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MIN SHA AND IGOR E. SHPARLINSKI

Given a subgroup 0 of rational points on an elliptic curve E defined over Q

of rank r ≥ 1 and any sufficiently large x ≥ 2, assuming that the rank of 0

is less than r , we give upper and lower bounds on the canonical height of a
rational point Q which is not in the group 0 but belongs to the reduction of
0 modulo every prime p ≤ x of good reduction for E.

1. Introduction

1A. Detecting linear dependence. Let A be an abelian variety defined over a
number field F , and let 0 be a subgroup of the Mordell–Weil group A(F). For any
prime p (of F) of good reduction for A and any point Q ∈ A(F), we denote by Qp

and 0p the images of Q and 0 via the reduction map modulo p respectively, and
Fp stands for the residue field of F modulo p. The following question was initiated
in 2002 and was considered at the same time but independently by Wojciech Gajda
in a letter to Kenneth Ribet in 2002 [Gajda and Górnisiewicz 2009, §1] and by
Kowalski [2003], and it is now called detecting linear dependence.

Question 1.1. Suppose that Q is a point of A(F) such that for all but finitely many
primes p of F we have Qp ∈ 0p. Does it then follow that Q ∈ 0?

An early result related to this question is due to Schinzel [1975], who has
answered affirmatively the question for the multiplicative group in place of an
abelian variety. Question 1.1 has been extensively studied in recent years and much
progress has been made; see [Banaszak 2009; Banaszak et al. 2005; Banaszak and
Krasoń 2011; Gajda and Górnisiewicz 2009; Jossen 2013; Jossen and Perucca 2010;
Perucca 2010; Sadek 2016; Weston 2003] for more details and developments.

The answer is affirmative for all abelian varieties if the group 0 is cyclic, as
proven by Kowalski [2003] (for elliptic curves) and by Perucca [2010] (in general).
Banaszak, Gajda and Krasoń [Banaszak et al. 2005] established the result for all
abelian varieties with the endomorphism ring EndF A = Z if the group 0 is free
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and the point Q is nontorsion. More generally, Gajda and Górnisiewicz [2009]
have solved the problem in the case when 0 is a free EndF A-submodule and the
point Q generates a free EndF A-submodule, while Perucca [2010] has removed
the assumption on the point Q. We remark that the answer of Question 1.1 is not
always positive; see a counterexample due to Jossen and Perucca [2010].

We want to emphasize that Jossen [2013] has given an affirmative answer when
A is a geometrically simple abelian variety, which automatically includes elliptic
curves. Moreover, the result of [Jossen 2013] requires Qp ∈ 0p to hold only for a
set of primes p with natural density 1 (rather than for all but finitely many primes p
as in the settings of Question 1.1). Due to the crucial role of [Jossen 2013] in our
paper, we reproduce this result as follows.

Theorem 1.2 [Jossen 2013]. Assume that A is a geometrically simple abelian
variety over F. Then, if the set of primes p of F for which Qp ∈ 0p has natural
density 1, we have Q ∈ 0.

In addition, to achieve the aforementioned results, one needs to apply the Cheb-
otarev density theorem. So, it suffices to verify the condition for all primes up to
a certain finite bound, which depends on the initial data (including the point Q).
Banaszak and Krasoń [2011, Theorem 7.7] have established the finiteness result
in a qualitative manner for certain abelian varieties which includes elliptic curves.
Then, most recently Sadek [2016] has given a quantitative version for a large class
of elliptic curves under the generalized Riemann hypothesis (GRH). However, the
results in this paper (see Section 2) go in a different direction, because they imply
that there is no such a bound independent of the point Q.

1B. Pseudolinear dependence. Following the setup of [Akbary et al. 2010], which
is crucial for some of our approaches, we restrict ourselves to the case of elliptic
curves over the rational numbers Q; see Definitions 1.3 and 1.4 below. In particular,
we consider Question 1.1 for an elliptic curve E over Q.

Let r be the rank of E(Q) and s the rank of 0. We denote by 1E the minimal
discriminant of E and by OE the point at infinity of E .

For a prime p of good reduction for E (that is, p -1E ), we let E(Fp) be the
group of Fp-points in the reduction of E to the finite field Fp of p elements, and
E(Q)p stands for the reduction of E(Q) modulo p.

Definition 1.3 (Fp-pseudolinear dependence). Given a prime p of good reduction
for E , we call a point Q ∈ E(Q) an Fp-pseudolinearly dependent point with respect
to 0 if Q 6∈ 0 but Q p ∈ 0p.

We remark that such a point Q is Fp-pseudolinear dependent if and only if Q 6∈0
but Q ∈ 0+ kerp, where kerp denotes the kernel of the reduction map modulo p.
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Definition 1.4 (x-pseudolinear dependence). We say that a point Q ∈ E(Q) is
an x-pseudolinearly dependent point with respect to 0 if Q 6∈ 0 but it is an Fp-
pseudolinearly dependent point with respect to 0 for all primes p ≤ x of good
reduction for E .

We remark that the x-pseudolinear dependence trivially holds if there is no prime
p of good reduction such that p ≤ x .

