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We prove that every homomorphism from the fundamental group of a planar
Peano continuum to the fundamental group of a planar or one-dimensional
Peano continuum is induced by a continuous map up to conjugation. This is
used to provide an uncountable family of planar Peano continua with pairwise
nonisomorphic fundamental groups each of which is not homotopy equivalent
to a one-dimensional space.

1. Introduction

Every continuous map between topological spaces induces a homomorphism be-
tween their respective homotopy and homology groups. This provides a method to
translate questions about continuous functions of topological spaces into questions
about homomorphisms of abstract groups. The converse statement is not true even
for relatively nice spaces. For example, RP∞ × S2 and RP2 have isomorphic
homotopy groups but there does not exist any continuous map which induces an
isomorphism on all homotopy groups; see [Hatcher 2002, p. 345]. When only
considering the first homotopy group, it is a classical result that any homomorphism
from the fundamental group of a connected CW complex into the fundamental
group of a K (G, 1) space is induced by a continuous map; see [Hatcher 2002,
Proposition 1B.9].

However, for spaces with local topological complications, the converse could
fail even when only considering homomorphisms of the fundamental group. For
example, an inner automorphism of the fundamental group of a one-dimensional
continuum which is not locally simply connected at the chosen basepoint cannot be
induced by a continuous map; see [Conner and Kent 2017, Proposition 3.12].

In the literature, the phrase induced by a continuous map has been used to mean
both strictly induced by a continuous map and induced by a continuous map up
to conjugation. To avoid confusion, we will say a homomorphism ϕ between
fundamental groups is induced by a continuous map if ϕ = f∗ for some continuous
map f . We will say that ϕ is conjugate to a homomorphism induced by a continuous
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map if there exists a path α such that α̂ ◦ϕ = f∗ for some continuous map f where
α̂ is the change of basepoint isomorphism induced by the path α.

Katsuya Eda [1998] was the first to prove that arbitrary homomorphisms between
fundamental groups of certain spaces which are not locally simply connected are
induced by continuous maps up to conjugation by showing that any endomorphism
of the fundamental group of the Hawaiian earring is conjugate to one induced by a
continuous map. Later, Eda proved the following generalization.

Theorem A [Eda 2010]. Every homomorphism between fundamental groups of
one-dimensional Peano continua is conjugate to a homomorphism induced by a
continuous map.

Eda actually proves a stronger statement [2010, Theorem 1.2] by allowing the
range to be the fundamental group of any one-dimensional metric space. Under-
standing the extent to which homomorphisms of fundamental groups are induced
by continuous maps of the underlying topological spaces provides an additional
tool to understand the homotopy type of locally complicated spaces using their
fundamental groups, see [Cannon and Conner 2006; Eda 2002; Conner and Kent
2011]. Knowing when homomorphisms are induced by continuous maps allowed
Eda to prove that the fundamental group is a perfect invariant of homotopy type for
one-dimensional Peano continua [Eda 2010] and is the key tool to prove that the set
of points at which a space is not semilocally simply connected is constructible from
the fundamental group for one-dimensional and planar Peano continua [Conner and
Eda 2005; Conner and Kent 2011].

In [Conner and Kent 2011], Greg Conner and the author show that many of the
known results about fundamental groups of one-dimensional spaces extend to planar
spaces. Specifically, it is proved that any homomorphism from the fundamental
group of a one-dimensional Peano continuum to the fundamental group of a planar
Peano continuum is induced by a continuous map after composing with a change of
basepoint isomorphism (Theorem A when the range is a planar Peano continuum).
Here we will prove the following theorem.

Theorem 2.7. Let ϕ : π1(X, x0)→ π1(Y, y0) be a homomorphism from the fun-
damental group of a planar Peano continuum X into the fundamental group of a
one-dimensional or planar Peano continuum Y . Then there exists a continuous
function f : X → Y and a path α : (I, 0, 1)→ (Y, y0, y), with the property that
f∗ = α̂ ◦ϕ.

