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ON THE EXACTNESS OF ORDINARY PARTS
OVER A LOCAL FIELD OF CHARACTERISTIC p

JULIEN HAUSEUX

Let G be a connected reductive group over a nonarchimedean local field
F of residue characteristic p, P be a parabolic subgroup of G, and R be a
commutative ring. When R is artinian, p is nilpotent in R, and char(F)= p,
we prove that the ordinary part functor OrdP is exact on the category of ad-
missible smooth R-representations of G. We derive some results on Yoneda
extensions between admissible smooth R-representations of G.

1. Results

Let F be a nonarchimedean local field of residue characteristic p. Let G be a
connected reductive algebraic F-group and G denote the topological group G(F).
We let P =M N be a parabolic subgroup of G. We write P =M N for the opposite
parabolic subgroup.

Let R be a commutative ring. We write Mod∞G (R) for the category of smooth
R-representations of G (i.e., R[G]-modules π such that for all v ∈ π the stabiliser
of v is open in G) and R[G]-linear maps. It is an R-linear abelian category. When R
is noetherian, we write Modadm

G (R) for the full subcategory of Mod∞G (R) consisting
of admissible representations (i.e., those representations π such that πH is finitely
generated over R for any open subgroup H of G). It is closed under passing to
subrepresentations and extensions, thus it is an R-linear exact subcategory, but
quotients of admissible representations may not be admissible when char(F)= p
(see [Abe et al. 2017b, Example 4.4]).

Recall the smooth parabolic induction functor IndG
P
:Mod∞M (R)→Mod∞G (R),

defined on any smooth R-representation σ of M as the R-module IndG
P
(σ ) of locally

constant functions f :G→σ satisfying f (mn̄g)=m· f (g) for all m∈M, n̄∈N, and
g∈G, endowed with the smooth action of G by right translation. It is R-linear, exact,
and commutes with small direct sums. In the other direction, there is the ordinary
part functor OrdP :Mod∞G (R)→Mod∞M (R) [Emerton 2010a; Vignéras 2016]. It
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is R-linear and left exact. When R is noetherian, OrdP also commutes with small
inductive limits, both functors respect admissibility, and the restriction of OrdP to
Modadm

G (R) is right adjoint to the restriction of IndG
P

to Modadm
M (R).

Theorem 1. If R is artinian, p is nilpotent in R, and char(F) = p, then OrdP is
exact on Modadm

G (R).

Thus the situation is very different from the case char(F) = 0 (see [Emerton
2010b]). On the other hand, if R is artinian and p is invertible in R, then OrdP

is isomorphic on Modadm
G (R) to the Jacquet functor with respect to P (i.e., the

N -coinvariants) twisted by the inverse of the modulus character δP of P [Abe et al.
2017b, Corollary 4.19], so that it is exact on Modadm

G (R) without any assumption
on char(F).

Remark. Without any assumption on R, IndG
P :Mod∞M (R)→Mod∞G (R) admits a

left adjoint LG
P :Mod∞G (R)→Mod∞M (R) (the Jacquet functor with respect to P)

and a right adjoint RG
P :Mod∞G (R)→Mod∞M (R) [Vignéras 2016, Proposition 4.2].

If R is noetherian and p is nilpotent in R, then RG
P is isomorphic to OrdP on

Modadm
G (R) [Abe et al. 2017b, Corollary 4.13]. Thus under the assumptions of

Theorem 1, RG
P is exact on Modadm

G (R). On the other hand, if R is noetherian
and p is invertible in R, then RG

P is expected to be isomorphic to δP LG
P

(“second
adjointness”), and this is proved in the following cases: when R is the field of
complex numbers [Bernstein 1987] or an algebraically closed field of characteristic
` 6= p [Vignéras 1996, II.3.8(2)]; when G is a Levi subgroup of a general linear
group or a classical group with p 6= 2 [Dat 2009, Théorème 1.5]; when P is a
minimal parabolic subgroup of G (see also [Dat 2009]). In particular, LG

P and RG
P

are exact in all these cases.

Question. Are LG
P and RG

P exact when R is noetherian, p is nilpotent in R, and
char(F)= p?

We derive from Theorem 1 some results on Yoneda extensions between admissible
R-representations of G. We compute the R-modules Ext•G in Modadm

G (R).

