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STABILITY PROPERTIES OF POWERS OF IDEALS
IN REGULAR LOCAL RINGS OF SMALL DIMENSION

JÜRGEN HERZOG AND AMIR MAFI

Let (R,m) be a regular local ring or a polynomial ring over a field, and let I
be an ideal of R which we assume to be graded if R is a polynomial ring.
Let astab I, astab I and dstab I , respectively, be the smallest integers n for
which Ass I n, Ass I n and depth I n stabilize. Here I n denotes the integral
closure of I n.

We show that astab I = astab I = dstab I if dim R ≤ 2, while already in
dimension three, astab I and astab I may differ by any amount. Moreover,
we show that if dim R=4, there exist ideals I and J such that for any positive
integer c one has astab I −dstab I ≥ c and dstab J − astab J ≥ c.

Introduction

Let (R,m) be a commutative Noetherian ring and I be an ideal of R. Brodmann
[1979a] proved that the set of associated prime ideals Ass I k stabilizes. In other
words, there exists an integer k0 such that Ass I k

= Ass I k0 for all k ≥ k0. The
smallest such integer k0 is called the index of Ass-stability of I, and denoted by
astab I . Moreover, Ass I k0 is called the stable set of associated prime ideals of I. It
is denoted by Ass∞ I . For the integral closures I k of the powers of I, McAdam
and Eakin [1979] showed that Ass I k stabilizes as well. We denote the index of
stability for the integral closures of the powers of I by astab I , and denote its stable
set of associated prime ideals by Ass∞ I .

Brodmann [1979b] also showed that depth R/I k stabilizes. The smallest power
of I for which depth stabilizes is denoted by dstab I . This stable depth is called the
limit depth of I, and is denoted by limk→∞ depth R/I k . These indices of stability
have been studied and compared to some extent in [Herzog and Qureshi 2015;
Herzog et al. 2013]. The purpose of this work is to compare once again these
stability indices. The main result is that if (R,m) is a regular local ring with
dim R ≤ 2, then all 3 stability indices are equal, but if dim R = 3, then we still
have astab I = dstab I , while astab I and astab I may differ by any amount. On the
other hand, if dim R ≥ 4, we will show by examples that in general a comparison
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between these stability indices is no longer possible. In other words, any inequality
between these invariants may occur.

Quite often, but not always, depth R/I k is a nonincreasing function on n. In
the last section we prove that if (R,m) is a 3-dimensional regular local ring and
I satisfies I k+1

: I = I k for all k, then depth R/I k is nonincreasing. For any
unexplained notion or terminology, we refer the reader to [Bruns and Herzog 1993].

Several explicit examples were performed with help of the computer algebra
systems [CoCoA] and [Macaulay2], as well as with the program in [Bayati et al.
2011] which allows one to compute Ass∞ I of a monomial ideal I.

1. The case dim R ≤ 3

In this section we study the behavior of the stability indices for regular rings of
dimension ≤ 3. In the proofs we will use the following elementary and well known
fact: let I ⊂ R be an ideal of height 1 in the regular local ring R. Then there exists
f ∈ R such that I = f J where either J = R or otherwise height(J ) > 1. Indeed, let
I = ( f1, . . . , fm). Since R is factorial, the greatest common divisor of f1, . . . , fm

exists. Let f = gcd( f1, . . . , fm), and gi = fi/ f for i = 1, . . . , m. Then I = f J,
where J = (g1, . . . , gm). Suppose height(J )= 1; then there exists a prime ideal P
of height 1 with J ⊂ P. Since R is regular, P is a principal ideal, say P = (g). It
follows then that g divides all gi , but gcd(g1, . . . , gm)= 1, a contradiction.

Remark 1.1. Let (R,m) be a regular local ring with dim R ≤ 2 and let I be an
ideal of R. Then

astab I = astab I = dstab I = 1.

