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NONSMOOTH CONVEX CAUSTICS
FOR BIRKHOFF BILLIARDS

MAXIM ARNOLD AND MISHA BIALY

This paper is devoted to the examination of the properties of the string
construction for the Birkhoff billiard. Based on purely geometric consid-
erations, string construction is suited to providing a table for the Birkhoff
billiard, having the prescribed caustic. Exploiting this framework together
with the properties of convex caustics, we give a geometric proof of a result
by Innami first proved in 2002 by means of Aubry–Mather theory. In the
second part of the paper we show that applying the string construction one
can find a new collection of examples of C2-smooth convex billiard tables
with a nonsmooth convex caustic.

1. Introduction

Let 0 be a simple closed C1-smooth convex curve in the Euclidean plane. We
consider a Birkhoff billiard inside 0. This simple dynamical system creates many
geometric and dynamical questions and reflects many difficulties appearing in
general Hamiltonian systems. Readers may refer to any textbook among the wide
variety written on the subject (e.g., [Katok et al. 1986; Kozlov and Treshchëv 1991;
Mather and Forni 1994; Tabachnikov 2005]).

We will use the following nonstandard notations: the interior of the set bounded by
the simple closed curve γ will be denoted by γ ◦, while γ denotes the compact γ ◦∪γ .
The length of the curve is denoted by Length(γ ). The convex hull of γ is denoted
by Conv(γ ).

Definition 1. A simple closed curve γ ⊂ 0◦ is called a convex caustic for 0 if γ
is a convex set and any supporting line for γ remains a supporting line for γ after
billiard reflection in 0.

Every convex caustic γ corresponds to an invariant curve rγ of the billiard ball
map. The curve rγ ⊂ R+ ×S1 consists of all supporting lines to γ . This curve
winds once around the phase cylinder and therefore is called rotational. We shall
denote its rotation number by ργ .

MSC2010: primary 37E30, 37E40; secondary 78A05.
Keywords: string construction, convex caustics, Birkhoff billiard.
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In the original Birkhoff paper [1917] there was posed a conjecture that the
existence of a continuous set of caustics, being a very restrictive property, actually
provides an extreme rigidity on the shape of the curve 0. The first result in this
direction was achieved in [Bialy 1993]. Our paper is motivated by recent progress
in the Birkhoff conjecture solution achieved in [Avila et al. 2016; Kaloshin and
Sorrentino 2016]. The crucial assumption in these papers consists in the existence
of convex caustics such that the rotation numbers of the corresponding invariant
curves form a rational sequence in the interval

(
0; 1

3

]
, converging to 0. It seems

natural to compare such a result with one proved by N. Innami [2002].

Theorem 2 [Innami 2002]. Assume that there exists a sequence of convex caustics
γn inside 0 such that the rotation numbers ρn of the corresponding invariant curves
tend to 1

2 . Then 0 is an ellipse.

Originally, Innami’s arguments were based on the Aubry–Mather variational
theory. In the next section we present a simple geometric proof using string
construction. Yet, it remains a challenging question whether one can prove a more
general statement relaxing the requirement of convexity of the caustics.

Let us recall the string construction framework. Given a convex compact set
γ bounded by γ , and a number S > Length(γ ), define the curve 0 as a union
of those points P such that the cap-body Conv(P ∪ γ ) has boundary of length S.
Geometrically such a construction gives the set of all points traversed by the tip of
a nonelastic string of length S > Length(γ ) wrapped around γ and stretched to its
full extent. The curve 0 provided by such construction has γ as its billiard caustic.
We shall refer to S as a string parameter of the caustic. A closely related so-called
Lazutkin parameter is defined as L = S− Length(γ ).

The string construction is widely known and can be easily proved to provide 0
for smooth enough γ . In fact it remains valid also in the more general case as it is
stated in the following theorem.

Theorem 3 [Stoll 1930; Turner 1982].

(1) For a given compact convex set γ and for every S > Length(γ ) the string
construction determines a C1-smooth convex closed curve 0 such that γ is a
billiard caustic for 0.

(2) If γ is a convex billiard caustic for a C1 curve 0 then 0 can be obtained from
γ by the string construction for some S.

Let us emphasize that the string construction is highly nonexplicit and makes
calculations difficult. A very important consequence of KAM theory, proved by
Lazutkin [1973; 1981] and Douady [1982], states the existence of convex caustics
near the boundary of a sufficiently smooth (at least C6) billiard table. On the other
hand, applying string construction to the triangle, one gets a billiard table which is
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Figure 1. A switched caustic string construction.

piecewise C2 with jumps of the curvature and hence by [Hubacher 1987] cannot
have caustics near the boundary.

The scenario of destruction of caustics when one moves away from the boundary
towards the interior could be understood in principle by the analogy with wave
front propagation inside a convex curve [Mather and Forni 1994]. For example,
take the ellipse and consider the wave fronts as in the famous picture [Arnold 1990,
Figure 36]. For small distances the fronts remain smooth, but starting from some
critical value they start to develop singularities. However, nobody has observed
such a bifurcation in practice for caustics of convex billiards due to the lack of
integrable examples. On the other hand, nonconvex caustics exist, for instance, for
convex bodies of constant width, and were studied in [Knill 1998].

Motivated by the above discussion, the natural question about the existence
of nonsmooth convex caustics arises. More generally, it is natural to study how
irregular the convex caustic can be. In [Fetter 2012] a billiard table of class C2 was
constructed which has a caustic of a regular hexagon. In this paper we were able to
construct the whole functional family of the examples of C2 billiard tables having
nonsmooth convex caustics.

Theorem 4. There exist a one-parametric family of strictly convex nonsmooth
compact sets γ and values of the string parameter S such that the curves 0 obtained
by the string construction are C2-smooth.

We will use the following geometric idea (we use the complex notation x + iy
for points (x, y) in the plane). Start with a curve γ0(t) : [−1, 1] → C such that
γ0(−1)= A=−1−i , γ0(1)= i A= 1−i and γ0(t) is symmetric with respect to the
vertical axis (i.e., iγ0(−t)= iγ0(t)) (see Figure 1). Construct γ as a concatenation
of {ikγ0}

3
k=0. Parametrize γ by the arc-length parameter s and choose the initial
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point in such a way that γ (0) = A. We will denote the total length of γ by 4S.
Then γ (S)= i A.

The main idea is to choose the curve γ and string parameter S in such a way
that the string construction will have the following properties:

• At the beginning (point P in Figure 1), the left part AP of the string remains
fixed at point A while the right part of the string unwinds from the arc ( ̂i A, i2 A).

• At the moment when the left part of the string becomes tangent to γ at the
point A (this corresponds to the point P̂ on 0) the right part reaches the point
i2 A and remains fixed after that. We will call this moment the switching of the
first kind.

• While the left part of the string winds around the arc ( Â, i A) the right part
remains fixed at i2 A (see Figure 1) until the moment when the vertex of the
string reaches the point i P. We will call this the switching of the second kind.

• D4 symmetry provides the whole picture.

Let us reemphasize, that the string construction, being a nonexplicit procedure,
typically does not provide any analytic expression for the table 0 from a given γ . In
the example [Fetter 2012], the construction is made explicit by fixing two end-points
on the string. The disadvantage of such a situation is the complete loss of any
flexibility, since the corresponding table may consist only of the elliptic arcs. We
propose another, more flexible yet explicit construction, fixing only one end-point
of the string and allowing another point to slide along the given curve γ .

Structure of the paper. In the next section we will provide geometric arguments
for the proof of Theorem 2. Section 3 is devoted to the construction of the C2 tables
with nonsmooth caustics. In Section 4 we will pose some open questions arising in
our considerations.

2. Geometric proof of Innami’s result

We will start with the following simple remarks.

Remark 5. If the billiard in 0 has a convex caustic γ with γ ◦ =∅ then 0 is either
an ellipse or a circle.

Indeed, the condition γ ◦ =∅ for convex γ means that γ is either a point or a
segment. The rest follows from the string construction.

Remark 6. Recall that for any point P and for any convex body with nonempty
interior there exist exactly two supporting lines to the body passing through P.
Moreover if the convex caustic γ has nonempty interior, then every supporting line
to γ after reflection in 0 at point P becomes the second supporting line to γ from P.
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Indeed, assume that there exists a supporting line l to γ which is reflected to
itself at a point P ∈ 0. This means that l is orthogonal to 0 at P. Let l ′ be the other
supporting line to γ passing through P. Then by the definition of convex caustic,
the line l ′ is also reflected to itself at the point P and hence is also orthogonal to 0
at P. Thus l and l ′ coincide, which contradicts the assumption that l and l ′ are two
different supporting lines to γ .

Lemma 7. Let γ be a convex caustic for 0. Then γ ◦ 6=∅ if and only if the rotation
number of the corresponding invariant curve is strictly less then 1

2 .

Proof. If a convex caustic γ has empty interior then, by the Remark 5, 0 is
necessarily an ellipse (or a circle) and the invariant curve corresponding to γ has
rotation number 1

2 since it contains a diameter. Vice versa, any convex caustic with
nonempty interior has a rotation number strictly less than 1

2 , since otherwise the
invariant curve corresponding to the caustic would have a 2-periodic orbit, i.e., a
diameter, which is not possible due to Remark 6. �

Let γn be a sequence of convex caustics for0 with the rotation numbers ρn ∈
(
0; 1

2

]
of corresponding invariant curves. By Lemma 7 we may assume that ρn <

1
2 since

otherwise γn has empty interior and then 0 must be an ellipse by the Remark 5.
Passing to a subsequence we can assume with no loss of generality that ρn is strictly
increasing, ρn ↗

1
2 .

Lemma 8. Let γ1 and γ2 be two convex caustics for 0. If the corresponding
invariant curves have rotation numbers ρ1 < ρ2, then γ 2 ⊂ γ

◦

1 .

Proof. Assume that γ 2 is not a subset of γ ◦1 . Then there are only three possibilities:
(1): γ 1 ∩ γ 2 =∅; (2): γ1 ∩ γ2 6=∅ or (3): γ 1 ⊂ γ

◦

2 .
In the third case one obviously has ρ1 ≥ ρ2 contrary to the assumption of the

lemma. In the first and the second cases there necessarily exists a supporting line
to both γ 1 and γ 2. Therefore, all billiard reflections in 0 of this line are also
supporting lines for both γ 1 and γ 2. This means that there exists a whole infinite
orbit lying in the intersection of the invariant curves r1 and r2 corresponding to γ1

and γ2. But then ρ1 must be equal to ρ2, since the rotation number is completely
determined by one orbit. �

Remark 9. The statement of Lemma 8 holds true also in the opposite direction
which will not be used below. Namely, γ 2 ⊂ γ

◦

1 implies ρ1 < ρ2. As we already
mentioned in the proof, it is obvious that ρ1 ≤ ρ2. In addition ρ1 cannot be equal
to ρ2. Otherwise there exist two disjoint graphs of r1 and r2 with the same rotation
number, invariant under the billiard map of the cylinder, which is impossible since
a billiard map is a twist map (see [Katok and Hasselblatt 1995, p. 428]).

Let {Sn} be the sequence of string parameters corresponding to the caustics γn .
Then by Lemma 8, Sn is decreasing. Denote S = lim

n→∞
Sn .
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Figure 2. A family of nested convex caustics with decreasing
string parameter.

Lemma 10. The boundary of the intersection set

C =
∞⋂

n=1

γ n

is a convex caustic for 0 with string parameter S.

Proof. The intersection set C is compact and convex. Moreover, it is easy to see
that ∂C is also a caustic with string parameter S. Indeed, this follows from the
following geometric consideration (see Figure 2). Fix a point P on 0 and consider
the cap-bodies

Kn = Conv(P ∪ γ n), K = Conv(P ∪C).

Then, obviously,
Kn ⊆ K , K =

∞⋂
n=1

Kn,

and moreover
Length(∂Kn )= Sn→ S = Length(∂K ).

In addition, since γn is a caustic then Sn does not depend on P ∈ 0 (by Theorem 3).
Therefore, S also does not depend on P, and hence C reconstructs 0 via string
construction. Thus ∂C is a caustic by Theorem 3. �

The last step in the proof of Theorem 2 consists in the following Lemma.

Lemma 11. The limit caustic ∂C has empty interior.

Proof. First notice that it follows from continuity of the invariant curves and their
rotation numbers that the invariant curve corresponding to C has rotation number 1

2 .
Then from Lemma 7 we conclude that ∂C has empty interior. �

3. Nonsmooth caustic

The main idea of the proof of our result is to carefully choose the Lazutkin parameter
and the germ of the function γ at the point A. While a vertex of the string slides in
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Figure 3. A switched caustic string construction.

the regime corresponding to the unwinding from γ (s), its trajectory corresponds
to the smooth curve. Thus we have to take care of the smoothness of 0 near only
two points corresponding to the switching moments of the first and second kinds
respectively. We will denote by 0(s) the part of 0 corresponding to the switching
of the second kind about the point A. The part of 0 corresponding to the switching
of the first kind about the point A will be denoted by 0̂. The smoothness conditions
read as follows: all odd terms in the germs of 0 and 0̂ have to be orthogonal to the
axis of the symmetry while all the even terms must be collinear with the axis of
symmetry. Indeed, let 0(s) be the curve symmetric with respect to the line l and
intersecting l at the point 0(0). Let Rl be the reflection of the plane in the line l.
Differentiating the identity

Rl0(s)= 0(−s)
n times, at s = 0, we get

Rl(0
(n)(0))= (−1)n0(n)(0).

Coordinate formulation. Parametrize the curve γ by the arc-length parameter s, so
that |γ ′(s)| = 1. Choose the initial point such that γ (0)= A. Denote by α the angle
between γ ′(0) and the horizontal axis. Then one easily obtains a parametrization
for 0 and 0̂ (see Figure 3):

(1)
0(s)= γ (s)− t (s)γ ′(s),

0̂(s)= γ (s)+ t̂(s)γ ′(s),

where t (s) and t̂(s) are some functions of s denoting the length of the right part
of the string near the point 0(s) and the left part of the string near the point 0̂(s)
correspondingly. Functions t and t̂ can be found from the condition of the string to
be unstretchable. We will denote iA = B.

(2)
|0(s)+ B| + |tγ ′(s)| − s = 2`,

|0̂(s)+ A| + |t̂γ ′(s)| + s = 2 ˆ̀,
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where `= 1/sinα and ˆ̀ =
√

2/sin(π/4−α). Simple computations yield:

(3)
t (s)=

p(s)
p′(s)

, with p(s)= 1
2

(
(s+ 2`)2− |γ (s)+ B|2

)
,

t̂(s)=−
p̂(s)
p̂′(s)

, with p̂(s)= 1
2

(
(s− 2 ˆ̀)2− |γ (s)+ A|2

)
.

Finally, introducing (3) into (1) we get

(4) 0(s)= γ (s)−
p(s)
p′(s)

γ ′(s), 0̂(s)= γ (s)−
p̂(s)
p̂′(s)

γ ′(s).

Orient the curve γ as it is shown in Figure 3. We will use the complex notation
for the coordinates of the points. Then smoothness conditions for the n-th derivative
of 0 read

(5) <(in−10(n)(0))= 0, <(in−10̂(n)(0))= =(in−10̂(n)(0)).

Here < and = stand for the real and imaginary part of the complex number. For the
curve γ (s) we get the following parametrization:

(6) γ (s)= A+

s∫
0

exp{i(ϕ(t)−α)} dt, where ϕ(t)=
∞∑

n=0

ϕntn.

Thus ϕ0 = 0, and ϕn corresponds to the (n−1)-st derivative of the curvature κ .

Lemma 12. The smoothness conditions in (5) for n = 1 are always satisfied.

This lemma follows from the fact that any C0 caustic produces a C1 table via
string construction. However, we present a more analytic proof of this result for
the sake of completeness.

Proof. Switching of the second kind. From (4) we get

0′ =
(

1−
( p

p′
)′)
γ ′−

p
p′
γ ′′.

Therefore the conditions in (5) read <(p′′γ ′− p′γ ′′)= 0. We will denote z1 · z2 :=
1
2<(z1 z̄2). Using (3) we get

p′ =−(A+ B) · γ ′+ 2`, p′′ =−(A+ B) · γ ′′.

From (6) it follows that γ ′′ = iκγ ′ thus p′′γ ′− p′γ ′′ can be written as

p′′γ ′− p′γ ′′ = 1
2

(
−<((A+ B)iκγ ′)γ ′+<((A+ B)γ ′)(iκγ ′)− 4`iκγ ′

)
= iκ(A+ B− 2`γ ′).

Thus
<(p′′γ ′− p′γ ′′)= κ=(A+ B− 2`γ ′).
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The latter is identically zero since `γ ′(0) = 0(0)− γ (0) and so =(`γ ′) = =(A)
(see Figure 3).

Switching of the first kind. Similarly, the smoothness conditions in (5) read

<( p̂′′γ ′− p̂′γ ′′)= =( p̂′′γ ′− p̂′γ ′′),

where
p̂′ =−(2A) · γ ′− 2 ˆ̀, p̂′′ =−(2A) · γ ′′

and so

p̂′′γ ′− p̂′γ ′′ =
(
<(Aiκγ ′)γ ′+<(Aγ ′)(iκγ ′)+ 2 ˆ̀iκγ ′

)
= 2iκ(A+ ˆ̀γ ′).

The real part of the right-hand side of the latter is always equal to the imaginary
part by the definition of ˆ̀. �

The two conditions in (5) for n = 2 provide, via computations similar to the
above, two equations for parameters ϕ1 and ϕ2 with coefficients depending on α:

ϕ2
1 sinα−ϕ1 sinα cosα−ϕ2 cosα

sinα cos2 α
= 0,

ϕ1(cos 2α+ 2(sinα− cosα)ϕ1)− 2(cosα+ sinα)ϕ2

(cosα− sinα)(1+ sin 2α)
= 0.

The latter system has a solution,

(7) ϕ1 =
1
2 cosα(1+ sin 2α), ϕ2 =−

1
8 cos2 2α sin 2α,

which provides a family of germs for γ , depending on the parameter α, guaranteeing
the C2-smoothness for the table 0.

Next we will need to construct the whole curve γ providing the needed phenome-
non in the string construction. Recall that our geometric idea was based on the con-
struction of the curve γ0 (see Figure 1). Thus we need to present a convex curve of
length S, starting at A and ending at i A, having tangent slope −α at the left end and
being symmetric with respect to the vertical axis. We define γ from ϕ through (6).
In order to finish the construction we have to prove the following theorem.

Theorem 13. There exists a strictly monotonically increasing function ϕ(s) sat-
isfying the following three conditions: (1) ϕ(s) has the given germ (7) at s = 0,
(2) ϕ0(S/2)= α and ϕ2n(S/2)= 0 for n > 1, and (3)

∫ S/2
0 cosϕ(s) ds = 1.

Proof. The Borel theorem states that every power series is the Taylor series of
some smooth function. Obviously, using cutting off, one can find a smooth function
having a given Taylor series at two given points. Thus there exists a nonempty set
9 of C∞ functions having given germs at s = 0 and s = S/2. Since for α < π

2 the
term ϕ1 in (7) is positive, one may assume without loss of generality that 9 consists
of strictly monotonically increasing functions. Therefore the only condition which
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Figure 4. Construction of the solution.

has to be satisfied is Theorem 13(3). Taking a small enough ε-step in s we can
ensure ψ(ε) < α

100 for all ψ ∈9. Next we choose two functions ψ− and ψ+ from
the set 9 as in Figure 4. That is, ψ+(s) is almost equal to α for s ∈ (ε+δ, S/2−δ)
and ψ−(s) is almost equal to ψ(ε) for s ∈ (ε, S/2− δ) for small enough δ. We will
look for ϕ as a convex combination ϕ(s)= lψ−(s)+ (1− l)ψ+(s). Therefore ϕ(s)
obviously satisfies conditions 1 and 2. If we may choose ψ± in such a way that

(8) (S/2)cosα<

S/2∫
0

cos(ψ−(s)−α)ds<1 and S/2>

S/2∫
0

cos(ψ+(s)−α)ds>1

then there exists l such that
∫ S/2

0 cos(ϕ(s)) ds = 1, thus satisfying condition
Theorem 13(3). Hence it is sufficient to check that the conditions in (8) can be
satisfied for an open set of parameters α. Recall that by the construction S= 2 ˆ̀−2`.
From the first inequality in (8) we obtain, since α < π

4 ,

ˆ̀− `=
2

cosα−sinα
−

1
sinα

<
1

cosα
.

This condition can be interpreted as follows: the length of the curve γ cannot
exceed the sum of the lengths of the segments of the two tangent lines from point P
to γ (see Figure 1). The latter inequality is satisfied whenever tan 2α < 1 or

(9) α <
π

8
.

The second condition in (8) has the following geometric interpretation: the length
of γ cannot be less than the distance between points A and B. This yields:

3 sinα− cosα > cosα sinα− sin2 α.

Since the latter is satisfied for α = π
8 we have found an open set of α for which one

can find appropriate functions ψ− and ψ+ shown in Figure 4. �

Remark 14. Since the conditions in (5) provide two conditions on ϕn to obtain
C3 of 0 one gets four equations for ϕ1, ϕ2, ϕ3 and α. Although the number
of parameters matches the number of equations, the corresponding value of α
violates (9). Since (9) arises from the construction based on square symmetry, there
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Figure 5. The convex hull of two intersecting caustics is also a caustic.

is a hope that starting from other regular polygons one can obtain an inequality
which can be satisfied. However, we haven’t found any such examples.

4. Open problems

Here we want to highlight some general questions which are ultimately related to
the string construction. Since the string construction is implicit these questions turn
out to be nontrivial.

Question 15. Is it possible to have two convex caustics γ1 and γ2 of 0 such that
neither of them is a subset of the interior of the other?

In such a case γ1 and γ2 must have the same rotation number since there is a line
tangent to both of the caustics. Moreover it is obvious that γ 1 and γ 2 cannot be
disjoint. So the question is if it is possible that two convex caustics have nontrivial
intersection. In such a case their convex hull is also a caustic. One can strengthen
the question:

Question 16. Is it possible for a 0 which is symmetric with respect to a certain
axis to have a convex caustic C which is not symmetric with respect to this axis?

For example one could imagine two caustics forming a rounded Star of David
(Figure 5). The answer to the quantum analog of this question is positive: for a
symmetric domain the Dirichlet eigenfunction can be nonsymmetric. We could not
however decide if such a counterexample would be possible in the original setting.

Question 17. How irregular a convex caustic can be compared to a regular boundary
curve 0?

Question 18. Let 0 be a billiard table different from a circle and having a convex
caustic γ . For every point P ∈ 0, denote by P−, and P+ the tangency points of the
caustic γ with tangent lines to γ passing through P. Is it possible that the length of
the arc of γ between P− and P+ does not depend on P?
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CERTAIN CHARACTER SUMS AND
HYPERGEOMETRIC SERIES

RUPAM BARMAN AND NEELAM SAIKIA

We prove two transformations for the p-adic hypergeometric series which
can be described as p-adic analogues of a Kummer’s linear transformation
and a transformation of Clausen. We first evaluate two character sums, and
then relate them to the p-adic hypergeometric series to deduce the trans-
formations. We also find another transformation for the p-adic hypergeo-
metric series from which many special values of the p-adic hypergeometric
series as well as finite field hypergeometric functions are obtained.

1. Introduction and statement of results

For a complex number a, the rising factorial or the Pochhammer symbol is defined
as (a)0 = 1 and (a)k = a(a+1) · · · (a+ k−1), k ≥ 1. For a nonnegative integer r ,
and ai , bi ∈ C with bi /∈ {. . . ,−3,−2,−1}, the classical hypergeometric series
r+1 Fr is defined by

r+1 Fr

(
a1, a2, . . . , ar+1

b1, . . . , br | λ
)
:=

∞∑
k=0

(a1)k · · · (ar+1)k

(b1)k · · · (br )k
·
λk

k!
,

which converges for |λ|< 1. Throughout the paper, p denotes an odd prime and
Fq denotes the finite field with q elements, where q = pr, r ≥ 1. Greene [1987]
introduced the notion of hypergeometric functions over finite fields analogous
to the classical hypergeometric series. Finite field hypergeometric series were
developed mainly to simplify character sum evaluations. Let F̂×q be the group
of all multiplicative characters on F×q . We extend the domain of each χ ∈ F̂×q to Fq

by setting χ(0)= 0 including the trivial character ε. For multiplicative characters
A and B on Fq , the binomial coefficient

(A
B

)
is defined by( A

B

)
:=

B(−1)
q

J (A, B)=
B(−1)

q

∑
x∈Fq

A(x)B(1− x),(1-1)
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Keywords: character sum, hypergeometric series, p-adic gamma function.
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where J (A, B) denotes the usual Jacobi sum and B is the character inverse of
B. Let n be a positive integer. For characters A0, A1, . . . , An and B1, B2, . . . , Bn

on Fq , Greene defined the n+1 Fn finite field hypergeometric functions over Fq by

n+1 Fn

( A0, A1, . . . , An

B1, . . . , Bn | x
)

q
=

q
q − 1

∑
χ∈F̂×q

( A0χ

χ

)( A1χ

B1χ

)
· · ·

( Anχ

Bnχ

)
χ(x).