Corollary 2. Assume R artinian, p nilpotent in R, and char(F)= p. Let σ and π
be admissible R-representations of M and G, respectively. For all n ≥ 0, there is a
natural R-linear isomorphism

ExtnM(σ,OrdP(π))−→
∼ ExtnG(IndG

P
(σ ), π).

This is in contrast with the case char(F)= 0 (see [Hauseux 2016a]). A direct
consequence of Corollary 2 is that under the same assumptions, IndG

P
induces an

isomorphism between the Extn for all n ≥ 0 (Corollary 5). When R = C is an
algebraically closed field of characteristic p and char(F) = p, we determine the
extensions between certain irreducible admissible C-representations of G using
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the classification of [Abe et al. 2017a] (Proposition 6). In particular, we prove that
there exists no nonsplit extension of an irreducible admissible C-representation π
of G by a supersingular C-representation of G when π is not the extension to G of
a supersingular representation of a Levi subgroup of G (Corollary 7). For G=GL2,
this was first proved by Hu [2017, Theorem A.2].

2. Proofs

2.1. Hecke action. In this subsection, M denotes a linear algebraic F-group and N
denotes a split unipotent algebraic F-group (see [Conrad et al. 2015, Appendix B])
endowed with an action of M that we identify with the conjugation in M n N . We
fix an open submonoid M+ of M and a compact open subgroup N0 of N stable
under conjugation by M+.

If π is a smooth R-representation of M+n N0, then the R-modules H•(N0, π),
computed using the homogeneous cochain complex C•(N0, π) (see [Neukirch et al.
2008, § I.2]), are naturally endowed with the Hecke action of M+, defined as the
composite

H•(N0, π)
m
−→H•(m N0m−1, π)

cor
−→H•(N0, π)

for all m ∈ M+. At the level of cochains, this action is explicitly given as follows
(see [Neukirch et al. 2008, § I.5]). Fix a set of representatives N0/m N0m−1 ⊆ N0 of
the left cosets N0/m N0m−1 and write n 7→ n̄ for the projection N0 � N0/m N0m−1.
For φ ∈ Ck(N0, π), we have

(1) (m ·φ)(n0, . . . , nk)=∑
n̄∈N0/m N0m−1

n̄m ·φ(m−1n̄−1n0n−1
0 n̄m, . . . ,m−1n̄−1nkn−1

k n̄m)

for all (n0, . . . , nk) ∈ N k+1
0 .

Lemma 3. Assume p nilpotent in R and char(F) = p. Let π be a smooth R-
representation of M+n N0 and m ∈ M+. If the Hecke action hN0,m of m on π N0

is locally nilpotent (i.e., for all v ∈ π N0 there exists r ≥ 0 such that hr
N0,m(v)= 0),

then the Hecke action of m on Hk(N0, π) is locally nilpotent for all k ≥ 0.

Proof. First, we prove the lemma when pR= 0, i.e., R is a commutative Fp-algebra.
We assume that the Hecke action of m on π N0 is locally nilpotent and we prove
the result together with the following fact: there exists a set of representatives
N0/m N0m−1 ⊆ N0 of the left cosets N0/m N0m−1 such that the action of

S :=
∑

n̄∈N0/m N0m−1

n̄m ∈ Fp[M+n N0]

on π is locally nilpotent.
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We proceed by induction on the dimension of N (recall that N is split so that it is
smooth and connected). If N=1, then the (Hecke) action of m on π N0=π is locally
nilpotent by assumption, so that the result and the fact are trivially true. Assume
N 6= 1 and that the result and the fact are true for groups of smaller dimension. Since
N is split, it admits a nontrivial central subgroup isomorphic to the additive group.
We let N ′ be the subgroup of N generated by all such subgroups. It is a nontrivial
vector group (i.e., isomorphic to a direct product of copies of the additive group)
which is central (hence normal) in N and stable under conjugation by M (since
it is a characteristic subgroup of N). We set N ′′ := N/N ′. It is a split unipotent
algebraic F-group endowed with the induced action of M and dim(N ′′) < dim(N).
Since N ′ is split, we have N ′′ = N/N ′. We write N ′0 and N ′′0 for the compact open
subgroups N ′ ∩ N0 and N0/N ′0 of N ′ and N ′′, respectively. They are stable under
conjugation by M+. We fix a set-theoretic section [−] : N ′′0 ↪→ N0.