In one-dimensional spaces every path class contains a unique (up to reparametriza-
tion) minimal representative and every other representative can be homotoped to
the unique minimal one by removing backtracking; see [Curtis and Fort 1959,
Lemma 3.1] or [Cannon and Conner 2006, Theorem 3.9] for the existence and
uniqueness of reduced representatives. We will say that a loop in a one-dimensional
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space is reduced if it is the unique minimal representative in its path class. Every
one-dimensional Peano continuum deformation retracts to a one-dimensional Peano
continuum in which every point is contained in some reduced loop [Conner and
Meilstrup 2012, Theorems 4.3 and 3.1]. With these tools in hand, to prove that
homomorphisms from the fundamental group of one-dimensional Peano continua are
continuous up to conjugation, one starts with a one-dimensional Peano continuum
such that each point is contained in a reduced loop and then uses the homomorphism
to understand where to send each reduced loop.

Two of the difficulties of the planar case are the lack of a canonical deformation
retract and the lack of representatives for path classes which are analogous to
reduced paths in one-dimensional spaces. To prove Theorem 2.7, we will find a one-
dimensional core of a planar Peano continuum to which we can apply Theorem A.
We will show how to continuously extend this map to all of the planar continuum.

The property that homomorphisms are induced by continuous maps up to conju-
gation does not hold for more general spaces. For example there exists uncountable
many homomorphisms from the fundamental group of the Hawaiian earring into the
fundamental group of the projective plane which are not induced by a continuous
function [Conner and Spencer 2005].

Homotopy dimension. The homotopy dimension of a space X is the smallest cov-
ering dimension of a space homotopy equivalent to X . A space is homotopically at
most k-dimensional if its homotopy dimension is at most k.

Cannon and Conner [2007] asked the following question:

Question. If X is a planar Peano continuum whose fundamental group is isomorphic
to the fundamental group of some one-dimensional Peano continuum, is it true that
X is homotopy equivalent to a one-dimensional Peano continuum?

Let S be the Sierpinski curve in R2 obtained by the standard Cantor construction
performed on the unit square in the plane. Let Si be the planar Peano continuum
obtained from S by filling in i of the removed discs, i.e.,

Si = S∪
( i⋃

n=1
Dn

)
,

where Dn are distinct bounded components of R2
\ S. Cannon, Conner and Zastrow

showed that S1 is not homotopy equivalent to any one-dimensional space [Cannon
et al. 2002]. Their example, S1, illustrates that there exists some rigidity in planar
sets and at least provides some motivation as to why the previous question is interest-
ing. Karimov, Repovš, Rosicki, and Zastrow [Karimov et al. 2005] give additional
examples of planar sets spaces which are not homotopically one-dimensional.

By applying Theorem 2.7, we will show that Si cannot have the same fundamental
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group as any one-dimensional Peano continua and that the Si , S j do not have
isomorphic fundamental groups for i 6= j .

As an application of Theorem 2.7, we prove the following result.

Theorem 2.18. There exists an uncountable family of planar Peano continua whose
fundamental groups are pairwise nonisomorphic and also not isomorphic to the
fundamental group of any one-dimensional Peano continuum.

Our family of examples is constructed by filling infinitely many of the removed
squares of S in a discrete fashion and then studying the limit set of the filled squares.

2. Planar to one-dimensional or planar

We will use D to denote the unit disc in the Euclidean plane R2 and I to denote
the interval [0, 1]. For a metric space X , let B X

r (x) = {y ∈ X | d(x, y) < r}
and SX

r (x) = {y ∈ X | d(x, y) = r}. For planar sets X , B X
r (x) = BR2

r (x) ∩ X
and SX

r (x) = SR2

r (x) ∩ X . For A a subset of a metric space X , we let Nε(A) =
{x ∈ X | d(x, A) < ε}, the open ε-neighborhood of A.

For a path f : I → X , let f (t) denote the path f (t) = f (1− t). For a path
α : (I, 0, 1)→ (X, x0, x1), let α̂ : π1(X, x0)→ π1(X, x1) by the standard change of
base point isomorphism, i.e., α̂([g])= [α ∗ g ∗α]. This isomorphism has inverse α̂.

We will use int(X) to denote the interior of X as a subset of the plane, cl(X) for
the closure of X in the plane and ∂X for cl X \ int(X).