If 0 = 〈P〉, we call a point Q as in Definition 1.4 an x-pseudomultiple of P .
This notion is an elliptic curve analogue of the notions of x-pseudosquares and
x-pseudopowers over the integers, which dates back to the classical results of
Schinzel [1960; 1970; 1997] and has recently been studied in [Bach et al. 1996;
Bourgain et al. 2009; Konyagin et al. 2010; Pomerance and Shparlinski 2009].

1C. Overview. We give an explicit construction of an x-pseudolinearly dependent
point Q with respect to 0 provided that s< r and give upper bounds for its canonical
height, and then we also deduce lower bounds for the canonical height of any x-
pseudolinearly dependent point in some special cases. These upper and lower bounds
are formulated in Sections 2A and 2B and proved in Sections 5 and 6, respectively.

Furthermore, we also consider the existence problem of x-pseudolinearly depen-
dent points, with some explicit constructions; see Section 4 for precise details.

There is little doubt that one can extend [Akbary et al. 2010], and thus our results
to elliptic curves over number fields, but this may require quite significant efforts.

1D. Convention and notation. Throughout the paper, we use the Landau symbols
O and o and the Vinogradov symbol� (sometimes written as�). We recall that
the assertions U = O(V ) and U� V are both equivalent to the inequality |U | ≤ cV
with some absolute constant c, while U = o(V ) means that U/V → 0. Here, all
implied constants in the symbols O and� depend only possibly on E and 0.

The letter p, with or without subscripts, always denotes a prime. As usual, π(x)
denotes the number of primes not exceeding x .

We use ĥ to denote the canonical height of points on E ; see Section 3A for a
precise definition. For a finite set S, we use #S to denote its cardinality.

For any group G, if it is generated by some elements g1, . . . , gm , then we write
G = 〈g1, . . . , gm〉.

From now on, we say that a prime is of good reduction, which means that the
prime is of good reduction for E . When a point Q is said to be x-pseudolinearly
dependent, it is automatically with respect to 0.

2. Main results

2A. Upper bounds. We first state a primary result on the existence of pseudolin-
early dependent points.
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Theorem 2.1. Suppose that r ≥ 1 and s < r . Then for any sufficiently large x , there
is a rational point Q ∈ E(Q) of height

ĥ(Q)≤ exp
(
2x + O(x/(log x)2)

)
such that Q is an x-pseudolinearly dependent point.

With more efforts we can improve the result in Theorem 2.1 for various cases.

Theorem 2.2. Suppose that r ≥ 1 and s = 0. Then for any sufficiently large x , there
is a rational point Q ∈ E(Q) of height

ĥ(Q)≤ exp
(

2x − 2 log(#0) x
log x

+ O(x/(log x)2)
)

such that Q is an x-pseudolinearly dependent point.

Theorem 2.3. Assume that r ≥ 2 and 1≤ s < r . Then for any sufficiently large x ,
there is a rational point Q ∈ E(Q) of height

ĥ(Q)≤ exp
( 4

s+2
x + O(x/ log x)

)
such that Q is an x-pseudolinearly dependent point.

Theorem 2.4. Suppose that either 19≤ s < r if E is a non-CM curve, or 7≤ s < r
if E is a CM curve. Then under the GRH and for any sufficiently large x , there is a
rational point Q ∈ E(Q) of height

ĥ(Q)≤ exp
(
4x(log log x)/ log x + O(x/ log x)

)
such that Q is an x-pseudolinearly dependent point.

The above results are proved in Section 5.

2B. Lower bounds. Notice that by Definition 1.4 the condition for x-pseudolinearly
dependent points is quite strong when x tends to infinity. This convinces us that
there may exist some lower bounds for the height of such points. Here, we establish
some partial results. Define

(2-1) 0̃ = {P ∈ E(Q) : m P ∈ 0 for some nonzero m ∈ Z}.

Theorem 2.5. Suppose that r ≥ 1 and s = 0. For any sufficiently large x and any
x-pseudolinearly dependent point Q, we have

ĥ(Q)≥ 1
#0

x/ log x + O(x/(log x)2).
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Theorem 2.6. Assume that EndQ E = Z, r ≥ 2, 1≤ s < r , and 0 is a free subgroup
of E(Q). Suppose further that 0 ≡ 0̃ modulo the torsion points of E(Q). For any
sufficiently large x and any x-pseudolinearly dependent point Q, we have

ĥ(Q)≥ exp((log x)1/(2s+6)+o(1)),

and furthermore assuming the GRH, we have

ĥ(Q)≥ exp(x1/(4s+12)+o(1)).

The above results are proved in Section 6.
We want to remark that for a non-CM elliptic curve E with no torsion points

in E(Q), assuming the GRH and some other wild conditions, Sadek [2016, The-
orem 4.4] has shown that to detect whether a point Q ∈ E(Q) is contained in 0
it suffices to determine whether Q ∈ 0p for primes p of good reduction up to an
explicit constant B satisfying (using only K ≥ 2 in [Sadek 2016, Theorem 4.4])

(2-2) B� ĥ(Q)3r/2+3(log ĥ(Q))2.

