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We study the behavior of blocks in flat families of finite-dimensional alge-
bras. In a general setting we construct a finite directed graph encoding a
stratification of the base scheme according to the block structures of the
fibers. This graph can be explicitly obtained when the central characters
of simple modules of the generic fiber are known. We show that the block
structure of an arbitrary fiber is completely determined by “atomic” block
structures living on the components of a Weil divisor. As a byproduct, we
deduce that the number of blocks of fibers defines a lower semicontinuous
function on the base scheme. We furthermore discuss how to obtain infor-
mation about the simple modules in the blocks by generalizing and estab-
lishing several properties of decomposition matrices by Geck and Rouquier.
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1. Introduction

It is a classical fact in ring theory that a nonzero noetherian ring A can be de-
composed as a direct product A =

∏n
i=1 Bi of indecomposable rings Bi . Such a

decomposition is unique up to permutation and isomorphism of the factors. Let us
denote by Bl(A) the set of the Bi , called the blocks of A. The decomposition of
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A into blocks induces the decomposition A-Mod=
⊕n

i=1 Bi -Mod of the category
of (left) A-modules. In particular, a simple A-module is a simple Bi -module for a
unique block Bi and so we get the induced decomposition Irr A =

∐n
i=1 Irr Bi of

the set of simple modules. Let us denote by Fam(A) the set of the Irr Bi , called
the families of A. The blocks and families of a ring are important invariants which
help to organize and simplify its representation theory. The aim of this paper is to
investigate how these invariants vary in a flat family of finite-dimensional algebras.

More precisely, we consider a finite flat algebra A over an integral domain R;
i.e., A is finitely generated and flat as an R-module. This yields a family of algebras
parametrized by Spec(R) consisting of the specializations (or fibers)

(1) A(p) := k(p)⊗R A ' Ap/ppAp,

where k(p) = Frac(R/p) is the residue field of p ∈ Spec(R) in R and Ap is the
localization of A in p. Note that the fiber A(p) is a finite-dimensional k(p)-algebra.
Now, the primary goal would be to describe for any p the blocks of A(p), e.g.,
the number of blocks, and to describe the simple modules in each block, e.g., the
number of such modules and their dimensions.

It is clear that there will be no general theory giving the precise solutions to these
problems for arbitrary A. For example, we can take the group ring A = ZSn of the
symmetric group. The fibers of A are precisely the group rings QSn and FpSn for all
primes p, and the questions above are still unanswered. Nonetheless, and this is the
point of this paper, there are some general phenomena, some patterns in the behavior
of blocks and simple modules along the fibers, which are true quite generally.

1A. The setting. We assume that R is noetherian and normal, and that the generic
fiber AK is a split K -algebra, where K is the fraction field of R; i.e., all simple
modules of AK remain simple under field extension. This setting includes many
interesting examples in representation theory, like Brauer algebras, Hecke algebras,
(restricted) rational Cherednik algebras, etc. We note that some results we mention
below actually hold more generally and refer to the main body of the paper.

At the very end we also establish a semicontinuity property of blocks in the
(important) case of a nonsplit generic fiber; see Theorem 1.6. This then applies
also to quantized enveloping algebras of semisimple Lie algebras at roots of unity,
enveloping algebras of semisimple Lie algebras in positive characteristic, quantized
function algebras of semisimple groups at roots of unity, etc. More generally, this
applies to Hopf PI triples as introduced by Brown and Goodearl [2002]; see also
[Brown and Gordon 2001; Gordon 2001].

1B. Block stratification. Under the assumptions described above, we prove the
following theorem (see Corollary 4.3), which is the backbone of this paper:
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Theorem 1.1. For any p ∈ Spec(R) the natural map Ap� A(p) is block bijective;
i.e., it induces a bijection between the block idempotents.

This allows us to reduce the study of blocks of specializations to blocks of
localizations, and this is much simpler from the general perspective. Since a block
idempotent of a localization Ap splits into a sum of block idempotents of the generic
fiber AK, we can view the blocks of Ap as being a partition of the set of blocks of
AK ; see Section 3 for details. This gives us a direct and natural way of comparing
the block structures among the fibers — something which is in general, without the
above theorem, not possible. Let

BlA : Spec(R)→ Part(Bl(AK ))

be the map just described. We equip the image Bl(A) of this map with the partial
order ≤ on partitions, where P ′ ≤P if the members of P ′ are unions of members
of P. We let Bl−1

A (P), respectively Bl−1
A (≤P), be the locus of all p ∈ Spec(R)

such that the block structure of Ap, and thus of A(p) under the above bijection,
is equal to a given partition P, respectively coarser than P. We then obtain as
Theorem 3.3:

Theorem 1.2. The sets Bl−1
A (≤P) are closed in Spec(R), the sets Bl−1

A (P) are lo-
cally closed in Spec(R), and Spec(R)=

∐
P Bl−1

A (P) is a stratification of Spec(R).

Denoting by • the generic point of Spec(R), so that A•= A(•)= AK, this implies
in particular that the set

BlGen(A) := Bl−1
A (BlA(•))

= {p ∈ Spec(R) | BlA(p)= BlA(•)}

of primes p where the block structure of the fiber A(p) is equal to the one of the
generic fiber AK is an open (dense) subset of Spec(R). Hence, the set

BlEx(A) := {p ∈ Spec(R) | BlA(p) < BlA(•)}

of primes where the block structure of the fiber is coarser than the one of the generic
fiber is closed. This set has a nice property; see Corollary 3.5:

Theorem 1.3. If R is a Krull domain (e.g., if R is normal), then BlEx(A) is a
reduced Weil divisor; i.e., it is either empty or pure of codimension 1 in Spec(R).

We thus call BlEx(A) the block divisor of A. This is an interesting new discrim-
inant of A. Let At(A) be the set of irreducible components of BlEx(A). On any
Z ∈ At(A) there is a unique maximal block structure BlA(Z), namely the one in
the generic point. In Section 3C we show that these block structures have an atomic
character:
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Theorem 1.4. For p ∈ Spec(R) we have

BlA(p)=
∧

Z∈At(A)
p∈Z

BlA(Z),

where ∧ is the meet of partitions; i.e., the members are the unions of all members
with nonempty intersection.

Hence, once we know At(A) and the atomic block structures BlA(Z) for Z ∈
At(A), we know the block structure for any p ∈ Spec(R). By considering sets of
the form ⋂

Z∈Z

Z \
⋃

Z /∈Z

Z

for subsets Z ⊆ At(A), we obtain a stratification of Spec(R) refining the one
introduced above. We call this the block stratification of A.

1C. Blocks via central characters. In Section 5 we discuss an approach to explic-
itly compute the block stratification and the block structures on the strata. This is
based on the knowledge of central characters of simple AK -modules. Since AK

splits, each simple AK -module S has a central character �′S : Z(A)→ R, the image
lying in R since R is normal. In Theorem 5.9 we show:

Theorem 1.5. Two simple AK -modules S and T lie in the same Ap-block if and
only if �′S ≡�

′

T mod p.

The key ingredient in the proof is a (rather nontrivial) result by B. Müller stating
that the cliques of a noetherian ring, which is a finite module over its center, are
fibered over the center. We address this in detail in Section 5A.

If z1, . . . , zn is an R-algebra generating system of Z(A), then �′S ≡�
′

T mod p

if and only if �′S(zi ) ≡ �
′

T (zi ) mod p for all i . Hence, Theorem 1.5 gives a
computational tool to explicitly determine BlA(p) once the central characters of the
generic fiber are known. Moreover, it follows from Theorem 1.5 that At(A) is the
set of maximal irreducible components of the zero loci of the sets

(2) {�′S(zi )−�
′

T (zi ) | i = 1, . . . , n}

for �′S 6=�
′

T . The atomic block structures can then be determined by the vanishing
of the differences �′S −�

′

T on the Z ∈ At(A), and from these we obtain all block
structures as described above.

1D. An example. Let us illustrate this with an explicit example. Let A be the
generic Brauer algebra for n = 3 over the polynomial ring R := Z[δ]; see [Graham
and Lehrer 1996]. There are four simple AK -modules, labeled by the partitions
(0, (1, 1, 1)), (0, (3)), (0, (2, 1)), and (1, (1)). We will simply label these by
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1, . . . , 4 from now on. Since AK is semisimple, we can identify the blocks of
AK with the simple modules of AK ; i.e., we can label the blocks by 1, . . . , 4. We
can thus view blocks of specializations of A as partitions of {1, . . . , 4} as described
above. It is not too difficult to explicitly compute the central characters of the
simple AK -modules. From these we deduce that the block structure of the fibers of
A over Z[δ] are distributed as in the following graph:

{1},{2},{3},{4}
(0)

{1,2,3},{4}
(3)

{1},{2},{3,4}
(δ−1)

{1,2},{3},{4}
(2)

{1},{2,4},{3}
(δ+2)

{1,2,3,4}
(δ−1,3)

{1,2},{3,4}
(δ−1,2)

{1,2,4},{3}
(δ,2)

This graph encodes the block stratification of the two-dimensional base scheme
Spec(Z[δ]), along with the block structures on the strata. We see that BlEx(A)
has four components of codimension 1, the generic points of these components
are 3, δ−1, 2, and δ+2, respectively. The block structure on any other point p
is uniquely determined as the meet of the block structures on the components of
BlEx(A) containing p.

We want to point out that it is central for us to work with (affine) schemes. For
example, we have one skeleton with generic point (2); i.e., we consider the Brauer
algebra in characteristic 2. Now, we do not only have the case δ ∈ {0, 1}= F2, which
is described by the two strata below (2), but we also have a generic characteristic-2
case, described by the generic point of F2[δ], and this is really different from the
case of specialized δ, as we can see from the block structures.

Note that the components of BlEx(A) are precisely the parameters where the
Brauer algebra is not semisimple anymore (the precise parameters have been deter-
mined by Rui [2005] for all n ∈ N). We show in Lemma 6.7 that this is always the
case for cellular algebras.

1E. Blocks and decomposition matrices. In Section 6 we address questions about
the simple modules in a block. The main tool here is the decomposition matrices
introduced by Geck and Rouquier. In Theorem 6.2 we show that they satisfy Brauer
reciprocity in a rather general setting in which it was not known to hold before. In
Section 6C we generalize the concept of Brauer graphs and show how these relate
to blocks.

1F. An open problem. In Section 6B we contrast the preservation of simple mod-
ules with the preservation of blocks under specialization, and this leads to an
interesting problem: In [Thiel 2016] we showed that decomposition matrices of A
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are trivial precisely on an open subset DecGen(A) of Spec(R). In Theorem 6.3 we
show

DecGen(A)⊆ BlGen(A).

The obvious question is: are these two sets equal, and if not, when are they
equal? We show in Example 6.5 that in general we do not have equality. In
Lemma 6.7, on the other hand, we establish a context where we have equality
(this includes Brauer algebras and explains why our Weil divisor is given by the
nonsemisimple parameters). It is an open problem to understand the complement
BlGen(A) \DecGen(A).

1G. Semicontinuity of blocks in the case of a nonsplit generic fiber. In Section 7
we consider the case of a nonsplit generic fiber. In this case we can no longer
identify blocks of specializations with blocks of localizations, and so there is no
natural way of comparing block structures among the fibers. However, it still makes
sense to compare the number of blocks of the fibers, i.e., to consider the map
Spec(R)→N, p 7→ # Bl(A(p)). In the case R is normal and AK splits, this map is
lower semicontinuous by the results discussed above. Without the splitting of AK,
this is no longer true; see Example 7.4. The problem is that we consider this map
on all of Spec(R). In Corollary 7.1 we construct a setting in which the restriction of
p 7→ # Bl(A(p)) to certain subsets of Spec(R) is still lower semicontinuous without
assuming that the generic fiber splits. From this we obtain a rather nice result; see
Corollary 7.3:

Theorem 1.6. Suppose that R is a finite-type algebra over an algebraically closed
field. Let X be the set of closed points of Spec(R). Then the map X → N,
m 7→ # Bl(A(m)), is lower semicontinuous. In particular, X admits a stratification
according to the number of blocks of fibers of A over X.

1H. Remark. The behavior of blocks under specialization has been studied in sev-
eral situations already. All of our results are well known in modular representation
theory of finite groups due to the work of R. Brauer and C. Nesbitt [1941]. Our
Corollary 4.3 and Theorem 6.9 generalize results by S. Donkin and R. Tange [2010]
about algebras over Dedekind domains. Our results about lower semicontinuity of
the number of blocks generalize a result by P. Gabriel [1975] to mixed characteristic
and nonalgebraically closed settings; see also the corresponding result by I. Gordon
[2001]. In general, K. Brown and I. Gordon [2001; 2002] used Müller’s theorem
[1976] to study blocks under specialization. Theorem 5.8 has been treated in a more
special setting by K. Brown and K. Goodearl [2002]. The codimension-1 property in
Corollary 4.3 and Theorem 5.9 was proven by C. Bonnafé and R. Rouquier [2017] in
a more special setting. Their work is without doubt one of the main motivations for
this paper. Blocks and decomposition matrices of generically semisimple algebras
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over discrete valuation rings have been studied by M. Geck and G. Pfeiffer [2000],
and more generally by M. Chlouveraki [2009]. Brauer reciprocity has been studied
more generally by M. Geck and R. Rouquier [1997], and by M. Neunhöffer [2003].
M. Neunhöffer and S. Scherotzke [2008] showed generic triviality of epA over
Dedekind domains.

2. Base change of blocks

The basic principle underlying the behavior of blocks in a family of algebras is
base change of blocks. In this section, we introduce a few basic notions about this
principle. Appendix A contains some further material which will later be used in
some proofs.

Let us fix some basic notation for block theory. For us, a ring is always a ring
with identity and a module is always a left module unless we explicitly say it is a
right module. Let A be a ring and let Z be its center. If c is a central idempotent of
A, then Ac= cA is a two-sided ideal of A and at the same time a ring with identity
element equal to c (so, not a subring). This yields a bijection between the set of
decompositions of 1 ∈ A into a sum of pairwise orthogonal central idempotents and
finite direct sum decompositions of the ring A into nonzero two-sided ideals of A
up to permutation of the summands. Such decompositions are in turn in bijection
with finite direct product decompositions of the ring A into nonzero rings up to
permutation of the factors. Primitive idempotents of Z are also called centrally
primitive idempotents of A. A central idempotent c is centrally primitive if and only
if Ac is an indecomposable ring. It is a standard fact — and the starting point of
block theory — that if there is a decomposition of 1=

∑
i ci into pairwise orthogonal

centrally primitive idempotents ci , then this is unique and any central idempotent of
A is a sum of a subset of the ci . We then say that A has a block decomposition, call
the centrally primitive idempotents of A also the block idempotents, and call the
corresponding rings Ac the blocks of A. We denote by Bl(A) the set of centrally
primitive idempotents of A. To avoid pathologies we set Bl(0) :=∅ for the zero
ring 0. It is well known that noetherian rings have block decompositions (the
block idempotents are the class sums with respect to the linkage relation of a
decomposition of 1 ∈ A into pairwise orthogonal primitive idempotents).