Since N ′ is commutative and p-torsion, N ′0 is a compact Fp-vector space. Thus
for any open subgroup N ′1 of N ′0, the short exact sequence of compact Fp-vector
spaces

0→ N ′1→ N ′0→ N ′0/N ′1→ 0

splits. Indeed, it admits an Fp-linear splitting (since Fp is a field) which is auto-
matically continuous (since N ′0/N ′1 is discrete). In particular, with N ′1 = m N ′0m−1,
we may and do fix a section N ′0/m N ′0m−1 ↪→ N ′0. We write N ′0/m N ′0m−1 for
its image, so that N ′0 = N ′0/m N ′0m−1×m N ′0m−1, and n′ 7→ n̄′ for the projection
N ′0 � N ′0/m N ′0m−1. We set

S′ :=
∑

n̄′∈N ′0/m N ′0m−1

n̄′m ∈ Fp[M+n N ′0].

For all n′0 ∈ N ′0, we have n′0 = n̄′0(n̄
′−1
0 n′0) with n̄′−1

0 n′0 ∈ m N ′0m−1, thus

n′0S′ =
∑

n̄′∈N ′0/m N ′0m−1

(n̄′0n̄′)m(m−1(n̄′−1
0 n′0)m)= S′(m−1(n̄′−1

0 n′0)m)

with m−1(n̄′−1
0 n′0)m ∈ N ′0 (in the first equality we use the fact that N ′0 is commutative

and in the second one we use the fact that N ′0/m N ′0m−1 is a group). Therefore,
there is an inclusion Fp[N ′0]S

′
⊆ S′Fp[N ′0].

The R-module π N ′0, endowed with the induced action of N ′′0 and the Hecke action
of M+ with respect to N ′0, is a smooth R-representation of M+n N ′′0 (see the proof
of [Hauseux 2016b, Lemme 3.2.1] in degree 0). On π N ′0, the Hecke action of m
with respect to N ′0 coincides with the action of S′ by definition. On (π N ′0)N ′′0 = π N0,
the Hecke action of m with respect to N ′′0 coincides with the Hecke action of m with
respect to N0 (see the proof of [Hauseux 2016b, Lemme 3.2.2]) which is locally
nilpotent by assumption. Thus by the induction hypothesis, there exists a set of
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representatives N ′′0 /m N ′′0 m−1 ⊆ N ′′0 of the left cosets N ′′0 /m N ′′0 m−1 such that the
action of

S :=
∑

n̄′′∈N ′′0 /m N ′′0 m−1

[n̄′′]S′ ∈ Fp[M+n N0]

on π N ′0 is locally nilpotent. Moreover, there is an inclusion Fp[N ′0]S ⊆ SFp[N ′0]
(because N ′0 is central in N0 and Fp[N ′0]S

′
⊆ S′Fp[N ′0]).

We prove the fact. By [Hauseux 2016c, Lemme 2.1],

N0/m N0m−1 :=
{
[n̄′′]n̄′ : n̄′′ ∈ N ′′0 /m N ′′0 m−1, n̄′ ∈ N ′0/m N ′0m−1

}
⊆ N0

is a set of representatives of the left cosets N0/m N0m−1, and by definition,

S =
∑

n̄∈N0/m N0m−1

n̄m.

We prove that the action of S on π is locally nilpotent. We proceed as in the proof
of [Hu 2012, Théorème 5.1(i)]. Let v ∈ π and set πr := Fp[N ′0] · (S

r
· v) for all

r ≥ 0. Since Fp[N ′0]S ⊆ SFp[N ′0], we have πr+1 ⊆ S ·πr for all r ≥ 0. Since N ′0 is
compact, we have dimFp(πr ) <∞ for all r ≥ 0. If Sr

·v 6= 0, i.e., πr 6= 0, for some
r ≥ 0, then π N ′0r 6= 0 (because N ′0 is a pro-p group and πr is a nonzero Fp-vector
space) so that dimFp(S ·πr ) < dimFp πr (because the action of S on π N ′0 is locally
nilpotent). Therefore πr = 0, i.e., Sr

