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Let K be a number field, let S be a finite set of places of K , and let RS be the
ring of S-integers of K . A K -morphism f :P1

K→P1
K has simple good reduc-

tion outside S if it extends to an RS-morphism P1
RS
→ P1

RS
. A finite Galois

invariant subset X ⊂ P1
K (K̄ ) has good reduction outside S if its closure in

P1
RS

is étale over RS. We study triples ( f, Y, X) with X = Y ∪ f (Y). We
prove that for a fixed K , S, and d, there are only finitely many PGL2(RS)-
equivalence classes of triples with deg( f )= d and

∑
P∈Y e f (P)≥ 2d+1 and

X having good reduction outside S. We consider refined questions in which
the weighted directed graph structure on f : Y → X is specified, and we
give an exhaustive analysis for degree 2 maps on P1 when Y = X .
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1. Introduction

Let K be a number field, let S be a finite set of places of K including all archimedean
places, and let RS be the ring of S-integers of K . We recall that an abelian
variety A/K is said to have good reduction outside S if there exists a proper RS-
group scheme A/RS whose generic fiber is K-isomorphic to A/K . Then we have
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the following famous conjecture of Shafarevich, which was proven by Shafarevich
in dimension 1 and by Faltings in general.

Theorem 1 [Faltings 1983]. There are only finitely many K-isomorphism classes
of abelian varieties A/K having good reduction outside S.

Our goal in this paper is to study an analogue of Shafarevich’s conjecture for
dynamical systems on projective space. The first requirement is a definition of good
reduction for self-maps of PN, such as the following.

Definition [Morton and Silverman 1995]. Let f : PN
K → PN

K be a nonconstant
K-morphism. Then f has (simple) good reduction outside S if there exists an
RS-morphism PN

RS
→ PN

RS
whose generic fiber is PGLN+1(K )-conjugate to f .

If f has simple good reduction outside S, and if ϕ ∈ PGLN+1(RS), then it is
clear that the conjugate map

f ϕ := ϕ−1
◦ f ◦ϕ : PN

K → PN
K

also has simple good reduction. But even modulo this equivalence, it is easy to see
that a dynamical analogue of Shafarevich’s conjecture using simple good reduction
is false. For example, every map f : P1

K → P1
K of the form

f (X, Y )= [Xd
+ a1 Xd−1Y + · · ·+ adY d , Y d

] with ai ∈ RS

has simple good reduction outside S, and these maps represent infinitely many
PGL2(RS)-conjugacy classes. And as noted in [Morton and Silverman 1995, Ex-
ample 4.1], there are also infinite nonpolynomial families such as

[aX2
+ bXY + Y 2, X2

] with a, b ∈ RS .

It is thus of interest to formulate alternative definitions of good reduction for which a
Shafarevich conjecture might hold in the dynamical setting. The literature contains
several papers [Petsche 2012; Petsche and Stout 2015; Stout 2014; Szpiro and
Tucker 2008] along these lines. We refer the reader to Section 2 for a description
of these earlier results and a comparison with the present paper.

Our approach is to study pairs consisting of a map f and a set of points Y ∈ PN

such that the map f : Y → f (Y ) “does not collapse” when it is reduced modulo p

for primes not in S; see Remark 5 for a discussion of why this is a natural analogue
of the classical Shafarevich–Faltings result. To make this precise, we need to define
good reduction for sets of points.

Definition. Let X ⊂ PN (K̄ ) be a finite Gal(K̄/K )-invariant subset, say X =
{P1, . . . , Pn}. Then X has good reduction outside S if for every prime p /∈ S,
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and every prime P of K (P1, . . . , Pn) lying over p, the reduction map1

X→ X̃ mod P is injective.

We observe that good reduction is preserved by the natural action of PGLN+1(RS)

on PN (K̄ ).

Our dynamical analogue of the Shafarevich–Faltings theorem is a statement
about triples ( f, Y, X) consisting of a morphism f and sets of points that have
good reduction. We restrict attention to P1, since this is the setting for which we
are currently able to prove a strong Shafarevich-type theorem; but see Section 8 for
a brief discussion of possible extensions to PN and why the naive generalization
fails.

Definition. We define GR1
d [n](K , S) to be the set of triples ( f, Y, X), where f :

P1
K → P1

K is a degree d morphism defined over K and Y ⊆ X ⊂ P1(K̄ ) are finite
sets, satisfying the following conditions:

• X = Y ∪ f (Y ),

• X is Gal(K̄/K )-invariant,

•
∑

P∈Y e f (P)= n, where e f (P) is the ramification index of f at P,

• f and X have good reduction outside S.

We also define a potentially larger set G̃R1
d [n](K , S) by dropping the requirement

that f has good reduction. We observe that if Y = X , then the points in X have
finite f -orbits, in which case we say that ( f, X, X) is a preperiodic triple.

There is a natural action of PGL2(RS) on GR1
d [n](K , S) and on G̃R1

d [n](K , S)
given by

ϕ · ( f, Y, X) :=
(

f ϕ, ϕ−1(Y ), ϕ−1(X)
)
.

Our dynamical Shafarevich-type theorem for P1 says that if n is sufficiently large,
then G̃R1

d [n](K , S) has only finitely many PGL2(RS)-orbits.

Theorem 2 (dynamical Shafarevich theorem for P1). Let d ≥ 2.

(a) Let K/Q be a number field, and let S be a finite set of places of K . Then for
all n ≥ 2d + 1, the set

G̃R1
d [n](K , S)/PGL2(RS) is finite.

1In scheme-theoretic terms, the set X is a reduced 0-dimensional K-subscheme of PN
K . Let

X ⊂ PN
RS

be the scheme-theoretic closure of X . Then X has good reduction outside S if X is étale
over RS .



148 JOSEPH H. SILVERMAN

(b) Let S be the set of rational primes less than 2d − 2. Then

GR1
d [2d](Q, S)/PGL2(ZS) is infinite.

Indeed, there are infinitely many PGL2(ZS)-equivalence classes of preperiodic
triples ( f, X, X) in GR1

d [2d](Q, S).

Proof. See Section 3 for the proof of (a), and Section 4, specifically Proposition 11,
for the proof of (b). �

In some sense, Theorem 2 is the end of the story for P1, since it says:

“The dynamical Shafarevich conjecture is true for sets of weight
at least 2d + 1, but it is not true for sets of smaller weight.”

However, rather than merely specifying the total weight, we might consider the
weighted graph structure that f : Y → X imposes on X , where each point P ∈ Y is
assigned an outgoing arrow P→ f (P) of weight e f (P). In dynamical parlance,
we want to classify triples ( f, Y, X) according to their portrait structure.2 The
following example of an (unweighted) portrait illustrates the general idea:

P : •
yy

• // • •
TT
•

��

A model for this portrait P is a triple ( f, Y, X) with Y = {P1, P2, P4, P5} and
X = {P1, P2, P3, P4, P5} satisfying

• P1 is a fixed point of f ,

• f (P2)= P3,

• P4 and P5 form a periodic 2-cycle for f .

If each point P ∈ P is assigned a weight ε(P), then we might further require that
e f (P)= ε(P), although there are other natural possibilities. Indeed, we consider
three ways to define good reduction for dynamical systems and weighted portraits.
We start with the largest set and work our way down:

Definition. Let P be a weighted portrait. We define GR1
d [P](K , S) to be the set of

triples ( f, Y, X), where f : P1
K → P1

K is a degree d morphism defined over K and
Y ⊆ X ⊂ P1(K̄ ) are finite sets, satisfying the conditions

• X = Y ∪ f (Y ) and f : Y → X looks like P (ignoring the weights),

• X is Gal(K̄/K )-invariant,

• f and X have good reduction outside S.

2Portrait structures, especially on critical point orbits, are important tools in the study of complex
dynamics on P1(C); see for example [Arfeux 2016].
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We then define three subsets of GR1
d [P](K , S) by imposing the following additional

conditions on the triple ( f, Y, X) that reflect the weights assigned by P:3

GR1
d [P]

•(K , S): e f (P)≥ ε(P) for all P ∈ Y ,

GR1
d [P]

◦(K , S): e f (P)= ε(P) for all P ∈ Y ,

GR1
d [P]

?(K , S): e f̃ (P̃ mod p)= ε(P) for all P ∈ Y and all p /∈ S.

We refer the reader to Section 6 for rigorous definitions of portraits, both weighted
and unweighted, and their models. See also the companion paper [Doyle and
Silverman ≥ 2018], in which we construct parameter spaces and moduli spaces for
dynamical systems with portraits via geometric invariant theory and study some of
their geometric and arithmetic properties.

This leads to fundamental questions:

Question 3. For a given d ≥ 2, classify the portraits P having the property that for
all number fields K and all finite sets of places S, the set

GRN
d [P]

x(K , S)/PGL2(RS) is finite, where x ∈ {•, ◦, ?}.

If P has this property, then we say that P is an (x, d)-Shafarevich portrait, or that
(x, d)-Shafarevich finiteness holds for P .

For example, Theorem 2(a) says that if the total weight of the points in P is at
least 2d+1, then (•, d)-Shafarevich finiteness holds for P . This is quite satisfactory.
But the converse result, which is Theorem 2(b), says only that there exists at least
one portrait of total weight 2d such that (•, d)-Shafarevich finiteness fails for P . It
says nothing about the full set of such portraits. And indeed, we will prove that
among the many portraits of total weight 4, (•, 2)-Shafarevich finiteness holds for
some and not for others! Thus the answer to Question 3 appears to be fairly subtle
for portraits of weight at most 2d .

In those cases that GR1
d [P]

x(K , S) is infinite, we might ask for a more refined
measure of its size. This is provided by looking at its image in the moduli space M1

d ,
where M1

d := End1
d // SL2 is the moduli space of dynamical systems of degree d

morphisms on P1. (See [Milnor 1993; Silverman 1998] for the construction of M1
d ,

and [Levy 2011; Petsche et al. 2009] for an analogous construction for PN.) This
prompts the following definition.

Definition. Let d ≥ 2, let x ∈ {•, ◦, ?}, and let P be a portrait. The (x, d)-
Shafarevich dimension of P is the quantity

ShafDim1
d [P]

x
= sup

K a number field
S a finite set of places

dim Image
(
GR1

d [P]x(K , S)→M1
d

)
,

where the overline denotes the Zariski closure.
3We note that ?-good reduction was first defined and studied by Petsche and Stout [2015], specifi-

cally for d = 2 and P consisting of two fixed points or one 2-cycle.
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P (1, 2)-Shafarevich finiteness true?

• // •
yy

•
yy

•
yy

yes

• // •
yy

• // •
yy

no

• // • // •
yy

•
yy

yes

• // • // • // •
yy

yes

•
yy

•
yy

•
UU
•

��
yes

• // •
yy

•
UU
•

��
no

•
yy

• // •
UU
•

��
yes

• // • // •
UU
•

��
yes

Table 1. Some weight 4 portraits for degree 2 maps.

By definition, we have

P is a (x, d)-Shafarevich portrait H⇒ ShafDim1
d [P]

x
= 0.

A natural generalization of Question 3 is to ask for a formula (or algorithm, or . . . )
for ShafDim1

d [P]x as a function of P .
In this paper we start to answer this refined question by performing an exhaustive

computation of ShafDim1
2[P]x for preperiodic portraits of weight up to 4, since

Theorem 2(a) says that the dimension is 0 for portraits whose weight is strictly
greater than 4.

To partially illustrate the complete results that are given in Section 7, we refer
the reader to Table 1. This table lists eight preperiodic portraits of weight 4 that
arise for degree 2 maps of P1. For six of them, the (•, 2)-Shafarevich finiteness
property holds, while for two of them it does not. It is not clear (to this author) how
to distinguish this dichotomy directly from the geometry of the portraits, other than
by performing a detailed analysis. It turns out that there are 34 possible portraits of
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weight at most 4 for degree 2 maps of P1. See Section 7 for an analysis of all 34
portraits and a computation of their various Shafarevich dimensions.

We can also turn the question around by fixing P and letting d→∞. We note
that the Shafarevich dimension is never more than dimM1

d = 2d − 2.

Question 4. For a given unweighted portrait P , what is the limiting behavior of
the Shafarevich discrepancy4

2d − 2−ShafDim1
d [P] as d→∞?

We note that Question 4 is quite interesting even for P =∅. We will show in
Proposition 12 that

d ≤ ShafDim1
d [∅] ≤ 2d − 2.

This gives the exact value for d = 2, a result that is also proven in [Petsche and
Stout 2015] using a slightly different argument.

Remark 5. Returning to the case of abelian varieties for motivation and inspiration,
we note that an abelian variety is really a pair (A,O) consisting of a variety and a
marked point. As noted by Petsche and Stout [2015], if we discard the marked point,
then Shafarevich finiteness is no longer true. For example, there may be infinitely
many K-isomorphism classes of curves of genus 1 having good reduction outside S.
Hence in order to prove Shafarevich finiteness for a collection of geometric object
(varieties, maps, etc.), it is very natural to add level structure in the form of one
or more points. We also remark that if we add further level structure to an abelian
variety, for example specifying an n-torsion point Q, then an ostensibly stronger
form of good reduction would require that the points Q and O remain distinct
modulo the primes not in S. But if we enlarge S so that n ∈ R∗S , then the two forms
of good reduction are actually identical due to the standard result on injectivity
of torsion under reduction; cf. [Hindry and Silverman 2000, Theorem C.1.4] or
[Mumford 1970, Appendix II, Corollary 1]. To make the dynamical analogy
complete, we note that torsion points are exactly the points of A that are preperiodic
for the doubling map.

2. Earlier results

It has long been realized that dynamical Shafarevich finiteness does not hold for
morphisms f :P1

→P1 if the definition of good reduction is simple good reduction;
cf. [Morton and Silverman 1995, Example 4.1]. This has led a number of authors
to impose additional good reduction conditions on f and to prove a variety of
finiteness theorems. We briefly mention a few of these results.