Proof. If dim R ≤ 1, then either R is a field or a principal ideal domain, and the
statement is trivial. Now suppose dim R = 2 that and I 6= 0. If height(I )= 2, then
m belongs to Ass I k and Ass I k for all k, and the assertion is trivial. Hence, we
may assume that height(I ) = 1. Then I = f J with J = R or height(J ) = 2. In
the first case I is a principal ideal, and the assertion is trivial. In the second case,
I k
= f k J k for all k, and J k is m-primary. Thus there exists g 6∈ J k with gm ∈ J k.

Then g f k
6∈ f k J k and g f km∈ f k J k. This shows that in the second case m∈Ass I k

for k, so that astab I = dstab I = 1.
Finally observe that in the second case, I k = f k J k for all k. This shows that

m ∈ Ass I k for all k, so that also in this case astab I = 1. �

Theorem 1.2. Let (R,m) be a regular local ring with dim R ≤ 3 and I be an ideal
of R. Then astab I = dstab I .

Proof. By Remark 1.1, we may assume that dim R = 3. If height(I ) ≥ 2, then
Ass I k

⊆Min(I )∪ {m} for all k. This implies at once that astab I = dstab I . Now
suppose that height(I ) = 1. If I is a principal ideal, then the assertion is again



STABILITY PROPERTIES OF POWERS OF IDEALS IN REGULAR LOCAL RINGS 33

trivial. Otherwise, I = f J with height(J ) ≥ 2. Since I k is isomorphic to J k

as an R-module, it follows that proj dim I k
= proj dim J k for all k. This implies

that proj dim R/I k
= proj dim R/J k for all k, and consequently depth R/I k

=

depth R/J k , by the Auslander–Buchsbaum formula. Thus, dstab I = dstab J .
We claim that astab I = astab J . Since we have already seen that astab J =

dstab J if height(J )≥ 2, the claim then implies that astab I = dstab I , as desired.
The claim follows once we have that shown

Ass I k
= Ass f k J k

=Min( f )∪Ass J k .

For that we only need to prove the second equation. So let P ∈ Spec R with
f k J k

⊂ P. Then P ∈ Ass f k J k if and only if RP/ f k J k RP has depth 0. If
J 6⊂ P, then f k J k RP = f k RP, and hence depth RP/ f k J k RP = 0 if and only if
depth RP/ f k RP = 0, and this is the case if and only if P ∈Min( f ). If J ⊂ P, then
the RP -modules f k J k RP and J k RP are isomorphic, so that with the arguments
as above depth RP/ f k J k RP = depth RP/J k RP , which shows that in this case
P ∈ Ass f k J k if and only if P ∈ Ass J k . This completes the proof. �

The statements shown so far and its proofs made for ideals in a regular local ring
are valid as well for any graded ideal in a polynomial ring.

We now turn to some explicit examples. Hibi et al. [2016, Proposition 1.5] show
that for any integer t ≥ 2 the ideal I = (x t , xyt−2z, yt−1z) ⊂ K [x, y, z] satisfies
dstab I = t . Since by Theorem 1.2, astab I = dstab I , this example shows that in a
3-dimensional graded or local ring (we may pass to K [|x, y, z|]) both the index of
depth stability as well as the index of Ass-stability may be any given number.

The following example shows that already for an ideal I in a 3-dimensional
polynomial ring the invariants astab I and astab I may differ.

Example 1.3. Let R = K [x, y, z] be a polynomial ring over a field K and let
I = ((xy)2, (xz)2, (yz)2)⊂ R. Then astab I = 2 and astab I = 1.

Proof. We first claim that I n
: (xy)2

= I n−1
+ z2n(x2, y2)n−2. Indeed, let J =

((xz)2, (yz)2). Then I n
= J n
+(xy)2 I n−1, and hence I n

: (xy)2
= J n

: (xy)2
+ I n−1.