· v = 0, for all r ≥ dimFp(π0).
We prove the result. The R-modules H•(N ′0, π), endowed with the induced action

of N ′′0 and the Hecke action of M+, are smooth R-representations of M+n N ′′0 (see
the proof of [Hauseux 2016b, Lemme 3.2.1]1). At the level of cochains, the actions
of n′′ ∈ N ′′0 and m are explicitly given as follows. For φ ∈ C j (N ′0, π), we have

(n′′ ·φ)(n′0, . . . , n′j )= [n
′′
] ·φ(n′0, . . . , n′j )(2)

(m ·φ)(n′0, . . . , n′j )= S′ ·φ(m−1n′0n̄′−1
0 m, . . . ,m−1n′j n̄

′−1
j m)(3)

for all (n′0, . . . , n′j ) ∈ N ′ j+1
0 (for (2) we use the fact that N ′0 is central in N0, for (3)

we use (1) and the fact that n′ 7→ n̄′ is a group homomorphism N ′0→ N ′0/m N ′0m−1).
Using (2) and (3), we can give explicitly the Hecke action of m on H•(N ′0, π)

N ′′0 at
the level of cochains as follows. For φ ∈ C j (N ′0, π), we have

(m ·φ)(n′0, . . . , n′j )= S ·φ(m−1n′0n̄′−1
0 m, . . . ,m−1n′j n̄

′−1
j m)

for all (n′0, . . . , n′j ) ∈ N ′ j+1
0 . Since the action of S on π is locally nilpotent and

the image of a locally constant cochain is finite by compactness of N ′0, we deduce
that the Hecke action of m on H j (N ′0, π)

N ′′0 is locally nilpotent for all j ≥ 0. Thus

1We do not know whether [Emerton 2010b, Proposition 2.1.11] holds true when char(F)= p, but
[Hauseux 2016b, Lemme 3.1.1] does and any injective object of Mod∞M+nN0

(R) is still N0-acyclic.
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the Hecke action of m on Hi (N ′′0 ,H j (N ′0, π)) is locally nilpotent for all i, j ≥ 0 by
the induction hypothesis. Using the spectral sequence of smooth R-representations
of M+

Hi (N ′′0 ,H j (N ′0, π))⇒ Hi+ j (N0, π)

(see the proof of [Hauseux 2016b, Proposition 3.2.3] and the footnote on page 21),
we conclude that the Hecke action of m on Hk(N0, π) is locally nilpotent for
all k ≥ 0.

Now, we prove the lemma without assuming pR = 0. We proceed by induction
on the degree of nilpotency r of p in R. If r ≤ 1, then the lemma is already proved.
We assume r > 1 and that we know the lemma for rings in which the degree of
nilpotency of p is r−1. There is a short exact sequence of smooth R-representations
of M+n N0,

0→ pπ→ π→ π/pπ→ 0.

Taking the N0-cohomology yields a long exact sequence of smooth R-representations
of M+,

(4) 0→ (pπ)N0 → π N0 → (π/pπ)N0 → H1(N0, pπ)→ · · · .

If the Hecke action of m on π N0 is locally nilpotent, then the Hecke action of m on
(pπ)N0 is also locally nilpotent so that the Hecke action of m on Hk(N0, pπ) is
locally nilpotent for all k ≥ 0 by the induction hypothesis (since pπ is an R/pr−1 R-
module). Using (4), we deduce that the Hecke action of m on (π/pπ)N0 is also
locally nilpotent so that the Hecke action of m on Hk(N0, π/pπ) is locally nilpotent
for all k ≥ 0 (since π/pπ is an Fp-vector space). Using again (4), we conclude that
the Hecke action of m on Hk(N0, π) is locally nilpotent for all k ≥ 0. �

2.2. Proof of the main result. We fix a compact open subgroup N0 of N and we
let M+ be the open submonoid of M consisting of those elements m contracting N0

(i.e., m N0m−1
⊆N0). We let ZM denote the centre of M and we set Z+M := Z M∩M+.

We fix an element z ∈ Z+M strictly contracting N0 (i.e.,
⋂

r≥0 zr N0z−r
= 1).