Let C := {ci }i∈I be a finite set of pairwise orthogonal central idempotents
whose sum is equal to 1 ∈ A. Let Bi := Aci . If V is a nonzero A-module, then
V =

⊕
i∈I ci V as A-modules and each summand ci V is a Bi -module. In this way

we obtain a decomposition A-Mod=
⊕

i∈I Bi -Mod of module categories, which
also restricts to a decomposition of the category of finitely generated modules. If
a nonzero A-module V is under this decomposition obtained from a Bi -module,
then V is said to belong to Bi . This is equivalent to ci V = V and cj V = 0 for all
j 6= i . An indecomposable A-module clearly belongs to a unique Bi , and so this
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is true for any simple A-module. We thus get a decomposition Irr A =
∐

i∈I Irr Bi

of the set of (isomorphism classes of) simple modules. We call the sets Irr Bi the
C -families of A and denote the set of C -families by FamC (A). Note that we have
a natural bijection

(3) C −→∼ FamC (A)

given by ci 7→ Irr Bi . In the case C is actually a block decomposition, we call the
C -families simply the families of A and set Fam(A) := FamC (A). Recall that any
central idempotent of A is a sum of a subset of the block idempotents of A. Hence,
for general C as above the families are a finer partition of Irr A than the C -families;
i.e., any C -family is a union of families.

Now, consider a morphism φ : R→ S of commutative rings. If V is an R-module,
we write

V S
:= φ∗V := S⊗R V

for the scalar extension of V to S and by φV : V → V S we denote the canonical
map v 7→ 1⊗ v. In most situations we consider, this map will be injective:

Lemma 2.1. In each of the following cases the map φV : V → V S is injective:

(a) φ is injective and V is R-projective.

(b) φ is faithfully flat.

(c) φ is the localization morphism for a multiplicatively closed subset 6 ⊆ R and
V is 6-torsion-free.

Proof. The first case follows from [Bourbaki 1989, II, §5.1, Corollary to Proposi-
tion 4], the second follows from [Bourbaki 1972, I, §3.5, Proposition 8(i,iii)], and
the last case follows from the fact that φ is flat in conjunction with [Bourbaki 1972,
I, §2.2, Proposition 4]. �

If A is an R-algebra, then the S-module AS is naturally an S-algebra and the
map φA : A→ AS is a ring morphism. Moreover, if V is an A-module, then the
underlying S-module of AS

⊗A V is simply V S. Our aim is to study the behavior of
blocks under the morphism φA : A→ AS. Clearly, if e ∈ A is an idempotent, also
φA(e) ∈ AS is an idempotent, and if e is central, so is φA(e) by the elementary fact

(4) φA(Z(A))⊆ Z(AS).

Definition 2.2. We say that φA is (central) idempotent stable if φA(e) 6= 0 for any
nonzero (central) idempotent e of A. We say that φA is block bijective if φA induces
a bijection between the centrally primitive idempotents of A and the centrally
primitive idempotents of AS.

Note that in the case φA is idempotent stable, respectively central idempotent
stable, it induces a map between the sets of decompositions of 1 ∈ A and 1 ∈ AS
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into pairwise orthogonal idempotents, respectively into pairwise orthogonal central
idempotents. The following lemma shows two situations in which φA is idempotent
stable (and thus central idempotent stable). We denote by Rad(A) the Jacobson
radical of A.

Lemma 2.3. If Ker(φA)⊆ Rad(A), then φA is idempotent stable. This holds in the
following two cases:

(a) φA is injective (see Lemma 2.1),

(b) φ is surjective, Ker(φ)⊆ Rad(R), and A is finitely generated as an R-module.

Proof. If e ∈ A is an idempotent contained in Rad(A), then by a well-known
characterization of the Jacobson radical, see [Curtis and Reiner 1981, 5.10], we
conclude that e†

= 1−e ∈ A× is a unit, and since e† is also an idempotent, we must
have e†

= 1, implying that e = 0. If φA is injective, the condition clearly holds. In
the second case we have Ker(φA) = Ker(φ)A ⊆ Rad(R)A ⊆ Rad(A), where the
last inclusion follows from [Lam 1991, Corollary 5.9]. �

Suppose that φA is idempotent stable and that both A and AS have block decompo-
sitions. Let {ci }i∈I be the block idempotents of A and let {c′j }j∈J be the block idem-
potents of AS. Since φA is idempotent stable, the set Blφ(AS) := φA({ci }i∈I ) is a
decomposition of 1 ∈ AS into pairwise orthogonal idempotents. We call the φA(ci )

the φ-blocks of AS and call the corresponding families (see above) the φ-families
of AS, denoted by Famφ(AS). As explained above, each φ-block φA(ci ) is a sum of a
subset of the block idempotents of AS and the φ-families are coarser than the families
in the sense that each φ-family is a union of AS-families. In particular, we have

(5) # Bl(A)= # Blφ(AS)≤ # Bl(AS).

The following picture illustrates this situation:

(6)

•

c′11

•

c′12

· · · •
c′1m1

•

c′21

•

c′22

· · · •
c′2m2

· · · •

c′n1

•

c′n2

· · · •
c′nmn

AS-blocks

•

φA(c1)
•

φA(c2)
· · · •

φA(cn)
φ-blocks

•

c1
•

c2
· · · •

cn
A-blocks

φA φA φA

This paper is about this picture in the special case of specializations of an algebra in
prime ideals. Before we begin investigating this, we record the following useful fact.

Lemma 2.4. Suppose that φA : A→ AS is central idempotent stable. If AS has a
block decomposition, then A has a block decomposition.
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Proof. If A does not contain any nontrivial central idempotent, then A is indecompos-
able and thus has a block decomposition. So, assume that A is not indecomposable
and let c be a nontrivial central idempotent. Then A = Ac⊕ Ac†. We can now
continue this process to get finer and finer decompositions of A as a ring. Since φA

is central idempotent stable, we get decompositions of AS of the same size. As AS

has a block decomposition, this process has to end after finitely many steps. We
thus arrive at a ring decomposition of A with finitely many and indecomposable
factors, hence, at a block decomposition of A. �

Corollary 2.5. A nonzero finite flat algebra over an integral domain has a block
decomposition.

Proof. Let R be an integral domain with fraction field K , let φ : R ↪→ K be
the embedding, and let A be a finite flat R-algebra. Since A is R-torsion-free, it
follows from Lemma 2.1(c) that φA is injective and so φA is idempotent stable by
Lemma 2.3(a). Since φ∗A A = AK is a finite-dimensional algebra over a field, it has
a block decomposition. Hence, A has a block decomposition by Lemma 2.4. �

The point of the corollary above is that we do not have to assume R to be noether-
ian — otherwise A is noetherian and we already know it has a block decomposition.

3. Blocks of localizations

Before we consider blocks of specializations, we first take a look at blocks of
localizations as these are much easier to control and are still strongly related to
blocks of specializations as we will see in the next paragraph.

Throughout the next paragraph, we assume A is a finite flat algebra
over an integral domain R with fraction field K.

It follows from Corollary 2.5 that A and any localization Ap for p ∈ Spec(R)
have a block decomposition, even if A is not necessarily noetherian. Since the
canonical map φp : Ap→ AK is injective by Lemma 2.1, we have the notion of
φp-blocks and φp-families of AK, as defined in Section 2. To shorten notations,
we call them the p-blocks and p-families, and write Famp(AK ) for the p-families.
Recall that we have a natural bijection

(7) Bl(Ap)' Famp(AK ).

3A. Block structure stratification. There is the following more concrete point of
view of p-blocks. Let (ci )i∈I be the block idempotents of AK. If c ∈ Ap is any
block idempotent, we know from Section 2 that there is I ′ ⊆ I with c =

∑
i∈I ′ ci

in AK. Hence, to any block idempotent of Ap we can associate a subset of I, and if
we take all block idempotents of Ap into account, we get a partition BlA(p) of the
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set I, from which we can recover the block idempotents of Ap by taking sums of
the ci over the members of BlA(p). In this way we get a map

(8) BlA : Spec(R)→ Part(I )

to the set of partitions of the set I. We denote by

(9) Bl(A) := Im BlA

the image of this map and call the partitions therein the block structures of A.
The set Part(I ) is equipped with the partial order ≤ defined by P ≤Q if P is

a coarser partition than Q, i.e., the members of P are unions of members of Q. If
q⊆p, then we have an embedding Ap ↪→ Aq and by the same argument as above, the
block idempotents of Ap are obtained by summing up block idempotents of Aq, so

(10) q⊆ p =⇒ BlA(p)≤ BlA(q).

Hence, the map BlA is actually a morphism of posets if we equip Spec(R) with the
partial order ≤ defined by p≤ q if q⊆ p (i.e., V(p)⊆ V(q)).

For P ∈ Part(I ), we call the fiber Bl−1
A (P)⊆ Spec(R) the P-stratum and

(11) Bl−1
A (≤P) :=

⋃
P ′≤P

Bl−1
A (P

′)=
⋃

P ′≤P
P ′∈Bl(A)

Bl−1
A (P

′)

the P-skeleton. The P-stratum (P-skeleton) is simply the locus of all p∈Spec(R)
where the block structure of Ap is equal to P (respectively coarser than P). Since

(12) Bl−1
A (P)= Bl−1

A (≤P) \
⋃

P ′<P

Bl−1
A (≤P ′),

we can recover the strata from the skeleta. We get the finite decomposition

(13) Spec(R)=
∐
P

Bl−1
A (P)

and we call this the block structure stratification. Our aim is now to show that this
is indeed a stratification, i.e., the strata are locally closed subsets of Spec(R) and
the closure of a stratum is contained in its skeleton. The key ingredient in proving
this is the following general proposition, which is essentially due to Bonnafé and
Rouquier [2017, Proposition D.2.11] but is proven here in a more general form.

Proposition 3.1. Let R be an integral domain with fraction field K , let A be a finite
flat R-algebra, and let F ⊆ AK be a finite set. Then

GenA(F ) := {p ∈ Spec(R) |F ⊆ Ap}

is a neighborhood of the generic point of Spec(R). If A is finitely presented flat,
then GenA(F ) is an open subset of Spec(R), and if moreover R is a Krull domain,
the complement ExA(F ) of GenA(F ) in Spec(R) is a reduced Weil divisor, i.e., it
is either empty or pure of codimension 1 with finitely many irreducible components.
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Proof. Let us first assume that A is actually R-free. For an element α ∈ K we
define Iα := {r ∈ R | rα ∈ R}. This is a nonzero ideal in R, and it has the property
that α ∈ Rp if and only if Iα * p. To see this, suppose that α ∈ Rp. Then we can
write α = r/x for some x ∈ R \ p. Hence, xα = r ∈ R and therefore x ∈ Iα . Since
x /∈ p, it follows that Iα * p. Conversely, if Iα * p, then there exists x ∈ Iα with
x /∈ p. By the definition of Iα we have xα =: r ∈ R and since x /∈ p, we can write
α = r/x ∈ Rp. Now, let (a1, . . . , an) be an R-basis of A. Then we can write every
element f ∈F as f =

∑n
i=1 α f,i ai with α f,i ∈ K . Let I be the radical of the ideal∏

f ∈F, i=1,...,n

Iα f,i E R.

By the properties of the ideals Iα we have the following logical equivalences:

F ⊆ Ap ⇐⇒ α f,i ∈ Rp for all f ∈F , i = 1, . . . , n

⇐⇒ Iα f,i 6⊆ p for all f ∈F , i = 1, . . . , n

⇐⇒ I 6⊆ p,

the last equivalence following from the fact that p is prime. Hence,

(14) ExA(F )= Spec(R) \GenA(F )= V(I )=
⋃

f ∈F, i=1,...,n

V(Iα f,i ),

implying that GenA(F ) is an open subset of Spec(R).
Next, still assuming that A is R-free, suppose that R is a Krull domain. To

show that ExA(F ) is either empty or pure of codimension 1 in Spec(R) with
finitely many irreducible components, it suffices to show this for the closed subsets
V(Iα)=V(

√
I α). If α ∈ R, then Iα= R and therefore V(Iα)=∅. So, let α /∈ R. Let

V(Iα)=
⋃
λ∈3 V(qλ) be the decomposition into irreducible components. Note that

this decomposition is unique and contains every irreducible component of V(Iα).
The inclusion V(Iα) ⊇ V(qλ) is equivalent to Iα ⊆

√
Iα ⊆
√
qλ = qλ. Since an

irreducible component is a maximal proper closed subset, we see that the qλ are the
minimal prime ideals of Spec(R) containing Iα . Let q= qλ for an arbitrary λ ∈3.
We will show that ht(q)= 1. Since Iα ⊆ q, we have seen above that α /∈ Rq. As R
is a Krull domain, also Rq is a Krull domain by [Matsumura 1986, Theorem 12.1].
By [Bourbaki 1972, VII, §1.6, Theorem 4] we have

Rq =

⋂
q′∈Spec(Rq)

ht(q′)=1

(Rq)q′ =
⋂

q′∈Spec(R)
q′⊆q

ht(q′)=1

Rq′ .

Since α /∈ Rq, this shows that there exists q′ ∈ Spec(R) with q′ ⊆ q, ht(q′)= 1 and
α /∈ Rq′ . The last property implies Iα ⊆ q′ and now the minimality in the choice of q
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implies that q′= q. Hence, ht(q)= 1 and this shows V(Iα) is pure of codimension 1.
Since Iα 6= 0, there is some 0 6= r ∈ Iα . This element is contained in all the height-1
prime ideals qλ. As R is a Krull domain, a nonzero element of R can only be
contained in finitely many height-1 prime ideals, see [Huneke and Swanson 2006,
4.10.1], so 3 must be finite.

Now, assume that R is an arbitrary integral domain and that A is finite flat. Then
Grothendieck’s generic freeness lemma [1965, Lemme 6.9.2] shows that there exists
a nonzero f ∈ R such that A f is a free R f -module. Note that Spec(R f ) can be
identified with the distinguished open subset D( f ) of Spec(R). We obviously have

GenA f (F )= GenA(F )∩D( f ).

By the arguments above, GenA f (F ) is an open subset of D( f ), and thus of Spec(R).
This shows that GenA(F ) is a neighborhood in Spec(R).

Next, let R be arbitrary and assume that A is finitely presented flat. It is a
standard fact, see [Stacks 2005–, Tag 00NX], that the assumptions on A imply
that A is already finite locally free; i.e., there exists a family ( fi )i∈I of elements
of R such that the standard open affines D( fi ) cover Spec(R) and A fi is a finitely
generated free R fi -module for all i ∈ I. Since Spec(R) is quasicompact, see [Görtz
and Wedhorn 2010, Proposition 2.5], we can assume that I is finite. Again note
that Spec(R fi ) can be identified with D( fi ) and that

(15) GenA fi
(F )= GenA(F )∩D( fi ).

By the above, the set GenA fi
(F ) is open and since the D( fi ) cover Spec(R), it

follows that GenA(F ) is open. Now, suppose that R is a Krull domain. Much as in
(15) we have

(16) ExA fi
(F )= ExA(F )∩D( fi ).