Since J n
: (xy)2

= z2n(x2, y2)n
: (xy)2

= z2n(x2, y2)n−2, the assertion follows.
By symmetry, we also have I n

: (xz)2
= I n−1

+ y2n(x2, z2)n−2 and I n
: (yz)2

=

I n−1
+ x2n(y2, z2)n−2. Thus, for all n ≥ 1 we obtain

I n
: I = (I n

: (xy)2)∩(I n
: (xz)2)∩(I n

: (yz)2)

= (I n−1
+z2n(x2,y2)n−2)∩(I n−1

+y2n(x2,z2)n−2)∩(I n−1
+x2n(y2,z2)n−2)

= I n−1
+(z2n(x2,y2)n−2)∩(y2n(x2,z2)n−2)∩(x2n(y2,z2)n−2)= I n−1.

In other words, I satisfies strong persistence in the sense of [Herzog and Qureshi
2015]. In particular, Ass I n

⊂ Ass I n+1 for all n ≥ 1. Now since Ass I =
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{(x, y), (x, z), (y, z)} and Ass I 2
= {(x, y), (x, z), (y, z), (x, y, z)}, we deduce

from this that astab I = dstab I = 2.
With Macaulay2 one checks that I =

(
(xy)2, (xz)2, (yz)2, xyz2, xy2z, x2 yz

)
and that Ass I = {(x, y), (x, z), (y, z), (x, y, z)}. By [McAdam 1983, Corollary
11.28], one has Ass I ⊂Ass I 2⊂· · ·⊂Ass∞ I . Since Ass I n is a subset of the mono-
mial prime ideals containing I, and since this set is {(x, y), (x, z), (y, z), (x, y, z)},
we see that Ass I = Ass I n for all n. Hence, astab I = 1. �

The difference astab I − astab I may in fact be as big as we want:

Theorem 1.4. Let R = k[x, y, z] be the polynomial ring over a field K, c be a
positive integer and I = (x2c+2, xy2cz, y2c+2z). Then astab I =c+2 and astab I =2.

Proof. Note that I = (x2c+2, z)∩ (x, y2c+2)∩ (y2c, x2c+2), from which it follows
that dim R/I = depth R/I = 1.

In the next step we prove that I n
: I = I n−1 for all n. Then [Herzog and Qureshi

2015, Theorem 1.3] implies that Ass I n
⊆ Ass I n+1 for all n. In particular, if

depth R/I k
= 0 for some k, then depth R/I r

= 0 for all r ≥ 0. Since depth R/I k
≤ 1

for all k, it then follows that depth R/I k
≥ depth R/I k+1 for all k.

In order to show that I n
: I = I n−1, observe that

I n
: x2c+2

= I n−1
+ ((y2cz)n(x, y2)n

: x2c+2)= I n−1
+ (y2cz)n(x, y2)n−2(c+1),

and that

I n
: xy2cz = I n−1

+ ((x2c+2, y2c+2z)n
: xy2cz)

⊆ I n−1
+ (((x2c+2, y2c+2z)n

: y2c+2z) : x2c+2)

= I n−1
+ (x2c+2, y2c+2z)n−2.

Similarly we have

I n
: y2c+2z = I n−1

+ (xn(x2c+1, y2cz)n
: y2c+2z)

⊆ I n−1
+ (xn(x2c+1, y2cz)n

: y4cz2)

= I n−1
+ xn(x2c+1, y2cz)n−2.

Now since

I n−1
⊆ (I n

: I )

⊆ I n−1
+ (y2cz)n(x, y2)n−2(c+1)

∩ (x2c+2, y2c+2z)n−2
∩ xn(x2n+1, y2cz)n−2

⊆ I n−1
+ I n
= I n−1,

it follows that I n
: I = I n−1 for all n, as desired.

Next we claim that I n
: x2c+2

= I n−1 for all n ≤ c+ 1.
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If n = 1, there is nothing to prove. Let 1 < n ≤ c+ 1. By a calculation as before
we see that

I n
: x2c+2

= I n−1
+ ((y2cz)n(x, y2)n

: x2c+2)= I n−1
+ (y2cz)n

= I n−1
+ (y(2c+2)(n−1)+2c+2−2nzn)= I n−1

+ (y2c+2z)n−1 y2c+2−2nz

= I n−1.