Recall that the ordinary part of a smooth R-representation π of P is the smooth
R-representation of M

OrdP(π) :=
(
IndM

M+(π
N0)
)Z M−l.fin

,

where IndM
M+(π

N0) is defined as the R-module of functions f : M → π N0 such
that f (mm′)= m · f (m′) for all m ∈ M+ and m′ ∈ M, endowed with the action of
M by right translation, and the superscript Z M−l.fin denotes the subrepresentation
consisting of locally Z M -finite elements (i.e., those elements f such that R[Z M ] · f
is contained in a finitely generated R-submodule). The action of M on the latter
is smooth by [Vignéras 2016, Remark 7.6]. If R is artinian and π N0 is locally
Z+M -finite (i.e., it may be written as the union of finitely generated Z+M -invariant
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R-submodules), then there is a natural R-linear isomorphism,

(5) OrdP(π)−→
∼ R[z±1

]⊗R[z] π
N0

(cf. [Emerton 2010b, Lemma 3.2.1(1)], whose proof also works when char(F)= p
and over any artinian ring).

If σ is a smooth R-representation of M, then the R-module C∞c (N , σ ) of locally
constant functions f : N → σ with compact support, endowed with the action of
N by right translation and the action of M given by (m · f ) : n 7→ m · f (m−1nm)
for all m ∈ M, is a smooth R-representation of P. Thus we obtain a functor
C∞c (N ,−) :Mod∞M (R)→Mod∞P (R). It is R-linear, exact, and commutes with small
direct sums. The results of [Emerton 2010a, § 4.2] hold true when char(F) = p
and over any ring, thus the functors

C∞c (N ,−) :Mod∞M (R)
Z M−l.fin

→Mod∞P (R),

OrdP :Mod∞P (R)→Mod∞M (R)
Z M−l.fin

are adjoint and the unit of the adjunction is an isomorphism.

Lemma 4. Assume R artinian, p nilpotent in R, and char(F) = p. Let π be a
smooth R-representation of P. If π N0 is locally Z+M -finite, then the Hecke action of
z on Hk(N0, π) is locally nilpotent for all k ≥ 1.

Proof. We set σ :=OrdP(π). The counit of the adjunction between C∞c (N ,−) and
OrdP induces a natural morphism of smooth R-representations of P ,

(6) C∞c (N , σ )→ π.

Taking the N0-invariants yields a morphism of smooth R-representations of M+,

(7) C∞c (N , σ )
N0 → π N0 .

By definition, σ is locally Z M -finite so it may be written as the union of finitely
generated Z M -invariant R-submodules (σi )i∈I . Thus C∞c (N , σ )N0 is the union of
the finitely generated Z+M -invariant R-submodules (C∞(z−r N0zr , σi )

N0)r≥0,i∈I , so
it is locally Z+M -finite. By assumption, π N0 is also locally Z+M -finite. Therefore,
using (5) and its analogue with C∞c (N , σ ) instead of π , the localisation with respect
to z of (7) is the natural morphism of smooth R-representations of M

OrdP(C∞c (N , σ ))→ OrdP(π)

induced by applying the functor OrdP to (6), and it is an isomorphism since the
unit of the adjunction between C∞c (N ,−) and OrdP is an isomorphism.
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Let κ and ι be the kernel and image, respectively, of (6), hence two short exact
sequences of smooth R-representations of P ,

0→ κ→ C∞c (N , σ )→ ι→ 0,(8)

0→ ι→ π→ π/ι→ 0,(9)

such that the third arrow of (8) and the second arrow of (9) fit into a commutative
diagram of smooth R-representations of P whose upper arrow is (6):

C∞c (N , σ ) π

ι

Taking the N0-invariants yields a commutative diagram of smooth R-representations
of M+ whose upper arrow is (7):

C∞c (N , σ )N0 π N0

ιN0

Since the localisation with respect to z of the latter is an isomorphism, the local-
isation with respect to z of the injection ιN0 ↪→ π N0 is surjective, thus it is an
isomorphism (as it is also injective by exactness of localisation). Therefore the
localisation with respect to z of the morphism C∞c (N , σ )N0→ ιN0 is an isomorphism.