If Q is an x-pseudolinearly dependent point, then to detect Q 6∈ 0 as the above,
testing primes p of good reduction up to x is not enough, and thus the constant B
must satisfy B> x , which is consistent with the second lower bound of Theorem 2.6
and (2-2). On the other hand, the inequality B > x restricts how much Theorem 2.6
and [Sadek 2016, Theorem 4.4] can be improved.

3. Preliminaries

3A. Heights on elliptic curves. We briefly recall the definitions of the Weil height
and the canonical height for points in E(Q); see [Silverman 2009, Chapter VIII, § 9]
for more details.

For a point P = (x, y) ∈ E(Q) with x = a/b, with coprime integers a and b, we
define the Weil height and the canonical height of P as

h(P)= log max{|a|, |b|} and ĥ(P)= lim
n→+∞

h(2n P)
4n ,

respectively. These two heights are related because they satisfy

ĥ(P)= h(P)+ O(1),

where the implied constant depends only on E . In addition, for any P ∈ E(Q) and
m ∈ Z, we have:

• ĥ(m P)= m2ĥ(P);

• ĥ(P)= 0 if and only if P is a torsion point.
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Furthermore, for any P, Q ∈ E(Q), we have

(3-1) ĥ(P + Q)+ ĥ(P − Q)= 2ĥ(P)+ 2ĥ(Q).

Following the hints in [Silverman 2009, Chapter IX, Exercise 9.8] and using
[Silverman 2009, Chapter VIII, Proposition 9.6], one can show that if P1, . . . , Pr is
a basis for the free part of E(Q) (assuming r ≥ 1), then for any integers m1, . . . ,mr ,
we have

(3-2) ĥ(m1 P1+ · · ·+mr Pr )≥ c max
1≤i≤r

m2
i ,

where c is a constant depending on E and P1, . . . , Pr .

3B. A useful fact about elliptic curves. Every rational point P 6= OE in E(Q) has
a representation of the form

(3-3) P =
(

m
k2 ,

n
k3

)
,

where m, n, and k are integers with k ≥ 1 and gcd(m, k) = gcd(n, k) = 1; see
[Silverman and Tate 1992, p. 68]. So, for any prime p of good reduction for E ,
P ≡ OE modulo p if and only if p | k.

3C. Counting primes related to the size of 0 under reduction. Here, we repro-
duce some results on counting primes p such that the size of 0p is less than some
given value. For any prime p, if it is of good reduction for E , we define

Np = #E(Fp) and Tp = #0p,

otherwise we let Np = Tp = 1. Note that there are only finitely many primes p
such that Np = 1.

We first quote the following result from [Akbary et al. 2010, Proposition 5.4]
(see [Gupta and Murty 1986, Lemma 14] for a previous result). Recall that s is the
rank of 0.

Lemma 3.1. Assume that s ≥ 1. For any x ≥ 2, we have

#{p : Tp < x} � x1+2/s/ log x .

We then restate two general results from [Akbary et al. 2010, Theorems 1.2
and 1.4] in a form convenient for our applications.

Lemma 3.2. Assume that E is a non-CM curve and s ≥ 19. Under the GRH, for
any x ≥ 2 we have

#{p ≤ x : Tp < p/(log p)2} � x/(log x)2.
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Proof. We can clearly only consider the primes of good reduction. Here, we directly
use the notation and follow the arguments in [Akbary et al. 2010, Proof of Part (a)
of Theorem 1.2] by choosing the functions f and g as

(3-4) f (x)= (log x)2, g(x)= f (x/ log x)/3.

Let i p = [E(Fp) : 0p] for any prime p of good reduction. Let B1 and B2 be the two
sets defined in [Akbary et al. 2010, p. 381]:

B1 = {p ≤ x : p -1E , i p ∈ (x2/(s+2) log x, 3x]},

B2 = {p ≤ x : p -m1E ,m | i p for some m ∈ (g(x), x2/(s+2) log x]},

such that

#{p ≤ x : p -1E , Tp < p/(log p)2} ≤ #B1+ #B2+ O(x/(log x)2),

where the term O(x/(log x)2) comes from π(x/ log x)= O(x/(log x)2). We note
that the choice of the sets is motivated by

• for B1, the bound on the number of primes p ≤ x with a small value of Tp

given by [Akbary et al. 2010, Proposition 5.4] which we have presented in
Lemma 3.1;

• for B2, the range of m compared to x in which the divisibility m | i p for p ≤ x
can be controlled via the Chebotarev density theorem as given by [Akbary
et al. 2010, Proposition 5.3].

In particular, we have

#B1�
x

(log x)(s+2)/s · (s(s+ 2)−1 log x − log log x)
and

#B2�
x

log x · g(x)1−α
+ O(x1/2+α+(5+α/2)·(2/(s+2)+α)),

where the positive real number α is chosen such that

1
2 +α+

(
5+ 1

2α
)
·

( 2
s+2
+α

)
< 1,

which at least requires that 1
2 + 6α < 1, that is α < 1

12 . Note that such α indeed
exists because s ≥ 19.

It is easy to see that

#B1� x/(log x)2 and #B2� x/(log x)2,

where the second upper bound comes from 2(1−α)> 1. Collecting these estimates,
we get the desired upper bound. �
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Lemma 3.3. Assume that E is a CM curve and s ≥ 7. Under the GRH, for any
x ≥ 2 we have

#{p ≤ x : Tp < p/(log p)2} � x/(log x)2.