4If P has weights ε, it is more natural to consider the quantity 2d − 2−
∑

P∈Y
(
ε(P)− 1

)
−

ShafDim1
d [P]

x for x ∈ {•, ◦, ?}.
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Closest in spirit to the present paper is work of Petsche and Stout [2015] in
which they study good reduction of degree 2 maps of P1. They define (with similar
notation) the sets that we’ve denoted by GR1

d(K , S)[∅] and they pose the question
of whether the maps in this set are Zariski dense in the moduli space M1

d . They
prove that this is true for d = 2, which is a special case of our Proposition 12.
They also study maps with ?-good reduction relative to various portraits, i.e., the
sets GR1

d [P]
? defined earlier. For example, they prove that ShafDim1

2[P]? = 1
when P is a portrait consisting of two unramified fixed points, and similarly when P
is a portrait consisting of a single unramified 2-cycle. (These are the portraits
labeled P2,3 and P2,4 in Table 2.) We will show later that ShafDim1

2[P]◦ = 1
and ShafDim1

2[P]• = 2 for these two portraits. More generally, in Section 7 we
compute the three Shafarevich dimensions for the 34 preperiodic portraits of weight
at most 4 for degree 2 maps of P1.

Other approaches to a dynamical Shafarevich conjecture also consider pairs ( f, X)
or triples ( f, Y, X) of maps and points, but impose different function-theoretic
constraints. Thus in [Szpiro and Tucker 2008; Szpiro et al. 2017; Szpiro and West
2017], maps are classified according to what Szpiro characterizes as “differential
good reduction”. For a given map f :P1

→P1, let R( f ) denote the set of ramified
points of f and let B( f )= f (R( f )) denote the set of branch points.5

Definition. The map f has critical good reduction outside S if each of the sets R( f )
and B( f ) has good reduction outside S. The map f has critical excellent reduction
outside S if the union R( f )∪B( f ) has good reduction outside S.

Canci, Peruginelli, and Tossici [Canci et al. 2013] prove that f has critical good
reduction if and only if f has simple good reduction and the branch locus B( f )
has good reduction.

Theorem 6 [Szpiro et al. 2017; Szpiro and West 2017]. Fix a number field K , a
finite set of places S, and an integer d ≥ 2. Then up to PGL2(K )-conjugacy, there
are only finitely many degree d maps f : P1

K → P1
K that are ramified at 3 or more

points and have critically good reduction outside S.

Theorem 6 of Szpiro, Tucker, and West fits into the framework of our Theorem 2,
since their maps f correspond to triples(

f,R( f ),R( f )∪B( f )
)
∈ G̃R1

d [n](K , S),

where

n =
∑

P∈R( f )

e f (P)=
∑

P∈R( f )

(
e f (P)− 1

)
+ #R( f )= 2d − 2+ #R( f ).

5In dynamical terminology, R( f ) is the set of critical points and B( f ) is the set of critical values.
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If we assume that #R( f ) ≥ 3 as in Theorem 6, then n ≥ 2d + 1, so we see that
Theorem 6 follows from Theorem 2(a).

The proof of Theorem 6 in [Szpiro et al. 2017; Szpiro and West 2017] uses
a finiteness result for sets of points in P1(K ) having good reduction outside S,
similar to our Lemmas 7 and 8, which in turn rely on classical results of Hermite
and Minkowski together with the finiteness of solutions to the S-unit equation. The
other ingredient used by Szpiro, Tucker, and West in their proof of Theorem 6 is
a special case of a theorem of Grothendieck that computes the tangent space of
the parameter scheme of morphisms. We remark that [Szpiro et al. 2017; Szpiro
and West 2017; Szpiro and Tucker 2008] also deal with the case of function fields,
which can present additional complications.

The earlier paper of Szpiro and Tucker [2008] proved a result similar to Theorem 6,
but with a two-sided conjugation equivalence relation, i.e., f1 and f2 are considered
equivalent if there are maps ϕ,ψ ∈PGL2 such that f2=ψ ◦ f1◦ϕ. This equivalence
relation, while interesting, is not well suited for studying dynamics.

There is an article of Stout [2014] in which he proves that for a fixed rational
map f , there are only finitely many K̄/K twists of f having simple good reduction
outside of S. And a paper of Petsche [2012] proves a Shafarevich finiteness theorem
for certain families of critically separable maps, which he defines to be maps f of
degree d ≥ 2 such that for every prime not in S, the reduced map has 2d−2 distinct
critical points. In other words, #R( f ) = 2d − 2 and R( f ) has good reduction
outside S. This is not enough to obtain finiteness, so Petsche restricts to certain
codimension 3 families in Rat1d that are modeled after Lattès maps, and he proves
that the dynamical Shafarevich conjecture holds for these families.

A number of authors have studied the resultant equation Res(F,G)= c, where
the coefficients of F and G are viewed as indeterminates [Evertse and Győry 1993;
Győry 1990; 1993]. Taking c to be an S-unit, this is clearly related to the question
of simple good reduction of the map f = [F,G] ∈ End1

d . Rephrasing the results in
our notation,6 Evertse and Győry [1993, Corollary 1] prove that up to PGL2(RS)-
equivalence, there are only finitely many f = [F,G] ∈ End1

d having the property
that FG is square-free and splits completely over K . Alternatively, their conditions
may be phrased in terms of f as requiring that 0 and∞ are not critical values of f
and that the points in f −1(0)∪ f −1(∞) are in P1(K ), and their conclusion is that
Shafarevich finiteness is true for this collection of maps. We note that the condition
that f −1(0)∪ f −1(∞) ⊂ P1(K ) means, more or less, that the maps in question
correspond to S-integral points on a 2d-to-1 finite cover of an open subset of End1

d .
Finally, we mention two topics that seem at least tangentially related. There are a

number of papers that fix a map f and a wandering point P and ask which portraits

6We have restricted to the case that deg(F)= deg(G), although the cited papers do not require this.
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arise when one reduces the orbit of P modulo various primes; see for example
[Faber and Granville 2011; Ghioca et al. 2015]. And there are two articles of Doyle
[2016; 2018] in which he classifies periodic point portraits that are permitted for
unicritical polynomials, i.e., polynomials of the form axd

+ b. These results could
be useful in studying the geometry and arithmetic of our portrait moduli spaces
studied in [Doyle and Silverman ≥ 2018].

3. Dynamical Shafarevich finiteness holds on P1 for weight ≥ 2d+ 1

In this section we prove Theorem 2(a); namely we prove that the dynamical Sha-
farevich finiteness holds for maps f of P1 and f -invariant sets X of weight at
least 2d + 1. The first step is to show that there are only finitely many choices for
the set X .

Definition. Let K be a number field, let S be a finite set of places including all
archimedean places, and let n ≥ 1 be an integer. We define X [n](K , S) to be the
collection of subsets X ⊂ P1(K̄ ) satisfying

• #X = n,

• X is Gal(K̄/K )-invariant,

• X has good reduction outside S.

We note that if ϕ ∈ PGL2(RS) and X = {P1, . . . , Pn} ∈ X [n](K , S), then

(1) ϕ(X) := {ϕ(P1), . . . , ϕ(Pn)} ∈ X [n](K , S),

so there is a natural action of PGL2(RS) on X [n](K , S). More generally, we use (1)
to define an action of PGL2(K̄ ) on n-tuples of points in P1(K̄ ).

The following lemma is well known, but for lack of a suitable reference and as a
convenience to the reader, we include the proof.

Lemma 7. Fix a number field K , a finite set of places S including all archimedean
places, and an integer n ≥ 3. Then

X [n](K , S)/PGL2(RS)

is finite.

We start with a sublemma that will allow us to restrict attention to set of points
defined over a single field K .

Sublemma 8. Let K be a number field, let S be a finite set of places including all
archimedean places, and let n≥ 3 be an integer. Then there is a constant C(K , S, n)
such the map

X [n](K , S)/PGL2(RS)→ {X ⊂ P1(K̄ ) : #X = n}/PGL2(K̄ )

is at most C(K , S, n)-to-1.
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Proof. Let X = {P1, . . . , Pn} ∈ X [n](K , S). The fact that X is Galois invariant
implies that the field

K X := K (P1, . . . , Pn)

is a Galois extension of degree dividing n!. Further, the good reduction assumption
on X implies that K X/K is unramified outside S. It follows from the Hermite–
Minkowski theorem [Neukirch 1999, Section III.2] that there are only finitely many
possibilities for the field K X .7 It follows that the field

(2) K ′ :=
∏

X∈X [n](K ,S)

K X

is a finite Galois extension of K that depends only on K , S, and n.
We now fix an n-tuple X0 ∈ X [n](K , S), say X0 = {Q1, . . . , Qn}, and consider

the set of n-tuples in X [n](K , S) that are PGL2(K̄ )-equivalent to X0. Our goal is
to prove that the set

PGL2(K , S, X0) := {ϕ ∈ PGL2(K̄ ) : ϕ(X0) ∈ X [n](K , S)}

has the property that PGL2(K , S, X0)/PGL2(RS) is finite and has order bounded
solely in terms of K , S, and n.

Our first observation is that if ϕ ∈ PGL2(K , S, X0), then in particular we have
Qi ∈ P1(K ′) and ϕ(Qi ) ∈ P1(K ′) for all 1 ≤ i ≤ n, where K ′ is the field (2). A
fractional linear transformation is determined by its values at three points, so our
assumption that n ≥ 3 tells us that ϕ ∈ PGL2(K ′), i.e., every ϕ ∈ PGL2(K , S, X0)

is defined over the finite extension K ′ of K , where K ′ does not depend on X0.
Next let S′ be the places of K ′ lying over S. The good reduction assumption

on X0 and ϕ(X0) implies that Q1, . . . , Qn remain distinct modulo all primes P

of L with P /∈ S′, and similarly for ϕ(Q1), . . . , ϕ(Qn). Since n ≥ 3, we can apply
the following elementary result to conclude that ϕ has simple good reduction at P,
and since this holds for all P /∈ S′, we see that ϕ ∈ PGL2(RS′).

Sublemma 9. Let R be a discrete valuation ring with maximal ideal P and fraction
field K . Let P1, P2, P3 ∈ P1(K ) be points whose reductions modulo P are distinct,
and let Q1, Q2, Q3 ∈ P1(K ) also be points with distinct mod P reductions. Let
ϕ ∈ PGL2(K ) be the unique linear fractional transformation satisfying ϕ(Pi )= Qi

for 1≤ i ≤ 3. Then ϕ ∈ PGL2(R), i.e., ϕ has good reduction modulo P.

Proof. The fact that the reductions of P1, P2, P3 are distinct means that we can find
a linear fractional transformation ψ ∈ PGL2(R) satisfying ψ(P1)= 0, ψ(P2)= 1,
ψ(P3)=∞. Similarly, we can find a λ∈PGL2(R) satisfying λ(Q1)=0, λ(Q2)=1,

7More precisely, our assumptions imply that for p /∈ S, we have ordpDL/K = 0, while for all
primes p one has the standard estimate ordpDL/K ≤ [L : K ] − 1. This proves that NL/KDL/K is
bounded, and then for a fixed K , Hermite–Minkowski says that there are only finitely many L .
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λ(Q3)=∞. Then λ ◦ϕ ◦ψ−1 fixes 0, 1, and∞, so it is the identity map. Hence
ϕ = λ−1

◦ψ ∈ PGL2(R). �

We next observe that if ϕ ∈ PGL2(K , S, X0), then by definition and from what
we proved earlier, both of the sets X0 and ϕ(X0) are composed of points in P1(K ′)
and both are Gal(K ′/K )-invariant. Hence for any σ ∈ Gal(K ′/K ), we find that

ϕ(X0)= (ϕ(X0))
σ
= ϕσ (Xσ

0 )= ϕ
σ (X0).

Thus ϕ−1
◦ ϕσ : X0→ X0, i.e., the map ϕ−1

◦ ϕσ is a permutation of the set X0.
We thus obtain a map

PGL2(K , S, X0)→MapSet(Gal(K ′/K ),SX0),

ϕ 7→ (σ 7→ ϕ−1
◦ϕσ ),

where SX0 denotes the group of permutations of the set X0. (The map σ 7→
ϕ−1
◦ϕσ is actually some sort of cocycle, but that is irrelevant for our purposes.)

Since Gal(K ′/K ) and SX0 are both finite and have order bounded in terms of K , S,
and n, it suffices to fix some ϕ0 ∈ PGL2(K , S, X0) and to bound the number
of PGL2(RS) equivalence classes of maps ϕ ∈ PGL2(K , S, X0) that have the same
image in MapSet(Gal(K ′/K ),SX0). This means that for all σ ∈ Gal(K ′/K ), the
maps ϕ−1

◦ϕσ = ϕ−1
0 ◦ϕ

σ
0 have the same effect on X0; and since #X0 = n ≥ 3 and

linear fractional transformations are determined by their values on three points, it
follows that ϕ−1

◦ϕσ = ϕ−1
0 ◦ϕ

σ
0 as elements of PGL2(K ′). Thus

ϕ ◦ϕ−1
0 = ϕ

σ
◦ (ϕσ0 )

−1
= (ϕ ◦ϕ−1

0 )σ for all σ ∈ Gal(K ′/K ).

Hence ϕ ◦ϕ−1
0 ∈ PGL2(K ). But we also know that ϕ0 and ϕ are in PGL2(RS′), so

ϕ ◦ϕ−1
0 ∈ PGL2(K )∩PGL2(RS′).

It remains to show that

(3) PGL2(K )∩PGL2(RS′)= PGL2(RS),

since that will show that up to composition with elements of PGL2(RS), there
are only finitely many choices for ϕ. In order to prove (3), we start with some
ψ ∈ PGL2(K )∩ PGL2(RS′). Then for each prime p /∈ S, we need to show that ψ
has good reduction at p. We write ψ in normalized form as

(4) ψ(X, Y )= [aX + bY, cX + dY ] with a, b, c, d ∈ K and

min{ordp(a), ordp(b), ordp(c), ordp(d)} = 0,

i.e., a, b, c, d are all p-integral, and at least one of them is a p-unit. Now let P be a
prime of K ′ lying above p. We are given that ψ has good reduction at P, which
means that if we choose a P-normalized equation for ψ , its reduction modulo P
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has good reduction. But (4) is already normalized for P, since ordP = e(P/p) ordp.
Hence

ad − bc is a P-adic unit.