Theorem 2.1 [Eda 2010; Conner and Kent 2011]. Let ϕ : π1(X, x0)→ π1(Y, y0)

be a homomorphism from the fundamental group of a one-dimensional Peano
continuum X into the fundamental group of a one-dimensional or planar Peano
continuum Y . Then there exists a continuous function f : X → Y and a path
α : (I, 0, 1)→ (Y, y0, y), with the property that f∗ = α̂ ◦ϕ.

Lemma 2.2. Suppose that f : ∂D → X is a nullhomotopic loop into a planar
or one-dimensional set. Then f is nullhomotopic in the B X

r ( f (0)) for every r >
2 diam(im f ).

Cannon and Conner [2007, Section 6: proof of Theorem 1.4] prove that every
nullhomotopic loop in a planar Peano continuum bounds a disc contained in the
convex hull of its image (in which case the multiplicative constant is unnecessary).
However, they do not explicitly state this corollary of their proof. Another proof
using the Riemann mapping theorem can be found in [Fischer and Zastrow 2005,
Lemma 13]. Here we will prove a slightly weaker bound, which will be sufficient
for our needs, using the Phragmén–Brouwer properties.

Proof. The lemma is trivial when X is one-dimensional since every nullhomotopic
loop factors through a dendrite [Cannon and Conner 2006, Theorem 3.7] which
implies that it is nullhomotopic inside of its image.
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Suppose that f : ∂D→ X is a nullhomotopic loop into a planar set X . We will
denote the smallest convex set containing a set A by Hull(A).

Claim. Suppose that l is a line in the plane which is disjoint from im f and A is the
component of R2

\ l containing im f . For every ε > 0 and any extension h :D→ X
of f, there exists an extension h̃ : D→ X of f such that

h̃({x ∈ D | h(x) 6= h̃(x)})⊂ X ∩Hull(l ∩ h(D)) and im h̃ ⊂ X ∩ cl(Nε(A)).

Proof of claim. Suppose that h : D→ X is a nullhomotopy of f . Let C be the
components of h−1(R2

\ A) which intersect R2
\Nε(A). Since D is compact, C

is finite. For each C ∈ C, let ∂MC be the boundary of the unbounded component
of R2

\ C . Then ∂MC is a closed connected subset of D such that the closure
of the bounded components of R2

\ ∂MC contains C . (This is the second of the
Phragmén–Brouwer properties in [Wilder 1949, p. 47] applied to the unbounded
component of R2

\C .) We will denote the closure of the bounded components of
R2
\ ∂MC by wHull(C).
By passing to a subset of C, we may assume that for any two distinct elements

C,C ′ ∈ C we have that C ′ is contained in the unbounded component of R2
\ C

while still maintaining the property that h−1
(
R2
\Nε(A)

)
⊂
⋃

c∈C wHull(C).
Since ∂MC is connected, h(∂MC) is contained in a connected component of

l ∩ X .
By the Tietze extension theorem, there exists hC : wHull(C) → l ∩ X such

that hC(x) = h(x) for all x ∈ ∂MC . Since h(∂MC) is contained in a connected
component of l∩ X , we have that X ∩Hull(h(∂MC))⊂ l∩ X and hC can be chosen
to have image contained in X ∩Hull(h(∂MC)).

By the pasting lemma for continuous functions, the function h̃ : D→ X defined
by h̃(x) = hC(x) if x ∈ wHull(C) for some C ∈ C and h̃(x) = h(x) otherwise is
a continuous function which extends f . By our choice of C, im h̃ is contained in
X ∩ cl(Nε(A)). �

Fix ε > 0 such that 2 diam(im f ) >
√

2 diam(im f )+ (1+
√

2)ε. Let l1, l2 be
the two distinct vertical lines and l3, l4 the two distinct horizontal lines such that
d( f (0), li ) = diam(im f )+ ε for i ∈ {1, . . . , 4}. Notice this implies that im f is
contained in the unique bounded component of R2

\ {l1, . . . , l4}. By applying the
previous claim to each li in turn, we obtain a nullhomotopy of f which is contained
in the closure of an ε-neighborhood of the bounded component of R2

\ {l1, . . . , l4}.
By our choice of ε, this is contained in the ball of radius r for any r >

2 diam(im f ) which completes the proof of the lemma. �

Lemma 2.3. Every bounded open set U of R2 is the union of a sequence of dyadic
squares with disjoint interiors whose diameters form a null sequence. In addition,
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the squares can be chosen such that if Ai is the union of squares with side length at
least 1/2i , then U \ Ai ⊂N1/2i−1(∂U ).