Suppose that ExA(F ) is not empty and let Z be an irreducible component of
ExA(F ). There is an i ∈ I with Z ∩ D( fi ) 6= ∅. The map T 7→ T defines a
bijection between irreducible closed subsets of D( fi ) and irreducible closed subsets
of Spec(R) which meet D( fi ); see [Görtz and Wedhorn 2010, §1.5]. This implies
that Z ∩D( fi ) is an irreducible component of ExA(F ) ∩D( fi ) = ExA fi

(F ). It
follows from the above that Z ∩D( fi ) is of codimension 1 in D( fi ). Hence, Z is of
codimension 1 in Spec(R) by [Stacks 2005–, Tag 02I4]. All irreducible components
of ExA(F ) are thus of codimension 1 in Spec(R). Since each set ExA fi

(F ) has
only finitely many irreducible components and since I is finite, also ExA(F ) has
only finitely many irreducible components. �

Remark 3.2. We note that A is finitely presented flat if and only if it is finite
projective; see [Lam 1999, Theorem 4.30; Stacks 2005–, Tag 058R]. Hence, we
could have equally assumed that A is finite projective in Proposition 3.1 but we
preferred the seemingly more general notion.
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From now on, we assume that A is finitely presented as an R-module.

For p ∈ Spec(R) let us denote by BA(p) ⊆ AK the set of block idempotents
of Ap. Clearly, BA(p) and BlA(p) are in bijection by taking sums of the ci over
the subsets in BlA(p). Note that BA(p) is constant on Bl−1

A (P) for any P. We can
thus define GenA(P) := GenA(BA(p)) where p ∈ Bl−1

A (P) is arbitrary.

Theorem 3.3. Then Bl−1
A (P) is a closed subset of Spec(R) for any partition P.

Thus, each stratum Bl−1
A (P) is open in Bl−1

A (≤P), and hence locally closed in
Spec(R), and

(17) Bl−1
A (P)⊆ Bl−1

A (≤P).

In particular, the decomposition (13) is a stratification of Spec(R).

Proof. First, assume that P is actually a block structure, i.e., P ∈ Bl(A). Since
Spec(R)=

∐
P ′ Bl−1

A (P
′), we have

Spec(R) \Bl−1
A (≤P)=

⋃
P ′ 6≤P

Bl−1
A (P

′).

Let P ′ 6≤P and p′ ∈GenA(P
′). Then P ′≤BlA(p

′). But this implies BlA(p
′) 6≤P

since otherwise P ′ ≤ BlA(p
′) ≤P. Hence, GenA(P

′) ⊆ Spec(R) \ Bl−1
A (≤P).

Conversely, we clearly have Bl−1
A (P

′)⊆ GenA(P
′). This shows that

Spec(R) \Bl−1
A (≤P)=

⋃
P ′ 6≤P

Bl−1
A (P

′)=
⋃

P ′ 6≤P

GenA(P
′).

This set is open by Proposition 3.1, so

(18) Bl−1
A (≤P)=

⋂
P ′ 6≤P

ExA(P
′)

is closed. From (11) we see Bl−1
A (≤P) is also closed for an arbitrary partition P.

Using (12), we see BlA(P) is locally closed. Moreover, we have Bl−1
A (P) ⊆

Bl−1
A (≤P), so

Bl−1
A (P)⊆ Bl−1

A (≤P)= Bl−1
A (≤P). �

Remark 3.4. In general it is not true that we have Bl−1
A (P)= Bl−1

A (≤P), so the
stratification (13) is in general not a so-called good stratification: in the Brauer
algebra example in the Introduction we have

P ′ := BlA((3))= {{1, 2, 3}, {4}}< {{1, 2}, {3}, {4}} = BlA((2))=:P,

so (3) ∈ Bl−1
A (≤P), but (3) is not contained in Bl−1

A (P)= V((2)). The problem
here is that the skeleton Bl−1

A (≤P) has an irreducible component on which the
maximal block structure is strictly smaller than the maximal one on the entire
skeleton.
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The poset Bl(A) has a unique maximal element, namely the block structure
BlA(•) of A in the generic point • := (0) of Spec(R); i.e., BlA(•)= {{i} | i ∈ I } is
the block structure of the generic fiber AK

= A•. The deviation of block structures
from the generic one thus takes place on the closed subset

(19) BlEx(A) := {p ∈ Spec(R) | BlA(p) < BlA(•)} =
⋃

P<BlA(•)

Bl−1
A (≤P).

We call this set the block structure divisor of A. In fact, since BlEx(A)=ExA(BA(•)),
Proposition 3.1 implies:

Corollary 3.5. Suppose that R is a Krull domain. Then BlEx(A) is a reduced Weil
divisor.

The generic block structure lives precisely on the open dense subset

(20) BlGen(A) := Spec(R) \BlEx(A)

= {p ∈ Spec(R) | BlA(p)= BlA(•)} = Bl−1
A (•).

3B. Block number stratification. From the map BlA : Spec(R) → Part(I ) we
obtain the numerical invariant

(21) # BlA : Spec(R)→ N, p 7→ # BlA(p)= # Bl(Ap).

This map is again a morphism of posets, so

(22) q⊆ p =⇒ # BlA(p)≤ # BlA(q).

For n ∈ N we have

(23) # Bl−1
A (n)= {p ∈ Spec(R) | # Bl(Ap)= n}

and we get the decomposition

(24) Spec(R)=
∐
n∈N

# Bl−1
A (n).

We call this the block number stratification. This decomposition is of course coarser
than the one defined by the fibers of BlA. We define

(25) # Bl−1
A (≤n) :=

⋃
m≤n

# Bl−1
A (m)= {p ∈ Spec(R) | # Bl(Ap)≤ n}.

Since

(26) # Bl−1
A (≤n)=

⋃
#P≤n

Bl−1
A (P),

this set is closed in Spec(R) by Theorem 3.3. This means that the map # BlA :

Spec(R)→N is lower semicontinuous. Hence, # Bl−1
A (n) is open in # Bl−1

A (≤n),
thus locally closed in Spec(R), and

(27) # Bl−1
A (n)⊆ # Bl−1

A (≤n).
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In particular, the partition (24) is a stratification of Spec(R). Again, in general it
will not be a good stratification. Note that

(28) BlEx(A)= {p ∈ Spec(R) | # BlA(p) < # BlA(•)} = Bl−1
A (≤# BlA(•)− 1).

3C. Block stratification. The poset Part(I ) is actually a lattice; i.e., it has meets ∧
and joins ∨. The meet P ∧P ′ of two partitions is the finest partition of I that
is coarser than both P and P ′, and this is obtained by joining members with
nonempty intersection. The maximal elements in Part(I ) not equal to the maximal
element itself (the trivial partition) are the partitions {i, j} ∪ (I \ {i, j}) with i 6= j .
We call these the atoms of Part(I ) and we denote by At(I ) the set of atoms. This
terminology comes from the fact that an arbitrary partition P is the meet of all
atoms lying above it:

P =
∧

T∈At(I )
P≤T

T .

Because of this property, we say that Part(I ) is atomic.
The poset of block structures of A has a similar atomic character. For i, j ∈ I

with i 6= j let us write

(29) GlA({i, j}) := Bl−1
A

(
≤{i, j} ∪ (I \ {i, j})

)
.

This is the locus of all p∈ Spec(R) such that the block idempotents ci and cj belong
to the same block of Ap; i.e., they are “glued” over p. We thus call this set a gluing
locus. By Theorem 3.3 it is a closed subset of Spec(R). It is clear that

(30) BlEx(A)=
⋃
i 6= j

GlA({i, j}).

Let At(A) be the set of maximal elements of the set of irreducible components of
the gluing loci, ordered by inclusion. Then we still have

(31) BlEx(A)=
⋃

Z∈At(A)

Z .

Lemma 3.6. The Z ∈ At(A) are precisely the irreducible components of BlEx(A).

Proof. Let Y be an irreducible component of BlEx(A) and let ξ be the generic
point of Y. Since BlA(ξ) is not the trivial partition, there is i 6= j with BlA(ξ) ≤

{i, j}∪(I \{i, j}). Hence, Y ⊆GlA({i, j}). Since Y is a maximal irreducible closed
subset of BlEx(A) and GlA({i, j})⊆BlEx(A), it is also a maximal irreducible closed
subset of GlA({i, j}), and thus equal to an irreducible component Z of GlA({i, j}).
It is clear that Z ∈ At(A). Conversely, let Z ∈ At(A). Since Z ⊆ BlEx(A), there is
an irreducible component Y of BlEx(A) containing Z . With the same argument as
above, there is Z ′ ∈ At(A) with Y ⊆ Z ′. Hence, Z ⊆ Y ⊆ Z ′, and therefore Z = Y
by maximality of the elements in At(A). �
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It now follows that for any p ∈ Spec(R) we have

(32) BlA(p)=
∧

P∈At(I )
BlA(p)≤P

P =
∧

Z∈At(A)
p∈Z

BlA(Z),

where BlA(Z) denotes the block structure in the generic point of Z , i.e., the unique
maximal block structure on Z . Hence, any block structure of A is a meet of atomic
block structures BlA(Z) for Z ∈ At(A). Recall from Corollary 3.5 that if R is a
Krull domain, the Z ∈ At(A) are all of codimension 1 in Spec(R).

Following this observation, we introduce a refined stratification of Spec(R). For
a subset Z ⊆ At(I ) we define

Bl−1
A (≤Z ) :=

⋂
Z∈Z

Z ,(33)

Bl−1
A (Z ) :=

⋂
Z∈Z

Z \
⋃

Z∈At(A)\Z

Z .(34)

It is clear that Bl−1
A (≤Z ) is closed in Spec(R), that Bl−1

A (Z ) is locally closed
in Spec(R) and that the block structure on Bl−1

A (Z ) is in any point equal to∧
Z∈Z BlA(Z). Note that in this notation Bl−1

A (≤∅)= Spec(R) and

(35) Bl−1
A (∅)= Spec(R) \

⋃
Z∈At(A)

Z = BlGen(A).

Clearly,

(36) Bl−1
A (Z )⊆

⋂
Z∈Z

Z = Bl−1
A (≤Z ),

so we obtain the stratification

(37) Spec(R)=
∐

Z⊆At(A)

Bl−1
A (Z )

refining the block structure stratification (13). We call this the block stratification
of A.

4. Blocks of specializations

We now turn to our actual problem, namely blocks of specializations of A. Compared
to blocks of localizations there is in general no possibility to compare the actual block
structures of specializations. However, there is a rather general setting where blocks
of specializations are naturally identified with blocks of localizations, namely when
R is normal and AK splits. In this case we can compare the actual block structures of
specializations and all results from the preceding paragraph are actually also results
about blocks of specializations. For the proof we need the following general result.
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Theorem 4.1. Let φ : R ↪→ S be a faithfully flat morphism of integral domains
and let A be a finite flat R-algebra. Let K and L be the fraction fields of R and S,
respectively. If # Bl(AK ) = # Bl(AL), then the morphism φA : A→ AS is block
bijective.

Proof. Recall from Corollary 2.5 that both A and AS have block decompositions.
The map φA : A→ AS is injective by Lemma 2.1(b) since φ is faithfully flat. Hence,
φA is idempotent stable by Lemma 2.3(a) and therefore # Bl(A)≤ # Bl(AS) by (5).
We thus have to show that # Bl(A)≥ # Bl(AS). We split the proof of this fact into
several steps.

The case R = K and S = L holds by assumption. Assume that R = K and that
S is general as in the theorem. Since A is R-flat, the extension AS is S-flat and
thus S-torsion-free. Hence, the map AS

→ AL is injective by Lemma 2.1(c). In
particular, it is idempotent stable by Lemma 2.3(a) and so # Bl(AS)≤ # Bl(AL) by
(5). In total, we have

# Bl(A)≤ # Bl(AS)≤ # Bl(AL)= # Bl(AK )= # Bl(A).

Hence, # Bl(A)= # Bl(AS).
Finally, let both R and S be general as in the theorem. Let 6 := R \ {0} and

� := S \ {0}. Then K =6−1 R and L =�−1S. Set T :=6−1S. Since R and S are
integral domains, we can naturally view all rings as subrings of L and so we get
the two commutative diagrams

(38)

L AL

T AT

K S AK AS

R A

the right one being induced by the left one. All morphisms in the left diagram are
clearly injective. We claim the same holds for the right diagram. We have noted at
the beginning that the map A→ AS is injective. Since A is R-flat, it is R-torsion-
free and so the map A→ AK is injective by Lemma 2.1(c). We have argued above
already that the map AS

→ AL is injective. Since S ↪→ T is a localization map, the
induced scalar extension functor is exact so that AT is a flat T -module. In particular,
AT is T -torsion-free and so AT

→ AL is injective by Lemma 2.1(c). The map
AK
→ AL is injective by Lemma 2.1(a). Due to the commutativity of the diagram,

the remaining maps must be injective, too. We can thus view all scalar extensions
of A naturally as subsets of AL. We claim that

(39) A = AK
∩ AS



BLOCKS IN FLAT FAMILIES OF FINITE-DIMENSIONAL ALGEBRAS 209

as subsets of AL . Because of the commutative diagram above, this intersection
already takes place in AT. Consider AK as an R-module now. We have a natural
identification

φ∗(AK )= S⊗R AK
= S⊗R (6

−1 A)

= (6−1S)⊗R A = T ⊗R A = AT

as S-modules by [Bourbaki 1972, II, §2.7, Proposition 18]. Note that the map
AK
→ AT in the diagram above is the map φAK , when considering AK as an

R-module. The R-submodule A of AK is now identified with φAK (A) and the
S-submodule of AT generated by A⊆ AT is identified with AS. Since φ is faithfully
flat, it follows from [Bourbaki 1972, I, §3.5, Proposition 10(ii)] applied to the
R-module AK and the submodule A that

A = AK
∩ AS

inside AT. Let (ci )i∈I be the block idempotents of AS and let (dj )j∈J be the block
idempotents of AK. By assumption the morphism AK

→ AL is block bijective,
which means that (dj )j∈J are the block idempotents of AL . Since AS

→ AL is
idempotent stable, there exists by the arguments preceding (5) a partition (Ji )i∈I of
J such that the nonzero central idempotent ci can in AL be written as ci =

∑
j∈Ji

dj .
But this shows that ci ∈ AK

∩ AS, hence ci ∈ A and so (ci )i∈I gives a decomposition
of 1 ∈ A into pairwise orthogonal centrally primitive idempotents of A by (39).
Hence, # Bl(A)= # Bl(AS). �

To formulate the next proposition more generally, we use the property block-split
introduced in Definition A.2 but note that the reader might just simply replace it by
the more special property split. Moreover, we recall that a local integral domain R
is called unibranch if its henselization Rh is again an integral (local) domain. This
is equivalent to the normalization of R being again local; see [Raynaud 1970, IX,
Corollaire 1]. This clearly holds if R is already normal. Examples of nonnormal
unibranch rings are the local rings in ordinary cusp singularities of curves.

Proposition 4.2. Let R be an integral domain and let A be a finite flat R-algebra
with block-split generic fiber AK (e.g., if AK splits). Let p ∈ Spec(R) and suppose
that Rp is unibranch (e.g., if Rp is normal). Then the quotient morphism Ap� A(p)
is block bijective.