We proceed by induction on n to show that depth S/I n
= 1 for n ≤ c + 1.

We observed already that depth S/I = 1, Now let 1 < n ≤ c + 1. Then, since
I n
: x2c+2

= I n−1, we obtain the exact sequence

0→ R/I n−1 x2c+2
−−→ R/I n

→ R/(I n, x2c+2)→ 0.

Since by the induction hypothesis depth R/I n−1
= 1, it follows that

depth R/I n
≥min{depth R/I n−1, depth R/(I n, x2c+2)}

=min{1, depth R/(I n, x2c+2)}.

Note that (I n, x2c+2) = ((y2cz(x, y2)n, x2c+2), which implies that R/(I n, x2c+2

has depth 1. Thus we have depth R/I n
≥ 1. On the other hand, we have seen before

that depth R/I n
≤ depth R/I = 1, and so depth R/I n

= 1 for all n ≤ c+ 1.
In the next step we show that depth R/I c+2

= 0, which then implies that
depth R/I n

= 0 for all n ≥ c+ 2. In particular, it follows that astab I = c+ 2.
In order to prove that depth R/I c+2

= 0, we show that

x2c+2 y(c+1)(2c+2)−1zc+1
∈ (I c+2

:m) \ I c+2.

Indeed, let u = x2c+2 y(c+1)(2c+2)−1zc+1. Then

ux = x2c+2(xy2cz)(y2c+2z)c y2c,

uy = x2c+2(y2c+2z)c+1

uz = (xy2cz)c+1(xy2cz)(yxc).

This shows that u ∈ (I c+2
:m).

Assume that x2c+2 y(c+1)(2c+2)−1zc+1
∈ I c+2. Then

y(c+1)(2c+2)−1zc+1
∈ (I c+2

: x2c+2)= I c+1
+ (y2cz)c+2,

and so y(c+1)(2c+2)−1zc+1
∈ I c+1. Since I c+1

= (x2c+2, y2cz(x, y2))c+1, expansion
of this power implies that

y(c+1)(2c+2)−1
∈

c+1∑
i=0

(x2c+2)i (y2c(x, y2))c+1−i.

It follows that y(c+1)(2c+2)−1
∈ (y2c(x, y2))c+1, which is a contradiction.
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Now we compute astab I , and first prove that

I = (I, (x3 y2c−1z, x4 y2c−2z, . . . , x2c+1 yz)).

Let J= (I, (x3 y2c−1z, x4 y2c−2z, . . . , x2c+1 yz)). For all i ∈Z with 3≤ i≤2c+ 1,
we have

(x i y2c−i+2z)2c
= x2ic y2c(2c−i+2)z2c

= x2c(i−1)+i−2x2c−i+2 y2c(2c−i+2)z2c−i+2zi−2

= x2c(i−1)+i−2(xy2cz)2c−i+2zi−2

= (x2c+2)i−2(xy2cz)2c−i+2zi−2x2c+2−i
∈ I 2c.

Thus J ⊆ I . We have Ass I/J ⊆ Ass J . The primary decomposition of J shows
that Ass J = {(x, z), (x, y)}. Let P = (x, z). Then (I )P = IP = (x2c+2, z)P =

(x2c+2, z)P . The last equality follows by [Huneke and Swanson 2006, Proposi-
tion 1.3.5], and so (I/J )P = 0. Hence P /∈ Ass I/J . Now let P = (x, y). Then

(I )P = (x2c+2, xy2c, y2c+2)P ⊂ ((x, y)2c+2, xy2c)P = ((x, y)2c+2, xy2c)P = JP .

The second equality follows by [Huneke and Swanson 2006, Exercise 1.19]. Thus
we have (I/J )P = 0. This shows that Ass I/J =∅, and hence I = J, as desired.
In particular, we see that

Ass I = {(x, z), (x, y)}.

Since Ass I ⊆ Ass I k for all k, it follows that {(x, z), (x, y)} ⊂ Ass I k for all k.
Suppose that (y, z) ∈ Ass I k for some k. Then (y, z) is a minimal prime ideal of I.
However, this is not the case, as can be seen from the primary decomposition of I.