This is standard and well known. We present a proof to introduce notation that
we will use later.

Proof. Set χi = {(x, y) | 0≤ x ≤ 1/2i , 0≤ y ≤ 1/2i
} and let

Qi = {(n,m)+χi | n,m ∈ (1/2i )Z}

be the set of closed squares in the standard tiling of the plane by squares with side
length 1/2i .

Let D0 be the maximal subset of Q0 such that A0 ⊂ U where A0 =
⋃

s∈D0
s.

Then U \ A0 ⊂N1/2−1(∂U ).
We will inductively define Di and Ai as follows. Let Di be the maximal subset

of Qi such that
⋃

s∈Di
s ⊂ U \ int(Ai−1). Let Ai =

(⋃
s∈Di

s
)
∪ Ai−1. Suppose

x ∈U\Ai , then there exists some s∈Qi such that x ∈s. Since the tilings are nested, if
s∩ int(Ai−1) 6=∅, then s⊂ Ai−1. Thus s∩ int(Ai−1)=∅. Since s is not in Di and is
disjoint from int(Ai−1), we have s 6⊂U and d(x, ∂U )≤ diam(s)=

√
2/2i < 1/2i−1.

Thus U \ Ai ⊂N1/2i−1(∂U ) and
⋃
∞

i=1 Ai =U . �

Lemma 2.4. Let f : I → X be a continuous function into a metric space X and V
be a covering of I by closed, possibly degenerate, intervals with disjoint interiors.
Suppose that g : I → X is a mapping such that, for every V ∈ V , the maps g and f
agree on the endpoints of V and g|V is continuous. If there exists an L such that,
for every V ∈ V , diam(g(V ))≤ L diam( f (V )) then g is continuous.

In addition; if there exists a K such that g|V is homotopic to f |V rel endpoints,
for every V ∈ V , by a homotopy of diameter at most K diam( f (V )), then g is
homotopic rel endpoints to f .

Proof. Let f , g, V , and L be defined as in the lemma. Fix ε > 0. Since the
elements of V have disjoint interiors and f is uniformly continuous, there exists
a cofinite subset V0 ⊂ V such that the diam( f (V )) < ε/(3L) for all V ∈ V0. Thus
diam(g(V ))≤ ε/3 for all V ∈ V0.

Fix δ > 0 satisfying these conditions:

(i) d( f (x), f (y)) < ε/3 for all x, y ∈ I such that |x − y|< δ.

(ii) d(g(x), g(y)) < ε/3 for all x, y ∈ V for some V ∈ V \V0 such that |x− y|< δ.

Take x, y ∈ I such that |x − y|< δ. If x, y ∈ V ∈ V , then d(g(x), g(y)) < ε/3
by our choice of δ and V0. We may assume x, y are in distinct elements of V and
without loss of generality x < y. There exist points x ′, y′ such that x ≤ x ′ ≤ y′ ≤ y
where x ′, y′ are endpoints of the intervals of V containing x , y respectively. Then
|x − x ′|, |y− y′|, |x ′− y′|< δ. Thus

d(g(x), g(y))≤ d(g(x), g(x ′))+ d( f (x ′), f (y′))+ d(g(y′), g(y)) < ε.
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Therefore g is uniformly continuous.
Suppose g|V is homotopic to f |V rel endpoints, for each V ∈ V , by a homotopy

of diameter at most K diam( f (V )). For each V ∈ V , let hV : V × I be a homotopy
rel endpoints of f |V to g|V such that diam(hV (V × I ))≤ K diam( f (V )).

Define h : I× I→ X by h(x, t)= hV (x, t) for any V ∈ V such that x ∈ V . Since
hV (x, t) = f (x) for all t if x is an endpoint of V, h is well defined. Notice that
h(x, 0)= f (x) and h(x, 1)= g(x).