Proof. We follow the arguments in [Akbary et al. 2010, Proof of Theorem 1.4] with
only minor modifications by choosing the functions f and g there as in (3-4). Let
i p = [E(Fp) : 0p] for any prime p of good reduction. The following can be derived
as in [Akbary et al. 2010, Proof of Part (a) of Theorem 1.2]:

#
{

p ≤ x : p -1E , Tp < p/(log p)2
}
≤ #B̃1+ #B̃2+ O(x/(log x)2),

where
B̃1 = {p ≤ x : p -1E , i p ∈ (xκ , 3x]},

B̃2 = {p ≤ x : p -m1E ,m | i p, for some m ∈ (g(x), xκ ]},

with some real κ > 0 to be chosen later on. The reason for the choice of B̃1 and B̃2

is the same as that for B1 and B2, which is explained in the proof of Lemma 3.2.
However, in the CM-case we have stronger versions of the underlying results which
allow us a better choice of parameters and in turn enable us to handle smaller values
of the rank s of 0.

Applying Lemma 3.1, we have

#B̃1 = #{p ≤ x : p -1E , Tp < Np/xκ}

≤ #{p ≤ x : p -1E , Tp < 3x1−κ
} �

x (1−κ)(s+2)/s

(1− κ) log x
.

For any positive integer m, let ω(m) and d(m) denote, respectively, the number
of distinct prime divisors of m and the number of positive integer divisors of m.

Now, #B̃2 can be estimated as in [Akbary et al. 2010, p. 393] as follows:

#B̃2�
x

log x · g(x)1−α
+ O

(
x1/2 log x ·

∑
1≤m≤xκ

maω(m)/2d(m)
)
,

where α is an arbitrary real number in the interval (0, 1) such that 2(1− α) > 1,
and a is the absolute constant of [Akbary et al. 2010, Proposition 6.7]. Now, using
[Akbary et al. 2010, Equation (6.21)] we obtain

#B̃2�
x

log x · g(x)1−α
+ O(x1/2+2κ(log x)1+β)

�
x

(log x)2
+ O(x1/2+2κ(log x)1+β),

where β > 2 is some positive integer.
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Moreover, we choose the real number κ such that

(1− κ)(s+ 2)/s < 1 and 1
2 + 2κ < 1.

Thus, we get

(3-5) 2
s+2

< κ < 1
4 .

Since s ≥ 7, such real number κ indeed exists.
Therefore, gathering the above estimates, for any fixed real number κ satisfy-

ing (3-5) (for example, κ = 11
45 ) we obtain

#{p ≤ x : p -1E , Tp < p/(log p)2} � x/(log x)2, �

which completes the proof of this lemma.

3D. Kummer theory on elliptic curves. Following [Akbary et al. 2010; Bach-
makov 1970; Bertrand 1981; Gupta and Murty 1986], we recall some basic facts
about the Kummer theory on elliptic curves. Here, we should assume that E(Q) is
of rank r ≥ 2.

Let ` be a prime, and let P1, P2, . . . , Pn ∈ E(Q) be linearly independent points
over EndQ E . Consider the number field

L =Q(E[`], `−1 P1, . . . , `
−1 Pn),

where E[`] is the set of `-torsion points on E , and each `−1 Pi (1≤ i ≤ n) is a fixed
point whose `-multiple is the point Pi . Moreover, we denote K = Q(E[`]) and
Ki =Q(E[`], `−1 Pi ) for every 1≤ i ≤ n.

Now, both extensions K/Q and L/Q are Galois extensions. For the Galois
groups, Gal(K/Q) is a subgroup of GL2(F`), and Gal(L/K ) is a subgroup of
E[`]n . Clearly, we have

(3-6) [K :Q]< `4 and [L : K ] ≤ `2n.

As an analogue of the classical Kummer theory, the results of Bashmakov [1970]
show that (see also the discussions in [Bertrand 1981, p. 85]):

Lemma 3.4. Assume that the residue classes of points P1, . . . , Pn in E(Q)/`E(Q)
are linearly independent over EndQ E/`EndQ E. Then, we have

Gal(L/K )∼= E[`]n.

For each field Ki with 1 ≤ i ≤ n, the primes which ramify in the extension
Ki/Q are exactly those primes dividing `1E . Then, the primes which ramify in
the extension L/Q are exactly those primes dividing `1E . Now, pick a prime
p -`1E which splits completely in K , and let pi be a prime ideal of OKi above p
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for i = 1, . . . , n, where OKi the ring of integers of Ki . By the construction of Ki

and noticing the choice of p, we have:

Lemma 3.5. For each 1≤ i ≤ n, the equation

(3-7) `X = Pi

has a solution in E(Fp), where X is an unknown, if and only if [OKi /pi : Fp] = 1,
that is, p splits completely in Ki .