But ad− bc ∈ K , so ad− bc is a p-adic unit, and hence ψ has good reduction at p.
This holds for all p /∈ S, which completes the proof that ψ ∈ PGL2(RS), and thus
completes the proof of Sublemma 8. �

Proof of Lemma 7. Let L/K be a finite Galois extension, and let T be a finite of
places of L whose restriction to K contains S. Then we get a natural map

(5) X [n](K , S)/PGL2(RS)→ X [n](L , T )/PGL2(RT ),

since if X ⊂ P1(K̄ ) is Gal(K̄/K ) invariant and has good reduction outside S, it is
clear that X is also Gal(L̄/L) invariant and has good reduction outside T . However,
what is not clear a priori is that the map (5) is finite-to-one, since PGL2(RT ) may
be larger than PGL2(RS).

However Sublemma 8 says not only that the map

X [n](K , S)/PGL2(RS)→ {X ⊂ P1(K̄ ) : #X = n}/PGL2(K̄ )

is finite-to-one, but it also says that the number of elements in each PGL2(K̄ )-
equivalence class of X [n](K , S)/PGL2(RS) is bounded solely in terms of K , S,
and n. Hence using (5), it suffices to prove Lemma 7 for any such L and T .

As shown in the proof of Sublemma 8, there is a finite extension K ′/K such
that every X ∈ X [n](K , S) is an n-tuple of points in P1(K ′). We then let S′ be a
finite set of places of K ′ such that S′ restricted to K contains S and such that RS′

is a PID. Replacing K and S with K ′ and S′, we are reduced to studying the
PGL2(RS)-equivalence classes of the set of X ∈ X [n](K , S) such that

X = {P1, . . . , Pn} with P1, . . . , Pn ∈ P1(K ),

with the further condition that RS is a PID. This allows us to choose normalized
coordinates for the points in X , say

Pi = [ai , bi ] with ai , bi ∈ RS and gcdRS
(ai , bi )= 1.

The good reduction assumption says that P1, . . . , Pn are distinct modulo all primes
not in S, which given our normalization of the coordinates of the Pi , is equivalent
to the statement that

ai b j − a j bi ∈ R∗S for all 1≤ i < j ≤ n.

This means that we can find a linear fractional transformation ϕ ∈ PGL2(RS) that
moves the first three points in our list to the points

ϕ(P1)= [1, 0], ϕ(P2)= [0, 1], ϕ(P3)= [1, 1].
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Replacing X by ϕ(X), the remaining points in X are S-integral points of the scheme

(6) P1
RS
r {[1, 0], [0, 1], [1, 1]},

and it is well known that there are only finitely many such points. More precisely,
a normalized point P = [a, b] is an S-integral point of the scheme (6) if and only
if a, b, and a− b are S-units. But this implies that

( a
a−b ,

b
b−a

)
is a solution to the

S-unit equation U + V = 1, and hence that there are only finitely many values for
each of a

a−b and b
b−a [Silverman 2009, IX.4.1]. Further, each S-unit solution (u, v)

to u+ v = 1 gives one point P = [a, b] = [u,−v]. This concludes the proof that
there are only finitely many PGL2(RS)-equivalence classes of sets X having n
elements and good reduction outside S. �

The following geometric result is also undoubtedly well known, but for lack of a
suitable reference and the convenience of the reader, we include the short proof.8

Lemma 10. Let K be a field, and let f, g : P1
K → P1

K be rational maps of de-
gree d ≥ 1. Suppose that∑

P∈P1(K )
f (P)=g(P)

min{e f (P), eg(P)} ≥ 2d + 1.

Then f = g.

Proof. We may assume that K is algebraically closed. We fix a basepoint P0 ∈

P1(K ), and we take

H1 = {P0}×P1 and H2 = P1
×{P0}

as generators for Pic(P1
×P1)∼= Z⊕Z. We consider the divisors

1= {(P, P) : P ∈ P1(K )} ∈ Div(P1
×P1),

0 f,g = ( f × g)∗1 ∈ Div(P1
×P1).

We write |1| and |0 f,g| for the supports of1 and 0 f,g, respectively, and we note that
these supports are irreducible, since they are the images of P1 under, respectively,
the diagonal map and the map f × g.

We use the push-pull formula to compute the global intersection

0 f,g · H1 = ( f × g)∗(1) · H1 =1 · ( f × g)∗(H1)=1 · ( f ∗(P0)×P1)= d.

Similarly, we have 0 f,g · H2 = d . Hence

0 f,g = d H1+ d H2 in Pic(P1
×P1).

8Mike Zieve has pointed out that this lemma may also be proven by writing f and g as quotients
of polynomials f = f1/ f2 and g = g1/g2, and then analyzing the factorization of f1g2− f2g1.
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This allows us to compute

(7) 0 f,g ·1= d H1 ·1+ d H2 ·1= 2d.

Choose some P ∈P1(K ) satisfying f (P)= g(P), and let z be a local uniformizer
at P . We may assume that z( f (P)) 6= ∞, since otherwise we can replace z
by z/(z − 1). By assumption we have c := f (P) = g(P), so locally near P the
functions f and g satisfy

f (z) ∈ c+ aze f (P)+ ze f (P)+1K [[z]], g(z) ∈ c+ bzeg(P)+ zeg(P)+1K [[z]]

for some nonzero a and b. This allows us to estimate the following local intersection
index:

(8)
(
( f × g)∗1 ·1

)
( f (P),g(P)) = dimK

K [[x, y, z]](
x − f (z), y− g(z), x − y

)
= dimK

K [[z]](
f (z)− g(z)

)
≥min{e f (P), eg(P)}.

Suppose that |0 f,g| ∩ |1| is finite. Then we can calculate 0 f,g ·1 as a sum of
local intersections. Combined with (8), this yields

2d = 0 f,g ·1 from (7),

=

∑
Q∈P1(K )

(
( f × g)∗1 ·1

)
(Q,Q) since |0 f,g| ∩ |1| is finite,

=

∑
Q∈P1(K ) such that

∃P∈P1(K ) with f (P)=g(P)=Q

(
( f × g)∗1 ·1

)
(Q,Q)

≥

∑
P∈P1(K )

f (P)=g(P)

min{e f (P), eg(P)} from (8),

≥ 2d + 1 by assumption.

Thus the assumption that |0 f,g| ∩ |1| is finite leads to a contradiction. It follows
that |1| and |0 f,g| have a common positive dimensional component. But as noted
earlier, both |1| and |0 f,g| are irreducible curves, and hence |1| = |0 f,g|. Thus f
and g take on the same value at every point of P1(K ), and therefore f = g, which
completes the proof of Lemma 10. �

We now have the tools needed to prove dynamical Shafarevich finiteness for P1.

Proof of Theorem 2(a). Our goal is to prove that

G̃R1
d [n](K , S)/PGL2(RS) is finite.
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Let ( f, Y, X) ∈ G̃R1
d [n](K , S), and let `= #X . We note that

2d + 1≤ n =
∑
P∈Y

e f (P)≤ d · #Y ≤ d · #X = d`,

so `≥ 3. Further, the set X is Gal(K̄/K )-invariant and has good reduction outside
of S. Lemma 7 tells us that up to PGL2(RS)-equivalence, there are only finitely
many possibilities for X . So without loss of generality, we may assume that
X = {P1, . . . , P`} is fixed.

The set Y is subset of X , so there are only finitely many choices for Y . Relabeling
the points in X , we may thus also assume that Y = {P1, . . . , Pm} is fixed.

By definition, the map f satisfies X = f (Y )∪ Y , so in particular, f (Y ) ⊂ X .
Thus f induces a map

ν f : {1, . . . ,m} → {1, . . . , `} characterized by f (Pi )= Pν f (i).

There are only m` maps ν from the set {1, . . . ,m} to the set {1, . . . , `}, so again
without loss of generality, we may fix one map ν and restrict attention to maps f
satisfying ν f = ν. This means that the value of f is specified at each of the
points P1, . . . , Pm in Y .

We define the map

G̃R1
d [n](K , S)→ Zm, ( f, X) 7→

(
e f (P1), . . . , e f (Pm)

)
.

Since e f (P) is an integer between 1 and d , there are only finitely many possibilities
for the image. We may thus restrict attention to triples ( f, Y, X) such that the
ramification indices of f at the points in Y are fixed.

But now any two triples ( f, Y, X) and (g, Y, X) have the same values and the
same ramification indices at the points in Y , and by assumption the sum of those
ramification indices is at least 2d + 1, so Lemma 10 tells us that f = g. This
completes the proof that G̃R1

d [n](K , S) contains only finitely many PGL2(RS)-
equivalence classes of triples ( f, Y, X). �

4. Dynamical Shafarevich finiteness fails on P1 for weight ≤ 2d

In this section we prove Theorem 2(b). More precisely, we prove that the dynamical
Shafarevich finiteness is false for maps f : P1

→ P1 and f -invariant sets X
containing 2d points. We do this by analyzing a particular family of maps.

Proposition 11. Let d ≥ 2, let K/Q be a number field, and let S be the set of primes
of K dividing (2d − 2)! . For each a ∈ K̄ ∗, let fa(x) be the map

fa(x)=
ax(x − 1)(x − 2) · · · (x − d + 1)
(x + 1)(x + 2) · · · (x + d − 1)

∈ End1
d ,
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and let X ⊂ P1 be the set

X = {0, 1, 2, . . . , d − 1} ∪ {−1,−2, . . . ,−(d − 1)} ∪ {∞}.

(a) For all a ∈ R∗S , we have

( fa, X, X) ∈ GR1
d [2d](K , S).

(b) For a given a∈ K̄ ∗, there are only finitely many b∈ K̄ ∗ such that fb is PGL2(K̄ )-
conjugate to fa .

(c) #GR1
d [2d](K , S)/PGL2(RS)=∞.

Proof. (a) The resultant of fa is

Res( fa)= ad
d−1∏
i=0

d−1∏
j=1

(i + j).

In particular, if a ∈ R∗S , then our choice of S implies that Res( fa) ∈ R∗S , so the
map fa has simple good reduction outside S. We also observe that our choice of S
implies that the set X has good reduction outside S, and from the formula for fa

we see that fa(X)= {0,∞} ⊂ X . For example, the case d = 4 looks like

1

��

2 // 0
yy

3

@@

−1

!!

−2 // ∞
ww

−3

==
with S = {2, 3, 5}.

Since #X = 2d, this completes the proof that ( fa, X, X) ∈ GR1
d [2d](K , S).

(b) We consider the K̄ -valued points of the morphism

(9) K̄ ∗→M1
d(K̄ )= End1

d(K̄ )/PGL2(K̄ ), a 7→ [ fa].

We claim that the map (9) is nonconstant. To see this, we note that 0 is a fixed point
of fa , and that the multiplier of fa at 0 is

λ( fa, 0) := f ′a(0)= (−1)d−1a.

But for any rational map f ∈ End1
d , the set of fixed point multipliers {λ( f, P) :

P ∈ Fix( f )} is a PGL2-conjugation invariant [Silverman 2007, Proposition 1.9]. So
if (9) were constant, there would be a single map g ∈ End1

d(K̄ ) with the property
that for every a ∈ K̄ ∗, the map fa is PGL2(K̄ )-conjugate to g. In particular, for
every a ∈ K̄ ∗, the multiplier (−1)d−1a= λ( fa, 0) would be one of the finitely many
fixed-point multipliers of g. This contradiction completes the proof of (b).
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(c) It follows from (a) and (b) that {( fa,X,X) :a∈ R∗S} is contained in GR1
d [2d](K,S)

and that it contains infinitely many distinct PGL2(RS)-conjugacy classes. �

5. How large is the set of maps having simple good reduction?

As noted in the Introduction, it would be very interesting to know the behavior of
the “Shafarevich discrepancy”,

2d − 2−ShafDimN
d [P] as d→∞,

even for the case P =∅. It has long been noted that monic polynomial maps on P1

have everywhere simple good reduction. This gives a set of such maps in M1
d

whose Zariski closure has dimension d− 1. With a little work, we can increase this
dimension by 1 for d = 2 and by 2 for d ≥ 3.

Proposition 12. We have

ShafDim1
2[∅] = dimM1

2 = 2,

and for all d ≥ 3 we have

ShafDim1
d [∅] ≥ d + 1.

Proof. We fix a number field K and a set of places S so that R∗S is infinite. For
a = (a0, a2, . . . , ad−1, ad) we define a rational map

fa(x) :=
a0xd
+ a1xd−1

+ · · ·+ ad−2x2
+ ad−1x + ad

x(x − 1)
.

We have
Res( fa)= ad−2

0 ad(a0+ a1+ · · ·+ ad−1+ ad).