Some of the biggest motivations for studying finite field hypergeometric functions
have been their connections with Fourier coefficients and eigenvalues of modular
forms and with counting points on certain kinds of algebraic varieties. Their links
to Fourier coefficients and eigenvalues of modular forms are established by many
authors, for example, see [Ahlgren and Ono 2000; Evans 2010; Frechette et al.
2004; Fuselier 2010; Fuselier and McCarthy 2016; Lennon 2011b; McCarthy 2012b;
Mortenson 2005]. Very recently, McCarthy and Papanikolas [2015] linked the finite
field hypergeometric functions to Siegel modular forms. It is well known that finite
field hypergeometric functions can be used to count points on varieties over finite
fields. For example, see [Barman and Kalita 2013a; 2013b; Fuselier 2010; Koike
1992; Lennon 2011a; Ono 1998; Salerno 2013; Vega 2011].

Since the multiplicative characters on Fq form a cyclic group of order q − 1,
a condition like q ≡ 1 (mod `) must be satisfied where ` is the least common
multiple of the orders of the characters appearing in the hypergeometric function.
Consequently, many results involving these functions are restricted to primes in
certain congruence classes. To overcome these restrictions, McCarthy [2012a;
2013] defined a function nGn[ · · · ]q in terms of quotients of the p-adic gamma
function which can best be described as an analogue of hypergeometric series in
the p-adic setting (defined in Section 2).

Many transformations exist for finite field hypergeometric functions which are
analogues of certain classical results [Greene 1987; McCarthy 2012c]. Results in-
volving finite field hypergeometric functions can readily be converted to expressions
involving nGn[ · · · ]. However these new expressions in nGn[ · · · ] will be valid
for the same set of primes for which the original expressions involving finite field
hypergeometric functions existed. It is a nontrivial exercise to then extend these
results to almost all primes. There are very few identities and transformations for the
p-adic hypergeometric series nGn[ · · · ]q which exist for all but finitely many primes
(see for example [Barman and Saikia 2014; 2015; Barman et al. 2015]. Recently,
Fuselier and McCarthy [2016] proved certain transformations for nGn[ · · · ]q , and
used them to establish a supercongruence conjecture of Rodriguez-Villegas between
a truncated 4 F3 hypergeometric series and the Fourier coefficients of a certain
weight four modular form.

Let χ4 be a character of order 4. Then a finite field analogue of 2 F1
( 1/4, 3/4

1 | x
)

is the function 2 F1
(
χ4, χ

3
4
ε | x

)
. Using the relation between finite field hypergeo-
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metric functions and nGn-functions as given in Proposition 3.5 in Section 3, the
function 2G2

[ 1/4, 3/4
0, 0 |

1
x

]
q can be described as a p-adic analogue of the classical

hypergeometric series 2 F1
( 1/4, 3/4

1 | x
)
. In this article, we prove the following

transformation for the p-adic hypergeometric series which can be described as a
p-adic analogue of the Kummer’s linear transformation [Bailey 1935, p. 4, Equa-
tion (1)]. Let ϕ be the quadratic character on Fq .

Theorem 1.1. Let p be an odd prime and x ∈ Fq . Then, for x 6= 0, 1, we have

2G2

[ 1
4 ,

3
4

0, 0 |
1
x

]
q
= ϕ(−2)2G2

[ 1
4 ,

3
4

0, 0 |
1

1−x

]
q
.

We note that the finite field analogue of Kummer’s linear transformation was
discussed by Greene [1984, p. 109, Equation (7.7)] when q ≡ 1 (mod 4).

We have ϕ(−2)=−1 if and only if p≡ 5, 7 (mod 8). Hence, using Theorem 1.1
for x = 1

2 , we obtain the following special value of the 2G2-function.

Corollary 1.2. Let p be a prime such that p ≡ 5, 7 (mod 8). Then we have

2G2

[ 1
4 ,

3
4

0, 0 | 2
]

p
= 0.(1-2)

If we convert the 2G2-function given in (1-2) using Proposition 3.5 in Section 3,
then we have 2 F1

(
χ4, χ

3
4
ε |

1
2

)
p = 0 for p ≡ 5 (mod 8) which also follows from

[Greene 1987, Equation (4.15)]. The value of 2G2
[ 1/4, 3/4

0, 0 | 2
]

p can be deduced
from [Greene 1987, Equation (4.15)] when p ≡ 1 (mod 8). It would be interesting
to know the value of 2G2

[ 1/4, 3/4
0, 0 | 2

]
p when p ≡ 3 (mod 8).

The following transformation for classical hypergeometric series is a special case
of Clausen’s famous classical identity [Bailey 1935, p. 86, Equation (4)]:

(1-3) 3 F2

( 1
2 ,

1
2 ,

1
2

1, 1 | x
)
= (1− x)−1/2

2 F1

( 1
4 ,

3
4
1 |

x
x − 1

)2

.

A finite field analogue of (1-3) was studied by Greene [1984, p. 94, Proposition 6.14].
Evans and Greene [2009a] gave a finite field analogue of the Clausen’s classical
identity. We prove the following transformation for the nGn-function which can be
described as a p-adic analogue of (1-3). Let δ be the function defined on Fq by

δ(x)=
{

1 if x = 0;
0 if x 6= 0.

Theorem 1.3. Let p be an odd prime and x ∈ Fp. Then, for x 6= 0, 1, we have

3G3

[ 1
2 ,

1
2 ,

1
2

0, 0, 0 |
1
x

]
p
= ϕ(1− x) · 2G2

[ 1
4 ,

3
4

0, 0 |
x − 1

x

]2

p
− p ·ϕ(1− x).



274 RUPAM BARMAN AND NEELAM SAIKIA

We also prove the following transformation using Theorem 1.1 and [Greene
1987, Theorem 4.16].

Theorem 1.4. Let p be an odd prime and x ∈ Fq . Then, for x 6= 0,±1, we have

2G2

[ 1
4 ,

3
4

0, 0 |
(1+ x)2

(1− x)2

]
q
= ϕ(−2)ϕ(1+ x)2G2

[ 1
2 ,

1
2

0, 0 | x
−1
]

q
.(1-4)

The following transformation is a finite field analogue of (1-4).

Theorem 1.5. Let p be an odd prime and q = pr for some r ≥ 1 such that q ≡
1 (mod 4). Then, for x 6= 0,±1, we have

2 F1

(
χ4, χ

3
4
ε |

(1− x)2

(1+ x)2

)
q
= ϕ(−2)ϕ(1+ x)2 F1

(
ϕ, ϕ

ε | x
)

q
.

Using Theorems 1.4 and 1.5, one can deduce many special values of the p-adic hy-
pergeometric series as well as the finite field hypergeometric functions. For example,
we have the following special values of a 2G2-function and its finite field analogue.

Theorem 1.6. For any odd prime p, we have

2G2

[ 1
4 ,

3
4

0, 0 | 9
]

p

=

{
0 if p ≡ 3 (mod 4);

−2xϕ(6)(−1)
x+y+1

2 if p ≡ 1 (mod 4), x2
+ y2
= p, and x odd.

For p ≡ 1 (mod 4), we have

2 F1

(
χ4, χ

3
4
ε |

1
9

)
p
=

2xϕ(6)(−1)
x+y+1

2

p
,

where x2
+ y2
= p and x is odd.

We also find special values of the following 2G2-function.

Theorem 1.7. For q ≡ 1 (mod 8) we have

2G2

[ 1
4 ,

3
4

0, 0 |
(

6
√

2±3
−2
√

2±3

)2]
q
=−qϕ(6± 12

√
2)
{(χ4
ϕ

)
+

(χ3
4
ϕ

)}
.(1-5)

For q ≡ 11 (mod 12) we have

2G2

[ 1
4 ,

3
4

0, 0 |
(

6±
√

3
−2±
√

3

)2]
q
= 0.(1-6)
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For q ≡ 1 (mod 12) we have

2G2

[ 1
4 ,

3
4

0, 0 |
(

6±
√

3
−2±
√

3

)2]
q
=−qϕ

(
8±5
√

3
12±6

√
3

){(
ϕ

χ3

)
+

( ϕ
χ2

3

)}
.(1-7)

The following theorem is a finite field analogue of Theorem 1.7.

Theorem 1.8. For q ≡ 1 (mod 8) we have

(1-8) 2 F1

(
χ4, χ

3
4
ε |

(
−2
√

2±3
6
√

2±3

)2)
q
= ϕ(6± 12

√
2)
{(χ4
ϕ

)
+

(χ3
4
ϕ

)}
.

For q ≡ 1 (mod 12) we have

(1-9) 2 F1

(
χ4, χ

3
4
ε |

(
−2±
√

3
6±
√

3

)2)
q
= ϕ

(
8±5
√

3
12±6

√
3

){(
ϕ

χ3

)
+

( ϕ
χ2

3

)}
.

In Section 3 we prove two character sum identities and then use them to prove
Theorems 1.1, 1.3, and 1.4. We also prove Theorem 1.5 in Section 3. In Section 4
we prove Theorems 1.6, 1.7 and 1.8.

2. Notations and preliminaries

Let Zp and Qp denote the ring of p-adic integers and the field of p-adic numbers,
respectively. Let Qp be the algebraic closure of Qp and Cp the completion of
Qp. Let Zq be the ring of integers in the unique unramified extension of Qp with
residue field Fq . We know that χ ∈ F̂×q takes values in µq−1, where µq−1 is the
group of (q−1)-th roots of unity in C×. Since Z×q contains all (q−1)-th roots of
unity, we can consider multiplicative characters on F×q to be maps χ : F×q → Z×q .
Let ω : F×q → Z×q be the Teichmüller character. For a ∈ F×q , the value ω(a) is just
the (q−1)-th root of unity in Zq such that ω(a)≡ a (mod p).

We now introduce some properties of Gauss sums. For further details, see [Berndt
et al. 1998]. Let ζp be a fixed primitive p-th root of unity in Qp. The trace map
tr : Fq → Fp is given by

tr(α)= α+α p
+α p2

+ · · ·+α pr−1
.

For χ ∈ F̂×q , the Gauss sum is defined by

g(χ) :=
∑
x∈Fq

χ(x)ζ tr(x)
p .

Now, we will see some elementary properties of Gauss and Jacobi sums. We let T
denote a fixed generator of F̂×q .

Lemma 2.1 [Greene 1987, Equation 1.12]. If k ∈ Z and T k
6= ε, then

g(T k)g(T−k)= qT k(−1).



276 RUPAM BARMAN AND NEELAM SAIKIA

Let δ denote the function on multiplicative characters defined by

δ(A)=
{

1 if A is the trivial character;
0 otherwise.

Lemma 2.2 [Greene 1987, Equation 1.14]. For A, B ∈ F̂×q we have

J (A, B)=
g(A)g(B)

g(AB)
+ (q − 1)B(−1)δ(AB).

The following are character sum analogues of the binomial theorem [Greene
1987]. For any A ∈ F̂×q and x ∈ Fq we have

A(1− x)= δ(x)+
q

q − 1

∑
χ∈F̂×q

( Aχ
χ

)
χ(x),(2-1)

A(1+ x)= δ(x)+
q

q − 1

∑
χ∈F̂×q

( A
χ

)
χ(x).(2-2)

We recall some properties of the binomial coefficients from [Greene 1987]:( A
B

)
=

( A
AB

)
,(2-3) ( A

ε

)
=

( A
A

)
=
−1
q
+

q − 1
q

δ(A).(2-4)

Theorem 2.3 [Berndt et al. 1998, Davenport–Hasse relation]. Let m be a positive
integer and let q = pr be a prime power such that q ≡ 1 (mod m). For multiplicative
characters χ and ψ in F̂×q , we have∏

χm=ε

g(χψ)=−g(ψm)ψ(m−m)
∏
χm=ε

g(χ).

Now, we recall the p-adic gamma function. For further details, see [Koblitz
1980]. For a positive integer n, the p-adic gamma function 0p(n) is defined as

0p(n) := (−1)n
∏

0< j<n,p - j

j

and one extends it to all x ∈ Zp by setting 0p(0) := 1 and

0p(x) := lim
xn→x

0p(xn)

for x 6= 0, where xn runs through any sequence of positive integers p-adically
approaching x . This limit exists, is independent of how xn approaches x , and
determines a continuous function on Zp with values in Z×p . For x ∈Q we let bxc
denote the greatest integer less than or equal to x and 〈x〉 denote the fractional part
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of x , i.e., x −bxc, satisfying 0 ≤ 〈x〉 < 1. We now recall the McCarthy’s p-adic
hypergeometric series nGn[ · · · ] as follows.

Definition 2.4 [McCarthy 2013, Definition 5.1]. Let p be an odd prime and q = pr ,
r ≥ 1. Let t ∈ Fq . For a positive integer n and 1≤ k ≤ n, let ak , bk ∈Q∩Zp. Then
the function nGn[ · · · ] is defined by

nGn

[
a1, a2, . . . , an

b1, b2, . . . , bn | t
]

q
:=

−1
q−1

q−2∑
a=0

(−1)an ωa(t)×
n∏

k=1

r−1∏
i=0

(−p)
−b〈ak pi

〉−
api

q−1c−b〈−bk pi
〉+

api

q−1c

×

0p(〈(ak −
a

q−1)p
i
〉)

0p(〈ak pi 〉)
·

0p(〈(−bk +
a

q−1)p
i
〉)

0p(〈−bk pi 〉)
.

Let π ∈ Cp be the fixed root of x p−1
+ p = 0 which satisfies

π ≡ ζp − 1 (mod (ζp − 1)2).

Then the Gross–Koblitz formula relates Gauss sums and the p-adic gamma function
as follows.

Theorem 2.5 [Gross and Koblitz 1979]. For a ∈ Z and q = pr ,

g(ωa)=−π
(p−1)

r−1∑
i=0
〈

api

q−1〉
r−1∏
i=0

0p

(〈 api

q−1
〉)
.

The following lemma relates products of values of p-adic gamma function.

Lemma 2.6 [Barman and Saikia 2014, Lemma 3.1]. Let p be a prime and q = pr.
For 0≤ a ≤ q − 2 and t ≥ 1 with p - t , we have

ω(t−ta)

r−1∏
i=0

0p

(〈−tpi a
q−1

〉) t−1∏
h=1

0p

(〈hpi

t
〉)
=

r−1∏
i=0

t−1∏
h=0

0p

(〈 pi (1+h)
t

−
pi a

q−1
〉)
.

We now prove a lemma that will be used to prove our results.

Lemma 2.7. Let p be an odd prime and q = pr . Then for 0 ≤ a ≤ q − 2 and
0≤ i ≤ r − 1 we have

(2-5) −

⌊
−4api

q − 1

⌋
+

⌊
−2api

q − 1

⌋
=−

⌊〈 pi

4

〉
−

api

q − 1

⌋
−

⌊〈3pi

4

〉
−

api

q − 1

⌋
.
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Proof. Let ⌊
−4api

q−1

⌋
= 4k+ s,

where k, s ∈ Z satisfy 0≤ s ≤ 3. Then

(2-6) 4k+ s ≤
−4api

q − 1
< 4k+ s+ 1.

If pi
≡ 1 (mod 4), then (2-6) yields

⌊
−2api

q − 1

⌋
=

{
2k if s = 0, 1;
2k+ 1 if s = 2, 3,

(2-7)

⌊〈 pi

4

〉
−

api

q − 1

⌋
=

{
k if s = 0, 1, 2;
k+ 1 if s = 3,

(2-8)

⌊〈3pi

4

〉
−

api

q − 1

⌋
=

{
k if s = 0;
k+ 1 if s = 1, 2, 3.

(2-9)

Putting the above values for different values of s we readily obtain (2-5). The proof
of (2-5) is similar when pi

≡ 3 (mod 4). �

3. Proofs of the main results

We first prove two propositions which enable us to express certain character sums
in terms of the p-adic hypergeometric series.

Proposition 3.1. Let p be an odd prime and x ∈ F×q . Then we have

∑
y∈Fq

ϕ(y)ϕ(1− 2y+ xy2)= ϕ(2x)+
q2ϕ(−2)

q − 1

∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x

4

)

=−ϕ(−2)2G2

[ 1
4 ,

3
4

0, 0 |
1
x

]
q
.
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Proof. Applying (2-3) and then (1-1) we have∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x

4

)
=

∑
χ∈F̂×q

(
ϕχ

χ

)
χ
( x

4

)(
ϕχ2

ϕχ

)

=
ϕ(−1)

q

∑
χ∈F̂×q

(
ϕχ

χ

)
χ
(
−x
4

)
J (ϕχ2, ϕχ)

=
ϕ(−1)

q

∑
χ∈F̂×q
y∈Fq

(
ϕχ

χ

)
χ
(
−x
4

)
ϕχ2(y)ϕχ(1− y)

=
ϕ(−1)

q

∑
χ∈F̂×q

y∈Fq ,y 6=1

ϕ(y)ϕ(1− y)
(
ϕχ

χ

)
χ

(
−

xy2

4(1− y)

)
.

Now, (2-1) yields∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x

4

)

=
ϕ(−1)(q − 1)

q2

∑
y∈Fq ,y 6=1

ϕ(y)ϕ(1− y)
(
ϕ

(
1+

xy2

4(1− y)

)
− δ

(
xy2

4(1− y)

))

=
(q − 1)ϕ(−1)

q2

∑
y∈Fq ,y 6=1

ϕ(y)ϕ(1− y)ϕ
(

1+
xy2

4(1− y)

)
.

Since p is an odd prime, taking the transformation y 7→ 2y we get∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x

4

)

=
(q − 1)ϕ(−2)

q2

∑
y∈Fq

y 6= 1
2

ϕ(y)ϕ(1− 2y)ϕ
(

1+
xy2

1− 2y

)

=
(q − 1)ϕ(−2)

q2

∑
y∈Fq

y 6= 1
2

ϕ(y)ϕ(1− 2y+ xy2)

=
(q − 1)ϕ(−2)

q2

∑
y∈Fq

ϕ(y)ϕ(1− 2y+ xy2)−
ϕ(−x)(q − 1)

q2 ,

from which we readily obtain the first identity of the proposition.
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To complete the proof of the proposition, we relate the above character sums to
the p-adic hypergeometric series. From (1-1), Lemma 2.2, and then using the facts
that δ(χ)= 0 for χ 6= ε, δ(ε)= 1 and g(ε)=−1, we deduce that

A :=
∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x

4

)
=

1
q2

∑
χ∈F̂×q

J (ϕχ2, χ)J (ϕχ, χ)χ
( x

4

)

=
1
q2

∑
χ∈F̂×q

g(ϕχ2)g2(χ)

g(ϕ)
χ
( x

4

)
+

q − 1
q2

∑
χ∈F̂×q

g(ϕχ)g(χ)
g(ϕ)

χ
(
−

x
4

)
δ(ϕχ)

=
1
q2

∑
χ∈F̂×q

g(ϕχ2)g2(χ)

g(ϕ)
χ
( x

4

)
−

q − 1
q2 ϕ(−x).

Now, taking χ = ωa we have

A = 1
q2

q−2∑
a=0

g(ϕω2a)g2(ωa)

g(ϕ)
ωa
( x

4

)
−

q − 1
q2 ϕ(−x).

Using the Davenport–Hasse relation for m = 2 and ψ = ω2a we obtain

g(ϕω2a)=
g(ω4a)ω2a(4)g(ϕ)

g(ω2a)
.

Thus,

A = 1
q2

q−2∑
a=0

ωa(x)ω3a(4)
g(ω4a)g2(ωa)

g(ω2a)
−

q − 1
q2 ϕ(−x).

Applying the Gross–Koblitz formula we deduce that

A = 1
q2

q−2∑
a=0

ωa(x)ω3a(4)π (p−1)α
r−1∏
i=0

0p
(〈
−4api

q−1

〉)
02

p
(〈 api

q−1

〉)
0p
(〈
−2api

q−1

〉) −
q − 1

q2 ϕ(−x),

where

α =

r−1∑
i=0

{〈
−4api

q−1

〉
+ 2

〈 api

q−1

〉
−

〈
−2api

q−1

〉}
.
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Using Lemma 2.6 for t = 4 and t = 2, we deduce that

A = 1
q2

q−2∑
a=0

ωa(x)π (p−1)α
r−1∏
i=0

0p
(〈(1

4 −
a

q−1

)
pi
〉)
0p
(〈(3

4 −
a

q−1

)
pi
〉)
02

p
(〈 api

q−1

〉)
0p
(〈 pi

4

〉)
0p
(〈3pi

4

〉)
−

q − 1
q2 ϕ(−x).

Finally, using Lemma 2.7 we have

A =−
q − 1

q2 · 2G2

[ 1
4 ,

3
4

0, 0 |
1
x

]
q
−

q − 1
q2 ϕ(−x). �

Proposition 3.2. Let p be an odd prime and x ∈ Fq . Then, for x 6= 1, we have

∑
y∈Fq

ϕ(y)ϕ(1− 2y+ xy2)= 2ϕ(x − 1)+
q2

q − 1

∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ2

)
χ(x − 1)

=−2G2

[ 1
4 ,

3
4

0, 0 |
1

1− x

]
q
.

Proof. From (1-1) and then using Lemma 2.2, we have

(3-1)
(
ϕχ2

χ

)(
ϕχ

χ2

)
=
χ(−1)

q2 J (ϕχ2, χ)J (ϕχ, χ2)

=
χ(−1)

q2

[
g(ϕχ2)g(χ)

g(ϕχ)
+ (q − 1)χ(−1)δ(ϕχ)

]
×

[
g(ϕχ)g(χ2)

g(ϕχ)
+ (q − 1)δ(ϕχ)

]
.

From Lemma 2.1, we have g(ϕ)2 = qϕ(−1). Since δ(χ)= 0 for χ 6= ε, δ(ε)= 1
and g(ε)=−1, (3-1) yields

B :=
∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ2

)
χ(x − 1)

=
1
q2

∑
χ∈F̂×q

g(ϕχ2)g(χ)g(χ2)

g(ϕχ)
χ(1− x)− 2

q − 1
q2 ϕ(x − 1).

(3-2)

Using Lemma 2.2 and then (1-1) we obtain

g(ϕχ2)g(χ2)

g(ϕ)
= q

(
ϕχ2

χ2

)
,(3-3)
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and
g(ϕ)g(χ)

g(ϕχ)
= qχ(−1)

(
ϕ

χ

)
− (q − 1)χ(−1)δ(ϕχ).(3-4)

From (2-4), we have
(
ϕ
ε

)
=−

1
q . Hence, (3-3) and (3-4) yield

(3-5) 1
q2

∑
χ∈F̂×q

g(ϕχ2)g(χ)g(χ2)

g(ϕχ)
χ(1− x)

=

∑
χ∈F̂×q

(
ϕχ2

χ2

)(
ϕ

χ

)
χ(x − 1)−

q − 1
q

∑
χ∈F̂×q

χ(x − 1)
(
ϕχ2

χ2

)
δ(ϕχ)

=

∑
χ∈F̂×q

(
ϕχ2

χ2

)(
ϕ

χ

)
χ(x − 1)−

q − 1
q

(
ϕ

ε

)
ϕ(x − 1)

=

∑
χ∈F̂×q

(
ϕχ2

χ2

)(
ϕ

χ

)
χ(x − 1)+

q − 1
q2 ϕ(x − 1).

Applying (1-1) on the right-hand side of (3-5), and then (2-2) we have

1
q2

∑
χ∈F̂×q

g(ϕχ2)g(χ)g(χ2)

g(ϕχ)
χ(1− x)

=
1
q

∑
χ∈F̂×q
y∈Fq

(
ϕ

χ

)
χ(x − 1)ϕχ2(y)χ2(1− y)+

q − 1
q2 ϕ(x − 1)

=
1
q

∑
χ∈F̂×q

y∈Fq ,y 6=1

ϕ(y)
(
ϕ

χ

)
χ

(
(x − 1)y2

(1− y)2

)
+

q − 1
q2 ϕ(x − 1)

=
q − 1

q2

∑
y∈Fq ,y 6=1

ϕ(y)
[
ϕ

(
1+

(x − 1)y2

(1− y)2

)
− δ

(
(x − 1)y2

(1− y)2

)]
+

q − 1
q2 ϕ(x − 1)

=
q − 1

q2

∑
y∈Fq
y 6=1

ϕ(y)ϕ(1− 2y+ xy2)+
q − 1

q2 ϕ(x − 1).