Next we show that m= (x, y, z) belongs to Ass I 2. Then it follows that

Ass I k = {(x, z), (x, y), (x, y, z)} for all k ≥ 2,

thereby showing that astab I = 2.
In order to prove that m∈Ass I 2, we first show that the ideal L , which is equal to(

I 2, (x4 y4c−1z2, x5 y4c−2z2, . . . , x2c+2 y2c+1z2), (x2c+5 y2c−1z, x2c+6 y2c−2z . . . , x4c+3 yz)
)
,

is contained in I 2.
Since

I 2
= (x4c+4, x2 y4cz2, y4c+4z2, x2c+3 y2cz, x2c+2 y2c+2z, xy4c+2z2),

it follows that for all integers i with 4≤ i ≤ 2c+ 2 the element

(x i y4c−i+3z2)4cx4ic y4c(4c−i+3)z8c
= x2(4c−i+3)y4c(4c−i+3)z2(4c−i+3)x4c(i−2)+2i−6z2i−6

= (x2 y4cz2)4c−i+3(x4c+4)i−3x4c−2i+6z2i−6
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belongs to (I 2)4c. Also, for all integers i with 5≤ i ≤ 2c− 2, the element

(x2c+i y2c+4−i z)4c
= x2(2c+4−i)y4c(2c+4−i)z2(2c+4−i)x8c2

+4ic+2i−4c−8z2i−8

= (x2 y4cz2)2c+4−i x (4c+4)(2c+i−4)x4c+8−2i z2i−8

= (x2 y4cz2)2c+4−i (x4c+4)2c+i−4x4c+8−2i z2i−8

belongs to (I 2)4c. This shows L ⊆ I 2.
By using primary decomposition for the ideal L , we see that

Ass L = {(x, z), (x, y), (x, y, z)}.

On the other hand, by easy calculation, one verifies that L : (x2c+2 y2c+1z) = m.
Finally we show that x2c+2 y2c+1z /∈ I 2, which then implies that m ∈ Ass I 2, as
desired.

In order to prove this we show by induction on n that (x2c+2 y2c+1z)n /∈ (I 2)n for
all n. For n = 1, if x2c+2 y2c+1z ∈ I 2, then y2c+1z ∈ I 2

: x2c+2
= I + (y2cz)2

= I,
which is a contradiction.

Now let n > 1. Assume that (x2c+2 y2c+1z)n−1 /∈ (I 2)n−1. using the induction
hypothesis. If (x2c+2 y2c+1z)n

∈ (I 2)n, then

x (2c+2)(n−1)(y2c+1z)n
∈ (I 2n

: x2c+2)= I 2n−1
+ (y2cz)2n(x, y2)2n−2(c+1),

and so x (2c+2)(n−1)(y2c+1z)n
∈ I 2n−1.

It follows that x (2c+2)(n−1)(y2c+1z)n−1
∈ (I 2n−1

: y2c+1z). Since

(I 2n−1
: y2c+1z)= y I 2n−2

+ ((x2c+2, xy2cz)2n−1
: y2c+1z)

= y I 2n−2
+ (x2n−1(x2c+1, y2cz)2n−2

: y)

= y I 2n−2
+ x2n−1(y2c−1z(x2c+1, y2cz)2n−3

+ (x2c+1)2n−2),

we see that x (2c+2)(n−1)(y2c+1z)n−1
∈ y(I 2)n−1, a contradiction.

Thus (x2c+2 y2c+1z)n /∈ (I 2)n for all n, as desired. �

The theorem says that for any positive integer c there exists a monomial ideal
in K [x, y, z] with astab I − astab I = c. However we do not know whether for all
ideals in I ⊂ K [x, y, z] one has astab I ≤ astab I .

2. The case dim R > 3

The purpose of this section is to show that for a polynomial ring S in more than 3
variables, for a graded ideal I ⊂ S the invariants astab I and dstab I may differ by
any amount.