Hence fa will have simple good reduction if we take a0, ad ∈ R∗S , a2, . . . , ad−1 ∈ RS ,
and set a1 =w−a0−a2−· · ·−ad for some w ∈ R∗S . In other words, the image of
the map

(R∗S)
3
× Rd−2

S → Ad+1(K ),(
(u, v, w), (a2, . . . , ad−1)

)
7→ (u, w−u−a2−· · ·−ad−1−v, a2, . . . , ad−1, v),

gives values of a for which fa has simple good reduction. The image of this map
is Zariski dense in Ad+1, so it remains to show that the map Ad+1

→M1
d given by

a 7→ 〈 fa〉 is generically finite-to-one.
Suppose that ϕ ∈ PGL2(K̄ ) has the property that f ϕa = fb. We start with the

case d ≥ 4. Then fa is ramified at the fixed point∞, since e fa(∞)= d − 2, and
similarly for fb. Generically,∞ will be the only ramified fixed point of fa and fb,
so ϕ(∞)=∞. Next we use the fact that

f −1
a (∞)= f −1

b (∞)= {∞, 1, 0}
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to conclude that ϕ({0, 1})={0, 1}. Thus ϕ fixes∞ and either fixes or swaps 0 and 1,
so the only possibilities are ϕ(x)= x or ϕ(x)= 1− x . Thus fa is PGL2-conjugate
to only one other map of the same form. This concludes the proof for d ≥ 4. For
d = 3, the point∞ is fixed by fa and fb, but∞ is not a critical point, so we cannot
conclude that ϕ fixes∞. However, we can argue as follows. A generic map of the
form fa has 3 fixed points, say {∞, γ1, γ2}, and each fixed point has 3 points in its
inverse image, one of which is itself, say

f −1
a (∞)= {∞, 0, 1}, f −1

a (γ1)= {γ1, α1, β1}, f −1
a (γ2)= {γ2, α2, β2}.

It follows that ϕ(∞) ∈ {∞, γ1, γ2}, and that

ϕ({0, 1})=


{0, 1} if ϕ(∞)=∞,
{α1, β1} if ϕ(∞)= γ1,
{α2, β2} if ϕ(∞)= γ2.

Since ϕ is determined by its values at on {0, 1,∞}, we see that there are (at most) 6
maps ϕ for which f ϕa .

Finally, for d = 2, we first note that the above proof fails because∞ is no longer
a fixed point. And it is good that the proof fails, since otherwise we would conclude
that ShafDim1

2[∅] ≥ 3, which would contradict dimM1
2 = 2. So for d = 2 we

instead use the family of maps

ga,b(x) :=
ax2
+ x + b
x

.

These satisfy Res(ga,b) = ab, so they have good reduction for all a, b ∈ R∗S . We
could argue as above that there are only finitely many ϕ preserving this form, and
thus the image in M1

2 is 2-dimensional. But to illustrate an alternative method of
proof, we instead use the Milnor isomorphism s :M1

2 −→
∼ A2; see [Silverman 2007,

Theorem 4.5.6]. The map ga,b has Milnor coordinates

s(ga,b)=

(
4a2b− 2ab− a+ b

ab
,

4a3b− 4a2b− a2
+ 5ab− 2b− 1

ab

)
.

We used Magma [Bosma et al. 1997] to verify that these two rational functions are
algebraically independent in K (a, b). Hence under our assumption that #R∗S =∞,
we see that {s(a, b) : a, b ∈ R∗S} is Zariski dense in A2. �

6. Abstract portraits and models for portraits

In this section we briefly construct a category of portraits and use it to describe
dynamical systems that model a given portrait. See [Doyle and Silverman ≥ 2018]
for further development and the construction of parameter and moduli spaces for
dynamical systems with portraits.
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Definition. An (abstract) weighted portrait is a 4-tuple P = (W,V,8, ε), where

• W ⊆ V are finite sets (of vertices),

• 8 :W→ V is a map (which specifies directed edges),

• V =W ∪8(W),

• ε :W→ N is a map (assigning weights to vertices).

The weight of P is the total weight

wt(P) :=
∑
w∈W

ε(w).

We say that the portrait is unweighted if ε(w)=1 for everyw∈W , or equivalently
if wt(P) = #W , in which case we sometimes write P = (W,V,8). We say that
the portrait is preperiodic if W = V .

We now explain how a self-map of P1 can be used to model a portrait.

Definition. Let P = (W,V,8, ε) be a portrait. A model for P is a triple ( f, Y, X)
consisting of a morphism f : P1

→ P1 and subsets Y ⊂ X ⊂ P1 such that the
following diagram commutes:

(10)

W i
−−−→ P1

8

y f
y

V i
−−−→ P1

We say that ( f, Y, X) is a •-model if in addition

e f (i(w))≥ ε(w) for all w ∈W;

and similarly we say that ( f, Y, X) is a ◦-model if

e f (i(w))= ε(w) for all w ∈W .

With this formalism, we can now define our three Shafarevich-type sets.

Definition. Let P = (W,V,8, ε) be a portrait and let n = wt(P). Then

GR1
d [P]

•(K , S)= {( f, Y, X) ∈ GR1
d [n](K , S) : ( f, Y, X) is a •-model for P},

GR1
d [P]

◦(K , S)= {( f, Y, X) ∈ GR1
d [n](K , S) : ( f, Y, X) is a ◦-model for P},

GR1
d [P]

?(K , S)= {( f, Y, X) ∈ GR1
d [n](K , S) : e f̃p(

˜i(w) mod p)= ε(w)

for all w ∈W and all p /∈ S}.

It may happen that a portrait has no models using maps of a given degree. For
example, if the portrait P contains 4 fixed points, then it cannot be modeled by a
map of degree 2, and similarly if P contains a pair of 2-cycles. In order to describe
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more generally the constraints on a model, we set an ad hoc piece of notation.
(A better definition of M1

d [P]
• as a Z-scheme is given in [Doyle and Silverman

≥ 2018].)

Definition. Let P be a portrait and let d ≥ 2. We define

M1
d [P]

•
:= { f ∈M1

d(K̄ ) : there exist sets Y ⊆ X ⊆ P1(K̄ )
such that ( f, Y, X) is a •-model for P}.

Proposition 13. Let d ≥ 2, and let P = (W,V,8, ε) be a portrait such that
M1

d [P] 6=∅. Then P satisfies the following conditions:

(I) sup
v∈V

∑
w∈8−1(v)

ε(w)≤ d, (II)
∑
w∈W

(
ε(w)− 1

)
≤ 2d − 2.

For all n ≥ 1,

(IIIn) #{w∈W :8n(w)=w and8m(w) 6=w for all m < n}≤
∑
m|n

µ
( n

m

)
(dm
+1).

(Here µ is the Möbius function.)

Proof. Constraint I comes from the fact that f is a map of degree d, constraint II
follows from the Riemann–Hurwitz formula

∑(
e f (P)− 1

)
= 2d − 2 [Silverman

2007, Theorem 1.1], and constraint IIIn from the fact that a degree d map on P1

has at most the indicated number of points of exact period n [Silverman 2007,
Remark 43]. �

If we fix a preperiodic portrait P and allow the degree d to grow, then we expect
that M1

d [P]
• has exactly the expected dimension, as in the following conjecture.

This is in marked contrast to our uncertainty regarding the size of ShafDim1
d [P]•

as d→∞; cf. Question 4.

Conjecture 14. Let P= (W,V,8, ε) be a preperiodic portrait. There is a constant
d0(P) such that for all d ≥ d0(P) we have

dimM1
d [P]• = dimM1

d −
∑
w∈W

(
ε(w)− 1

)
= 2d − 2−wt(P)+ #W.

Remark 15. The local conditions used to define GR1
d [P]

?(K , S) reflect the view-
point adopted by Petsche and Stout [2015]. We note that since f and i(V) are
assumed to have good reduction outside S, there is a well-defined map f̃p :P1

→P1

defined over the residue field of p, and so it makes sense to look at the ramification
indices of f̃p at the p-reductions of the points in i(W).
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Remark 16. Since the primary goal of this paper is the study of Shafarevich-type
finiteness theorems, we have been content to define our sets of good reduction
purely as sets. In a subsequent paper [Doyle and Silverman ≥ 2018] we will take
up the more refined question of constructing moduli spaces for dynamical systems
with portraits, after which the results of the present paper can be reinterpreted as
characterizing the S-integral points on these spaces, with the caveat that there may
be field-of-moduli versus field-of-definition issues.

Since our goal is to understand the size of the various sets of good reduction
triples ( f, Y, X), we are prompted to make the following definitions.

Definition. Let x ∈ {•, ◦, ?}. The associated Shafarevich dimension is the quantity

ShafDim1
d [P]

x
= sup

K a number field
S a finite set of places

dim Image
(
GR1

d [P]x(K , S)→M1
d

)
.

We record some elementary properties for future reference.

Proposition 17. Let d ≥ 2, and let P = (W,V,8, ε) be a portrait.

(a) Let ε′ : V→ N be a weight function satisfying ε′ ≥ ε, let P ′ = (W,V,8, ε′),
and let x ∈ {•, ◦, ?}. Then

GR1
d [P
′
]
x(K , S)⊆ GR1

d [P]
x(K , S).

(b) We have

GR1
d [P]

?(K , S)⊆ GR1
d [P]

◦(K , S)⊆ GR1
d [P]

•(K , S).

(c) We have

ShafDim1
d [P]

?
≤ ShafDim1

d [P]
◦
≤ ShafDim1

d [P]
•
≤ dimM1

d = 2d − 2.

Proof. (a) and (b) are clear from the definitions of the various sets of good reduction,
and (c) follows (b) and the definition of Shafarevich dimension. We note that if
a map f has good reduction at p, then its ramification index can only increase
when f is reduced modulo p. �

Example 18. Consider the following two preperiodic portraits:

P1

• // •

��
•

OO

P2

• // •

��
•

2

OO

We note that the portrait P2 is strictly larger than the portrait P1 in the sense of
Proposition 17(a), so that result tells us that GR1

d [P2]
◦(K , S) ⊆ GR1

d [P1]
◦(K , S).

However, we will see in Section 7 that if #R∗S =∞, then

#GR1
2[P1]

◦(K , S) <∞ and #GR1
2[P2]

◦(K , S)=∞.
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In words, there are only finitely many degree 2 rational maps with good reduc-
tion outside S that have an unramified good reduction 3-cycle, but if we allow
one of the points in the 3-cycle to be ramified, then there are infinitely many
such maps. In terms of Shafarevich dimensions, we have ShafDim1

d [P1]
◦
= 0

and ShafDim1
d [P2]

◦
= 1. On the other hand, we will show that with the more

restrictive Petsche–Stout good reduction criterion, we have ShafDim1
d [P1]

?
=

ShafDim1
d [P2]

?
=0. Another example of this phenomenon, where more ramification

leads to more maps of good reduction, is given by portraits P3,3 and P4,7 in Tables 2
and 3, respectively.

7. Good reduction for preperiodic portraits of weight ≤ 4
for degree 2 maps of P1

We know from Theorem 2 with N = 1 and d = 2 that if a portrait P satisfies
wt(P)≥ 5, then ShafDim1

2[P]• = 0. In other words, dynamical Shafarevich finite-
ness holds for degree 2 maps f :P1

→P1 that model a portrait P of weight at least 5.
In this section we give a complete analysis of preperiodic portraits of weights 1 to 4.
For example, it turns out that there are 22 such portraits of weight 4, and dynamical
Shafarevich finiteness holds for some of them, but not for others. For notational
convenience, we label portraits as Pw,m , wherew is the weight and m ∈{1, 2, 3, . . . }.

Theorem 19. We consider moduli spaces of degree 2 maps P1
→P1 with weighted

preperiodic portraits.

(a) There is 1 portrait P of weight 1 such that M1
2 contains a map that can be

used to model P .

(b) There are 4 portraits P of weight 2 such that M1
2 contains a map that can be

used to model P .

(c) There are 8 portraits P of weight 3 such that M1
2 contains a map that can be

used to model P .

(d) There are 22 portraits P of weight 4 such that M1
2 contains a map that can be

used to model P .

These portraits are as catalogued in Tables 2, 3 and 4, which also give the values of
the following quantities:

MD: = dimM1
2[P]•, SD•: = ShafDim1

2[P]
•,

SD◦: = ShafDim1
2[P]

◦, SD?: = ShafDim1
2[P]

?.

Proof. Since we will be dealing entirely with preperiodic portraits, we write the
triple ( f, X, X) as a pair ( f, X). For degree 2 maps, we see that M1

2[P]
•
= ∅

unless the following four conditions are true; cf. Proposition 13.
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# P wt(P) MD SD• SD◦ SD?

P1,1 •
yy

1 2 2 2 2

P2,1 • 2
yy

2 1 1 1 1

P2,2 • // •
yy

2 2 2 2 2

P2,3 •
yy

•
yy

2 2 2 2 1

P2,4 •
UU
•

��
2 2 2 2 1

P3,1

• // •

��
•

OO

3 2 1 0 0

P3,2 • // •
UU
•

��
3 2 2 2 1

P3,3 •
yy

•
UU
•

��
3 2 1 0 0

P3,4 • // • // •
yy

3 2 2 2 1

P3,5 •
yy

• // •
yy

3 2 2 2 1

P3,6 •
yy

•
yy

•
yy

3 2 1 0 0

P3,7 •

2
UU
•

��
3 1 1 1 1

P3,8 •
yy

• 2
yy

3 1 1 1 1

Table 2. Weight 1, 2, and 3 preperiodic portraits for degree 2 maps.

(I) Each point has at most weight 2 worth of incoming arrows.

(II) There are at most 2 critical points.

(III1) There are at most 3 fixed points.

(III2) There is at most one periodic cycle of length 2.
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# P wt(P) MD SD• SD◦ SD?

P4,1 • 2
yy

• 2
yy

4 0 0 0 0

P4,2 •

2
UU
•

2
��

4 0 0 0 0

P4,3 • 2
yy

•
yy

•
yy

4 1 1 1 0

P4,4 • 2
yy

• // •
yy

4 1 1 1 1

P4,5 • 2
yy

•
UU
•

��
4 1 1 1 0

P4,6 •
2
// • // •

yy
4 1 1 1 1

P4,7 •
yy

•

2
UU
•

��
4 1 1 1 0

P4,8 • // •

2
UU
•

��
4 1 1 1 1

P4,9

• // •

��
•

2

OO

4 1 1 1 0

P4,10 • // •
yy

•
yy

•
yy

4 2 0 0 0

P4,11 • // •
yy

• // •
yy

4 2 1 1 1

P4,12 • // • // •
yy

•
yy

4 2 0 0 0

P4,13 •
yy

•
yy

•
UU
•

��
4 2 0 0 0

Table 3. Weight 4 preperiodic portraits for degree 2 maps (part 1).

