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A VARIANT OF A THEOREM BY AILON–RUDNICK
FOR ELLIPTIC CURVES

DRAGOS GHIOCA, LIANG-CHUNG HSIA AND THOMAS J. TUCKER

Given a smooth projective curve C defined over Q and given two elliptic sur-
faces E1 → C and E2 → C along with sections σPi , σQ i (corresponding to
points Pi, Q i of the generic fibers) of Ei (for i = 1, 2), we prove that if there
exist infinitely many t ∈ C(Q) such that for some integers m1,t,m2,t , we have
[mi,t](σPi (t)) = σQ i (t) on Ei (for i = 1, 2), then at least one of the following
conclusions must hold:
i. There exist isogenies ϕ : E1 → E2 andψ : E2 → E2 such that ϕ(P1)=ψ(P2).

ii. Q i is a multiple of Pi for some i = 1, 2.
A special case of our result answers a conjecture made by Silverman.

1. Introduction

Ailon and Rudnick [2004] showed that for two multiplicatively independent noncon-
stant polynomials a, b ∈C[x] there is a nonzero polynomial h ∈C[x], depending on
a and b such that gcd(an

−1, bn
−1) | h for all positive integer n. In this paper, we

prove a similar result for elliptic curves; instead of working with the multiplicative
group Gm , we work with the group law on an elliptic curve defined over a function
field. The result of Ailon–Rudnick relies crucially on the Serre–Ihara–Tate theorem
(see [Lang 1965]), while our result relies crucially on recent Bogomolov-type results
for elliptic surfaces due to DeMarco and Mavraki [2017].

Throughout our article, we work with elliptic surfaces over Q; more precisely,
given a projective, smooth curve C defined over Q, an elliptic surface E/C is given
by a morphism π : E→ C over Q where the generic fiber of π is an elliptic curve
E defined over K = Q(C), while for all but finitely many t ∈ C(Q), the fiber
Et := π

−1({t}) is an elliptic curve defined over Q. Recall that a section σ of π
(i.e., a map σ : C → E such that π ◦ σ = id|C ) gives rise to a K -rational point
of E . Conversely, a point P ∈ E(K ) corresponds to a section of π ; if we need
to indicate the dependence on P , we will denote it by σP . So, for all but finitely
many t ∈ C(Q), the intersection of the image of σP in E with the fiber above t
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is a point Pt := σP(t) on the elliptic curve Et := π
−1({t}). For any integer k, the

multiplication-by-k map [k] on E extends to a morphism on E ; if there is no risk of
confusion, we still denote the extension by [k].

We prove the following result:

Theorem 1-1. Let πi : Ei → C be elliptic surfaces over a curve C defined over Q

with generic fibers Ei , and let σPi , σQi be sections of πi ( for i = 1, 2) corresponding
to points Pi , Qi ∈ Ei (Q(C)). If there exist infinitely many t ∈ C(Q) for which there
exist some m1,t ,m2,t ∈ Z such that [mi,t ]σPi (t)= σQi (t) for i = 1, 2, then at least
one of the following properties must hold:

(i) There exist isogenies ϕ : E1→ E2 and ψ : E2→ E2 such that ϕ(P1)=ψ(P2).

(ii) For some i ∈ {1, 2}, there exists ki ∈ Z such that [ki ]Pi = Qi on Ei .

We note here that, in contrast to similar results such as [Ailon and Rudnick 2004],
the ambient algebraic group (E1× E2 in our case, as opposed to Gm for Ailon and
Rudnick) need not be defined over the field of constants in k(C).

A special case of our result (when both Q1 and Q2 are the zero elements) answers
in the affirmative [Silverman 2004b, Conjecture 7]; this is carried out in a more gen-
eral setting (over the complex numbers and also, giving a more precise connection to
the original GCD problem of Ailon–Rudnick) in our Proposition 4-3 from Section 4.
We also note that the special case of Theorem 1-1 when Q1 = Q2 = 0 was solved
by Masser and Zannier [2014] when both elliptic surfaces are defined over C.