Note that given an arbitrary finite Galois extension M/F of number fields, for
each unramified prime p of F , p splits completely in M if and only if the Frobenius
element corresponding to p is the identity map. Then, we can obtain the following
lemma:

Lemma 3.6. Under the assumption in Lemma 3.4, we further assume that n ≥ 2.
Then, for any integer m with 1≤m < n, there is a conjugation class C in the Galois
group Gal(L/Q) such that every prime number p with the Artin symbol

[ L/Q
p

]
= C

is unramified in L/Q, p is a prime of good reduction for E , and p splits completely
in the fields Ki , 1 ≤ i ≤ m, but it does not split completely in any of the fields
K j ,m+ 1≤ j ≤ n.

Proof. One only needs to note that by Lemma 3.4, for any nonempty subsets I, J
of {1, 2, . . . , n} if I ∩ J =∅, we have∏

i∈I
Ki ∩

∏
j∈J

K j = K ,

where “
∏

” means the composition of fields. �

Combining Lemma 3.5 with Lemma 3.6, we know that for the primes p in
Lemma 3.6, Equation (3-7) has a solution in E(Fp) for 1≤ i ≤m but for the others
there is no such solution.

3E. The Chebotarev density theorem. For the convenience of the reader, we re-
state two useful results. The first one is an upper bound on the discriminant of a
number field due to Hensel, see [Serre 1981, Proposition 6], while the second is
about the least prime ideal as in the Chebotarev density theorem due to Lagarias,
Montgomery and Odlyzko; see [Lagarias and Odlyzko 1977, p. 462] and [Lagarias
et al. 1979, Theorem 1.1 and Equation (1.2)].

Lemma 3.7. Let L/Q be a Galois extension of degree d and ramified only at the
primes p1, . . . , pm . Then, we have

log |DL | ≤ d log d + d
m∑

i=1

log pi ,

where DL is the discriminant of L/Q.
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Lemma 3.8. There exists an effectively computable positive absolute constant c1

such that for any number field K , any finite Galois extension L/K and any conju-
gacy class C in Gal(L/K ), there exists a prime ideal p of K which is unramified
in L , for which the Artin symbol [(L/K )/p] = C and the norm NmK/Q(p) is a
rational prime satisfying the bound

NmK/Q(p)≤ 2|DL |
c1;

furthermore, under the GRH, there is an effectively computable positive absolute
constant c2 such that we can choose p as above with

NmK/Q(p)≤ c2(log |DL |)
2.

3F. Effective version of Theorem 1.2. The following result can be viewed as an
effective version of Theorem 1.2 in some sense for a specific case. Recall that r
and s are the ranks of E(Q) and 0 respectively.

Lemma 3.9. Assume that EndQ E = Z, 0 is a free subgroup of E(Q), and 0 ≡ 0̃
modulo the torsion points of E(Q). Let Q ∈ E(Q) \0 be a point of infinite order
such that 〈Q〉∩0= {OE }. Then, there exists a prime p of good reduction satisfying

log p� (log ĥ(Q))2s+6 log log ĥ(Q)

such that Q 6∈ 0p. Assuming the GRH, we further have

p� (log ĥ(Q))4s+12(log log ĥ(Q))2.

Proof. Let P1, . . . , Pr be a basis of the free part of E(Q). Since 0 ≡ 0̃ modulo the
torsion points, we can assume that P1, . . . , Ps form a basis of 0. Note that, since
the point Q is of infinite order, it can be represented as

Q = Q0+m1 P1+ · · ·+mr Pr ,

where Q0 is a torsion point of E(Q), and there is at least one mi 6= 0 (1≤ i ≤ r).
Moreover, by the choice of Q, there exists j with s+ 1≤ j ≤ r such that m j 6= 0.

By (3-2), we have
ĥ(Q− Q0)� max

1≤i≤r
m2

i .

Noticing that Q0 is a torsion point, by (3-1) we obtain

(3-8) ĥ(Q)≥ 1
2 ĥ(Q− Q0)� max

1≤i≤r
m2

i .

Now, let ` be the smallest prime such that ` -m j . Since the number ω(m) of distinct
prime factors of an integer m ≥ 2 satisfies

ω(m)� log m
log log m
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(because we obviously have ω(m)! ≤ m), using the prime number theorem we get

`� log |m j |,

which together with (3-8) yields that

(3-9) `� log ĥ(Q).

By the choice of `, we see that there is no point R ∈ E(Q) such that Q = `R.
This implies that the number field Q(E[`], `−1 Q) is not a trivial extension of
Q(E[`]). Furthermore, by noticing `-m j , it is straightforward to see that the
residue classes of Q, P1, . . . , Ps in E(Q)/`E(Q) are linearly independent over
EndQ E/`EndQ E = Z/`Z.

Consider the number field

L =Q(E[`], `−1 Q, `−1 P1, . . . , `
−1 Ps),

and set K =Q(E[`]). Now, combining Lemma 3.5 with Lemma 3.6, we can choose
a conjugation class C in the Galois group Gal(L/Q) such that every prime number
p with Artin symbol [(L/Q)/p] = C is unramified in L/Q, p is a prime of good
reduction for E , and especially the equation `X = Pi has solution in E(Fp) for
each 1≤ i ≤ s but the equation `X = Q has no such solution. This implies that

Q 6∈ 0p.

By Lemma 3.8, we can choose such a prime p such that

(3-10) log p� log |DL |;

if under the GRH, we even have

(3-11) p� (log |DL |)
2.