We begin with two examples.
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Example 2.1. Let R = k[x, y, z, u] be the polynomial ring over a field k and
consider the ideal I = (xy, yz, zu) of R. Then astab I = 1 and dstab I = 2.

Proof. We have Ass I =Min(I ), and since I may be viewed as the edge ideal of
a bipartite graph it follows from [Herzog and Hibi 2011, Definition 1.4.5, Corol-
lary 10.3.17] that Ass I = Ass I n for all n ∈ N. Therefore astab I = 1. By [Herzog
and Hibi 2011, Corollary 10.3.18], limk→∞ depth R/I k

= 1. Moreover, it can
be seen that depth R/I = 2 and depth R/I 2

= 1. Since I has a linear resolution,
[Herzog and Hibi 2011, Theorem 10.2.6] implies that for all k ≥ 1, I k has a linear
resolution as well. Therefore, by [Herzog et al. 2013, Proposition 2.2] we have
depth R/I k+1

≤ depth R/I k for all k ∈N. Hence depth R/I k
= 1 for all k ≥ 2, and

so dstab I = 2. �

Example 2.2. Let R = K [x, y, z, u] be the polynomial ring in 4 variables over a
field K, and let I = (x2z, uyz, u3). Then astab I = 2 and dstab I = 1.

Proof. Set J = (uyz, u3). For all n ∈ N, it follows that

I n
: x2z = (J n

+ x2z I n−1) : x2z = I n−1
+ (J n

: x2z)= I n−1.

Hence, Ass I n
⊆ Ass I n+1 for all n ∈ N. By using Macaulay2 and the program in

[Bayati et al. 2011], we see that Ass∞I =Ass I 2
={(x,u),(z,u),(x, y,u),(x,z,u)}.

Therefore astab I = 2. As Ass I n
⊆ Ass I n+1 for all n ∈ N, it follows that m =

(x, y, z, u) /∈ Ass I n and so we have depth R/I n
≥ 1. Moreover y − z ∈ m is a

nonzerodivisor on R/I n for all n ∈ N. Set R = R/(y − z). Thus by [Bruns and
Herzog 1993, Lemma 4.2.16] we have R/I n = R/I n ∼= K [x, z, u]/(x2z, uz2, u3)n.
Since xzu3n−1

∈ (I n) : m \ I n , it follows depth R/I n = 0 and so depth R/I n
= 1

for all n ∈ N. Therefore dstab I = 1. �

Now we come to the main result of this section.

Theorem 2.3. Let R = k[x, y, z, u] be the polynomial ring over a field k. Then
for any nonnegative integer c, there exist two ideals I and J of R such that the
following statements hold:

(i) astab I − dstab I ≥ c.

(ii) dstab J − astab J ≥ c.

Proof. We may assume that c is a positive integer. Let I = (xc+1zc, u2c−1 yz, u2c+1)

and J = (xc yc−1, yc−1xc−1z, zcuc). We claim that astab I = dstab J = c+ 1 and
astab J = dstab I = 1.

(i) In this case, by using Example 2.2, we can assume that c≥ 2. For all n ∈N, we
have

(I n
: xc+1zc)= (((u2c−1 yz, u2c+1)n

+ xc+1zc I n−1) : xc+1zc)

= I n−1
+ ((u2c−1 yz, u2c+1)n

: xc+1zc).
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Since ((u2c−1 yz, u2c+1)n
: xc+1zc)= ((u2c−1 yz, u2c+1)n

: zc)⊆ I n−1, it follows that
(I n
: xc+1zc)= I n−1 and so Ass I n

⊆ Ass I n+1. By using Macaulay2 and [Bayati
et al. 2011], we have Ass I = {(x, u), (z, u), (y, z, u), (x, y, u)} and Ass∞ I =
{(x, u), (z, u), (y, z, u), (x, z, u), (x, y, u)}. Set p= (x, z, u). It is easily seen that
I i
: p = I i for all i ≤ c and xc yc+1zcu(2c+1)c