As before, there exists a cofinite subset V1 of V such that diam(im hV ) < ε/3 for
all V ∈ V1. Fix δ > 0 satisfying the following:

(i) d( f (x), f (y)) < ε/3 for all x, y ∈ I such that |x − y|< δ.

(ii) d(h(x, t), h(y, s)) < ε/3 for all x, y ∈ V for some V ∈ V \ V1 such that
|x − y| + |s− t |< δ.

Suppose that (x, s), (y, t) ∈ I × I such that |x − y|+ |s− t |< δ. If x, y ∈ V for
some V ∈ V , then d(h(x, t), h(y, s)) < ε/3 by our choice of δ and V1. Thus we
may assume x, y are in distinct elements of V and without loss of generality x < y.
There exist points x ′, y′ such that x ≤ x ′ ≤ y′ ≤ y where x ′, y′ are endpoints of the
intervals of V containing x and y, respectively. Then |x− x ′|, |y− y′|, |x ′− y′|< δ.
Thus

d(h(x, t),h(y,s))≤ d(h(x, t),h(x ′, t))+ d(h(x ′, t),h(y′,s))+ d(h(y′,s),h(y,s))

< ε/3+ d( f (x ′), f (y′))+ ε/3< ε. �

Remark 2.5. For a planar Peano continuum X considered as a subset of R2, int(X)
is on open bounded subset of the plane. By Lemma 2.3, int(X) can be tiled by a
null sequence of dyadic squares with disjoint interiors. If Ai is the union of squares
from the tiling of int(X) with side length at least 1/2i , then Ai has a natural CW
structure given by the tiling and we will denote the one-skeleton of Ai by A(1)i .
Then X (1)

= ∂X ∪
(⋃

i A(1)i

)
can be considered as a type of one-skeleton for X .

The following lemma is immediate from the construction of Ai and the diameter
condition of the squares composing Ai . Alternatively, given a surjective map
f : I → X , it is a straightforward exercise to show how to modify it to construct a
surjective map from I to X (1).

Lemma 2.6. Let X be a planar Peano continuum and X (1)
= ∂X ∪

(⋃
i A(1)i

)
,

where Ai is as in Lemma 2.3 for the bounded open set int(X). Then X (1) is a
one-dimensional Peano continuum.

Theorem 2.7. Let ϕ : π1(X, x0)→ π1(Y, y0) be a homomorphism from the fun-
damental group of a planar Peano continuum X into the fundamental group of a
one-dimensional or planar Peano continuum Y . Then there exists a continuous
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function f : X → Y and a path α : (I, 0, 1)→ (Y, y0, y), with the property that
f∗ = α̂ ◦ϕ.

Proof. Let X (1)
=∂X∪

(⋃
i A(1)i

)
, where Ai is as in Lemma 2.3 for the bounded open

set int(X), and let i : X (1)→ X be the inclusion map. Since we are only concerned
about the homomorphism up to conjugation, we may assume that x0 ∈ X (1).

Let B = int(X) \ X (1). Then B is the disjoint union of open square discs whose
diameters form a null sequence.

Fix a loop β : I → X in X . Notice that β−1(B) is the disjoint union of open
intervals in I . Let V be the covering of I by disjoint intervals consisting of two
types: (1) the closure of a component of β−1(B) and (2) a point not contained in
the closure of any interval of β−1(B). Then V is a cover of I by intervals with
disjoint interiors.

For every nondegenerate V ∈ V there exists sV a closed square from the tiling
of int(X) such that β(V ) ⊂ sV . For every degenerate V ∈ V , let sV = V . Define
β ′ : I → X by letting β ′|V be a shortest path from β(a) to β(b) contained in ∂sV

where V = [a, b]. It is an elementary computation to show that diam(β ′(V )) ≤
2d(β(a), β(b))≤ 2 diam(β(V )). Since sV is convex and contained in X , the map
h : I ×V → X given by h(t, v)= tβ(v)+ (1− t)β ′(v) is a homotopy rel endpoints
from β|V to β ′|V with diam (im hV )≤ 4 diam ( f (V )). Lemma 2.4 implies that β ′