Proof. By assumption, Rp and its henselization Rh
p are integral domains. Since A is

R-flat, it follows that Ap = Rp⊗R A is Rp-flat and that Ah
p := Rh

p ⊗Rp Ap is Rh
p -flat.

Hence, both Ap and Ah
p have block decompositions by Corollary 2.5. Let ph

p be the
maximal ideal of Rh

p . The henselization morphism Rp→ Rh
p is local and faithfully

flat by [Grothendieck 1967, Théorème 18.6.6(iii)]. We now have the commutative
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diagram
Ap Ah

p

A(p)= Ap/ppAp Ah
p/p

h
p Ah

p

of idempotent stable morphisms. We know from Lemmas A.12(b) and A.10 that
Ah
p→ Ah

p/p
h
p Ah

p is block bijective. Since A has block-split generic fiber and Rp→ Rh
p

is a faithfully flat morphism of integral domains, we can use Theorem 4.1 to deduce
that Ap→ Ah

p is block bijective. In [Grothendieck 1967, Théorème 18.6.6(iii)]
it is proven that Rp/pp ' Rh

p/p
h
p . Hence, the map Ap/ppAp → Ah

p/p
h
p Ah

p is an
isomorphism and so in particular block bijective. We thus have

# Bl(Ah
p)= # Bl(Ap)≤ # Bl(A(p))= # Bl(Ah

p/p
h
p Ah

p)= # Bl(Ah
p)

by (5). Hence, # Bl(Ap)= # Bl(A(p)), so Ap� A(p) is block bijective. �

Corollary 4.3. Suppose that R is normal and AK splits. Then Ap� A(p) is block
bijective for all p ∈ Spec(R). Hence, all results from Section 3 apply also to blocks
of specializations of A.

5. Blocks via central characters

In this section we discuss an approach to explicitly compute the block structure of A
in any point p ∈ Spec(R), and so to compute the whole block stratification. This is
based on the knowledge of the central characters of the generic fiber of A. Parts of
the arguments presented here are due to Bonnafé and Rouquier [2017, Appendix D].

5A. Müller’s theorem. The central ingredient to establish a relationship between
blocks and central characters is the general Lemma 5.6 below, which is usually
referred to as Müller’s theorem. We were not able to find a proof of it in this
generality in the literature, so we include a proof here but note that this is known.
The main ingredient is an even more general result by B. Müller [1976] about
the fibration of cliques of prime ideals in a noetherian ring over its center; see
Lemma 5.5. We will recall only a few basic definitions from the excellent exposition
in [Goodearl and Warfield 2004, §12] and refer to it for more details.

Throughout the next paragraph, we assume that A is a noetherian ring.

If p, q are prime ideals of A, we say that there is a link from p to q, written p q,
if there is an ideal a of A such that p∩ q ) a ⊇ pq and (p∩ q)/a is nonzero and
torsion-free both as a left (A/p)-module and as a right (A/q)-module. The bimodule
(p∩q)/q is then called a linking bimodule between q and p. The equivalence classes
of the equivalence relation on Spec(A) generated by are called the cliques of A.
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We write Clq(A) for the set of cliques of A and Clq(p) for the unique clique of A
containing p. For the proof of Lemma 5.6 we will need a few preparatory lemmas.

We call the supremum of lengths of chains of prime ideals in A the classical
Krull dimension of A. The following lemma is standard.

Lemma 5.1. Suppose that A is noetherian and of classical Krull dimension zero.
Then there is a canonical bijection

(40)
Bl(A) −→∼ Clq(A),

c 7−→Xc := {m ∈Max(A) | c†
∈m},

where c†
= 1− c. If moreover A is commutative, then the cliques are singletons;

i.e., there is a unique mc ∈Max(A) with c†
∈mc. Hence, in this case we have

Bl(A)'Max(A)' Spec(A).

Proof. The first assertion is proven in [Goodearl and Warfield 2004, Corollary 12.13].
In a commutative noetherian ring the cliques are singletons, see [loc. cit., Exer-
cise 12F], and this immediately implies the second assertion. �

Lemma 5.2. Let p be a prime ideal of a noetherian ring A and let V be a nonzero
A-module with p ⊆ Ann(V ). If V is torsion-free as an (A/p)-module, then p =

Ann(V ).

Proof. Suppose that p ( Ann(V ). Then Ann(V )/p is a nonzero ideal of the
noetherian prime ring A/p and thus contains a regular element x̄ by [Jategaonkar
1986, Corollary 2.3.11]. But then x̄V = 0, contradicting the assumption that V is a
torsion-free (A/p)-module. �

Lemma 5.3. The following hold:

(a) If p and q are prime ideals of A and if b is an ideal of A with b⊆ p∩ q such
that p/b q/b in A/b, then p q in A.

(b) Let p and q be two prime ideals of A with p q and let b be an ideal of A. If
there exists a linking ideal a from p to q with b⊆ a, then p/b q/b in A/b.

Proof. (a) We can write a linking ideal from p/b to q/b as a/b for an ideal a
containing b. By definition, we have

(p∩ q)/b= (p/b)∩ (q/b)) a/b⊇ (p/b) · (q/b)= (pq)/b,

implying that p∩ q) a⊇ pq. Moreover, we have

((p∩ q)/b)/(a/b)∼= (p∩ q)/a

as (A/b)-bimodules. By definition, (p∩ q)/a is torsion-free as a left module over
the ring

(A/b)/(p/b)∼= A/p.
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Similarly, it follows that (p∩ q)/a is torsion-free as a right module over the ring
A/q. Hence, a is a linking ideal from p to q.

(b) We have

p/b∩ q/b= (p∩ q)/b) a/b⊇ (pq+ b)/b= (p/b) · (q/b).

Since

((p∩ q)/b)/(a/b)∼= (p∩ q)/a, (A/b)/(p/b)∼= A/p, (A/b)/(q/b)∼= A/q,

it follows that a/b is a linking ideal from p/b to q/b. �

Lemma 5.4. Let p and q be distinct prime ideals of a noetherian ring A with p q.
If z is a centrally generated ideal of A with z ⊆ p or z ⊆ q, then z ⊆ p ∩ q and
p/z q/z in A/z.

Proof. This is proven in [Müller 1985] but we also give a proof here for the sake of
completeness. First note that since z is centrally generated and p q, it follows
from [Goodearl and Warfield 2004, Lemma 12.15] that already z⊆ p∩ q. Let a be
a linking ideal from p to q. We claim that z is contained in a. To show this, suppose
that z is not contained in a. Then (a+z)/a is a nonzero submodule of (p∩q)/a which
is torsion-free as a left (A/p)-module and as a right (A/q)-module. In conjunction
with the fact that z is centrally generated it now follows from Lemma 5.2 that

p= Ann(A((a+ z)/a))= Ann(((a+ z)/a)A)= q,

contradicting the assumption p 6= q. Hence, we must have z⊆ a and it thus follows
from Lemma 5.3(b) that p/z q/z. �

Lemma 5.5. Let z be a centrally generated ideal of a noetherian ring A. Let p be a
prime ideal of A with z⊆ p. Then all prime ideals in Clq(p) contain z and the map

Clq(p)−→ Clq(p/z),

q 7−→ q/z,

is a bijection between a clique of A and a clique of A/z.

Proof. It follows immediately from [Goodearl and Warfield 2004, Lemma 12.15]
that all prime ideals in Clq(p) contain z. If q ∈ Clq(p), then there exists a chain
p= p0, p1, . . . , pr−1, pr = q of prime ideals of A with pi  pi+1 or pi+1 pi for
all indices i . An inductive application of Lemma 5.4 shows now that pi/z pi+1/z

or pi+1/z pi/z for all i . Hence, p/z and q/z lie in the same clique of A/z so that
the map Clq(p)→ Clq(p/z) is well-defined. On the other hand, similar arguments
and Lemma 5.3(a) show that if q/z∈Clq(p/z), then also q∈Clq(p), so that we also
have a well-defined map Clq(p/z)→ Clq(p). It is evident that both maps defined
are pairwise inverse thus proving the first assertion. The second assertion is now
obvious. �
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Lemma 5.6 (B. Müller). Let A be a ring with center Z such that Z is noetherian
and A is a finite Z-module. If z is a centrally generated ideal of A such that A/zA
is of classical Krull dimension zero, then the inclusion (Z + z)/z ↪→ A/zA is block
bijective. In other words, the block idempotents of A/zA are already contained in
the central subalgebra (Z + z)/z.

Proof. Let A := A/z and let Z := (Z + z)/z. Then A is a finitely generated
Z -module since A is a finitely generated Z -module. Hence, Z ⊆ A is a finite
centralizing extension and now it follows from going up in finite centralizing
extensions [McConnell and Robson 2001, Theorem 10.2.9] that the classical Krull
dimension of Z is equal to that of A, which is zero by assumption. Hence, by
Lemma 5.1 we have Bl(Z)'Clq(Z) and Bl(A)'Clq(A). Since # Bl(Z)≤# Bl(A),
the claim is thus equivalent to the claim that over each clique of Z , there is just
one clique of A. So, let X, Y ∈ Clq(A) be two cliques. We pick M/z ∈ X and
N/z ∈ Y with M,N maximal ideals of A. Assume that X and Y lie over the same
clique of Z . Since Z is commutative, we know from Lemma 5.1 that all cliques
are singletons and so the assumption implies that M/z and N/z lie over the same
maximal ideal of Z ; i.e.,

(M/z)∩ ((Z + z)/z)= (N/z)∩ ((Z + z)/z).
Hence

M∩ (Z + z)=N∩ (Z + z).

Since Z ⊆ Z + z, we thus get

M∩ Z =M∩ Z ∩ (Z + z)=N∩ Z ∩ (Z + z)=N∩ Z .

Now, Müller’s theorem [Goodearl and Warfield 2004, Theorem 13.10] implies that
M and N lie in the same clique of A. An application of Lemma 5.5 thus implies
that M/z and N/z lie in the same clique of A/z, so X = Y. �

5B. Blocks as fibers of a morphism.

We assume A is a finite flat algebra over a noetherian integral domain R.

By Lemma B.2 the morphism

(41) ϒ : Spec(Z)→ Spec(R),

induced by the canonical morphism from R to the center Z of A is finite, closed,
and surjective. The center Z of A is naturally an R-algebra and so we can consider
its fibers

(42) Z(p)= k(p)⊗R Z/pZ = Zp/ppZp

in prime ideals p of R. On the other hand, the image of Zp = Z(Ap) under the
canonical (surjective) morphism Ap� A(p) yields a central subalgebra

(43) Zp(A) := (Zp+ ppAp)/ppAp
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of A(p). In general this subalgebra is not equal to the center of A(p) itself. We
have a surjective morphism

(44) φp : Z(p)� Zp(A)

of finite-dimensional k(p)-algebras. This morphism is in general not injective — it
is if and only if ppAp ∩ Zp = ppZp. Nonetheless, we have the following result.

Lemma 5.7. The map φp : Z(p)→ Zp(A) in (44) is block bijective.

Proof. Since φp is surjective, the induced map aφp : Spec(Zp(A))→ Spec(Z(p)) is
injective, so # Bl(Zp(A))≤ # Bl(Z(p)) by Lemma 5.1. Now we just need to show
that φp does not map any nontrivial idempotent to zero. Since Rp is noetherian, also
Ap is noetherian. The Artin–Rees lemma [Matsumura 1986, Theorem 8.5] applied
to the Rp-module Ap, the submodule Zp of Ap, and the ideal pp of Rp shows that
there is an integer k ∈ N>0 such that for any n > k we have

pn
p Ap ∩ Zp = pn−k

p ((pk
pAp)∩ Zp).

In particular, there is n ∈ N>0 such that pn
p Ap ∩ Zp ⊆ ppZp. Now, let ē ∈ Z(p) =

Zp/ppZp be an idempotent with φp(ē) = 0. By assumption, ē ∈ Ker(φp) =
(ppAp∩ Zp)/ppZp. Hence, if e ∈ Zp is a representative of ē, we have e ∈ ppAp∩ Zp.
We have en

∈ pn
p Ap ∩ Zp ⊆ ppZp, so already ē = 0. �

Theorem 5.8. For any p ∈ Spec(R) there are canonical bijections

(45) Bl(A(p))' Bl(Zp(A))' Bl(Z(p))' ϒ−1(p).

The first bijection Bl(A(p)) ' Bl(Zp(A)) is induced by the embedding Zp(A) ↪→
A(p). In other words, all block idempotents of A(p) are already contained in
the central subalgebra Zp(A) of A(p). The second bijection is the bijection from
Lemma 5.7. The last bijection Bl(Z(p)) ' ϒ−1(p) maps a block idempotent c of
Z(p) to the (by the theorem, unique) maximal ideal mc of Z lying above p such that
c†
∈ (mc+ ppZp)/ppZp, where c†

= 1− c.

Proof. The first bijection follows directly from Lemma 5.6 applied to Ap and
the centrally generated ideal z := ppAp. Let ϒp : Spec(Zp)→ Spec(Rp) be the
morphism induced by the canonical map Rp→ Zp. Recall from Lemma B.2 that
Rp ⊆ Zp is a finite extension so that ϒp is surjective. We have

ϒ−1
p (pp)= {Q ∈ Spec(Zp) |Q∩ Rp = pp}

= {Q ∈ Spec(Zp) | pp ⊆Q}

= {Q ∈ Spec(Zp) | ppZp ⊆Q} ' Spec(Z(p)).

In the second equality we used the fact that Rp→ Zp is a finite morphism and Rp

is local with maximal ideal pp. The identification with Spec(Z(p)) is canonical
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since Z(p)= Zp/ppZp. The morphism 2p : Spec(Zp)→ Spec(Z) induced by the
localization map Z→ Zp is injective by [Eisenbud 1995, Proposition 2.2(b)]. We
claim that this map induces ϒ−1

p (pp)' ϒ
−1(p). If Q ∈ ϒ−1

p (pp), then clearly

(Q∩ Z)∩ R =Q∩ R ⊆ R ∩ pp = p

and therefore 2p induces an injective map ϒ−1
p (pp)→ ϒ−1(p). If Q ∈ ϒ−1(p),

then, since Q ∩ R = p, we have Q ∩ (R \ p) = ∅ so that Qp ∈ Spec(Zp) and
clearly pp ⊆ Qp, implying that Qp ∈ ϒ

−1
p (pp). The map ϒ−1

p (pp)→ ϒ−1(p) is
thus bijective. Hence, we have a canonical bijection Spec(Z(p))'ϒ−1(p). Now,
recall from Lemma 5.1 that Spec(Z(p))' Bl(Z(p)). �

5C. Blocks via central characters.

We assume that R is noetherian and normal, and that A is a finite flat
R-algebra with split generic fiber AK.

Recall from Corollary 4.3 that the quotient map Ap� A(p) induces Bl(Ap)'

Bl(A(p)), so together with Theorem 5.8 we have the canonical bijection

(46) Bl(Ap)' ϒ
−1(p).

Recall from Section 3 that Famp(AK ) is the partition of Irr AK induced by the
blocks of Ap and that we naturally have Bl(Ap)' Famp(AK ). Altogether, we now
have canonical bijections

(47) Famp(A)' Bl(Ap)' ϒ
−1(p)' Bl(A(p)).