Since C∞c (N , σ )∼=
⊕

n∈N/N0
C∞(nN0, σ ) as a smooth R-representation of N0, it

is N0-acyclic (see [Neukirch et al. 2008, § I.3]). Thus the long exact sequence of N0-
cohomology induced by (8) yields an exact sequence of smooth R-representations
of M+,

(10) 0→ κN0 → C∞c (N , σ )
N0 → ιN0 → H1(N0, κ)→ 0,

and an isomorphism of smooth R-representations of M+,

(11) Hk(N0, ι)−→
∼ Hk+1(N0, κ),

for all k ≥ 1. Since the localisation with respect to z of the third arrow of (10) is an
isomorphism, the Hecke action of z on κN0 is locally nilpotent. Thus the Hecke
action of z on Hk(N0, κ) is locally nilpotent for all k ≥ 0 by Lemma 3. Using (11),
we deduce that the Hecke action of z on Hk(N0, ι) is locally nilpotent for all k ≥ 1.

Taking the N0-cohomology of (9) yields a long exact sequence of smooth R-
representations of M+,

(12) 0→ ιN0 → π N0 → (π/ι)N0 → H1(N0, ι)→ · · · .



EXACTNESS OF ORDINARY PARTS IN CHARACTERISTIC p 25

Since the localisation with respect to z of the second arrow is an isomorphism and
the Hecke action of z on H1(N0, ι) is locally nilpotent, the Hecke action of z on
(π/ι)N0 is locally nilpotent. Thus the Hecke action of z on Hk(N0, π/ι) is locally
nilpotent for all k ≥ 0 by Lemma 3. Using (12) and the fact that the Hecke action of
z on Hk(N0, ι) is locally nilpotent for all k ≥ 1, we conclude that the Hecke action
of z on Hk(N0, π) is locally nilpotent for all k ≥ 1. �

Proof of Theorem 1. Assume R artinian, p nilpotent in R, and char(F)= p. Let

(13) 0→ π1→ π2→ π3→ 0

be a short exact sequence of admissible R-representations of G. Taking the N0-
invariants yields an exact sequence of smooth R-representations of M+,

(14) 0→ π
N0
1 → π

N0
2 → π

N0
3 → H1(N0, π1).

The representations π N0
1 , π

N0
2 , π

N0
3 are locally Z+M -finite (cf. [Emerton 2010b,

Theorem 3.4.7(1)], whose proof in degree 0 also works when char(F)= p and over
any noetherian ring) and the Hecke action of z on H1(N0, π1) is locally nilpotent
by Lemma 4. Therefore, using (5), the localisation with respect to z of (14) is the
short sequence of admissible R-representations of M

0→ OrdP(π1)→ OrdP(π2)→ OrdP(π3)→ 0

induced by applying the functor OrdP to (13), and it is exact by exactness of
localisation. �

2.3. Results on extensions. We assume R noetherian. The R-linear category
Modadm

G (R) is not abelian in general, but merely exact in the sense of Quillen [1973].
An exact sequence of admissible R-representations of G is an exact sequence of
smooth R-representations of G,

· · · → πn−1→ πn→ πn+1→ · · · ,

such that the kernel and the cokernel of every arrow are admissible. In particular,
each term of the sequence is also admissible.

For n ≥ 0 and π, π ′ two admissible R-representations of G, we let ExtnG(π
′, π)

denote the R-module of n-fold Yoneda extensions [1960] of π ′ by π in Modadm
G (R),

defined as equivalence classes of exact sequences,

0→ π→ π1→ · · · → πn→ π ′→ 0.

We let D(G) denote the derived category of Modadm
G (R) [Neeman 1990; Keller

1996; Bühler 2010]. The results of [Verdier 1996, § III.3.2] on the Yoneda con-
struction carry over to this setting (see, e.g., [Positselski 2011, Proposition A.13]),
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hence a natural R-linear isomorphism,

ExtnG(π
′, π)∼= HomD(G)(π

′, π[n]).

Proof of Corollary 2. Since IndG
P

and OrdP are exact adjoint functors between
Modadm

M (R) and Modadm
G (R) by Theorem 1, they induce adjoint functors between

D(M) and D(G), hence natural R-linear isomorphisms,

ExtnM(σ,OrdP(π))∼= HomD(M)(σ,OrdP(π)[n])
∼= HomD(G)

(
IndG

P
(σ ), π[n]

)
∼= ExtnG

(
IndG

P
(σ ), π

)
,

for all n ≥ 0. �

Remark. We give a more explicit proof of Corollary 2. The exact functor IndG
P

and
the counit of the adjunction between IndG

P
and OrdP induce an R-linear morphism,

(15) ExtnM(σ,OrdP(π))→ ExtnG
(
IndG

P
(σ ), π

)
.