is continuous and homotopic to β. Hence i∗ is surjective.
By Theorem 2.1, ϕ ◦ i∗ : π1(X (1), x0)→ π1(Y, y0) is conjugate to being induced

by a continuous map, i.e., ϕ ◦ i∗ = α̂ ◦ f∗ where f : X (1)
→ Y is a continuous map

and α : I → Y is a continuous path.
Let s be a square for our tiling of int(X). Then f |∂s is a nullhomotopic loop

in Y . Thus we can extend f to all of s such that diam ( f (s)) ≤ 2 diam ( f (∂s)).
Doing this for all the components of B defines an extension f of f to all of X .
The diameter condition guarantees the continuity of f (the details are analogous to
those of Lemma 2.4).

Let β be a loop in X . Then there exists a loop β ′ in X (1) homotopic (in X ) to β.
Then

ϕ([β])= ϕ ◦ i∗([β ′])= α̂ ◦ f∗([β ′])

= α̂([ f ◦β ′])= α̂([ f ◦β ′])

= α̂([ f ◦β])= α̂ ◦ f ∗([β])

as desired. �

Applications. The Sierpinski curve in R2, which we will denote by S, is constructed
by iterating the process of subdividing [0, 1]× [0, 1] into 9 squares, removing the
center one and repeating on each of the remaining 8 squares.
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To be explicit, let C0 = ([0, 1]× [0, 1]) and define Cn inductively as follows.

Cn = Cn−1
∖ { ⋃

0≤i, j<3n−1

(1+3i
3n ,

2+3i
3n

)
×

(1+3 j
3n ,

2+3 j
3n

)}
.

Then S =
⋂

n Cn . Notice that R2
\ S is the union of countably many open

squares with disjoint closures and a single unbounded component. Let {Dn} be an
enumeration of the bounded components of the complement of S.

For A ⊂ N, let SA = S∪
(⋃

n∈A Dn
)
; i.e., SA is the space obtained from S by

filling in the squares with indices in A. For i ∈ N, let Si = S∪
(⋃i

n=1 Dn
)
.

We will say that a sequence of subsets An of X converges to a set A ⊂ X , if for
every ε > 0 there exists an N such that An ⊂Nε(A) and A⊂Nε(An) for all n > N .

Lemma 2.8. For every x ∈ S, there exists a subsequence of natural numbers (in)

such that Din converges to {x}. Thus S is one-dimensional and
⋃
∞

n=1 ∂Dn is dense
in S.

Proof. Notice that Cn is contained in the closed
√

2/3n-neighborhood of the
boundaries of the open squares removed from Cn−1 to obtained Cn . Thus every
point in S is at most

√
2/3n from the boundary of an open square contained in

R2
\ S with side length 1/3n . For every n, we can choose an in such that Din is a

square with side length 1/3n which is at most
√

2/3n from x . Then ∂Din converges
to x . Thus S is one-dimensional and

⋃
∞

n=1 ∂Dn is dense in S. �

Zastrow’s example in [Cannon et al. 2002] and Example (2) in [Karimov et al.
2005] appear to suggest the following lemma.

Lemma 2.9. Suppose that h : X → X is a continuous map of a planar Peano
continuum such that every loop is freely homotopic to its image under h. Then h
fixes the set of points at which X is not semilocally simply connected.

Proof. Suppose that X is not semilocally simply connected at x and h(x) 6= x .
Then we would be able to find an ε > 0 such that the balls BR2

ε (x) and BR2

ε (h(x))
are disjoint and SX

ε (x)( SR2

ε (x). This implies that SX
ε (x) is the disjoint union of

closed intervals.
Since any loop is freely homotopic to its image under h, any sufficiently small

loop in B X
ε (x) can be homotoped into B X

ε (h(x)). However, any map of an annulus
which takes one boundary component into B X

ε (x) and the other into B X
ε (h(x))

can be cut along SX
ε (x) to construct a nullhomotopy of the boundary loops. The

details for the cutting procedure are analogous to the proof of the claim on page 47.
Thus any sufficiently small loop in Bε(x) must be nullhomotopic. However this
contradicts the assumption that X is not semilocally simply connected at x . �

Cannon, Conner, and Zastrow showed that S1 is not homotopy equivalent to any
one-dimensional Peano continuum. We can now use Theorem 2.7 to show even
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more, that the fundamental group of S1 is not one-dimensional in the following
sense.