Since A has split generic fiber AK, we have a central character �S : Z(AK )→ K
for every simple AK -module S. Recall that �S(z) is the scalar by which z ∈ Z(AK )

acts on S. Since R is normal, the image of the restriction of �S to Z(A)⊆ Z(AK )

is contained in R ⊆ K . We thus get a well-defined R-algebra morphism

(48) �′S : Z(A)→ R.

It is a classical fact that S, T ∈ Irr AK lie in the same family if and only if �′S =�
′

T .
We can thus label the central characters of AK as �F with F a family (block) of AK.
Using Theorem 5.8 this description generalizes modulo p so that we get an explicit
description of the p-families, and thus of the block stratification. For p∈Spec(R) let

(49) �
p
S : Z(A)→ R/p

be the composition of �′S with the quotient map R� R/p.

Theorem 5.9. Under the bijection ϒ−1(p) ' Famp(A) from (47) the p-family of
a simple AK -module S corresponds to Ker�p

S . Hence, two simple AK -modules S
and T lie in the same p-family if and only if �′S(z)≡�

′

T (z) mod p for all z ∈ Z(A).
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So, if z1, . . . , zn is an R-algebra generating system of Z(A) and F ,F ′ are two
distinct AK -families, then the corresponding gluing locus is given by

(50) GlA
(
≤{F ,F ′}

)
= V

(
{�F (zi )−�F ′(zi ) | i = 1, . . . , n}

)
.

Proof. Considering the explicit form of the bijection given in Theorem 5.8 we see
that the bijection (46) maps a block idempotent c of Ap to the (by the theorem,
unique) maximal ideal Qc of Z lying above p and satisfying c†

∈ (Qc)p. Let cQ be
the block idempotent of Ap corresponding to Q ∈ ϒ−1(p).

For S ∈ Irr AK let �p
S : Z → R/p be the composition of �′S and the quotient

morphism R → R/p. It is clear that Ker(�p
S) ∈ ϒ

−1(p). Note that �′S(z) ≡
�′T (z) mod p for all z ∈ Z(A) if and only if �p

S =�
p
T . We have an exact sequence

0−→ Ker(�′S)−→ Z �′S−→ R −→ 0

of R-modules. Since �′S is an R-algebra morphism, the canonical map R→ Z
is a section of �′S and therefore Z = R⊕Ker(�′S) as R-modules. Similarly, we
have Z = R⊕Ker(�′T ). Since Ker(�′S)⊆Ker(�p

S) and Ker(�′T )⊆Ker(�p
T ), this

implies that �p
S =�

p
T if and only if Ker(�p

S)= Ker(�p
T ).

Now, suppose that Ker(�p
S) = Ker(�p

T ). Denote this common kernel by Q.
Clearly, Q ∈ ϒ−1(p). We know that the corresponding block idempotent cQ of
Ap has the property that c†

Q ∈Qp. Since Ker(�′S) ⊆ Ker(�p
S) =Q = Ker(�p

T ) ⊇

Ker(�′T ), this certainly implies that c†
QS = 0 = c†

QT . Hence, S and T lie in the
same p-family.

Conversely, suppose that S and T lie in the same p-family. We can write
the corresponding block idempotent of Ap as cQ for some Q ∈ ϒ−1(p). By
definition, c†

QS = 0 = c†
QT . We know that c†

Q ∈ Qp and cQ /∈ Qp and there-
fore Ker((�′S)p) = Qp = Ker((�′T )p). Hence, Q ⊆ Ker(�′S) ⊆ Ker(�p

S) and
Q ⊆ Ker(�′T ) ⊆ Ker(�p

T ). Since Q, Ker(�p
S), Ker(�p

T ) ∈ ϒ
−1(p) and all prime

ideals in ϒ−1(p) are incomparable, we thus conclude that Ker(�p
S)= Ker(�p

T ).
The equation for the gluing locus is now clear. �

6. Blocks and decomposition matrices

To obtain information about the actual members of the A(p)-families we use de-
composition maps as introduced by Geck and Rouquier [1997]; see also [Geck and
Pfeiffer 2000; Thiel 2016]. For a ring A we denote by G0(A) := K0(A-mod) the
Grothendieck group and by K0(A) := K0(A-proj) the projective class group. In the
case A is semiperfect (e.g., artinian), K0(A) is the free abelian group with basis
the isomorphism classes of the projective indecomposable modules. In the case A
is artinian, G0(A) is the free abelian group with basis the isomorphism classes of
simple modules and K0(A)' G0(A) mapping P to Hd(P).
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For the theory of decomposition maps we need the following (standard) assump-
tion:

A is finite free with split generic fiber and for any nonzero p∈Spec(R)
there is a discrete valuation ring O with maximal ideal m in K domi-
nating Rp such that the canonical map G0(A(p)) → G0(AO(m)) of
Grothendieck groups is an isomorphism.

We call a ring O as above a perfect A-gate in p. We refer to [Thiel 2016] for
more details. The following lemma lists two standard situations in which the above
assumptions hold. Part (a) is obvious and part (b) was proven in [Thiel 2016,
Theorem 1.22].

Lemma 6.1. A finite free R-algebra A with split generic fiber satisfies the above
assumptions in the following two cases:

(a) R is a Dedekind domain.

(b) R is noetherian and A has split fibers.

If O is a perfect A-gate in p, then there is a group morphism

(51) dp,OA : G0(AK )→ G0(A(p))

between Grothendieck groups generalizing reduction modulo p. In the case R is
normal, it was proven by Geck and Rouquier [1997] that this map is independent
of the choice of O and in this case we just write dpA. We note that in the case R is
noetherian and A has split fibers, any decomposition map in the sense of Geck and
Rouquier can be realized by a perfect A-gate; see [Thiel 2016, Theorem 1.22].

6A. Brauer reciprocity. An important tool for relating decomposition maps and
blocks is Brauer reciprocity, which we prove in Theorem 6.2 below in our general
setup (this was known to hold before only in special settings). Recall that the
intertwining form for a finite-dimensional algebra B over a field F is the Z-linear
pairing 〈 · , · 〉B : K0(B)×G0(B)→ Z uniquely defined by

(52) 〈[P], [V ]〉 := dimF HomB(P, V )

for a finite-dimensional projective B-module P and a finite-dimensional B-module V;
see [Geck and Rouquier 1997, §2]. Here, K0(B) is the zeroth K-group of the
category of finite-dimensional projective B-modules. The intertwining form is
always nondegenerate; see Lemma A.6. Due to the nondegeneracy of 〈 · , · 〉AK there
is at most one adjoint

(53) ep,OA : K0(A(p))→ K0(AK )

of dp,OA :G0(AK )→G0(A(p))with respect to 〈 · , · 〉A(p), characterized by the relation

(54) 〈ep,OA ([P]), [V ]〉AK = 〈[P], dp,OA ([V ])〉A(p).
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for all finitely generated AK -modules V and all finitely generated projective A(p)-
modules P ; see Lemma A.6. Brauer reciprocity is about the existence of this adjoint.

Theorem 6.2. The (unique) adjoint ep,OA of dp,OA exists. Moreover, the diagram

(55)
K0(AK ) G0(AK )

K0(A(p)) G0(A(p))

cAK

dp,OA

cA(p)

ep,OA

commutes, where the horizontal morphisms are the canonical ones (Cartan maps)
mapping a class [P] of a projective module P to its class [P] in the Grothendieck
group. If R is normal, the morphism ep,OA does not depend on the choice of O and
we denote it by epA.

Proof. Since 〈 · , · 〉AK is nondegenerate by Lemma A.6, it follows that dp,OA has at
most one adjoint ep,OA , characterized by (54); see [Scheja and Storch 1988, Satz 78.1].
By assumption there is a perfect A-gate O in p. Let m be the maximal ideal of O.
Since AK splits by assumption, Corollary A.14 implies that AO is semiperfect. The
morphism K0(AO)→ K0(AO(m)) induced by the quotient map AO � AO(m) is
thus an isomorphism by lifting of idempotents. Furthermore, by assumption the
morphism dp,mA : G0(A(p))→ G0(AO(m)) is an isomorphism and then the proof of
Theorem 4.1 shows that the canonical morphism ep,mA : K0(A(p))→ K0(AO(m)) is
also an isomorphism. We can thus define the morphism ep,OA : K0(A(p))→ K0(AK )

as the following composition:

(56) K0(A(p)) K0(AO(m)) K0(AO) K0(AK )
'

ep,OA

'

We will now show that ep,OA is indeed an adjoint of dp,OA . The arguments in the
proof of [Curtis and Reiner 1981, 18.9] can, with some refinements, be transferred
to our more general situation and this is what we will do. Let P be a finitely gener-
ated projective A(p)-module and let V be a finitely generated AK -module. Since
K0(AO)' K0(AO(m)), there exists a finitely generated projective AO-module P
such that (ep,mA )−1([P/mP])=[P] and then we have ep,OA ([P])=[P K

]. Let Ṽ be an
AO -lattice in V. Then by the definition of dp,OA , see [Thiel 2016, Corollary 1.14], we
have dp,OA ([V ])= (dp,mA )−1([Ṽ (m)]). We denote by V a representative of dp,OA ([V ]).
Since P is a finitely generated projective AO -module, we can write P⊕Q = (AO)n

for some finitely generated projective AO -module Q and some n ∈N. Since HomAO

is additive, we get

HomAO (P, Ṽ )⊕HomAO (Q, Ṽ )= HomAO (P ⊕ Q, Ṽ )= HomAO ((AO)n, Ṽ )

= (HomAO (AO , Ṽ ))n ' Ṽ n.
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This shows that HomAO (P, Ṽ ) is a direct summand of Ṽ n and as Ṽ n is O-free,
we conclude that HomAO (P, Ṽ ) is O-projective and thus even O-free since O is
a discrete valuation ring. Since P is a finitely generated projective AO-module, it
follows from Lemma B.3 that there is a canonical K -vector space isomorphism

K ⊗O HomAO (P, Ṽ )' HomAK (P K, V )

and a canonical k(m)-vector space isomorphism

k(m)⊗O HomAO (P, Ṽ )' HomAO(m)(P/mP, Ṽ/mṼ ).

Combining all results and the fact that both ep,OA and dp,OA preserve dimensions by
construction, we can now conclude that

〈ep,OA ([P]), [V ]〉AK = dimK HomAK (P K,V )= dimO HomAO (P, Ṽ )

= dimk(m)HomAO(m)(P/mP, Ṽ/mṼ )

= dimk(p)HomA(p)(P,V )

=〈[P],dp,OA ([V ])〉A(p).

Proving the commutativity of diagram (55) amounts to proving that cA(p)([P])=
dp,OA ◦ cAK ◦ ep,OA ([P]) for every finitely generated projective A(p)-module P. To
prove this, note that the diagram

K0(AO(m)) G0(AO(m))

K0(A(p)) G0(A(p))

cAO (m)

cA(p)

ep,mA dp,mA

commutes. As above we know that there exists a finitely generated projective
AO -module P such that (ep,mA )−1([P/mP])= [P] and ep,OA ([P])= [P K

]. Since P
is a finitely generated projective AO -module and A is a finite O-module, it follows
that P is also a finitely generated projective O-module. As O is a discrete valuation
ring, we conclude that P is actually O-free of finite rank. Hence, P is an AO -lattice
in P K and therefore

dp,OA ◦ cAK ◦ ep,OA ([P])= dp,OA ([P K
])= (dp,mA )−1([P/mP])

= (dp,mA )−1
◦ cA(m)([P/mP])

= cA(p) ◦ (e
p,m
A )−1([P/mP])= cA(p)([P]).

If R is normal, then the independence of ep,OA from the choice of O follows from
the independence of dp,OA from the choice of O and the fact that dp,OA has at most
one adjoint. �
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6B. Preservation of simple modules vs. preservation of blocks. In [Thiel 2016]
we studied the set

(57) DecGen(A) := {p ∈ Spec(R) | dp,OA is trivial for any A-gate in p},

where dp,OA being trivial means that it induces a bijection between simple modules.
We have proven in [Thiel 2016, Theorem 2.3] that DecGen(A) is open if R is
noetherian and A has split fibers. Brauer reciprocity implies that ep,OA is trivial if
and only if dp,OA is trivial, so we deduce that the locus of all p such that ep,OA is trivial
for any O is an open subset of Spec(R).

If p ∈DecGen(A), then the simple modules of AK and A(p) are “essentially the
same”; in particular their dimensions are the same. This is why explicit knowledge
about DecGen(A) is quite helpful to understand the representation theory of the
fibers of A; see [Thiel 2016]. So far, we do not have an explicit description of
DecGen(A), however. Brauer reciprocity enables us to prove the following relation
between decomposition maps and blocks.

Theorem 6.3. We have the inclusion

(58) DecGen(A)⊆ BlGen(A).

Proof. Let p ∈ Spec(R) be nonzero. By assumption there is a perfect A-gate O

in p. If p ∈DecGen(A), then by definition dp,OA is trivial, so the matrix Dp,O
A of this

morphism in bases given by isomorphism classes of simple modules of AK and A(p),
respectively, is equal to the identity matrix when ordering the bases appropriately. It
now follows from Brauer reciprocity, Theorem 6.2, that CA(p) =CAK in appropriate
bases, where CA(p) is the matrix of the Cartan map cA(p) and CAK is the matrix
of the Cartan map cAK . Due to the linkage relation explained in Section 2, the
families of AK and of A(p) are determined by the respective Cartan matrices. Since
CA(p) = CAK , it follows that # Bl(A(p))= # Bl(AK ), so p ∈ BlGen(A). �

Remark 6.4. Suppose that A has split fibers and that R is noetherian. Then the
fact that # Bl(A(p))= # Bl(Z(p)) by Theorem 5.8 together with Lemma A.9 yields
the equivalence

(59) p∈BlGen(A) ⇐⇒ dimK (Z K
+Rad(AK ))= dimk(p)(Z(p)+Rad(A(p))).

Let O be a perfect A-gate in p. This exists by Lemma 6.1(b). Suppose that
p ∈ DecGen(A). In [Thiel 2016, Theorem 2.2] we have proven that this implies

dimK Rad(AK )= dimk(p) Rad(A(p)).

Let X := Z + J , where J := Rad(AK )∩ AO. The arguments in [Thiel 2016] show
that X is an AO-lattice of Z K

+Rad(AK ) and that the reduction in the maximal
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ideal m of O is equal to ZO(m)+Rad(AO(m)). We thus have

dimK (Z K
+Rad(AK ))= dimk(m)(ZO(m)+Rad(AO(m))).

Since A(p) splits, the k(m)-dimension of ZO(m)+Rad(AO(m)) is equal to the k(p)-
dimension of Z(p)+Rad(A(p)). Hence, we have p∈BlGen(A) by (59). This yields
another proof of the inclusion DecGen(A)⊆BlGen(A) in the case A has split fibers.

Example 6.5. The following example due to C. Bonnafé shows that in the generality
of Theorem 6.3 we do not have equality in (58). Let R be a discrete valuation ring
with fraction field K and uniformizer π ; i.e., p := (π) is the maximal ideal of R.
Denote by k := R/p the residue field in p. Let

A :=
{(

a b
c d

)
∈Mat2(R)

∣∣∣ b, c ∈ p
}
.

