to Hopf PI triples as introduced by Brown and Goodearl [2002]; see also
[Brown and Gordon 2001; Gordon 2001].

1B. Block stratification. Under the assumptions described above, we prove the
following theorem (see Corollary 4.3), which is the backbone of this paper:
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Theorem 1.1. For any p ∈ Spec(R) the natural map Ap� A(p) is block bijective;
i.e., it induces a bijection between the block idempotents.

This allows us to reduce the study of blocks of specializations to blocks of
localizations, and this is much simpler from the general perspective. Since a block
idempotent of a localization Ap splits into a sum of block idempotents of the generic
fiber AK, we can view the blocks of Ap as being a partition of the set of blocks of
AK ; see Section 3 for details. This gives us a direct and natural way of comparing
the block structures among the fibers — something which is in general, without the
above theorem, not possible. Let

BlA : Spec(R)→ Part(Bl(AK ))

be the map just described. We equip the image Bl(A) of this map with the partial
order ≤ on partitions, where P ′ ≤P if the members of P ′ are unions of members
of P. We let Bl−1

A (P), respectively Bl−1
A (≤P), be the locus of all p ∈ Spec(R)

such that the block structure of Ap, and thus of A(p) under the above bijection,
is equal to a given partition P, respectively coarser than P. We then obtain as
Theorem 3.3:

Theorem 1.2. The sets Bl−1
A (≤P) are closed in Spec(R), the sets Bl−1

A (P) are lo-
cally closed in Spec(R), and Spec(R)=

∐
P Bl−1

A (P) is a stratification of Spec(R).

Denoting by • the generic point of Spec(R), so that A•= A(•)= AK, this implies
in particular that the set

BlGen(A) := Bl−1
A (BlA(•))

= {p ∈ Spec(R) | BlA(p)= BlA(•)}

of primes p where the block structure of the fiber A(p) is equal to the one of the
generic fiber AK is an open (dense) subset of Spec(R). Hence, the set

BlEx(A) := {p ∈ Spec(R) | BlA(p) < BlA(•)}

of primes where the block structure of the fiber is coarser than the one of the generic
fiber is closed. This set has a nice property; see Corollary 3.5:

Theorem 1.3. If R is a Krull domain (e.g., if R is normal), then BlEx(A) is a
reduced Weil divisor; i.e., it is either empty or pure of codimension 1 in Spec(R).

We thus call BlEx(A) the block divisor of A. This is an interesting new discrim-
inant of A. Let At(A) be the set of irreducible components of BlEx(A). On any
Z ∈ At(A) there is a unique maximal block structure BlA(Z), namely the one in
the generic point. In Section 3C we show that these block structures have an atomic
character:
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Theorem 1.4. For p ∈ Spec(R) we have

BlA(p)=
∧

Z∈At(A)
p∈Z

BlA(Z),

where ∧ is the meet of partitions; i.e., the members are the unions of all members
with nonempty intersection.

Hence, once we know At(A) and the atomic block structures BlA(Z) for Z ∈
At(A), we know the block structure for any p ∈ Spec(R). By considering sets of
the form ⋂

Z∈Z

Z \
⋃

Z /∈Z

Z

for subsets Z ⊆ At(A), we obtain a stratification of Spec(R) refining the one
introduced above. We call this the block stratification of A.

1C. Blocks via central characters. In Section 5 we discuss an approach to explic-
itly compute the block stratification and the block structures on the strata. This is
based on the knowledge of central characters of simple AK -modules. Since AK

splits, each simple AK -module S has a central character �′S : Z(A)→ R, the image
lying in R since R is normal. In Theorem 5.9 we show:

Theorem 1.5. Two simple AK -modules S and T lie in the same Ap-block if and
only if �′S ≡�

′

T mod p.

The key ingredient in the proof is a (rather nontrivial) result by B. Müller stating
that the cliques of a noetherian ring, which is a finite module over its center, are
fibered over the center. We address this in detail in Section 5A.

If z1, . . . , zn is an R-algebra generating system of Z(A), then �′S ≡�
′

T mod p

if and only if �′S(zi ) ≡ �
′

T (zi ) mod p for all i . Hence, Theorem 1.5 gives a
computational tool to explicitly determine BlA(p) once the central characters of the
generic fiber are known. Moreover, it follows from Theorem 1.5 that At(A) is the
set of maximal irreducible components of the zero loci of the sets

(2) {�′S(zi )−�
′

T (zi ) | i = 1, . . . , n}

for �′S 6=�
′

T . The atomic block structures can then be determined by the vanishing
of the differences �′S −�

′

T on the Z ∈ At(A), and from these we obtain all block
structures as described above.

1D. An example. Let us illustrate this with an explicit example. Let A be the
generic Brauer algebra for n = 3 over the polynomial ring R := Z[δ]; see [Graham
and Lehrer 1996]. There are four simple AK -modules, labeled by the partitions
(0, (1, 1, 1)), (0, (3)), (0, (2, 1)), and (1, (1)). We will simply label these by
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1, . . . , 4 from now on. Since AK is semisimple, we can identify the blocks of
AK with the simple modules of AK ; i.e., we can label the blocks by 1, . . . , 4. We
can thus view blocks of specializations of A as partitions of {1, . . . , 4} as described
above. It is not too difficult to explicitly compute the central characters of the
simple AK -modules. From these we deduce that the block structure of the fibers of
A over Z[δ] are distributed as in the following graph:

{1},{2},{3},{4}
(0)

{1,2,3},{4}
(3)

{1},{2},{3,4}
(δ−1)

{1,2},{3},{4}
(2)

{1},{2,4},{3}
(δ+2)

{1,2,3,4}
(δ−1,3)

{1,2},{3,4}
(δ−1,2)

{1,2,4},{3}
(δ,2)

This graph encodes the block stratification of the two-dimensional base scheme
Spec(Z[δ]), along with the block structures on the strata. We see that BlEx(A)
has four components of codimension 1, the generic points of these components
are 3, δ−1, 2, and δ+2, respectively. The block structure on any other point p
is uniquely determined as the meet of the block structures on the components of
BlEx(A) containing p.

We want to point out that it is central for us to work with (affine) schemes. For
example, we have one skeleton with generic point (2); i.e., we consider the Brauer
algebra in characteristic 2. Now, we do not only have the case δ ∈ {0, 1}= F2, which
is described by the two strata below (2), but we also have a generic characteristic-2
case, described by the generic point of F2[δ], and this is really different from the
case of specialized δ, as we can see from the block structures.

Note that the components of BlEx(A) are precisely the parameters where the
Brauer algebra is not semisimple anymore (the precise parameters have been deter-
mined by Rui [2005] for all n ∈N). We show in Lemma 6.7 that this is always the
case for cellular algebras.

1E. Blocks and decomposition matrices. In Section 6 we address questions about
the simple modules in a block. The main tool here is the decomposition matrices
introduced by Geck and Rouquier. In Theorem 6.2 we show that they satisfy Brauer
reciprocity in a rather general setting in which it was not known to hold before. In
Section 6C we generalize the concept of Brauer graphs and show how these relate
to blocks.

1F. An open problem. In Section 6B we contrast the preservation of simple mod-
ules with the preservation of blocks under specialization, and this leads to an
interesting problem: In [Thiel 2016] we showed that decomposition matrices of A
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are trivial precisely on an open subset DecGen(A) of Spec(R). In Theorem 6.3 we
show

DecGen(A)⊆ BlGen(A).

The obvious question is: are these two sets equal, and if not, when are they
equal? We show in Example 6.5 that in general we do not have equality. In
Lemma 6.7, on the other hand, we establish a context where we have equality
(this includes Brauer algebras and explains why our Weil divisor is given by the
nonsemisimple parameters). It is an open problem to understand the complement
BlGen(A) \DecGen(A).

1G. Semicontinuity of blocks in the case of a nonsplit generic fiber. In Section 7
we consider the case of a nonsplit generic fiber. In this case we can no longer
identify blocks of specializations with blocks of localizations, and so there is no
natural way of comparing block structures among the fibers. However, it still makes
sense to compare the number of blocks of the fibers, i.e., to consider the map
Spec(R)→N, p 7→ # Bl(A(p)). In the case R is normal and AK splits, this map is
lower semicontinuous by the results discussed above. Without the splitting of AK,
this is no longer true; see Example 7.4. The problem is that we consider this map
on all of Spec(R). In Corollary 7.1 we construct a setting in which the restriction of
p 7→ # Bl(A(p)) to certain subsets of Spec(R) is still lower semicontinuous without
assuming that the generic fiber splits. From this we obtain a rather nice result; see
Corollary 7.3:

Theorem 1.6. Suppose that R is a finite-type algebra over an algebraically closed
field. Let X be the set of closed points of Spec(R). Then the map X → N,
m 7→ # Bl(A(m)), is lower semicontinuous. In particular, X admits a stratification
according to the number of blocks of fibers of A over X.

1H. Remark. The behavior of blocks under specialization has been studied in sev-
eral situations already. All of our results are well known in modular representation
theory of finite groups due to the work of R. Brauer and C. Nesbitt [1941]. Our
Corollary 4.3 and Theorem 6.9 generalize results by S. Donkin and R. Tange [2010]
about algebras over Dedekind domains. Our results about lower semicontinuity of
the number of blocks generalize a result by P. Gabriel [1975] to mixed characteristic
and nonalgebraically closed settings; see also the corresponding result by I. Gordon
[2001]. In general, K. Brown and I. Gordon [2001; 2002] used Müller’s theorem
[1976] to study blocks under specialization. Theorem 5.8 has been treated in a more
special setting by K. Brown and K. Goodearl [2002]. The codimension-1 property in
Corollary 4.3 and Theorem 5.9 was proven by C. Bonnafé and R. Rouquier [2017] in
a more special setting. Their work is without doubt one of the main motivations for
this paper. Blocks and decomposition matrices of generically semisimple algebras
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over discrete valuation rings have been studied by M. Geck and G. Pfeiffer [2000],
and more generally by M. Chlouveraki [2009]. Brauer reciprocity has been studied
more generally by M. Geck and R. Rouquier [1997], and by M. Neunhöffer [2003].
M. Neunhöffer and S. Scherotzke [2008] showed generic triviality of epA over
Dedekind domains.

2. Base change of blocks

The basic principle underlying the behavior of blocks in a family of algebras is
base change of blocks. In this section, we introduce a few basic notions about this
principle. Appendix A contains some further material which will later be used in
some proofs.

Let us fix some basic notation for block theory. For us, a ring is always a ring
with identity and a module is always a left module unless we explicitly say it is a
right module. Let A be a ring and let Z be its center. If c is a central idempotent of
A, then Ac= cA is a two-sided ideal of A and at the same time a ring with identity
element equal to c (so, not a subring). This yields a bijection between the set of
decompositions of 1 ∈ A into a sum of pairwise orthogonal central idempotents and
finite direct sum decompositions of the ring A into nonzero two-sided ideals of A
up to permutation of the summands. Such decompositions are in turn in bijection
with finite direct product decompositions of the ring A into nonzero rings up to
permutation of the factors. Primitive idempotents of Z are also called centrally
primitive idempotents of A. A central idempotent c is centrally primitive if and only
if Ac is an indecomposable ring. It is a standard fact — and the starting point of
block theory — that if there is a decomposition of 1=

∑
i ci into pairwise orthogonal

centrally primitive idempotents ci , then this is unique and any central idempotent of
A is a sum of a subset of the ci . We then say that A has a block decomposition, call
the centrally primitive idempotents of A also the block idempotents, and call the
corresponding rings Ac the blocks of A. We denote by Bl(A) the set of centrally
primitive idempotents of A. To avoid pathologies we set Bl(0) :=∅ for the zero
ring 0. It is well known that noetherian rings have block decompositions (the
block idempotents are the class sums with respect to the linkage relation of a
decomposition of 1 ∈ A into pairwise orthogonal primitive idempotents).

Let C := {ci }i∈I be a finite set of pairwise orthogonal central idempotents
whose sum is equal to 1 ∈ A. Let Bi := Aci . If V is a nonzero A-module, then
V =

⊕
i∈I ci V as A-modules and each summand ci V is a Bi -module. In this way

we obtain a decomposition A-Mod=
⊕

i∈I Bi -Mod of module categories, which
also restricts to a decomposition of the category of finitely generated modules. If
a nonzero A-module V is under this decomposition obtained from a Bi -module,
then V is said to belong to Bi . This is equivalent to ci V = V and cj V = 0 for all
j 6= i . An indecomposable A-module clearly belongs to a unique Bi , and so this
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is true for any simple A-module. We thus get a decomposition Irr A =
∐

i∈I Irr Bi

of the set of (isomorphism classes of) simple modules. We call the sets Irr Bi the
C -families of A and denote the set of C -families by FamC (A). Note that we have
a natural bijection

(3) C −→∼ FamC (A)

given by ci 7→ Irr Bi . In the case C is actually a block decomposition, we call the
C -families simply the families of A and set Fam(A) := FamC (A). Recall that any
central idempotent of A is a sum of a subset of the block idempotents of A. Hence,
for general C as above the families are a finer partition of Irr A than the C -families;
i.e., any C -family is a union of families.

Now, consider a morphism φ : R→ S of commutative rings. If V is an R-module,
we write

V S
:= φ∗V := S⊗R V

for the scalar extension of V to S and by φV : V → V S we denote the canonical
map v 7→ 1⊗ v. In most situations we consider, this map will be injective:

Lemma 2.1. In each of the following cases the map φV : V → V S is injective:

(a) φ is injective and V is R-projective.

(b) φ is faithfully flat.

(c) φ is the localization morphism for a multiplicatively closed subset 6 ⊆ R and
V is 6-torsion-free.

Proof. The first case follows from [Bourbaki 1989, II, §5.1, Corollary to Proposi-
tion 4], the second follows from [Bourbaki 1972, I, §3.5, Proposition 8(i,iii)], and
the last case follows from the fact that φ is flat in conjunction with [Bourbaki 1972,
I, §2.2, Proposition 4]. �

If A is an R-algebra, then the S-module AS is naturally an S-algebra and the
map φA : A→ AS is a ring morphism. Moreover, if V is an A-module, then the
underlying S-module of AS

⊗A V is simply V S. Our aim is to study the behavior of
blocks under the morphism φA : A→ AS. Clearly, if e ∈ A is an idempotent, also
φA(e) ∈ AS is an idempotent, and if e is central, so is φA(e) by the elementary fact

(4) φA(Z(A))⊆ Z(AS).

Definition 2.2. We say that φA is (central) idempotent stable if φA(e) 6= 0 for any
nonzero (central) idempotent e of A. We say that φA is block bijective if φA induces
a bijection between the centrally primitive idempotents of A and the centrally
primitive idempotents of AS.

Note that in the case φA is idempotent stable, respectively central idempotent
stable, it induces a map between the sets of decompositions of 1 ∈ A and 1 ∈ AS
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into pairwise orthogonal idempotents, respectively into pairwise orthogonal central
idempotents. The following lemma shows two situations in which φA is idempotent
stable (and thus central idempotent stable). We denote by Rad(A) the Jacobson
radical of A.

Lemma 2.3. If Ker(φA)⊆ Rad(A), then φA is idempotent stable. This holds in the
following two cases:

(a) φA is injective (see Lemma 2.1),

(b) φ is surjective, Ker(φ)⊆ Rad(R), and A is finitely generated as an R-module.

Proof. If e ∈ A is an idempotent contained in Rad(A), then by a well-known
characterization of the Jacobson radical, see [Curtis and Reiner 1981, 5.10], we
conclude that e†

= 1−e ∈ A× is a unit, and since e† is also an idempotent, we must
have e†

= 1, implying that e = 0. If φA is injective, the condition clearly holds. In
the second case we have Ker(φA) = Ker(φ)A ⊆ Rad(R)A ⊆ Rad(A), where the
last inclusion follows from [Lam 1991, Corollary 5.9]. �

Suppose that φA is idempotent stable and that both A and AS have block decompo-
sitions. Let {ci }i∈I be the block idempotents of A and let {c′j }j∈J be the block idem-
potents of AS. Since φA is idempotent stable, the set Blφ(AS) := φA({ci }i∈I ) is a
decomposition of 1 ∈ AS into pairwise orthogonal idempotents. We call the φA(ci )

the φ-blocks of AS and call the corresponding families (see above) the φ-families
of AS, denoted by Famφ(AS). As explained above, each φ-block φA(ci ) is a sum of a
subset of the block idempotents of AS and the φ-families are coarser than the families
in the sense that each φ-family is a union of AS-families. In particular, we have

(5) # Bl(A)= # Blφ(AS)≤ # Bl(AS).

The following picture illustrates this situation:

(6)

•

c′11

•

c′12

· · · •
c′1m1

•

c′21

•

c′22

· · · •
c′2m2

· · · •

c′n1

•

c′n2

· · · •
c′nmn

AS-blocks

•

φA(c1)
•

φA(c2)
· · · •

φA(cn)
φ-blocks

•

c1
•

c2
· · · •

cn
A-blocks

φA φA φA

This paper is about this picture in the special case of specializations of an algebra in
prime ideals. Before we begin investigating this, we record the following useful fact.

Lemma 2.4. Suppose that φA : A→ AS is central idempotent stable. If AS has a
block decomposition, then A has a block decomposition.
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Proof. If A does not contain any nontrivial central idempotent, then A is indecompos-
able and thus has a block decomposition. So, assume that A is not indecomposable
and let c be a nontrivial central idempotent. Then A = Ac⊕ Ac†. We can now
continue this process to get finer and finer decompositions of A as a ring. Since φA

is central idempotent stable, we get decompositions of AS of the same size. As AS

has a block decomposition, this process has to end after finitely many steps. We
thus arrive at a ring decomposition of A with finitely many and indecomposable
factors, hence, at a block decomposition of A. �

Corollary 2.5. A nonzero finite flat algebra over an integral domain has a block
decomposition.

Proof. Let R be an integral domain with fraction field K , let φ : R ↪→ K be
the embedding, and let A be a finite flat R-algebra. Since A is R-torsion-free, it
follows from Lemma 2.1(c) that φA is injective and so φA is idempotent stable by
Lemma 2.3(a). Since φ∗A A = AK is a finite-dimensional algebra over a field, it has
a block decomposition. Hence, A has a block decomposition by Lemma 2.4. �

The point of the corollary above is that we do not have to assume R to be noether-
ian — otherwise A is noetherian and we already know it has a block decomposition.

3. Blocks of localizations

Before we consider blocks of specializations, we first take a look at blocks of
localizations as these are much easier to control and are still strongly related to
blocks of specializations as we will see in the next paragraph.

Throughout the next paragraph, we assume A is a finite flat algebra
over an integral domain R with fraction field K.