Adding and subtracting the term under summation for y = 1, we have

1
q2

∑
χ∈F̂×q

g(ϕχ2)g(χ)g(χ2)

g(ϕχ)
χ(1− x)=

q − 1
q2

∑
y∈Fq

ϕ(y)ϕ(1− 2y+ xy2).(3-6)

Combining (3-2) and (3-6) we readily obtain the first equality of the proposition.
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To complete the proof of the proposition, we relate the character sums given
in (3-2) to the p-adic hypergeometric series. Using the Davenport–Hasse relation
for m = 2, ψ = χ2 and m = 2, ψ = χ , we have

g(ϕχ2)=
g(χ4)g(ϕ)χ2(4)

g(χ2)
and g(ϕχ)=

g(χ2)g(ϕ)χ(4)
g(χ)

,

respectively. Plugging these two expressions into (3-2) we obtain

B = 1
q2

∑
χ∈F̂×q

g(χ4)g2(χ)

g(χ2)
χ3(4)χ(1− x)− 2

(q − 1)
q2 ϕ(x − 1).

Now, considering χ = ωa and then applying the Gross–Koblitz formula we obtain

B = 1
q2

q−2∑
a=0

ωa(1−x)ω3a(4)π (p−1)α
r−1∏
i=0

0p
(〈
−4api

q−1

〉)
02

p
(〈 api

q−1

〉)
0p
(〈
−2api

q−1

〉) − 2(q−1)
q2 ϕ(x−1),

where

α =

r−1∑
i=0

{〈
−4api

q−1

〉
+ 2

〈 api

q−1

〉
−

〈
−2api

q−1

〉}
.

Proceeding in a similar way to that shown in the proof of Proposition 3.1, we deduce:

B =−
q − 1

q2 · 2G2

[ 1
4 ,

3
4

0, 0 |
1

1− x

]
q
− 2

q − 1
q2 ϕ(x − 1). �

Before we prove our main results, we now recall the following definition of a
finite field hypergeometric function introduced by McCarthy [2012c].

Definition 3.3 [McCarthy 2012c, Definition 1.4]. Let A0,A1,...,An,B1,B2,...,Bn

be in F̂×q . Then the n+1 Fn( · · · )
∗ finite field hypergeometric function over Fq is

defined by

n+1 Fn

(
A0, A1, . . . , An

B1, . . . , Bn | x
)∗

q
=

1
q − 1

∑
χ∈F̂×q

n∏
i=0

g(Aiχ)

g(Ai )

n∏
j=1

g(B jχ)

g(B j )
g(χ)χ(−1)n+1χ(x).

The following proposition gives a relation between McCarthy’s and Greene’s
finite field hypergeometric functions when certain conditions on the parameters are
satisfied.
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Proposition 3.4 [McCarthy 2012c, Proposition 2.5]. If A0 6= ε and Ai 6= Bi for
1≤ i ≤ n, then

n+1 Fn

(
A0, A1, ..., An

B1, ..., Bn |x
)∗

q
=

[ n∏
i=1

( Ai
Bi

)−1]
n+1 Fn

(
A0, A1, ..., An

B1, ..., Bn |x
)

q
.

McCarthy [2013, Lemma 3.3] proved a relation between n+1 Fn(· · · )
∗ and the

p-adic hypergeometric series nGn[ · · · ]. We note that the relation is true for Fq

though it was proved for Fp in [McCarthy 2013]. Hence, we obtain a relation
between nGn[ · · · ] and the Greene’s finite field hypergeometric functions due to
Proposition 3.4. In the following proposition, we list three such identities which
will be used to prove our main results.

Proposition 3.5. Let x 6= 0. Then

2G2

[ 1
4 ,

3
4

0, 0 | x
]

q
=−q · 2 F1

(
χ4, χ

3
4
ε |

1
x

)
q
;(3-7)

2G2

[ 1
2 ,

1
2

0, 0 | x
]

q
=−q · 2 F1

(
ϕ, ϕ

ε |
1
x

)
q
;(3-8)

3G3

[ 1
2 ,

1
2

1
2

0, 0, 0 | x
]

q
= q2
· 3 F2

(
ϕ, ϕ, ϕ

ε, ε |
1
x

)
q
.(3-9)

We note that (3-7) is valid when q ≡ 1 (mod 4).

Proof. Applying [McCarthy 2013, Lemma 3.3] we have

2 F1

(
χ4, χ

3
4
ε |

1
x

)∗
q
= 2G2

[ 1
4 ,

3
4

0, 0 | x
]

q
.(3-10)

From (2-4), we have
(
χ3

4
ε

)
=
−1
q . Using this value and Proposition 3.4 we find that

2 F1

(
χ4, χ

3
4
ε |

1
x

)
q
=−

1
q 2 F1

(
χ4, χ

3
4
ε |

1
x

)∗
q
.(3-11)

Now, combining (3-10) and (3-11) we readily obtain (3-7). Proceeding similarly
we deduce (3-8) and (3-9). This completes the proof. �

We now prove our main results.

Proof of Theorem 1.1. From Proposition 3.1 and Proposition 3.2 we have∑
y∈Fq

ϕ(y)ϕ(1−2y+xy2)=−ϕ(−2) ·2G2

[ 1
4 ,

3
4

0, 0 |
1
x

]
q
=−2G2

[ 1
4 ,

3
4

0, 0 |
1

1− x

]
q
,

which readily gives the desired transformation. �
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Proof of Theorem 1.3. From [Greene and Stanton 1986, Equation 4.5] we have

(3-12) ϕ
(1− u

u

)
3 F2

(
ϕ, ϕ, ϕ

ε, ε |
u

u− 1

)
p

= ϕ(u) f (u)2+ 2
ϕ(−1)

p
f (u)−

p− 1
p2 ϕ(u)+

p− 1
p2 δ(1− u),

where u = x/(x − 1), x 6= 1 and

f (u) :=
p

p− 1

∑
χ∈F̂×p

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
(u

4

)
.

From (3-9) and (3-12), we have

(3-13)
ϕ((1− u)/u)

p2 · 3G3

[ 1
2 ,

1
2 ,

1
2

0, 0, 0 |
u− 1

u

]
p

= ϕ(u) f (u)2+ 2
ϕ(−1)

p
f (u)−

p− 1
p2 ϕ(u)+

p− 1
p2 δ(1− u).

Now, Proposition 3.1 gives

f (u)=
−ϕ(−u)

p
−

1
p
· 2G2

[ 1
4 ,

3
4

0, 0 |
1
u

]
p
.(3-14)

Finally, combining (3-13) and (3-14) and then putting u= x
x−1 we obtain the desired

result. This completes the proof of the theorem. �

Proof of Theorem 1.4. Let A = B = ϕ and x 6= 0,±1. Then [Greene 1987,
Theorem 4.16] yields

(3-15) 2 F1

(
ϕ, ϕ

ε | x
)

q
=
ϕ(−1)

q
ϕ(x(1+ x))

+ϕ(1+ x)
q

q − 1

∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x
(1+ x)2

)
.

Now, using Proposition 3.1 we have

(3-16)
∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x
(1+ x)2

)
=−

q − 1
q2 ϕ

(
−4x

(1+ x)2

)
−

q − 1
q2 · 2G2

[ 1
4 ,

3
4

0, 0 |
(1+ x)2

4x

]
q
.
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Applying Theorem 1.1 on the right-hand side of (3-16) we obtain

(3-17)
∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x
(1+ x)2

)
=−

q − 1
q2 ϕ

(
−x
)
−

q − 1
q2 ϕ(−2) · 2G2

[ 1
4 ,

3
4

0, 0 |
(1+ x)2

(1− x)2

]
q
.

Combining (3-15) and (3-17) we have

2G2

[ 1
4 ,

3
4

0, 0 |
(1+ x)2

(1− x)2

]
q
=−qϕ(−2)ϕ(1+ x) · 2 F1

(
ϕ, ϕ

ε | x
)

q
,(3-18)

which completes the proof of the theorem due to (3-8). �

Proof of Theorem 1.5. Let q ≡ 1 (mod 4). Then we readily obtain the desired
transformation for the finite field hypergeometric functions from (1-4) using (3-7)
and (3-8). �

4. Special values of 2G2[ · · · ]

Finding special values of hypergeometric function is an important and interesting
problem. Only a few special values of the nGn-functions are known; see for example
[Barman et al. 2015]. Therein, we obtained some special values of nGn[ · · · ] when
n = 2, 3, 4. From (3-18), for any odd prime p and x 6= 0,±1, we have

2G2

[ 1
4 ,

3
4

0, 0 |
(1+ x)2

(1− x)2

]
q
=−qϕ(−2)ϕ(1+ x) · 2 F1

(
ϕ, ϕ

ε | x
)

q
.(4-1)

Values of the finite field hypergeometric function 2 F1
(
ϕ, ϕ

ε | x
)

q are obtained
for many values of x . For example, see [Barman and Kalita 2012; 2013a; Evans
and Greene 2009b; Greene 1987; Kalita 2018; Ono 1998].

Proof of Theorem 1.6. Let λ ∈ {−1, 1
2 , 2}. If p is an odd prime, then from [Ono

1998, Theorem 2] we have

2 F1

(
ϕ, ϕ

ε | λ
)

p
=

{
0 if p ≡ 3 (mod 4);

2x
p
(−1)

x+y+1
2 if p ≡ 1 (mod 4), x2

+ y2
= p, and x odd.

Putting the above values for λ= 1
2 , 2 into (4-1) we readily obtain the required values

of the 2G2-function.
Let q ≡ 1 (mod 4). Then from (3-7) we have

2 F1

(
χ4, χ

3
4
ε |

1
9

)
q
=−

1
q 2G2

[ 1
4 ,

3
4

0, 0 | 9
]

q
.

From the above identity we readily obtain the required value of the finite field
hypergeometric function. This completes the proof of the theorem. �
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Corollary 4.1. Let p ≡ 1 (mod 4). We have

(χ4
ϕ

)
+

(χ3
4
ϕ

)
=

2x(−1)
x+y+1

2

p
,

where x2
+ y2
= p and x is odd.

Proof. From Theorem 1.6 and [Barman and Kalita 2013a, Theorem 1.4(i)] we have

(χ4
ϕ

)
+

(χ3
4
ϕ

)
=

2xϕ(2)χ4(−1)(−1)
x+y+1

2

p
,

where x2
+ y2

= p and x is odd. Let m be the order of χ ∈ F̂×q . We know that
χ(−1)=−1 if and only if m is even and (q − 1)/m is odd. Since p ≡ 1 (mod 4),
therefore, either p ≡ 1 (mod 8) or p ≡ 5 (mod 8). If p ≡ 1 (mod 8), then ϕ(2) =
χ4(−1)= 1. Also, if p≡ 5 (mod 8), then ϕ(2)= χ4(−1)=−1. Hence, in both the
cases, ϕ(2) ·χ4(−1)= 1. This completes the proof. �

Proof of Theorem 1.7. From [Kalita 2018, Theorem 1.1], for q ≡ 1 (mod 8), we
have

2 F1

(
ϕ, ϕ

ε |
4
√

2
2
√

2±3

)
q
= ϕ(3± 2

√
2)
{(χ4
ϕ

)
+

(χ3
4
ϕ

)}
.(4-2)

Now, comparing (3-18) and (4-2) for x=4
√

2/(2
√

2±3), we obtain (1-5). Similarly,
using [Kalita 2018, Theorem 1.1] and (3-18) for x = 4/(2±

√
3) we derive (1-6)

and (1-7). �

Proof of Theorem 1.8. From (3-7), we have

2 F1

(
χ4, χ

3
4
ε |

(
−2
√

2±3
6
√

2±3

)2)
q
=−

1
q
· 2G2

[ 1
4 ,

3
4

0, 0 |
(

6
√

2±3
−2
√

2±3

)2]
q
.(4-3)

Comparing (1-5) and (4-3) we readily obtain (1-8). Again, we have

2 F1

(
χ4, χ

3
4
ε |

(
−2±
√

3
6±
√

3

)2)
q
=−

1
q
· 2G2

[ 1
4 ,

3
4

0, 0 |
(

6±
√

3
−2±
√

3

)2]
q
.(4-4)

Now, comparing (1-7) and (4-4) we deduce (1-9). �

Applying Corollary 4.1, from (1-5) and (1-8) we have the following corollary.

Corollary 4.2. Let p ≡ 1 (mod 8). Then

2G2

[ 1
4 ,

3
4

0, 0 |
(

6
√

2±3
−2
√

2±3

)2]
p
=−2xϕ(6± 12

√
2)(−1)

x+y+1
2 ,

where x2
+ y2
= p and x is odd.
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ON THE STRUCTURE OF HOLOMORPHIC ISOMETRIC
EMBEDDINGS OF COMPLEX UNIT BALLS INTO

BOUNDED SYMMETRIC DOMAINS

SHAN TAI CHAN

We study general properties of holomorphic isometric embeddings of com-
plex unit balls Bn into bounded symmetric domains of rank ≥ 2. In the
first part, we study holomorphic isometries from (Bn, kgBn) to (�, g�) with
nonminimal isometric constants k for any irreducible bounded symmetric
domain � of rank ≥ 2, where gD denotes the canonical Kähler–Einstein
metric on any irreducible bounded symmetric domain D normalized so
that minimal disks of D are of constant Gaussian curvature −2. In partic-
ular, results concerning the upper bound of the dimension of isometrically
embedded Bn in � and the structure of the images of such holomorphic
isometries are obtained.

In the second part, we study holomorphic isometries from (Bn, gBn) to
(�, g�) for any irreducible bounded symmetric domains � b CN of rank
equal to 2 with 2N > N ′+1, where N ′ is an integer such that ι : Xc ↪→PN ′ is
the minimal embedding (i.e., the first canonical embedding) of the compact
dual Hermitian symmetric space Xc of �. We completely classify images
of all holomorphic isometries from (Bn, gBn) to (�, g�) for 1 ≤ n ≤ n0(�),
where n0(�) := 2N − N ′ > 1. In particular, for 1≤ n ≤ n0(�)− 1 we prove
that any holomorphic isometry from (Bn, gBn) to (�, g�) extends to some
holomorphic isometry from (Bn0(�), g

Bn0(�)) to (�, g�).

1. Introduction

Calabi [1953] studied local holomorphic isometries from Kähler manifolds endowed
with real-analytic metrics into complex space forms and their local rigidity. Many
results concerning local holomorphic isometric embeddings between bounded
symmetric domains were obtained by Mok [2002b; 2011; 2012; 2016] and by Ng
[2010; 2011]. In [Chan and Mok 2017], henceforth abbreviated [CM], Mok and
the author obtained a general result concerning general properties of the images of
holomorphic isometric embeddings from (Bn, gBn ) to (�, g�), where gD denotes
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Keywords: Bergman metrics, holomorphic isometric embeddings, bounded symmetric domains,

Borel embedding, complex unit balls.

291

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2018.295-2
http://dx.doi.org/10.2140/pjm.2018.295.291


292 SHAN TAI CHAN

the canonical Kähler–Einstein metric on D normalized so that minimal disks of
D are of constant Gaussian curvature −2 for any irreducible bounded symmetric
domain D b CN in its Harish-Chandra realization. In addition, Mok and the author
[CM] classified images of all holomorphic isometric embeddings from (Bm, gBm ) to
(DIV

n , gDIV
n
) for 1≤ m ≤ n− 1 and n ≥ 3, where DIV

n denotes the type-IV domain
(i.e., the Lie ball) of complex dimension n (see Section 2). On the other hand, Xiao
and Yuan [2016] and Upmeier, Wang and Zhang [Upmeier et al. 2016] classified
all holomorphic isometric embeddings from (Bn−1, gBn−1) to (DIV

n , gDIV
n
), n ≥ 3,

independently with explicit parametrizations. Moreover, Xiao and Yuan [2016,
Theorem 1.1] proved that any proper holomorphic map from the complex unit
m-ball Bm to DIV

n , n ≥ 3 and m ≤ n − 1, with certain boundary regularities is a
holomorphic isometric embedding provided that the codimension n − m of the
image of the m-ball is sufficiently small and m ≥ 4.

In the present article, we also denote by ds2
U the Bergman metric of any bounded

domain U bCN and we will simply use the term “holomorphic isometries” for holo-
morphic isometric embeddings. In what follows, we will assume that any bounded
symmetric domain in a complex Euclidean space is in its Harish-Chandra realization.

Let f : (Bn, λ′gBn )→ (�, g�) be a holomorphic isometry for some positive
real constant λ′, where � is an irreducible bounded symmetric domain. It is well
known that any bounded symmetric domain is equivalently a Hermitian symmetric
space of the noncompact type and vice versa by the Harish-Chandra embedding
theorem; see [Wolf 1972; Mok 1989]. Then, it follows from [CM, Lemma 3]
that λ′ is a positive integer satisfying 1 ≤ λ′ ≤ r , where r := rank(�) is the rank
of � as a Hermitian symmetric space of the noncompact type. Throughout the
present article, we will call λ′ the isometric constant of any given holomorphic
isometry from (Bn, λ′gBn ) to (�, g�). In addition, given any holomorphic isometry
F : (1, kds2

1)→ (1p, ds2
1p), we will call k the isometric constant of F, where

1b C (resp. 1p b Cp) denotes the open unit disk (resp. open unit polydisk) in the
complex plane C (resp. the complex p-dimensional Euclidean space Cp).

In the present article, we denote by ĤIk(B
n, �) the space of all holomorphic

isometries from (Bn, kgBn ) to (�, g�), where k is any positive integer satisfying 1≤
k≤ rank(�). Motivated by [Mok 2016] and [CM], we continue to study the structure
of holomorphic isometries from (Bn, kgBn ) to (�, g�) for any irreducible bounded
symmetric domain � of rank r ≥ 2 and any positive integer k such that 1≤ k ≤ r .

In the first part, we consider the case where k ≥ 2 is not the minimal isometric
constant and obtain a result similar to [CM, Theorem 1] when the isometric constant
k is equal to 2. As a corollary of this result, we will also show that given any
irreducible bounded symmetric domain � of rank at most 3, all holomorphic
isometries from (Bn, kgBn ) to (�, g�) arise from linear sections of the minimal
embedding of the compact dual Hermitian symmetric space Xc of �.
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In the second part, the aim is to generalize our results in [CM] for type-IV
domains to more general irreducible bounded symmetric domains � of rank 2.
Let � b CN be an irreducible bounded symmetric domain of rank ≥ 2. Mok
[2016] proved that if f : (Bn, gBn )→ (�, g�) is a holomorphic isometry, then
n ≤ p(�)+ 1, where p(�) := p(Xc) = p is defined by c1(Xc) = (p + 2)δ for
the compact dual Hermitian symmetric space Xc of � and the positive generator
δ of H 2(Xc,Z) ∼= Z; see [Mok 2016] and [CM]. By slicing the complex unit
ball Bp(�)+1 with affine linear subspaces L of Cp(�)+1 such that L ∩Bp(�)+1 is
nonempty, we obtain many holomorphic isometries in ĤI1(B

n, �) from any given
holomorphic isometry F ∈ ĤI1(B

p(�)+1, �) for n ≤ p(�). It is natural to ask
whether all holomorphic isometries in ĤI1(B

n, �) were obtained in that way for
each n ≤ p(�). In the case where � = DIV

N is the type-IV domain for some
integer N ≥ 3, the author and Mok [CM, Theorem 2] have shown that the answer
is affirmative. In general, this problem remains open. In [CM], we showed that
holomorphic isometries from (Bn, gBn ) to (�, g�) arise from linear sections of the
compact dual Xc of �, where � is an irreducible bounded symmetric domain of
rank ≥ 2. In general, we do not know whether this gives any relation between the
spaces ĤI1(B

n, �) and ĤI1(B
m, �) for 1≤ n < m ≤ p(�)+ 1, except in the case

where � = DIV
N , N ≥ 3, is the type-IV domain; see [CM]. Recall that a type-IV

domain is of rank 2. On the other hand, for a rank-r irreducible bounded symmetric
domain�, any holomorphic isometry from (Bn, rgBn ) to (�, g�) is totally geodesic
by the Ahlfors–Schwarz lemma; see [CM, Proposition 1]. In particular, we only
need to consider the space ĤI1(B

n, �) if � is of rank 2. Therefore, it is natural to
study the problem when the target bounded symmetric domain � is of rank 2.

In short, we will generalize the method in [CM] for classifying images of all
holomorphic isometries in ĤI1(B

n, DIV
N ) for N ≥ 3 and n≥ 1 to the study of images

of holomorphic isometries in ĤI1(B
n, �) for 1 ≤ n ≤ n0 and certain irreducible

bounded symmetric domains � b CN of rank 2, where n0 = n0(�) > 1 is some
integer depending on �. One of the key ingredients is the use of the explicit
form of the polynomial h�(z, z), as mentioned in [CM, Remark 1]. On the other
hand, the author has found that the relation between h�(z, ξ) and ι|CN obtained
from [Loos 1977] has been written down explicitly by Fang, Huang and Xiao
[Fang et al. 2016] for each irreducible bounded symmetric domain �, where
ι : Xc ↪→P

(
0(Xc,O(1))∗

)
∼=PN ′ is the minimal embedding, i.e., the first canonical

embedding; see [Nakagawa and Takagi 1976]. Here O(1) is the positive generator
of the Picard group Pic(Xc) ∼= Z of the compact dual Xc of �, and CN

⊂ Xc is
identified as a dense open subset of Xc by the Harish-Chandra embedding theorem;
see [Mok 1989; 2016] and [CM]. In addition, 0(Xc,O(1))∗ denotes the dual of the
space 0(Xc,O(1)) of all holomorphic sections of the holomorphic line bundle O(1)
over Xc; see [Mok 2016] and [CM]. We refer the readers to [CM, Section 2.1] for
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the background of bounded symmetric domains and their compact dual Hermitian
symmetric spaces. We will identify P

(
0(Xc,O(1))∗

)
= PN ′ and write N ′ :=

dimC P
(
0(Xc,O(1))∗

)
throughout the present article, where Xc is the compact

dual Hermitian symmetric space of the irreducible bounded symmetric domain �.
The main results in the first part of the present article are as follows.

Theorem 1.1. Let�bCN be an irreducible bounded symmetric domain of rank≥2
and λ′ ≥ 2 be an integer. If ĤIλ′(Bn, �) 6= ∅, then we have n ≤ nλ′−1(�),
where nλ′−1(�) is the (λ′−1)-th null dimension of � (see [Mok 1989, p. 253]
and Section 2A).

Theorem 1.2. Let � b CN be an irreducible bounded symmetric domain with
rank(�) =: r ≥ 2 and f ∈ ĤIλ′(Bn, �) for some real constant λ′ > 0. We have
the standard embeddings �b CN

⊂ Xc of � as a bounded domain and its Borel
embedding � ⊂ Xc as an open subset of its compact dual Hermitian symmetric
space Xc (see [CM, Theorem 1]). Suppose that either λ′ = 2 or 2 ≤ r ≤ 3. Then,
f (Bn) is an irreducible component of V := V ′ ∩ � for some affine-algebraic
subvariety V ′ ⊂ CN such that ι(V )= P ∩ ι(�), where P ⊆ PN ′ is some projective
linear subspace and ι : Xc ↪→ PN ′ is the minimal embedding.

The main result of the second part is the following.

Theorem 1.3. Let �b CN be an irreducible bounded symmetric domain of rank 2
satisfying 2N > N ′+1, where N ′ := dimC P

(
0(Xc,O(1))∗

)
and Xc is the compact

dual Hermitian symmetric space of �. Set n0(�) :=2N−N ′. For 1≤n≤n0(�)−1,
if f : (Bn, gBn )→ (�, g�) is a holomorphic isometric embedding, then f = F ◦ ρ
for some holomorphic isometric embeddings F : (Bn0(�), gBn0(�))→ (�, g�) and
ρ : (Bn, gBn )→ (Bn0(�), gBn0(�)).

Remark 1.4. (1) Theorem 1.3 actually asserts that any holomorphic isometric
embedding f ∈ ĤI1(B

n, �), 1≤ n≤ n0(�)−1, extends to a holomorphic isometric
embedding F ∈ ĤI1(B

n0(�), �), where � b CN is a rank-2 irreducible bounded
symmetric domain satisfying 2N > N ′+ 1.

(2) We will show that for such irreducible bounded symmetric domains �, we have
n0(�)= p(�)+1 only if�∼=DIV

N is the type-IV domain for some N ≥3. Therefore,
one may regard this theorem as a generalization of Theorem 2 in [CM] to holomor-
phic isometric embeddings from (Bn, gBn ) to (�, g�) for any rank-2 irreducible
bounded symmetric domain � satisfying n0(�) > 1 and 1≤ n ≤ n0(�)− 1.

2. Preliminaries

Denote by ‖v‖Cn the standard complex Euclidean norm of any vector v in Cn.
The following lemma is a special case of a well-known result of Calabi [1953,
Theorem 2 (local rigidity)]:
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Lemma 2.1 [Calabi 1953; Ng 2011, Lemma 3.3]. Let g, f : B→ CN be holomor-
phic maps defined on some open subset B ⊂ Cn such that ‖ f (w)‖2

CN = ‖g(w)‖2CN

for any w ∈ B. Then, there exists a unitary transformation U in CN such that
f =U ◦ g.