Sublemma 8 says that in order to prove that GR1
2[P]

◦(K , S)/PGL2(RS) is finite
for all K and S, it suffices to prove finiteness after extending K and enlarging S.
And the definition of ShafDim1

d [P]• and its variants is a supremum over all K and
all S. So we may assume throughout our discussion that in every model ( f, X)
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# P wt(P) MD SD• SD◦ SD?

P4,14 • // • // • // •
yy

4 2 0 0 0

P4,15 • // •
yy

•
UU
•

��
4 2 0 0 0

P4,16 •
yy

• // •
UU
•

��
4 2 0 0 0

P4,17 •
yy

• // •

��
•

OO

4 2 0 0 0

P4,18

•

��
• // •

yy

•

?? 4 2 1 1 1

P4,19 • // • // •
UU
•

��
4 2 0 0 0

P4,20 • // •
UU
•

��
•oo 4 2 1 1 1

P4,21

• // • // •

��
•

OO

4 2 0 0 0

P4,22

• // •

��
•

OO

•oo

4 2 0 0 0

Table 4. Weight 4 preperiodic portraits for degree 2 maps (part 2).

for P , the points in X are in P1(K ), and further that S is chosen so that

RS is a PID; R∗S is infinite; 2, 3 ∈ R∗S .

Using the assumptions that the points in our portraits are in P1(K ) and that RS

is a PID, Sublemma 9 and the Chinese remainder theorem tell us that we can find
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an element of PGL2(RS) to move three of the points in X to the points 0, 1, and∞.
(Or just to 0 and∞ if #X = 2.)

As in the proof of Proposition 12, we will frequently use the Milnor isomorphism
[Silverman 2007, Theorem 4.5.6]

s = (s1, s2) :M1
2 −→
∼ A2,

which we implemented in PARI [2016], to help distinguish the PGL2(K̄ )-conjugacy
classes of our maps, and we often use Magma [Bosma et al. 1997] to verify that
the images of certain maps are Zariski dense in M1

2.

P1,1: This case was done by Petsche and Stout [2015, Remark 3], but for com-
pleteness, we include a proof. Let f (x) = (x2

+ ax)/(bx + 1) with Res( f ) =
1− ab, so ( f, {0}) ∈ GR1

2[P1,1]
•(K , S) for all a, b ∈ RS satisfying 1− ab ∈ R∗S .

Further, f ′(0) = a, so if we take a ∈ R∗S , then 0 is not critical modulo v for
all v /∈ S. This suggests that we change variables via b = (1 − u)a−1. Then
f (x) = (ax2

+ a2x)/((1 − u)x + a) with Res( f ) = a4u and f ′(0) = a, so
( f, {0}) ∈ GR1

2[P1,1]
?(K , S) for all a, u ∈ R∗S . The Milnor image of this map

in M2 ∼= A2 is

s
(

ax2
+ a2x

(1− u)x + a

)
=

(
a2(u− 1)+ 2a− (u− 1)2

au
,

−a4
+ 2a3

− a2(u− 1)(u− 2)− 2a(u− 1)− (u− 1)2

a2u

)
.

We used Magma to verify that the two rational functions s1(a, u) and s2(a, u) are
algebraically independent in K (a, u). Hence under our assumption that #R∗S =∞,
we see that {s(a, u) : a, u ∈ R∗S} is Zariski dense in A2. This completes the proof
that ShafDim1

2[P1,1]
?
= 2, and the other Shafarevich dimensions are also 2 by the

standard inequalities in Proposition 17(e).

P2,1: Moving the totally ramified fixed point to ∞, the map f has the form
f (x) = ax2

+ bx + c. It has good reduction if and only if a ∈ R∗S . Then we can
conjugate by a map of the form x 7→ a−1x+e to put f (x) in the form f (x)= x2

+c.
Since the ramification at∞ can’t increase when we reduce modulo primes not in S,
we see that

(x2
= c, {∞}) ∈ GR1

2[P2,1]
?(K , S) for all c ∈ R∗S .

The closure of the image in M1
2 is the line s1 = 2 of polynomials.

P2,2: Move the two points to 0,∞; then f has the form f (x)= (ax2
+bx+c)/dx .

This map has Res( f ) = acd2, so we can dehomogenize d = 1. Thus f (x) =
ax+b+cx−1 with ac∈ RS . Conjugating by x→ux gives u−1 f (ux)=ax+bu−1

+

cu−2x−1, so going to K (
√

c), which is unramified over S, we may assume that c= 1
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and f (x)= (ax2
+ bx + 1)/x . We also observe that f −1( f (∞))= {0,∞} and in

f −1( f (0))= {0,∞}, so 0 and∞ are unramified modulo all primes. (Alternatively,
one could compute derivatives, after moving∞ to a more amenable point.) Hence

( f, {0,∞}) ∈ GR1
2[P2,2]

?(K , S) for all a ∈ R∗S and b ∈ RS .

The Milnor image is

s
(

ax2
+ bx + 1

x

)
=

(
4a2
− ab2

− 2a+ 1
a

,
4a3
− a2b2

− 4a2
+ 5a− b2

− 2
a

)
.

We used Magma to verify that the rational functions s1(a, u) and s2(a, u) are
algebraically independent in K (a, u). Hence under our assumption that #R∗S =∞,
we see that {s(a, u) : a, u ∈ R∗S} is Zariski dense in A2. This completes the proof
that ShafDim1

2[P2,2]
?
= 2, and the other Shafarevich dimensions are also 2 by the

standard inequalities in Proposition 17(e).

P2,3: Moving the two fixed points to 0 and∞, the map f has the form f (x) =
(ax2
+bx)/(cx+d). The resultant is Res( f )=ad(ad−bc). Good reduction implies

in particular that a, d ∈ R∗S , so we can dehomogenize d = 1 and replace f with
a f (a−1x)= (x2

+ bx)/(a−1cx + 1). We can also replace a−1c with c, so f (x)=
(x2
+ bx)/(cx + 1) with Res( f )= 1− bc. Hence

( f, {0,∞}) ∈ GR1
2[P2,3]

◦(K , S) for all b, c ∈ RS satisfying 1− bc ∈ R∗S .

We note that this set of (b, c) is Zariski dense in A2, under our assumption
that #R∗S =∞. For example, if u ∈ R∗S has infinite order, then for every n ≥ 1 we
can take b = 1− u and c = 1+ u+ u2

+ · · ·+ un , and this set of points is Zariski
dense. The Milnor image is

s
(

x2
+ bx

cx + 1

)
=

(
−b2c− bc2

+ 2
1− bc

,
−b2c2

− b2
− bc+ 2b− c2

+ 2c
1− bc

)
.

We used Magma to verify that the rational functions s1(a, u) and s2(a, u) are
algebraically independent in K (a, u). Hence under our assumption that #R∗S =∞,
we see that {s(a, u) : a, u ∈ R∗S} is Zariski dense in A2. This completes the proof
that ShafDim1

2[P2,3]
◦
= 2.

However, the set GR1
2[P2,3]

?(K , S) is more restrictive, since we need the fixed
points to be unramified for all primes not in S. Thus ( f, {0,∞}) is in this set if
and only if f ′(0) = b ∈ R∗S and f ′(∞) = c ∈ R∗S . We thus need b, c, 1− bc to
be S-units. Then (bc, 1− bc) is a solution to the S-unit equation u + v = 1, so
there are only finitely many possible values for bc. On the other hand, any fixed
solution (u, v) gives a map f (x)= (x2

+ bx)/(b−1ux + 1) satisfying

( f, {0,∞}) ∈ GR1
2[P2,3]

?(K , S) for all b ∈ R∗S .
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Each (u, v) value gives points lying on a curve in M1
2. And there is at least one

such curve, since our assumption that 2 ∈ S says that we can take (u, v)= (−1, 2),
leading to the Milnor image

s
(

x2
+ bx

−b−1x + 1

)
=

(
b2
+ 2b− 1

2b
,
−b4
+ 2b3

− 2b− 1
2b2

)
.

Hence ShafDim[P2,3]
?
= 1, a result that was first proven by Petsche and Stout

[2015, Section 4].

P2,4: We move the two points to 0 and∞, so f (x)= (ax + b)/(cx2
+ dx) with

Res( f )=bc(ad−bc). Good reduction implies in particular that b, c∈ R∗S , so we can
dehomogenize b= 1. Conjugating f gives u−1 f (ux)= (aux+1)/(cu3x2

+du2x).
Going to the field K ( 3

√
c), which is unramified outside S, we can take u = c−1/3

and adjust a and d accordingly to put f in the form f (x) = (ax + 1)/(x2
+ dx).

Then

( f, {0,∞}) ∈ GR1
2[P2,4]

◦(K , S) for all a, d ∈ RS with 1− ad ∈ R∗S .

The map f is unramified at 0 if and only if d 6= 0 and f is unramified at∞ if and
only if a 6= 0. The Milnor image is

s
(

ax + 1
x2+ dx

)
=

(
a3
+ 4ad + d3

− 6
1− ad

,
−2a3

− a2d2
− 7ad − 2d3

+ 12
1− ad

)
.

We used Magma to verify that the rational functions s1(a, u) and s2(a, u) are
algebraically independent in K (a, u). Hence under our assumption that #R∗S =∞,
we see that {s(a, u) : a, u ∈ R∗S} is Zariski dense in A2. This completes the proof
that ShafDim1

2[P2,4]
◦
= 2.

The multiplier of the 2-cycle is ( f 2)′(0) = ad, so the points 0 and ∞ are
unramified modulo all primes not in S if and only if a, d ∈ R∗S . So in this case
(ad, 1− ad) is a solution to the S-unit equation u+ v = 1, and each of the finitely
many such solutions yields a family of maps f (x)= (ax + 1)/(x2

+ ua−1x) with

( f, {0,∞}) ∈ GR1
2[P2,4]

?(K , S) for all a ∈ R∗S .

The Zariski closure of these points form a nonempty finite collection of curves,
since for example (u, v)= (−1, 2) gives

s
(

ax + 1
x2− a−1x

)
=

(
a6
− 10a3

− 1
2a3 ,

−a6
+ 9a3

+ 1
a3

)
.

Hence ShafDim[P2,4]
?
= 1, a result that was first proven by Petsche and Stout

[2015, Section 5].

P3,1: We first note that almost all rational maps of degree 2 have a 3-cycle [Beardon
1991, Section 6.8]. Hence the image of M1

2[P3,1]
• omits only finitely many points,
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and thus dimM1
2[P3,1]• = 2. We next move the 3-cycle to 0, 1,∞, so f has the

form f (x)= (ax2
− (a+c)x+c)/(ax2

+ex) with Res( f )= ac(a+e)(c+e). We
dehomogenize a = 1. Then

( f, {0, 1,∞}) ∈ GR1
2[P3,1]

•(K , S) ⇐⇒ c(1+ e)(c+ e) ∈ R∗S.

This leads to solutions to the 4-term S-unit equation

c+ (1+ e)− (c+ e)− 1= 0.

The multivariable S-unit sum theorem [Evertse 1984; van der Poorten and Schlick-
ewei 1991] says that there are finitely many solutions with no subsum equal to 0.
Ignoring those finitely many solutions, there are three subsum 0 cases:

(1) c+ (1+ e)= 0, which implies that e f (∞)= 2.

(2) c− (c+ e)= 0, which implies that e f (0)= 2.

(3) c− 1= 0, which implies that e f (1)= 2.

This gives three families of pairs ( f, X) in GR1
2[P3,1]

•(K , S), but every f is ramified
at one of the three points in X , so these pairs are not in GR1

2[P3,1]
◦(K , S). Instead,

they are in GR1
2[P4,9]

◦(K , S). These three families are in fact PGL2(RS)-conjugate
via permutation of the points in {0, 1,∞}. Taking, say, the e = 0 family, we have
good reduction for all c ∈ R∗S , and the Milnor image is

s
(

x2
− (1+ c)x + c

x2

)
=

(
−c3
− 5c2

+ c− 1
c2 ,

2c3
+ 7c2

− 2c+ 1
c2

)
.

This proves that ShafDim1
2[P3,1]

•
= 1 and ShafDim1

2[P3,1]
◦
= 0.

P3,2: We move the three points to 1, 0,∞, and then f has the form f (x) =
a(x−1)/(bx2

+cx). This map has Res( f )=−a2b(b+c), so we can dehomogenize
a= 1 and replace c with c−b. This gives the map f (x)= (x−1)/(bx2

+(c−b)x)
with Res( f )= bc. Hence

( f, {1, 0,∞}) ∈ GR1
2[P3,2]

◦(K , S) ⇐⇒ b, c ∈ R∗S,

and it is in GR1
2[P3,2]

◦(K , S) if further f is not ramified at the points {0, 1,∞}. The
map f is never ramified at 1, while its multiplier at the 2-cycle is ( f 2)′(0)= (b−c)/c.
The Milnor image is

s
(

x − 1
bx2+ (c− b)x

)
=

(
b3
− 3b2c− 2b2

+ 3bc2
− 4bc+ b− c3

bc
,

−2b3
+ 6b2c+ 4b2

− 6bc2
+ 9bc− 2b+ 2c3

− c2

bc

)
.
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We used Magma to verify that the rational functions s1(b, c) and s2(b, c) are
algebraically independent in K (b, c). Hence under our assumption that #R∗S =∞,
we find that ShafDim1

2[P3,2]
◦
= 2.

However, if we also require the reduction of f to be unramified at {0, 1,∞} for
all primes not in S, then we must also require that b− c ∈ R∗S . Then (c/b, 1− c/b)
is a solution to the S-unit equation u+v= 1, so there are only finitely many choices
for the ratio c/b. For each such choice, say c = ub with u fixed, the image in M1

2
lies on a curve. And taking, say, u =−1 gives the set of points

s
(

x − 1
bx2− 2bx

)
=

(
−8b2

− 2b− 1
b

16b2
+ 6b+ 2
b

)
, b ∈ R∗S.