From Lemma 3.7 and noticing that only the primes dividing `1E ramify in the
extension L/Q, we get

(3-12) log |DL | ≤ d log d + d log(`1E)� d log d + d log `,

where d = [L :Q]. Using (3-6), we obtain

(3-13) d ≤ `2s+6.

Combining (3-9), (3-10), (3-11), and (3-12) with (3-13), we unconditionally have

log p� (log ĥ(Q))2s+6 log log ĥ(Q),

and under the GRH we have

p� (log ĥ(Q))4s+12(log log ĥ(Q))2. �
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4. The existence and construction of x-pseudolinearly dependent points

4A. Existence. Before proving our main results, we want to first consider the
existence problem of pseudolinearly dependent points. Recall that r is the rank of
E(Q) and s is the rank of 0.

If s < r , then x-pseudolinearly dependent points with respect to 0 do exist.
Indeed, since s < r , we can take a point R ∈ E(Q) of infinite order such that
〈R〉 ∩0 = {OE }. Pick an arbitrary point P ∈ 0; it is easy to see that the point

(4-1) Q = P + lcm{#E(Q)p #0p : p ≤ x of good reduction}R

is an x-pseudolinearly dependent point for any x > 0, where the least common
multiple of the empty set is defined to be 1.

In the construction (4-1), we can see that 〈Q〉 ∩0 = {OE }. Actually, when x
is sufficiently large, any x-pseudolinearly dependent point with respect to 0 must
satisfy this property.

Proposition 4.1. There exists a constant M depending on E and 0 such that for
any x > M , every x-pseudolinearly dependent point Q is nontorsion and satisfies
〈Q〉 ∩0 = {OE }.

Proof. Consider the subgroup 0̃ defined in (2-1). Notice that 0̃ is a finitely generated
group containing the torsion points of E(Q), and by construction each element in
the quotient group 0̃/0 is of finite order. So, 0̃/0 is a finite group. Then, we let
n = [0̃ : 0] and assume that 0̃/0 = {P0 = OE , P1, . . . , Pn−1}. If n = 1, that is
0̃ = 0, then for any P ∈ E(Q) \0 we have 〈P〉 ∩0 = {OE }, and thus everything
is done. Now, we assume that n > 1.

For any Pi , 1≤ i ≤ n− 1, since Pi 6∈ 0, by Theorem 1.2 there exists a prime pi

of good reduction such that Pi 6∈ 0pi . Then, we choose a constant, say M , such that
M ≥ pi for any 1≤ i ≤ n− 1. Thus, when x > M , any Pi (1≤ i ≤ n− 1) is not an
x-pseudolinearly dependent point with respect to 0, and then any point P ∈ 0̃ is
also not such a point. So, the x-pseudolinearly dependent point Q is not in 0̃. This
actually completes the proof. �

The above result clearly implies the following:

Corollary 4.2. If 0 is a full rank subgroup of E(Q) (that is s = r), then there
exists a constant M depending on E and 0 such that for any x > M , there is no
x-pseudolinearly dependent point.

In other words, the case (that is s < r ) in (4-1) is the only one meaningful case
for x-pseudolinearly dependent points when x is sufficiently large. We also remark
that directly by Theorem 1.2, any fixed point in E(Q) is not an x-pseudolinearly
dependent point with respect to 0 for x sufficiently large.
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4B. Construction. In this section, we assume that the rank r of E(Q) and the rank
s of 0 satisfy r ≥ 1 and s < r .

In order to get upper bounds on the height of pseudolinearly dependent points,
the following construction is slightly different from what we give in (4-1).

Recalling Np and Tp defined in Section 3C, given any x ≥ 2, we define

L x = lcm{Np/Tp : p ≤ x}.

Take a point R ∈ E(Q) of infinite order such that 〈R〉 ∩0 = {OE }, then pick an
arbitrary point P ∈ 0 and set

Q = P + L x R.

It is easy to see that Q 6∈ 0 but Q p ∈ 0p for every prime p ≤ x of good reduction,
and so Q is an x-pseudolinearly dependent point.

Since the coordinates of points in E(Q) are rational numbers, for any subset
S ⊆ E(Q) there exists a point with smallest Weil height among all the points in S.
So, noticing s < r , we choose a point with smallest Weil height in the subset
consisting of nontorsion points R in E(Q) \0 with 〈R〉 ∩0 = {OE }; we denote
this point by Rmin.

Now, we define a point Qmin ∈ E(Q) as follows:

(4-2) Qmin = L x Rmin.

As before, Qmin 6∈ 0 but Qmin ∈ 0p for every prime p ≤ x of good reduction. We
also have

(4-3) ĥ(Qmin)= L2
x ĥ(Rmin)= L2

x(h(Rmin)+ O(1))� L2
x ,

which comes from the fact that h(Rmin) is fixed when E and 0 are given.
The point Qmin is exactly the point we claim in Theorems 2.1, 2.2, 2.3, and 2.4.

So, it remains to prove the claimed upper bounds for ĥ(Qmin).

5. Proofs of upper bounds

5A. Outline. As mentioned above, to achieve our purpose, it suffices to bound the
canonical height of Qmin given by (4-2), that is, ĥ(Qmin).

By definition, we directly have

L x ≤
∏
p≤x

Np/Tp.