Remark 2.2. Writing f = ( f 1, . . . , f N ) and g = (g1, . . . , gN ), there exists an
N × N unitary matrix U ′ such that

U ′( f 1(w), . . . , f N (w))T = (g1(w), . . . , gN (w))T for all w ∈ B.

Moreover, we have the following fact from linear algebra.

Lemma 2.3 [CM, Lemma 5]. Let m′ and n′ be integers such that 1 ≤ m′ < n′

and let A′′ ∈ M(m′, n′;C) be such that A′′A′′T = Im′ . Then, there exists U ′ ∈
M(n′−m′, n′;C) such that [

U ′

A′′

]
∈U (n′).

For the complex unit ball Bn
⊂Cn, the Kähler form ωgBn of (Bn, gBn ) is given by

ωgBn =−
√
−1∂∂̄ log(1−‖w‖2Cn )

so that (Bn, gBn ) is of constant holomorphic sectional curvature −2. Note that the
Bergman metric K�(z, ξ) of � can be expressed as

K�(z, ξ)=
1

Vol(�)
h�(z, ξ)−(p(�)+2),

where Vol(�) is the Euclidean volume of �b CN, h�(z, ξ) is some polynomial in
(z, ξ̄ ) such that h�(z, 0)≡ 1 and p(�) is defined as in Section 1. It follows from
[CM] that the Kähler form ωg� of (�, g�) is given by

ωg� =−
√
−1∂∂̄ log h�(z, z)

in terms of the Harish-Chandra coordinates z ∈�b CN. The type-IV domain DIV
N ,

N ≥ 3, is given by

DIV
N =

{
z=(z1, . . . , zN ) ∈ CN

:
∑N

j=1 |z j |
2 < 2,

∑N
j=1 |z j |

2 < 1+
∣∣1

2

∑N
j=1 z2

j

∣∣2};
see [Mok 1989, p. 83]. Then, the Kähler form ωgDIV

N
of (DIV

N , gDIV
N
) is given by

ωgDIV
N
=−
√
−1∂∂̄ log

(
1−

N∑
j=1

|z j |
2
+

∣∣∣∣12
N∑

j=1

z2
j

∣∣∣∣2).
As mentioned in Section 1, we have the following: for any irreducible bounded
symmetric domain �bCN of rank r ≥ 2, we may suppose that the Harish-Chandra
coordinates z = (z1, . . . , zN ) on �bCN are chosen so that there are homogeneous
polynomials Gl(z) in z of degree deg(Gl), 1≤ l ≤ N ′, such that
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(i) 2≤ deg(Gl)≤ r for N + 1≤ l ≤ N ′ and G j (z)= z j for 1≤ j ≤ N,

(ii) h�(z, ξ)= 1+
∑N ′

j=1(−1)deg(Gl )Gl(z)Gl(ξ) and the restriction of the minimal
embedding ι : Xc ↪→PN ′ to the dense open subset CN

⊂ Xc may be written as

ι(z)= [1,G1(z), . . . ,G N ′(z)]

in terms of the Harish-Chandra coordinates z = (z1, . . . , zN ) ∈ CN,

(iii) For any integer µ, 2 ≤ µ ≤ r , there exists l, N + 1 ≤ l ≤ N ′, such that
deg(Gl)= µ.

For instance, if �= DIV
N b CN, N ≥ 3, is the type-IV domain, then

h�(z, z)= 1−
N∑

j=1

|z j |
2
+

∣∣∣∣12
N∑

j=1

z2
j

∣∣∣∣2 and ι(z)=
[

z1, . . . , zN , 1, 1
2

N∑
j=1

z2
j

]
for z = (z1, . . . , zN ) ∈ CN ; see [Mok 1989, p. 83]. We refer the readers to [Loos
1977; Fang et al. 2016] for details of the above facts.

Let f : (Bn, kgBn )→ (�, g�) be a holomorphic isometry such that f (0) = 0,
where � is an irreducible bounded symmetric domain of rank r ≥ 2 and k is an
integer such that 1≤ k ≤ r . Then, we have the functional equation

h�( f (w), f (w))= (1−‖w‖2Cn )
k

for w ∈ Bn; see [Mok 2012] and [CM].

2A. On higher-characteristic bundles over irreducible bounded symmetric do-
mains. Let �b CN be an irreducible bounded symmetric domain of rank r and
Xc be the compact dual of �. Throughout this section, we follow [Wolf 1972; Mok
1989, pp. 251–253]. We always identify the base point o∈ X0 with 0∈�= ξ−1(X0),
where ξ :m+∼=CN

→GC/P∼= Xc is the embedding defined by ξ(v)=exp(v)·P ; see
[Wolf 1972; Mok 1989, p. 94]. Let 9 = {ψ1, . . . , ψr } ⊂1

+

M be a maximal strongly
orthogonal set of noncompact positive roots; see [Wolf 1972]. Then, we have the
corresponding root vectors eψj , 1 ≤ j ≤ r . Moreover, we have gψj = Ceψj for
1≤ j ≤ r and the maximal polydisk 1r ∼=5⊂� is given by 5=

(⊕r
j=1 gψj

)
∩�;

see [Wolf 1972; Mok 2014]. From [Mok 1989, p. 252], for any v ∈m+ ∼= T0(�),
there exists k ∈ k such that ad(k) · v =

∑r
j=1 aj eψj with aj ∈ R (1 ≤ j ≤ r) and

a1 ≥ · · · ≥ ar ≥ 0. Then, η =
∑r

j=1 aj eψj is said to be the normal form of v and
is uniquely determined by v. The cardinality of the set { j ∈ {1, . . . , r} : aj 6= 0} is
called the rank of v, which is denoted by r(v). For 1≤ k ≤ r = rank(�), we define

Sk,x(�) := {[v] ∈ P(Tx(�)) : 1≤ r(v)≤ k} ⊆ P(Tx(�)),

called the k-th characteristic projective subvariety at x ∈ �. Then, Sk(�) :=⋃
x∈� Sk,x(�)⊂ PT (�) is called the k-th characteristic bundle over �. We simply
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call Sx(�) := S1,x(�) the characteristic variety at x ∈ �. From [Mok 1989],
Sx(�)⊂P(Tx(�)) is a connected complex submanifold, while Sk,x(�)⊂P(Tx(�))

is singular for 2 ≤ k ≤ r − 1 provided that r = rank(�) ≥ 3. In addition,
Sr,x(�)=P(Tx(�)) for x ∈� and we have the inclusions S1,x(�)⊂ · · · ⊂ Sr,x(�).
Furthermore, for r ≥ 2, k ≥ 2 and x ∈ �, we know Sk,x(�) ⊆ P(Tx(�)) is an
irreducible projective subvariety because Sk,x(�) \Sk−1,x(�)= P · [v] is an orbit
for any [v] such that v ∈ Tx(�) \ {0} is a rank-k vector, see [Mok 2002a], and
Sk,x(�) \Sk−1,x(�) is dense in Sk,x(�).

Proposition 2.4 [Mok 1989, p. 252]. The k-th characteristic bundle Sk(�)→�

is holomorphic. In addition, in terms of the Harish-Chandra embedding � ↪→ CN,
Sk(�) is parallel on� in the Euclidean sense; i.e., identifying PT (�)with�×PN−1

using the Harish-Chandra coordinates, we have Sk(�)∼=�×Sk,0(�).

Remark 2.5. For any nonzero vector v ∈ T0(�), we let Nv := {ξ ∈ T0(�) :

Rvv̄ξ ξ̄ (�, g�)=0} be the null space of v. From [Mok 1989], the k-th null dimension
of � is defined by nk(�) := dimC Nv = dimC Nη, where η =

∑k
j=1 aj eψj (aj > 0

for 1 ≤ j ≤ k) is the normal form of some vector v ∈ T0(�) of rank k. Here
nk(�) := dimC Nv only depends on the rank k = r(v) of v. Then, Mok [1989]
proved that dimC Sk(�)= 2N − nk(�)− 1. In particular, Sk,x(�) is of dimension
N − nk(�)− 1 as an irreducible projective subvariety of P(Tx(�)) for any x ∈�.
Moreover, we have n(�) := n1(�)≥ · · · ≥ nr (�)= 0 and n(�) is called the null
dimension of �. From [Mok 1989], we define p(�)= dimC S0(�). Then, we have
dimC�= N = p(�)+ n(�)+ 1.

For x ∈�, under the identification Tx(�)= Tx(Xc), we have Sx(�)= Cx(Xc),
where Cy(Xc) ⊂ P(Ty(Xc)) is the variety of minimal rational tangents (VMRT)
of the compact dual Xc of � at y ∈ Xc. We define p(Xc) := dimC Co(Xc) for the
base point o ∈ Xc, which is identified with 0 ∈ m+, i.e., ξ(0) = o ∈ Xc ∼= GC/P.
For the notion of the VMRTs of Hermitian symmetric spaces of the compact type,
we refer the reader to [Hwang and Mok 1999]. Note that dimC Cy(Xc) does not
depend on the choice of y ∈ Xc. Then, we have p(Xc)= p(�)= dimC Cx(Xc) for
any x ∈�⊂ Xc.

2A1. Holomorphic sectional curvature. Let � b CN be an irreducible bounded
symmetric domain of rank r and Xc be its compact dual Hermitian symmetric space.
Recall that g� is the canonical Kähler–Einstein metric on � normalized so that
minimal disks are of constant Gaussian curvature −2. Then, the Bergman kernel
on � is given by

K�(z, ξ)=
1

Vol(�)
h�(z, ξ)−(p(�)+2),

where Vol(�) is the Euclidean volume of � in CN, h�(z, ξ) is a polynomial in
(z, ξ̄ ) and p(�) := p(Xc) is the complex dimension of the VMRT of Xc at the base
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point o ∈ Xc; see [Mok 2016]. For z ∈ � ∼= G0/K , there exists k ∈ K such that
k · z =

∑r
j=1 aj eψj ∈

(⊕r
j=1 gψj

)
∩�=5 for |aj |

2 < 1, 1≤ j ≤ r , and

h�(z, z)=
r∏

j=1

(1− |aj |
2),

where r is the rank of the irreducible bounded symmetric domain �, 5∼=1r is a
maximal polydisk in � which satisfies (5, g�|5)∼=

(
1r , 1

2 ds2
1r

)
; see [Mok 2014].

In particular, it follows from the polydisk theorem, see [Mok 1989, p. 88], that

−2≤ Rαᾱαᾱ(�, g�)≤−
2
r

for any unit vector α ∈ Tx(�) and x ∈ �. Let x ∈ � and β ∈ Tx(�) be such
that ‖β‖2g� = 1. If β is of rank r(β) = s, then we have Rββ̄ββ̄(�, g�) ≤ −2/s
because there exists g ∈ G0 ∼= Aut0(�) such that g · β ∈ T0(5s) for some totally
geodesic submanifold (5s, g�|5s )⊂ (5, g�|5) which is holomorphically isometric
to
(
1s, 1

2 ds2
1s

)
.

3. On holomorphic isometries of complex unit balls into bounded symmetric
domains with nonminimal isometric constants

Let �bCN be an irreducible bounded symmetric domain of rank ≥ 2. Mok [2016]
studied the space ĤI1(B

n, �) and provided a sharp upper bound on dimensions of
isometrically embedded complex unit balls (Bn, gBn ) in the irreducible bounded
symmetric domain (�, g�) equipped with the canonical Kähler–Einstein metric g�.
Recall that given any f ∈ ĤIk(B

n, �) with k > 0 being a real constant, k is a
positive integer satisfying 1≤ k ≤ rank(�); see [CM]. It is natural to ask whether
some results in Mok’s study [2016] could be generalized to the study of the space
ĤIk(B

n, �) for k ≥ 2.
In the first part of this section (see Section 3A), we provide an upper bound of n

whenever ĤIk(B
n, �) 6=∅, where k ≥ 2. Note that such an upper bound is not sharp

in general. For instance, if �= DI
p,q with q ≥ p ≥ 2 and k = rank(�)= p, then

ĤIk(B
n, �) 6=∅ implies n ≤ q/p; see [Koziarz and Maubon 2008, Proposition 3.2].

On the other hand, our general result will imply that n ≤ n p−1(DI
p,q)= q − p+ 1

whenever ĤIp(B
n, DI

p,q) 6=∅ with q ≥ p ≥ 2. In the case where q = 3 and p = 2,
we have n ≤ 2 from our general result. But then it follows from [Koziarz and
Maubon 2008, Proposition 3.2] that n = 1 whenever ĤI2(B

n, DI
2,3) 6= ∅. This

explains that the upper bound obtained in our general result is not sharp in general.
However, one of the applications of our general result is that if � satisfies certain
conditions and ĤIk(B

n, �) 6=∅ for some fixed real constant k > 1, then n ≤ p(�).
In the second part of this section (see Section 3B), we continue our study in [CM]
to the study of the space ĤI2(B

n, �). In particular, we will obtain an analogue
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of [CM, Theorem 1] for holomorphic isometries in the space ĤI2(B
n, �) without

using the system of functional equations introduced in [Mok 2012].

3A. Upper bounds on dimensions of isometrically embedded complex unit balls
in an irreducible bounded symmetric domain. Let � b CN be an irreducible
bounded symmetric domain of rank ≥ 2. Motivated by Mok’s study [2016], one
may continue to study the space ĤIλ′(Bn, �) for λ′ > 1. In this section, we study
the upper bound on dimensions of isometrically embedded complex unit balls in an
irreducible bounded symmetric domain of rank ≥ 2 when the isometric constant is
equal to λ′ > 1. It is natural to ask whether the upper bound p(�)+ 1 obtained in
[Mok 2016] is optimal in the sense that n ≤ p(�)+ 1 whenever ĤIλ′(Bn, �) 6=∅
for some real constant λ′ > 0. More specifically, we may ask whether n ≤ p(�)
whenever ĤIλ′(Bn, �) 6=∅ for some real constant λ′ > 1.

For any given integer λ′≥ 2, in order to obtain a sharp upper bound of n such that
ĤIλ′(Bn, �) 6=∅, one should construct a holomorphic isometry f ∈ ĤIλ′(Bn0, �)

for some integer n0 ≥ 1 such that ĤIλ′(Bn, �) 6= ∅ only if n ≤ n0. Note that
this problem remains unsolved, but we can provide a (rough) upper bound of n
by using the k-th characteristic bundle on �. More precisely, for any integer λ′

satisfying 2≤ λ′ ≤ rank(�), we prove that if ĤIλ′(Bn, �) 6=∅, then n ≤ nλ′−1(�),
where nk(�) is the k-th null dimension of �; see [Mok 1989]. This is precisely the
assertion of Theorem 1.1. Moreover, for certain irreducible bounded symmetric
domains � of rank ≥ 2 (including the two irreducible bounded symmetric domains
of the exceptional type) we will show that n ≤ p(�) whenever ĤIλ′(Bn, �) 6= ∅
for some integer λ′ ≥ 2. Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let f ∈ ĤIλ′(Bn, �) be a holomorphic isometry. Write
S := f (Bn). If P(Ty(S))∩Sλ′−1,y(�) 6=∅ for some y ∈ S, then there exists a vector
α ∈ Ty(S)⊂ Ty(�) of unit length with respect to g� and of rank k ≤ λ′−1 such that

Rαᾱαᾱ(�, g�)≤−
2
k
≤−

2
λ′− 1

(see Section 2A1). But then we have

−
2
λ′
= Rαᾱαᾱ(S, g�|S)≤ Rαᾱαᾱ(�, g�)≤−

2
λ′− 1

from the Gauss equation, which is a contradiction. Hence, we have P(Ty(S))∩
Sλ′−1,y(�)=∅ for any y ∈ S. Recall from Section 2A that Sλ′−1,y(�)⊆P(Ty(�))

is an irreducible projective subvariety of complex dimension N − nλ′−1(�)− 1.
Then, it follows from the inequality

dimC

(
P(Ty(S))∩Sλ′−1,y(�)

)
≥dimC P(Ty(S))+dimCSλ′−1,y(�)−dimC P(Ty(�))

that n ≤ nλ′−1(�); see [Mumford 1976, p. 57]. �
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Lemma 3.1. Let�bCN be an irreducible bounded symmetric domain of rank ≥ 2.
Then, n(�)≤ p(�) if and only if � is biholomorphic to one of the following:

(1) DI
p′,q ′ , where p′ and q ′ are integers satisfying 2= p′ < q ′ or p′ = q ′ = 3.

(2) DII
m for some integer m satisfying 5≤ m ≤ 7.

(3) DIV
n for some integer n ≥ 3.

(4) DV.

(5) DVI.

Proof. From [Mok 1989, pp. 105–106], we have n(�)+ p(�)+ 1= N. Then, the
result follows from direct computations by the explicit data provided in [Mok 1989,
pp. 249–251]. �

Remark 3.2. We observe that if � satisfies n(�) ≤ p(�), then rank(�) ≤ 3. In
addition, Lemma 3.1 implies that any irreducible bounded symmetric domain �
of rank 2 satisfies n(�) ≤ p(�). From [Mok 1989], it is clear that the condition
n(�)≤ p(�) is equivalent to dimC P(To(Xc))≤ 2 · dimC Co(Xc), where Xc is the
compact dual Hermitian symmetric space of � and o ∈ Xc is a fixed base point.

The following corollary shows that for certain irreducible bounded symmetric do-
mains� of rank≥ 2 and a fixed real constant λ′> 0, we have ĤIλ′(Bp(�)+1, �) 6=∅
only if λ′ = 1. On the other hand, Mok [2016, Main Theorem] proved that
ĤI1(B

p(�)+1, �) 6= ∅ for any irreducible bounded symmetric domain � of
rank ≥ 2. Therefore, combining with [Mok 2016, Main Theorem], we actually
have ĤIλ′(Bp(�)+1, �) 6= ∅ if and only if λ′ = 1 for certain irreducible bounded
symmetric domains � of rank ≥ 2.

Corollary 3.3. Let � b CN be an irreducible bounded symmetric domain of
rank ≥ 2 such that n(�) ≤ p(�). If f ∈ ĤIλ′(Bn, �) for some real constant
λ′ ≥ 2, then n ≤ p(�).

Proof. Note that λ′ is an integer satisfying 2≤ λ′ ≤ rank(�). By the assumption, it
follows from Theorem 1.1 that n ≤ nλ′−1(�)≤ n(�)≤ p(�). �

Remark 3.4. Actually, Corollary 3.3 together with [Mok 2016, Main Theorem]
implies that the upper bound p(�)+ 1 is optimal when the bounded symmetric
domain � satisfies n(�)≤ p(�). Moreover, the statement of Corollary 3.3 holds
true for any irreducible bounded symmetric domain � of rank 2.

3A1. Holomorphic isometries with the maximal isometric constant and applications.
Let �bCN be an irreducible bounded symmetric domain of rank r ≥ 2. Recall that
if f ∈ ĤIr (B

n, �), then f is totally geodesic by the Ahlfors–Schwarz lemma. The
results obtained in Section 3A can be applied so that we may prove n≤ p(�)without
using the total geodesy of holomorphic isometries lying in the space ĤIr (B

n, �).
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Proposition 3.5. Let �bCN be an irreducible bounded symmetric domain of rank
r ≥ 2 such that � 6∼= DIV

3 and let f ∈ ĤIr (B
n, �). Then, we have n < p(�). If

F ∈ ĤIr (B
n, �), where � is an irreducible bounded symmetric domain of rank

r ≥ 2 and of tube type, then we have n = 1.

Proof. Under the assumptions, Theorem 1.1 asserts that n ≤ nr−1(�), so it remains
to check that nr−1(�) < p(�) for any irreducible bounded symmetric domain � of
rank r ≥ 2 and � 6∼= DIV

3 . Note that if �∼= DIV
3 , then r = 2 and nr−1(�)= 1= p(�).

It follows from [Mok 2002a] that � is of tube type if and only if nr−1(�)= 1 due
to the dimension formula dimC Sr−1,x(�) = dimC P(Tx(�))− nr−1(�) of [Mok
1989]. It is clear that if � is of tube type and � 6∼= DIV

3 , then p(�) > 1 so that
nr−1(�)= 1< p(�). If � is not of tube type, then � is biholomorphic to one of
the following:

(1) DI
p′,q ′ for some integers p′, q ′ satisfying 2≤ p′ < q ′.

(2) DII
2m+1 for some integer m ≥ 2.

(3) DV.

From the classification of the boundary components of bounded symmetric domains
and the fact that nr−1(�) is precisely the dimension of rank-1 boundary components
of �, see [Wolf 1972; Mok 2002a, p. 298], we have

n p′−1(DI
p′,q ′)= q ′− p′+ 1< p(DI

p′,q ′)= p′+ q ′− 2 for 2≤ p′ < q ′,

nm−1(DII
2m+1)= 3< p(DII

2m+1)= 2(2m− 1) for m ≥ 2,

n1(DV)= 5< p(DV)= 10.

Hence, we have n < p(�). On the other hand, given an irreducible bounded
symmetric domain � of rank r ≥ 2 and of tube type, if F ∈ ĤIr (B

n, �), then we
have n ≤ nr−1(�)= 1, i.e., n = 1. �

From the proof of Proposition 3.5, we have nr−1(�)≤ p(�) for any irreducible
bounded symmetric domain � of rank r ≥ 2. Given any irreducible bounded
symmetric domain � of rank r ≥ 2, we define

λ0(�) :=min{λ ∈ Z : 1≤ λ≤ r, nλ(�)≤ p(�)}.

Then, we have λ0(�) ≤ r − 1. Note that � satisfies n(�) ≤ p(�) if and only if
λ0(�)= 1. Combining with Corollary 3.3, we have the following:

Theorem 3.6. Let �b CN be an irreducible bounded symmetric domain of rank
r ≥ 2 and λ′ ≥ 2 be an integer. If ĤIλ′(Bn, �) 6= ∅, then n ≤ p(�) provided that
one of the following holds true:

(1) � satisfies n(�)≤ p(�).

(2) λ′ satisfies λ0(�)+ 1≤ λ′ ≤ r .
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Proof. If the bounded symmetric domain � satisfies n(�)≤ p(�), then the result
follows from Corollary 3.3. If λ′ satisfies λ0(�) + 1 ≤ λ′ ≤ r , then we have
nλ′−1(�)≤ nλ0(�)(�)≤ p(�). By Theorem 1.1, we have n≤ nλ′−1(�)≤ p(�). �

Remark 3.7. If � satisfies n(�)≤ p(�), then λ0(�)= 1 so that the condition (2)
does not provide an additional restriction on the given isometric constant λ′.

In general, let �bCN be an irreducible bounded symmetric domain of rank ≥ 2
such that n(�) > p(�). Then, Lemma 3.1 asserts that � is biholomorphic to one
of the following:

(1) DI
p,q for some integers p, q satisfying 3≤ p ≤ q and (p, q) 6= (3, 3).

(2) DII
m for some integer m ≥ 8.

(3) DIII
m for some integer m ≥ 3.

In particular, we are able to compute λ0(�) explicitly for each case.

type � λ0(�)

Ip,q (3≤ p ≤ q , (p,q) 6=(3,3)) DI
p,q

⌈ 1
2((p+q)−

√
(q−p)2+4(p+q−2)

)⌉
IIm (m ≥ 8) DII

m
⌈ 1

4

(
(2m−1)−

√
16m−31

)⌉
IIIm (m ≥ 3) DIII

m
⌈1

2

(
(2m+1)−

√
8m−7

)⌉
Here dxe denotes the smallest integer greater than or equal to x for any real

number x .

Example 3.8. If �= DIII
7 , then � is of rank 7, nk(�)=

1
2(7− k)(7− k+ 1) and

p(�)= 6, see [Mok 1989, p. 86, p. 250], so that λ0(�)= 4= rank(�)− 3. Given
any integer λ′ satisfying 5≤λ′≤7, Theorem 3.6 asserts that n≤ p(�)= 6 whenever
ĤIλ′(Bn, DIII

7 ) 6=∅.
In general, by using the expression of λ0(DIII

m+2) in terms of m for any integer
m ≥ 1 (see the table above), one observes that the sequence

{rank(DIII
m+2)− (λ0(DIII

m+2)+ 1)}+∞m=1

is monotonic increasing and am := rank(DIII
m+2)− (λ0(DIII

m+2)+ 1)→+∞ as m→
+∞. Moreover, am/rank(DIII

m+2)→ 0 as m→+∞. That means rank(DIII
m+2)

grows much faster than am as m is increasing. This shows that in general the
range of the isometric constants λ′ mentioned in condition (2) of Theorem 3.6 is
quite restrictive for a rank-r irreducible bounded symmetric domain �, r ≥ 2, such
that n(�) > p(�).
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3B. Holomorphic isometries with the isometric constant equal to 2 and applica-
tions. Let �b CN be an irreducible bounded symmetric domain of rank ≥ 2 and
Xc be the compact dual Hermitian symmetric space of �. Then, it follows from
the observation in Section 2 that the polynomial h�(z, z) can be written as

h�(z, z)= 1−
m1(�)∑

l=1

|G(1)
l (z)|2+

m2(�)∑
l ′=1

|G(2)
l ′ (z)|

2,

where G(1)
l (z),G(2)

l ′ (z) are homogeneous polynomials in z and m1(�),m2(�) are
positive integers depending on � such that

(1) m1(�)+m2(�)= N ′ and m1(�)≥ N,

(2) deg(G(1)
l ) (1≤ l≤m1(�)) is odd, while deg(G(2)

l ′ )≥2 (1≤ l ′≤m2(�)) is even,

(3) G(1)
j (z)= z j for 1≤ j ≤ N,

(4) when � is of rank ≥ 3, we have m1(�) > N and deg(G(1)
l )≥ 3 for N + 1≤

l ≤ m1(�).