This is an R-subalgebra of Mat2(R) and it is R-free with basis

(60) e := E11, f := E22, x := πE12, y := πE21,

where Ei j = (δi,kδj,l)kl is the elementary matrix. Clearly, AK
=Mat2(K ), so the

generic fiber of A is split semisimple. In particular, AK has just one block, and
this block contains just one simple module we denote by S. Now, consider the
specialization A := A(p)= A/pA. We know from Corollary A.14 that the quotient
map A� A, a 7→ ā, is block bijective, so we must have # Bl(A(p)) ≤ Bl(AK )

and therefore # Bl(A(p)) = 1, so p ∈ BlGen(A). Let J be the k-subspace of A
generated by x̄ and ȳ. This is in fact a two-sided ideal of A since it is stable under
multiplication by the generators (60). Moreover, we have x̄2

= 0 = ȳ2, so J is a
nilpotent ideal of A. Hence, dimk Rad(A)≥ 2. The number of simple modules of A
is by [Lam 1991, Theorem 7.17] equal to dimk A/(Rad(A)+[A, A]), so # Irr A≤ 2
since dimk A=dimK AK

=4. The two elements ē and f̄ are orthogonal idempotents
and so the constituents of the two A-modules Aē and A f̄ are nonisomorphic. So, we
have # Irr A≥ 2 and due to the aforementioned we conclude that # Irr A= 2. Let S1

and S2 be these two simple modules. Since R is a discrete valuation ring, reduction
modulo p yields the well-defined decomposition map dpA : G0(AK )→ G0(A(p));
see [Thiel 2016, Corollary 1.14]. It is an elementary fact that all simple A-modules
must be constituents of dpA([S])= [S/pS]. Since dimK S = 2, the only possibility
is that dpA([S]) = [S1] + [S2] and dimk Si = 1. In particular, p /∈ DecGen(A), so
p ∈ BlGen(A) \DecGen(A). Finally, we note that A also splits since # Irr(A)= 2
implies by the above formula that dimk Rad(A)= 2 and we have

dimk A = dimk Rad(A)+
2∑

i=1

(dimk Si )
2,

so A is split by [Lam 1991, Corollary 7.8].
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Lemma 6.6. Assume that the AK -families are singletons, and that # Irr A(p) ≤
# Irr AK for all p ∈ Spec(R). Then

BlGen(A) \DecGen(A)= {p ∈ Spec(R) | Dp
A is diagonal but not the identity}.

Proof. Since the AK -families are singletons, we have # Irr(AK )= # Bl(AK ). We
clearly have # Irr A(p)≥# Bl(A(p)) for all p∈Spec(R). Assume that p∈BlGen(A).
Then we have # Irr A(p) ≥ # Irr(AK ), so # Irr A(p) = # Irr AK by our assumption.
Hence, the decomposition matrix Dp

A is quadratic. By Theorem 6.9 the p-families
are equal to the Brauer p-families. Since p ∈ BlGen(A) and the AK -families are
singletons, it follows that Dp

A is a diagonal matrix. The claim is now obvious. �

Lemma 6.7. Let R be a noetherian integral domain with fraction field K and let
A be a cellular R-algebra of finite dimension such that AK is semisimple. Then
DecGen(A)= BlGen(A).

Proof. First of all, specializations of A are again cellular by [Graham and Lehrer
1996, 1.8]. Moreover, it follows from Proposition 3.2 of the same paper that A
has split fibers, so A satisfies Lemma 6.1(b) and therefore our basic assumption
in this paragraph. Let 3 be the poset of the cellular structure of AK. Since AK

is semisimple, each cell module Mλ has simple head Sλ and # Irr AK
= #3. Let

p ∈ Spec(R). The poset for the cellular structure of A(p) is again 3. Denote
by Mp

λ the corresponding cell modules of A(p). There is a subset 3′ of 3 such
that Mp

λ has simple head Sp
λ for all λ ∈ 3′ and that these heads are precisely the

simple A(p)-modules. In particular, we have # Irr A(p) ≤ # Irr AK. Now, assume
that p ∈ BlGen(A). By Lemma 6.6 we just need to show that the decomposition
matrix Dp

A, which is square by the proof of Lemma 6.6, cannot be a nonidentity
diagonal matrix. By [Graham and Lehrer 1996, Proposition 3.6] we know that
[Mλ : Sλ] = 1 and [Mp

λ : S
p
λ] = 1. By construction, it is clear that dpA([Mλ])= [M

p
λ].

Hence, if dpA([Sλ])= nλ[S
p
λ], we have nλ= [M

p
λ : S

p
λ] = 1. Hence, Dp

A is the identity
matrix, so p ∈ BlGen(A). �

6C. The Brauer graph. Geck and Pfeiffer [2000] introduced the so-called Brauer
p-graph of A in our general context but assumed that AK is semisimple so that
the AK -families are singletons. For general A this definition seems not to be the
correct one. We introduce the following generalization of this concept.

Definition 6.8. Suppose that R is normal so that we have unique decomposition
maps. The Brauer p-graph of A is the graph with vertices the simple AK -modules
and an edge between S and T if and only if in the AK -family of S there is some S′

and in the AK -family of T there is some T ′ such that dpA([S
′
]) and dpA([T

′
]) have a

common constituent. The connected components of this graph are called the Brauer
p-families of A.



BLOCKS IN FLAT FAMILIES OF FINITE-DIMENSIONAL ALGEBRAS 223

If the AK -families are singletons, we have an edge between S and T if and only
if dpA([S]) and dpA([T ]) have a common constituent, so this indeed generalizes the
Brauer p-graph from [Geck and Pfeiffer 2000] for AK semisimple. Our final theorem
shows that decomposition maps are compatible with p-families and A(p)-families,
and relates the Brauer p-families to the p-families.

Theorem 6.9. Assume that R is normal. The following hold:

(a) A finite-dimensional AK -module V belongs to a p-block of A if and only if
dpA([V ]) belongs to a block of A(p).

(b) Two finite-dimensional AK -modules V and W lie in the same p-block if and
only if dpA([V ]) and dpA([W ]) lie in the same block of A(p).

(c) If F ∈ Famp(A) is a p-family, then

dpA(F) := {T | T is a constituent of dpA([S]) for some S ∈ F}

is a family of A(p), and all families of A(p) are obtained in this way.

(d) The Brauer p-families are equal to the p-families.

Proof. (a) By assumption there is a perfect A-gate O in p. Let m be the maximal
ideal of O. We have the following commutative diagram of canonical morphisms
which are all idempotent stable:

(61)

Ap AO AK

A(p) AO(m)

Since R is assumed to be normal, it follows from Proposition 4.2 that Ap� A(p)
is block bijective. By assumption the morphism dp,mA : G0(A(p))→ G0(AO(m)) is
an isomorphism and therefore A(p) ↪→ AO(m) is block bijective by Theorem 4.1.
Furthermore, by assumption the generic fiber AK is split and therefore AO� AO(m)

is block bijective by Corollary A.14. Because of (5) it thus follows that Ap ↪→ AO

is block bijective.
Now, let V be a finite-dimensional AK -module and let Ṽ be an AO -lattice of V.

Suppose that V belongs to an Ap-block of AK. Since Ap ↪→ AO is block bijective,
the Ap-blocks of AK coincide with the AO -blocks of AK and therefore V belongs to
an AO -block of AK. Since Ṽ is O-free, it follows from Lemma A.1 that Ṽ belongs
to a block of AO. Again by Lemma A.1 and the fact that AO � AO(m) is block
bijective, it follows that Ṽ/mṼ belongs to a block of AO(m). Since A(p) ↪→ AO(m)

is block bijective, Lemma A.1 shows that dpA([V ]) belongs to a block of A(p).
Conversely, suppose that dpA([V ]) belongs to a block of A(p). Then Ṽ/mṼ be-

longs to a block of AO(m) and therefore Ṽ belongs to a block of AO by Lemma A.1.
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But then V belongs to an AO-block of AK and thus to an Ap-block of AK by
Lemma A.1.

(b) This follows now from part (a).

(c) Fix a p-family F of AK. If S ∈ F , then dpA([S]) belongs to an A(p)-block by
(a) and therefore all constituents of dpA([S]) belong to a fixed family F S . If S′ ∈ F
is another simple module, then by (b) the constituents of dpA([S

′
]) also lie in F S .

Hence, dpA(F) is contained in a fixed A(p)-family F . Let T ∈ F be arbitrary. Due
to the properties of decomposition maps there is some S ∈ Irr AK such that T is a
constituent of dpA([S]). Since T and dpA([S]) lie in the same A(p)-block by (a) and
(b), we must have S ∈ F by (b). Hence, F = dpA(F) is an A(p)-family. Since every
simple A(p)-module is a constituent of dpA([S]) for some simple AK -module S, it
is clear that any A(p)-family is of the form dpA(F) for a p-family F .

(d) Let S and T be simple AK -modules contained in the same Brauer p-family;
i.e., in the AK -family of S there is some S′ and in the AK -family of T there is
some T ′ such that dpA([S

′
]) and dpA([T

′
]) have a common constituent. It follows

from part (b) that S′ and T ′ lie in the same p-family of AK. Since S′ is in the same
AK -family as S, it is also in the same p-family as S because the p-families are
unions of AK -families. Similarly, T ′ is in the same p-family as T . Hence, S and T
lie in the same p-family.

Conversely, suppose that S and T lie in the same p-family. We have to show
that they lie in the same Brauer p-family. Let (Si )

n
i=1 be a system of representatives

of the isomorphism classes of simple AK -modules and let (Uj )
m
j=1 be a system

of representatives of the isomorphism classes of simple A(p)-modules. Let Q :=

(Qi )
n
i=1 with Qi being the projective cover of Si , and let P := (Pj )

m
j=1 with Pj being

the projective cover of Uj . Let CA(p) be the matrix of the Cartan map cA(p) with
respect to the chosen bases, and similarly let CAK be the matrix of cAK . Furthermore,
let Dp

A be the matrix of dpA with respect to the chosen bases. Since

CA(p) = Dp
ACAK (Dp

A)
T

by Brauer reciprocity, Theorem 6.2, we have

(62) (CA(p))p,q = (D
p
ACAK (Dp

A)
T)p,q =

n∑
k,l=1

(Dp
A)p,k(CAK )k,l(D

p
A)q,l

for all p, q . Let U be a constituent of dpA([S]) and let V be a constituent of dpA([T ]).
Since S and T lie in the same p-family of AK, both dpA([S]) and dpA([T ]) lie in the
same block of A(p) by (b), and therefore U and V lie in the same family of A(p).
As the families of A(p) are equal to the P-families of A(p) by Section 2, there exist
functions f : [1, r ] → [1,m], g : [1, r − 1] → [1,m] with the following properties:
U f (1)=U , U f (r)= V, and for any j ∈ [1, r−1] both P f ( j) and P f ( j+1) have Ug( j)
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as a constituent. We can visualize the situation as follows:

P f ( j) P f ( j+1)

U f ( j) Ug( j) U f ( j+1)

where an arrow U→ P signifies that U is a constituent of P. For any j ∈ [1, r−1]
we have (CA(p))g( j), f ( j) 6= 0 and so it follows from (62) that there are indices k( j)
and l( j) such that

(Dp
A)g( j),k( j) 6= 0, (CAK )k( j),l( j) 6= 0, (Dp

A) f ( j),l( j) 6= 0.

Similarly, since (CA(p))g( j), f ( j+1) 6= 0, there exist indices k ′( j) and l ′( j) such that

(Dp
A)g( j),k′( j) 6= 0, (CAK )k′( j),l ′( j) 6= 0, (Dp

A) f ( j+1),l ′( j) 6= 0.

This can be visualized as follows:

dpA([Sl( j)]) dpA([Sk( j)]) dpA([Sk′( j)]) dpA([Sl ′( j)])

U f ( j) Ug( j) U f ( j+1)

Here, the dashed edges in the upper row signify that the respective simple AK -
modules lie in the same AK -family. Since U f (1) = U and U f (r) = V, this shows
that S and T lie in the same Brauer p-family of AK. �

7. Semicontinuity of blocks in the case of a nonsplit generic fiber

Let A be a finite flat algebra over an integral domain R with fraction field K . We
have the map

(63) # Bl′A : Spec(R)→ N, p 7→ # Bl(A(p));

i.e., # Bl′A(p) is the number of blocks of the specialization A(p). Recall that in
(21) we considered the map # BlA with # BlA(p)= # Bl(Ap) being the number of
blocks of the localization Ap. In the case R is normal and AK splits, we know
from Proposition 4.2 that # Bl′A = # BlA. In particular, the map # Bl′A is lower
semicontinuous and thus defines a stratification of Spec(R), the block number
stratification; see Section 3B.

In the case AK does not split, it still makes perfect sense to consider the map (63)
and ask if it is lower semicontinuous so that we have a stratification of Spec(R) by
the number of blocks of specializations. But since we do not have the connection
from Proposition 4.2 between blocks of localizations and blocks of specializations
anymore, we cannot directly apply the results from Section 3.
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In this section, we will establish a setting where the map # Bl′A is still lower
semicontinuous without assuming that the generic fiber AK splits, the main result
being Corollary 7.3. To achieve this, however, we have to restrict this map to
a subset of Spec(R). As we will see, in general it is not possible to have lower
semicontinuity on all of Spec(R).

First of all, because of the difference between blocks of localizations and blocks
of specializations, we introduce the sets

β(A) :=max{# Bl(A(p)) | p ∈ Spec(R)},(64)

BlEx′(A) := # Bl′−1
A (≤β(A)− 1),(65)

BlGen′(A) := Spec(R) \BlEx′(A).(66)

Note that if R is normal and AK splits, then β(A) = # Bl(AK ), so BlEx′(A) =
BlEx(A) and BlGen′(A)= BlGen(A), as defined in (19) and (20).

Now, assume that R′ is an integral extension of R which is also an integral
domain. Let K ′ be the fraction field of R′ and let ψ : Spec(R′)� Spec(R) be
the morphism induced by R ⊆ R′. The scalar extension A′ := R′⊗R A is again a
finitely presented flat R′-algebra (using Remark 3.2). For any p ∈ Spec(R) and any
p′ ∈ Spec(R′) lying over p we have the diagram

(67)

A′p′

A(p)= Ap/ppAp A′(p′)= A′p′/p
′
p′ A′p′

and it then follows from (5) that

(68) # Bl(A(p))≤ # Bl(A′(p′))≥ # Bl(A′p′).

Let X be a set contained in

(69) X R′(A)

:= {p∈Spec(R) | #Bl(A(p))=#Bl(A′(p′))=#Bl(A′p′) for all p′ ∈ψ−1(p)}.