Theorem 2.10. For any s0 ∈ S, the fundamental group π1(Si , s0) is not isomorphic
to the fundamental group of any one-dimensional Peano continuum.

Proof. Suppose that there exists X a one-dimensional Peano continuum such that
π1(X, x0) is isomorphic to π1(Si , s0). By Theorem 2.7, there exists a continuous
map f : Si → X which induces an isomorphism f∗ of fundamental groups.

By applying Theorem 2.1 to the homomorphism f −1
∗

, we can find a map g :
X→ Si such that g ◦ f ◦β is freely homotopic to β for every loop β based at x0.
(Note that β might not be homotopic to g ◦ f ◦β relative to endpoints.)

Since Si is obtained by only adding finitely many discs, every neighborhood of
every point in S contains a loop which is essential in Si . Thus g ◦ f must fix S by
Lemma 2.9.

Let Dk be a square which was filled in the construction of Si . Since f maps
∂Dk to a nullhomotopic loop in a one-dimensional space, the map f must identify
two distinct points x, y on the boundary of Dk . However this is a contradiction
since ∂Dk ⊂ S. �

Corollary 2.11. For any s0 ∈ S and any pair of distinct natural numbers i and j ,
the groups π1(Si , s0) and π1(S j , s0) are not isomorphic.

Proof. We will assume that i > j and proceed by way of contradiction. As in
the proof of Theorem 2.10, we may assume that there are maps f : Si → S j and
g : S j → Si such that g ◦ f ◦β is freely homotopic to β for any loop β based at s0.
As before, g ◦ f must fix S.

Let Dk be a square which was filled in the construction of Si . Notice that ∂Dk

must map to a simple closed curve which is nullhomotopic in S j ( f |S must be
injective). Hence it must map to the boundary of a square which was filled in the
construction of S j . (A simple closed curve α in the plane is nullhomotopic if and
only if the bounded component of R2

\ imα is simply connected.) Since i > j ,
f must map two boundary circles to the same boundary circle which contradicts
that fact that f restricted to S must be injective. �

We will now show how to extend Corollary 2.11 to certain nice fillings of S.

Definition 2.12. Let A⊂N. We will use B(SA) to denote the set of points at which
SA is not semilocally simply connected. Let K (SA) be the set of accumulation
points of {Dn | n ∈ A}, i.e.,

K (SA)=
{

x ∈ S | {n ∈ A | Dn ⊂ Br (x)} is infinite for every r > 0
}
.

We will say that SA is a discrete filling of S if cl(Dn)∩K (SA)=∅ for all n ∈ A.
We will say that Y is sparse in S if Y ⊂Nδ(S \ Y ) for every δ > 0.



HOMOMORPHISMS OF FUNDAMENTAL GROUPS OF PLANAR CONTINUA 53

Lemma 2.13. If SA is a discrete filling then ∂Dn ⊂ B(SA) for all n ∈ A and
B(SA)= S.

Proof. It is clear that B(SA) ⊂ S. By construction, cl(Dn)∩ cl(Dm) = ∅ for all
n 6= m. For n ∈ A, let εn be the distance from cl(Dn) to K (SA)∪

(⋃
i∈A\{n} Di

)
.

Since cl(Dn)∩ K (SA) = ∅, εn is strictly positive. This implies that Nεn (Dn) is
not simply connected. Even more, B(SA)∩Nεn (Dn) = Nεn (Dn) \ Dn . Thus the
only points of S which might possibly have simply connected neighborhoods in SA

are those in K (SA).
Suppose that x ∈ S∩ K (SA) and let U be a neighborhood of x . We must show

that U is not simply connected. Since x ∈ K (SA), we can find n ∈ A such that
cl(Dn) ⊂ U . Therefore Nε(Dn) ⊂ U for some choice of n ∈ A and 0 < ε ≤ εn

which implies that U is not simply connected since ∂Dn ⊂ B(SA). �

The proof of the following lemma is similar to the proof of Theorem 2.10.