It follows from Corollary 2.5 that A and any localization Ap for p ∈ Spec(R)
have a block decomposition, even if A is not necessarily noetherian. Since the
canonical map φp : Ap→ AK is injective by Lemma 2.1, we have the notion of
φp-blocks and φp-families of AK, as defined in Section 2. To shorten notations,
we call them the p-blocks and p-families, and write Famp(AK ) for the p-families.
Recall that we have a natural bijection

(7) Bl(Ap)' Famp(AK ).

3A. Block structure stratification. There is the following more concrete point of
view of p-blocks. Let (ci )i∈I be the block idempotents of AK. If c ∈ Ap is any
block idempotent, we know from Section 2 that there is I ′ ⊆ I with c =

∑
i∈I ′ ci

in AK. Hence, to any block idempotent of Ap we can associate a subset of I, and if
we take all block idempotents of Ap into account, we get a partition BlA(p) of the
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set I, from which we can recover the block idempotents of Ap by taking sums of
the ci over the members of BlA(p). In this way we get a map

(8) BlA : Spec(R)→ Part(I )

to the set of partitions of the set I. We denote by

(9) Bl(A) := Im BlA

the image of this map and call the partitions therein the block structures of A.
The set Part(I ) is equipped with the partial order ≤ defined by P ≤Q if P is

a coarser partition than Q, i.e., the members of P are unions of members of Q. If
q⊆p, then we have an embedding Ap ↪→ Aq and by the same argument as above, the
block idempotents of Ap are obtained by summing up block idempotents of Aq, so

(10) q⊆ p =⇒ BlA(p)≤ BlA(q).

Hence, the map BlA is actually a morphism of posets if we equip Spec(R) with the
partial order ≤ defined by p≤ q if q⊆ p (i.e., V(p)⊆ V(q)).

For P ∈ Part(I ), we call the fiber Bl−1
A (P)⊆ Spec(R) the P-stratum and

(11) Bl−1
A (≤P) :=

⋃
P ′≤P

Bl−1
A (P

′)=
⋃

P ′≤P
P ′∈Bl(A)

Bl−1
A (P

′)

the P-skeleton. The P-stratum (P-skeleton) is simply the locus of all p∈Spec(R)
where the block structure of Ap is equal to P (respectively coarser than P). Since

(12) Bl−1
A (P)= Bl−1

A (≤P) \
⋃

P ′<P

Bl−1
A (≤P ′),

we can recover the strata from the skeleta. We get the finite decomposition

(13) Spec(R)=
∐
P

Bl−1
A (P)

and we call this the block structure stratification. Our aim is now to show that this
is indeed a stratification, i.e., the strata are locally closed subsets of Spec(R) and
the closure of a stratum is contained in its skeleton. The key ingredient in proving
this is the following general proposition, which is essentially due to Bonnafé and
Rouquier [2017, Proposition D.2.11] but is proven here in a more general form.

Proposition 3.1. Let R be an integral domain with fraction field K , let A be a finite
flat R-algebra, and let F ⊆ AK be a finite set. Then

GenA(F ) := {p ∈ Spec(R) |F ⊆ Ap}

is a neighborhood of the generic point of Spec(R). If A is finitely presented flat,
then GenA(F ) is an open subset of Spec(R), and if moreover R is a Krull domain,
the complement ExA(F ) of GenA(F ) in Spec(R) is a reduced Weil divisor, i.e., it
is either empty or pure of codimension 1 with finitely many irreducible components.
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Proof. Let us first assume that A is actually R-free. For an element α ∈ K we
define Iα := {r ∈ R | rα ∈ R}. This is a nonzero ideal in R, and it has the property
that α ∈ Rp if and only if Iα * p. To see this, suppose that α ∈ Rp. Then we can
write α = r/x for some x ∈ R \ p. Hence, xα = r ∈ R and therefore x ∈ Iα . Since
x /∈ p, it follows that Iα * p. Conversely, if Iα * p, then there exists x ∈ Iα with
x /∈ p. By the definition of Iα we have xα =: r ∈ R and since x /∈ p, we can write
α = r/x ∈ Rp. Now, let (a1, . . . , an) be an R-basis of A. Then we can write every
element f ∈F as f =

∑n
i=1 α f,i ai with α f,i ∈ K . Let I be the radical of the ideal∏

f ∈F, i=1,...,n

Iα f,i E R.

By the properties of the ideals Iα we have the following logical equivalences:

F ⊆ Ap ⇐⇒ α f,i ∈ Rp for all f ∈F , i = 1, . . . , n

⇐⇒ Iα f,i 6⊆ p for all f ∈F , i = 1, . . . , n

⇐⇒ I 6⊆ p,

the last equivalence following from the fact that p is prime. Hence,

(14) ExA(F )= Spec(R) \GenA(F )= V(I )=
⋃

f ∈F, i=1,...,n

V(Iα f,i ),

implying that GenA(F ) is an open subset of Spec(R).
Next, still assuming that A is R-free, suppose that R is a Krull domain. To

show that ExA(F ) is either empty or pure of codimension 1 in Spec(R) with
finitely many irreducible components, it suffices to show this for the closed subsets
V(Iα)=V(

√
I α). If α ∈ R, then Iα= R and therefore V(Iα)=∅. So, let α /∈ R. Let

V(Iα)=
⋃
λ∈3 V(qλ) be the decomposition into irreducible components. Note that

this decomposition is unique and contains every irreducible component of V(Iα).
The inclusion V(Iα) ⊇ V(qλ) is equivalent to Iα ⊆

√
Iα ⊆
√
qλ = qλ. Since an

irreducible component is a maximal proper closed subset, we see that the qλ are the
minimal prime ideals of Spec(R) containing Iα . Let q= qλ for an arbitrary λ ∈3.
We will show that ht(q)= 1. Since Iα ⊆ q, we have seen above that α /∈ Rq. As R
is a Krull domain, also Rq is a Krull domain by [Matsumura 1986, Theorem 12.1].
By [Bourbaki 1972, VII, §1.6, Theorem 4] we have

Rq =

⋂
q′∈Spec(Rq)

ht(q′)=1

(Rq)q′ =
⋂

q′∈Spec(R)
q′⊆q

ht(q′)=1

Rq′ .

Since α /∈ Rq, this shows that there exists q′ ∈ Spec(R) with q′ ⊆ q, ht(q′)= 1 and
α /∈ Rq′ . The last property implies Iα ⊆ q′ and now the minimality in the choice of q
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implies that q′= q. Hence, ht(q)= 1 and this shows V(Iα) is pure of codimension 1.
Since Iα 6= 0, there is some 0 6= r ∈ Iα . This element is contained in all the height-1
prime ideals qλ. As R is a Krull domain, a nonzero element of R can only be
contained in finitely many height-1 prime ideals, see [Huneke and Swanson 2006,
4.10.1], so 3 must be finite.

Now, assume that R is an arbitrary integral domain and that A is finite flat. Then
Grothendieck’s generic freeness lemma [1965, Lemme 6.9.2] shows that there exists
a nonzero f ∈ R such that A f is a free R f -module. Note that Spec(R f ) can be
identified with the distinguished open subset D( f ) of Spec(R). We obviously have

GenA f (F )= GenA(F )∩D( f ).

By the arguments above, GenA f (F ) is an open subset of D( f ), and thus of Spec(R).
This shows that GenA(F ) is a neighborhood in Spec(R).

Next, let R be arbitrary and assume that A is finitely presented flat. It is a
standard fact, see [Stacks 2005–, Tag 00NX], that the assumptions on A imply
that A is already finite locally free; i.e., there exists a family ( fi )i∈I of elements
of R such that the standard open affines D( fi ) cover Spec(R) and A fi is a finitely
generated free R fi -module for all i ∈ I. Since Spec(R) is quasicompact, see [Görtz
and Wedhorn 2010, Proposition 2.5], we can assume that I is finite. Again note
that Spec(R fi ) can be identified with D( fi ) and that

(15) GenA fi
(F )= GenA(F )∩D( fi ).

By the above, the set GenA fi
(F ) is open and since the D( fi ) cover Spec(R), it

follows that GenA(F ) is open. Now, suppose that R is a Krull domain. Much as in
(15) we have

(16) ExA fi
(F )= ExA(F )∩D( fi ).

Suppose that ExA(F ) is not empty and let Z be an irreducible component of
ExA(F ). There is an i ∈ I with Z ∩ D( fi ) 6= ∅. The map T 7→ T defines a
bijection between irreducible closed subsets of D( fi ) and irreducible closed subsets
of Spec(R) which meet D( fi ); see [Görtz and Wedhorn 2010, §1.5]. This implies
that Z ∩D( fi ) is an irreducible component of ExA(F ) ∩D( fi ) = ExA fi

(F ). It
follows from the above that Z ∩D( fi ) is of codimension 1 in D( fi ). Hence, Z is of
codimension 1 in Spec(R) by [Stacks 2005–, Tag 02I4]. All irreducible components
of ExA(F ) are thus of codimension 1 in Spec(R). Since each set ExA fi

(F ) has
only finitely many irreducible components and since I is finite, also ExA(F ) has
only finitely many irreducible components. �

Remark 3.2. We note that A is finitely presented flat if and only if it is finite
projective; see [Lam 1999, Theorem 4.30; Stacks 2005–, Tag 058R]. Hence, we
could have equally assumed that A is finite projective in Proposition 3.1 but we
preferred the seemingly more general notion.
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From now on, we assume that A is finitely presented as an R-module.

For p ∈ Spec(R) let us denote by BA(p) ⊆ AK the set of block idempotents
of Ap. Clearly, BA(p) and BlA(p) are in bijection by taking sums of the ci over
the subsets in BlA(p). Note that BA(p) is constant on Bl−1

A (P) for any P. We can
thus define GenA(P) := GenA(BA(p)) where p ∈ Bl−1

A (P) is arbitrary.

Theorem 3.3. Then Bl−1
A (P) is a closed subset of Spec(R) for any partition P.

Thus, each stratum Bl−1
A (P) is open in Bl−1

A (≤P), and hence locally closed in
Spec(R), and

(17) Bl−1
A (P)⊆ Bl−1

A (≤P).

In particular, the decomposition (13) is a stratification of Spec(R).

Proof. First, assume that P is actually a block structure, i.e., P ∈ Bl(A). Since
Spec(R)=

∐
P ′ Bl−1

A (P
′), we have

Spec(R) \Bl−1
A (≤P)=

⋃
P ′ 6≤P

Bl−1
A (P

′).

Let P ′ 6≤P and p′ ∈GenA(P
′). Then P ′≤BlA(p

′). But this implies BlA(p
′) 6≤P

since otherwise P ′ ≤ BlA(p
′) ≤P. Hence, GenA(P

′) ⊆ Spec(R) \ Bl−1
A (≤P).

Conversely, we clearly have Bl−1
A (P

′)⊆ GenA(P
′). This shows that

Spec(R) \Bl−1
A (≤P)=

⋃
P ′ 6≤P

Bl−1
A (P

′)=
⋃

P ′ 6≤P

GenA(P
′).

This set is open by Proposition 3.1, so

(18) Bl−1
A (≤P)=

⋂
P ′ 6≤P

ExA(P
′)

is closed. From (11) we see Bl−1
A (≤P) is also closed for an arbitrary partition P.

Using (12), we see BlA(P) is locally closed. Moreover, we have Bl−1
A (P) ⊆

Bl−1
A (≤P), so

Bl−1
A (P)⊆ Bl−1

A (≤P)= Bl−1
A (≤P). �

Remark 3.4. In general it is not true that we have Bl−1
A (P)= Bl−1

A (≤P), so the
stratification (13) is in general not a so-called good stratification: in the Brauer
algebra example in the Introduction we have

P ′ := BlA((3))= {{1, 2, 3}, {4}}< {{1, 2}, {3}, {4}} = BlA((2))=:P,

so (3) ∈ Bl−1
A (≤P), but (3) is not contained in Bl−1

A (P)= V((2)). The problem
here is that the skeleton Bl−1

A (≤P) has an irreducible component on which the
maximal block structure is strictly smaller than the maximal one on the entire
skeleton.
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The poset Bl(A) has a unique maximal element, namely the block structure
BlA(•) of A in the generic point • := (0) of Spec(R); i.e., BlA(•)= {{i} | i ∈ I } is
the block structure of the generic fiber AK

= A•. The deviation of block structures
from the generic one thus takes place on the closed subset

(19) BlEx(A) := {p ∈ Spec(R) | BlA(p) < BlA(•)} =
⋃

P<BlA(•)

Bl−1
A (≤P).

We call this set the block structure divisor of A. In fact, since BlEx(A)=ExA(BA(•)),
Proposition 3.1 implies:

Corollary 3.5. Suppose that R is a Krull domain. Then BlEx(A) is a reduced Weil
divisor.

The generic block structure lives precisely on the open dense subset

(20) BlGen(A) := Spec(R) \BlEx(A)

= {p ∈ Spec(R) | BlA(p)= BlA(•)} = Bl−1
A (•).

3B. Block number stratification. From the map BlA : Spec(R) → Part(I ) we
obtain the numerical invariant

(21) # BlA : Spec(R)→ N, p 7→ # BlA(p)= # Bl(Ap).

This map is again a morphism of posets, so

(22) q⊆ p =⇒ # BlA(p)≤ # BlA(q).

For n ∈ N we have

(23) # Bl−1
A (n)= {p ∈ Spec(R) | # Bl(Ap)= n}

and we get the decomposition

(24) Spec(R)=
∐
n∈N

# Bl−1
A (n).

We call this the block number stratification. This decomposition is of course coarser
than the one defined by the fibers of BlA. We define

(25) # Bl−1
A (≤n) :=

⋃
m≤n

# Bl−1
A (m)= {p ∈ Spec(R) | # Bl(Ap)≤ n}.

Since

(26) # Bl−1
A (≤n)=

⋃
#P≤n

Bl−1
A (P),

this set is closed in Spec(R) by Theorem 3.3. This means that the map # BlA :

Spec(R)→N is lower semicontinuous. Hence, # Bl−1
A (n) is open in # Bl−1

A (≤n),
thus locally closed in Spec(R), and

(27) # Bl−1
A (n)⊆ # Bl−1

A (≤n).
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In particular, the partition (24) is a stratification of Spec(R). Again, in general it
will not be a good stratification. Note that

(28) BlEx(A)= {p ∈ Spec(R) | # BlA(p) < # BlA(•)} = Bl−1
A (≤# BlA(•)− 1).

3C. Block stratification. The poset Part(I ) is actually a lattice; i.e., it has meets ∧
and joins ∨. The meet P ∧P ′ of two partitions is the finest partition of I that
is coarser than both P and P ′, and this is obtained by joining members with
nonempty intersection. The maximal elements in Part(I ) not equal to the maximal
element itself (the trivial partition) are the partitions {i, j} ∪ (I \ {i, j}) with i 6= j .
We call these the atoms of Part(I ) and we denote by At(I ) the set of atoms. This
terminology comes from the fact that an arbitrary partition P is the meet of all
atoms lying above it:

P =
∧

T∈At(I )
P≤T

T .

Because of this property, we say that Part(I ) is atomic.
The poset of block structures of A has a similar atomic character. For i, j ∈ I

with i 6= j let us write

(29) GlA({i, j}) := Bl−1
A

(
≤{i, j} ∪ (I \ {i, j})

)
.

This is the locus of all p∈ Spec(R) such that the block idempotents ci and cj belong
to the same block of Ap; i.e., they are “glued” over p. We thus call this set a gluing
locus. By Theorem 3.3 it is a closed subset of Spec(R). It is clear that

(30) BlEx(A)=
⋃
i 6= j

GlA({i, j}).

Let At(A) be the set of maximal elements of the set of irreducible components of
the gluing loci, ordered by inclusion. Then we still have

(31) BlEx(A)=
⋃

Z∈At(A)

Z .

Lemma 3.6. The Z ∈ At(A) are precisely the irreducible components of BlEx(A).

Proof. Let Y be an irreducible component of BlEx(A) and let ξ be the generic
point of Y. Since BlA(ξ) is not the trivial partition, there is i 6= j with BlA(ξ) ≤

{i, j}∪(I \{i, j}). Hence, Y ⊆GlA({i, j}). Since Y is a maximal irreducible closed
subset of BlEx(A) and GlA({i, j})⊆BlEx(A), it is also a maximal irreducible closed
subset of GlA({i, j}), and thus equal to an irreducible component Z of GlA({i, j}).
It is clear that Z ∈ At(A). Conversely, let Z ∈ At(A). Since Z ⊆ BlEx(A), there is
an irreducible component Y of BlEx(A) containing Z . With the same argument as
above, there is Z ′ ∈ At(A) with Y ⊆ Z ′. Hence, Z ⊆ Y ⊆ Z ′, and therefore Z = Y
by maximality of the elements in At(A). �
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It now follows that for any p ∈ Spec(R) we have

(32) BlA(p)=
∧

P∈At(I )
BlA(p)≤P

P =
∧

Z∈At(A)
p∈Z

BlA(Z),

where BlA(Z) denotes the block structure in the generic point of Z , i.e., the unique
maximal block structure on Z . Hence, any block structure of A is a meet of atomic
block structures BlA(Z) for Z ∈ At(A). Recall from Corollary 3.5 that if R is a
Krull domain, the Z ∈ At(A) are all of codimension 1 in Spec(R).

Following this observation, we introduce a refined stratification of Spec(R). For
a subset Z ⊆ At(I ) we define

Bl−1
A (≤Z ) :=

⋂
Z∈Z

Z ,(33)

Bl−1
A (Z ) :=

⋂
Z∈Z

Z \
⋃

Z∈At(A)\Z

Z .(34)

It is clear that Bl−1
A (≤Z ) is closed in Spec(R), that Bl−1

A (Z ) is locally closed
in Spec(R) and that the block structure on Bl−1

A (Z ) is in any point equal to∧
Z∈Z BlA(Z). Note that in this notation Bl−1

A (≤∅)= Spec(R) and

(35) Bl−1
A (∅)= Spec(R) \

⋃
Z∈At(A)

Z = BlGen(A).

Clearly,

(36) Bl−1
A (Z )⊆

⋂
Z∈Z

Z = Bl−1
A (≤Z ),

so we obtain the stratification

(37) Spec(R)=
∐

Z⊆At(A)

Bl−1
A (Z )

refining the block structure stratification (13). We call this the block stratification
of A.

4. Blocks of specializations

We now turn to our actual problem, namely blocks of specializations of A. Compared
to blocks of localizations there is in general no possibility to compare the actual block
structures of specializations. However, there is a rather general setting where blocks
of specializations are naturally identified with blocks of localizations, namely when
R is normal and AK splits. In this case we can compare the actual block structures of
specializations and all results from the preceding paragraph are actually also results
about blocks of specializations. For the proof we need the following general result.
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Theorem 4.1. Let φ : R ↪→ S be a faithfully flat morphism of integral domains
and let A be a finite flat R-algebra. Let K and L be the fraction fields of R and S,
respectively. If # Bl(AK ) = # Bl(AL), then the morphism φA : A→ AS is block
bijective.