Silverman’s question [2004b, Conjecture 7] was motivated by work of Ailon
and Rudnick [2004], who showed that the greatest common divisor of an

− 1 and
of bn

− 1 for multiplicatively independent polynomials a, b ∈ C[T ] has bounded
degree (see also the generalization in [Corvaja and Zannier 2013b] along with the
related results from [Corvaja and Zannier 2008; 2011; 2013a]). In turn, the result
of Ailon and Rudnick was motivated by the work of Bugeaud–Corvaja–Zannier
[Bugeaud et al. 2003] who obtained an upper bound for gcd(ak

− 1, bk
− 1) (as

k varies in N) for given a, b ∈Q. On the other hand, Silverman [2004a] showed
that the degree of gcd(am

− 1, bn
− 1) could be quite large when a, b ∈ Fp[T ]; see

also the authors’ previous paper [Ghioca et al. 2017], where (using as technical
ingredient [Ghioca 2014] in place of [DeMarco and Mavraki 2017]) we study the
gcd(am

− 1, bn
− 1) when a and b are polynomials over arbitrary fields of positive

characteristic, along with other generalizations on the same theme. Finally, we
mention the work of Denis [2011] who studied the same problem of the greatest
common divisor in the context of Drinfeld modules.

As hinted in [Silverman 2004b], this greatest common divisor (GCD) problem
may be studied in much higher generality; for example, if one knew the result of
[DeMarco and Mavraki 2017] (see Theorem 2-3 below) in the context of abelian
varieties, then our method would extend to a similar conclusion for arbitrary abelian
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schemes over a base curve. DeMarco–Mavraki’s theorem can be interpreted as an
extension of Masser–Zannier’s theorem (see [Masser and Zannier 2012]) in the same
spirit as the Bogomolov conjecture is an extension of the classical Manin–Mumford
conjecture. So, even though the extension to arbitrary abelian varieties of the results
from [DeMarco and Mavraki 2017] is expected to be quite challenging, we mention
that there is some progress in this direction due to Cinkir [2011], Gubler [2007],
and Yamaki [2017], who proved various cases of the Bogomolov conjecture for
abelian varieties defined over function fields.

Our Theorem 1-1 is related also to [Barroero and Capuano 2016, Theorem 1.1]
(see also the extension from [Barroero and Capuano 2017]) where it is shown
that given n linearly independent sections Pi on the Legendre elliptic family y2

=

x(x − 1)(x − t), there are at most finitely many parameters t such that the points
(Pi )t satisfy two independent linear relations on the corresponding elliptic curve.
Therefore, a special case of the result by Barroero and Capuano is that given sections
P1, P2, Q1, Q2 on the Legendre elliptic surface, if these four sections are linearly
independent, then there are at most finitely many t such that for some mt , nt ∈Z we
have [mt ](P1)t = (Q1)t and [nt ](P2)t = (Q2)t . However, in our Theorem 1-1 we
obtain the same conclusion under the weaker hypothesis that Qi is not a multiple
of Pi for i = 1, 2 and also that P1 and P2 are linearly independent. We also note
that the constant case of Barroero and Capuano’s theorem is covered by the results
of Habegger and Pila [2016].

A special case of our Theorem 1-1 bears a resemblance to the classical Mordell–
Lang problem proven by Faltings [1994] (see also [Hrushovski 1996] for the case
of semiabelian varieties defined over function fields). Indeed, with the notation as
in Theorem 1-1, assume there exist infinitely many t ∈ C(Q) such that for some
mt ∈ Z we have

(1-2) [mt ](Pi )t = (Qi )t for i = 1, 2.

Also assume there is no m ∈ Z such that [m]Pi = Qi for i = 1, 2. Then the
conclusion of Theorem 1-1 yields the existence of isogenies ϕ : E1 → E2 and
ψ : E2→ E2 such that ϕ(P1)= ψ(P2). Thus, using that (1-2) holds for infinitely
many t ∈ C(Q) we see that

(1-3) ϕ(Q1)= ψ(Q2).