Moreover, in terms of the Harish-Chandra coordinates z = (z1, . . . , zN ) ∈ CN, the
restriction of ι to the dense open subset CN

⊂ Xc may be written as

ι(z1, . . . , zN )= [1,G(1)
1 (z), . . . ,G(1)

m1(�)
(z),G(2)

1 (z), . . . ,G(2)
m2(�)

(z)]

up to reparametrizations, where ι : Xc ↪→ PN ′ is the minimal embedding.

Remark 3.9. As mentioned in Section 2, the above observation can be obtained
from [Loos 1977] and has been written down explicitly by Fang, Huang and Xiao
[Fang et al. 2016].

In [CM], we studied images of holomorphic isometries in ĤIλ′(Bn, �) when
λ′ = 1. However, it is not obvious how the method in [CM] could be generalized
to the study of images of holomorphic isometries in ĤIλ′(Bn, �) for λ′ > 1 so
as to obtain an analogue of Theorem 1 in [CM] for all holomorphic isometries
in ĤIλ′(Bn, �) and for any λ′ > 0. After that, we observe that the above explicit
form of h�(z, z) is useful for continuing the study of images of holomorphic
isometries in ĤIλ′(Bn, �) when the isometric constant λ′ equals 2. Recall that the
case where λ′ = 2 in Theorem 1.2 is exactly an analogue of Theorem 1 in [CM] for
all holomorphic isometries in ĤI2(B

n, �). We are now ready to prove Theorem 1.2
for the case where λ′ = 2.

Proof of Theorem 1.2 for the case where λ′ = 2. Let f : (Bn, 2gBn )→ (�, g�)
be a holomorphic isometric embedding, where �b CN is an irreducible bounded
symmetric domain of rank ≥ 2. Assume without loss of generality that f (0)= 0.
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Then, we have the functional equation

(3-1) 1−
m1(�)∑

l=1

|G(1)
l ( f (w))|2+

m2(�)∑
l=1

|G(2)
l ( f (w))|2

=

(
1−

n∑
µ=1

|wµ|
2
)2

= 1−
n∑

µ=1

|
√

2wµ|2+
∑

1≤µ,µ′≤n

|wµwµ′ |
2

for w ∈ Bn and the polarized functional equation

(3-2) 1−
m1(�)∑

l=1

G(1)
l ( f (w))G(1)

l ( f (ζ ))+
m2(�)∑

l=1

G(2)
l ( f (w))G(2)

l ( f (ζ ))

=

(
1−

n∑
µ=1

wµζ̄µ

)2

for w, ζ ∈ Bn; see equation (14) in [CM, p. 688]. We write∑
1≤µ,µ′≤n

|wµwµ′ |
2
=

m0∑
l=1

|4l(w)|
2

for some homogeneous polynomials 4l(w) of degree 2 and m0 :=
1
2 n(n + 1).

Moreover, we write G( j)(z)= (G( j)
1 (z), . . . ,G( j)

m j (�)
(z))T for j = 1, 2. Let N0 :=

max{n+m2(�),m0+m1(�)}. Then, there exists U ∈U (N0) such that

(3-3) U ·



√
2w1
...

√
2wn

G(2)( f (w))
0(N0−n−m2(�))×1

=


41(w)
...

4m0(w)

G(1)( f (w))
0(N0−m1(�)−m0)×1


by Lemma 2.1 and (3-1). We write

U =
[

U1

U2

]
with U1 ∈ M(m0, N0;C) and U2 ∈ M(N0 − m0, N0;C). We also write U2 =[
U21 U22

]
with U21∈M(N0−m0, n;C) and U22∈M(N0−m0, N0−n;C). Denote

by (J f )(w) the complex Jacobian matrix of the holomorphic map f :Bn
→�bCN

at w ∈ Bn . Recall that G(1)
j (z) = z j for 1 ≤ j ≤ N, G(2)

l (z), 1 ≤ l ≤ m2(�),
are homogeneous polynomials of degree ≥ 2 in z so that ∂

∂z j
G(2)

l (z)|z=0 = 0 for
1 ≤ j ≤ N, 1 ≤ l ≤ m2(�). In addition, if the rank of � is at least 3 so that
m1(�) > N, then G(1)

l (z), N + 1≤ l ≤ m1(�), are homogeneous polynomials of
degree ≥ 3 in z, so that ∂

∂z j
G(1)

l (z)|z=0 = 0 for 1 ≤ j ≤ N, N + 1 ≤ l ≤ m1(�).
Then, we have

(3-4) (J f )(0)T ( f 1(w), . . . , f N (w))T = 2(w1, . . . , wn)
T
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by differentiating both sides of (3-2) with respect to ζ̄µ at ζ =0 for eachµ, 1≤µ≤n.
In addition, (J f )(0) ∈ M(N , n;C) is of rank n. Moreover, from the above settings
and (3-3) we have

(3-5) U21


√

2w1
...

√
2wn

+U22

(
G(2)( f (w))

0(N0−n−m2(�))×1

)
=

(
G(1)( f (w))

0(N0−m1(�)−m0)×1

)
.

Differentiating both sides of (3-5) with respect towµ atw=0 for each µ, 1≤µ≤n,
we obtain

√
2U21 =

(
(J f )(0)

0(N0−m0−N )×n

)
.

In addition, by differentiating both sides of (3-4) with respect to wµ at w = 0 for
each µ, 1 ≤ µ ≤ n, we have (J f )(0)T (J f )(0)= 2In . Therefore, it follows from
(3-5) and (3-4) that

(3-6)
[[1

2(J f )(0)(J f )(0)T

0(N0−m0−N )×N

]
U22

] f (w)
G(2)( f (w))

0(N0−n−m2(�))×1

= ( G(1)( f (w))
0(N0−m0−m1(�))×1

)

for anyw∈Bn, where f (w):=( f 1(w), . . . , f N (w))T. Writing B :=
[
Û21 U22

]
with

Û21 =

[ 1
2(J f )(0)(J f )(0)T

0(N0−m0−N )×N

]
,

we define

(3-7) V ′ :=

z ∈ CN
: B

 zT

G(2)(z)
0(N0−n−m2(�))×1

= ( G(1)(z)
0(N0−m0−m1(�))×1

)
and V :=V ′∩�. Then, we have f (Bn)⊆V by (3-6). Note that the tangential dimen-
sion tdim0 V of V at 0 is less than or equal to N − rank

( 1
2(J f )(0)(J f )(0)T − IN

)
.

Here we refer the readers to [Gunning 1990] for the notion of the tangential dimen-
sion tdimx V of a complex-analytic variety V at a point x ∈ V. From [Zhang 1999,
p. 49], we have

rank
( 1

2(J f )(0)(J f )(0)T − IN
)
≥
∣∣rank

( 1
2(J f )(0)(J f )(0)T

)
− rank IN

∣∣= N − n.

On the other hand,
( 1

2(J f )(0)(J f )(0)T − IN
)
· (J f )(0)= 0 so that

0≥ rank
( 1

2(J f )(0)(J f )(0)T − IN
)
+ rank(J f )(0)− N

and thus rank
( 1

2(J f )(0)(J f )(0)T − IN
)
≤ N − n. Therefore, we have

rank
( 1

2(J f )(0)(J f )(0)T − IN
)
= N − n.
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Moreover, V contains f (Bn) and 0∈ f (Bn), thus dim0 V ≥ n ≥ tdim0 V . Note that
dim0 V ≤ tdim0 V ; see [Gunning 1990]. Hence, we have dim0 V = tdim0 V = n
and thus V is smooth at 0. Let S be the irreducible component of V containing
f (Bn). Then, we have dim S = n = dim f (Bn) and thus S = f (Bn) because both
S and f (Bn) are irreducible complex-analytic subvarieties of V containing the
smooth point 0 ∈ V of V . In particular, f (Bn) is the irreducible component of V

containing 0. Moreover, it is clear that V ′ ⊂ CN is an affine-algebraic subvariety
and ι(V )= P ∩ ι(�), where

(3-8) P :=
{
[ξ0, ξ1, . . . , ξN ′] ∈ PN ′

: Bx = y
}
,

with
x =

(
ξ1, . . . , ξN , ξm1(�)+1, . . . , ξN ′, 01×(N0−n−m2(�))

)T
,

y =
(
ξ1, . . . , ξm1(�), 01×(N0−m0−m1(�))

)T
,

is a projective linear subspace of PN ′. �

3B1. On holomorphic isometries from the Poincaré disk into polydisks. The author
[Chan 2016] and Ng [2010] studied the classification problem of all holomorphic
isometries from the Poincaré disk into the p-disk with any isometric constant k,
1≤ k ≤ p, and p ≥ 2. The classification problem remains unsolved when p ≥ 5. In
this section, we consider the structure of images of such holomorphic isometries
for k ≤ 2 and obtain an analogue of Theorem 1.2 when the domain is the Poincaré
disk and the target is the p-disk for some p ≥ 2.

Note that the restriction % of the Segre embedding ς : (P1)p ↪→ P2p
−1 to the

dense open subset Cp
⊂ (P1)p is given by

%(z1, . . . , z p)= ς([1, z1], . . . , [1, z p])

in terms of the standard holomorphic coordinates z= (z1, . . . , z p)∈Cp. Here Cp is
identified with its image ξ(Cp) in (P1)p, where the map ξ : Cp ↪→ (P1)p is defined
by ξ(z1, . . . , z p) := ([1, z1], . . . , [1, z p]).

Actually, the author [Chan 2016] observed that the following can be proved by
the same method as the proof of Theorem 1 in [CM].

Proposition 3.10 [Chan 2016, Proposition 5.2.4]. Let f : (1, ds2
1)→ (1p, ds2

1p)

be a holomorphic isometric embedding, where p≥ 2 is an integer. Then, f (1) is an
irreducible component of V ∩1p for some affine-algebraic subvariety V ⊂Cp such
that %(V ∩1p)= %(1p)∩ P, where P ⊆ P2p

−1 is a projective linear subspace.

Similarly, we observe that the method in the proof of Theorem 1.2 is also valid
for any holomorphic isometry from (1, 2ds2

1) to (1p, ds2
1p), where p ≥ 2.

Proposition 3.11. Let f : (1, 2ds2
1)→ (1p, ds2

1p) be a holomorphic isometric
embedding, where p ≥ 2 is an integer. Then, f (1) is an irreducible component
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of V ∩1p for some affine-algebraic subvariety V ⊂ Cp such that %(V ∩1p) =

%(1p)∩ P, where P ⊆ P2p
−1 is a projective linear subspace.

Proof. Assume without loss of generality that f (0)= 0. Note that

h1p(z, z)=
p∏

j=1

(1−|z j |
2)

= 1−
b(p+1)/2c∑

n=1

∑
1≤i1<···<i2n−1≤p

|zi1 · · · zi2n−1 |
2
+

bp/2c∑
n=1

∑
1≤ j1<···< j2n≤p

|z j1 · · · z j2n |
2.

In the proof of Theorem 1.2, we put n = 1 and replace the term
∑m1(�)

l=1 |G
(1)
l (z)|2

(resp.
∑m2(�)

l=1 |G
(2)
l (z)|2) by

(3-9)
b(p+1)/2c∑

n=1

∑
1≤i1<···<i2n−1≤p

∣∣∣∣2n−1∏
µ=1

ziµ

∣∣∣∣2 (
resp.

bp/2c∑
n=1

∑
1≤ j1<···< j2n≤p

∣∣∣∣ 2n∏
µ=1

z jµ

∣∣∣∣2 ).
Indeed, we may define m1(1

p) and m2(1
p). Then, we compute m1(1

p) =

m2(1
p) + 1 = 2p−1. In this situation, the integer N0 defined in the proof of

Theorem 1.2 is equal to m1(1
p)+ 1= 2p−1

+ 1. Then, the result follows directly
from the arguments in the proof of Theorem 1.2. �

3B2. On holomorphic isometries of complex unit balls into irreducible bounded
symmetric domains of rank at most 3. Given an irreducible bounded symmetric
domain �bCN of rank ≥ 2, it is natural to ask whether all holomorphic isometries
in ĤI(Bn, �) arise from linear sections of the minimal embedding of the compact
dual Xc of � in general. In [CM], we showed that the answer is affirmative
for all holomorphic isometries in ĤIλ′(Bn, �) whenever ĤIλ′(Bn, �) 6= ∅ and
λ′ ∈ {1, rank(�)}. On the other hand, Theorem 1.2 asserts that the answer is also
affirmative for all holomorphic isometries in ĤI2(B

n, �) whenever ĤI2(B
n, �) 6=∅.

In other words, we may prove Theorem 1.2 for the case where 2≤ rank(�)≤ 3 as
follows.

Proof of Theorem 1.2 for the case where 2 ≤ rank(�) ≤ 3. Recall that λ′ is an
integer satisfying 1≤ λ′ ≤ r ; see [CM, Lemma 3]. If r = 2, then λ′ = 1 or λ′ = 2.
In the case of λ′ = 1, the result follows from [CM, Theorem 1]. When λ′ = 2, we
may suppose that f (0)= 0. Then, f is totally geodesic by [CM, Proposition 1] and
f (Bn) is indeed an affine linear section of � in CN ; see [Mok 2012]. Therefore,
the result follows when r = 2. Now, we suppose that r = 3. If λ′ = 1 or λ′ = 3,
then the result follows from Proposition 1 and Theorem 1 in [CM]. If λ′ = 2, then
the result follows from the proof of Theorem 1.2 for the case where λ′ = 2. �

The proof of Theorem 1.2 is complete.
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Remark 3.12. In general, we expect that Theorem 1 in [CM] holds true for any
holomorphic isometry from (Bn, kgBn ) to (�, g�) for 1≤ k ≤ rank(�). Actually,
the case where 2≤ rank(�)≤ 3 in Theorem 1.2 asserts that our expectation is true
when � is an irreducible bounded symmetric domain of rank at most 3. Moreover,
the statement of Theorem 1.2 for the case where 2≤ rank(�)≤ 3 also holds true for
any holomorphic isometry from (1, kds2

1) to (1p, ds2
1p) for any positive integer k

and any integer p such that 2≤ p ≤ 3. However, for 2≤ p ≤ 3 one may make use
of Ng’s classification of all holomorphic isometries from (1, kds2

1) to (1p, ds2
1p),

see [Ng 2010], to prove such an analogue of Theorem 1.2 for the case where
2≤ rank(�)≤ 3.

On the other hand, when�bCN is an irreducible bounded symmetric domain of
rank r ≥ 4, it is not known whether all holomorphic isometries in ĤIk(B

n, �) arise
from linear sections of the minimal embedding of the compact dual Xc of � for
3≤ k ≤ r − 1. In other words, the problem remains open for the space ĤIk(B

n, �)

when � is of rank r ≥ 4 and 3≤ k ≤ r − 1.

Now, we would like to emphasize the following consequence of both Theorem 3.6
and Theorem 1.2.

Corollary 3.13. Let � b CN be an irreducible bounded symmetric domain of
rank ≥ 2 such that n(�)≤ p(�). If f ∈ ĤIλ′(Bn, �) for some real constant λ′ > 0,
then we have the following:

(1) n ≤ p(�) when λ′ ≥ 2; n ≤ p(�)+ 1 when λ′ = 1.

(2) f (Bn) is an irreducible component of some complex-analytic subvariety V ⊂�

satisfying ι(V ) = P ∩ ι(�), where ι : Xc ↪→ PN ′ is the minimal embedding
and P ⊆ PN ′ is some projective linear subspace.

Proof. Note that (1) follows from Theorem 3.6 when λ′ ≥ 2. On the other hand, (1)
follows from Theorem 2 in [Mok 2016] when λ′ = 1. Moreover, (2) follows from
Theorem 1.2 because � is of rank at most 3 whenever � satisfies n(�)≤ p(�). �

Remark 3.14. (1) In particular, Corollary 3.13 holds true when � is either of
type IV or of the exceptional type by Lemma 3.1. From the method used in this
section, it is not known whether both parts (1) and (2) of Corollary 3.13 still hold
true in general when the assumption n(�)≤ p(�) is removed.

(2) Recently, Yuan (personal communication, 2017) pointed out to the author that
one may obtain upper bounds on dimensions of isometrically embedded complex
unit balls into irreducible bounded symmetric domains � of rank ≥ 2 by using the
functional equation for any holomorphic isometry f : (Bn, kgBn )→ (�, g�), k ≥ 2,
with f (0)= 0 and the signature of the sum of squares; see [Xiao and Yuan 2016,
Proposition 2.11]. When the target is � = DI

3,4, it suffices to consider the case
where k = 2 and we compute m2(DI

3,4)=
(3

2

)(4
2

)
= 18 by [Fang et al. 2016] (noting
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that �= DI
3,4 does not satisfy n(�)≤ p(�)). Moreover, one may make use of the

signature of the sum of squares, see [Xiao and Yuan 2016, Proposition 2.11], to
conclude that 1

2 n(n+ 1)≤ m2(DI
3,4)=

(3
2

)(4
2

)
= 18, i.e., n ≤ 5= p(DI

3,4). In other
words, combining with the results of the present article, both parts (1) and (2) of
Corollary 3.13 hold true for �= DI

3,4. Moreover, in general this method does not
imply that n≤ p(�) if there exists a holomorphic isometry f : (Bn, kgBn )→ (�, g�)
with k ≥ 2, where � is any irreducible bounded symmetric domain of rank ≥ 2.

4. On holomorphic isometries of complex unit balls into certain irreducible
bounded symmetric domains of rank 2

4A. Characterization of images of holomorphic isometries. We start with the
following lemma which identifies those irreducible bounded symmetric domains
�b CN of rank 2 which carry extra properties.

Lemma 4.1. Let �b CN be an irreducible bounded symmetric domain of rank 2.
Then, 2N > N ′+ 1 provided that � is not biholomorphic to DI

2,q for any q ≥ 5.

Proof. The proof follows from direct computation for any irreducible bounded
symmetric domain � of rank 2 by using results in [Nakagawa and Takagi 1976,
p. 663]. Actually, we obtain from that paper the value of N ′ := N (1) for any
irreducible Hermitian symmetric space Xc of the compact type.

Case 1: When � is not biholomorphic to any type-I domains DI
2,q for q ≥ 3, � is

either biholomorphic to DIV
m (for some m ≥ 3), DII

5 or DV because of DIV
4
∼= DI

2,2,
DIV

6
∼= DII

4 and DIII
2
∼= DIV

3 . If �∼= DIV
m , m ≥ 3, then it is clear that 2m > N ′+1=

m+ 2. If �∼= DII
5 , then 2 dimC DII

5 = 20> N ′+ 1= 25−1
= 16. If �∼= DV, then

2 dimC DV
= 32 > N ′ + 1 = 26+ 1 = 27, where Xc is the compact dual of DV.

Thus, any such � satisfies the desired property.

Case 2: When �∼= DI
2,q for some q ≥ 3, we have

4q = 2N > N ′+ 1=
(2+q

q

)
=

1
2(q + 1)(q + 2)

if and only if 0> q2
−5q+2=

(
q− 5

2

)2
−

17
4 , which is equivalent to q = 3 or q = 4

because q ≥ 3 is an integer and
(
q− 5

2

)2
≥

25
4 >

17
4 for q ≥ 5. The result follows. �

Remark 4.2. We consider rank-2 irreducible bounded symmetric domains � be-
cause the functional equations of holomorphic isometries from (Bn, gBn ) to (�, g�)
are similar to those of holomorphic isometries from (Bn, gBn ) to (DIV

m , gDIV
m
) for

m ≥ 3 under the assumption that the isometries map 0 to 0. This is related to
the study in [CM]. In addition, we will assume that such a bounded symmetric
domain � satisfies 2 · dimC�> N ′+ 1.
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Let �b CN be an irreducible bounded symmetric domain of rank 2 satisfying
2N>N ′+1, where N ′ is defined in Section 1. Recall that g� is the canonical Kähler–
Einstein metric on � normalized so that minimal disks are of constant Gaussian cur-
vature −2. In terms of the Harish-Chandra coordinates z = (z1, . . . , zN ) ∈�⊂CN,
the Kähler form with respect to g� is equal to ωg� =−

√
−1∂∂̄ log h�(z, z), where

h�(z, ξ)= 1−
N∑

j=1

z j ξ̄j +

N ′−N∑
l=1

Ĝl(z)Ĝl(ξ)

such that each Ĝl(z) is a homogeneous polynomial of degree 2 in z so that Ĝl(λz)=
λ2Ĝl(z) for any λ ∈ C∗. Note that from Section 2, we have Gl+N (z)= Ĝl(z) for
l = 1, . . . , N ′− N. Write G(z) := (Ĝ1(z), . . . , Ĝ N ′−N (z))T. Let n, N and N ′ be
positive integers satisfying N ′− N + n ≤ N. We also let U ′ ∈ M(N − n, N ;C) be
such that rank(U ′)= N − n. Then, we define

(4-1) W ′U :=
{

z=(z1, . . . , zN ) ∈� : U ′zT
=

(
G(z)

0(2N−n−N ′)×1

)}
.

The following generalizes the study of ĤI1(B
n, DIV

N ), N ≥ 3, in [CM]. Moreover,
in the following proposition, the reason of assuming n ≤ 2N − N ′ =: n0(�) is
that there is a certain explicitly defined class of complex-analytic subvarieties of �
which contains the images of all holomorphic isometries (Bn, gBn )→ (�, g�) up to
composing with elements in Aut(�), and each of them is contained entirely in WU ′′

for some matrix U ′′ ∈M(N−n0(�), N ;C) satisfying U ′′U ′′T = IN−n0(�). We will
show that this gives a relation between the spaces ĤI1(B

n, �), 1≤ n ≤ n0(�)− 1,
and ĤI1(B

n0(�), �).

Proposition 4.3. Let � b CN be an irreducible bounded symmetric domain of
rank 2 such that 2N > N ′ + 1, where N ′ is defined in Section 1. Let n be an
integer satisfying 1 ≤ n ≤ 2N − N ′. If f ∈ ĤI1(B

n, �), then 9( f (Bn)) is the
irreducible component of W ′U containing 0 for some matrix U ′ ∈ M(N − n, N ;C)
satisfying U ′U ′T = IN−n and some9 ∈Aut(�) satisfying9( f (0))=0. Conversely,
given any matrix U ′′ ∈ M(N − n, N ;C) satisfying U ′′U ′′T = IN−n , the irreducible
component of WU ′′ containing 0 is the image of some f̃ ∈ ĤI1(B

n, �).

Proof. Let f ∈ ĤI1(B
n, �). Assume without loss of generality that f (0)= 0. Then,

we have

1−
N∑

j=1

| f j (w)|2+

N ′−N∑
l=1

|Ĝl( f (w))|2 = 1−
n∑

l=1

|wl |
2.

Note that 2N − 1≥ N ′ and 2N − N ′ ≥ n. By Lemma 2.1, there exists U ∈U (N )
such that

(4-2) U( f 1(w), . . . , f N (w))T = (w1, . . . , wn, G( f (w))T , 01×(2N−n−N ′))
T.
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We write U = [A′ U ′]T, where U ′ ∈ M(N − n, N ;C) is a matrix which satisfies
U ′U ′T = IN−n . Then, we have f (Bn)⊆W ′U by (4-2). It is clear that the Jacobian
matrix of W ′U at 0 is equal to U ′, which is of full rank N − n so that W ′U is
smooth at 0 and of dimension n at 0. Let S be the irreducible component of W ′U
containing f (Bn), which also contains 0. Then, we have dim S = n. Since both
S and f (Bn) are irreducible complex-analytic subvarieties of �, f (Bn) ⊆ S and
dim S = dim f (Bn) = n, we have S = f (Bn). Thus, the irreducible component
of W ′U containing 0 is the image of some holomorphic isometric embedding f :
(Bn, gBn )→ (�, g�).