Proof. Recall from Corollary 2.5 that both A and AS have block decompositions.
The map φA : A→ AS is injective by Lemma 2.1(b) since φ is faithfully flat. Hence,
φA is idempotent stable by Lemma 2.3(a) and therefore # Bl(A)≤ # Bl(AS) by (5).
We thus have to show that # Bl(A)≥ # Bl(AS). We split the proof of this fact into
several steps.

The case R = K and S = L holds by assumption. Assume that R = K and that
S is general as in the theorem. Since A is R-flat, the extension AS is S-flat and
thus S-torsion-free. Hence, the map AS

→ AL is injective by Lemma 2.1(c). In
particular, it is idempotent stable by Lemma 2.3(a) and so # Bl(AS)≤ # Bl(AL) by
(5). In total, we have

# Bl(A)≤ # Bl(AS)≤ # Bl(AL)= # Bl(AK )= # Bl(A).

Hence, # Bl(A)= # Bl(AS).
Finally, let both R and S be general as in the theorem. Let 6 := R \ {0} and

� := S \ {0}. Then K =6−1 R and L =�−1S. Set T :=6−1S. Since R and S are
integral domains, we can naturally view all rings as subrings of L and so we get
the two commutative diagrams

(38)

L AL

T AT

K S AK AS

R A

the right one being induced by the left one. All morphisms in the left diagram are
clearly injective. We claim the same holds for the right diagram. We have noted at
the beginning that the map A→ AS is injective. Since A is R-flat, it is R-torsion-
free and so the map A→ AK is injective by Lemma 2.1(c). We have argued above
already that the map AS

→ AL is injective. Since S ↪→ T is a localization map, the
induced scalar extension functor is exact so that AT is a flat T -module. In particular,
AT is T -torsion-free and so AT

→ AL is injective by Lemma 2.1(c). The map
AK
→ AL is injective by Lemma 2.1(a). Due to the commutativity of the diagram,

the remaining maps must be injective, too. We can thus view all scalar extensions
of A naturally as subsets of AL. We claim that

(39) A = AK
∩ AS



BLOCKS IN FLAT FAMILIES OF FINITE-DIMENSIONAL ALGEBRAS 209

as subsets of AL . Because of the commutative diagram above, this intersection
already takes place in AT. Consider AK as an R-module now. We have a natural
identification

φ∗(AK )= S⊗R AK
= S⊗R (6

−1 A)

= (6−1S)⊗R A = T ⊗R A = AT

as S-modules by [Bourbaki 1972, II, §2.7, Proposition 18]. Note that the map
AK
→ AT in the diagram above is the map φAK , when considering AK as an

R-module. The R-submodule A of AK is now identified with φAK (A) and the
S-submodule of AT generated by A⊆ AT is identified with AS. Since φ is faithfully
flat, it follows from [Bourbaki 1972, I, §3.5, Proposition 10(ii)] applied to the
R-module AK and the submodule A that

A = AK
∩ AS

inside AT. Let (ci )i∈I be the block idempotents of AS and let (dj )j∈J be the block
idempotents of AK. By assumption the morphism AK

→ AL is block bijective,
which means that (dj )j∈J are the block idempotents of AL . Since AS

→ AL is
idempotent stable, there exists by the arguments preceding (5) a partition (Ji )i∈I of
J such that the nonzero central idempotent ci can in AL be written as ci =

∑
j∈Ji

dj .
But this shows that ci ∈ AK

∩ AS, hence ci ∈ A and so (ci )i∈I gives a decomposition
of 1 ∈ A into pairwise orthogonal centrally primitive idempotents of A by (39).
Hence, # Bl(A)= # Bl(AS). �

To formulate the next proposition more generally, we use the property block-split
introduced in Definition A.2 but note that the reader might just simply replace it by
the more special property split. Moreover, we recall that a local integral domain R
is called unibranch if its henselization Rh is again an integral (local) domain. This
is equivalent to the normalization of R being again local; see [Raynaud 1970, IX,
Corollaire 1]. This clearly holds if R is already normal. Examples of nonnormal
unibranch rings are the local rings in ordinary cusp singularities of curves.

Proposition 4.2. Let R be an integral domain and let A be a finite flat R-algebra
with block-split generic fiber AK (e.g., if AK splits). Let p ∈ Spec(R) and suppose
that Rp is unibranch (e.g., if Rp is normal). Then the quotient morphism Ap� A(p)
is block bijective.

Proof. By assumption, Rp and its henselization Rh
p are integral domains. Since A is

R-flat, it follows that Ap = Rp⊗R A is Rp-flat and that Ah
p := Rh

p ⊗Rp Ap is Rh
p -flat.

Hence, both Ap and Ah
p have block decompositions by Corollary 2.5. Let ph

p be the
maximal ideal of Rh

p . The henselization morphism Rp→ Rh
p is local and faithfully

flat by [Grothendieck 1967, Théorème 18.6.6(iii)]. We now have the commutative
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diagram
Ap Ah

p

A(p)= Ap/ppAp Ah
p/p

h
p Ah

p

of idempotent stable morphisms. We know from Lemmas A.12(b) and A.10 that
Ah
p→ Ah

p/p
h
p Ah

p is block bijective. Since A has block-split generic fiber and Rp→ Rh
p

is a faithfully flat morphism of integral domains, we can use Theorem 4.1 to deduce
that Ap→ Ah

p is block bijective. In [Grothendieck 1967, Théorème 18.6.6(iii)]
it is proven that Rp/pp ' Rh

p/p
h
p . Hence, the map Ap/ppAp → Ah

p/p
h
p Ah

p is an
isomorphism and so in particular block bijective. We thus have

# Bl(Ah
p)= # Bl(Ap)≤ # Bl(A(p))= # Bl(Ah

p/p
h
p Ah

p)= # Bl(Ah
p)

by (5). Hence, # Bl(Ap)= # Bl(A(p)), so Ap� A(p) is block bijective. �

Corollary 4.3. Suppose that R is normal and AK splits. Then Ap� A(p) is block
bijective for all p ∈ Spec(R). Hence, all results from Section 3 apply also to blocks
of specializations of A.

5. Blocks via central characters

In this section we discuss an approach to explicitly compute the block structure of A
in any point p ∈ Spec(R), and so to compute the whole block stratification. This is
based on the knowledge of the central characters of the generic fiber of A. Parts of
the arguments presented here are due to Bonnafé and Rouquier [2017, Appendix D].

5A. Müller’s theorem. The central ingredient to establish a relationship between
blocks and central characters is the general Lemma 5.6 below, which is usually
referred to as Müller’s theorem. We were not able to find a proof of it in this
generality in the literature, so we include a proof here but note that this is known.
The main ingredient is an even more general result by B. Müller [1976] about
the fibration of cliques of prime ideals in a noetherian ring over its center; see
Lemma 5.5. We will recall only a few basic definitions from the excellent exposition
in [Goodearl and Warfield 2004, §12] and refer to it for more details.

Throughout the next paragraph, we assume that A is a noetherian ring.

If p, q are prime ideals of A, we say that there is a link from p to q, written p q,
if there is an ideal a of A such that p∩ q ) a ⊇ pq and (p∩ q)/a is nonzero and
torsion-free both as a left (A/p)-module and as a right (A/q)-module. The bimodule
(p∩q)/q is then called a linking bimodule between q and p. The equivalence classes
of the equivalence relation on Spec(A) generated by are called the cliques of A.
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We write Clq(A) for the set of cliques of A and Clq(p) for the unique clique of A
containing p. For the proof of Lemma 5.6 we will need a few preparatory lemmas.

We call the supremum of lengths of chains of prime ideals in A the classical
Krull dimension of A. The following lemma is standard.

Lemma 5.1. Suppose that A is noetherian and of classical Krull dimension zero.
Then there is a canonical bijection

(40)
Bl(A) −→∼ Clq(A),

c 7−→Xc := {m ∈Max(A) | c†
∈m},

where c†
= 1− c. If moreover A is commutative, then the cliques are singletons;

i.e., there is a unique mc ∈Max(A) with c†
∈mc. Hence, in this case we have

Bl(A)'Max(A)' Spec(A).

Proof. The first assertion is proven in [Goodearl and Warfield 2004, Corollary 12.13].
In a commutative noetherian ring the cliques are singletons, see [loc. cit., Exer-
cise 12F], and this immediately implies the second assertion. �

Lemma 5.2. Let p be a prime ideal of a noetherian ring A and let V be a nonzero
A-module with p ⊆ Ann(V ). If V is torsion-free as an (A/p)-module, then p =

Ann(V ).

Proof. Suppose that p ( Ann(V ). Then Ann(V )/p is a nonzero ideal of the
noetherian prime ring A/p and thus contains a regular element x̄ by [Jategaonkar
1986, Corollary 2.3.11]. But then x̄V = 0, contradicting the assumption that V is a
torsion-free (A/p)-module. �

Lemma 5.3. The following hold:

(a) If p and q are prime ideals of A and if b is an ideal of A with b⊆ p∩ q such
that p/b q/b in A/b, then p q in A.

(b) Let p and q be two prime ideals of A with p q and let b be an ideal of A. If
there exists a linking ideal a from p to q with b⊆ a, then p/b q/b in A/b.

Proof. (a) We can write a linking ideal from p/b to q/b as a/b for an ideal a
containing b. By definition, we have

(p∩ q)/b= (p/b)∩ (q/b)) a/b⊇ (p/b) · (q/b)= (pq)/b,

implying that p∩ q) a⊇ pq. Moreover, we have

((p∩ q)/b)/(a/b)∼= (p∩ q)/a

as (A/b)-bimodules. By definition, (p∩ q)/a is torsion-free as a left module over
the ring

(A/b)/(p/b)∼= A/p.
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Similarly, it follows that (p∩ q)/a is torsion-free as a right module over the ring
A/q. Hence, a is a linking ideal from p to q.

(b) We have

p/b∩ q/b= (p∩ q)/b) a/b⊇ (pq+ b)/b= (p/b) · (q/b).

Since

((p∩ q)/b)/(a/b)∼= (p∩ q)/a, (A/b)/(p/b)∼= A/p, (A/b)/(q/b)∼= A/q,

it follows that a/b is a linking ideal from p/b to q/b. �

Lemma 5.4. Let p and q be distinct prime ideals of a noetherian ring A with p q.
If z is a centrally generated ideal of A with z ⊆ p or z ⊆ q, then z ⊆ p ∩ q and
p/z q/z in A/z.

Proof. This is proven in [Müller 1985] but we also give a proof here for the sake of
completeness. First note that since z is centrally generated and p q, it follows
from [Goodearl and Warfield 2004, Lemma 12.15] that already z⊆ p∩ q. Let a be
a linking ideal from p to q. We claim that z is contained in a. To show this, suppose
that z is not contained in a. Then (a+z)/a is a nonzero submodule of (p∩q)/a which
is torsion-free as a left (A/p)-module and as a right (A/q)-module. In conjunction
with the fact that z is centrally generated it now follows from Lemma 5.2 that

p= Ann(A((a+ z)/a))= Ann(((a+ z)/a)A)= q,

contradicting the assumption p 6= q. Hence, we must have z⊆ a and it thus follows
from Lemma 5.3(b) that p/z q/z. �

Lemma 5.5. Let z be a centrally generated ideal of a noetherian ring A. Let p be a
prime ideal of A with z⊆ p. Then all prime ideals in Clq(p) contain z and the map

Clq(p)−→ Clq(p/z),

q 7−→ q/z,

is a bijection between a clique of A and a clique of A/z.

Proof. It follows immediately from [Goodearl and Warfield 2004, Lemma 12.15]
that all prime ideals in Clq(p) contain z. If q ∈ Clq(p), then there exists a chain
p= p0, p1, . . . , pr−1, pr = q of prime ideals of A with pi  pi+1 or pi+1 pi for
all indices i . An inductive application of Lemma 5.4 shows now that pi/z pi+1/z

or pi+1/z pi/z for all i . Hence, p/z and q/z lie in the same clique of A/z so that
the map Clq(p)→ Clq(p/z) is well-defined. On the other hand, similar arguments
and Lemma 5.3(a) show that if q/z∈Clq(p/z), then also q∈Clq(p), so that we also
have a well-defined map Clq(p/z)→ Clq(p). It is evident that both maps defined
are pairwise inverse thus proving the first assertion. The second assertion is now
obvious. �
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Lemma 5.6 (B. Müller). Let A be a ring with center Z such that Z is noetherian
and A is a finite Z-module. If z is a centrally generated ideal of A such that A/zA
is of classical Krull dimension zero, then the inclusion (Z + z)/z ↪→ A/zA is block
bijective. In other words, the block idempotents of A/zA are already contained in
the central subalgebra (Z + z)/z.

Proof. Let A := A/z and let Z := (Z + z)/z. Then A is a finitely generated
Z -module since A is a finitely generated Z -module. Hence, Z ⊆ A is a finite
centralizing extension and now it follows from going up in finite centralizing
extensions [McConnell and Robson 2001, Theorem 10.2.9] that the classical Krull
dimension of Z is equal to that of A, which is zero by assumption. Hence, by
Lemma 5.1 we have Bl(Z)'Clq(Z) and Bl(A)'Clq(A). Since # Bl(Z)≤# Bl(A),
the claim is thus equivalent to the claim that over each clique of Z , there is just
one clique of A. So, let X, Y ∈ Clq(A) be two cliques. We pick M/z ∈ X and
N/z ∈ Y with M,N maximal ideals of A. Assume that X and Y lie over the same
clique of Z . Since Z is commutative, we know from Lemma 5.1 that all cliques
are singletons and so the assumption implies that M/z and N/z lie over the same
maximal ideal of Z ; i.e.,

(M/z)∩ ((Z + z)/z)= (N/z)∩ ((Z + z)/z).
Hence

M∩ (Z + z)=N∩ (Z + z).

Since Z ⊆ Z + z, we thus get

M∩ Z =M∩ Z ∩ (Z + z)=N∩ Z ∩ (Z + z)=N∩ Z .

Now, Müller’s theorem [Goodearl and Warfield 2004, Theorem 13.10] implies that
M and N lie in the same clique of A. An application of Lemma 5.5 thus implies
that M/z and N/z lie in the same clique of A/z, so X = Y. �

5B. Blocks as fibers of a morphism.

We assume A is a finite flat algebra over a noetherian integral domain R.

By Lemma B.2 the morphism

(41) ϒ : Spec(Z)→ Spec(R),

induced by the canonical morphism from R to the center Z of A is finite, closed,
and surjective. The center Z of A is naturally an R-algebra and so we can consider
its fibers

(42) Z(p)= k(p)⊗R Z/pZ = Zp/ppZp

in prime ideals p of R. On the other hand, the image of Zp = Z(Ap) under the
canonical (surjective) morphism Ap� A(p) yields a central subalgebra

(43) Zp(A) := (Zp+ ppAp)/ppAp
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of A(p). In general this subalgebra is not equal to the center of A(p) itself. We
have a surjective morphism

(44) φp : Z(p)� Zp(A)

of finite-dimensional k(p)-algebras. This morphism is in general not injective — it
is if and only if ppAp ∩ Zp = ppZp. Nonetheless, we have the following result.

Lemma 5.7. The map φp : Z(p)→ Zp(A) in (44) is block bijective.

Proof. Since φp is surjective, the induced map aφp : Spec(Zp(A))→ Spec(Z(p)) is
injective, so # Bl(Zp(A))≤ # Bl(Z(p)) by Lemma 5.1. Now we just need to show
that φp does not map any nontrivial idempotent to zero. Since Rp is noetherian, also
Ap is noetherian. The Artin–Rees lemma [Matsumura 1986, Theorem 8.5] applied
to the Rp-module Ap, the submodule Zp of Ap, and the ideal pp of Rp shows that
there is an integer k ∈ N>0 such that for any n > k we have

pn
p Ap ∩ Zp = pn−k

p ((pk
pAp)∩ Zp).

In particular, there is n ∈ N>0 such that pn
p Ap ∩ Zp ⊆ ppZp. Now, let ē ∈ Z(p) =

Zp/ppZp be an idempotent with φp(ē) = 0. By assumption, ē ∈ Ker(φp) =
(ppAp∩ Zp)/ppZp. Hence, if e ∈ Zp is a representative of ē, we have e ∈ ppAp∩ Zp.
We have en

∈ pn
p Ap ∩ Zp ⊆ ppZp, so already ē = 0. �

Theorem 5.8. For any p ∈ Spec(R) there are canonical bijections

(45) Bl(A(p))' Bl(Zp(A))' Bl(Z(p))' ϒ−1(p).

The first bijection Bl(A(p)) ' Bl(Zp(A)) is induced by the embedding Zp(A) ↪→
A(p). In other words, all block idempotents of A(p) are already contained in
the central subalgebra Zp(A) of A(p). The second bijection is the bijection from
Lemma 5.7. The last bijection Bl(Z(p)) ' ϒ−1(p) maps a block idempotent c of
Z(p) to the (by the theorem, unique) maximal ideal mc of Z lying above p such that
c†
∈ (mc+ ppZp)/ppZp, where c†

= 1− c.

Proof. The first bijection follows directly from Lemma 5.6 applied to Ap and
the centrally generated ideal z := ppAp. Let ϒp : Spec(Zp)→ Spec(Rp) be the
morphism induced by the canonical map Rp→ Zp. Recall from Lemma B.2 that
Rp ⊆ Zp is a finite extension so that ϒp is surjective. We have

ϒ−1
p (pp)= {Q ∈ Spec(Zp) |Q∩ Rp = pp}

= {Q ∈ Spec(Zp) | pp ⊆Q}

= {Q ∈ Spec(Zp) | ppZp ⊆Q} ' Spec(Z(p)).

In the second equality we used the fact that Rp→ Zp is a finite morphism and Rp

is local with maximal ideal pp. The identification with Spec(Z(p)) is canonical
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since Z(p)= Zp/ppZp. The morphism 2p : Spec(Zp)→ Spec(Z) induced by the
localization map Z→ Zp is injective by [Eisenbud 1995, Proposition 2.2(b)]. We
claim that this map induces ϒ−1

p (pp)' ϒ
−1(p). If Q ∈ ϒ−1

p (pp), then clearly

(Q∩ Z)∩ R =Q∩ R ⊆ R ∩ pp = p

and therefore 2p induces an injective map ϒ−1
p (pp)→ ϒ−1(p). If Q ∈ ϒ−1(p),

then, since Q ∩ R = p, we have Q ∩ (R \ p) = ∅ so that Qp ∈ Spec(Zp) and
clearly pp ⊆ Qp, implying that Qp ∈ ϒ

−1
p (pp). The map ϒ−1

p (pp)→ ϒ−1(p) is
thus bijective. Hence, we have a canonical bijection Spec(Z(p))'ϒ−1(p). Now,
recall from Lemma 5.1 that Spec(Z(p))' Bl(Z(p)). �

5C. Blocks via central characters.