In view of (4-3), our approach is to get upper and lower bounds respectively for∏
p≤x

Np and
∏
p≤x

Tp.
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5B. Proof of Theorem 2.1. Recalling the Hasse bound

|Np − p− 1| ≤ 2p1/2

for any prime p of good reduction (see [Silverman 2009, Chapter V, Theorem 1.1]),
we derive the inequality

(5-1)
∏
p≤x

Np ≤
∏
p≤x

(p+ 2p1/2
+ 1)=

∏
p≤x

p(1+ p−1/2)2

= exp
(∑

p≤x

log p+ 2
∑
p≤x

log(1+ p−1/2)

)

≤ exp
(∑

p≤x

log p+ 2
∑
p≤x

p−1/2
)

= exp(O(
√

x/ log x))
∏
p≤x

p.

Now using the prime number theorem in a simple form:

(5-2)
∑
p≤x

log p = x + O(x/(log x)2),

we obtain

(5-3)
∏
p≤x

Np ≤ exp(x + O(x/(log x)2)).

Combining (5-3) with (4-3), we derive the following upper bound for ĥ(Qmin):

(5-4) ĥ(Qmin)� L2
x ≤

∏
p≤x

N 2
p ≤ exp(2x + O(x/(log x)2)).

This completes the proof.
We remark that a better error term for the prime number theorem such as that of

[Iwaniec and Kowalski 2004, Corollary 8.30] would improve the result, however,
the improvement is not substantial, as seen by regarding the main term.

5C. Proof of Theorem 2.2. Since 0 has rank zero, by the injectivity of the re-
duction map restricted to the torsion subgroup, we can see that Tp = #0 for any
prime p of good reduction and coprime to the size of the torsion subgroup.

We also recall the prime number theorem in the following simplified form

(5-5) π(x)= x
log x

+ O(x/(log x)2),

which follows from (5-2).
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Now, using (5-3) and (5-5) we have

L x � (#0)−π(x)
∏
p≤x

Np ≤ exp
(

x − log(#0) x
log x

+ O(x/(log x)2)
)
.

From (4-3) we conclude that for any sufficiently large x > 0, we have

ĥ(Qmin)≤ exp
(

2x − 2 log(#0) x
log x

+ O(x/(log x)2)
)
,

which completes the proof.

5D. Proof of Theorem 2.3. For any sufficiently large x , we define

J =
⌊ s

s+2
log x

⌋
≥ 1 and Z j = x s/(s+2)e− j , j = 0, . . . , J,

where e is the base of the natural logarithm. Note that 1≤ Z J < e.
Since s≥ 1, the number of primes p such that Tp = 1 or 2 is finite; we denote this

number by N , which depends on 0. Let M0 be the number of primes p ≤ x with
Tp ≥ Z0. Furthermore, for j = 1, . . . , J , we define M j as the number of primes
p ≤ x with Z j−1 > Tp ≥ Z j . Clearly

N +
J∑

j=0

M j ≥ π(x).

So, noticing Z0 = x s/(s+2) we now derive

∏
p≤x

Tp ≥

J∏
j=0

Z M j
j ≥ Zπ(x)−N

0

J∏
j=0

e− j M j = Zπ(x)−N
0 exp(−3),

where

3=

J∑
j=1

j M j .

Recalling the definition of Z0, and using (5-5), we obtain

(5-6)
∏
p≤x

Tp ≥ exp
( s

s+2
x −3+ O(x/ log x)

)
.

To estimate 3, we note that by Lemma 3.1, for any positive integer I ≤ J we have

J∑
j=I

M j ≤ #{p : Tp < Z0e−I+1
} �

(Z0e−I+1)1+2/s

log Z0− I + 1
.
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Thus for I ≤ 1
2 J , noticing J ≤ log Z0 we obtain

(5-7)
J∑

j=I

M j �
(Z0e−I )1+2/s

log Z0
� e−I (1+2/s) x

log x
,

while for any 1
2 J < I ≤ J we use the bound

(5-8)
J∑

j=I

M j � (Z0e−I+1)1+2/s
� (

√
Z0)

1+2/s
= x1/2.

Hence, via partial summation, combining (5-7) and (5-8), we derive

3=

J∑
I=1

J∑
j=I

M j �
x

log x

∑
1≤I≤J/2

e−I (1+2/s)
+ x1/2

∑
J/2<I≤J

1

�
x

log x
+ J x1/2

�
x

log x
.

This bound on 3, together with (5-6), implies∏
p≤x

Tp ≥ exp
( s

s+2
x + O(x/ log x)

)
.

Therefore using (5-3), we obtain

L x ≤
∏
p≤x

Np/Tp ≤ exp
( 2

s+2
x + O(x/ log x)

)
.

Therefore, the desired result follows from the bound (4-3).

5E. Proof of Theorem 2.4. First, we have∏
p≤x

Tp ≥
∏
p≤x

Tp≥p/(log p)2

p
(log p)2

·

∏
p≤x

Tp<p/(log p)2

Tp

=

∏
p≤x

p
(log p)2

·

∏
p≤x

Tp<p/(log p)2

Tp(log p)2

p
.