Conversely, let n be an integer satisfying 1 ≤ n ≤ 2N − N ′ and let U ′′ ∈
M(N − n, N ;C) be a matrix satisfying U ′′U ′′T = IN−n . By Lemma 2.3, there
exists A′′ ∈ M(n, N ;C) such that [A′′ U ′′]T ∈U (N ) so that

(4-3)
[

A′′

U ′′

] z1
...

zN

=
 w(z)

G(z)
0(2N−n−N ′)×1

 for all z = (z1, . . . , zn) ∈WU ′′,

where w(z) = (w1(z), . . . , wn(z))T := A′′(z1, . . . , zN )
T. Note that the Jacobian

matrix of WU ′′ at 0 is equal to U ′′, which is of full rank N − n so that WU ′′ is
smooth at 0 and of dimension n at 0. Let S′ be the irreducible component of WU ′′

containing 0. Then, we have dim S′ = n. Actually S′ is precisely the point set
closure of the connected component of Reg(WU ′′) containing 0 in �. Denote by
Reg(S′) the regular locus of S′. Then, Reg(S′) is a connected complex manifold
lying inside � and 0 ∈ Reg(S′). Let ϕ : B(0)→ Reg(S′) be a biholomorphism
onto an open neighborhood of 0 in Reg(S′) such that ϕ(0) = 0, where B(0) is
some open neighborhood of 0 in Cn. Here the image ϕ(B(0)) is a germ of complex
submanifold of � at 0, i.e., a complex submanifold of some open neighborhood of
0 in �. Note that h�(z, z)= 1−

∑n
l=1 |wl(z)|2 for any z ∈ S′ and ζ = (ζ1, . . . , ζn)

can be regarded as local holomorphic coordinates on Reg(S′) around 0 ∈ Reg(S′).
Then, it follows from (4-3) that for ζ ∈ B(0), we have

(4-4) h�(ϕ(ζ ), ϕ(ζ ))= 1−
n∑

l=1

|wl(ϕ(ζ ))|
2

and− log h�(ϕ(ζ ), ϕ(ζ ))=− log
(
1−
∑n

l=1 |wl(ϕ(ζ ))|
2
)

is a local Kähler potential
on Reg(S′) which is the restriction of the Kähler potential on (�, g�) to an open
neighborhood of 0 in Reg(S′). It follows from (4-4) that the germ of S′ at 0 is the
image of a germ of holomorphic isometry f̃ : (Bn, gBn ; 0)→ (�, g�; 0). By the
extension theorem of [Mok 2012], f̃ extends to a holomorphic isometric embedding
f̃ : (Bn, gBn )→ (�, g�). Since both f̃ (Bn) and S′ are n-dimensional irreducible
complex-analytic subvarieties of � and f̃ (Bn(0, ε)) ⊂ f̃ (Bn)∩ S′ for some real
number ε ∈ (0, 1). It follows that S′ = f̃ (Bn). Hence, the irreducible component
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of WU ′′ containing 0 is the image of some holomorphic isometric embedding
f̃ ∈ ĤI1(B

n, �). �

Remark 4.4. From the proof of Lemma 4.1, we see that Proposition 4.3 precisely
holds true for the space ĤI1(B

n, �) whenever the integer n and the bounded sym-
metric domain � satisfy one of the following:

(1) �∼= DI
2,3, 1≤ n ≤ 3= p(DI

2,3).

(2) �∼= DI
2,4, 1≤ n ≤ 2.

(3) �∼= DII
5 , 1≤ n ≤ 5= p(DII

5 )− 1.

(4) �∼= DIV
m for some integer m ≥ 3, 1≤ n ≤ m− 1= p(DIV

m )+ 1.

(5) �∼= DV, 1≤ n ≤ 6.

Moreover, Proposition 4.3 actually provides the classification of images of all
f ∈ ĤI1(1,�) whenever � is a rank-2 irreducible bounded symmetric domain

which is not biholomorphic to DI
2,q for any q ≥ 5. This also solves part of Problem 3

in [Mok and Ng 2009, p. 2645] theoretically. It is expected that there are many
incongruent holomorphic isometries in ĤI1(1,�). However, Proposition 4.3 at
least provides a source of constructing explicit examples of holomorphic isometries
in ĤI1(1,�). In particular, for the case where the target is an irreducible bounded
symmetric domain of rank 2, Problem 3 in [Mok and Ng 2009, p. 2645] remains
unsolved precisely in the case where the target � is DI

2,q for some q ≥ 5.

4B. Proof of Theorem 1.3. As we have mentioned in Section 4A, Proposition 4.3
actually gives a relation between the spaces ĤI1(B

n, �), 1≤ n ≤ n0(�)− 1, and
ĤI1(B

n0(�), �). In other words, this yields Theorem 1.3.

Proof of Theorem 1.3. We follow the setting in the proof of Proposition 4.3. Assume
without loss of generality that f (0)=0. Note that N ′−N+n< N and thus f (Bn) is
the irreducible component of W ′U containing 0 for some matrix U ′∈M(N−n, N ;C)
satisfying U ′U ′T = IN−n by Proposition 4.3. Moreover, we have[

A′

U ′

]
( f 1(w), . . . , f N (w))T =

(
w1, . . . , wn, G( f (w))T, 01×(2N−N ′−n)

)T

for some A′ ∈ M(n, N ;C) such that [A′ U ′]T ∈U (N ) after composing with some
element in the isotropy subgroup of Aut(Bn) at 0 if necessary (by Lemma 2.3). We
write

U ′ =
[

U ′1
U ′2

]
for some U ′1 ∈ M(N ′− N , N ;C), U ′2 ∈ M(2N − N ′− n, N ;C).

Moreover, we have U ′1(z1, . . . , zN )
T
= G(z) and U ′1U ′1

T
= IN ′−N for any z ∈W ′U.

It follows from Proposition 4.3 that the irreducible component of WU ′1 containing 0
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is the image of some holomorphic isometric embedding F : (Bn0, gBn0 )→ (�, g�),
where n0 = n0(�) := 2N − N ′. We may suppose that F(0) = 0 without loss of
generality. Since f (Bn)⊂� is irreducible and f (Bn)⊂WU ′1 , we know S := f (Bn)

lies inside the irreducible component S′ := F(Bn0) of WU ′1 containing 0. Since
(S, g�|S) ∼= (Bn, gBn ) and (S′, g�|S′) ∼= (Bn0, gBn0 ) are of constant holomorphic
sectional curvature −2, we have (S, g�|S)⊂ (S′, g�|S′) is totally geodesic and the
result follows; see the proof of [CM, Theorem 2]. �

Remark 4.5. (1) It follows from Lemma 4.1 that Theorem 1.3 holds true when
the pair (�, n0(�)) is one of the following:

(a) �∼= DI
2,3, n0(�)= 3.

(b) �∼= DI
2,4, n0(�)= 2.

(c) �∼= DII
5 , n0(�)= 5.

(d) �∼= DIV
m (m ≥ 3), n0(�)= m− 1.

(e) �∼= DV, n0(�)= 6.

(2) It is not known whether Theorem 1.3 still holds true when n0(�) is replaced by
p(�)+ 1 and � 6∼= DIV

m for any integer m ≥ 3.

(3) For the particular case where � = DI
2,3, it follows from [Mok 2016] that if

the space ĤI1(B
n, DI

2,3) is nonempty, then n ≤ p(DI
2,3)+ 1= 4. In this case, it is

motivated by our study in the present article to consider the following problem in
order to classify all holomorphic isometries in ĤI1(B

n, DI
2,3):

Given any f ∈ ĤI1(B
3, DI

2,3), can f be factorized as f = F ◦ ρ for some
F ∈ ĤI1(B

4, DI
2,3) and ρ ∈ ĤI1(B

3,B4)?
If the problem were solved and the answer were affirmative, then the classification

of all holomorphic isometries in ĤI1(B
n, DI

2,3) would be reduced to the uniqueness
problem for nonstandard (i.e., not totally geodesic) holomorphic isometries in
ĤI1(B

4, DI
2,3) constructed by Mok [2016].
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HAMILTONIAN STATIONARY CONES
WITH ISOTROPIC LINKS

JINGYI CHEN AND YU YUAN

In memory of Professor Wei-Yue Ding

We show that any closed oriented immersed Hamiltonian stationary isotropic
surface 6 with genus g6 in S5 ⊂C3 is (1) Legendrian and minimal if g6 = 0;
(2) either Legendrian or with exactly 2g6 − 2 Legendrian points if g6 ≥ 1.
In general, every compact oriented immersed isotropic submanifold Ln−1 ⊂

S2n−1 ⊂ Cn such that the cone C(Ln−1) is Hamiltonian stationary must be
Legendrian and minimal if its first Betti number is zero. Corresponding
results for nonorientable links are also provided.

1. Introduction

In this note we study the problem of when a Hamiltonian stationary cone C(L)
with isotropic link L on S2n−1 in Cn becomes special Lagrangian. A submanifold
M ⊂ Cn, not necessarily a Lagrangian submanifold, is Hamiltonian stationary if

divM(JH)= 0,

where J is the complex structure in Cn and H is the mean curvature vector of M
in Cn. In fact this is the variational equation of the volume of M, when one makes
an arbitrary deformation J∇Mϕ with ϕ ∈ C∞0 (M) for M :∫

M
〈H, J∇Mϕ〉 =

∫
M
ϕ divM(JH)− divM(ϕ JH)=

∫
M
ϕ divM(JH).

The notion of Hamiltonian stationary Lagrangian submanifolds in a Kähler manifold
was introduced in [Oh 1993] as critical points of the volume functional under
Hamiltonian variations (known to A. Weinstein, as noted there). Chen and Morvan
[1994] generalized it to the isotropic deformations.

As in [Harvey and Lawson 1982], a submanifold M in Cn is isotropic at p ∈M if

J (Tp M)⊥ Tp M,
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and it is isotropic if it is isotropic for every p. A submanifold M being isotropic is
equivalent to the standard symplectic 2-form on R2n vanishing on M. The dimension
of an isotropic submanifold is at most n, the half real dimension of Cn, and when it
is n, the submanifold is Lagrangian.

For an immersed (n−1)-dimensional submanifold L in the unit sphere S2n−1, let
u : L→ S2n−1 be the restriction of the coordinate functions in R2n to L . A point
u ∈ L is Legendrian if Tu L is isotropic in R2n and

J (Tu L)⊥ u.

L is Legendrian if all the points u are Legendrian. This is equivalent to L being
an (n−1)-dimensional integral submanifold of the standard contact distribution
on S2n−1. The cone

C(L)= {r x : r ≥ 0, x ∈ L}

is said to have link L . In this article, all links Lare assumed to be connected, and
we shall use 6 for the 2-dimensional link L .

The Hamiltonian stationary condition is a third-order constraint on the subman-
ifold M, as seen when M is locally written as a graph over its tangent space at a
point. The minimal submanifolds, a second-order constraint on the local graphical
representation of M, are automatically Hamiltonian stationary. We are particularly
interested in the case when M is a Lagrangian submanifold. The existence of
(many) compact Hamiltonian stationary Lagrangian submanifolds in Cn versus the
nonexistence of compact minimal submanifolds makes the study of Hamiltonian
stationary ones interesting. In this note, we shall not be concerned with the existence
of Hamiltonian stationary ones; instead, we shall concentrate on the rigidity property,
namely, when the Hamiltonian stationary ones reduce to special Lagrangians, in
the case when the submanifold is a cone over a spherical link in Cn.

A well-known fact about a link Lm
⊂ Sn and the cone C(L) over it is that L

is minimal in Sn if and only if C(L) \ {0} is minimal in Rn+1. When C(L) is
Hamiltonian stationary and isotropic, possibly away from the cone vertex 0 ∈ R2n,
we observe that the Hamiltonian stationary equation for C(L) splits into two
equations:

divL(JHL)= 0,

i.e., the link L is Hamiltonian stationary in R2n as well, and

〈JHL , u〉 = 0,

where HL is the mean curvature vector of L in R2n and u is the position vector
of L . Moreover, if the link L is isotropic in Cn, then

divL(JH L)= 0,
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where H L = HL −mu is the mean curvature vector of L in S2n−1; in fact,

divL(Ju)=
m∑

i=1

〈DEi (Ju), Ei 〉 =

m∑
i=1

〈JDEi u, Ei 〉 = 0

as DEi u is tangent to L , where D is the derivative in R2n and {E1, . . . , Em} is an
orthonormal local frame on T L .

Our observation is that the rigidity statements in [Chen and Yuan 2006] for
minimal links generalize to the Hamiltonian stationary setting.

Theorem 1.1. Let6 be a closed oriented immersed isotropic surface with genus g6
in S5

⊂ C3 such that the cone C(6) is Hamiltonian stationary away from its vertex.
Then

(1) if g6 = 0, the surface 6 is Legendrian and minimal (in fact, totally geodesic);

(2) if g6 ≥1, the surface6 is either Legendrian or has exactly 2g6−2 Legendrian
points counting the multiplicity.

It is known that the immersed minimal Legendrian sphere (g6 = 0) must be a
great two-sphere in S5; see, for example, [Haskins 2004, Theorem 2.7]. Simple
isotropic tori (g6 = 1) can be constructed so that the Hamiltonian stationary cone
C(6) is nowhere Lagrangian. A family of Hamiltonian stationary (nonminimal)
Lagrangian cones C(6) with g6 = 1 are presented in [Iriyeh 2005]. Bryant’s
classification [1985, p. 269] of minimal surfaces with constant curvature in spheres
provides examples of flat Legendrian minimal tori, as well as flat non-Legendrian
isotropic minimal tori (g6 = 1) in S5. The constructions of [Haskins 2004; Haskins
and Kapouleas 2007] show that there are infinitely many immersed (embedded if
g6 = 1) minimal Legendrian surfaces for each odd genus in S5.

In general dimensions and codimensions, we have:

Theorem 1.2. Let Lm be a compact isotropic immersed oriented submanifold in
the unit sphere S2n−1

⊂ Cn such that the cone C(Lm) is Hamiltonian stationary
away from its vertex. Suppose that the first Betti number of Lm is 0. Then, away
from its vertex,

(1) when m is the top dimension n − 1, the cone C(Ln−1) is Lagrangian and
minimal (or equivalently Ln−1 is Legendrian and minimal);

(2) for m < n − 1, the cone C(Lm) is isotropic, and if the differential 1-form
〈JHC(Lm), · 〉 is closed then the mean curvature HC(Lm) of C(Lm) vanishes on
the normal subbundle JTC(Lm).

We make two remarks when the dimension m of the link is two. First, Theorem 1.2
also implies Theorem 1.1(1). Second, if the first Betti number of L2 is not zero
(gL2 > 0) and L is isotropically immersed in S2n−1, with 2n− 1≥ 5, and C(L) is
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Hamiltonian stationary away from its cone vertex, the same argument as in the proof
of Theorem 1.1 leads to the same conclusion as in part (2) of Theorem 1.1, that the
cone C(L2) is isotropic either everywhere or along exactly 2gL2−2=−χ(L2) lines.

Theorems 1.2 and 1.1 (except the totally geodesic part) remain valid for nonori-
entable links (note that χ(6) = 2− g6 for a compact nonorientable surface 6);
see Remarks 2.1 and 3.1. The nonorientable version of Theorem 1.2 implies that
one cannot immerse a compact nonorientable Ln−1 with first Betti number zero
Hamiltonian stationarily and isotropically into S2n−1

⊂ Cn. Otherwise, the cone
C(Ln−1) would be a special Lagrangian cone; then C(Ln−1) would be orientable,
and Ln−1 would also be orientable. In particular, there exists no isotropic Hamilton-
ian stationary immersion of a real projective sphere RP2 into S5

⊂ C3. In passing,
we mention that Lê and Wang [2001] showed that minimal link Ln−1

⊂ S2n−1 is
Legendrian if and only if f = 〈Au, Ju〉 satisfies 4L f =−2n f for any A ∈ su(n).

It is interesting to find out whether there exists an isotropic Hamiltonian stationary
surface in S5 with exactly 2g6 − 2 Legendrian points for g6 > 1.

2. Hopf differentials and proof of Theorem 1.1

To measure how far the isotropic 6 is from being Legendrian, or the deviation of
the corresponding is cone from being Lagrangian, we project Ju onto the tangent
space of 6 in C3, where J is the complex structure in C3. Denote the length of the
projection by

f = | Pr Ju|2.

To compute the length, we need some preparation. Locally, take an isothermal
coordinate system (t1, t2) on the isotropic surface

u :6→ S5
⊂ C3.

Set the complex variable
z = t1

+
√
−1t2.

Then the induced metric has the local expression with the conformal factor ϕ

g = ϕ2
[(dt1)2+ (dt2)2] = ϕ2 dz dz̄.

We project Ju to each of the orthonormal bases ϕ−1u1, ϕ−1u2 with ui = ∂u/∂t i.
Then the sum of the squares of each projection is

f =
|〈Ju, u1〉|

2
+ |〈Ju, u2〉|

2

ϕ2 =
4|〈Ju, uz〉|

2

ϕ2 ,

where uz = ∂u/∂z and 〈 · , · 〉 is the Euclidean inner product on R6, and in particular
0 ≤ f ≤ 1. In fact, f is the square of the norm of the symplectic form ω in C3
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restricted on the cone C(6) with link 6:

ω|C(6) ∧∗ω|C(6) = f · volume form of C(6).

The Hamiltonian stationary condition for the cone C(6)= ru(t1, t2) is

0= divC(6)(JHC(6))

= 〈∂r (JHC(6)), ∂r 〉+
1
r2 div6

(
J 1

r
H6
)

=−
1
r2 〈JH6, u〉+ 1

r3 div6(JH6).

It follows that
div6(JH6)= 0

and

0= 〈JH6, u〉 = −
〈

4
ϕ2 uzz̄, Ju

〉
.

Coupled with the isotropy condition

〈Jui , u j 〉 = 0,

we have the holomorphic condition

〈Ju, uz〉z̄ = 〈Ju z̄, uz〉+ 〈Ju, uzz̄〉 =
〈
Ju,− 1

2ϕ
2u
〉
= 0.

The induced metric g yields a compatible conformal structure on the oriented
surface 6, which makes 6 a Riemann surface. We shall consider two cases
according to the genus g6 .

Case 1: g6 = 0. By the uniformization theorem for Riemann surfaces, see, for
example, [Ahlfors and Sario 1960, p. 125, p. 181], there exists a holomorphic
covering map

8 : (S2, gcanonical)→ (6, g),
or locally

8 :

(
C1,

1
(1+ |w|2)2

dw dw̄
)
→ (6, g).

For z =8(w) one has

1
(1+ |w|2)2

dw dw̄ =8∗(ψ2g)=8∗(ψ2ϕ2 dz dz̄)= ψ2ϕ2
|zw|2 dw dw̄,

where ψ is a positive (real analytic) function on 6. In particular

|zw|2 =
1

ψ2ϕ2(1+ |w|2)2
.

Note that
〈Ju, uw〉 = 〈Ju, uz〉zw = 〈Ju, uz〉

1
wz
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is a holomorphic function of z; in turn it is a holomorphic function of w. Also
〈Ju, uw〉 is bounded, approaching 0 as w goes to∞, because

|〈Ju, uw〉|2 =
|〈Ju, uz〉|

2

ϕ2

1
ψ2(1+ |w|2)2

.

So 〈Ju, uw〉≡0. Therefore f ≡0 and6 is Legendrian. We conclude that C(6)\{0}
is Lagrangian.

The 1-form 〈JHC(6), · 〉 on the Lagrangian submanifold C(6) \ {0} is closed.
(This follows directly either from Theorem 3.4 of [Dazord 1981], or can be verified
by local exactness via the local expression

HC(6) =−J∇C(6)θ

given in [Harvey and Lawson 1982]; this will be done in next section.) Its restriction
along 6 is therefore a closed 1-form i∗〈JHC(6), · 〉 as the pullback by the inclusion
i :6→C(6) of a closed 1-form. Since the first Betti number of 6 is zero (g6 = 0),
there is a smooth function θ6 on 6 such that

dθ6 = i∗〈JHC(6), · 〉.

Then
〈∇6θ6, · 〉 = dθ6 = 〈JH6, · 〉.

As we have seen, the Hamiltonian stationary condition on C(6) implies

0= div6(JH6)= div6(∇6θ6)=1gθ6.

On the closed surface 6, we have θ6 is constant, and in turn, 6 is minimal.
An immersed minimal Legendrian 2-sphere in S5 is totally geodesic. This is a

known fact; for a proof, see, for example, [Chen and Yuan 2006].

Case 2: g6 ≥ 1. As in Case 1, where g6 = 0, the isotropic and Hamiltonian
stationary condition gives us a local holomorphic function 〈Ju, uz〉 and global
holomorphic Hopf 1-differential 〈Ju, uz〉 dz. We only consider the case where
〈Ju, uz〉 dz is not identically zero. The zeros of 〈Ju, uz〉 are therefore isolated and
near each of the zeros, we can write

〈Ju, uz〉 = h(z)zk,

where h is a local holomorphic function, nonvanishing at the zero point z = 0 and
k is a positive integer. One can also view

〈Ju, uz〉 =
1
2

(
〈Ju, u1〉−

√
−1〈Ju, u2〉

)
as the tangent vector

1
2〈Ju, u1〉u1−

1
2〈Ju, u2〉u2 =

1
2〈Ju, u1〉 ∂1−

1
2〈Ju, u2〉 ∂2



HAMILTONIAN STATIONARY CONES WITH ISOTROPIC LINKS 323

along the tangent space T6, where ∂i = ∂u/∂t i. The projection Pr Ju on the tangent
space of T6 is locally represented as

Pr Ju =
〈Ju, u1〉 ∂1+〈Ju, u2〉 ∂2

ϕ2 .

The index of the globally defined vector field Pr Ju at each of its singular points,
i.e., where Pr Ju = 0, is the negative of that for the vector field 1

2〈Ju, u1〉 ∂1 −
1
2〈Ju, u2〉 ∂2. Note that the index of the latter is k.

From the Poincaré–Hopf index theorem, for any vector field V with isolated
singularities on 6, one has∑

V=0

index(V )= χ(6)= 2− 2g6 ≤ 0.

The zeros of Pr Ju are just the Legendrian points on 6. So we conclude that the
number of Legendrian points is 2g6 − 2 counting the multiplicity. This completes
the proof of Theorem 1.1.

Remark 2.1. As mentioned in the Introduction, Theorem 1.1 (except the totally
geodesic part) and its generalization to higher codimensions can be extended for
the nonorientable links. This can be seen as follows. The Poincaré–Hopf index
theorem holds on compact nonorientable surfaces, our count of the indices of the still
globally defined Pr Ju via local holomorphic functions is valid too, and the index
of a singular point of a vector field is independent of local orientations. Moreover,
this index-counting argument yields an alternative proof for Theorem 1.1(1) (except
the totally geodesic part) and its generalization.

3. Harmonic forms and proof of Theorem 1.2

Consider an immersed isotropic Hamiltonian stationary submanifold in S2n−1

u : Lm
→ S2n−1

⊂ Cn.

The isotropy condition for any local coordinates (t1, . . . , tm) on Lm is given by

〈Jui , u j 〉 = 0,

where J is the complex structure of Cn and ui = ∂u/∂t i.
The Hamiltonian stationary condition for the cone C(6)= ru(t) is

0= divC(L)(JHC(L))

= 〈∂r (JHC(L)), ∂r 〉+
1
r2 divL

(
J
( 1

r
HL

))
=−

1
r2 〈JHL , u〉+ 1

r3 divL(JHL).
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Notice that 〈JHL , u〉 and divL(JHL) are independent of r . Therefore, the equation
above splits into two equations

divL(JHL)= 0
and

0= 〈JHL , u〉 = −〈1gu, Ju〉,

where g is the induced metric on L and1g is the Laplace–Beltrami operator of (L ,g).
To measure the deviation of the corresponding cone C(u(Lm)) from being

isotropic, we project Ju onto the tangent space of u(Lm) in Cn. Note that the
projection is the vector field along u(L)

Pr Ju =
m∑

i, j=1

gi j
〈Ju, ui 〉u j ,

where gi j = 〈ui , u j 〉, 1≤ i, j ≤ m. The corresponding 1-form

α =

m∑
i=1

〈Ju, ui 〉 dt i

is of course globally defined on Lm. In fact it is a harmonic 1-form, because α is
closed and coclosed as verified as follows:

dα =
m∑

i, j=1

〈Ju, ui 〉j dt j
∧ dt i

=

m∑
i, j=1

(〈Ju j , ui 〉+ 〈Ju, ui j 〉) dt j
∧ dt i

=

m∑
i, j=1

〈Ju, ui j 〉 dt j
∧ dt i

= 0,

and
δα = (−1)m·1+m+1

∗ d ∗α

=−∗ d
( m∑

i, j=1

(−1) j+1√ggi j
〈Ju, ui 〉 dt1

∧ · · · ∧ d̂t j ∧ · · · ∧ dtm
)

=−∗

m∑
i, j=1

∂j (
√

ggi j
〈Ju, ui 〉) dt1

∧ · · · ∧ dt j
∧ · · · ∧ dtm

=−
1
√

g

m∑
i, j=1

∂j (
√

ggi j
〈Ju, ui 〉)

=−

m∑
i, j=1

(
〈Ju j , gi j ui 〉+

〈
Ju, 1
√

g
∂j (
√

ggi j ui )
〉)
=−〈Ju,1gu〉 = 0,
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where we have used the isotropy condition and the consequence of Hamiltonian
stationary condition in the last two steps, respectively.