We assume that R is noetherian and normal, and that A is a finite flat
R-algebra with split generic fiber AK.

Recall from Corollary 4.3 that the quotient map Ap� A(p) induces Bl(Ap)'

Bl(A(p)), so together with Theorem 5.8 we have the canonical bijection

(46) Bl(Ap)' ϒ
−1(p).

Recall from Section 3 that Famp(AK ) is the partition of Irr AK induced by the
blocks of Ap and that we naturally have Bl(Ap)' Famp(AK ). Altogether, we now
have canonical bijections

(47) Famp(A)' Bl(Ap)' ϒ
−1(p)' Bl(A(p)).

Since A has split generic fiber AK, we have a central character �S : Z(AK )→ K
for every simple AK -module S. Recall that �S(z) is the scalar by which z ∈ Z(AK )

acts on S. Since R is normal, the image of the restriction of �S to Z(A)⊆ Z(AK )

is contained in R ⊆ K . We thus get a well-defined R-algebra morphism

(48) �′S : Z(A)→ R.

It is a classical fact that S, T ∈ Irr AK lie in the same family if and only if �′S =�
′

T .
We can thus label the central characters of AK as �F with F a family (block) of AK.
Using Theorem 5.8 this description generalizes modulo p so that we get an explicit
description of the p-families, and thus of the block stratification. For p∈Spec(R) let

(49) �
p
S : Z(A)→ R/p

be the composition of �′S with the quotient map R� R/p.

Theorem 5.9. Under the bijection ϒ−1(p) ' Famp(A) from (47) the p-family of
a simple AK -module S corresponds to Ker�p

S . Hence, two simple AK -modules S
and T lie in the same p-family if and only if �′S(z)≡�

′

T (z) mod p for all z ∈ Z(A).
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So, if z1, . . . , zn is an R-algebra generating system of Z(A) and F ,F ′ are two
distinct AK -families, then the corresponding gluing locus is given by

(50) GlA
(
≤{F ,F ′}

)
= V

(
{�F (zi )−�F ′(zi ) | i = 1, . . . , n}

)
.

Proof. Considering the explicit form of the bijection given in Theorem 5.8 we see
that the bijection (46) maps a block idempotent c of Ap to the (by the theorem,
unique) maximal ideal Qc of Z lying above p and satisfying c†

∈ (Qc)p. Let cQ be
the block idempotent of Ap corresponding to Q ∈ ϒ−1(p).

For S ∈ Irr AK let �p
S : Z → R/p be the composition of �′S and the quotient

morphism R → R/p. It is clear that Ker(�p
S) ∈ ϒ

−1(p). Note that �′S(z) ≡
�′T (z) mod p for all z ∈ Z(A) if and only if �p

S =�
p
T . We have an exact sequence

0−→ Ker(�′S)−→ Z �′S−→ R −→ 0

of R-modules. Since �′S is an R-algebra morphism, the canonical map R→ Z
is a section of �′S and therefore Z = R⊕Ker(�′S) as R-modules. Similarly, we
have Z = R⊕Ker(�′T ). Since Ker(�′S)⊆Ker(�p

S) and Ker(�′T )⊆Ker(�p
T ), this

implies that �p
S =�

p
T if and only if Ker(�p

S)= Ker(�p
T ).

Now, suppose that Ker(�p
S) = Ker(�p

T ). Denote this common kernel by Q.
Clearly, Q ∈ ϒ−1(p). We know that the corresponding block idempotent cQ of
Ap has the property that c†

Q ∈Qp. Since Ker(�′S) ⊆ Ker(�p
S) =Q = Ker(�p

T ) ⊇

Ker(�′T ), this certainly implies that c†
QS = 0 = c†

QT . Hence, S and T lie in the
same p-family.

Conversely, suppose that S and T lie in the same p-family. We can write
the corresponding block idempotent of Ap as cQ for some Q ∈ ϒ−1(p). By
definition, c†

QS = 0 = c†
QT . We know that c†

Q ∈ Qp and cQ /∈ Qp and there-
fore Ker((�′S)p) = Qp = Ker((�′T )p). Hence, Q ⊆ Ker(�′S) ⊆ Ker(�p

S) and
Q ⊆ Ker(�′T ) ⊆ Ker(�p

T ). Since Q, Ker(�p
S), Ker(�p

T ) ∈ ϒ
−1(p) and all prime

ideals in ϒ−1(p) are incomparable, we thus conclude that Ker(�p
S)= Ker(�p

T ).
The equation for the gluing locus is now clear. �

6. Blocks and decomposition matrices

To obtain information about the actual members of the A(p)-families we use de-
composition maps as introduced by Geck and Rouquier [1997]; see also [Geck and
Pfeiffer 2000; Thiel 2016]. For a ring A we denote by G0(A) := K0(A-mod) the
Grothendieck group and by K0(A) := K0(A-proj) the projective class group. In the
case A is semiperfect (e.g., artinian), K0(A) is the free abelian group with basis
the isomorphism classes of the projective indecomposable modules. In the case A
is artinian, G0(A) is the free abelian group with basis the isomorphism classes of
simple modules and K0(A)' G0(A) mapping P to Hd(P).
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For the theory of decomposition maps we need the following (standard) assump-
tion:

A is finite free with split generic fiber and for any nonzero p∈Spec(R)
there is a discrete valuation ring O with maximal ideal m in K domi-
nating Rp such that the canonical map G0(A(p)) → G0(AO(m)) of
Grothendieck groups is an isomorphism.

We call a ring O as above a perfect A-gate in p. We refer to [Thiel 2016] for
more details. The following lemma lists two standard situations in which the above
assumptions hold. Part (a) is obvious and part (b) was proven in [Thiel 2016,
Theorem 1.22].

Lemma 6.1. A finite free R-algebra A with split generic fiber satisfies the above
assumptions in the following two cases:

(a) R is a Dedekind domain.

(b) R is noetherian and A has split fibers.

If O is a perfect A-gate in p, then there is a group morphism

(51) dp,OA : G0(AK )→ G0(A(p))

between Grothendieck groups generalizing reduction modulo p. In the case R is
normal, it was proven by Geck and Rouquier [1997] that this map is independent
of the choice of O and in this case we just write dpA. We note that in the case R is
noetherian and A has split fibers, any decomposition map in the sense of Geck and
Rouquier can be realized by a perfect A-gate; see [Thiel 2016, Theorem 1.22].

6A. Brauer reciprocity. An important tool for relating decomposition maps and
blocks is Brauer reciprocity, which we prove in Theorem 6.2 below in our general
setup (this was known to hold before only in special settings). Recall that the
intertwining form for a finite-dimensional algebra B over a field F is the Z-linear
pairing 〈 · , · 〉B : K0(B)×G0(B)→ Z uniquely defined by

(52) 〈[P], [V ]〉 := dimF HomB(P, V )

for a finite-dimensional projective B-module P and a finite-dimensional B-module V;
see [Geck and Rouquier 1997, §2]. Here, K0(B) is the zeroth K-group of the
category of finite-dimensional projective B-modules. The intertwining form is
always nondegenerate; see Lemma A.6. Due to the nondegeneracy of 〈 · , · 〉AK there
is at most one adjoint

(53) ep,OA : K0(A(p))→ K0(AK )

of dp,OA :G0(AK )→G0(A(p))with respect to 〈 · , · 〉A(p), characterized by the relation

(54) 〈ep,OA ([P]), [V ]〉AK = 〈[P], dp,OA ([V ])〉A(p).
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for all finitely generated AK -modules V and all finitely generated projective A(p)-
modules P ; see Lemma A.6. Brauer reciprocity is about the existence of this adjoint.

Theorem 6.2. The (unique) adjoint ep,OA of dp,OA exists. Moreover, the diagram

(55)
K0(AK ) G0(AK )

K0(A(p)) G0(A(p))

cAK

dp,OA

cA(p)

ep,OA

commutes, where the horizontal morphisms are the canonical ones (Cartan maps)
mapping a class [P] of a projective module P to its class [P] in the Grothendieck
group. If R is normal, the morphism ep,OA does not depend on the choice of O and
we denote it by epA.

Proof. Since 〈 · , · 〉AK is nondegenerate by Lemma A.6, it follows that dp,OA has at
most one adjoint ep,OA , characterized by (54); see [Scheja and Storch 1988, Satz 78.1].
By assumption there is a perfect A-gate O in p. Let m be the maximal ideal of O.
Since AK splits by assumption, Corollary A.14 implies that AO is semiperfect. The
morphism K0(AO)→ K0(AO(m)) induced by the quotient map AO � AO(m) is
thus an isomorphism by lifting of idempotents. Furthermore, by assumption the
morphism dp,mA : G0(A(p))→ G0(AO(m)) is an isomorphism and then the proof of
Theorem 4.1 shows that the canonical morphism ep,mA : K0(A(p))→ K0(AO(m)) is
also an isomorphism. We can thus define the morphism ep,OA : K0(A(p))→ K0(AK )

as the following composition:

(56) K0(A(p)) K0(AO(m)) K0(AO) K0(AK )
'

ep,OA

'

We will now show that ep,OA is indeed an adjoint of dp,OA . The arguments in the
proof of [Curtis and Reiner 1981, 18.9] can, with some refinements, be transferred
to our more general situation and this is what we will do. Let P be a finitely gener-
ated projective A(p)-module and let V be a finitely generated AK -module. Since
K0(AO)' K0(AO(m)), there exists a finitely generated projective AO-module P
such that (ep,mA )−1([P/mP])=[P] and then we have ep,OA ([P])=[P K

]. Let Ṽ be an
AO -lattice in V. Then by the definition of dp,OA , see [Thiel 2016, Corollary 1.14], we
have dp,OA ([V ])= (dp,mA )−1([Ṽ (m)]). We denote by V a representative of dp,OA ([V ]).
Since P is a finitely generated projective AO -module, we can write P⊕Q = (AO)n

for some finitely generated projective AO -module Q and some n ∈N. Since HomAO

is additive, we get

HomAO (P, Ṽ )⊕HomAO (Q, Ṽ )= HomAO (P ⊕ Q, Ṽ )= HomAO ((AO)n, Ṽ )

= (HomAO (AO , Ṽ ))n ' Ṽ n.
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This shows that HomAO (P, Ṽ ) is a direct summand of Ṽ n and as Ṽ n is O-free,
we conclude that HomAO (P, Ṽ ) is O-projective and thus even O-free since O is
a discrete valuation ring. Since P is a finitely generated projective AO-module, it
follows from Lemma B.3 that there is a canonical K -vector space isomorphism

K ⊗O HomAO (P, Ṽ )' HomAK (P K, V )

and a canonical k(m)-vector space isomorphism

k(m)⊗O HomAO (P, Ṽ )' HomAO(m)(P/mP, Ṽ/mṼ ).

Combining all results and the fact that both ep,OA and dp,OA preserve dimensions by
construction, we can now conclude that

〈ep,OA ([P]), [V ]〉AK = dimK HomAK (P K,V )= dimO HomAO (P, Ṽ )

= dimk(m)HomAO(m)(P/mP, Ṽ/mṼ )

= dimk(p)HomA(p)(P,V )

=〈[P],dp,OA ([V ])〉A(p).

Proving the commutativity of diagram (55) amounts to proving that cA(p)([P])=
dp,OA ◦ cAK ◦ ep,OA ([P]) for every finitely generated projective A(p)-module P. To
prove this, note that the diagram

K0(AO(m)) G0(AO(m))

K0(A(p)) G0(A(p))

cAO (m)

cA(p)

ep,mA dp,mA

commutes. As above we know that there exists a finitely generated projective
AO -module P such that (ep,mA )−1([P/mP])= [P] and ep,OA ([P])= [P K

]. Since P
is a finitely generated projective AO -module and A is a finite O-module, it follows
that P is also a finitely generated projective O-module. As O is a discrete valuation
ring, we conclude that P is actually O-free of finite rank. Hence, P is an AO -lattice
in P K and therefore

dp,OA ◦ cAK ◦ ep,OA ([P])= dp,OA ([P K
])= (dp,mA )−1([P/mP])

= (dp,mA )−1
◦ cA(m)([P/mP])

= cA(p) ◦ (e
p,m
A )−1([P/mP])= cA(p)([P]).

If R is normal, then the independence of ep,OA from the choice of O follows from
the independence of dp,OA from the choice of O and the fact that dp,OA has at most
one adjoint. �
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6B. Preservation of simple modules vs. preservation of blocks. In [Thiel 2016]
we studied the set

(57) DecGen(A) := {p ∈ Spec(R) | dp,OA is trivial for any A-gate in p},

where dp,OA being trivial means that it induces a bijection between simple modules.
We have proven in [Thiel 2016, Theorem 2.3] that DecGen(A) is open if R is
noetherian and A has split fibers. Brauer reciprocity implies that ep,OA is trivial if
and only if dp,OA is trivial, so we deduce that the locus of all p such that ep,OA is trivial
for any O is an open subset of Spec(R).

If p ∈DecGen(A), then the simple modules of AK and A(p) are “essentially the
same”; in particular their dimensions are the same. This is why explicit knowledge
about DecGen(A) is quite helpful to understand the representation theory of the
fibers of A; see [Thiel 2016]. So far, we do not have an explicit description of
DecGen(A), however. Brauer reciprocity enables us to prove the following relation
between decomposition maps and blocks.

Theorem 6.3. We have the inclusion

(58) DecGen(A)⊆ BlGen(A).

Proof. Let p ∈ Spec(R) be nonzero. By assumption there is a perfect A-gate O

in p. If p ∈DecGen(A), then by definition dp,OA is trivial, so the matrix Dp,O
A of this

morphism in bases given by isomorphism classes of simple modules of AK and A(p),
respectively, is equal to the identity matrix when ordering the bases appropriately. It
now follows from Brauer reciprocity, Theorem 6.2, that CA(p) =CAK in appropriate
bases, where CA(p) is the matrix of the Cartan map cA(p) and CAK is the matrix
of the Cartan map cAK . Due to the linkage relation explained in Section 2, the
families of AK and of A(p) are determined by the respective Cartan matrices. Since
CA(p) = CAK , it follows that # Bl(A(p))= # Bl(AK ), so p ∈ BlGen(A). �

Remark 6.4. Suppose that A has split fibers and that R is noetherian. Then the
fact that # Bl(A(p))= # Bl(Z(p)) by Theorem 5.8 together with Lemma A.9 yields
the equivalence

(59) p∈BlGen(A) ⇐⇒ dimK (Z K
+Rad(AK ))= dimk(p)(Z(p)+Rad(A(p))).

Let O be a perfect A-gate in p. This exists by Lemma 6.1(b). Suppose that
p ∈ DecGen(A). In [Thiel 2016, Theorem 2.2] we have proven that this implies

dimK Rad(AK )= dimk(p) Rad(A(p)).

Let X := Z + J , where J := Rad(AK )∩ AO. The arguments in [Thiel 2016] show
that X is an AO-lattice of Z K

+Rad(AK ) and that the reduction in the maximal
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ideal m of O is equal to ZO(m)+Rad(AO(m)). We thus have

dimK (Z K
+Rad(AK ))= dimk(m)(ZO(m)+Rad(AO(m))).

Since A(p) splits, the k(m)-dimension of ZO(m)+Rad(AO(m)) is equal to the k(p)-
dimension of Z(p)+Rad(A(p)). Hence, we have p∈BlGen(A) by (59). This yields
another proof of the inclusion DecGen(A)⊆BlGen(A) in the case A has split fibers.

Example 6.5. The following example due to C. Bonnafé shows that in the generality
of Theorem 6.3 we do not have equality in (58). Let R be a discrete valuation ring
with fraction field K and uniformizer π ; i.e., p := (π) is the maximal ideal of R.
Denote by k := R/p the residue field in p. Let

A :=
{(

a b
c d

)
∈Mat2(R)

∣∣∣ b, c ∈ p
}
.

This is an R-subalgebra of Mat2(R) and it is R-free with basis

(60) e := E11, f := E22, x := πE12, y := πE21,

where Ei j = (δi,kδj,l)kl is the elementary matrix. Clearly, AK
=Mat2(K ), so the

generic fiber of A is split semisimple. In particular, AK has just one block, and
this block contains just one simple module we denote by S. Now, consider the
specialization A := A(p)= A/pA. We know from Corollary A.14 that the quotient
map A� A, a 7→ ā, is block bijective, so we must have # Bl(A(p)) ≤ Bl(AK )

and therefore # Bl(A(p)) = 1, so p ∈ BlGen(A). Let J be the k-subspace of A
generated by x̄ and ȳ. This is in fact a two-sided ideal of A since it is stable under
multiplication by the generators (60). Moreover, we have x̄2

= 0 = ȳ2, so J is a
nilpotent ideal of A. Hence, dimk Rad(A)≥ 2. The number of simple modules of A
is by [Lam 1991, Theorem 7.17] equal to dimk A/(Rad(A)+[A, A]), so # Irr A≤ 2
since dimk A=dimK AK

=4. The two elements ē and f̄ are orthogonal idempotents
and so the constituents of the two A-modules Aē and A f̄ are nonisomorphic. So, we
have # Irr A≥ 2 and due to the aforementioned we conclude that # Irr A= 2. Let S1

and S2 be these two simple modules. Since R is a discrete valuation ring, reduction
modulo p yields the well-defined decomposition map dpA : G0(AK )→ G0(A(p));
see [Thiel 2016, Corollary 1.14]. It is an elementary fact that all simple A-modules
must be constituents of dpA([S])= [S/pS]. Since dimK S = 2, the only possibility
is that dpA([S]) = [S1] + [S2] and dimk Si = 1. In particular, p /∈ DecGen(A), so
p ∈ BlGen(A) \DecGen(A). Finally, we note that A also splits since # Irr(A)= 2
implies by the above formula that dimk Rad(A)= 2 and we have

dimk A = dimk Rad(A)+
2∑

i=1

(dimk Si )
2,

so A is split by [Lam 1991, Corollary 7.8].
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Lemma 6.6. Assume that the AK -families are singletons, and that # Irr A(p) ≤
# Irr AK for all p ∈ Spec(R). Then

BlGen(A) \DecGen(A)= {p ∈ Spec(R) | Dp
A is diagonal but not the identity}.

Proof. Since the AK -families are singletons, we have # Irr(AK )= # Bl(AK ). We
clearly have # Irr A(p)≥# Bl(A(p)) for all p∈Spec(R). Assume that p∈BlGen(A).
Then we have # Irr A(p) ≥ # Irr(AK ), so # Irr A(p) = # Irr AK by our assumption.
Hence, the decomposition matrix Dp

A is quadratic. By Theorem 6.9 the p-families
are equal to the Brauer p-families. Since p ∈ BlGen(A) and the AK -families are
singletons, it follows that Dp

A is a diagonal matrix. The claim is now obvious. �

Lemma 6.7. Let R be a noetherian integral domain with fraction field K and let
A be a cellular R-algebra of finite dimension such that AK is semisimple. Then
DecGen(A)= BlGen(A).