Therefore, if we let X ⊂A :=E1×E2 be the 1-dimensional subscheme corresponding
to the section (Q1, Q2), and we let 0 ⊂A be the subgroup spanned by (0, P2) and
(P1, 0), then the existence of infinitely many γ ∈ 0 such that for some t ∈ C(Q)
we have γt ∈ X implies that X is contained in a proper algebraic subgroup of
A (as given by (1-3)). Such a statement can be viewed as a relative version of
the classical Mordell–Lang problem; note that if E1 and E2 are constant elliptic
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surfaces with generic fibers E0
i defined over Q, while 0 ⊂ (E0

1 × E0
2)(Q), then

this question is a special case of Faltings’s theorem [1994] (formerly known as the
Mordell–Lang conjecture). It is natural to ask whether the above relative version
of the Mordell–Lang problem holds more generally when A→ C is an arbitrary
semiabelian scheme, X ⊂A is a 1-dimensional scheme and 0 ⊂A is an arbitrary
finitely generated group. This more general question is also related to the bounded
height problems studied in [Amoroso et al. 2017] in the context of pencils of finitely
generated subgroups of Gn

m .
In the next section of this paper, we review some preliminary material. Following

that, in Section 3, we prove Theorem 1-1. The proof in the case of nonconstant
sections is quite similar to the proofs of the main results of [Ailon and Rudnick
2004] and [Hsia and Tucker 2017], while the case of constant sections requires a
different argument. In Section 4, we give a positive answer to Silverman’s conjecture
[2004b, Conjecture 7].

2. Preliminaries

From now on, we fix an elliptic surface π : E→C , where C is a projective, smooth
curve defined over Q. We denote by E the generic fiber of E ; this is an elliptic curve
defined over Q(C). For all but finitely many t ∈ C(Q), we have Et := π

−1({t}) is
an elliptic curve defined over Q.

2.1. Isotriviality. We say that E is isotrivial if the j-invariant of the generic fiber
is a constant function (on C); for isotrivial elliptic surfaces E , all smooth fibers
of π are isomorphic (to the generic fiber E). If E is isotrivial, then there exists a
finite cover C ′→ C such that E ′ := E×C C ′ is a constant (elliptic) surface over C ′,
i.e., there exists an elliptic curve E0 defined over Q such that E ′ = E0

×Spec(Q) C ′.
Furthermore, for a constant elliptic surface E0

×Spec(Q) C ′, we say that σP is a
constant section if P ∈ E0(Q).

2.2. Canonical height on an elliptic surface. For each t ∈ C(Q) such that Et is
an elliptic curve, we let ĥEt be the Néron–Tate canonical height for the points in
Et(Q) (for more details, see [Silverman 1986]). There are two important properties
of the canonical height which we will use:

(i) ĥEt (Pt)= 0 if and only if Pt is a torsion point of Et , i.e., there exists a positive
integer k such that [k]Pt = 0; and

(ii) for each k ∈ Z we have ĥEt ([k]Pt)= k2
· ĥEt (Pt).

Also, we let ĥE be the Néron–Tate canonical height on the generic fiber E
constructed with respect to the Weil height on the function field Q(C); for more
details, see [Silverman 1994a]. Property (ii) above holds also on the generic fiber,
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i.e., ĥE([k]P)= k2
· ĥE(P). On the other hand, property (i) above holds only if E

is nonisotrivial. Furthermore, if E = E ×C C is a constant family (where E is an
elliptic curve defined over Q), then for any P ∈ E(Q(C)), we have that ĥE(P)= 0
if and only if P ∈ E(Q).

2.3. Variation of the canonical height. We let hC be a given Weil height for points
in C(Q) corresponding to a divisor of degree 1 on C .

Let σP be a section of the elliptic surface E→ C corresponding to a point P on
the generic fiber E . Then, for all but finitely many t ∈ C(Q), the intersection of
the image of σP in E with the fiber above t is a point Pt , on the elliptic curve Et .
The following important fact will be used in our proof (see [Tate 1983; Silverman
1983]):

(2-1) lim
hC (t)→∞

ĥEt (Pt)

hC(t)
= ĥE(P).

Furthermore, the following more precise result holds, as proven by Silverman
[1994b]:

(2-2) ĥEt (Pt)= hC,η(P)(t)+ OP(1),

where η(P) is a divisor on C of degree equal to ĥE(P) and hC,η(P) is a given Weil
height for the points in C(Q) corresponding to the divisor η(P), while the implicit
constant from the term OP(1) is only dependent on the section σP (and implicitly
on the divisor η(P)), but not on t ∈ C(Q).