In the other direction, the exact (by Theorem 1) functor OrdP and the unit of the
adjunction between IndG

P
and OrdP induce an R-linear morphism,

(16) ExtnG
(
IndG

P
(σ ), π

)
→ ExtnM(σ,OrdP(π)).

When n = 0, (16) is the inverse of (15) by the so-called “unit-counit equations”.
Assume n ≥ 1 and let

(17) 0→ OrdP(π)→ σ1→ · · · → σn→ σ → 0

be an exact sequence of admissible R-representations of M. By [Yoneda 1960, § 3],
the image of the class of (17) under (15) is the class of any exact sequence of
admissible R-representations of G

(18) 0→ π→ π1→ · · · → πn→ IndG
P
(σ )→ 0

such that there exists a commutative diagram of admissible R-representations of
G in which the upper row is obtained from (17) by applying the exact functor
IndG

P
, the lower row is (18), and the leftmost vertical arrow is the natural morphism

induced by the counit of the adjunction between IndG
P

and OrdP :

0 IndG
P
(OrdP(π)) IndG

P
(σ1) · · · IndG

P
(σn) IndG

P
(σ ) 0

0 π π1 · · · πn IndG
P
(σ ) 0

Applying the exact functor OrdP to the diagram and using the unit of the ad-
junction between IndG

P
and OrdP yields a commutative diagram of admissible
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R-representations of M in which the lower row is obtained from (18) by applying
the exact functor OrdP , the upper row is (17), and the rightmost vertical arrow is the
natural morphism induced by the unit of the adjunction between IndG

P
and OrdP :

0 OrdP(π) σ1 · · · σn σ 0

0 OrdP(π) OrdP(π1) · · · OrdP(πn) OrdP(IndG
P
(σ )) 0

The leftmost vertical arrow is the identity by one of the unit-counit equations. Thus
the image of the class of (18) under (16) is the class of (17) by [Yoneda 1960, § 3].
We have proved that (16) is a left inverse of (15). The proof that it is a right inverse
is dual.

Corollary 5. Assume R artinian, p nilpotent in R, and char(F)= p. Let σ and σ ′

be two admissible R-representations of M. The functor IndG
P

induces an R-linear
isomorphism

ExtnM(σ
′, σ )−→∼ ExtnG

(
IndG

P
(σ ′), IndG

P
(σ )

)
for all n ≥ 0.

Proof. The isomorphism in the statement is the composite

ExtnM(σ
′, σ )−→∼ ExtnM

(
σ ′,OrdP

(
IndG

P
(σ )

))
−→∼ ExtnG

(
IndG

P
(σ ′), IndG

P
(σ )

)
,

where the first isomorphism is induced by the unit of the adjunction between IndG
P

and OrdP , which is an isomorphism, and the second one is the isomorphism of
Corollary 2 with σ ′ and IndG

P
(σ ) instead of σ and π respectively. �

We fix a minimal parabolic subgroup B ⊆ G, a maximal split torus S ⊆ B,
and we write 1 for the set of simple roots of S in B. We say that a parabolic
subgroup P = M N of G is standard if B ⊆ P and S ⊆ M. In this case, we
write 1P for the corresponding subset of 1, and given α ∈1P (resp. α ∈1 \1P )
we write Pα = MαNα (resp. Pα = MαNα) for the standard parabolic subgroup
corresponding to 1P \ {α} (resp. 1P t {α}).

Let C be an algebraically closed field of characteristic p. Given a standard
parabolic subgroup P = M N and a smooth C-representation σ of M, there exists
a largest standard parabolic subgroup, P(σ )= M(σ )N (σ ), such that the inflation
of σ to P extends to a smooth C-representation eσ of P(σ ), and this extension is
unique [Abe et al. 2017a, II.7 Corollary 1]. We say that a smooth C-representation
of G is supercuspidal if it is irreducible, admissible, and does not appear as a
subquotient of IndG