∈ (I c+1
p : p) \ I c+1

p . Hence Ass I =
Ass I 2

= · · · = Ass I c, Ass I c+1
= Ass∞ I and so astab I = c+ 1. By the same

argument as in the proof of Example 2.2, we see that m= (x, y, z, u) /∈Ass I n for all
n ∈N and so we have depth R/I n

≥ 1 and x−y−z ∈m is a nonzerodivisor on R/I n

for all n∈N. Therefore R/I n= R/I n∼=K [y, z, u]/((y+z)c+1zc, u2c−1 yz, u2c+1)n,
where R= R/(x−y−z). Since z2cu(2c+1)n−1

∈ (I n) :m\I n, it follows depth R/I n=

0 and so depth R/I n
= 1 for all n ∈ N. Therefore dstab I = 1.

(ii) For all n ∈ N, we have

(J n
: zcuc)= (((xc yc−1, yc−1xc−1z)n

+ zcuc J n−1) : zcuc)

= J n−1
+ ((xc yc−1, yc−1xc−1z)n

: zcuc)

= J n−1
+ ((xc yc−1, yc−1xc−1z)n

: zc).

Since ((xc yc−1, yc−1xc−1z)n
: zc)⊆ J n−1, for all n ∈N we have (J n

: zcuc)= J n−1.
Therefore, Ass J n

⊆Ass J n+1 for all n ∈N. By using Macaulay2 and [Bayati et al.
2011] we have Ass∞ J ={(x, z), (x, u), (y, z), (y, u)}=Min(J ) and so astab J =1.
Since m /∈ Ass J n for all n ∈ N, we have 2 = dim R/J ≥ depth R/J n

≥ 1 and
x− y ∈m is a nonzerodivisor on R/J n for all n ∈N. Again by the above argument,
R/J n = R/J n ∼= K [x, z, u]/(x2c−1, x2c−2z, zcuc)n, where R = R/(x − y). Since
J i : m = J i for all i ≤ c and x (2c−1)nzn−1uc−1

∈ J n : m \ J n for all n ≥ c+ 1, it
follows that depth R/J = depth R/J 2

= · · · = depth R/J c
= 2 and depth R/J n

= 1
for all n ≥ c+ 1. Hence dstab J = c+ 1. �

3. Nonincreasing depth functions

Theorem 3.1. Let (R,m) be a regular local ring with dim R = 3 and I be an ideal
of R. If I n+1

: I = I n for all n ∈ N, then depth R/I n is nonincreasing.

Proof. Suppose height(I ) ≥ 2. Since I n+1
: I = I n for all n ∈ N, it follows that

depth R/I n+1
≤ depth R/I n . Now, let height(I ) = 1. Then there exists an ideal

J of R and an element f ∈ R such that I = f J and height(J ) ≥ 2. As in the
proof of Theorem 1.2, depth R/I n

= depth R/J n for all n ∈N. Since I n+1
: I = I n

for all n ∈ N, we have J n+1
: J = J n. Thus depth R/J n+1

≤ depth R/J n and so
depth R/I n+1

≤ depth R/I n . This completes the proof. �

Corollary 3.2. (i) Let (R,m) be a regular local ring with dim R = 3. Then
depth R/I n is nonincreasing.
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(ii) Let R = k[x, y, z] be a polynomial ring in 3 indeterminates over a field k. If I
is an edge ideal of R, then depth R/I n is nonincreasing.

Example 3.3. Let R = k[x, y, z, u] be a polynomial ring and consider the ideal
I =

(
xy2z, yz2u, zu2(x+ y+ z+u), xu(x+ y+ z+u)2, x2 y(x+ y+ z+u)

)
of R.

Then depth R/I = depth R/I 4
= 0 and depth R/I 2

= depth R/I 3
= 1. Thus the

depth function is neither nonincreasing nor nondecreasing.

In view of Theorem 3.1 one may ask whether in a regular local ring (of any
dimension), depth R/I n is a nonincreasing function of n, if I n+1

: I = I n for all n.
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