Using the trivial lower bound Tp ≥ 1, we derive∏
p≤x

Tp ≥
∏
p≤x

p ·
∏
p≤x

(log p)−2
·

∏
p≤x

Tp<p/(log p)2

(log p)2/p

≥

(
(log x)2

x

)O(x/(log x)2)∏
p≤x

p ·
∏
p≤x

(log p)−2,
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where the last inequality follows from Lemma 3.2 and Lemma 3.3.
Thus, using (5-1), we obtain

L x ≤
∏
p≤x

Np/Tp ≤ exp(O(x/ log x))
∏
p≤x

(log p)2

≤ exp
(

2 x log log x
log x

+ O(x/ log x)
)
,

where the last inequality is derived from (5-5) and the trivial estimate∑
p≤x

log log p ≤ π(x) log log x .

Therefore, the desired result follows from the bound ĥ(Qmin)� L2
x .

6. Proofs of lower bounds

6A. Proof of Theorem 2.5. By assumption, 0 is a torsion subgroup of E(Q). Let
Q ∈ E(Q) be an arbitrary x-pseudolinearly dependent point for a sufficiently large x .
Let m be the number of primes of bad reduction for E . Then, since Q ∈ 0p for any
prime p ≤ x of good reduction, there exists a rational point P ∈ 0 such that for at
least (π(x)−m)/#0 primes p ≤ x of good reduction we have

Q ≡ P (mod p).

In view of (3-3), this implies that

h(Q− P)≥ 2 log
∏

p≤(π(x)−m)/#0

p ≥ 2
#0

x/ log x + O(x/(log x)2),

where the last inequality follows from (5-2) and (5-5). Note that P is a torsion
point; then using (3-1) we obtain

(6-1) ĥ(Q)= ĥ(Q)+ ĥ(P)≥ 1
2 ĥ(Q− P)≥ 1

2h(Q− P)+ O(1)

≥
1

#0
x/ log x + O(x/(log x)2),

which gives the claimed lower bound for the height of the point Q.

6B. Proof of Theorem 2.6. For any sufficiently large x , by Proposition 4.1, any
x-pseudolinearly dependent point Q of 0 is nontorsion and satisfies 〈Q〉∩0={OE }.
Then, from Lemma 3.9, there is an unconditional prime p of good reduction for E
satisfying

log p� (log ĥ(Q))2s+6 log log ĥ(Q)
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such that Q 6∈ 0p. Since x < p, by definition we obtain

log x � (log ĥ(Q))2s+6 log log ĥ(Q),

which implies that ĥ(Q)≥ exp((log x)1/(2s+6)+o(1)).
Similarly, assuming the GRH, we obtain

ĥ(Q)≥ exp(x1/(4s+12)+o(1)),

which completes the proof.

7. Comments

In Section 6, we get some partial results on the lower bound for the height of
x-pseudolinearly dependent points. In fact, the height of such points certainly tends
to infinity as x→+∞.

Indeed, let E be an elliptic curve over Q of rank r ≥ 1, and let 0 be a subgroup
of E(Q) with rank s < r . We have known that for any sufficiently large x , there
exist infinitely many x-pseudolinearly dependent points with respect to 0. For any
x > 0, if such points exist, as before we can choose a point, denoted by Qx , with
smallest Weil height among all these points; otherwise if there are no such points,
we let Qx = OE . Thus, we get a subset

S = {Qx : x > 0}

of E(Q), and for any x < y we have h(Qx)≤ h(Q y). By Theorem 1.2, we know
that for any fixed point Q ∈ E(Q), it can not be an x-pseudolinearly dependent
point for any sufficiently large x . So, S is an infinite set. Since it is well-known
that there are only finitely many rational points of E(Q) with bounded height, we
obtain

lim
x→+∞

h(Qx)=+∞,

which implies that limx→+∞ ĥ(Qx)=+∞. This immediately implies that for the
point Qmin constructed in Section 4B, its height ĥ(Qmin) also tends to infinity as
x→+∞.

Moreover, let pn denote the n-th prime, that is p1= 2, p2= 3, p3= 5, . . . For any
n ≥ 1, denote by Tn the set of pn-pseudolinearly dependent points of 0. Obviously,
Tn+1 ⊆ Tn and h(Q pn+1)≥ h(Q pn ) for any n ≥ 1. For any sufficiently large n, we
conjecture that Tn+1 ( Tn . If furthermore one could prove that h(Q pn+1) > h(Q pn )

for any sufficiently large n, this would lead to a lower bound of the form

h(Qx)≥ log x + O(log log x),
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as the values of h(Qx) are logarithms of rational integers and there are about
x/ log x primes not greater than x .

In Lemma 3.9, if we choose 0 as a torsion subgroup, we can also get a similar
unconditional upper bound. Indeed, for a prime p of good reduction for E , suppose
that Q ∈ 0p. Then, Q− P ≡ OE modulo p for some P ∈ 0. According to (3-3),
we have p ≤ exp(h(Q − P)/2). Since P is a torsion point, as in (6-1) we get
p≤ exp(ĥ(Q)+O(1)). Thus, we can choose a prime p of good reduction satisfying

p ≤ exp(ĥ(Q)+ O(1))

such that Q 6∈ 0p.
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