2.4. Points of small height on sections. We will use [DeMarco and Mavraki 2017,
Theorem 1.4], which extends [DeMarco et al. 2016] (and in turn, uses the extensive
analysis from [Silverman 1994b] regarding the variation of the canonical height in
an elliptic fibration). We also note that the case of isotrivial elliptic curves from
Theorem 2-3 was previously proven by Zhang [1998], as part of Zhang’s famous
proof of the classical Bogomolov conjecture.

Theorem 2-3 [DeMarco and Mavraki 2017, Theorem 1.4]. Let E1, E2 be elliptic
fibrations over the same Q-curve C. Let Pi be a section of Ei ( for i = 1, 2) with the
property that there exists an infinite sequence {tn} ⊂ C(Q) such that

lim
n→∞

ĥ(Ei )tn
((Pi )tn )= 0 for i = 1, 2.

Then there exist group homomorphisms φ : E1 → E2 and ψ : E2 → E2, not both
trivial, such that φ(P1)= ψ(P2).

3. Proof of our main result

Propositions 3-1 and 3-9 are key to our proof.



6 DRAGOS GHIOCA, LIANG-CHUNG HSIA AND THOMAS J. TUCKER

Proposition 3-1. Let C be a projective, smooth curve defined over Q, and let hC(·)

be a Weil height for the algebraic points of C corresponding to a divisor of degree 1.
Let P and Q be sections of an elliptic surface π : E→ C with generic fiber E , and
assume there exists no k ∈ Z such that [k]P = Q. In addition, assume ĥE(P) > 0.
If there exists an infinite sequence {ti } ⊂ C(Q) such that for each i ∈ N there
exists some mi ∈ Z such that [mi ]Pti = Qti , then hC(ti ) is uniformly bounded and
limi→∞ ĥEti

(Pti )= 0.

We note that the special case of Proposition 3-1 when π : E→ C is a constant
elliptic surface follows from [Silverman 1983].

Proof. Since [mi ]Pti = Qti , we have

(3-2) m2
i · ĥEti

(Pti )= ĥEti
(Qti ).

Since [k]P 6= Q for any k ∈ Z and the sequence {ti } is infinite, then

(3-3) lim
i→∞
|mi | =∞.

We claim first that hC(ti ) is uniformly bounded. Indeed, assuming (at the expense,
perhaps, of replacing {ti } by an infinite subsequence) that limi→∞ hC(ti )=∞, (2-1)
coupled with (3-2) and (3-3) yields a contradiction. To see this, we divide both
sides of (3-2) by hC(ti ) and then take limits. Because ĥE(P) > 0, (3-3) implies
that the left-hand side equals

(3-4) lim
i→∞

m2
i ·

ĥEti
(Pti )

hC(ti )
=∞,

while the right-hand side equals

(3-5) lim
i→∞

ĥEti
(Qti )

hC(ti )
= ĥE(Q) <∞,

which is a contradiction. So, indeed, hC(ti ) must be uniformly bounded.
Next we prove that also ĥEti

(Qti ) is uniformly bounded. Using (2-2) (see [Sil-
verman 1994b]) we know that there exists a divisor η(Q) of C of degree equal to
ĥE(Q) such that

(3-6) ĥEt (Qt)= hC,η(Q)(t)+ O(1),

where hC,η(Q) is a Weil height on C(Q) corresponding to the divisor η(Q). Since
hC is a Weil height associated to a divisor D on C of degree 1, then for any positive
integer m > deg(η(Q)), the divisor D1 := m D − η(Q) has positive degree and
therefore, is ample. Then [Hindry and Silverman 2000, Proposition B.3.2] implies
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that any Weil height hC,D1 associated to the divisor D1 satisfies hC,D1(t)≥ O(1)
for all t ∈ C(Q). So,

(3-7) mhC(t)+ O(1)≥ hC,η(Q)(t) for t ∈ C(Q).

Therefore hC,η(Q)(ti ) is uniformly bounded (since hC(ti ) is uniformly bounded).
Then (3-6) provides the desired claim that

(3-8) ĥEti
(Qti ) is bounded as i→∞.

Finally, the fact that limi→∞ ĥEi (Pi )= 0 follows easily from combining equations
(3-2), (3-3), and (3-8). �

Proposition 3-9. Let P and Q be sections of a constant elliptic fibration π : E→C ,
and assume there exists no k ∈ Z such that [k]P = Q. In addition, assume P is
a nontorsion, constant section. If there exists an infinite sequence {ti } ⊂ C(Q)
such that for each i ∈ N there exists some mi ∈ Z such that [mi ]Pti = Qti , then
limi→∞ hC(ti )=∞.