The Zariski closure of this set in M1
2 is a curve, more precisely, it is the line

2s1+ s2 = 2. Hence ShafDim1
2[P3,2]

?
= 1.

P3,3: We move the fixed point to∞ and the 2-cycle to {0, 1}, which puts f into the
form f (x)= (x−1)(ax+b)/(cx−b). The resultant is Res( f )=ab(a+c)(b−c), so
we may dehomogenize b=1. This puts f in the form f (x)=(x−1)(ax+1)/(cx−1)
with resultant Res( f )= a(a+ c)(1− c). Thus f has good reduction if and only if
a, a+ c, 1− c ∈ R∗S , which gives a solution to the 4-term S-unit equation

a− (a+ c)− (1− c)+ 1= 0.

The multivariable S-unit sum theorem [Evertse 1984; van der Poorten and Schlick-
ewei 1991] says that there are finitely many solutions with no subsum equal to 0.
Ignoring those finitely many solutions, there are three subsum 0 cases:

(1) a− (a+ c)= 0, which implies that e f (∞)= 2.

(2) a− (1− c)= 0, which implies that e f (0)= 2.

(3) a+ 1= 0, which implies that e f (1)= 2.

This gives three families of pairs ( f, X) in GR1
2[P3,3]

•(K , S), but every f is ramified
at one of the three points in X , so these pairs are not in GR1

2[P3,3]
◦(K , S). Instead,

they are GR1
2[P4,5]

◦(K , S) in case (1) and in GR1
2[P4,7]

◦(K , S) in cases (2) and (3).
These give sets of points whose closures are curves:

P4,5 : s
(
−ax2

+ (a− 1)x + 1
)
= (2,−a2

− 3), a ∈ R∗S,

P4,7 : s
(
−x2
+ 2x − 1

cx − 1

)
=

(
−c3
+ 2

(c− 1)2
2c3
− 4

(c− 1)2

)
, c ∈ R∗S.

More precisely, they give the curves s1 = 2 and 2s1+ s2 = 0. This completes the
proof that ShafDim1

2[P3,3]
•
= 1 and ShafDim1

2[P3,3]
◦
= 0.

P3,4: We move the three points to 1, 0,∞, and then f has the form f (x) =
(x−1)(ax+b)/cx . This map has Res( f )=−abc2, so we can dehomogenize c= 1.
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Then f (x)= (x − 1)(ax + b)/x has good reduction if and only if a, b ∈ R∗S . The
multiplier at the fixed point is f ′(∞)= a−1, so f is not ramified at∞, and similarly
since f −1( f (0))= {0,∞}, the map f is not ramified at 0. And these statements
are true even modulo primes not in S. Finally we observe that f ′(1)= a+ b, so f
is ramified at 1 if and only if a+ b = 0. The Milnor image is

s
(
(x − 1)(ax + b)

x

)
=

(
a3
+ 2a2b+ ab2

− 2ab+ b
ab

,

a4
+ 2a3b+ a2b2

− 4a2b+ a2
+ 3ab+ b2

− 2b
ab

)
,

We used Magma to verify that the rational functions s1(b, c) and s2(b, c) are
algebraically independent in K (b, c). Hence under our assumption that #R∗S =∞,
we find that ShafDim1

2[P3,4]
◦
= 2.

However, if we also require the reduction of f to be unramified at {0, 1,∞} for
all primes not in S, then we must also require that a+b∈ R∗S . Then (−b/a, 1+b/a)
is a solution to the S-unit equation u+v= 1, so there are only finitely many choices
for the ratio b/a. For each such choice, say b = ua with u fixed, the image in M1

2
lies on a curve. And taking, say, u = 1 gives the set of points

s
(

a(x2
− 1)

x

)
=

(
4a2
− 2a+ 1

a
,

4a3
− 4a2

+ 5a− 2
a

)
, a ∈ R∗S.

The Zariski closure in M1
2 is a curve. Hence ShafDim1

2[P3,4]
?
= 1.

P3,5: We move the three points to 0, 1,∞, which puts f in the form f (x) =
(ax2
+ (b − a)x)/c(x − 1) with Res( f ) = abc2. We dehomogenize c = 1, so

f (x)= (ax2
+(b−a)x)/(x−1). We have f ′(∞)= a−1 and f −1( f (1))= {1,∞},

so a ∈ R∗S implies that f is unramified at∞ and at 1, even modulo primes not in S.
Further, f ′(0) = a− b, so f is unramified at 0 if and only if a 6= b. The Milnor
image is

s
(

ax2
+(b−a)x
x−1

)
=

(
−a3
+2a2b+2a2

−ab2
−a+b

ab
,

−a4
+2a3b+2a3

−a2b2
−2a2b−2a2

+3ab+2a−b2
−1

ab

)
.

We used Magma to verify that the rational functions s1(a, b) and s2(a, b) are
algebraically independent in K (a, b). Hence under our assumption that #R∗S =∞,
we find that ShafDim1

2[P3,5]
◦
= 2.

However, if we also require the reduction of f to be unramified at {0, 1,∞} for
all primes not in S, then we must also require that a−b ∈ R∗S . Then (b/a, 1−b/a)
is a solution to the S-unit equation u+v= 1, so there are only finitely many choices
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for the ratio b/a. For each such choice, say b = ua with u fixed, the image in M1
2

lies on a curve. And taking, say, u =−1 gives the set of points

s
(

a(x2
− 2x)

x − 1

)
=

(
4a2
− 2a+ 2

a
,

4a4
− 4a3

+ 6a2
− 2a+ 1

a2

)
, a ∈ R∗S.

The Zariski closure in M1
2 is a curve, so ShafDim1

2[P3,5]
?
= 1.

P3,6: We move the three fixed points to 0, 1,∞, so that f has the form f (x) =
(ax2
+bx)/((a− c)x+b+ c) with Res( f )= ac(a+b)(b+ c). We dehomogenize

a= 1, so f (x)= (x2
+bx)/((1−c)x+b+c), and we compute the three multipliers:

f ′(0)= b/(b+ c), f ′(1)= (b+ c+ 1)/(b+ c), f ′(∞)= 1− c. We have

( f, {0, 1,∞}) ∈ GR1
2[P3,6]

•(K , S) ⇐⇒ c, 1+ b, b+ c ∈ R∗S.

These maps give a solution to the 4-term S-unit equation

(b+ c)− c− (1+ b)+ 1= 0.

The multivariable S-unit sum theorem [Evertse 1984; van der Poorten and Schlick-
ewei 1991] says that there are finitely many solutions with no subsum equal to 0.
Ignoring those finitely many solutions, there are three subsum 0 cases:

(b+ c)− c = 0 H⇒ f (x)=
x2

(1− c)x + c
H⇒ e f (0)= 2,

(b+ c)− (1+ b)= 0 H⇒ f (x)=
x2
+ bx

b+ 1
H⇒ e f (∞)= 2,

(b+ c)+ 1= 0 H⇒ f (x)=
x2
+ bx

(b+ 2)x − 1
H⇒ e f (1)= 2.

This proves that ShafDim1
2[P3,6]

◦
= 0, since the subsum 0 cases have a ramified

point, and hence are actually in GR1
2[P4,3]

◦(K , S). The closure of these maps in M1
2

is a finite set of curves, since for example the family with c = 1 gives the family of
polynomials f (x)= (x2

+ bx)/(b+ 1) whose closure in M2 for b+ 1 ∈ R∗S is the
line s1 = 2. This proves that ShafDim1

2[P3,6]
•
= 1, and also (for future reference)

that ShafDim1
2[P4,3]

◦
= 1.

P3,7: Moving the two points to 0 and∞ with 0 critical, the map f has the form
f (x) = (ax + b)/cx2 with Res( f ) = b2c2. Dehomogenizing c = 1 gives the
map f (x) = (ax + b)/x2, which has good reduction if and only if b ∈ R∗S . We
conjugate u−1 f (ux) with u = 3

√
b, which is okay since K ( 3

√
b) is unramified

outside S. This puts f into the form f (x)= (ax+1)/x2 with Res( f )= 1. We also
note that f is ramified at∞ if and only if a = 0, so taking a ∈ R∗S gives maps such



178 JOSEPH H. SILVERMAN

that∞ is unramified modulo all primes not in S. This map has Milnor coordinates

s
(

ax + 1
x2

)
= (a3

− 6,−2a3
+ 12),

so taking the Zariski closure for a ∈ R∗S gives the line 2s1 + s2 = 0. Hence
ShafDim1

2[P3,7]
•
= ShafDim1

2[P3,7]
?
= 1.

P3,8: Moving the totally ramified fixed point to ∞ and the other fixed point
to 0, we have f (x) = ax2

+ bx with Res( f ) = a2. Conjugating by x 7→ a−1x
puts f into the form f (x)= x2

+ bx , and then ( f, {0,∞}) is in GR1
2[P3,8]

◦(K , S)
for all b ∈ RS with b 6= 0, and GR1

2[P3,8]
?(K , S) for all b ∈ R∗S . The Zariski

closure of the Milnor image of these maps in M1
2
∼= A2 is the line s1 = 2. Hence

ShafDim1
2[P3,8]

•
= ShafDim1

2[P3,8]
?
= 1.

This completes our analysis of the 13 portraits of weights 1, 2, and 3 in Table 2.
We move on to analyzing the 22 portraits of weight 4 in Tables 3 and 4.

P4,1: Moving the two totally ramified fixed points to 0 and∞, the map has the
form f (x)= ax2. Good reduction forces a ∈ R∗S , and then conjugation a f (a−1x)
yields f (x)= x2. Hence GR1

2[P4,1]
•(K , S)/PGL2(RS) consists of a single element.

P4,2: Moving the two totally period 2 points to 0 and∞, the map has the form
f (x) = ax−2. Good reduction forces a ∈ R∗S , and then conjugation a−1 f (ax)
yields f (x) = x−2. Hence GR1

2[P4,2]
•(K , S)/PGL2(RS) consists of a single ele-

ment.

P4,3: Moving the fixed points to 0, 1,∞ with ∞ ramified, the map f has the
form f (x) = ax2

+ (1− a)x with Res( f ) = a2. Conjugating gives a f (a−1x) =
x2
+ (1− a)x . The multipliers at 0 and 1 are f ′(0) = 1− a and f ′(1) = 3− a.

The Milnor image is s
(
x2
+ (1− a)x

)
= (2, 1− a2), so a ∈ R∗S gives a Zariski

dense set of points in the line s1 = 2, and the same is true if we disallow a = 1 and
a = 3. This proves that ShafDim1

2[P4,3]
◦
= 1; cf. the analysis of P3,6. However, if

we also insist that 0 and 1 are unramified modulo all primes outside S, then we
need 1− a ∈ R∗S and 3− a ∈ R∗S . In particular, (a, 1− a) is a solution to the S-unit
equation u+ v = 1, so there are only finitely many values of a. This proves that
ShafDim1

2[P4,3]
?
= 0.

P4,4: Moving the ramified fixed point to∞, the unramified fixed point to 0, and
the other point to 1, we find that f has the form f (x)= ax2

−ax with Res( f )= a2.
Since f ′(0)=−a and f ′(1)= a, we see that f is unramified at 0 and 1 modulo all
primes not in S, and hence ( f, {0, 1,∞}) ∈ GR1

2[P4,4]
?(K , S) for all a ∈ R∗S . The

Milnor image is s(ax2
− ax)= (2,−a2

− 2a), so ShafDim1
2[P4,4]

?
= 1.

P4,5: We move the ramified fixed point to∞ and the other two points to 0 and 1.
Then f has the form f (x) = ax2

− (a + 1)x + 1 with Res( f ) = a2 and Milnor
image s(ax2

− (a + 1)x + 1) = (2,−a2
− 3). The multiplier for the 2-cycle is
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( f 2)′(0)= 1− a2. Hence

( f, {0, 1,∞}) ∈ GR1
2[P4,5]

◦(K , S) ⇐⇒ a ∈ R∗S and a 6= ±1.

In particular, we see that ShafDim1
2[P4,5]

◦
= 1; cf. the analysis of P3,3. However, if

we also require that the 2-cycle be unramified modulo all primes not in S, then we
need 1− a2

∈ R∗S . This gives solutions (a, 1− a) to the S-unit equation u+ v = 1,
so there are only finitely many maps, and hence ShafDim1

2[P4,5]
?
= 0.

P4,6: We move the points to 0, 1,∞ so that 1→0→∞→∞. Before imposing the
condition that f is ramified at 1, this put f in the form f (x)= (ax2

+ bx + c)/ex
with a + b + c = 0 and Res( f ) = ace2. We dehomogenize e = 1, and then
setting f ′(1)= 0, we find that f has the form f (x)= a(x−1)2/x . Then f ′(∞)=
a−1 and f −1( f (0)) = {0,∞}, so f is unramified at 0 and∞ modulo all primes
not in S. This gives

( f, {0, 1,∞}) ∈ GR1
2[P4,6]

?(K , S) ⇐⇒ a ∈ R∗S.

The Milnor image is

s
(

a(x − 1)2

x

)
=

(
−2a+ 1

a
,
−4a2

+ a− 2
a

)
,

so the Zariski closure is a curve, and hence ShafDim1
2[P4,6]

?
= 1.

P4,7: We move 0 to the fixed point and∞ and 1 to the 2-cycle with∞ ramified. Ig-
noring the ramification at∞ for the moment, we find that f has the form (ax2

+bx)/
(x − 1)(ax + c). Then we see that f is ramified at ∞ if and only if c = a + b,
so f (x) = (ax2

+ bx)/(x − 1)(ax + a + b). We compute Res( f ) = a2(a + b)2,
so we can dehomogenize a = 1, and for convenience replace b with b− 1, to get
f (x)= (x2

+ (b−1)x)/(x−1)(x+b) with Res( f )= b2. Further, we see that f is
unramified at 0 if and only if b 6= 1 and f is unramified at 1 if and only if b 6= −1.
Hence

( f, {0, 1,∞}) ∈ GR1
2[P4,7]

◦(K , S) ⇐⇒ b ∈ R∗S and b 6= ±1.