Proof. First of all, specializations of A are again cellular by [Graham and Lehrer
1996, 1.8]. Moreover, it follows from Proposition 3.2 of the same paper that A
has split fibers, so A satisfies Lemma 6.1(b) and therefore our basic assumption
in this paragraph. Let 3 be the poset of the cellular structure of AK. Since AK

is semisimple, each cell module Mλ has simple head Sλ and # Irr AK
= #3. Let

p ∈ Spec(R). The poset for the cellular structure of A(p) is again 3. Denote
by Mp

λ the corresponding cell modules of A(p). There is a subset 3′ of 3 such
that Mp

λ has simple head Sp
λ for all λ ∈ 3′ and that these heads are precisely the

simple A(p)-modules. In particular, we have # Irr A(p) ≤ # Irr AK. Now, assume
that p ∈ BlGen(A). By Lemma 6.6 we just need to show that the decomposition
matrix Dp

A, which is square by the proof of Lemma 6.6, cannot be a nonidentity
diagonal matrix. By [Graham and Lehrer 1996, Proposition 3.6] we know that
[Mλ : Sλ] = 1 and [Mp

λ : S
p
λ] = 1. By construction, it is clear that dpA([Mλ])= [M

p
λ].

Hence, if dpA([Sλ])= nλ[S
p
λ], we have nλ= [M

p
λ : S

p
λ] = 1. Hence, Dp

A is the identity
matrix, so p ∈ BlGen(A). �

6C. The Brauer graph. Geck and Pfeiffer [2000] introduced the so-called Brauer
p-graph of A in our general context but assumed that AK is semisimple so that
the AK -families are singletons. For general A this definition seems not to be the
correct one. We introduce the following generalization of this concept.

Definition 6.8. Suppose that R is normal so that we have unique decomposition
maps. The Brauer p-graph of A is the graph with vertices the simple AK -modules
and an edge between S and T if and only if in the AK -family of S there is some S′

and in the AK -family of T there is some T ′ such that dpA([S
′
]) and dpA([T

′
]) have a

common constituent. The connected components of this graph are called the Brauer
p-families of A.
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If the AK -families are singletons, we have an edge between S and T if and only
if dpA([S]) and dpA([T ]) have a common constituent, so this indeed generalizes the
Brauer p-graph from [Geck and Pfeiffer 2000] for AK semisimple. Our final theorem
shows that decomposition maps are compatible with p-families and A(p)-families,
and relates the Brauer p-families to the p-families.

Theorem 6.9. Assume that R is normal. The following hold:

(a) A finite-dimensional AK -module V belongs to a p-block of A if and only if
dpA([V ]) belongs to a block of A(p).

(b) Two finite-dimensional AK -modules V and W lie in the same p-block if and
only if dpA([V ]) and dpA([W ]) lie in the same block of A(p).

(c) If F ∈ Famp(A) is a p-family, then

dpA(F) := {T | T is a constituent of dpA([S]) for some S ∈ F}

is a family of A(p), and all families of A(p) are obtained in this way.

(d) The Brauer p-families are equal to the p-families.

Proof. (a) By assumption there is a perfect A-gate O in p. Let m be the maximal
ideal of O. We have the following commutative diagram of canonical morphisms
which are all idempotent stable:

(61)

Ap AO AK

A(p) AO(m)

Since R is assumed to be normal, it follows from Proposition 4.2 that Ap� A(p)
is block bijective. By assumption the morphism dp,mA : G0(A(p))→ G0(AO(m)) is
an isomorphism and therefore A(p) ↪→ AO(m) is block bijective by Theorem 4.1.
Furthermore, by assumption the generic fiber AK is split and therefore AO� AO(m)

is block bijective by Corollary A.14. Because of (5) it thus follows that Ap ↪→ AO

is block bijective.
Now, let V be a finite-dimensional AK -module and let Ṽ be an AO -lattice of V.

Suppose that V belongs to an Ap-block of AK. Since Ap ↪→ AO is block bijective,
the Ap-blocks of AK coincide with the AO -blocks of AK and therefore V belongs to
an AO -block of AK. Since Ṽ is O-free, it follows from Lemma A.1 that Ṽ belongs
to a block of AO. Again by Lemma A.1 and the fact that AO � AO(m) is block
bijective, it follows that Ṽ/mṼ belongs to a block of AO(m). Since A(p) ↪→ AO(m)

is block bijective, Lemma A.1 shows that dpA([V ]) belongs to a block of A(p).
Conversely, suppose that dpA([V ]) belongs to a block of A(p). Then Ṽ/mṼ be-

longs to a block of AO(m) and therefore Ṽ belongs to a block of AO by Lemma A.1.
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But then V belongs to an AO-block of AK and thus to an Ap-block of AK by
Lemma A.1.

(b) This follows now from part (a).

(c) Fix a p-family F of AK. If S ∈ F , then dpA([S]) belongs to an A(p)-block by
(a) and therefore all constituents of dpA([S]) belong to a fixed family F S . If S′ ∈ F
is another simple module, then by (b) the constituents of dpA([S

′
]) also lie in F S .

Hence, dpA(F) is contained in a fixed A(p)-family F . Let T ∈ F be arbitrary. Due
to the properties of decomposition maps there is some S ∈ Irr AK such that T is a
constituent of dpA([S]). Since T and dpA([S]) lie in the same A(p)-block by (a) and
(b), we must have S ∈ F by (b). Hence, F = dpA(F) is an A(p)-family. Since every
simple A(p)-module is a constituent of dpA([S]) for some simple AK -module S, it
is clear that any A(p)-family is of the form dpA(F) for a p-family F .

(d) Let S and T be simple AK -modules contained in the same Brauer p-family;
i.e., in the AK -family of S there is some S′ and in the AK -family of T there is
some T ′ such that dpA([S

′
]) and dpA([T

′
]) have a common constituent. It follows

from part (b) that S′ and T ′ lie in the same p-family of AK. Since S′ is in the same
AK -family as S, it is also in the same p-family as S because the p-families are
unions of AK -families. Similarly, T ′ is in the same p-family as T . Hence, S and T
lie in the same p-family.

Conversely, suppose that S and T lie in the same p-family. We have to show
that they lie in the same Brauer p-family. Let (Si )

n
i=1 be a system of representatives

of the isomorphism classes of simple AK -modules and let (Uj )
m
j=1 be a system

of representatives of the isomorphism classes of simple A(p)-modules. Let Q :=

(Qi )
n
i=1 with Qi being the projective cover of Si , and let P := (Pj )

m
j=1 with Pj being

the projective cover of Uj . Let CA(p) be the matrix of the Cartan map cA(p) with
respect to the chosen bases, and similarly let CAK be the matrix of cAK . Furthermore,
let Dp

A be the matrix of dpA with respect to the chosen bases. Since

CA(p) = Dp
ACAK (Dp

A)
T

by Brauer reciprocity, Theorem 6.2, we have

(62) (CA(p))p,q = (D
p
ACAK (Dp

A)
T)p,q =

n∑
k,l=1

(Dp
A)p,k(CAK )k,l(D

p
A)q,l

for all p, q . Let U be a constituent of dpA([S]) and let V be a constituent of dpA([T ]).
Since S and T lie in the same p-family of AK, both dpA([S]) and dpA([T ]) lie in the
same block of A(p) by (b), and therefore U and V lie in the same family of A(p).
As the families of A(p) are equal to the P-families of A(p) by Section 2, there exist
functions f : [1, r ] → [1,m], g : [1, r − 1] → [1,m] with the following properties:
U f (1)=U , U f (r)= V, and for any j ∈ [1, r−1] both P f ( j) and P f ( j+1) have Ug( j)
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as a constituent. We can visualize the situation as follows:

P f ( j) P f ( j+1)

U f ( j) Ug( j) U f ( j+1)

where an arrow U→ P signifies that U is a constituent of P. For any j ∈ [1, r−1]
we have (CA(p))g( j), f ( j) 6= 0 and so it follows from (62) that there are indices k( j)
and l( j) such that

(Dp
A)g( j),k( j) 6= 0, (CAK )k( j),l( j) 6= 0, (Dp

A) f ( j),l( j) 6= 0.

Similarly, since (CA(p))g( j), f ( j+1) 6= 0, there exist indices k ′( j) and l ′( j) such that

(Dp
A)g( j),k′( j) 6= 0, (CAK )k′( j),l ′( j) 6= 0, (Dp

A) f ( j+1),l ′( j) 6= 0.

This can be visualized as follows:

dpA([Sl( j)]) dpA([Sk( j)]) dpA([Sk′( j)]) dpA([Sl ′( j)])

U f ( j) Ug( j) U f ( j+1)

Here, the dashed edges in the upper row signify that the respective simple AK -
modules lie in the same AK -family. Since U f (1) = U and U f (r) = V, this shows
that S and T lie in the same Brauer p-family of AK. �

7. Semicontinuity of blocks in the case of a nonsplit generic fiber

Let A be a finite flat algebra over an integral domain R with fraction field K . We
have the map

(63) # Bl′A : Spec(R)→ N, p 7→ # Bl(A(p));

i.e., # Bl′A(p) is the number of blocks of the specialization A(p). Recall that in
(21) we considered the map # BlA with # BlA(p)= # Bl(Ap) being the number of
blocks of the localization Ap. In the case R is normal and AK splits, we know
from Proposition 4.2 that # Bl′A = # BlA. In particular, the map # Bl′A is lower
semicontinuous and thus defines a stratification of Spec(R), the block number
stratification; see Section 3B.

In the case AK does not split, it still makes perfect sense to consider the map (63)
and ask if it is lower semicontinuous so that we have a stratification of Spec(R) by
the number of blocks of specializations. But since we do not have the connection
from Proposition 4.2 between blocks of localizations and blocks of specializations
anymore, we cannot directly apply the results from Section 3.
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In this section, we will establish a setting where the map # Bl′A is still lower
semicontinuous without assuming that the generic fiber AK splits, the main result
being Corollary 7.3. To achieve this, however, we have to restrict this map to
a subset of Spec(R). As we will see, in general it is not possible to have lower
semicontinuity on all of Spec(R).

First of all, because of the difference between blocks of localizations and blocks
of specializations, we introduce the sets

β(A) :=max{# Bl(A(p)) | p ∈ Spec(R)},(64)

BlEx′(A) := # Bl′−1
A (≤β(A)− 1),(65)

BlGen′(A) := Spec(R) \BlEx′(A).(66)

Note that if R is normal and AK splits, then β(A) = # Bl(AK ), so BlEx′(A) =
BlEx(A) and BlGen′(A)= BlGen(A), as defined in (19) and (20).

Now, assume that R′ is an integral extension of R which is also an integral
domain. Let K ′ be the fraction field of R′ and let ψ : Spec(R′)� Spec(R) be
the morphism induced by R ⊆ R′. The scalar extension A′ := R′⊗R A is again a
finitely presented flat R′-algebra (using Remark 3.2). For any p ∈ Spec(R) and any
p′ ∈ Spec(R′) lying over p we have the diagram

(67)

A′p′

A(p)= Ap/ppAp A′(p′)= A′p′/p
′
p′ A′p′

and it then follows from (5) that

(68) # Bl(A(p))≤ # Bl(A′(p′))≥ # Bl(A′p′).

Let X be a set contained in

(69) X R′(A)

:= {p∈Spec(R) | #Bl(A(p))=#Bl(A′(p′))=#Bl(A′p′) for all p′ ∈ψ−1(p)}.

We have seen in Corollary 4.3 that in the case R is normal and AK splits we can
choose R = R′ and have X = Spec(R). In general X will be a proper subset of
Spec(R) and we have to choose R′ appropriately to enlarge it a bit more. Let us first
concentrate on what we can say when restricting to X . We introduce the following
restricted versions of our invariants:

# Bl′A,X := # Bl′A |X : X→ N,(70)

# Bl′−1
A,X (≤n) := # Bl′−1

A (≤n)∩ X = ψ(# Bl−1
A′ (≤n))∩ X,(71)
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# Bl′−1
A,X (n) := # Bl′−1

A (n)∩ X = ψ(# Bl−1
A′ (n))∩ X,(72)

βX (A) :=max{# Bl(A(p)) | p ∈ X},(73)

BlEx′X (A) := Bl′−1
A,X (≤βX (A)− 1),(74)

BlGen′X (A) := X \BlEx′X (A).(75)

Corollary 7.1. The map X→N, p 7→# Bl(A(p)), is lower semicontinuous on X , so
X =

∐
n∈N Bl′−1

A,X (n) is a stratification of X into locally closed subsets. Moreover,

(76) βX (A)≤ # Bl(AK ′).

Proof. Since ψ is a closed morphism and # Bl−1
A′ (≤n) is closed in Spec(R′) by (26),

it follows that ψ(# Bl−1
A′ (≤n)) is closed in Spec(R), hence # Bl′−1

A,X (≤n) is closed
in X by (71). Since

# Bl′−1
A,X (n)= # Bl′−1

A,X (≤n) \ # Bl′−1
A,X (≤n− 1),

it is clear that # Bl′−1
A,X (n) is locally closed in X . We have seen in (27) that

# Bl−1
A′ (n)⊆

⋃
m≤n

Bl−1
A′ (m).

Hence, since ψ is closed, we obtain

# Bl′−1
A,X (n)= ψ(# Bl−1

A′ (n))∩ X ⊆
⋃
m≤n

ψ(# Bl−1
A′ (m))∩ X =

⋃
m≤n

# Bl′−1
A,X (m). �

Note that in (76) we could only bound βX (A) above by # Bl(AK ′), and not by
# Bl(AK ). In fact, we will see in Example 7.4 that we may indeed have βX (A) >
# Bl(AK ) in general. This is an important difference to blocks of localizations
where we always have the maximal number of blocks in the generic point.

In the following lemma we describe a situation where we have βX (A)=# Bl(AK ′).
We recall that X is called very dense if the embedding X ↪→Spec(R) is a quasihome-
omorphism; i.e., the map Z 7→ Z∩X is a bijection between the closed (equivalently,
open) subsets of the two spaces. This notion was introduced by Grothendieck [1966,
§10].

Lemma 7.2. Suppose that X is very dense in Spec(R), that R is noetherian, and
that ψ is finite. Then βX (A)= # Bl(AK ′), and thus BlEx′X (A)= ψ(BlEx(A′))∩ X.
If moreover R′ is normal and R is universally catenary, then BlEx′X (A) is a reduced
Weil divisor in X.

Proof. The assumptions imply that R′ is noetherian, too. We know from Theorem 3.3
that BlGen(A′) is a nonempty open subset of Spec(R′). In particular, it is con-
structible. Since Spec(R) is quasicompact, the morphism ψ is quasicompact by
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[Görtz and Wedhorn 2010, Remark 10.2.(1)]. It thus follows from Chevalley’s
constructibility theorem, see [Görtz and Wedhorn 2010, Corollary 10.71], that
ψ(BlGen(A′)) is constructible in Spec(R). Since X is very dense in Spec(R), we
conclude that ψ(BlGen(A′))∩ X 6=∅ by [Grothendieck 1966, Proposition 10.1.2].
Hence, there is p ∈ X and p′ ∈ BlGen(A′) with ψ(p′) = p. But then we have
# Bl(A(p))= # Bl(A′(p′))= # Bl(AK ′), so βX (A)= # Bl(AK ′). Now, assume that
R′ is normal and R is universally catenary. We know that BlEx(A′) is either empty
or pure of codimension 1 in Spec(R′) by Corollary 3.5. In [Huneke and Swanson
2006, Theorem B.5.1] it is shown that the extension R ⊆ R′ satisfies the dimension
formula; hence ψ(BlEx(A′)) is either empty or pure of codimension 1. Since X is
very dense in Spec(R), the same is also true for

X ∩ψ(BlEx(A′))= BlEx′X (A). �

Corollary 7.3. Suppose that R is a finite-type algebra over an algebraically closed
field. Let X be the set of closed points of Spec(R). Then the map X → N,
m 7→ # Bl(A(m)), is lower semicontinuous and so X =

∐
n∈N # Bl′−1

A,X (n) is a strati-
fication of X. Moreover, βX (A)= # Bl(AK ), where K is an algebraic closure of K.
If R is also universally catenary, then BlEx′X (A) is a reduced Weil divisor in X.

Proof. Let K ′ be a finite extension of K such that AK ′ splits (this is always possible,
see [Curtis and Reiner 1981, Proposition 7.13]) and let R′ be the integral closure
of R in K ′. Now, # Bl(A′(p′))= # Bl(A′p′) for all p′ ∈ Spec(R) by Proposition 4.2.
Since R is a finite-type algebra over an algebraically closed field k, the residue field
in a closed point m of Spec(R) is just k. Hence, the specialization A(m) is a finite-
dimensional algebra over an algebraically closed field, thus splits and we therefore
have # Bl(A(m)) = # Bl(A′(m′)) for any m′ ∈ ψ−1(m) by Lemma A.3. Hence,
X ⊆ X R′(A). The claim about semicontinuity and the stratification thus follows
from Corollary 7.1. It is shown in [Görtz and Wedhorn 2010, Proposition 3.35]
that X is very dense in Spec(R). Since R is a finite-type algebra over a field, it
is Japanese, so ψ is a finite morphism. Hence, βX (A)= # Bl(AK ′)= # Bl(AK ) by
Lemma 7.2. The claim that BlEx′X (A) is a reduced Weil divisor if R is universally
catenary also follows from Lemma 7.2. �

Example 7.4. The following example due to K. Brown shows that in the setting
of Corollary 7.3 we may indeed have βX (A) > # Bl(AK ) so that the map p 7→

# Bl(A(p)) will not be lower semicontinuous on the whole of Spec(R). Let k be an
algebraically closed field of characteristic zero, let X be an indeterminate over k,
let R := k[Xn

] for some n > 1, and let A := k[X ]. Let Cn be the cyclic group
of order n. We fix a generator of Cn and let it act on X by multiplication with
a primitive n-th root of unity. Then R = k[X ]Cn, so A is free of rank n over R.
Moreover, Frac(A) = k(X) is a Galois extension of degree n of K := Frac(R)
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by [Benson 1993, Proposition 1.1.1], so in particular K 6= k(X) since n > 1. By
[Goodearl and Warfield 2004, Exercise 6R] we have

AK
= A⊗R K = A[(R \ {0})−1

] = Frac(A)= k(X),

so the K -algebra AK
= Z(AK ) is not split (and thus also not block-split by

Lemma A.3). It is clear that

(77) # Bl(AK )= 1.