Proof. Each fiber Eti is isomorphic to the generic fiber E0, and so, because P is a
constant section,

(3-10) ĥEti
(Pti )= ĥE0(P0),

where P0 is the intersection of P with the generic fiber and ĥE0(·) is the Néron–Tate
canonical height of the elliptic curve E0 defined over Q (i.e., it is not the canonical
height on the generic fiber of E seen as an elliptic curve defined over the function
field Q(C)).

Furthermore, since P0 is not a torsion point of E0, then ĥE0(P0)> 0. Thus, from
the equality [mi ]Pti = Qti , along with (3-10) coupled with the fact that |mi | →∞

(because [k]P 6= Q for all integers k), we must have

(3-11) ĥEti
(Qti )= m2

i ĥE0(P0)→∞.

Then, using (2-2), we have

(3-12) ĥEti
(Qti )= hC,η(Q)(ti )+ O(1),

where hC,η(Q) is a Weil height on C corresponding to a certain divisor η(Q). So,
(3-11) and (3-12) yield hC,η(Q)(ti )→∞ and thus, hC(ti )→∞ (see [Hindry and
Silverman 2000, Proposition B.3.5], along with our similar argument from the proof
of Proposition 3-1). �

Now we can prove our main result.

Proof of Theorem 1-1. First we note that if Pi is a torsion section (for some
i ∈ {1, 2}), then conclusion (ii) holds trivially since then we would obtain that there
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exist infinitely many t ∈ C(Q) such that (Qi )t = [k](Pi )t for the same integer k.
So, from now on, we assume that both P1 and P2 are nontorsion sections on E1, E2,
respectively. In particular, this means that if ĥEi (Pi ) = 0, then Ei must be an
isotrivial elliptic surface.

We assume there exists an infinite sequence {ti } ⊂ C(Q) such that for each
i ∈N there exist mi,1,mi,2 ∈ Z with the property that [mi,1](P1)ti = (Q1)ti and also
[mi,2](P2)ti = (Q2)ti . In addition, we assume conclusion (ii) does not hold, i.e.,
there is no m ∈ Z such that [m]Pi = Qi for some i ∈ {1, 2}. We split our analysis
into two cases.

Case 1. ĥEi (Pi ) > 0 for each i = 1, 2.
Applying then Proposition 3-1 to the sections Pi and Qi , we obtain

(3-13) lim
i→∞

ĥ(E1)ti
((P1)ti )= lim

i→∞
ĥ(E2)ti

((P2)ti )= 0.

Equation (3-13) along with Theorem 2-3 implies that conclusion (i) must hold in
Theorem 1-1. Note that we obtain in this case that the morphisms ϕ : E1→ E2 and
ψ : E2→ E2 from the conclusion of Theorem 2-3 are both isogenies since P1 and
P2 are nontorsion sections.

Case 2. Either ĥE1(P1)= 0 or ĥE2(P2)= 0.
Without loss of generality, we assume ĥE1(P1) = 0. Therefore (since P1 is

not torsion) E1 is an isotrivial elliptic surface, and furthermore, at the expense of
replacing C by a finite cover (and also performing a base extension for E1 and E2),
we may assume that E1 is a constant family. Thus, E1 = E0

1 ×C C for some elliptic
curve E0

1 defined over Q. Then also P1 is a constant (nontorsion) section, because
ĥE1(P1) = 0. Finally, we let hC(·) be a Weil height for the algebraic points of C
with respect to a divisor of degree 1.

If ĥE2(P2) > 0, then Proposition 3-1 applied to P2 and Q2 implies that hC(ti ) is
uniformly bounded, which contradicts the conclusion of Proposition 3-9 applied
to P1 and Q1. Therefore, we must have ĥE2(P2) = 0, and also E2 is an isotrivial
elliptic surface. At the expense of (yet another) base extension, we may assume that
also E2 = E0