The Hodge–de Rham theorem implies that the harmonic 1-form α must vanish
because the first Betti number of Lm is zero by assumption. It follows that Pr Ju
must vanish. Therefore, the cone C(Lm) is isotropic.

Next, we claim that the differential 1-form

β = 〈JHL , · 〉

on Lm is closed. When m = n− 1, the isotropic cone C(Ln−1) is Lagrangian. By
[Harvey and Lawson 1982], around each point of C(Ln−1) \ {0}, there is a locally
defined Lagrangian angle θ such that

HC(L) =−J∇C(L)θ.

Now the globally defined 1-form β on the link L can be expressed locally as

β = 〈∇C(L)θ, · 〉 = 〈∇Lθ, · 〉 = dLθ

by noticing that HC(L) = HL as r = 1, where the second equality holds as the two
1-forms are on T L and the tangent vectors to L are orthogonal to ∂r , and dL stands
for the exterior differentiation on L . We conclude that β is a closed 1-form on L .
When m < n− 1, the 1-form 〈JHC(L), · 〉 is closed by assumption, so its restriction
β on L is closed.

Since the first Betti number of L is zero, there is a smooth function θL on L such
that 〈JHL , · 〉 = dLθL . This implies that the projection of JHL onto T L satisfies

m∑
i=1

〈JHL , Ei 〉Ei =∇LθL ,

where {E1, . . . , Em} is a local orthonormal frame of T L . The Hamiltonian stationary
condition on C(L) asserts, as we have seen earlier, that

1LθL = divL∇LθL = divL(JHL)= 0.

On the closed submanifold L , we know θL is constant. In turn, for m = n − 1,
C(Ln−1) is minimal, and for m < n − 1, C(Lm) is partially minimal, namely
HC(Lm) vanishes on the normal subbundle JTC(Lm). The proof of Theorem 1.2 is
complete.

Remark 3.1. As the projection Pr Ju and the adjoint operator δ are independent of
the local orientations and the Hodge–de Rham theorem holds for compact nonori-
entable manifolds, see, for example, [Lawson and Michelsohn 1994, p. 125–126],
we see that Theorem 1.2 remains true for nonorientable links Lm.



326 JINGYI CHEN AND YU YUAN

Remark 3.2. For a surface link L2
⊂ S2n−1 with gL = 0 for the case n > 3, if it is

isotropic and C(L2) is Hamiltonian stationary, the same argument as in [Chen and
Yuan 2006] leads to the conclusion that the second fundamental form of L in S2n−1

vanishes in the normal subbundle Ju⊕ J T L . When n = 3, L is totally geodesic in
S5 as noted before.

Corollary 3.3. Let Lm be a compact immersed isotropic submanifold in the unit
sphere S2n−1

⊂ Cn. If the Ricci curvature of Lm is nonnegative, and it is positive
somewhere or the Euler characteristic χ(Lm) is not zero, then the Hamiltonian
stationary cone C(Lm) is isotropic; in particular, C(Ln−1) is Lagrangian (or
equivalently Ln−1 is Legendrian) and minimal when m is the top dimension n− 1.

Under the above condition, from [Bochner 1948, p. 381], it follows immediately
that the first Betti number of Lm is zero. Then Theorem 1.2 and its nonorientable
version imply the corollary.
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QUANDLE THEORY AND THE OPTIMISTIC LIMITS OF
THE REPRESENTATIONS OF LINK GROUPS

JINSEOK CHO

For a given boundary-parabolic representation of a link group to PSL(2, C),
Inoue and Kabaya suggested a combinatorial method to obtain the devel-
oping map of the representation using the octahedral triangulation and the
shadow-coloring of certain quandles. A quandle is an algebraic system
closely related to the Reidemeister moves, so their method changes quite
naturally under the Reidemeister moves.

We apply their method to the potential function, which was used to
define the optimistic limit, and construct a saddle point of the function.
This construction works for any boundary-parabolic representation, and it
shows that the octahedral triangulation is good enough to study all possible
boundary-parabolic representations of the link group. Furthermore, the
evaluation of the potential function at the saddle point becomes the complex
volume of the representation, and this saddle point changes naturally under
the Reidemeister moves because it is constructed using the quandle.

1. Introduction

A link L has the hyperbolic structure when there exists a discrete faithful representa-
tion ρ : π1(L)→ PSL(2,C), where the link group π1(L) is the fundamental group
of the link complement S3

\L . The standard method to find the hyperbolic structure
of L is to consider some triangulation of S3

\ L and solve certain sets of equations.
(These equations are called the hyperbolicity equations.) Each solution determines a
boundary-parabolic representation1 and one of them is the geometric representation,
which means the determined boundary-parabolic representation is discrete and
faithful. Due to Mostow’s rigidity theorem, the hyperbolic structure of a link is a
topological property. Therefore, it is natural to expect the invariance of the hyper-
bolic structure under the Reidemeister moves. However, this cannot be seen easily,
because even a small change on the triangulation changes the solution radically.

MSC2010: primary 57M27; secondary 51M25, 58J28.
Keywords: optimistic limit, quandle, hyperbolic volume, boundary-parabolic representation, link

group.
1 boundary-parabolic means the image of the peripheral subgroup π1(∂(S

3
\ L)) is a parabolic

subgroup of PSL(2, C). Note that the geometric representation is boundary-parabolic.
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Recently, Inoue and Kabaya [2014] developed a method to construct the hyper-
bolic structure of L using the link diagram and the geometric representation. More
generally, for a given boundary-parabolic representation ρ, they constructed the
explicit geometric shapes of the tetrahedra of certain triangulations using ρ. Their
main method is to construct the geometric shapes using certain quandle homology,
which is defined directly from the link diagram D and the representation ρ. Here, a
quandle is an algebraic system whose axioms are closely related to the Reidemeister
moves of link diagrams, so their construction changes quite naturally under the
Reidemeister moves. (The definition of the quandle is in Section 2A. A good survey
of quandles is the book [Elhamdadi and Nelson 2015].) A result of Inoue and
Kabaya [2014] suggests a combinatorial method to obtain the hyperbolic structure
of the link complement.

Interestingly, the triangulation used in [Inoue and Kabaya 2014] was also used
to define the optimistic limit of the Kashaev invariant in [Cho et al. 2014]. As a
matter of fact, this triangulation arises naturally from the link diagram. (See Section
3 of [Weeks 2005] and Section 2C of this article for the definition.) We call this
triangulation octahedral triangulation of S3

\ (L ∪ {two points}) associated with
the link diagram D.

The optimistic limit first appeared in [Kashaev 1995] where the volume conjecture
was proposed. This conjecture relates certain limits of link invariants, called Kashaev
invariants, with the hyperbolic volumes. The optimistic limit, which was first defined
in [Murakami 2000], is the value of a certain potential function evaluated at a saddle
point, where the function and the value are expected to be an analytic continuation
of the Kashaev invariant and the limit of the invariant, respectively. As a matter
of fact, physicists usually call the evaluation the classical limit and consider it the
actual limit of the invariant. A mathematically rigorous definition of the optimistic
limit was proposed in [Yokota 2011] and the value was proved to coincide with the
hyperbolic volume. Several versions of the optimistic limit have been developed, in
a number of articles, but we will modify the version of [Cho et al. 2014] so as to
construct a solution without the need to solve equations.

The optimistic limit is defined by the potential function V (z1, . . . , zn, w
j
k , . . .).

Previously, in [Cho et al. 2014], this function was defined purely by the link diagram,
but here we modify it using the information of the representation ρ. (The definition
is in Section 3.) We consider a solution of the set

H :=
{

exp
(

zk
∂V
∂zk

)
=1,exp

(
w

j
k
∂V
∂w

j
k

)
=1| j :degenerate crossings,k=1, . . . ,n

}
,

which is a saddle-point of the potential function V. Then Proposition 3.1 will show
that H becomes the hyperbolicity equations of the octahedral triangulation.

Solving the equations in H is not easy because there are infinitely many solutions.
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The standard way to avoid this difficulty is to deform the octahedral triangulation of
S3
\(L∪{two points}) to the triangulation of S3

\L , as in [Yokota 2011]. However,
this deformation produces the problem of the existence of solutions because some
triangulations constructed from a link diagram may have no solution. (Sakuma
and Yokota [2016] proved the existence of solutions for the alternating links.)
Furthermore, the author believes these deformations of the triangulation lose the
combinatorial properties of link diagrams. Therefore, we will use the octahedral
triangulation without any deformation and do not solve the equations in H. Instead,
we will construct an explicit solution (z(0)1 , . . . , z(0)n , (w

j
k )
(0), . . .) of H.

Theorem 1.1. Using the quandle associated with the representation ρ, there exists
a formula to construct a solution (z(0)1 , . . . , z(0)n , (w

j
k )
(0), . . .) of H. (The exact

formulas are in Theorem 3.2.)

The evaluation of the potential function V depends on the choice of log-branch.
To obtain a well-defined value, modify the potential function to

(1) V0(z1, . . . , zn, (w
j
k ), . . .) :=

V (z1, . . . , zn, (w
j
k ), . . .)−

∑
k

(
zk
∂V
∂zk

)
log zk −

∑
j,k

(
w

j
k
∂V
∂w

j
k

)
logw j

k .

Theorem 1.2. For the constructed solution (z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .) of H and

the modified potential function V0 above, the following holds:

(2) V0(z
(0)
1 , . . . , z(0)n , (w

j
k )
(0), . . .)≡ i(vol(ρ)+ i cs(ρ)) (mod π2),

where vol(ρ) and cs(ρ) are the hyperbolic volume and the Chern–Simons invariant
of ρ defined in [Zickert 2009], respectively.

The proof will be in Theorem 3.3. The left-hand side of (2) is called the optimistic
limit of ρ, and vol(ρ)+ i cs(ρ) in the right-hand side is called the complex volume
of ρ.

Note that for any boundary-parabolic representation ρ, we can always construct
the solution associated with ρ. This implies that the octahedral triangulation is
good enough for the study of all possible boundary-parabolic representations from
the link group to PSL(2,C). The set of all possible representations can be regarded
as the Ptolemy variety (see [Garoufalidis et al. 2015] for detail) and we expect the
octahedral triangulation will be very useful to the study of the Ptolemy variety. (An
actual application to the Ptolemy variety is in preparation now.)

Furthermore, the construction of the solution is based on the quandle in [Inoue
and Kabaya 2014]. Therefore, this solution changes locally under the Reidemeister
moves. This implies that we can explore the hyperbolic structure of a link by finding
the solution and keeping track of the changes of the solution under the Reidemeister
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moves. As a matter of fact, after the appearance of the first draft of this article, this
idea was successfully used in [Cho 2016a; Cho and Murakami 2017] and more
applications are in preparation.

Among the applications, we remark that [Cho 2016a] contains very similar
results to this article. Both articles construct the solution associated with ρ using
the same quandle. However, the major differences are the triangulations. Both use
the same octahedral decomposition of S3

\ (L ∪ {two points}), but this article uses
the subdivision of each octahedron into four tetrahedra and call the result four-term
(or octahedral ) triangulation, whereas [Cho 2016a] uses the subdivision of the
same octahedron into five tetrahedra and calls the result five-term triangulation.
Some tetrahedra in the four-term triangulation can be degenerate and this introduces
technical difficulties. However, the five-term triangulation used in [Cho 2016a]
does not contain any degenerate tetrahedra, so it is far easier and more convenient.
In conclusion, this article contains the original idea of using a quandle to construct
the solution and [Cho 2016a] improved the idea.

The layout of this article is as follows. In Section 2, we will summarize some
results from [Inoue and Kabaya 2014]. In particular, the definition of the quandle
and the octahedral triangulation will appear. Section 3 will define the optimistic
limit and the hyperbolicity equations. The main formula (Theorem 3.3) of the
solution associated with the given representation ρ will appear. Section 4 will
discuss two simple examples, the figure-eight knot 41 and the trefoil knot 31.

2. Quandles

In this section, we will survey some results of [Inoue and Kabaya 2014]. We remark
that all formulas in this section come from that article, and the author learned them
from the series of lectures given by Ayumu Inoue at Seoul National University
during the spring of 2012.

2A. Conjugation quandle of parabolic elements.

Definition 2.1. A quandle is a set X with a binary operation ∗ satisfying the
following three conditions:

(1) a ∗ a = a for any a ∈ X .

(2) The map ∗b : X→ X (a 7→ a ∗ b) is bijective for any b ∈ X .

(3) (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) for any a, b, c ∈ X .

The inverse of ∗b is notated by ∗−1b. In other words, the equation a ∗−1 b = c
is equivalent to c ∗ b = a.

Definition 2.2. Let G be a group and X be a subset of G satisfying

g−1 Xg = X for any g ∈ G.
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Define the binary operation ∗ on X by

(3) a ∗ b = b−1ab

for any a, b ∈ X . Then (X, ∗) becomes a quandle and is called the conjugation
quandle.

As an example, let P be the set of parabolic elements of PSL(2,C)= Isom+(H3).
Then,

g−1Pg = P

holds for any g ∈ PSL(2,C). Therefore, (P, ∗) is a conjugation quandle, and this
is the only quandle we use in this article.

To perform concrete calculations, an explicit expression of (P, ∗) was introduced
in [Inoue and Kabaya 2014]. First, note that(

p q
r s

)−1 (
1 1
0 1

)(
p q
r s

)
=

(
1+ rs s2

−r2 1− rs

)
,

for
( p

r
q
s

)
∈ PSL(2,C). Therefore, we can identify (C2

\ {0})/± with P by

(4)
(
α β

)
←→

(
1+αβ β2

−α2 1−αβ

)
,

where ± means the equivalence relation
(
α β

)
∼
(
−α −β

)
. We define the opera-

tion ∗ on P by(
α β

)
∗
(
γ δ

)
:=
(
α β

) (1+ γ δ δ2

−γ 2 1− γ δ

)
∈ (C2

\ {0})/±,

where the matrix multiplication on the right-hand side is the standard multiplication.
(This definition is the transpose of the one used in [Inoue and Kabaya 2014] and [Cho
2016a].) Note that this definition coincides with the operation of the conjugation
quandle (P, ∗) by(
α β

)
∗
(
γ δ

)
=
(
α β

) (1+ γ δ δ2

−γ 2 1− γ δ

)
∈ (C2

\ {0})/±

←→

(
1+ γ δ δ2

−γ 2 1− γ δ

)−1 (
1+αβ −α2

β2 1−αβ

)(
1+ γ δ δ2

−γ 2 1− γ δ

)
=
(
γ δ

)−1 (
α β

) (
γ δ

)
∈ PSL(2,C).

The inverse operation is given by(
α β

)
∗
−1 (γ δ

)
=
(
α β

) (1− γ δ −γ 2

δ2 1+ γ δ

)
.

From now on, we use the notation P instead of (C2
\ {0})/±.
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Figure 1. The figure-eight knot 41.

2B. Link group and shadow-coloring. Consider a representation ρ : π1(L) →
PSL(2,C) of a hyperbolic link L . We call ρ boundary-parabolic when the peripheral
subgroup π1(∂(S

3
\L)) of π1(L) maps to a subgroup of PSL(2,C) whose elements

are all parabolic.
For a fixed oriented link diagram2 D of L , Wirtinger presentation gives an

algorithmic expression of π1(L). For each arc αk of D, we draw a small arrow
labeled ak as in Figure 1, which represents a loop. (The details are in [Rolfsen 1976].
Here we are using the opposite orientation of ak to be consistent with the operation
of the conjugation quandle.) This loop corresponds to one of the meridian curves of
the boundary tori, so ρ(ak) is an element in P . Hence we call {ρ(a1), . . . , ρ(an)}

the arc-coloring3 of D, where each ρ(ak) is assigned to the corresponding arc αk .
The Wirtinger presentation of the link group is given by

π1(L)= 〈a1, . . . , an ; r1, . . . , rn〉,

where the relation rl is assigned to each crossing as in Figure 2. Note that rl

coincides with (3), so we can write down the relation of the arc-colors as in Figure 3.
From now on, we always assume ρ : π1(L)→ PSL(2,C) is a given boundary-

parabolic representation. To avoid redundant notations, arc-coloring will be denoted
by {a1, . . . , an} without indicating ρ from now on. Choose an element s f ∈ P

2 We always assume the diagram does not contain a trivial knot component which has only over-
crossings or under-crossings or no crossing. (For example, any inseparable link diagram satisfies this
condition.) If it happens, then we change the diagram of the trivial component slightly. For example,
applying a Reidemeister second move to make different types of crossings or a Reidemeister first
move to add a kink is good enough. This assumption is necessary to guarantee that the octahedral
triangulation becomes a topological triangulation of S3

\ (L ∪ {two points})
3 Strictly speaking, an arc-coloring is a map from arcs of D to P , not a set. (A region-coloring,

which will be defined below, is also a map from regions of D to P .) However, we abuse the set
notation here for convenience.
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Figure 2. Relations at crossings, where rl : al+1 = a−1
k alak (left),

or rl : al = a−1
k al+1ak (right).

corresponding to a region of the diagram D and determine s1, s2, . . . , sm ∈ P
corresponding to each regions using the relation in Figure 4.

The assignment of elements of P to all regions using the relation in Figure 4
is called the region-coloring. This assignment is well defined because the two
curves in Figure 5, which we call the cross-changing pair, determine the same
region-coloring, and any pair of curves with the same starting and ending points
can be transformed into each other by a finite sequence of cross-changing pairs.

An arc-coloring together with a region-coloring is called a shadow-coloring.
Lemma 2.4 shows an important property of shadow-colorings, which is crucial for
showing the existence of solutions of certain equations.

Definition 2.3. The Hopf map h : P −→ CP1
= C∪ {∞} is defined by(

α β
)
7→

α

β
.

Note that h
(
α β

)
= α/β is the fixed point of the Möbius transformation

f (z)=
(1+αβ)z−α2

β2z+ (1−αβ)
.

Lemma 2.4. Let L be a link and assume an arc-coloring is already given by the
boundary-parabolic representation ρ : π1(L)−→ PSL(2,C). Then there exists a

�
�

�
�

�
�	

@
@
@

@
@
@

ρ(ak)ρ(al)

ρ(al) ∗ ρ(ak)

Figure 3. An arc-coloring.
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�
�

�
�
�
�	

s f
s f ∗ ak

ak

Figure 4. A region-coloring.

region-coloring such that, for any edge of the link diagram with its arc-color ak

(k = 1, . . . , n) and its surrounding region-colors s f , s f ∗ ak (see Figure 4), the
following holds:

(5) h(ak) 6= h(s f ) 6= h(s f ∗ ak) 6= h(ak).

Proof. Note that this was already proved inside the proof of Proposition 2 of [Inoue
and Kabaya 2014]. However, finding the proof in the article is not easy, so we write
it down below for the readers’ convenience.

For the given arc-colors a1, . . . , an , we choose region-colors s1, . . . , sm so that

(6) {h(s1), . . . , h(sm)} ∩ {h(a1), . . . , h(an)} =∅.

This is always possible because each h(sk) is written as h(sk)= Mk(h(s1)) by a
Möbius transformation Mk , which only depends on the arc-colors a1, . . . , ar . If we
choose h(s1) ∈ CP1 away from the finite set⋃

1≤k≤n

{
M−1

k (h(a1)), . . . ,M−1
k (h(ar ))

}
,

we have h(sk) /∈ {h(a1), . . . , h(ar )} for all k. This choice of a region-coloring
guarantees h(ak) 6= h(s f ) and h(s f ∗ ak) 6= h(ak).

Figure 5. Well-definedness of region-coloring for a positive cross-
ing (left) and a negative crossing (right).
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ak
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al

al ∗ ak

s

s ∗ al s ∗ ak

(s ∗ al) ∗ ak

Figure 6. Positive (left) and negative (right) crossings of j with
shadow-coloring.

Now assume h(s f ∗ ak)= h(s f ) holds under the choice of the region-coloring
above. Then we obtain

(7) h(s f ∗ ak)= âk(h(s f ))= h(s f ),

where âk : CP1
→ CP1 is the Möbius transformation

âk(z)=
(1+αkβk)z−α2

k

β2
k z+ (1−αkβk)

of ak =
(
αk βk

)
. Then (7) implies h(s) is the fixed point of âk , which means

h(ak)= h(s), which contradicts (6). �

We remark that the condition (6) of a region-coloring is stronger than the condition
in Lemma 2.4. For example, the region-colorings of the examples in Section 4
satisfy Lemma 2.4, but they do not satisfy (6). Even though we actually proved
the stronger condition (6) in the proof, the region-colorings we consider are always
assumed to satisfy Lemma 2.4 from now on. The arc-coloring induced by ρ together
with the region-coloring satisfying Lemma 2.4 is called the shadow-coloring induced
by ρ. This shadow-coloring will determine the exact coordinates of points of the
octahedral triangulation in the next section.

2C. Octahedral triangulations of link complements. In this section, we describe
the ideal triangulation of S3

\ (L ∪ {two points}) which appeared in [Cho et al.
2014]. Note that this triangulation naturally arises from the link diagram and has
been widely used under various names. For example, the software SnapPea used
this triangulation to obtain an ideal triangulation of the link complement S3

\ L
[Weeks 2005] (see also [Yokota 2011].) Another name of this construction is the
tunnel construction in [Baseilhac and Benedetti 2007]. It seems the first written
appearance of this construction was in [Thurston 1999].

To obtain the triangulation, we consider the crossing j in Figure 6 and place an
octahedron Aj Bj Cj Dj Ej Fj on each crossing j as in Figure 7 (left). Then we twist the
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AjAj Bj

Cj
Dj

Fj

Ej

AjAj Bj

Cj
Dj

Fj

Ej

AjAj Bj

Cj
Dj

Fj

Ej

Figure 7. An octahedron on the crossing j .

octahedron by identifying edges Bj Fj to Dj Fj and Aj Ej to Cj Ej , respectively. The
edges Aj Bj , Bj Cj , Cj Dj and Dj Aj are called horizontal edges and we sometimes
express these edges in the diagram as arcs around the crossing as in Figure 6.

Then we glue faces of the octahedra following the lines of the link diagram.
Specifically, there are three gluing patterns as in Figure 8. In each of the cases (left,
center and right), we identify the faces

4A j B j E j ∪4C j B j E j with 4C j+1D j+1F j+1 ∪4C j+1B j+1F j+1,

4B j C j F j ∪4D j C j F j with 4D j+1C j+1F j+1 ∪4B j+1C j+1F j+1,

4A j B j E j ∪4C j B j E j with 4C j+1B j+1E j+1 ∪4A j+1B j+1E j+1,

respectively.
Note that this gluing process identifies vertices {Aj ,Cj } to one point, denoted

by −∞, and {Bj ,Dj } to another point, denoted by∞, and finally {Ej ,Fj } to the
other points, denoted by Pt where t=1, . . . , c and c is the number of the components
of the link L . The regular neighborhoods of −∞ and∞ are two 3-balls and that
of
⋃c

t=1 Pt is a tubular neighborhood of the link L . Therefore, after removing all
vertices of the gluing, we obtain an octahedral decomposition of S3

\ (L ∪ {±∞}).
The octahedral triangulation is obtained by subdividing each octahedron of the
decomposition into four tetrahedra in a certain way.

To apply the construction of the developing map of ρ in Theorem 4.11 of [Zickert
2009], we subdivide each octahedron into four tetrahedra using the shadow-coloring
of ρ as follows.

Aj
Bj

Cj

D j+1
C j+1

B j+1

Bj
Cj

Dj

D j+1
C j+1

B j+1

Aj
Bj

Cj

C j+1
B j+1

A j+1

Figure 8. Three gluing patterns.
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s *al
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l(s *a )*ak
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p

p

p

ak

akal

al *ak

s

s *al

s *ak

l(s *a )*ak

Figure 9. Coordinates of tetrahedra when h(ak) 6= h(al) with a
positive crossing (left) and a negative cross (right).

Definition 2.5. Consider a crossing j with the shadow-coloring in Figure 6. The
crossing j is called nondegenerate when h(ak) 6= h(al) and degenerate when
h(ak)= h(al).

If a crossing j is nondegenerate, then we subdivide the octahedron on the
crossing j into four tetrahedra by adding the edge Ej Fj as in Figure 7 (center).
Also, if a crossing j is degenerate, then we subdivide it by adding edge Aj Cj as
in Figure 7 (right). This subdivision guarantees nondegeneracy of all tetrahedra,
which will be proved at the end of this section. The resulting triangulation is called
the octahedral triangulation of S3

\ (L ∪ {±∞}).
Consider the shadow-coloring of a link diagram D induced by ρ, and let
{a1, a2, . . . , an} be the arc-colors and {s1, s2, . . . , sm} be the region-colors. The
number of these colors is finite, so we can choose an element p ∈ P satisfying

(8) h(p) /∈ {h(a1), . . . , h(an), h(s1), . . . , h(sm)}.