Now, let m := (Xn
− 1) ∈ Max(R). Then k(p) = k and since k is algebraically

closed, we have A(m)= A/mA ' kn as k-algebras. In particular,

(78) # Bl(A(m))= n > 1= # Bl(AK ).

We close with a setting where our base ring is not necessarily normal but we still
get a global result on Spec(R).

Lemma 7.5. Suppose that A has split fibers; i.e., A(p) splits for all p ∈ Spec(R).
Then the map Spec(R)→ N, p 7→ # Bl(A(p)), is lower semicontinuous and so
Spec(R) =

∐
n∈N Bl′−1

A (n) is a partition into locally closed subsets. Moreover,
β(A)= # Bl(AK ). If R is also universally catenary, Japanese, and noetherian, then
BlEx′(A) is a reduced Weil divisor in Spec(R).

Proof. Let R′ be the integral closure of R in K . Then # Bl(A′(p′)) = # Bl(A′p′)
for all p′ ∈ Spec(R′) by Proposition 4.2. Since A(p) splits, we moreover have
# Bl(A(p))= # Bl(A′(p′)) for all p ∈ Spec(R) p′ ∈ ψ−1(p) by Lemma A.3. Hence,
X R′(A)= Spec(R). The claim about semicontinuity and the partition follows from
Corollary 7.1. Now, assume that R is universally catenary, Japanese, and noetherian.
Since R is Japanese, it follows by definition that ψ is finite. The claim about
BlEx′(A) being a reduced Weil divisor now follows from Lemma 7.2. �

Appendix A: More on base change of blocks

In this appendix we collect several facts about base change of blocks. Some results
here should also be of independent interest.

Block compatibility of scalar extension of modules. Recall the decomposition of
the module category of a ring A relative to a decomposition of 1 ∈ A into pairwise
orthogonal central idempotents described in Section 2. We have the following
compatibility.

Lemma A.1. Let φ : R→ S be a morphism of commutative rings and let A be an
R-algebra. Suppose that φA is central idempotent stable and let V be a nonzero
A-module. In any of the following cases the A-module V belongs to the block ci if
and only if the AS-module V S belongs to the φ-block φA(ci ):
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(a) φ is injective and V is R-projective.

(b) φ is faithfully flat.

(c) R is local or a principal ideal domain and V is R-free.

Proof. As cj V is a direct summand of V, it follows that we have a canonical
isomorphism between isomorphisms φ∗A(cj V ) ' φA(cj )φ

∗

AV of AS-modules for
all j . The claim thus holds if we can show that no nonzero direct summand V ′ of
V is killed by φ∗A, i.e., φ∗AV ′ 6= 0. But this is implied by the assumptions in each
case. Namely, in the first two cases it follows from Lemma 2.1 that φV is injective,
which implies that φV ′ is also injective, so φ∗AV ′ cannot be zero for nonzero V ′. In
the third case neither φ nor φV needs to be injective, so this needs extra care. First
of all, since V is assumed to be R-free, the assumptions on R imply that a direct
summand V ′ of V, which a priori is only R-projective, is already R-free, too. In
the case R is local, this follows from Kaplansky’s theorem [1958] and in the case
R is a principal ideal domain, this is a standard fact. Now, if V is R-free with basis
(vλ)λ∈3, then it is a standard fact, see [Bourbaki 1989, II, §5.1, Proposition 4], that
φ∗AV is S-free with basis (φV (vλ))λ∈3. This shows that φ∗AV 6= 0 for any nonzero
R-free A-module V. This applied to direct summands of V, which are R-free as
shown, proves the claim. �

Field extensions. Throughout this paragraph let A be a finite-dimensional algebra
over a field K . From (5) we know that # Bl(A)≤ # Bl(AL) for any extension field L
of K .

Definition A.2. We say that A is block-split if # Bl(A)=# Bl(AL) for any extension
field L of K .

Our aim is to show the following lemma.

Lemma A.3. If Z(A) is a split K -algebra (e.g., if A itself splits), then A is block-
split. The converse holds if K is perfect.

The first assertion of the lemma is essentially obvious since Z(A) is semiperfect
and therefore

(79) # Bl(A)= # Bl(Z(A))= rkZ K0(Z(A))= #rkZ G0(Z(A))= # Irr Z(A),

where the second equality follows from the fact that idempotents in a commutative
ring are isomorphic if and only if they are equal; see [Lam 1991, §22, Exercise 2].
The same equalities of course also hold for Z(A)L

=Z(AL), where L is an extension
field of K . Hence, if Z(A) is split, then A is block-split. If A itself is split, it is a
standard fact that its center splits, so A is block-split.

We will prove the converse (assuming that K is perfect) from a more general
point of view as the results might be of independent interest and we reuse some
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of them in the last section. First of all, the field extension K ⊆ L induces natural
group morphisms

(80) dL
A : G0(A)→ G0(AL) and eL

A : K0(A)→ K0(AL).

Without any assumptions on the field K we have the following property.

Lemma A.4. The morphisms dL
A and eL

A are injective.

Proof. Let (Si )i∈I be a system of representatives of the isomorphism classes of
simple A-modules. For each i let (Ti j )j∈Ji be a system of representatives of the
isomorphism classes of simple AL -modules which occur as constituents of SL

i . Then
by [Lam 1991, Proposition 7.13] the set (Ti j )i∈I, j∈Ji is a system of representatives
of the isomorphism classes of simple AL -modules. Hence, the matrix DL

A of dL
A in

bases given by the isomorphism classes of simple modules is in column-echelon
form, has no zero columns, and no zero rows. In particular, dL

A is injective.
For each i ∈ I let Pi be the projective cover of Si and for each j ∈ Ji let Qi j be the

projective cover of Ti j . By the above, (Qi j )i∈I, j∈Ji is a system of representatives of
the isomorphism classes of projective indecomposable AL -modules. We claim that
in the direct sum decomposition of the finitely generated projective AL -module P L

i
into projective indecomposable AL -modules, only the Qi j with j ∈ Ji occur. With
the same argument as above, this implies that eL

A is injective. So, let us write
P L

i =
⊕

λ∈3 Uλ for (not necessarily nonisomorphic) projective indecomposable AL -
modules Uλ. The Uλ are the, up to isomorphism, unique projective indecomposable
AL -modules occurring as direct summands of P L

i . As the radical is additive by
[Lam 1991, Proposition 24.6(ii)], we have Rad(P L

i )=
⊕

λ∈3 Rad(Uλ), so

(81) SL
i = (Pi/Rad(Pi ))

L
= P L

i /Rad(Pi )
L
=

⊕
λ∈3

Uλ/(Rad(Pi )
L
∩Uλ).

Moreover, we have Rad(Pi )
L
⊆Rad(P L

i ). This follows from the fact that Rad(A)L
⊆

Rad(AL) by [Lam 1991, Theorem 5.14] and the fact that Rad(Pi ) = Rad(A)Pi

and Rad(P L
i )= Rad(AL)P L

i by [Lam 1991, Theorem 24.7] since Pi and P L
i are

projective. For each λ ∈ 3 the radical of Uλ is a proper submodule of Uλ and
therefore

Rad(Pi )
L
∩Uλ ⊆ Rad(P L

i )∩Uλ = Rad(Uλ)( Uλ.

Hence, the head of Uλ is a constituent of Uλ/(Rad(P L
i )∩Uλ), and since all con-

stituents of the latter are constituents of SL
i , we must have Hd(Uλ)' Si jλ for some

jλ ∈ Ji by the above. This implies that Uλ = Qi jλ , thus proving the claim. �

Lemma A.5. The following hold:

(a) The morphism dL
A is an isomorphism if and only if it induces a bijection

between isomorphism classes of simple modules. Similarly, the morphism eL
A
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is an isomorphism if and only if it induces a bijection between isomorphism
classes of projective indecomposable modules.

(b) If dL
A is an isomorphism, so is eL

A. The converse holds if K is perfect.

For the proof of Lemma A.5 we will need the following well-known elementary
lemma that is also used in the last section. Recall from (52) the intertwining form
〈 · , · 〉A of A.

Lemma A.6. Let P be a projective indecomposable A-module and let V be a
finitely generated A-module. Then

(82) 〈[P], [V ]〉A = [V : Hd(P)] · dimK EndA(Hd(P)),

where Hd(P)= P/Rad(P) is the head of P. In particular, 〈 · , · 〉A is nondegenerate.

Proof. We first consider the case V =Hd(P). Let f ∈HomA(P,Hd(P)) be nonzero.
Since Hd(P) is simple, this morphism is already surjective and thus induces an
isomorphism P/Ker( f )∼=Hd(P). But as Rad(P) is the unique maximal submodule
of P, we must have Ker( f )=Rad(P) and thus get an induced morphism Hd(P)→
Hd(P). This yields a K -linear morphism 8 : HomA(P,Hd(P))→ EndA(Hd(P)).
On the other hand, if f ∈ EndA(Hd(P)), then composing it with the quotient
morphism P → P/Rad(P) = Hd(P) yields a morphism P → Hd(P). In this
way we also get a K -linear morphism 9 : EndA(Hd(P))→HomA(P,Hd(P)). By
construction, 8 and 9 are pairwise inverse; hence

〈[P], [Hd(P)]〉A = dimK HomA(P,Hd(P))= dimK EndA(Hd(P))

as claimed.
Now, suppose that V is a simple A-module not isomorphic to Hd(P). We can

write P = Ae for some primitive idempotent e ∈ A. Since A is artinian, e is already
local and now it follows from [Lam 1991, Proposition 21.19] that HomA(Ae, V ) is
nonzero if and only if V has a constituent isomorphic to Hd(Ae). This is not true
by assumption, and therefore HomA(P, V )= 0, so 〈[P], [V ]〉A = 0.

Finally, for V general we have [V ] =
∑

S∈Irr A[V : S][S] in G0(A). By the above
we get

〈[P], [V ]〉A =
∑

S∈Irr A

[V : S]〈[P], [S]〉A = [V : Hd(P)]〈[P], [Hd(P)]〉A

= [V : Hd(P)] · dimK EndA(Hd(P))

as claimed. It follows that the Gram matrix G of 〈 · , · 〉 with respect to the basis
(P(S))S∈Irr A of K0(A) and the basis (S)S∈Irr A of G0(A) is diagonal with positive
diagonal entries. The determinant of G is thus a nonzero divisor on Z and since both
K0(A) and G0(A) are Z-free of the same finite dimension, it follows that 〈 · , · 〉A is
nondegenerate; see [Scheja and Storch 1988, Satz 70.5]. �
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Proof of Lemma A.5. We use the same notation as in the proof of Lemma A.4. Since
A A is a projective A-module, there is a decomposition A A =

⊕
i∈I Pri

i for some
ri ∈ N. Using Lemma A.6 we see that

dimK Hd(Pj )= 〈[A A], [Hd(Pj )]〉A

=

∑
i∈I

ri 〈[Pi ], [Hd(Pj )]〉A = rj 〈[Pj ], [Hd(Pj )]〉A

= rj dimK EndA(Hd(Pi )).

Hence, ri = ni/mi , where ni := dimK Si and mi := dimK EndA(Si ). In particular,

(83) dimK A =
∑
i∈I

ni

mi
dimK Pi .

Now, suppose that dL
A is an isomorphism. Then clearly # Irr A = # Irr AL. The

properties of the matrix DL
A of the morphism dL

A derived in the proof of Lemma A.4
immediately imply DL

A is diagonal. Since it is invertible with natural numbers on
the diagonal, it must already be the identity matrix; i.e., dL

A induces a bijection
between the isomorphism classes of simple modules. In particular, (SL

i )i∈I is a
system of representatives of the isomorphism classes of simple AL -modules. The
properties of the matrix EL

A of eL
A derived in the proof of Lemma A.4 now imply

that we must have P L
i ' Qsi

i for some si ∈ N. We argue that si = 1. This shows
that eL

A is an isomorphism inducing a bijection between the isomorphism classes of
projective indecomposable modules. In the same way we deduced (83) we now get

(84) dimK A = dimL AL
=

∑
i∈I

n′i
m′i

dimL Qi

with
n′i = dimL Hd(Qi )= dimL SL

i = dimK Si = ni

and

m′i = dimL EndAL (Hd(Qi ))= dimL EndAL (SL
i )= dimK EndK (Si )= mi ,

using the fact that L⊗K EndA(Si )' EndAL (SL
i ); see [Reiner 2003, Theorem 2.38].

Since dimL Qi ≤ dimL P L
i = dimK Pi , (83) and (84) imply that dimL Qi = dimK Pi ,

so Qi = P L
i .

Conversely, suppose that eL
A is an isomorphism. With the properties of the

matrix EL
A of eL

A established in the proof of Lemma A.4, we see much as above that
eL

A already induces a bijection between the projective indecomposable modules. In
particular, P L

i ' Qi . Due to the properties of the matrix DL
A of dL

A established in
the proof of Lemma A.4, the only constituent of SL

i is Ti . Since Pi is the projective
cover of Pi , we have a surjective morphism φ : Pi � Si with Ker(φ) = Rad(Pi ).
Scalar extension induces a surjective morphism φL

: P L
i � SL

i with Ker(φL) =
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Ker(φ)L
= Rad(Pi )

L
⊆ Rad(P L

i ). It thus follows from [Curtis and Reiner 1981,
Corollary 6.25(i)] that P L

i is the projective cover of SL
i . Now, we assume that K

is perfect. Then by [loc. cit., Theorem 7.5] all simple A-modules are separable,
so SL

i = T si
i for some si . Since projective covers are additive, we get P L

i = Qsi
i .

As P L
i = Qi , this implies that si = 1, so SL

i = Ti is simple. Hence, dL
A induces a

bijection between the isomorphism classes of simple modules. �

Remark A.7. With the same arguments as in the proof of Lemma A.5 we can show
that the converse in Lemma A.5(b) still holds when we only assume that all simple
A-modules are separable, i.e., they remain semisimple under field extension. This
holds for example when A splits or if A is a group algebra (over any field). We do
not know whether it holds more generally.

Proof of Lemma A.3. Let Z := Z(A). Suppose that L is an extension field of K
with # Bl(A)= # Bl(AL). By (79) we know that # Irr Z = # Irr Z L. The arguments
in the proof of Lemma A.4 thus imply that the matrix DL

A of the morphism dL
Z :

G0(Z)→G0(Z L) must be a diagonal matrix. We claim that it is the identity matrix.
Since this holds for any L , it means that the simple modules of Z remain simple
under any field extension, so Z splits. Our assumption implies that Z and Z L have
the same number of primitive idempotents, so every primitive idempotent e ∈ Z
remains primitive in Z L. This shows that eL

A :K0(Z)→K0(Z L) induces a bijection
between projective indecomposable modules. In particular, it is an isomorphism.
Now, Lemma A.5 shows that also dL

A is an isomorphism. Since its matrix DL
A is

invertible with natural numbers on the diagonal, it must be the identity. �

Remark A.8. In the proof of Lemma A.3 we have deduced that for a commutative
finite-dimensional K -algebra Z the condition rkZ K0(Z) = rkZ K0(Z L) already
implies that eL

Z induces a bijection between projective indecomposable modules.
This follows from the fact that idempotents in a commutative ring are isomorphic
if and only if they are equal. This is not true for a noncommutative ring A. Here,
we can have rkZ K0(A) = rkZ K0(AL) but still a primitive idempotent e ∈ A can
split into a sum of isomorphic orthogonal primitive idempotents of AL. Then the
matrix EL

A of eL
A is diagonal but not the identity.

Let us record the following additional fact:

Lemma A.9. If Z(A) splits, then

(85) # Bl(A)= dimK Z(A)− dimK Rad(Z(A))

= dimK Z(A)− dimK (Z(A)∩Rad(A)).

Proof. This is an immediate consequence of (79) and the fact that Rad(Z(A)) =
Z(A)∩Rad(A) since Z(A)⊆ A is a finite normalizing extension; see [Lorenz 1981,
Theorem 1.5]. �
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Reductions. Now, we consider a situation which in a sense is opposite to the
one considered in the last paragraph; namely we consider the quotient morphism
φ : R� R/m=: S for a local commutative ring R with maximal ideal m and a finitely
generated R-algebra A. By Lemma 2.3(b) the morphism φA : A� AS

' A/mA=: A
is idempotent stable. We say that φ is idempotent surjective if for each idempotent
e′ ∈ AS there is an idempotent e ∈ A with φA(e)= e′. We say that φA is primitive
idempotent bijective if it induces a bijection between the isomorphism classes of
primitive idempotents of A and the isomorphism classes of primitive idempotents
of AS. The question of whether φA is idempotent surjective is precisely the question
of whether idempotents of A can be lifted to A, and this is a classical topic in ring
theory. The following lemma is standard; we omit the proof.

Lemma A.10. If φA : A� A is idempotent surjective, it is primitive idempotent
bijective and block bijective.

Theorem A.11 [Neunhöffer 2003, Proposition 5.10]. The morphism φA : A� A is
idempotent surjective if and only if A is semiperfect.

We recall two standard situations of idempotent surjective reductions.

Lemma A.12. In the following two cases the morphism φA : A� A is idempotent
surjective:

(a) R is noetherian and m-adically complete.

(b) R is henselian.

Proof. For a proof of the first case, see [Lam 1991, Proposition 21.34]. For a
proof of the second case assuming that A is commutative, see [Raynaud 1970, I, §3,
Proposition 2]. To give a proof for noncommutative A let ē ∈ A be an idempotent.
Let k := R/m and let B := k[ē] be the k-subalgebra of A generated by ē. Since
A is a finite-dimensional k-algebra, also B is finite-dimensional. Moreover, B is
commutative. Let e ∈ A be an arbitrary element with φA(e)= ē. Let B := R[e], a
commutative subalgebra of A. Note that B= B/mB. Since A is a finitely generated
R-module, the Cayley–Hamilton theorem implies that B is a finitely generated
R-algebra. Now, by the commutative case, the map φB : B � B is idempotent
surjective and so there is an idempotent e′ ∈ B ⊆ A with φA(e′)= φB(e′)= ē. This
shows that φA is idempotent surjective. �

The next theorem was again proven by Neunhöffer [2003, Proposition 6.2]. It is
one of our key ingredients in proving Brauer reciprocity for decomposition maps in
a general setting.

Theorem A.13 (M. Neunhöffer). Suppose that R is a valuation ring with fraction
field K and that A is a finite flat R-algebra with split generic fiber AK. If R̂⊗R A
is semiperfect, where R̂ is the completion of R with respect to the topology defined
by a valuation on K defining R, then also A is semiperfect.
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Corollary A.14 (J. Müller, M. Neunhöffer). Suppose that R is a discrete valua-
tion ring and that A is a finite flat R-algebra with split generic fiber. Then A is
semiperfect. In particular, φA : A� A is primitive idempotent bijective and block
bijective.