2 ×C is a constant fibration. Then P2 is a constant, nontorsion section
on E2. We let P0

i be the intersection of Pi (for i = 1, 2) with the generic fiber of Ei .
Now, if either Q1 or Q2 is also a constant section, then we get a contradiction

since we assumed conclusion (ii) does not hold. Indeed, if for some i = 1, 2 both Pi

and Qi are constant sections on the constant elliptic surface Ei , then the existence
of a point t ∈C(Q) such that for some k ∈ Z we have [k](Pi )t = (Qi )t implies that
actually [k]Pi = Qi on Ei . So, we may assume that Q1 and Q2 are both nonconstant
sections on E1, respectively E2. Then, there is a (neither vertical, nor horizontal)
curve X ⊂ E0

1×E0
2 containing all points ((Q1)t , (Q2)t) for t ∈C(Q). Furthermore,

our hypothesis means that this curve X intersects the subgroup 0⊂ E0
1×E0

2 spanned
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by the points (P0
1 , 0) and (0, P0

2 ) in an infinite set. The classical Mordell–Lang
conjecture (proven by Faltings [1994]) implies that X itself is a coset of an algebraic
subgroup of E0

1 × E0
2 . Hence, because X projects dominantly onto each coordinate,

there exists a nontrivial isogeny τ : E0
1→ E0

2 , and also there exist endomorphisms
φi of E0

i , not both trivial, such that

(3-14) τ(φ1(Q1))= φ2(Q2).

Then, using (for any i such that mi,1 and mi,2 are nonzero) that

[mi,1]P0
1 = (Q1)ti and [mi,2]P0

2 = (Q2)ti

along with the fact that τ
(
φ1((Q1)ti )

)
= φ2((Q2)ti ), we obtain the conclusion in

Theorem 1-1 with ϕ := τ ◦ [mi,1] ◦φ1 and ψ := [mi,2] ◦φ2. Finally, note that since
P1 and P2 are nontorsion, then also ϕ and ψ are dominant morphisms. Indeed, if ϕ
were trivial, then using that τ is an isogeny and that mi,1 6= 0, we would obtain that
φ1 must be trivial. But then φ2(Q2)= 0 (using (3-14)), which implies that φ2 = 0
because we assumed that Q2 is a nontorsion section. So, if ϕ were trivial (and a
completely similar argument works assuming ψ were trivial), we would get that
both φ1 and φ2 are trivial, a contradiction.

This concludes the proof of Theorem 1-1. �

4. Common divisors of elliptic sequences

In this section, we apply Theorem 1-1 to prove Silverman’s conjecture [2004b,
Conjecture 7] concerning common divisors of elliptic sequences; actually, our
Proposition 4-3 provides a slightly more general statement than the original conjec-
ture. We first recall the terminology and notation from [Silverman 2004b] that we
will use in this section.

Let k be an algebraically closed field of characteristic 0. Let C be a smooth
projective curve defined over k and let K = k(C) be the function field of C . For
any point γ ∈C(k), we let ordγ (D) denote the coefficient of γ in D ∈Div(C). The
greatest common divisor for any two effective divisors D1, D2∈Div(C) is defined as

GCD(D1, D2)=
∑
γ∈C

min{ordγ (D1), ordγ (D2)} · (γ ) ∈ Div(C).

For an elliptic curve E defined over K , let π : E → C be an elliptic surface
whose generic fiber is E and let P ∈ E(K ). Recall that the section corresponding
to P is denoted by σP : C→ E . We denote the image of σP by P := σP(C)⊂ E .

Let E1 and E2 be elliptic curves defined over K , let Ei/C be elliptic surfaces
with generic fibers Ei , and let Pi ∈ Ei (K ) for i = 1, 2. The greatest common divisor
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of P1 and P2 is given by

GCD(P1, P2)= GCD(σ ∗P1
(OE1), σ

∗

P2
(OE2)),

where OEi := σOi (C) is the zero section on Ei corresponding to the identity Oi of
Ei and σ ∗Pi

(OEi ) is the pull-back under σi : C → Ei of OEi as a divisor of Ei for
i = 1, 2. Thus, for any given Qi ∈ Ei (K ), GCD(P1− Q1, P2− Q2) is the greatest
common divisor of the two points Pi − Qi ∈ Ei for i = 1, 2. In the following,
points P1 and P2 are called (K -) dependent if there are morphisms ϕ : E1→ E2

and ψ : E2 → E2 not both trivial such that ϕ(P1) = ψ(P2); otherwise they are
called independent. Note that if one of P1 and P2 is a torsion point, then they are
automatically dependent.