Lemma 2.14. If SA is a discrete filling then π1(SA, s) is not isomorphic to the
fundamental group of a one-dimensional Peano continuum.

Lemma 2.15. Every simply connected subset of S is a sparse subset of S.

Proof. Let Y be a simply connected (not necessarily connected) subset of S. Since
S is one-dimensional, this implies that Y can contain no simply closed curves.
Fix y ∈ Y . Then there exists a sequence of natural numbers in such that ∂Din

converges to y. Since ∂Din cannot be entirely contained in Y , there exists an
xn ∈ ∂Din such that xn ∈ S \ Y . The diameter of ∂Din must converge to 0, thus xn

converges to y and Y ⊂Nδ(S \ Y ) for every δ > 0. �

Lemma 2.16. Let Y be a sparse closed subset of S. Then there exists a subset
A ⊂ N such that SA is a discrete filling of S and K (SA)= Y .

Proof. A subset B of a metric space X is δ-separated if d(x, y)≥ δ for all x, y ∈ B.
A δ-separated subset B of a space X is maximal if X ⊂Nδ(B). It is an exercise to
show that any δ-separated subset of X can be extended to a maximal δ-separated
subset.

Since Y is compact, any δ-separated subset of Y is finite. Let Y1 be a maximal
1-separated subset of Y . Define Yn to be a maximal 1

n -separated subset of Y which
extends Yn−1.

For every y ∈ Yn there exists sy,n ∈ S \Y such that d(sy,n, y)≤ 1/n. Fix δn > 0
such that δn < d(sy,n, Y ) for all y ∈ Yn . Then we may choose i(y, n) ∈ N such
that d(Di(y,n), sy,n)≤ δn/3 and Di(y,n) has side length less than δn/3. This implies
cl(Di(y,n))∩ Y =∅.

Let A = {i(y, n) | n ∈ N and y ∈ Yn}. By constructions K (SA)= Y . Thus SA is
a discrete filling. �
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Proposition 2.17. Suppose that SA, SB are discrete fillings of S. If π1(SA, s0) is
isomorphic to π1(SB, s1), then K (SA) is homeomorphic to K (SB).

Proof. Suppose that SA, SB are discrete fillings of S and π1(SA, s0) is isomorphic
to π1(SB, s1). Since the fundamental group is basepoint invariant, we may assume
that s0 = s1 ∈ S.

Using Theorem 2.7 and Lemma 2.9, we can find maps f : SA → SB and
g : SB → SA such that both g ◦ f and f ◦ g are the identity on S. (For discrete
fillings B(SA)= S by Lemma 2.13.) For n ∈ A, the loop ∂Dn is a nullhomotopic
simple closed curve in S ⊂ SA which implies that f (∂Dn) is a nullhomotopic
simple closed curve in SB . (A simple closed curve α in the plane is nullhomotopic
if and only if the bounded component of R2

\ imα is simply connected.) Thus
f (∂Dn)= Dm for some m ∈ B.

Thus f (K (SA))⊂ K (SB). We can similarly show g(K (SB))⊂ K (SA). Since
K (SA), K (SB)⊂ S and g◦ f is the identity on S, it follows K (SA) is homeomorphic
to K (SB). �

Theorem 2.18. There exists an uncountable family of planar Peano continua whose
fundamental groups are pairwise nonisomorphic and also not isomorphic to the
fundamental group of any one-dimensional Peano continuum.

Proof. Let {U1,U2, . . .} be a countable set of disjoint open subsets of (0, 1)× (0, 1)
such that Ui converges to a point. In each Ui we can find a subset X i such that
X i ⊂ S and X i is homeomorphic to the wedge of i closed intervals. Note that
Sierpinski [1916] showed that any one-dimensional planar continuum embeds into S.
Since every open set of S contains a scaled copy of S, it is always possible to find
X i in Ui ∩ S.

For every A⊂N, let X A= cl
(⋃

i∈A X i
)

which is simply connected. It is a trivial
exercise to show that X A is homeomorphic to X B if and only if A = B.

Notice that for any A⊂N, X A is sparse. Thus for A⊂N, we may choose Ã⊂N

such that K (SÃ)= X A. The corollary then follows from Proposition 2.17. �
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