We have seen in Corollary 4.3 that in the case R is normal and AK splits we can
choose R = R′ and have X = Spec(R). In general X will be a proper subset of
Spec(R) and we have to choose R′ appropriately to enlarge it a bit more. Let us first
concentrate on what we can say when restricting to X . We introduce the following
restricted versions of our invariants:

# Bl′A,X := # Bl′A |X : X→ N,(70)

# Bl′−1
A,X (≤n) := # Bl′−1

A (≤n)∩ X = ψ(# Bl−1
A′ (≤n))∩ X,(71)
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# Bl′−1
A,X (n) := # Bl′−1

A (n)∩ X = ψ(# Bl−1
A′ (n))∩ X,(72)

βX (A) :=max{# Bl(A(p)) | p ∈ X},(73)

BlEx′X (A) := Bl′−1
A,X (≤βX (A)− 1),(74)

BlGen′X (A) := X \BlEx′X (A).(75)

Corollary 7.1. The map X→N, p 7→# Bl(A(p)), is lower semicontinuous on X , so
X =

∐
n∈N Bl′−1

A,X (n) is a stratification of X into locally closed subsets. Moreover,

(76) βX (A)≤ # Bl(AK ′).

Proof. Since ψ is a closed morphism and # Bl−1
A′ (≤n) is closed in Spec(R′) by (26),

it follows that ψ(# Bl−1
A′ (≤n)) is closed in Spec(R), hence # Bl′−1

A,X (≤n) is closed
in X by (71). Since

# Bl′−1
A,X (n)= # Bl′−1

A,X (≤n) \ # Bl′−1
A,X (≤n− 1),

it is clear that # Bl′−1
A,X (n) is locally closed in X . We have seen in (27) that

# Bl−1
A′ (n)⊆

⋃
m≤n

Bl−1
A′ (m).

Hence, since ψ is closed, we obtain

# Bl′−1
A,X (n)= ψ(# Bl−1

A′ (n))∩ X ⊆
⋃
m≤n

ψ(# Bl−1
A′ (m))∩ X =

⋃
m≤n

# Bl′−1
A,X (m). �

Note that in (76) we could only bound βX (A) above by # Bl(AK ′), and not by
# Bl(AK ). In fact, we will see in Example 7.4 that we may indeed have βX (A) >
# Bl(AK ) in general. This is an important difference to blocks of localizations
where we always have the maximal number of blocks in the generic point.

In the following lemma we describe a situation where we have βX (A)=# Bl(AK ′).
We recall that X is called very dense if the embedding X ↪→Spec(R) is a quasihome-
omorphism; i.e., the map Z 7→ Z∩X is a bijection between the closed (equivalently,
open) subsets of the two spaces. This notion was introduced by Grothendieck [1966,
§10].

Lemma 7.2. Suppose that X is very dense in Spec(R), that R is noetherian, and
that ψ is finite. Then βX (A)= # Bl(AK ′), and thus BlEx′X (A)= ψ(BlEx(A′))∩ X.
If moreover R′ is normal and R is universally catenary, then BlEx′X (A) is a reduced
Weil divisor in X.

Proof. The assumptions imply that R′ is noetherian, too. We know from Theorem 3.3
that BlGen(A′) is a nonempty open subset of Spec(R′). In particular, it is con-
structible. Since Spec(R) is quasicompact, the morphism ψ is quasicompact by
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[Görtz and Wedhorn 2010, Remark 10.2.(1)]. It thus follows from Chevalley’s
constructibility theorem, see [Görtz and Wedhorn 2010, Corollary 10.71], that
ψ(BlGen(A′)) is constructible in Spec(R). Since X is very dense in Spec(R), we
conclude that ψ(BlGen(A′))∩ X 6=∅ by [Grothendieck 1966, Proposition 10.1.2].
Hence, there is p ∈ X and p′ ∈ BlGen(A′) with ψ(p′) = p. But then we have
# Bl(A(p))= # Bl(A′(p′))= # Bl(AK ′), so βX (A)= # Bl(AK ′). Now, assume that
R′ is normal and R is universally catenary. We know that BlEx(A′) is either empty
or pure of codimension 1 in Spec(R′) by Corollary 3.5. In [Huneke and Swanson
2006, Theorem B.5.1] it is shown that the extension R ⊆ R′ satisfies the dimension
formula; hence ψ(BlEx(A′)) is either empty or pure of codimension 1. Since X is
very dense in Spec(R), the same is also true for

X ∩ψ(BlEx(A′))= BlEx′X (A). �

Corollary 7.3. Suppose that R is a finite-type algebra over an algebraically closed
field. Let X be the set of closed points of Spec(R). Then the map X → N,
m 7→ # Bl(A(m)), is lower semicontinuous and so X =

∐
n∈N # Bl′−1

A,X (n) is a strati-
fication of X. Moreover, βX (A)= # Bl(AK ), where K is an algebraic closure of K.
If R is also universally catenary, then BlEx′X (A) is a reduced Weil divisor in X.

Proof. Let K ′ be a finite extension of K such that AK ′ splits (this is always possible,
see [Curtis and Reiner 1981, Proposition 7.13]) and let R′ be the integral closure
of R in K ′. Now, # Bl(A′(p′))= # Bl(A′p′) for all p′ ∈ Spec(R) by Proposition 4.2.
Since R is a finite-type algebra over an algebraically closed field k, the residue field
in a closed point m of Spec(R) is just k. Hence, the specialization A(m) is a finite-
dimensional algebra over an algebraically closed field, thus splits and we therefore
have # Bl(A(m)) = # Bl(A′(m′)) for any m′ ∈ ψ−1(m) by Lemma A.3. Hence,
X ⊆ X R′(A). The claim about semicontinuity and the stratification thus follows
from Corollary 7.1. It is shown in [Görtz and Wedhorn 2010, Proposition 3.35]
that X is very dense in Spec(R). Since R is a finite-type algebra over a field, it
is Japanese, so ψ is a finite morphism. Hence, βX (A)= # Bl(AK ′)= # Bl(AK ) by
Lemma 7.2. The claim that BlEx′X (A) is a reduced Weil divisor if R is universally
catenary also follows from Lemma 7.2. �

Example 7.4. The following example due to K. Brown shows that in the setting
of Corollary 7.3 we may indeed have βX (A) > # Bl(AK ) so that the map p 7→

# Bl(A(p)) will not be lower semicontinuous on the whole of Spec(R). Let k be an
algebraically closed field of characteristic zero, let X be an indeterminate over k,
let R := k[Xn

] for some n > 1, and let A := k[X ]. Let Cn be the cyclic group
of order n. We fix a generator of Cn and let it act on X by multiplication with
a primitive n-th root of unity. Then R = k[X ]Cn, so A is free of rank n over R.
Moreover, Frac(A) = k(X) is a Galois extension of degree n of K := Frac(R)



BLOCKS IN FLAT FAMILIES OF FINITE-DIMENSIONAL ALGEBRAS 229

by [Benson 1993, Proposition 1.1.1], so in particular K 6= k(X) since n > 1. By
[Goodearl and Warfield 2004, Exercise 6R] we have

AK
= A⊗R K = A[(R \ {0})−1

] = Frac(A)= k(X),

so the K -algebra AK
= Z(AK ) is not split (and thus also not block-split by

Lemma A.3). It is clear that

(77) # Bl(AK )= 1.

Now, let m := (Xn
− 1) ∈ Max(R). Then k(p) = k and since k is algebraically

closed, we have A(m)= A/mA ' kn as k-algebras. In particular,

(78) # Bl(A(m))= n > 1= # Bl(AK ).

We close with a setting where our base ring is not necessarily normal but we still
get a global result on Spec(R).

Lemma 7.5. Suppose that A has split fibers; i.e., A(p) splits for all p ∈ Spec(R).
Then the map Spec(R)→ N, p 7→ # Bl(A(p)), is lower semicontinuous and so
Spec(R) =

∐
n∈N Bl′−1

A (n) is a partition into locally closed subsets. Moreover,
β(A)= # Bl(AK ). If R is also universally catenary, Japanese, and noetherian, then
BlEx′(A) is a reduced Weil divisor in Spec(R).

Proof. Let R′ be the integral closure of R in K . Then # Bl(A′(p′)) = # Bl(A′p′)
for all p′ ∈ Spec(R′) by Proposition 4.2. Since A(p) splits, we moreover have
# Bl(A(p))= # Bl(A′(p′)) for all p ∈ Spec(R) p′ ∈ ψ−1(p) by Lemma A.3. Hence,
X R′(A)= Spec(R). The claim about semicontinuity and the partition follows from
Corollary 7.1. Now, assume that R is universally catenary, Japanese, and noetherian.
Since R is Japanese, it follows by definition that ψ is finite. The claim about
BlEx′(A) being a reduced Weil divisor now follows from Lemma 7.2. �

Appendix A: More on base change of blocks

In this appendix we collect several facts about base change of blocks. Some results
here should also be of independent interest.

Block compatibility of scalar extension of modules. Recall the decomposition of
the module category of a ring A relative to a decomposition of 1 ∈ A into pairwise
orthogonal central idempotents described in Section 2. We have the following
compatibility.

Lemma A.1. Let φ : R→ S be a morphism of commutative rings and let A be an
R-algebra. Suppose that φA is central idempotent stable and let V be a nonzero
A-module. In any of the following cases the A-module V belongs to the block ci if
and only if the AS-module V S belongs to the φ-block φA(ci ):
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(a) φ is injective and V is R-projective.

(b) φ is faithfully flat.

(c) R is local or a principal ideal domain and V is R-free.

Proof. As cj V is a direct summand of V, it follows that we have a canonical
isomorphism between isomorphisms φ∗A(cj V ) ' φA(cj )φ

∗

AV of AS-modules for
all j . The claim thus holds if we can show that no nonzero direct summand V ′ of
V is killed by φ∗A, i.e., φ∗AV ′ 6= 0. But this is implied by the assumptions in each
case. Namely, in the first two cases it follows from Lemma 2.1 that φV is injective,
which implies that φV ′ is also injective, so φ∗AV ′ cannot be zero for nonzero V ′. In
the third case neither φ nor φV needs to be injective, so this needs extra care. First
of all, since V is assumed to be R-free, the assumptions on R imply that a direct
summand V ′ of V, which a priori is only R-projective, is already R-free, too. In
the case R is local, this follows from Kaplansky’s theorem [1958] and in the case
R is a principal ideal domain, this is a standard fact. Now, if V is R-free with basis
(vλ)λ∈3, then it is a standard fact, see [Bourbaki 1989, II, §5.1, Proposition 4], that
φ∗AV is S-free with basis (φV (vλ))λ∈3. This shows that φ∗AV 6= 0 for any nonzero
R-free A-module V. This applied to direct summands of V, which are R-free as
shown, proves the claim. �

Field extensions. Throughout this paragraph let A be a finite-dimensional algebra
over a field K . From (5) we know that # Bl(A)≤ # Bl(AL) for any extension field L
of K .

Definition A.2. We say that A is block-split if # Bl(A)=# Bl(AL) for any extension
field L of K .

Our aim is to show the following lemma.

Lemma A.3. If Z(A) is a split K -algebra (e.g., if A itself splits), then A is block-
split. The converse holds if K is perfect.

The first assertion of the lemma is essentially obvious since Z(A) is semiperfect
and therefore

(79) # Bl(A)= # Bl(Z(A))= rkZ K0(Z(A))= #rkZ G0(Z(A))= # Irr Z(A),

where the second equality follows from the fact that idempotents in a commutative
ring are isomorphic if and only if they are equal; see [Lam 1991, §22, Exercise 2].
The same equalities of course also hold for Z(A)L

=Z(AL), where L is an extension
field of K . Hence, if Z(A) is split, then A is block-split. If A itself is split, it is a
standard fact that its center splits, so A is block-split.

We will prove the converse (assuming that K is perfect) from a more general
point of view as the results might be of independent interest and we reuse some
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of them in the last section. First of all, the field extension K ⊆ L induces natural
group morphisms

(80) dL
A : G0(A)→ G0(AL) and eL

A : K0(A)→ K0(AL).

Without any assumptions on the field K we have the following property.

Lemma A.4. The morphisms dL
A and eL

A are injective.

Proof. Let (Si )i∈I be a system of representatives of the isomorphism classes of
simple A-modules. For each i let (Ti j )j∈Ji be a system of representatives of the
isomorphism classes of simple AL -modules which occur as constituents of SL

i . Then
by [Lam 1991, Proposition 7.13] the set (Ti j )i∈I, j∈Ji is a system of representatives
of the isomorphism classes of simple AL -modules. Hence, the matrix DL

A of dL
A in

bases given by the isomorphism classes of simple modules is in column-echelon
form, has no zero columns, and no zero rows. In particular, dL

A is injective.
For each i ∈ I let Pi be the projective cover of Si and for each j ∈ Ji let Qi j be the

projective cover of Ti j . By the above, (Qi j )i∈I, j∈Ji is a system of representatives of
the isomorphism classes of projective indecomposable AL -modules. We claim that
in the direct sum decomposition of the finitely generated projective AL -module P L

i
into projective indecomposable AL -modules, only the Qi j with j ∈ Ji occur. With
the same argument as above, this implies that eL

A is injective. So, let us write
P L

i =
⊕

λ∈3 Uλ for (not necessarily nonisomorphic) projective indecomposable AL -
modules Uλ. The Uλ are the, up to isomorphism, unique projective indecomposable
AL -modules occurring as direct summands of P L

i . As the radical is additive by
[Lam 1991, Proposition 24.6(ii)], we have Rad(P L

i )=
⊕

λ∈3 Rad(Uλ), so

(81) SL
i = (Pi/Rad(Pi ))

L
= P L

i /Rad(Pi )
L
=

⊕
λ∈3

Uλ/(Rad(Pi )
L
∩Uλ).

Moreover, we have Rad(Pi )
L
⊆Rad(P L

i ). This follows from the fact that Rad(A)L
⊆

Rad(AL) by [Lam 1991, Theorem 5.14] and the fact that Rad(Pi ) = Rad(A)Pi

and Rad(P L
i )= Rad(AL)P L

i by [Lam 1991, Theorem 24.7] since Pi and P L
i are

projective. For each λ ∈ 3 the radical of Uλ is a proper submodule of Uλ and
therefore

Rad(Pi )
L
∩Uλ ⊆ Rad(P L

i )∩Uλ = Rad(Uλ)( Uλ.

Hence, the head of Uλ is a constituent of Uλ/(Rad(P L
i )∩Uλ), and since all con-

stituents of the latter are constituents of SL
i , we must have Hd(Uλ)' Si jλ for some

jλ ∈ Ji by the above. This implies that Uλ = Qi jλ , thus proving the claim. �

Lemma A.5. The following hold:

(a) The morphism dL
A is an isomorphism if and only if it induces a bijection

between isomorphism classes of simple modules. Similarly, the morphism eL
A
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is an isomorphism if and only if it induces a bijection between isomorphism
classes of projective indecomposable modules.

(b) If dL
A is an isomorphism, so is eL

A. The converse holds if K is perfect.

For the proof of Lemma A.5 we will need the following well-known elementary
lemma that is also used in the last section. Recall from (52) the intertwining form
〈 · , · 〉A of A.

Lemma A.6. Let P be a projective indecomposable A-module and let V be a
finitely generated A-module. Then

(82) 〈[P], [V ]〉A = [V : Hd(P)] · dimK EndA(Hd(P)),

where Hd(P)= P/Rad(P) is the head of P. In particular, 〈 · , · 〉A is nondegenerate.