Motivated by the result of [Ailon and Rudnick 2004], Silverman conjectured
that an elliptic analogue also exists. For the convenience of the reader, we recall
his conjecture.

Conjecture 4-1 Silverman [1994b, Conjecture 7]. Let K = k(C) be the function
field of a smooth projective curve C over an algebraically closed field k of character-
istic 0, let E1/K and E2/K be elliptic curves, and let P1 ∈ E1(K ) and P2 ∈ E2(K )
be K -independent points.

(i) There is a constant c = c(K , E1, E2, P1, P2) such that

deg GCD([n1]P1, [n2]P2)≤ c for all n1, n2 ≥ 1.

(ii) Further, there is an equality

GCD([n]P1, [n]P2)= GCD(P1, P2) for infinitely many n ≥ 1.

Remark 4-2. Silverman [1994b, Theorem 8] showed that Conjecture 4-1 is true pro-
vided that both E1 and E2 have constant j -invariant as a consequence of Raynaud’s
theorem [1983].

As an application of Theorem 1-1, we prove that Conjecture 4-1 holds (even in
a slightly stronger form); we strengthen further the conclusion from Conjecture 4-1
when k =Q.

Proposition 4-3. Let k be an algebraically closed field of characteristic 0. Let C
be a smooth projective curve defined over k, let K = k(C) and let Ei/K , i = 1, 2,
be elliptic curves defined over K . Let Pi , Qi ∈ Ei (K ) for i = 1, 2 and furthermore,
assume that P1 and P2 are K -independent.

(i) If k =Q, then there exists an effective divisor D ∈ Div(C) such that

GCD([n1]P1− Q1, [n2]P2− Q2)≤ D

for all integers ni such that [ni ]Pi 6= Qi , i = 1, 2.
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(ii) For an arbitrary algebraically closed field k of characteristic 0, there exists an
effective divisor D0 ∈ Div(C) such that

GCD([n1]P1, [n2]P2)≤ D0

for all nonzero integers ni .

(iii) The set {
n ≥ 1 : GCD([n]P1, [n]P2)= GCD(P1, P2)

}
has positive density in N.

(iv) For all but finitely many primes q, we have

GCD([q]P1, [q]P2)= GCD(P1, P2).

Remark 4-4. The conclusion of Proposition 4-3 (i) for an arbitrary algebraically
closed field k of characteristic 0 would follow from our method once the validity
of DeMarco–Mavraki’s result [DeMarco and Mavraki 2017] (see Theorem 2-3) is
extended over function fields. In turn, their result is contingent on establishing the
smooth variation of the canonical height in fibers of an elliptic surface defined over
a function field (over Q).

The proof of Proposition 4-3 relies on Theorem 1-1 and the following lemma
which is a variant of [Silverman 2004b, Lemma 4] bounding ordγ (σ ∗[n]P(OE)) for
γ ∈ C and all integers n 6= 0.

Lemma 4-5. Let k be an algebraically closed field of characteristic 0. Let E be
an elliptic curve defined over k(C) and let E → C be an elliptic surface whose
generic fiber is E. Let γ ∈ C(k) and let P, Q ∈ E(k(C)) be given. There exists a
constant m = m(γ, E, P, Q) such that ordγ (σ ∗[n]P(Q))≤ m for all integers n such
that [n]P 6= Q.

Proof. Observe that ordγ (σ ∗[n]P(Q))≥ 1 if and only if σ[n]P(γ )= σQ(γ ). Moreover,
σQ(γ ) is a torsion point of Eγ if and only if there are more than one n such that
ordγ (σ ∗[n]P(Q))≥ 1.

It suffices to prove the assertion when ordγ (σ ∗[n]P(Q)) ≥ 1 for more than one
integer n. Thus, we assume that σQ(γ ) is a torsion point of Eγ . Let ` be the order of
σQ(γ ) and assume that ordγ (σ ∗[n]P(Q))≥ 1 for some integer n such that [n]P 6= Q.
It follows that ordγ (σ ∗[n]P(Q)) is finite and

(4-6) σ[`n]P(γ )= [`]σ[n]P(γ )= [`]σQ(γ )= OEγ ,

which is the zero element for the elliptic curve Eγ .
If Q is the zero element of E , then it follows from [Silverman 2004b, Lemma 4]

that the value of ordγ (σ ∗[n]P(OE)) is bounded independently of n 6= 0 and we are
done in this case.
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Assume that Q 6= O . Then (4-6) yields the inequality

ordγ (σ ∗[n]P(Q))≤ ordγ (σ ∗[`n]P(OE)).