Proof. Since R is a discrete valuation ring, its valuation topology coincides with its
m-adic topology so that the topological completion R̂ is m̂-adically complete, where
m denotes the maximal ideal of R and m̂ denotes the maximal ideal of R̂. Hence,
R̂⊗R A is semiperfect by Lemma A.12(a) and Theorem A.11. Now, Theorem A.13
shows that A is semiperfect, too. �

Remark A.15. One part of Corollary A.14, the fact that idempotents lift, was also
stated earlier by Curtis and Reiner [1981, Exercise 6.16] in the special case where
AK is assumed to be semisimple. The semisimplicity assumption was later removed
by J. Müller [1995, Satz 3.4.1] using the Wedderburn–Malcev theorem (this can be
applied without a perfectness assumption on the base field if AK splits since then
AK /Rad(AK ) is separable; see [Curtis and Reiner 1962, Theorem 72.19]).

Appendix B: Further elementary facts

Here, we prove three further elementary facts that we used in the paper.

Lemma B.1. A finitely generated module M over an integral domain R is flat if and
only if it is faithfully flat. In particular, if M 6= 0, we have 0 6= k(p)⊗R M = M(p)
for all p ∈ Spec(R).

Proof. We can assume that M 6= 0. Since M is flat, it is torsion-free and so the
localization map M→ Mp is injective; see Lemma 2.1(c). Hence, Mp 6= 0. Since
M is a finitely generated R-module, also Mp is a finitely generated Rp-module and
now Nakayama’s lemma implies that 0 6= Mp/ppMp = k(p)⊗R M. Hence, M is
faithfully flat by [Matsumura 1986, Theorem 7.2]. �

Lemma B.2. Let A be a finite flat algebra over an integral domain R. Then the
structure map R→ A, r 7→ r ·1A, is injective. Hence, we can identify R ⊆ Z(A). If
R is noetherian, the induced map ϒ : Spec(Z(A))→ Spec(R) is finite, closed, and
surjective.

Proof. It follows from Lemma B.1 that A is already faithfully flat. Let φ : R→ A
be the structure map. This is an R-module map and applying −⊗R A yields a map

A ' R⊗R A φ⊗R A
−−−→ A⊗R A

of right A-modules, mapping a to 1⊗a. This map has an obvious section mapping
a⊗a′ to aa′; hence it is injective. Since A is faithfully flat, the original map φ has to
be injective, too. As the image of φ is contained in the center Z of A, the structure
map is actually an injective map R ↪→ Z . Now, assume that R is noetherian. Since



BLOCKS IN FLAT FAMILIES OF FINITE-DIMENSIONAL ALGEBRAS 237

A is a finitely generated R-module, also Z is a finitely generated R-module. Hence,
R ⊆ Z is a finite ring extension and now it is an elementary fact that ϒ is closed
and surjective. �

The following lemma about base change of homomorphism spaces is well known
but we could not find a reference in this generality; see [Bourbaki 1972, II, §5.3]
for a proof in the case of a commutative base ring.

Lemma B.3. Let A be an algebra over a commutative ring R and let φ : R→ S be
a morphism into a commutative ring S. Let V and W be A-modules. If V is finitely
generated and projective as an A-module, then there is a canonical S-module
isomorphism:

(86) S⊗R HomA(V,W )' HomAS (V S,W S).

Proof. We can define a map γ : S ⊗R HomA(V,W ) → HomAS (V S,W S) by
mapping s ⊗ f with s ∈ S and f ∈ HomA(V,W ) to sr ⊗ f , where sr denotes
right multiplication by s. It is a standard fact that this is an S-module morphism;
see [Reiner 2003, (2.36)]. Recall that HomA(−,W ) commutes with finite direct
sums by [Bourbaki 1989, II, §1.6, Corollary 1 to Proposition 6]. This shows that
the canonical isomorphism HomA(A,W )'W induces a canonical isomorphism
HomA(An,W )'W n for any n ∈ N and now we conclude that there is a canonical
isomorphism

S⊗R HomA(An,W )' S⊗R W n
' (S⊗R W )n ' HomAS ((AS)n,W S),

which is easily seen to be equal to γ . The assertion thus holds for finitely generated
free A-modules. Now, the assumption on V allows us to write without loss of
generality An

= V ⊕ X for some A-module X . It is not hard to see that we get a
commutative diagram

S⊗R HomA(An,W ) (S⊗R HomA(V,W )) ⊕ (S⊗R HomA(X,W ))

HomAS ((AS)n,W S) (HomAS (V S,W S)) ⊕ (HomAS (X S,W S))

'

'

'

where the horizontal morphisms are obtained by the projections and the vertical
morphisms are the morphisms γ in the respective situation. The commutativity of
this diagram implies that the morphism S⊗R HomA(V,W )→ HomAS (V S,W S)

also has to be an isomorphism. �
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DISTINGUISHED RESIDUAL SPECTRUM FOR GL2(D)

MAHENDRA KUMAR VERMA

Let G = GL2(D) where D is a quaternion division algebra over a number
field F and H = Sp2(D) is the unique inner form of Sp4(F). We study the
period of an automorphic form on G(A) relative to H(A) and we provide
a formula, similar to the split case, for an automorphic form in the resid-
ual spectrum. We confirm the conjecture due to Dipendra Prasad for non-
cuspidal automorphic representations, which says that symplectic period is
preserved under the global Jacquet–Langlands correspondence.

1. Introduction

Let F be a number field and A its ring of adeles. Let G be a connected reductive
group defined over F and H be the fixed point subgroup of an involution on G.
For Q an algebraic group defined over F , we let Y (Q) be the group of F-rational
characters of Q and

Q(A)1 = {q ∈ Q(A) : |χ(q)| = 1,∀χ ∈ Y (Q)}.

Let φ be an automorphic form on G(A). If φ is a cusp form, the period integral
P H (φ) is defined by the convergent integral

(1)
∫

H(F)\(H(A)∩G(A)1)
φ(h) dh.

We say φ is distinguished by H if P H (φ) 6= 0. A cuspidal automorphic representa-
tion π of G is said to be distinguished by H if there exists a φ ∈ π distinguished
by H . It is reasonable to ask for a characterization of H -distinguished cuspidal
representations or more generally representations in the discrete spectrum. For a
more general automorphic form the period integral may not converge and it is of
interest to study the convergence of P H (φ).

Let D be a quaternion division algebra over F with involution ·. Let G be the
group GLn(D) and H = Spn(D) the nonsplit inner form of Sp2n(F) which we can
define as

Spn(D)= {A ∈ GLn(D) : AJ tA = J },

MSC2010: 11F41, 11F67, 11F70.
Keywords: symplectic period, Jacquet–Langlands correspondence.
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where tA = (a j i ) for A = (ai j ) and

J =


1

1
1

. .
.

1


Similarly when D= F we denote these group by G ′=GL2n(F) and H ′= Sp2n(F).
Set DA = D⊗F A. Given an automorphic representation π ′ of G ′(A), for some
automorphic form φ ∈ π ′, when the above integral (1) is nonzero, we say that π ′

has symplectic period. When D = F , H. Jacquet and S. Rallis [1992] proved that
a cuspidal automorphic representation of G ′(A) cannot have symplectic period.
Further they computed the symplectic period for the most cuspidal elements in the
residual spectrum and showed that it is nonzero. Offen [2006a; 2006b] considered
H ′-distinguished representations of the group G ′.

The global Jacquet–Langlands correspondence associates to each automorphic
representation π of GLn(DA) in the discrete spectrum an automorphic representation
π ′ of GL2n(A) such that πv ≡ π ′v at all the places where GLn(Dv) ≡ GL2n(Fv).
In [Verma 2014] we studied the symplectic period for the pair (GLn(D),Spn(D))
both locally and globally. In this paper Dipendra Prasad suggested the conjecture
that π ′ is distinguished if and only if π is distinguished. We will go into more
details about the conjecture and partial results in Section 2.

For an algebraic group X defined over F , we will also write X for the group of
F-points. Let P be a minimal parabolic F-subgroup of GL2(D) (which is unique
up to conjugacy) consisting of upper triangular matrices in GL2(D) with Levi
decomposition P = MU , where M is the diagonal subgroup and U is the unipotent
subgroup. We will denote by δP the modulus function of P(A). Let K be the
maximal compact subgroup of GL2(DA) such that GL2(DA)=U (DA)M(DA)K
is the Iwasawa decomposition. We define a function H on M(DA) by(

m1 0
0 m2

)
= |nrd m1|

1/2
|nrd m2|

−1/2.

Here nrd is the reduced norm map from GL2(DA) to A×. Using the Iwasawa
decomposition, we extend trivially H on GL2(DA) by

H(g)= H(m),

where g = umk with k ∈ K ,m ∈ M(DA) and u ∈U (DA).
Let σ be an irreducible cuspidal automorphic representation of GL1(DA). As-

sume that σ is trivial on the center. Then σ ⊗σ is a cuspidal automorphic represen-
tation of M(DA). We first realize the cuspidal automorphic representation σ ⊗ σ
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in the space of square integrable automorphic functions L2(Z M(DA)M \M(DA))

with Z M being the center of M . Let φ be a K ∩M(DA)-finite automorphic form
in the space of σ ⊗ σ which is extended to a function on GL2(DA), so that for
g = muk ∈ GL2(DA)

φ(g)= δP(m)1/2φ(mk)

and for any fixed k ∈ K , the function

m 7→ φ(mk)

is a K ∩M(DA)-finite automorphic form in the space σ ⊗ σ . We define

F(g, φ, s)= φ(g)H(g)s .

Then the Eisenstein series is given by

E(g, φ, s)=
∑

γ∈P\GL2(D)

F(γ g, φ, s),

which converges absolutely for Re(s) large. The Eisenstein series E(g, φ, s) can be
analytically continued to a meromorphic function of s. It has a simple pole inside
Re(s)≥ 0 and depending on σ the only possible pole in that region is either at s = 1
or s = 2 [Badulescu 2008]. For s0 ∈ {1, 2}, we define the residue E−s0(φ) by

E−s0(g, φ)= lim
s→s0

(s− s0)E(g, φ, s).

The functions E−s0(φ) are L2-automorphic forms. As φ ranges above, the
multiresidue E−s0(φ) generates an irreducible representation of GL2(DA) in the
residual spectrum corresponding to σ which we will denote by J (2, σ ).

To compute symplectic periods of noncuspidal automorphic representations in
the discrete spectrum, we are therefore by Theorem 5 and Remark 12 reduced
to the study of the symplectic period of E−1(φ), residue of the Eisenstein series
corresponding to s0 = 1 constructed from an automorphic representation σ of
GL1(DA) which is not one-dimensional. Now we state the main theorems of this
article. We need the notation H for Sp2(D) as an algebraic group defined over F .

Theorem 1. The function E−1(g, φ) is integrable over Sp2(D) \Sp2(DA) and

(2)
∫

Sp2(D)\Sp2(DA)

E−1(φ, h) dh =
∫

K∩Sp2(DA)

∫
(M∩H)\(M∩H)(DA)1

φ(mk) dm dk.

Moreover, there exists a choice of φ such that the above integral is nonzero.

As a consequence of the above theorem we have the following result.

Theorem 2. Any noncuspidal automorphic representation in the discrete spectrum
of GL2(DA) is of the form π = J (2, σ ) and is distinguished by Sp2(DA). Further,
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its image under the global Jacquet–Langlands correspondence is distinguished
by Sp4(A).

Structure of the paper. In Section 2 we will recall the global Jacquet–Langlands
correspondence and state it explicitly for n = 2. This explicit description reduces
to consider residual Eisenstein series described in Section 1 for s0 = 1. We have
described the existence of distinguished cuspidal automorphic representations. We
introduce Arthur’s truncation operator in Section 3 and proved the convergence of
the period integral of E−1(g, φ). Section 4 gives a description of double cosets
P \G/H which is required to compute the formula for the period integral (2). In
Section 5 we compute the contribution to the period integral associated to double
cosets. Finally we show the nonvanishing of (2) by constructing an automorphic
form 8 on GL2(DA) by choosing suitable 8v at the every place v of F .

2. Discrete spectrum and the global Jacquet–Langlands

For the first half of this section we take D to be an arbitrary division algebra of degree
d over F . An irreducible representation of G(A) is called a discrete automorphic
representation of G if it occurs as a direct summand in the space L2(G(F)\G(A)1).
The discrete spectrum of GLn(A) is described by Moeglin and Waldspurger [1995]
and a similar description for GLn(DA) is given by Badulescu [2008].

We first recall the original global Jacquet–Langlands correspondence which is
carried out in [Deligne et al. 1984; Heumos and Rallis 1990; Jacquet and Langlands
1970]. Note that all irreducible automorphic representations of D×(A) are cuspi-
dal. Originally the correspondence is a bijection between (cuspidal) automorphic
representations of D×(A) which are not one-dimensional and so called compatible
automorphic representations of GLd(A). This is extended in [Badulescu 2008;
Badulescu and Renard 2010] to one-dimensional automorphic representations of
D×(A). These correspond to the residual representations of GLd(A), which are all
one-dimensional as well.

The global correspondence between discrete spectrum of a general linear group
GLnd(A) and its inner form GLn(DA) is defined and proved in [Badulescu 2008;
Badulescu and Renard 2010].

Theorem 3. There is a unique map JL from the set of irreducible constituents of
L2

disc(GLn(D) \GLn(DA)) to the set of irreducible constituents of L2
disc(GLdn(F) \

GLdn(A)), such that if JL(π)=π ′ then π ′ is compatible (with respect to D), π ′v≡πv
where places v at which D splits and πv corresponds to π ′v by the local Jacquet–
Langlands correspondence for places v at which D does not split. The map JL is
injective, and the image consists of all compatible constituents of L2

disc(GLdn(F) \
GLdn(A)) with respect to D.
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The following more precise description of the global correspondence is also
proved in [Badulescu 2008]. For a positive integer l, let Rl be the standard parabolic
F-subgroup of GLln(F) consisting of block upper triangular matrices corresponding
to the partition (n, n, . . . , n) of ln. Its Levi factor L Rl is isomorphic to the direct
product of l copies of GLn(F). Let π ′ be a cuspidal automorphic representation of
GLn(A). Then, we denote by I (l, π ′) the representation of GLln(A) induced from
the representation

π ′|det|(l−1)/2
⊗ · · ·⊗π ′|det|(1−l)/2

of the Levi factor L Rl (A). This representation has a unique irreducible quotient
which we denote by J ′(l, π ′). It is a residual representation of GLln(A) if l > 1.
For l = 1, we have by definition J ′(1, π ′) = π ′. All residual representations of
GLN (A), for N > 1, are obtained in this way for some divisor l > 1 of N .

Now we describe the discrete spectrum of GLn(DA). The notation J (m, π) for
inner forms is in analogy with the split case which will be obvious from the theorem
below.

Theorem 4. Let π ′ be an irreducible cuspidal automorphic representation of the
group GLn(A). There is a unique positive integer sπ ′,D , depending only on π ′ and
the division algebra D, which is defined by the condition that J ′(l, π ′) is globally
compatible (with respect to D) if and only if sπ ′,D divides l. Moreover, sπ ′,D divides
the degree d of the division algebra.

A representation of the form J ′(sπ ′,D, π ′) of GLnsπ ′,D (A) corresponds to a cuspi-
dal automorphic representation π of the inner form. A representation of the form
J ′(msπ ′,D, π ′), with m > 1, corresponds to a residual representation J (m, π) of
the inner form, which is unique irreducible quotient of the representation induced
from the representation

π |nrd|(sπ ′,D(m−1))/2
⊗ · · ·⊗π |nrd|(sπ ′,D(1−m))/2.

From now on let D be the quaternion division algebra over F and we will
describe the discrete spectrum of GL2(DA) more explicitly [Grbac and Schwermer
2011]. In this case the only possibilities for sπ ′,D are 1 and 2. To simplify the
notations, we will write [G] for GL2(D) \GL2(DA) in the following theorem.

Theorem 5. The discrete spectrum L2
disc([G]) decomposes into

L2
disc([G])= L2

cusp([G])⊕ L2
res([G])

where L2
cusp([G]) is the cuspidal spectrum consisting of cuspidal elements, and

L2
res([G]) is its orthogonal complement called the residual spectrum. The cuspidal

part L2
cusp([G]) decomposes into a Hilbert space direct sum of irreducible cuspidal

automorphic representations, each appearing with multiplicity one, and obtained by
the global Jacquet–Langlands correspondence either from a cuspidal automorphic
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representation of G ′ = GL4(A), or from a residual automorphic representation
J ′(msπ ′,D, π ′) with m = 1 and sπ ′,D = 2. The residual part L2

res([G]) decomposes
into a Hilbert space direct sum

L2
res([G])=

⊕
µ

µ ◦ nrd⊕
⊕
σ

J (2, σ )

where the first sum ranges over all unitary characters µ of A× and µ ◦ nrd is
obtained by the Jacquet–Langlands correspondence from µ ◦ det and corresponds
to m = 2 and sπ ′,D = 2, while the second sum, which corresponds to m = 2 and
sπ ′,D = 1, ranges over all cuspidal automorphic representations σ of D×(A) which
are not one-dimensional.

One aims to give a complete classification of distinguished automorphic represen-
tations in the discrete spectrum of GLn(DA). Dipendra Prasad made a conjecture
regarding global distinction.

Conjecture 6 [Verma 2014]. An automorphic representation π in the discrete spec-
trum of GLn(DA) is distinguished by Spn(DA) if and only if its Jacquet–Langlands
lift JL(π), an automorphic representation of GL2n(A), is distinguished by Sp2n(A).

Remark 7. Suppose π =⊗πv is an automorphic representation of GL1(DA) which
is distinguished by Sp1(DA) then πv as a representation of GL1(Dv) is Sp1(Dv)-
distinguished at all the places v. Then by Lemma 4.1 of [Verma 2014], πv is
one-dimensional for all v and so π is one-dimensional. Its Jacquet–Langlands lift
JL(π) lies in residual spectrum which is one-dimensional. This verifies that the
above conjecture is true for n = 1.

Then we have the following theorem from [Verma 2014] which proves the above
conjecture partially.

Theorem 8. If an automorphic representation π of GLn(DA) occurs in the discrete
spectrum and is distinguished by Spn(DA), then JL(π) is distinguished by Sp2n(A).

When sπ ′,D equals 1, cuspidal representations correspond to cuspidal representa-
tions under Jacquet–Langlands and the symplectic period vanishes on both sides.
When sπ ′,D equals 2, we have the above conjecture, which gives more precise
information about distinguished cuspidal representation of GLn(DA).

Conjecture 9. A cuspidal automorphic representation π of GLn(DA) is distin-
guished by Spn(DA) if and only if JL(π)= J ′(2, σ ′) for some cuspidal automorphic
representation σ ′ of GLn(A).