The Milnor image of f is

s
(

x2
+ (b− 1)x

(x − 1)(x + b)

)
=

(
b3
+ 3b2

− 3b+ 1
b

,
−2b3

− 6b2
+ 6b− 2

b

)
,

which proves that ShafDim1
2[P4,7]

◦
= 1. Indeed, we have again landed on the line

2s1 + s2 = 0; cf. the analysis of P3,3. However, if we want f to be unramified
at 0 and 1 modulo all primes not in S, then we need 1± b ∈ R∗S . In particular,
(b, 1− b) is one of the finitely many solutions of the S-unit equation u+ v = 1, so
ShafDim1

2[P4,7]
?
= 0.
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P4,8: We move the 2-cycle to 0 and∞ with 0 ramified and the other point to 1.
Then f has the form f (x)= a(x − 1)/bx2 with Res( f )= a2b2, so we can deho-
mogenize a = 1 to get f (x) = (x − 1)/bx2. Assuming that b ∈ R∗S , we observe
that f is unramified at 1 and∞, even modulo primes not in S. Hence

( f, {0, 1,∞}) ∈ GR1
2[P4,8]

?(K , S) for all b ∈ R∗S .

The Milnor image is

s
(

x − 1
bx2

)
=

(
−6b+ 1

b
,

12b− 2
b

)
,

so the Zariski closure in M1
2 of GR1

2[P4,8]
?(K , S) is the line 2s1+ s2 = 0.

P4,9: We move the 3-cycle to 1→ 0→∞→ 1 with 1 a ramification point. This
puts f in the form f (x) = a(x − 1)2/(ax2

+ ex) with Res( f ) = a2(a+ e)2. We
dehomogenize a= 1 and replace e with e−1 to get f (x)= (x−1)2/(x2

+(e−1)x)
with Res( f )= e2. The fact that 1 is a ramification point in a 3-cycle tells us that
( f 3)′(1)= 0, and one of the other points in the 3-cycle will also be ramified if and
only if ( f 3)′′(1)= 2(1− e2)/e = 0. Hence

( f, {0, 1,∞}) ∈ GR1
2[P4,9]

◦(K , S) ⇐⇒ e ∈ R∗S and e 6= ±1.

The Milnor image is

s
(

(x − 1)2

x2+ (e− 1)x

)
=

(
e3
− 5e2

− e− 1
e2 ,

−2e3
+ 7e2

+ 2e+ 1
e2

)
,

so the closure of GR1
2[P4,9]

◦(K , S) is a curve and ShafDim1
2[P4,9]

◦
= 1. However,

if we want the 3-cycle to contain only one ramification point modulo primes not
in S, then we need e2

−1∈ R∗S . This yields solutions (e, 1−e) to the S-unit equation
u+ v = 1, so there are only finitely many such maps and ShafDim1

2[P4,9]
?
= 0.

P4,10: We move the three fixed points to 0, 1, and∞, and let the fourth point be α
with f (α) = 0. Then f has the form f (x) = (ax2

+ bx)/(ex + a + b− e) with
α =−b/a and

Res( f )= a(a+ b)(a− e)(a+ b− e).

We dehomogenize a = 1, so f (x)= (x2
+bx)/(ex+1+b− e) and α =−b. Then

{0, 1,∞,−b} has good reduction ⇐⇒ b, 1+b ∈ R∗S,

f has good reduction ⇐⇒ 1+b, 1−e, 1+b−e ∈ R∗S,(
f (x), {0, 1,∞,−b}

)
∈ GR1

2[P4,10]
•(K , S) ⇐⇒ b, 1+b, 1−e, 1+b−e ∈ R∗S.

But this means that (−b, 1+b) is a solution to the S-unit equation u+v= 1, so there
are only finitely many values for b; and then the fact that

(
b−1(e−1), b−1(1+b−e)

)
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is also a solution to the S-unit equation proves that there are only finitely many
values for e. This completes the proof that GR1

2[P4,10]
•(K , S)/PGL2(RS) is finite.

P4,11: We move the points so that 0 and ∞ are fixed by f and f (1) = 0. This
puts f in the form f (x) = ax(x − 1)/(bx − c), with Res( f ) = a2c(c− b). We
dehomogenize c = 1, so f (x)= ax(x − 1)/(bx − 1). Then f −1(∞)= {∞, b−1

},
and our assumption that we have a good reduction model for P4,11 requires that b−1

be distinct from {0, 1,∞} for all primes not in S. Thus b−1
∈ R∗S and b−1

−1 ∈ R∗S .
The S-unit equation u− v = 1 has only finitely many solutions, so there are finitely
many values for b. We observe that for these b values, the map f is unramified mod-
ulo all primes not in S, since f −1( f (0))= f −1( f (1))= {0, 1} and f −1( f (∞))=
f −1( f (b−1)) = {∞, b−1

}. We also note that we can take b = 2, since 2 ∈ R∗S by
assumption. Thus for every a ∈ R∗S , we see that

(
ax(x−1)/(2x−1), {0, 1, 2−1,∞}

)
is in GR1

2[P4,11]
?(K , S). The Milnor image is

s
(

ax(x − 1)
2x − 1

)
=

(
2a2
− 2a+ 4

a
,

a4
− 2a3

+ 6a2
− 4a+ 4

a2

)
,

and hence the Zariski closure of GR1
2[P4,11]

◦(K , S) in M1
2 is a nonempty finite

union of curves. (We remark that the pairs ( f, X) studied in Section 4, when
restricted to the case d = 2, have portrait P4,11.)

P4,12: We move the points so that 0 and ∞ are fixed by f and f (1) = 0. This
puts f in the form f (x) = ax(x − 1)/(bx − c), with Res( f ) = a2c(c− b). We
dehomogenize a = 1, so f (x)= x(x − 1)/(bx − c). The portrait P4,12 includes a
point in f −1(1)= {x2

− (1+b)x+ c= 0}, and this point is in K , since the portrait
is assumed to be Gal(K̄/K )-invariant. Thus (1+ b)2 − 4c = t2 for some t ∈ K .
Then (1+b+ t)(1+b− t)= 4c ∈ R∗S , so if we have a good reduction portrait for f ,
then c, c− b, 1+ b± t ∈ R∗S . This gives us a 5-term S-unit sum

(1+ b+ t)+ (1+ b− t)+ 2(c− b)− 2c− 2= 0.

There are only finitely many solutions with no subsum equal to 0 [Evertse 1984;
van der Poorten and Schlickewei 1991], so it remains to analyze the 10 cases where
some subsum vanishes.

(1+ b+ t)+ (1+ b− t)= 0. So b =−1 and f (x)=−x(x − 1)/(x + c). Then c
and c+ 1 are in R∗S , so there are only finitely many choices for c.

(1+ b± t)+ 2(c− b)= 0. So a−b+2c±t=0. Substituting into (1+b)2−4c= t2

to eliminate t yields b= c(c+2)/(c+1), and from that we find that c/(b−c)=1+c.
We know that c, b−c ∈ R∗S , so this shows that 1+c ∈ R∗S . But then (1+c,−c) is a
solution to the S-unit equation u+v= 1, so there are only finitely many possibilities
for c.
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(1+ b± t)− 2c = 0. So 1+ b± t = 2c. Substituting into (1+ b)2 − 4c = t2 to
eliminate t yields c2

− bc = 0, so either c = 0 or c− b = 0. This contradicts the
fact that c and c− b are S-units.

(1+ b± t)− 2= 0. So 1 + b ± t = 2. Substituting into (1 + b)2 − 4c = t2 to
eliminate t yields c− b = 0, contradicting the fact that c− b ∈ R∗S .

2(c− b)− 2c = 0. So b=0 and f (x)= x(x−1)/c. We have c∈ R∗S and 1−4c= t2.
We write a = γ u3 with u ∈ R∗S and γ chosen from a finite set of representatives for
R∗S/(R

∗

S)
3. Then (u, t) is an RS-integral point on the genus 1 curve y2

= 1− 4γ x3.
Siegel’s theorem [Hindry and Silverman 2000, D.9.1] says that there are only finitely
many such points.

2(c− b)− 2= 0. So c= b+1 and f (x)= x(x−1)/(bx−b−1). We have c ∈ R∗S
and c2

− 4c = t2. We write c = γ u3 with u ∈ R∗S and γ chosen from a finite set of
representatives for R∗S/(R

∗

S)
2. Then (u, t/u) is an RS-integral point on the genus 1

curve y2
= γ 2x4

−4γ x . Siegel’s theorem [Hindry and Silverman 2000, D.9.1] says
that there are only finitely many such points.

−2c− 2= 0. So c =−1 and f (x)= x(x − 1)/(bx + 1). We have 1+ b ∈ R∗S and
(1+b)2+4= t2. We write 1+b= γ u2 with u ∈ R∗S and γ chosen from a finite set
of representatives for R∗S/(R

∗

S)
2. Then (u, t) is an RS-integral point on the genus 1

curve y2
= γ 2u4

+ 4. Siegel’s theorem [Hindry and Silverman 2000, D.9.1] says
that there are only finitely many such points.

P4,13: We move the 2-cycle to 0,∞, so f (x)= (ax+b)/(cx2
+dx). The resultant

is−bc(ad−bc), so we can dehomogenize c= 1. Moving a fixed point to 1, we have
a+b=d+1, so f (x)= (ax+b)/(x2

+(a+b−1)x)with Res( f )=−b(a−1)(a+b).
The good reduction assumption for f tells us that b, a−1, a+b ∈ R∗S , so we obtain
a 4-term S-unit equation

(a+ b)− (a− 1)− b− 1= 0.

The multivariable S-unit sum theorem [Evertse 1984; van der Poorten and Schlick-
ewei 1991] says that there are finitely many solutions with no subsum equal to 0.
Ignoring those finitely many solutions, there are three subsum 0 cases:

(1) (a+ b)− (a− 1)= 0, so b =−1.

(2) (a+ b)− b = 0, so a = 0.

(3) (a+ b)− 1= 0, so a = 1− b.

The portrait P4,13 has a second fixed point. The fixed points of f are the roots of

(x − 1)(x2
+ (a+ b)x + b)= 0.
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We have assumed that the points in P4,13 are defined over K , so the quadratic has
a root in K . Thus there is a t ∈ K such that

(a+ b)2− 4b = t2.

And since a, b ∈ RS , we have t ∈ RS . From earlier we know that a+ b and b are
in R∗S , so we can write a+ b = γ u2 and b = δv4, with u, v ∈ R∗S and γ, δ chosen
from a finite set of representatives for R∗S/(R

∗

S)
4. Then (uv−1, tv−2) is a RS-integral

point on the genus 1 curve y2
= γ 2x4

−4δ. Siegel’s theorem [Hindry and Silverman
2000, D.9.1] says that there are only finitely many such points. Hence there are only
finitely many possibilities for the ratio u/v, and thus only finitely many possibilities
for γ 2δ−1(u/v)4 = (a+b)2/b. But we know from the three cases described earlier
that either b = −1 or a = 0 or a = 1− b. Substituting these into (a+ b)2/b, we
find that there are finitely many values for, respectively, −(a− 1)2, b, and 1/b.

P4,14: We move the points to α→ 1→ 0→∞ with ∞ fixed. Ignoring α for
the moment, this means that f has the form f (x)= (ax2

− (a+ c)x + c)/ex . We
have Res( f )=−ace2, so good reduction forces a, c, e ∈ R∗S . We dehomogenize
by setting e = 1. At this stage the pair ( f, {0, 1,∞}) has good reduction. However,
we need to adjoin the point α to the set X . The point α is a root of the numerator
of f (x)− 1, so α is a root of the polynomial

(11) ax2
− (a+ c+ 1)x + c = 0.

Since we are assuming that α ∈ K , the discriminant of this quadratic polynomial
is a square in K , say

t2
= (a+ c+ 1)2− 4ac with t ∈ RS.

Then
(a+ c+ 1+ t)(a+ c+ 1− t)= 4ac ∈ R∗S,

so a+ c+ 1± t ∈ R∗S . So we now know four S-units,

a, c, a+c+1+ t, a+c+1− t ∈ R∗S,

which yields a 5-term S-unit sum

(a+ c+ 1+ t)+ (a+ c+ 1− t)− 2a− 2c− 2= 0.

There are only finitely many solutions with no subsum equal to 0 [Evertse 1984;
van der Poorten and Schlickewei 1991], so it remains to analyze the 10 cases where
some subsum vanishes.

(a+ c+ 1+ t)+ (a+ c+ 1− t)= 0. Substituting c = −a− 1, we find that t2
=

−4a(a−1). Since a ∈ R∗S , we may write a= γ u3 with u ∈ R∗S and γ chosen from a
finite set of representatives for R∗S/(R

∗

S)
3. Then (u, tu−1) is an S-integral point on
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the genus 1 curve y2
=−4γ 2x4

+ 4γ 2x . Siegel’s theorem [Hindry and Silverman
2000, D.9.1] says that there are only finitely many such points.

(a+ c+ 1± t)− 2a = 0. Then 0= (a+c+1)2−4ac−t2
=4a, contradicting a∈ R∗S .

(a+ c+ 1± t)− 2c = 0. Then 0= (a+c+1)2−4ac−t2
=4c, contradicting c∈ R∗S .

(a+ c+ 1± t)− 2= 0. Then

0= (a+ c+ 1)2− 4ac− t2
= 4(a+ c− ac).

Hence 1= (a−11)(c−1), so a−1 and c−1 are S-units. Thus (1−a, a) and (1−c, c)
are each solutions to the S-unit equation u+v=1, which has finitely many solutions.

−2a− 2c = 0. Substituting a =−c, we find that t2
= 1+ 4a2. Since a ∈ R∗S , we

may write a= γ u2 with u ∈ R∗S and γ chosen from a finite set of representatives for
R∗S/(R

∗

S)
2. Then (u, t) is an RS-integral point on the genus 1 curve y2

= 1+4γ 2x4.
Siegel’s theorem [Hindry and Silverman 2000, D.9.1] says that there are only finitely
many such points.