Note that the right-hand side of the above inequality involves only ordγ (σ ∗[m]P(OE)),
which is bounded independently of the integer m in question as remarked above.
Hence, we conclude that ordγ (σ ∗[n]P(Q)) is bounded independently of n 6= 0 (and
n such that [n]P 6= Q). As Q 6= O , we also have that ordγ (σ ∗[n]P(Q)) is finite if
n = 0. Thus we obtain that ordγ (σ ∗[n]P(Q)) is bounded independently of n such
that [n]P 6= Q, which concludes our proof. �

Proof of Proposition 4-3. We first prove part (i) in Proposition 4-3. So, for each
γ ∈ C(Q), let mi,γ be an upper bound for ordγ (σ ∗[n]Pi

(Qi )) as in Lemma 4-5. Set
mγ =min{m1,γ ,m2,γ }. Since P1 and P2 are independent, by Theorem 1-1 we may
take mγ = 0 for all but finitely many points γ ∈ C(Q); let S be the finite set of
points γ ∈ C(Q) for which mγ > 0. Let

D :=
∑
γ∈S

mγ (γ ).

Then, D is an effective divisor of C . Now it follows directly from Lemma 4-5
that GCD([n1]P1−Q1, [n2]P2−Q2)≤ D for all ni such that [ni ]P 6= Qi for both
i = 1, 2. Indeed,

GCD([n1]P1− Q1, [n2]P2− Q2)

= GCD(σ ∗
[n1]P1−Q1

(OE1), σ
∗

[n2]P2−Q2
(OE2))

= GCD(σ ∗
[n1]P(Q1), σ

∗

[n2]P2
(Q2))

=

∑
γ∈C(Q)

min
{
ordγ (σ ∗[n1]P1

(Q1)), ordγ (σ ∗[n2]P2
(Q2))

}
≤

∑
γ∈C(Q)

min{m1,γ ,m2,γ } · (γ )≤
∑
γ∈S

mγ (γ ).

For the proof of part (ii) in Proposition 4-3, we let Qi = Oi be the zero element
of Ei for i = 1, 2. If k =Q, then the result follows immediately from part (i). Now,
for the general case, we note that it suffices to prove the existence of at most finitely
many t ∈ C(k) such that both (P1)t and (P2)t are torsion points on the elliptic
fiber E1,t and E2,t respectively; indeed, the fact that the multiplicity of each such t
appearing in a divisor GCD([n1]P1, [n2]P2) is bounded follows exactly as in the
proof of part (i), using Lemma 4-5. On the other hand, if there exist infinitely many
t ∈ C(k) such that both (P1)t and (P2)t are torsion, then (according to [Masser and
Zannier 2014, Theorem, p. 117]) P1 and P2 are related, which yields a contradiction.
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The conclusion of part (iii) in Proposition 4-3 was proven by Silverman [2004b,
Theorem 8 (b)] in the case where both E1, E2 have constant j-invariants. We gen-
eralize his argument as follows. For each of the finitely many γ ∈ C(k) which does
not appear in the support of GCD(P1, P2), but for which there exists some positive
integer n such that γ is contained in the support of the divisor GCD([n]P1, [n]P2),
or equivalently,

(4-7) the divisor GCD([n]P1, [n]P2)− (γ ) is effective,

we let nγ be the smallest such positive integer n for which (4-7) holds. Then, it is
easy to see that γ is contained in the support of GCD([n]P1, [n]P2) if and only if
nγ | n. Also, for each of these points γ which are not in the support of GCD(P1, P2),
we have nγ > 1. This implies that for any positive integer n which is not divisible
by any of the finitely many integers nγ , we have

GCD([n]P1, [n]P2)= GCD(P1, P2).

The conclusion in part (iv) in Proposition 4-3 follows from the proof of part (iii)
since GCD([q]P1, [q]P2)=GCD(P1, P2) for all primes q which do not divide any
of the finitely many numbers nγ > 1. �
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