Proof. We first consider the case V =Hd(P). Let f ∈HomA(P,Hd(P)) be nonzero.
Since Hd(P) is simple, this morphism is already surjective and thus induces an
isomorphism P/Ker( f )∼=Hd(P). But as Rad(P) is the unique maximal submodule
of P, we must have Ker( f )=Rad(P) and thus get an induced morphism Hd(P)→
Hd(P). This yields a K -linear morphism 8 : HomA(P,Hd(P))→ EndA(Hd(P)).
On the other hand, if f ∈ EndA(Hd(P)), then composing it with the quotient
morphism P → P/Rad(P) = Hd(P) yields a morphism P → Hd(P). In this
way we also get a K -linear morphism 9 : EndA(Hd(P))→HomA(P,Hd(P)). By
construction, 8 and 9 are pairwise inverse; hence

〈[P], [Hd(P)]〉A = dimK HomA(P,Hd(P))= dimK EndA(Hd(P))

as claimed.
Now, suppose that V is a simple A-module not isomorphic to Hd(P). We can

write P = Ae for some primitive idempotent e ∈ A. Since A is artinian, e is already
local and now it follows from [Lam 1991, Proposition 21.19] that HomA(Ae, V ) is
nonzero if and only if V has a constituent isomorphic to Hd(Ae). This is not true
by assumption, and therefore HomA(P, V )= 0, so 〈[P], [V ]〉A = 0.

Finally, for V general we have [V ] =
∑

S∈Irr A[V : S][S] in G0(A). By the above
we get

〈[P], [V ]〉A =
∑

S∈Irr A

[V : S]〈[P], [S]〉A = [V : Hd(P)]〈[P], [Hd(P)]〉A

= [V : Hd(P)] · dimK EndA(Hd(P))

as claimed. It follows that the Gram matrix G of 〈 · , · 〉 with respect to the basis
(P(S))S∈Irr A of K0(A) and the basis (S)S∈Irr A of G0(A) is diagonal with positive
diagonal entries. The determinant of G is thus a nonzero divisor on Z and since both
K0(A) and G0(A) are Z-free of the same finite dimension, it follows that 〈 · , · 〉A is
nondegenerate; see [Scheja and Storch 1988, Satz 70.5]. �
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Proof of Lemma A.5. We use the same notation as in the proof of Lemma A.4. Since
A A is a projective A-module, there is a decomposition A A =

⊕
i∈I Pri

i for some
ri ∈ N. Using Lemma A.6 we see that

dimK Hd(Pj )= 〈[A A], [Hd(Pj )]〉A

=

∑
i∈I

ri 〈[Pi ], [Hd(Pj )]〉A = rj 〈[Pj ], [Hd(Pj )]〉A

= rj dimK EndA(Hd(Pi )).

Hence, ri = ni/mi , where ni := dimK Si and mi := dimK EndA(Si ). In particular,

(83) dimK A =
∑
i∈I

ni

mi
dimK Pi .

Now, suppose that dL
A is an isomorphism. Then clearly # Irr A = # Irr AL. The

properties of the matrix DL
A of the morphism dL

A derived in the proof of Lemma A.4
immediately imply DL

A is diagonal. Since it is invertible with natural numbers on
the diagonal, it must already be the identity matrix; i.e., dL

A induces a bijection
between the isomorphism classes of simple modules. In particular, (SL

i )i∈I is a
system of representatives of the isomorphism classes of simple AL -modules. The
properties of the matrix EL

A of eL
A derived in the proof of Lemma A.4 now imply

that we must have P L
i ' Qsi

i for some si ∈ N. We argue that si = 1. This shows
that eL

A is an isomorphism inducing a bijection between the isomorphism classes of
projective indecomposable modules. In the same way we deduced (83) we now get

(84) dimK A = dimL AL
=

∑
i∈I

n′i
m′i

dimL Qi

with
n′i = dimL Hd(Qi )= dimL SL

i = dimK Si = ni

and

m′i = dimL EndAL (Hd(Qi ))= dimL EndAL (SL
i )= dimK EndK (Si )= mi ,

using the fact that L⊗K EndA(Si )' EndAL (SL
i ); see [Reiner 2003, Theorem 2.38].

Since dimL Qi ≤ dimL P L
i = dimK Pi , (83) and (84) imply that dimL Qi = dimK Pi ,

so Qi = P L
i .

Conversely, suppose that eL
A is an isomorphism. With the properties of the

matrix EL
A of eL

A established in the proof of Lemma A.4, we see much as above that
eL

A already induces a bijection between the projective indecomposable modules. In
particular, P L

i ' Qi . Due to the properties of the matrix DL
A of dL

A established in
the proof of Lemma A.4, the only constituent of SL

i is Ti . Since Pi is the projective
cover of Pi , we have a surjective morphism φ : Pi � Si with Ker(φ) = Rad(Pi ).
Scalar extension induces a surjective morphism φL

: P L
i � SL

i with Ker(φL) =
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Ker(φ)L
= Rad(Pi )

L
⊆ Rad(P L

i ). It thus follows from [Curtis and Reiner 1981,
Corollary 6.25(i)] that P L

i is the projective cover of SL
i . Now, we assume that K

is perfect. Then by [loc. cit., Theorem 7.5] all simple A-modules are separable,
so SL

i = T si
i for some si . Since projective covers are additive, we get P L

i = Qsi
i .

As P L
i = Qi , this implies that si = 1, so SL

i = Ti is simple. Hence, dL
A induces a

bijection between the isomorphism classes of simple modules. �

Remark A.7. With the same arguments as in the proof of Lemma A.5 we can show
that the converse in Lemma A.5(b) still holds when we only assume that all simple
A-modules are separable, i.e., they remain semisimple under field extension. This
holds for example when A splits or if A is a group algebra (over any field). We do
not know whether it holds more generally.

Proof of Lemma A.3. Let Z := Z(A). Suppose that L is an extension field of K
with # Bl(A)= # Bl(AL). By (79) we know that # Irr Z = # Irr Z L. The arguments
in the proof of Lemma A.4 thus imply that the matrix DL

A of the morphism dL
Z :

G0(Z)→G0(Z L) must be a diagonal matrix. We claim that it is the identity matrix.
Since this holds for any L , it means that the simple modules of Z remain simple
under any field extension, so Z splits. Our assumption implies that Z and Z L have
the same number of primitive idempotents, so every primitive idempotent e ∈ Z
remains primitive in Z L. This shows that eL

A :K0(Z)→K0(Z L) induces a bijection
between projective indecomposable modules. In particular, it is an isomorphism.
Now, Lemma A.5 shows that also dL

A is an isomorphism. Since its matrix DL
A is

invertible with natural numbers on the diagonal, it must be the identity. �

Remark A.8. In the proof of Lemma A.3 we have deduced that for a commutative
finite-dimensional K -algebra Z the condition rkZ K0(Z) = rkZ K0(Z L) already
implies that eL

Z induces a bijection between projective indecomposable modules.
This follows from the fact that idempotents in a commutative ring are isomorphic
if and only if they are equal. This is not true for a noncommutative ring A. Here,
we can have rkZ K0(A) = rkZ K0(AL) but still a primitive idempotent e ∈ A can
split into a sum of isomorphic orthogonal primitive idempotents of AL. Then the
matrix EL

A of eL
A is diagonal but not the identity.

Let us record the following additional fact:

Lemma A.9. If Z(A) splits, then

(85) # Bl(A)= dimK Z(A)− dimK Rad(Z(A))

= dimK Z(A)− dimK (Z(A)∩Rad(A)).

Proof. This is an immediate consequence of (79) and the fact that Rad(Z(A)) =
Z(A)∩Rad(A) since Z(A)⊆ A is a finite normalizing extension; see [Lorenz 1981,
Theorem 1.5]. �
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Reductions. Now, we consider a situation which in a sense is opposite to the
one considered in the last paragraph; namely we consider the quotient morphism
φ : R� R/m=: S for a local commutative ring R with maximal ideal m and a finitely
generated R-algebra A. By Lemma 2.3(b) the morphism φA : A� AS

' A/mA=: A
is idempotent stable. We say that φ is idempotent surjective if for each idempotent
e′ ∈ AS there is an idempotent e ∈ A with φA(e)= e′. We say that φA is primitive
idempotent bijective if it induces a bijection between the isomorphism classes of
primitive idempotents of A and the isomorphism classes of primitive idempotents
of AS. The question of whether φA is idempotent surjective is precisely the question
of whether idempotents of A can be lifted to A, and this is a classical topic in ring
theory. The following lemma is standard; we omit the proof.

Lemma A.10. If φA : A� A is idempotent surjective, it is primitive idempotent
bijective and block bijective.

Theorem A.11 [Neunhöffer 2003, Proposition 5.10]. The morphism φA : A� A is
idempotent surjective if and only if A is semiperfect.

We recall two standard situations of idempotent surjective reductions.

Lemma A.12. In the following two cases the morphism φA : A� A is idempotent
surjective:

(a) R is noetherian and m-adically complete.

(b) R is henselian.

Proof. For a proof of the first case, see [Lam 1991, Proposition 21.34]. For a
proof of the second case assuming that A is commutative, see [Raynaud 1970, I, §3,
Proposition 2]. To give a proof for noncommutative A let ē ∈ A be an idempotent.
Let k := R/m and let B := k[ē] be the k-subalgebra of A generated by ē. Since
A is a finite-dimensional k-algebra, also B is finite-dimensional. Moreover, B is
commutative. Let e ∈ A be an arbitrary element with φA(e)= ē. Let B := R[e], a
commutative subalgebra of A. Note that B= B/mB. Since A is a finitely generated
R-module, the Cayley–Hamilton theorem implies that B is a finitely generated
R-algebra. Now, by the commutative case, the map φB : B � B is idempotent
surjective and so there is an idempotent e′ ∈ B ⊆ A with φA(e′)= φB(e′)= ē. This
shows that φA is idempotent surjective. �

The next theorem was again proven by Neunhöffer [2003, Proposition 6.2]. It is
one of our key ingredients in proving Brauer reciprocity for decomposition maps in
a general setting.

Theorem A.13 (M. Neunhöffer). Suppose that R is a valuation ring with fraction
field K and that A is a finite flat R-algebra with split generic fiber AK. If R̂⊗R A
is semiperfect, where R̂ is the completion of R with respect to the topology defined
by a valuation on K defining R, then also A is semiperfect.
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Corollary A.14 (J. Müller, M. Neunhöffer). Suppose that R is a discrete valua-
tion ring and that A is a finite flat R-algebra with split generic fiber. Then A is
semiperfect. In particular, φA : A� A is primitive idempotent bijective and block
bijective.

Proof. Since R is a discrete valuation ring, its valuation topology coincides with its
m-adic topology so that the topological completion R̂ is m̂-adically complete, where
m denotes the maximal ideal of R and m̂ denotes the maximal ideal of R̂. Hence,
R̂⊗R A is semiperfect by Lemma A.12(a) and Theorem A.11. Now, Theorem A.13
shows that A is semiperfect, too. �

Remark A.15. One part of Corollary A.14, the fact that idempotents lift, was also
stated earlier by Curtis and Reiner [1981, Exercise 6.16] in the special case where
AK is assumed to be semisimple. The semisimplicity assumption was later removed
by J. Müller [1995, Satz 3.4.1] using the Wedderburn–Malcev theorem (this can be
applied without a perfectness assumption on the base field if AK splits since then
AK /Rad(AK ) is separable; see [Curtis and Reiner 1962, Theorem 72.19]).

Appendix B: Further elementary facts

Here, we prove three further elementary facts that we used in the paper.

Lemma B.1. A finitely generated module M over an integral domain R is flat if and
only if it is faithfully flat. In particular, if M 6= 0, we have 0 6= k(p)⊗R M = M(p)
for all p ∈ Spec(R).

Proof. We can assume that M 6= 0. Since M is flat, it is torsion-free and so the
localization map M→ Mp is injective; see Lemma 2.1(c). Hence, Mp 6= 0. Since
M is a finitely generated R-module, also Mp is a finitely generated Rp-module and
now Nakayama’s lemma implies that 0 6= Mp/ppMp = k(p)⊗R M. Hence, M is
faithfully flat by [Matsumura 1986, Theorem 7.2]. �

Lemma B.2. Let A be a finite flat algebra over an integral domain R. Then the
structure map R→ A, r 7→ r ·1A, is injective. Hence, we can identify R ⊆ Z(A). If
R is noetherian, the induced map ϒ : Spec(Z(A))→ Spec(R) is finite, closed, and
surjective.

Proof. It follows from Lemma B.1 that A is already faithfully flat. Let φ : R→ A
be the structure map. This is an R-module map and applying −⊗R A yields a map

A ' R⊗R A φ⊗R A
−−−→ A⊗R A

of right A-modules, mapping a to 1⊗a. This map has an obvious section mapping
a⊗a′ to aa′; hence it is injective. Since A is faithfully flat, the original map φ has to
be injective, too. As the image of φ is contained in the center Z of A, the structure
map is actually an injective map R ↪→ Z . Now, assume that R is noetherian. Since
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A is a finitely generated R-module, also Z is a finitely generated R-module. Hence,
R ⊆ Z is a finite ring extension and now it is an elementary fact that ϒ is closed
and surjective. �

The following lemma about base change of homomorphism spaces is well known
but we could not find a reference in this generality; see [Bourbaki 1972, II, §5.3]
for a proof in the case of a commutative base ring.

Lemma B.3. Let A be an algebra over a commutative ring R and let φ : R→ S be
a morphism into a commutative ring S. Let V and W be A-modules. If V is finitely
generated and projective as an A-module, then there is a canonical S-module
isomorphism:

(86) S⊗R HomA(V,W )' HomAS (V S,W S).

Proof. We can define a map γ : S ⊗R HomA(V,W ) → HomAS (V S,W S) by
mapping s ⊗ f with s ∈ S and f ∈ HomA(V,W ) to sr ⊗ f , where sr denotes
right multiplication by s. It is a standard fact that this is an S-module morphism;
see [Reiner 2003, (2.36)]. Recall that HomA(−,W ) commutes with finite direct
sums by [Bourbaki 1989, II, §1.6, Corollary 1 to Proposition 6]. This shows that
the canonical isomorphism HomA(A,W )'W induces a canonical isomorphism
HomA(An,W )'W n for any n ∈ N and now we conclude that there is a canonical
isomorphism

S⊗R HomA(An,W )' S⊗R W n
' (S⊗R W )n ' HomAS ((AS)n,W S),

which is easily seen to be equal to γ . The assertion thus holds for finitely generated
free A-modules. Now, the assumption on V allows us to write without loss of
generality An

= V ⊕ X for some A-module X . It is not hard to see that we get a
commutative diagram

S⊗R HomA(An,W ) (S⊗R HomA(V,W )) ⊕ (S⊗R HomA(X,W ))

HomAS ((AS)n,W S) (HomAS (V S,W S)) ⊕ (HomAS (X S,W S))

'

'

'

where the horizontal morphisms are obtained by the projections and the vertical
morphisms are the morphisms γ in the respective situation. The commutativity of
this diagram implies that the morphism S⊗R HomA(V,W )→ HomAS (V S,W S)

also has to be an isomorphism. �
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