−2a− 2= 0. Substituting a = −1, we find that t2
= c2
+ 4c. Since c ∈ R∗S , we

may write c = γ u3 with u ∈ R∗S and γ chosen from a finite set of representa-
tives for R∗S/(R

∗

S)
3. Then (u, tu−1) is an S-integral point on the genus 1 curve

y2
= γ 2x4

+ 4γ x . Siegel’s theorem [Hindry and Silverman 2000, D.9.1] says that
there are only finitely many such points.

−2c− 2= 0. Substituting c =−1, we find that t2
= a2
+ 4a. The analysis is then

identical to the previous case with −2a− 2= 0.

P4,15: The portrait P4,15 contains the portrait P3,3 as a subportrait, and we already
proved that ShafDim1

2[P3,3]
◦
= 0, so the same is true for P4,15. On the other hand,

if we allow any of the points in P4,15 to have weight greater than 1, then the total
weight would be at least 5, in which case Theorem 2(a) gives us finiteness. Hence
ShafDim1

2[P4,15]
•
= 0.

P4,16: The portrait P4,16 contains the portrait P3,3 as a subportrait, and we already
proved that ShafDim1

2[P3,3]
◦
= 0, so the same is true for P4,16. On the other hand,

if we allow any of the points in P4,16 to have weight greater than 1, then the total
weight would be at least 5, in which case Theorem 2(a) gives us finiteness. Hence
ShafDim1

2[P4,16]
•
= 0.

P4,17: The portrait P4,17 contains the portrait P3,1 as a subportrait, and we already
proved that ShafDim1

2[P3,1]
◦
= 0, so the same is true for P4,17. On the other hand,

if we allow any of the points in P4,17 to have weight greater than 1, then the total
weight would be at least 5, in which case Theorem 2(a) gives us finiteness. Hence
ShafDim1

2[P4,17]
•
= 0.
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P4,18: Moving the four points to b, 1, 0,∞, we see that f (x)= a(x−1)(x−b)/ex
with Res( f )= a2be2, so we can dehomogenize a = 1. Then(

f (x), {b, 1, 0,∞}
)
∈ GR1

2[P4,18]
•(K , S) ⇐⇒ b, 1− b, e ∈ R∗S.

(Note that b, 1− b ∈ R∗S is the condition for {b, 0, 1,∞} to have good reduction
outside S.) Then (b, 1− b) is a solution to the S-unit equation u+ v = 1, so there
are finitely many values for b. Each value of b, for example b = 2, yields a curve
in M1

2, for example, the Milnor image with b = 2 is

s
(
(x − 1)(x − 2)

ex

)
=

(
2e2
− 4e+ 17

2e
,
−4e3

+ 19e2
− 8e+ 17

2e2

)
.

Hence ShafDim1
2[P4,18]

◦
= 1. However, since f −1( f (1)) = f −1( f (b)) = {1, b}

and f −1( f (0))= f −1( f (∞))= {0,∞}, we see that f modulo primes not in S is
unramified at the points in {b, 1, 0,∞}, so the above maps with b = 2 and e ∈ R∗S
are in GR1

2[P4,18]
?(K , S), and hence ShafDim1

2[P4,18]
◦
= 1.

P4,19: Moving 0,∞ to the 2-cycle and 1 to the incoming point, we see that
f (x) = a(x − 1)/(bx2

+ cx). This has Res( f ) = a2b(b+ c). We dehomogenize
b=1, so f (x)=a(x−1)/x(x+c)with a, 1+c∈ R∗S . The fourth point of the portrait
is in f −1(1), so it is a root of x2

+(c−a)x+a. Since that point is in K by assumption,
we see that the discriminant (c−a)2−4a must be a square in K , say equal to t2. Then

(c− a+ t)(c− a− t)= 4a ∈ R∗S,

so c− a± t ∈ R∗S . This gives us a 5-term S-unit sum

(c− a+ t)+ (c− a− t)− 2(1+ c)+ 2a+ 2= 0.

There are only finitely many solutions with no subsum equal to 0 [Evertse 1984;
van der Poorten and Schlickewei 1991], so it remains to analyze the 10 cases where
some subsum vanishes.

−2(1+ c)+ 2a = 0. Then a = c+ 1 and f (x)= a(x − 1)/x(x + a− 1). We have
1− 4a = t2. We write a = γ u4 with u ∈ R∗S and γ chosen from a finite set of
representatives for R∗S/(R

∗

S)
4. Then 1−4γ u4

= t2, so (u, t) is an RS-integral point
on the genus 1 curve Y 2

= 1− 4γ X4. Siegel’s theorem [Hindry and Silverman
2000, D.9.1] tells us that there are only finitely many solutions.

−2(1+ c)+ 2= 0. Then c = 0 and f (x)= a(x − 1)/x2. This map has e f (0)= 2,
so we do not get the portrait P4,19 in which every point has multiplicity 1.

2a+ 2= 0. Then a=−1 and f (x)= (−x+1)/x(x+c). We have (c+1)2+4= t2.
We write c+1= γ u2 with u ∈ R∗S and γ chosen from a finite set of representatives
for R∗S/(R

∗

S)
2. Then γ 2u4

+ 4= t2, so (u, t) is an RS-integral point on the genus 1
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curve Y 2
= γ 2 X4

+ 4. Siegel’s theorem [Hindry and Silverman 2000, D.9.1] tells
us that there are only finitely many solutions.

(c− a+ t)+ (c− a− t)= 0. Then a = c and f (x)= a(x−1)/x(x+a). We have
a, 1+ a ∈ R∗S , so (−a, 1+ a) is a solution to the S-unit equation u+ v = 1. Here
there are only finitely many choices for a.

(c− a± t)− 2(1+ c)= 0. Then±t =a+c+2, and the equation (c−a)2−4a= t2

becomes ac+ 2a+ c+ 1= 0. We rewrite this as a(c+ 1)+ (c+ 1)+ 1= 0. Thus(
a(c+ 1), c+ 1

)
is a solution to the S-unit equation u + v + 1 = 0, so has only

finitely many solutions.

(c− a± t)+ 2a = 0. Then±t =a+c, and the equation (c−a)2−4a= t2 becomes
4a(c+ 1)= 0. This contradicts the fact that a and c are in R∗S .

(c− a± t)+ 2= 0. Then ±t = c− a + 2, and the equation (c− a)2 − 4a = t2

becomes 4(c+ 1)= 0, contradicting c+ 1 ∈ R∗S .

This completes the proof that ShafDim1
2[P4,19]

◦
= 0. But if we assign a weight

greater than 1 to any of the points in P4,19, then the resulting portrait will have total
weight at least 5, so Theorem 2(a) gives us finiteness. Hence ShafDim1

2[P4,19]
•
= 0.

P4,20: Moving 0,∞ to the 2-cycle and 1 to an incoming point, we see that
f (x)= a(x−1)/(bx2

+cx). This has Res( f )= a2b(b+c). In particular, a, b∈ R∗S ,
so we can dehomogenize b=1 and f (x)=a(x−1)/x(x+c)with a, 1+c∈ R∗S . The
fourth point of the portrait in f −1(∞), so it is the point−c. Then {0, 1,∞,−c} has
good reduction if and only if c, 1+c ∈ R∗S , so (−c, 1+c) is a solution to the S-unit
equation u+ v = 1. There are thus only finitely many choices for c. For example,
since 2∈ R∗S , we may could take c=1. Then a(x−1)/x(x+1)∈GR1

2[P4,20]
◦(K , S)

for all a ∈ R∗S . The Milnor image is

s
(

a(x − 1)
x(x + 1)

)
=

(
a2
− 10a− 1

2a
,
−a2
+ 9a+ 1

a

)
,

which shows that the Zariski closure of GR1
2[P4,20]

◦(K , S) in M1
2 is a nonempty

finite union of curves. Further, since

f −1( f (1))= f −1( f (∞))= {1,∞},

f −1( f (0))= f −1( f (−1))= {0,−1},

we see that f modulo primes not in S is unramified at the points in {−1, 1, 0,∞},
so the above maps with c = 1 and a ∈ R∗S are in GR1

2[P4,20]
?(K , S), and hence

ShafDim1
2[P4,20]

?
= 1. Finally, we note that ShafDim1

2[P4,20]
•
=ShafDim1

2[P4,20]
◦,

since if we assign a weight greater than 1 to any of the points in P4,20, then the
resulting portrait will have total weight at least 5, so Theorem 2(a) gives us finiteness.
Hence ShafDim1

2[P4,20]
•
= 1.
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P4,21: The portrait P4,21 contains the portrait P3,1 as a subportrait, and we already
proved that ShafDim1

2[P3,1]
◦
= 0, so the same is true for P4,21. On the other hand,

if we allow any of the points in P4,21 to have weight greater than 1, then the total
weight would be at least 5, in which case Theorem 2(a) gives us finiteness. Hence
ShafDim1

2[P4,21]
•
= 0.

P4,22: We move three of the points in the 4-cycle to 0, 1, and∞, and we denote
the fourth point by c. The map f then has the form

f (x)=
c(x − 1)(x + a)

x
(
x − c+ (c− 1)(c+ a)

) ,
Res( f )= ac2(1− c)(2− c)(a+ c)(1− a− c).

The set {c, 0, 1,∞} has good reduction outside S if and only if c, 1−c ∈ R∗S . Hence
( f, {c, 0, 1,∞}) ∈ GR1

2[P4,22]
• if and only if

a, c, 1− c, 2− c, a+ c, 1− a− c ∈ R∗S.

Then (c, 1− c) is a solution to the S-unit equation u + v = 1, so there are only
finitely many values of c. Then the fact that (a+ c, 1− a− c) is also a solution
to the S-unit equation shows that there are only finitely many values of a. Hence
ShafDim1

2[P4,22]
•
= 0.

This completes our analysis of the 22 weight 4 portraits in Tables 3 and 4, and
with it, the proof of Theorem 19. �

8. Possible generalizations

It is natural to attempt to generalize Theorem 2(a) to self-maps of PN with N ≥ 2.
The naive generalization fails. Indeed, suppose that we define GRN

d [n](K , S) to be
the set of triples ( f, Y, X) such that f : PN

K → PN
K is a degree d morphism defined

over K and Y ⊆ X ⊂ P1(K̄ ) are finite sets satisfying the following conditions:9

• X = Y ∪ f (Y ),

• X is Gal(K̄/K )-invariant,

• #Y = n,

• f and X have good reduction outside S.

Then it is easy to see that for any fixed d and N , the set GRN
d [n](K , S) can be

infinite for arbitrarily large n. We illustrate with d = N = 2, since the general case
is then clear.

Consider the family of maps fa,b : P
2
→ P2 defined by

(12) fa,b(X, Y, Z)= [aX Z + X2, bY Z + Y 2, Z2
] with a, b ∈ RS .

9 This definition is not entirely consistent with our definition of GR1
d [n](K , S), since we’ve

replaced the earlier ramification condition on Y with the simpler condition that Y contain n points.
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Then fa,b has good reduction at all primes p /∈ S. And it is not an isotrivial family,
since for example the characteristic polynomial of fa,b acting on the tangent space
at the fixed point [0, 0, 1] is easily computed to be (T − a)(T − b). For a given n,
we take K =Q and we take S to be the set of primes dividing 2

∏n
i=1(2

i
− 1), and

we let
Xn := {[1, 2i , 0] ∈ PN (Q) : 0≤ i ≤ n}.

Then Xn has good reduction at all p /∈ S, and, since f ([1, y, 0]) = [1, y2, 0], we
see that fa,b(Xn−1)⊂ Xn . Hence

( fa,b, Xn−1, Xn) ∈ GR2
2[n](Q, S)/PGL3(ZS)

gives infinitely many inequivalent triples as a and b range over ZS .
One key step in the proof of Theorem 2(a) that goes wrong when we try to

generalize to PN is Lemma 10, which says that if two maps f, g : P1
→ P1 agree

at enough points, then f = g. This is false in higher dimension, and indeed, the
maps fa,b defined by (12) take identical values at all points on the line Z = 0.

This suggests two ways to rescue the theorem.
First, we might simply say that two maps are “the same” if they take the same

values on a nontrivial subvariety of PN. This is a somewhat drastic solution, but the
following partial generalization of Lemma 10, whose proof we leave to the reader,
makes it a reasonable solution.

Lemma 20. Let K be a field, and let f, g : PN
K → PN

K be morphisms of degrees d
and e, respectively. Suppose that

#{P ∈ PN (K ) : f (P)= g(P)} ≥ (d + e)N
+ 1.

Then there is a curve C ⊂ PN
K such that f (P)= g(P) for all P ∈ C.

Second, we might insist that the marked points in the set X are in sufficiently
general position to ensure that f |X = g|X forces f = g. Thus writing EndN

d for
the space of degree d self-morphisms of PN, we might say that a set Y ⊂ PN is in
d-general position for PN if the map

EndN
d → (PN )#Y , f 7→ ( f (P))P∈Y

is injective. Then a version of Theorem 2(a) might be true if we restrict to
triples ( f, Y, X) ∈ GRN

d [n](K , S) for which Y is in d-general position for PN.
In this paper, we will not further pursue these, or other potential, generalizations

of Theorem 2(a) to PN.
A second possible generalization of our results would be to extend them to other

types of fields, for example taking K = k(C) to be the function field of a curve over
an algebraically closed field k. If k has characteristic 0, then much of the argument
in this paper should carry over, although there may be issues with isotrivial maps;



SHAFAREVICH-TYPE THEOREMS FOR DYNAMICAL SYSTEMS 189

while if k has characteristic p > 0, then issues of wild ramification arise, as does
the fact that the theorem on S-unit equations is more restrictive in requiring more
than the simple “no vanishing subsum” condition. Again, we have chosen not to
pursue such function field generalizations in the present paper.
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