P (σ ) for any proper parabolic subgroup P = M N of G and
any irreducible admissible C-representation σ of M. A supercuspidal standard
C[G]-triple is a triple (P, σ, Q) where P = M N is a standard parabolic subgroup,
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σ is a supercuspidal C-representation of M, and Q is a parabolic subgroup of G
such that P ⊆ Q⊆ P(σ ). Attached to such a triple in [Abe et al. 2017a] is a smooth
C-representation of G,

IG(P, σ, Q) := IndG
P(σ )

(eσ ⊗StP(σ )
Q

)
,

where
StP(σ )

Q := IndP(σ )
Q (1)

/ ∑
Q(Q′⊆P(σ )

IndP(σ )
Q′ (1)

(here 1 denotes the trivial C-representation) is the inflation to P(σ ) of the generalised
Steinberg representation of M(σ ) with respect to M(σ )∩ Q [Grosse-Klönne 2014;
Ly 2015]. It is irreducible and admissible [Abe et al. 2017a, I.3 Theorem 1].

Proposition 6. Assume char(F)= p. Let (P, σ, Q) and (P ′, σ ′, Q′) be two super-
cuspidal standard C[G]-triples. If Q 6⊆ Q′, then the C-vector space

Ext1G(IG(P ′, σ ′, Q′), IG(P, σ, Q))

is nonzero if and only if P ′ = P, σ ′ ∼= σ , and Q′ = Qα for some α ∈1Q , in which
case it is one-dimensional and the unique (up to isomorphism) nonsplit extension of
IG(P ′, σ ′, Q′) by IG(P, σ, Q) is the admissible C-representation of G

IndG
P(σ )α (IM(σ )α (M(σ )α ∩ P, σ,M(σ )α ∩ Q)).

Proof. There is a natural short exact sequence of admissible C-representations of G,

(19) 0→
∑

Q′(Q′′⊆P(σ ′)

IndG
Q′′(σ

′)→ IndG
Q′(σ

′)→ IG(P ′, σ ′, Q′)→ 0.

Note that we can restrict the sum to those Q′′ that are minimal, i.e., of the
form Q′α for some α ∈ 1P(σ ′) \ 1Q′ . Moreover, we deduce from [Abe et al.
2017b, Theorem 3.2] that its cosocle is isomorphic to

⊕
α∈1P(σ ′)\1Q′

IG(P ′, σ ′, Q′α).
Now if Q 6⊆ Q′, then OrdQ′(IG(P, σ, Q))= 0 by [Abe et al. 2017b, Theorem 1.1(ii)
and Corollary 4.13] so that, using Corollary 2, we see that the long exact sequence
of Yoneda extensions obtained by applying the functor HomG(−, IG(P, σ, Q)) to
(19) yields a natural C-linear isomorphism,

Extn−1
G

( ∑
Q′(Q′′⊆P(σ ′)

IndG
Q′′(σ

′), IG(P, σ, Q)
)
−→∼ ExtnG(IG(P ′, σ ′, Q′), IG(P, σ, Q)),

for all n ≥ 1. In particular, with n = 1 and using the identification of the cosocle of
the sum and [Abe et al. 2017a, I.3 Theorem 2], we deduce that the C-vector space
in the statement is nonzero if and only if P ′ = P, σ ′ ∼= σ , and Q = Q′α for some
α ∈1P(σ ′) \1Q′ (or equivalently Q′ = Qα for some α ∈1Q), in which case it is
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one-dimensional. Finally, using again [Abe et al. 2017b, Theorem 3.2], we see that
for all α ∈1Q the admissible C-representation of G in the statement is a nonsplit
extension of IG(P, σ, Qα) by IG(P, σ, Q). �

Corollary 7. Assume char(F) = p. Let π and π ′ be two irreducible admissible
C-representations of G. If π is supercuspidal and π ′ is not the extension to G of a
supercuspidal representation of a Levi subgroup of G, then Ext1G(π

′, π)= 0.

Proof. By [Abe et al. 2017a, I.3 Theorem 3], there exist two supercuspidal
standard C[G]-triples (P, σ, Q) and (P ′, σ ′, Q′) such that π ∼= IG(P, σ, Q) and
π ′ ∼= IG(P ′, σ ′, Q′). The assumptions on π and π ′ are equivalent to P = G
and Q′ 6= G. In particular, Q 6⊆ Q′ and P 6= P ′ so that Ext1G(π

′, π) = 0 by
Proposition 6. �
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