Remark 10. For n = 2, in the above conjecture, the places v of F where D
splits (which happens at almost all places), the local component πv of π is locally
distinguished. At the remaining finitely many places where D does not split, the
local component πv of π at the nonsplit places v is either a tempered representation
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of GL2(Dv) which is fully induced from a tensor product of two unitary characters
of D×v or a complementary series representation of GL2(Dv), attached to a unitary
character of D×v and a real number 0< α < 1

2 [Grbac and Schwermer 2011]. These
πv are distinguished by Sp2(Dv) by result of [Verma 2014]. This shows that π is
locally distinguished at all the places but we can not conclude that π is globally
distinguished.

Further thanks to Dipendra, we have constructed Spn(Dv)-distinguished super-
cuspidal representations of GLn(Dv) for n odd. Then by the globalization result of
[Prasad and Schulze-Pillot 2008], we have the following theorem.

Theorem 11. There exists a cuspidal automorphic representation π of GLn(DA)

for n ≥ 1 odd, and an automorphic form φ ∈ π such that∫
Spn(D)\Spn(DA)

φ(h) dh 6= 0.

Remark 12. In the Theorem 5 first sum ranges over µ ◦ nrd where µ is the unitary
character of A×. Any one-dimensional automorphic representation of GL2(DA)

factors through the reduced norm and they are all Sp2(DA)-distinguished. Therefore
the study of the distinguished residual spectrum of GL2(DA) reduces to the study of
an automorphic representation of the form J (2, σ ) as in Theorem 5 corresponding
to m = 2 and sπ ′,D = 1. An automorphic representation of the form J (2, σ ) is
generated by the residue of the Eisenstein series E−1(φ).

3. The truncation of the Eisenstein series

From this section onwards since we are dealing only groups defined over D, we will
write A instead of DA for simplicity. For the rest of the paper we fix G = GL2(D)
and H = Sp2(D). We will write [H ] for Sp2(D) \ Sp2(A). We also recall from
Section 1 that P , M , and U denote the F-points of algebraic groups denoted by the
same letters. We begin by recalling a special case of the Arthur’s truncation method
and applying it to our study of the period integral. Let c > 1 and denote by τc the
characteristic function of the set of real numbers greater than c. The truncation
operator on the space of automorphic forms on G(A) is defined by

3cφ(g)= φ(g)−
∑

γ∈P\G

φP(γ g)τc(H(γ g)),

where φP is the constant term of φ along P defined as

φP(g)=
∫

U\U (A)
φ(ng) dn,

for all g ∈ G. For fixed g ∈ G and c, the above sum is finite.
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If φ is an automorphic form on G(A) then 3cφ is a rapidly decreasing function
on G(A). In particular, 3c E(φ, s) may be viewed as a meromorphic function of s,
with values in the space of rapidly decreasing functions, with residue at s = s0 equal
to 3c E−s0(φ). The constant term of E along P is given by

EP(g, φ, s)= F(g, φ, s)+ F(g,M(s)φ,−s),

where M(s) denotes the standard intertwining operator [Moeglin and Waldspurger
1995]. After applying the truncation operator to the Eisenstein series, we have

3c E(g, φ, s)= E(g, φ, s)−
∑

γ∈P\G

EP(γ g, φ, s)τc(H(γ g)).

Whenever the Eisenstein series converges, we can write this as∑
γ∈P\G

F(γ g, φ, s)−
∑

γ∈P\G

(F(γ g, φ, s)+F(γ g,M(s)φ,−s))τc(H(γ g)) :=E1−E2,

where

E1 =
∑

γ∈P\G

H(γ g)sφ(γ g)(1− τc(H(γ g)))

and

E2 =
∑

γ∈P\G

H(γ g)−s M(s)φ(γ g)τc(H(γ g)).

Let s0 be a positive real number. Assume that the Eisenstein series E(g, φ, s) has
a simple pole at s = s0. We denote by E−s0(g, φ) the nonzero residue of E(g, φ, s)
at s0.

The truncation of the residue 3c E−s0(g, φ) is

(3) 3c E−s0(g, φ)= E−s0(g, φ)− E3

where E3 =
∑

γ∈P\G F(γ g,M−s0φ(γ g),−s)τc(H(γ g)). Here M−s0 is the residue
of M(s) at s = s0. Consider the period integral

∫
[H ]3

c E−s0(h, φ) dh which con-
verges absolutely because of the rapid decay of 3c E−s0(g, φ). By (3), we have∫

[H ]
E−s0(h, φ) dh =

∫
[H ]

E3 dh+
∫
[H ]
3c E−s0(h, φ) dh.

Since 3c E(h, s, φ) is rapidly decreasing, the period∫
[H ]
3c E(h, s, φ) dh

converges absolutely, the period integral
∫
[H ]3

c E(h, s, φ) dh defines a meromor-
phic function in s with possible poles contained in the set of possible poles of the
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Eisenstein series E(g, φ, s) and hence in that of the global intertwining operator
M(s). It follows that

Ress=s0

∫
[H ]
3c E(h, s, φ) dh =

∫
[H ]
3c E−s0(h, φ) dh.

Proposition 13. The periods
∫
[H ] Ei dh, for i = 1, 2, converge absolutely for large

Re(s) and have meromorphic continuation to the whole complex plane. Also period∫
[H ] E3 dh converges absolutely.

We will prove the above proposition in Section 5 during the course of computing
those periods. By meromorphic continuation, we have∫

[H ]
3c E(h, s, φ) dh =

∫
[H ]

E1 dh−
∫
[H ]

E2 dh

for all s. Hence we have, at s0 = 1, which is the only point of interest

Ress=1

∫
[H ]
3c E(h, s, φ) dh = Ress=1

∫
[H ]

E1 dh−Ress=1

∫
[H ]

E2 dh.

Therefore

(4)
∫
[H ]

E−1(h, φ) dh = Ress=1

[∫
[H ]

E1 dh−
∫
[H ]

E2 dh
]
+

∫
[H ]

E3 dh.

This shows that E−1(g, φ) is integrable over [H ].

4. Double cosets

From Section 3 we have the task of integrating Ei over [H ]. More generally, let F
be a function on G(A) which is left invariant by P and U (A) on the left. Consider
the series

θ(g)=
∑

γ∈P\G

F(γ g).

Let {ξ} be the finite set of representatives for the double cosets P \G/H . Then the
integral of θ over [H ] can be written as∫

[H ]
θ(h) dh =

∫
H\H(A)

∑
γ∈P\G

F(γ h) dh

=

∑
ξ

∫
P∩ξHξ−1\ξH(A)ξ−1

F(hξ) dh.

Therefore we will now describe the double cosets P \G/H .
Let V be a 2-dimensional Hermitian right D-vector space with a basis {e1, e2}

of V with (e1, e1)= (e2, e2)= 0 and (e1, e2)= 1. The one-dimensional subspace



250 MAHENDRA KUMAR VERMA

generated by a vector v is called isotropic if (v, v) = 0; otherwise, it is called
anisotropic. For a right D-vector space, let GLD(V ) be the group of all invertible
linear transformations on V . Similarly, let SpD(V ) be the group of all invertible
linear transformations on V which preserve the Hermitian form on V . Let X be the
set of all 1-dimensional D-subspaces of V . The group G = GLD(V ) acts naturally
on V , and induces a transitive action on X , realizing X as homogeneous space for G.
The stabilizer of a line W in G is a parabolic subgroup P of G, with X ' G/P .
Using the above basis, GLD(V ) can be identified with GL2(D). For W = 〈e1〉, P
is the parabolic subgroup consisting of upper triangular matrices in GL2(D). As
we have a Hermitian structure on V , H = SpD(V )⊂ GLD(V ).

We want to understand the space H\G/P . This space can be seen as the orbit
space of H on the flag variety X . This action has two orbits. One of them, say
O1, consists of all 1-dimensional isotropic subspaces of V and the other, say O2,
consists of all 1-dimensional anisotropic subspaces of V .

Theorem 14 (Witt’s Theorem). Let V be a nondegenerate quadratic space and
W ⊂ V any subspace. Then any isometric embedding f : W → V extends to an
isometry of V .

The fact that SpD(V ) acts transitively on O1 and O2 follows from Witt’s theorem,
together with the well-known theorem that the reduced norm ND/F : D×→ F× is
surjective, and the result that if a vector v ∈ V is anisotropic, in the line 〈v〉= 〈v ·D〉
generated by v, there exists a vector v′ such that (v′, v′)= 1.

It is easily seen that the stabilizer of the line 〈e1〉 in SpD(V ) is

P ∩ H = PH =

{(
a b
0 a−1

)
: a ∈ D×, b ∈ D, ab+ ba = 0

}
.

The parabolic subgroup PH of Sp2(D) has a Levi decomposition PH = MH UH

with Levi subgroup

M ∩ H = MH =

{(
a 0
0 a−1

)
: a ∈ D×

}
.

Now we consider the line 〈e1 + e2〉 inside O2. To calculate the stabilizer of
this line in SpD(V ), note that if an isometry of V stabilizes the line generated by
e1 + e2, it also stabilizes its orthogonal complement which is the line generated
by e1 − e2. Hence, the stabilizer of the line 〈e1 + e2〉 in SpD(V ) stabilizes the
orthogonal decomposition of V as

V = 〈e1+ e2〉⊕ 〈e1− e2〉,

and also acts on the vectors 〈e1+ e2〉 and 〈e1− e2〉 by scalars. Thus the stabilizer
in SpD(V ) of the line 〈e1 + e2〉 is D1 × D1 sitting in a natural way in the Levi
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D××D× of the parabolic P in GL2(D). Here D1 is the subgroup of D× consisting
of reduced norm 1 elements in D×. The above description of the orbits O1 and O2

suggests representatives in GL2(D) for double cosets P \G/H which we can take,
respectively, to be the 2× 2 identity matrix and

ξ =

(
1 1
1 −1

)
.

Now we describe the parabolic subgroup of Hξ = ξHξ−1 which is conjugate to
H and defined by the form ξ Jξ−1

= J ′. Therefore

Hξ = {g ∈ GL2(D) : g J ′gT
= J ′}.

Then parabolic subgroup Pξ of Hξ is described by

Pξ =
{(

a 0
0 b

)
: a, b ∈ D1

}
.

Also P ∩ Hξ = D1× D1.

5. Computation of integrals Ei

The task at hand is now to compute the contribution of both orbits to E1, E2 and
E3 separately and to analyze their absolute convergence. We begin by computing
formally, but the computation will be justified by the absolute convergence of the
final integral. We recall that

E1 =
∑

γ∈P\G

H(γ g)sφ(γ g)(1− τc(H(γ g))),

E2 =
∑

γ∈P\G

H(γ g)−s M(s)φ(γ g)τc(H(γ g)), and

E3 =
∑

γ∈P\G

F(γ g,M−s0φ(γ g),−s)τc(H(γ g)).

We can write ∫
[H ]

E1 dh = I11+ I12

where
I11 =

∫
P∩H\H(A)

φ(hξ)H(hξ)s(1− τc(H(h))) dh

and
I12 =

∫
P∩ξHξ−1\ξH(A)ξ−1

φ(hξ)H(hξ)s(1− τc(H(hξ))) dh.

We will use notation Hξ for ξHξ−1.
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To compute I11, we choose the Haar measure so that following integration
formula is true on H(A).∫

H(A)
f (h) dh =

∫∫∫∫
f (umak)δ−1/2

P∩H (a) du dm dt
t

dk.

Here u is integrated over (U ∩ H)(A), m over (M ∩ H)(A)1, t over R×+ with
t = |a| and k over K ∩ H(A).

Then

I11 =

∫
K∩H(A)

∫
MH\MH (A)1

∫ c

0
φ(mk)δ1/2

P (a)H(a)sδ−1/2
H∩P(a)

dt
t

dm dk

=

∫
K∩H(A)

∫
MH\MH (A)1

∫ c

0
φ(mk)|a||a|s |a|−2 dt

t
dm dk

=

∫
K∩H(A)

∫
MH\MH (A)1

∫ c

0
φ(mk)|a|s−2 dt dm dk.

The inner integral converges for Re(s) > 1 and its range of integration is 0 to c.
Since φ is a cusp form in the space σ ⊗ σ , the middle integral is bounded and
therefore converges. Thus we obtain:

I11 =
cs−1

s− 1

∫
K∩H(A)

∫
MH\MH (A)1

φ(mk) dm dk.

At this point we begin the computation for I12 and for that purpose one needs the
Jacquet–Friedberg [1993] result which is about a majorization of a cusp form.

Lemma 15. Let φ be a cusp form on a reductive group G(A) which is invariant
under the connected component of the center of G(A). Let R be the maximal
parabolic subgroup of G(A) and δR be the module of the group R(A). Let � be
any compact subset of G(A). Then for every N ≥ 0, there exist a constant D > 0
such that

|φ(rk)| ≤ DδR(r)−N ,

for every r ∈ R and k ∈�.

Using the Iwasawa decomposition we can write

I12 =

∫
K∩Hξ (A)

∫
Pξ\Pξ (A)

φ(pkξ)H(pkξ)−s(1− τc(H(pkξ))) dp dk.

We replace 1− τc by 1 and by the lemma above we can majorize by a constant
multiple of δP(p)N . Since D1 \ D1(A) has finite volume, the above integral con-
verges. Since ξ ∈ K and the function H takes value 1 on the subgroup Pξ (A), we
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can write the above integral

I12 =

∫
K∩Hξ (A)

∫
D1×D1\D1(A)×D1(A)

φ(pk) dp dk.

The inner integral, which is defined over D1 × D1 \ D1(A) × D1(A), vanishes
because φ is a vector in the space σ ⊗ σ and σ is not one-dimensional. Therefore,∫

[H ]
E1dh =

cs−1

s− 1

∫
K∩H(A)

∫
MH\MH (A)1

φ(mk) dm dk.

Now we show that the period integral of E2 converges and get a simplified
expression for it. Write ∫

[H ]
E2 dh = I21+ I22

where

I21 =

∫
P∩H\H(A)

M(s)φ(hξ)H(hξ)−sτc(H(h)) dh

and

I22 =

∫
P∩Hξ\H(A)ξ

M(s)φ(hξ)H(hξ)−sτc(H(hξ)) dh.

Similar to the computation done above for I11 we have

I21 =

∫
P∩H\H(A)

∫
P∩Hξ\H(A)ξ

∫
∞

c
M(s)φ(mk)|a|−s−1 dt

t
dm dk.

The integral I21 converges for Re(s) >−1 and

I21 =
c−(s+1)

s+ 1

∫
K∩H(A)

∫
MH\MH (A)1

M(s)φ(mk) dm dk.

Further, using Iwasawa decomposition, one can show that I22 converges absolutely
for all s and vanishes identically because c > 1 and the support of τc is empty.
Therefore, ∫

[H ]
E2 dh = I21.

The explicit computations of
∫
[H ] E1 dh and

∫
[H ] E2 dh also proves Proposition 13.

Similar computation and the argument that φ is a cusp form in the space σ ⊗ σ
shows that

∫
[H ] E3 dh converges and∫
[H ]

E3 dh =
c−2

2

∫
K∩H(A)

∫
MH\MH (A)1

M−1φ(mk) dm dk.
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Then by (4), we have completed the first half of the proof of Theorem 1.

6. Nonvanishing of the period integral

After proving the convergence of the period integral of the residue of the Eisenstein
series and a nice formula to compute it, it remains in Theorem 1 to find out a
suitable function φ such that the right-hand side of the formula is nonzero. We will
achieve this by considering analogous local integrals at every place v of F .

Theorem 16. There is a K -finite automorphic form 8 on U (A)M \GL2(DA) such
that the right-hand side of (2) is nonzero.

Proof. We follow the proof of Jacquet–Rallis [1992] given for the split case. Define
a linear form b on the space of smooth vectors in σ ⊗σ ⊂ L2(M \M(A)) given by

b(φ)=
∫

M\M(A)
φ

((
g 0
0 g−1

))
dg.

Since φ is a cusp form, the integral is well defined. Consider a function 8 : K →
σ ⊗ σ such that

8(pk)= σ ⊗ σ(p)8(k)

when p ∈ K ∩ P(A). Then set

I (8)=
∫

K∩H(A)
b(8(k)) dk

which is equal to the right hand side of (2). We have to choose a K -finite function
8 such that the integral I (8) is nonzero. The linear form b is nonzero because it
is a pairing (unique up to scalar) between σ and its contragredient. The linear form
b has the following property:

b(σ (g)⊗ σ(g−1)u)= b(u),

for all g ∈ D×(A). Since b is not zero, we can choose a K ∩M(A)-finite vector
w = ⊗wv in the space of σ ⊗ σ . Then we can write b = ⊗bv and bv have same
property as b with bv(wv) 6= 0. Define the local integral

I (8v)=
∫

Kv∩Hv
bv(8v(kv)) dkv.

Now we claim that I (8v) is nonzero for some Kv-finite function8v : Kv→ σv⊗σv

which satisfies
8v(pk)= (σv ⊗ σv)(p)8v(k)

for p ∈ Kv ∩ Pv.
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At the finite places v where wv is Kv ∩Mv-invariant, define 8(kv)= wv for all
kv ∈ Kv. At all of the other remaining finite places, we choose an open compact
subgroup �v of Uv so small that the points of the form mvuvωv with mv ∈ Kv∩Mv ,
uv ∈ Uv ∩ Kv and ωv ∈ �v form an open subset of Kv. Then we take 8v with
support in that set with the property that

8v(mvuvωv)= (σv ⊗ σv)(mv)wv.

At an infinite place v, by continuity it is enough to choose a smooth function 8v
such that I (8v) is not zero. Then 8v is any smooth function on Kv such that

8v(mvkv)= σv ⊗ σv(mv)wv8v(kv)

if mv ∈ Mv ∩ Kv . We choose a complement of the Lie algebra of Mv ∩ Hv ∩ Kv in
the Lie algebra of Kv and a small neighborhood of zero in this complement. Let �v
be the image of this under exponential map. We also choose a smooth function of
compact support fv ≥ 0 on �v with fv(1) > 0. Then we define 8v by the condition
that its support be contained in (Mv ∩ Kv)�v and equal to

σv ⊗ σv(mv)wv fv(ωv)

where mv ∈ Mv ∩ Kv and ωv ∈�v.
The product of the functions 8v has then required property. �

Proof of Theorem 2. We recall from [Badulescu 2008] that the automorphic rep-
resentation J (2, σ ) is generated by E−1(g, φ). When σ is a one-dimensional
automorphic representation of GL1(DA), then J (2, σ ) is also one-dimensional.
Under the global Jacquet–Langlands one-dimensional representations of GL2(DA)

corresponds to one-dimensional representations of GL4(A). When σ is not one-
dimensional then J (2, σ ) is distinguished by the above theorem and under the global
Jacquet–Langlands this corresponds to the automorphic representation J ′(2, σ ′) of
GL4(A) which is also distinguished by Sp4(A) [Offen 2006b].
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