The geometric shape of the triangulation is determined by the shadow-coloring
induced by ρ in the following way. If the crossing j in Figure 6 is nondegenerate
and positive, then let the signed coordinates of the tetrahedra Ej Fj Cj Dj , Ej Fj Aj Dj ,
Ej Fj Aj Bj , and Ej Fj Cj Bj be

(9)

(al, ak, s ∗ al, p),

−(al, ak, s, p),

(al ∗ ak, ak, s ∗ ak, p),

−(al ∗ ak, ak, (s ∗ al) ∗ ak, p),

respectively. Here, the minus sign of the coordinate means the orientation of the
tetrahedron does not coincide with the one induced by the vertex-ordering. Also, if
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al

al
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(s*al)*ak

s*al

s*ak

al*ak

p

s
p

p

p

(s*al)*ak

Figure 10. Figure 9 in octahedral position for a positive crossing
(left) and a negative crossing (right).

the crossing j is nondegenerate and negative, then let the signed coordinates of the
tetrahedra Ej Fj Cj Dj , Ej Fj Aj Dj , Ej Fj Aj Bj , and Ej Fj Cj Bj be

(10)

(al, ak, s, p),

−(al, ak, s ∗ al, p),

(al ∗ ak, ak, (s ∗ al) ∗ ak, p),

−(al ∗ ak, ak, s ∗ ak, p),

respectively. Figures 9 and 10 show the signed coordinates of (9) and (10).
On the other hand, if the crossing j in Figure 6 is degenerate and is positive,

then let the signed coordinates of the tetrahedra Fj Aj Cj Dj , Ej Aj Cj Dj , Ej Aj Cj Bj ,
and Fj Aj Cj Bj be

(11)

−(ak, s, s ∗ al, p),

(al, s, s ∗ al, p),

−(al ∗ ak, s ∗ ak, (s ∗ al) ∗ ak, p),

(ak, s ∗ ak, (s ∗ al) ∗ ak, p),

respectively. If j is degenerate and negative, then let the signed coordinates be

(12)

−(ak, s ∗ al, s, p),

(al, s ∗ al, s, p),

−(al ∗ ak, (s ∗ al) ∗ ak, s ∗ ak, p),

(ak, (s ∗ al) ∗ ak, s ∗ ak, p),

respectively.
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Figure 11. Coordinates of tetrahedra when h(ak) = h(al), for a
positive crossing (left) and a negative crossing (right).

Figure 11 shows the signed coordinates of (11) and (12). Note that the orientations
of (9)–(12) are different from [Inoue and Kabaya 2014] and match [Cho et al. 2014].

We remark that the signed coordinates (9)–(12) actually define an element in
certain simplicial quandle homology in [Inoue and Kabaya 2014]. Although this
homology is crucial for proving the main results of [Inoue and Kabaya 2014], we
will use their results without the homology.

Definition 2.6. Let v0, v1, v2, v3 ∈ CP1
= C∪ {∞} = ∂H3. The hyperbolic ideal

tetrahedron with signed coordinate σ(v0, v1, v2, v3) with σ ∈ {±1} is called degen-
erate when some of the vertices v0, v1, v2, v3 coincide, and nondegenerate when
all the vertices are different. The cross-ratio [v0, v1, v2, v3]

σ of the nondegenerate
signed coordinate σ(v0, v1, v2, v3) is defined by

[v0, v1, v2, v3]
σ
=

(
v3−v0
v2−v0

v2−v1
v3−v1

)σ
∈ C \ {0, 1}.

The tetrahedra in (9)–(12) have elements of the coordinates in P . Therefore, we
need to send them to points in the boundary of the hyperbolic 3-space ∂H3 so as to ob-
tain hyperbolic ideal tetrahedra. The Hopf map h (see Definition 2.3) plays this role.

Lemma 2.7. The images of (9)–(12) under the Hopf map h are nondegenerate
tetrahedra. Specifically, if the crossing j is nondegenerate and positive, then

(13)

(h(al), h(ak), h(s ∗ al), h(p)),

−(h(al), h(ak), h(s), h(p)),

(h(al ∗ ak), h(ak), h(s ∗ ak), h(p)),

−(h(al ∗ ak), h(ak), h((s ∗ al) ∗ ak), h(p)),
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are nondegenerate hyperbolic ideal tetrahedra and, if the crossing j is nondegener-
ate and negative, then

(14)

(h(al), h(ak), h(s), h(p)),

−(h(al), h(ak), h(s ∗ al), h(p)),

(h(al ∗ ak), h(ak), h((s ∗ al) ∗ ak), h(p)),

−(h(al ∗ ak), h(ak), h(s ∗ ak), h(p)),

are nondegenerate hyperbolic ideal tetrahedra also.
If the crossing j is degenerate and positive, then

(15)

(h(al), h(s), h(s ∗ al), h(p)),

−(h(ak), h(s), h(s ∗ al), h(p)),

(h(ak), h(s ∗ ak), h((s ∗ al) ∗ ak), h(p)),

−(h(al ∗ ak), h(s ∗ ak), h((s ∗ al) ∗ ak), h(p)),

are nondegenerate hyperbolic ideal tetrahedra and, if the crossing j is degenerate
and negative, then

(16)

(h(al), h(s ∗ al), h(s), h(p)),

−(h(ak), h(s ∗ al), h(s), h(p)),

(h(ak), h((s ∗ al) ∗ ak), h(s ∗ ak), h(p)),

−(h(al ∗ ak), h((s ∗ al) ∗ ak), h(s ∗ ak), h(p)),

are nondegenerate hyperbolic ideal tetrahedra.

Proof. Note that the region-coloring we are considering satisfies Lemma 2.4. To
show the nondegeneracy of a tetrahedron, it is enough to show any two endpoints
of an edge are different.

In the cases of (13)–(14), endpoints of any edge are adjacent, as a pair among
ak, s, s ∗ ak in Figure 4 (to check the adjacency, refer to Figure 5), or one of them
is p, except the edges (al, ak), (al ∗ ak, ak). Therefore, it is enough to show that
h(ak) 6= h(al) implies h(al ∗ ak) 6= h(ak), which is trivial because h(al ∗ ak) =

h(ak ∗ ak) implies h(al)= h(ak).
In the cases of (15)–(16), all endpoints of edges are adjacent or one of them is p,

so we get the proof. �

Note that, when the crossing j is degenerate, the first two tetrahedra in (15) share
the same coordinate with different signs and the others do the same. Therefore, all
tetrahedra cancel each other out geometrically and we can remove the octahedron
of the crossing. (This is why the crossing is called degenerate.) Also, the same
holds for (16). This idea will be used in Section 3.

The assignment of the coordinates to tetrahedra above is from [Inoue and Kabaya
2014]. Note that this assignment is based on the construction of the developing
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Figure 12. Edge parameters.

map of ρ proposed in [Neumann and Yang 1999] and [Zickert 2009], so the shape
of the triangulation determines the developing map of ρ.

2D. Complex volume of ρ. Consider an ideal tetrahedron with vertices v0, v1, v2,
and v3, where vk ∈ CP1. For each edge vkvl , we assign gkl and ĝkl ∈ CP1, and
call them long-edge parameter and edge parameter, respectively. (See Figure 12.)
Later, we will distinguish them by considering that gkl is assigned to the edge of a
triangulation and ĝkl to the edge of a tetrahedron.

Definition 2.8. For the edge parameter ĝkl of an ideal tetrahedron, the Ptolemy
relation is the following equation:

ĝ02ĝ13 = ĝ01ĝ23+ ĝ03ĝ12.

For example, if we define the edge parameter ĝkl := vl − vk , then direct calcula-
tion shows

(17) (v2− v0)(v3− v1)= (v1− v0)(v3− v2)+ (v3− v0)(v2− v1),

which is the Ptolemy relation. Furthermore, these edge parameters satisfy

(18) [v0, v1, v2, v3] =
ĝ03ĝ12

ĝ02ĝ13
.

To apply the results of [Zickert 2009] and [Hikami and Inoue 2015], the edge
parameters should satisfy the Ptolemy relation, (18) and one more condition that
they should depend on the edge of the triangulation, not of the tetrahedron. In
other words, if two edges are glued in the triangulation, the edge parameters should
be the same. We call this latter condition the coincidence condition. When the
edge-parameters satisfy the coincidence condition, we call them the long-edge
parameters and denote this by gkl . (We also need the extra condition that the
orientations of the two glued edges induced by the vertex-orientations of each
tetrahedron should coincide. However, the vertex-orientation in (13)–(16) always
satisfies this.) Unfortunately, the edge-parameter ĝkl = vl − vk defined above does
not satisfy this condition, so we will redefine the edge-parameter and the long-edge
parameter using [Inoue and Kabaya 2014] as follows.
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At first, consider two elements a =
(
α1 α2

)
, b =

(
β1 β2

)
in P . We define the

determinant det(a, b) by

det(a, b) := ± det
(
α1 α2

β1 β2

)
=±(α1β2−α2β1).

Note that the determinant is defined up to sign due to the choice of the representative
a =

(
α1 α2

)
=
(
−α1 −α2

)
∈ P . To remove this ambiguity, we fix representatives4

of arc-colors in C2
\ {0} once and for all. Then we fix a representative of one

region-color, which uniquely determines the representatives of all the other region-
colors by the arc-coloring. (This is due to the fact that s ∗ (±a) = s ∗ a for any
s, a ∈ C2

\ {0}.)
After fixing all the representatives of the shadow-coloring, we obtain a well-

defined determinant

(19) det(a, b)= det
(
α1 α2

β1 β2

)
= α1β2−α2β1.

Lemma 2.9. For a, b, c ∈ C2
\ {0}, the determinant satisfies

det(a ∗ c, b ∗ c)= det(a, b).

Proof. Let a =
(
α1 α2

)
, b =

(
β1 β2

)
, c =

(
γ1 γ2

)
, and

C =
(

1+ γ1γ2 γ 2
2

−γ 2
1 1− γ1γ2

)
.

Then

det(a ∗ c, b ∗ c)= det(aC, bC)= det(a, b) · det C = det(a, b). �

Consider the shadow-coloring and the coordinates of tetrahedra in Figure 9 (or
Figure 10) and Figure 11. We define the edge parameter ĝkl using those coordinates.
Specifically, when the signed coordinate of the tetrahedron is σ(a0, a1, a2, a3) with
σ ∈ {±1} and ak ∈ C2

\ {0}, we define the edge parameter by

(20) ĝkl = det(ak, al).

For example, the edge parameters of the tetrahedron ∓(al, ak, s, p) in the left-hand
or the right-hand side of Figure 9 (or Figure 10) are defined by

ĝ01 = det(al, ak), ĝ02 = det(al, s), ĝ03 = det(al, p),

ĝ12 = det(ak, s), ĝ13 = det(ak, p), ĝ23 = det(s, p).
4 The difference in [Inoue and Kabaya 2014] is that they chose a sign of the determinant once

and for all. Their choice is good enough to define the long-edge parameter g jk , but not for the edge
parameter ĝ jk .
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Figure 13. An example of the inconsistency of the edge parameter.

Lemma 2.10. The edge parameter ĝkl of the tetrahedron σ(a0, a1, a2, a3) defined
in (20) satisfies the Ptolemy identity and

(21) [h(a0), h(a1), h(a2), h(a3)] =
ĝ03ĝ12

ĝ02ĝ13
.

Proof. From (19), we obtain

(22) h(x)− h(y)=
x1

x2
−

y1

y2
=

det(x, y)
x2 y2

,

where x =
(
x1 x2

)
and y =

(
y1 y2

)
.

Let ak =
(
αk βk

)
for k = 0, . . . , 3, and let vk = h(ak)= αk/βk . Then (17) and

(22) imply

det(a0, a2)

β0β2

det(a1, a3)

β1β3
=

det(a0, a1)

β0β1

det(a2, a3)

β2β3
+

det(a0, a3)

β0β3

det(a1, a2)

β1β2
,

which is equivalent to the Ptolemy identity ĝ02ĝ13 = ĝ01ĝ23+ ĝ03ĝ12.
Also, using (22), we obtain

[h(a0), h(a1), h(a2), h(a3)] =

det(a0, a3)

β0β3
det(a1, a3)

β1β3

det(a1, a2)

β1β2
det(a0, a2)

β0β2

=
ĝ03ĝ12

ĝ02ĝ13
. �

Note that, by the same calculation as in the proof above, we obtain

[h(a0), h(a3), h(a1), h(a2)] =
ĝ02ĝ13

ĝ01ĝ23
, [h(a0), h(a2), h(a3), h(a1)] = −

ĝ01ĝ23

ĝ03ĝ12
.

If we put zσ = [h(a0), h(a1), h(a2), h(a3)], using the Ptolemy identity, the above
equations are expressed by

(23) zσ =
ĝ03ĝ12

ĝ02ĝ13
,

1
1− zσ

=
ĝ02ĝ13

ĝ01ĝ23
, 1−

1
zσ
=−

ĝ01ĝ23

ĝ03ĝ12
.

The edge parameter ĝ jk defined above satisfies all needed properties of the
long-edge parameter g jk except the coincidence , which ĝ jk satisfies up to sign.
To see this phenomenon, consider the two edges of Figure 9 (left) as in Figure 13,
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which are glued in the triangulation. Assume the chosen representative of am in
Figure 13 satisfies am = −al ∗ ak ∈ C2

\ {0}. (This actually happens often and is
quite important. For example, the minus signs of (49) and (50) in Section 4 show
this situation. This scenario will be discussed in depth in a later article.) Then the
edge parameters satisfy

ĝ01 = det(al, ak)= det(al ∗ ak, ak)=− det(am, ak)=−ĝ′01.

To obtain the long-edge parameter g jk , we assign certain signs to the edge
parameters

g jk =±ĝ jk,

so that the consistency property holds. Due to Lemma 6 of [Inoue and Kabaya
2014], any choice of values of g jk determines the same complex volume. Actually,
in Section 3, we do not need the exact values of g jk , but we use the existence of
them.

The relations of the edge parameters in (23) become

(24) zσ =±
g03g12

g02g13
,

1
1− zσ

=±
g02g13

g01g23
, 1−

1
zσ
=±

g01g23

g03g12
.

Using (24), we define integers p and q by

(25)
{

pπ i =− log zσ + log g03+ log g12− log g02− log g13,

qπ i = log(1− zσ )+ log g02+ log g13− log g01− log g23.

Now we consider the tetrahedron with the signed coordinate σ(a0, a1, a2, a3) and
the signed triples σ [zσ ; p, q] ∈ P̂(C). (The extended pre-Bloch group is denoted
by P̂(C) here. For the definition, see Definition 1.6 of [Zickert 2009].) To consider
all signed triples corresponding to all tetrahedra in the triangulation, we denote the
triple by σt [z

σt
t ; pt , qt ], where t is the index of tetrahedra. We define a function

L̂ : P̂(C)→ C/π2Z by

(26) [z; p, q] 7→ Li2(z)+ 1
2 log z log(1− z)+ π i

2
(q log z+ p log(1− z))− π

2

6
,

where Li2(z)=−
∫ z

0
1
t log(1− t)dt is the dilogarithm function. (Well-definedness

of L̂ was proved in [Neumann 2004].) Recall that, for a boundary-parabolic
representation ρ, the hyperbolic volume vol(ρ) and the Chern–Simons invariant
cs(ρ) were already defined in [Zickert 2009]. We call vol(ρ)+ i cs(ρ) the complex
volume of ρ. The following theorem is one of the main results of [Inoue and Kabaya
2014].

Theorem 2.11 [Zickert 2009; Inoue and Kabaya 2014]. For a given boundary-
parabolic representation ρ and the shadow-coloring induced by ρ, the complex
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volume of ρ is calculated by∑
t

σt L̂[zσt
t ; pt , qt ] ≡ i(vol(ρ)+ i cs(ρ)) (mod π2),

where t is over all tetrahedra of the triangulation defined in Section 2C.

Proof. See Theorem 5 of [Inoue and Kabaya 2014]. �

Note that the removal of the tetrahedra in (15) and (16) does not have any
effect on the complex volume. For example, if we let [z; p, q] and −[z′; p′, q ′]
be the corresponding triples of the tetrahedron (h(al), h(s), h(s ∗ al), h(p)) and
−(h(ak), h(s), h(s ∗ al), h(p)) in (15), respectively, and put {gkl}, {g′kl} the sets of
long-edge parameters of the two tetrahedra, respectively, then, from h(al)= h(ak),
we obtain z= z′. Furthermore, we can choose long-edge parameters so that gkl = g′kl
holds for all pairs of edges sharing the same coordinate, which induces p = p′,
q = q ′ and L̂[z; p, q] − L̂[z′; p′, q ′] = 0.

3. Optimistic limit

In this section, we will use the result of Section 2 to redefine the optimistic limit
of [Cho et al. 2014] and construct a solution of H. At first, we consider a given
boundary-parabolic representation ρ and fix its shadow-coloring of a link diagram D.
For the diagram, define the sides of the diagram to be the lines connecting two
adjacent crossings. (The word edge is more common than side here. However, we
want to keep the word edge for the edges of a triangulation.) For example, the
diagram in Figure 14 has eight sides. We assign z1, . . . , zn to sides of D as in
Figure 14 and call them side variables.

1

2

3

4

Figure 14. Sides of a link diagram.
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Figure 15. A crossing j with arc-colors and side variables.

For the crossing j in Figure 15, let ze, z f , zg, zh be side variables and let al, ak

be the arc-colors. If h(ak) 6= h(al), then we define the potential function Vj of the
crossing j by

(27) Vj (ze, z f , zg, zh)= Li2
( z f

ze

)
−Li2

( z f

zg

)
+Li2

( zh
zg

)
−Li2

( zh
ze

)
.

On the other hand, if h(al)= h(ak) in Figure 15, then we introduce new variables
w

j
e , w

j
f , w

j
g of the crossing j and define

(28) Vj (ze, z f , zg, zh, w
j
e , w

j
f , w

j
g)

=− logw j
e log ze+ logw j

f log z f − logw j
g log zg + log(w j

ew
j
g/w

j
f ) log zh .

For notational convenience, we put w j
h := w

j
ew

j
g/w

j
f . (In (28), we can choose any

three variables among w j
e , w

j
f , w

j
g, w

j
h free variables.) We call the crossing j in

Figure 15 degenerate when h(al)= h(ak) holds. In particular, when the degenerate
crossing forms a kink, as in Figure 16, we put

Vj (ze, z f , zg, w
j
e , w

j
f )

=− logw j
e log ze+ logw j

f log z f − logw j
f log z f + log(w j

ew
j
f /w

j
f ) log zg

=− logw j
e log ze+ logw j

e log zg.

Consider the crossing j in Figure 15 and place the octahedron Aj Bj Cj Dj Ej Fj as
in Figure 7. When the crossing j is nondegenerate, in other words h(ak) 6= h(al),
we consider Figure 7 (center) and assign shape parameters z f /ze, zg/z f , zh/zg

and ze/zh to the horizontal edges Aj Bj , Bj Cj , Cj Dj , Dj Aj , respectively. On the
other hand, if the crossing j is degenerate, in other words h(ak)= h(al), then we

Figure 16. A kink.
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consider Figure 7 (right) and assign shape parameters w j
e , w

j
f , w

j
g and w j

h to the
edges Aj Fj , Bj Ej , Cj Fj and Dj Ej , respectively.5

The potential function V (z1, . . . , zn, w
j
k , . . .) of the link diagram D is defined by

V (z1, . . . , zn, w
j
k , . . .)=

∑
j

Vj ,

where j is over all crossings. For example, if h(a1) 6= h(a2) in Figure 14, then
a4 = a1 ∗ a2 implies6 h(a4) 6= h(a2), a2 = a1 ∗ a3 implies7 h(a2) 6= h(a3) 6= h(a1),
a2 = a3 ∗ a4 implies h(a4) 6= h(a3), a4 = a3 ∗ a1 implies h(a4) 6= h(a1), and the
potential function becomes

(29) V (z1, . . . , z8)=
{

Li2
( z5

z7

)
−Li2

( z5
z8

)
+Li2

( z4
z8

)
−Li2

( z4
z7

)}
+

{
Li2
( z1

z3

)
−Li2

( z1
z4

)
+Li2

( z8
z4

)
−Li2

( z8
z3

)}
+

{
Li2
( z3

z6

)
−Li2

( z3
z5

)
+Li2

( z2
z5

)
−Li2

( z2
z6

)}
+

{
Li2
( z6

z1

)
−Li2

( z6
z2

)
+Li2

( z7
z2

)
−Li2

( z7
z1

)}
.

Note that, if h(al) 6= h(ak) for any crossing j in Figure 15, then the definition of
the potential function above coincides with the definition in Section 2 of [Cho et al.
2014]. Therefore, the above definition is a slight modification of the previous one.

On the other hand, if h(a1)= h(a2) in Figure 14, then a1∗a2= a1. This equation
and the relations at crossings induce8 a1 = a2 = a3 = a4, and the potential function
becomes

V (z1, . . . , z8, w
1
8, w

1
4, w

1
7, w

2
4, w

2
8, w

2
3, w

3
6, w

3
3, w

3
5, w

4
2, w

4
7, w

4
1)=

− logw1
8 log z8+ logw1

4 log z4− logw1
7 log z7+ logw1

5 log z5

− logw2
4 log z4+ logw2

8 log z8− logw2
3 log z3+ logw2

1 log z1

− logw3
6 log z6+ logw3

3 log z3− logw3
5 log z5+ logw3

2 log z2

− logw4
2 log z2+ logw4

7 log z7− logw4
1 log z1+ logw4

6 log z6,

5 Note that, when h(ak) = h(al ), by adding one more edge Bj Dj to Figure 7 (right), we obtain
another subdivision of the octahedron with five tetrahedra. (This subdivision was already used in [Cho
2016b].) Focusing on the middle tetrahedron that contains all horizontal edges, we obtain w j

ew
j
g =

w
j
f w

j
h . Furthermore, the shape-parameters assigned to Dj Fj and Bj Fj are (1− 1/w j

e )/(1−w
j
g) and

(1− 1/w j
g)/(1−w

j
e ), respectively.

6 If h(a4)= h(a2), then h(a2 ∗ a2)= h(a2)= h(a4)= h(a1 ∗ a2) induces h(a2)= h(a1), which
is a contradiction.

7 If h(a2)= h(a3), then h(a3 ∗a3)= h(a3)= h(a2)= h(a1 ∗a3) induces h(a2)= h(a3)= h(a1),
which is a contradiction. Likewise, if h(a1)=h(a3), then h(a2)=h(a1∗a3)=h(a1) is a contradiction.

8 The relation a4 = a1 ∗ a2 induces a4 = a1, a4 = a3 ∗ a1 induces a4 = a3, and a2 = a3 ∗ a4
induces a2 = a4.
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where w1
5 = w

1
8w

1
7/w

1
4 , w2

1 = w
2
4w

2
3/w

2
8 , w3

2 = w
3
6w

3
5/w

3
3 and w4

6 = w
4
2w

4
1/w

4
7 .

For the potential function V (z1, . . . , zn, w
j
k , . . .), let H be the set of equations

(30) H :=
{

exp
(

zk
∂V
∂zk

)
= 1, exp

(
w

j
k
∂V
∂w

j
k

)
= 1 | k = 1, . . . , n, j : degenerate

}
,

and S={(z1, . . . , zn, w
j
k , . . .)} be the solution set of H. Here, solutions are assumed

to satisfy the properties that zk 6= 0 for all k = 1, . . . , n and z f /ze 6= 1, zg/z f 6= 1,
zh/zg 6= 1, ze/zh 6= 1, zg/ze 6= 1, zh/z f 6= 1 in Figure 15 for any nondegenerate
crossing, and w j

k 6= 0 for any degenerate crossing j and the index k. (All these
assumptions are essential to avoid singularity of the equations in H and log 0 in the
formula V0 defined in (1). Even though we allow w

j
k = 1 here, the value we are

interested in always satisfies w j
k 6= 1.)

Proposition 3.1. For the arc-coloring of a link diagram D induced by ρ and
the potential function V (z1, . . . , zn, w

j
k , . . .), the set H induces the whole set of

hyperbolicity equations of the octahedral triangulation defined in Section 2C.

The hyperbolicity equations consist of Thurston’s gluing equations of edges and
the completeness condition.

Proof of Proposition 3.1. For the case where no crossing is degenerate, this proposi-
tion was already proved in Section 3 of [Cho et al. 2014]. To see the main idea,
check Figures 10–13 and equations (3.1)–(3.3) of [Cho et al. 2014]. Equation (3.1)
is a completeness condition along a meridian of a certain annulus, and (3.2)–(3.3)
are gluing equations of certain edges. These three types of equations induce all the
other gluing equations.

Therefore, we consider the case when the crossing j in Figure 15 is degenerate.
Then, the three equations

(31) exp
(
w j

e
∂V
∂w

j
e

)
=

zh
ze
=1, exp

(
w

j
f
∂V
∂w

j
f

)
=

z f

zh
=1, exp

(
w j

g
∂V
∂w

j
g

)
=

zh
zg
=1

induce ze = z f = zg = zh . This guarantees the gluing equations of horizontal edges
trivially by the assigning rule of shape parameters. (Note that the shape parameters
assigned to the horizontal edges of the octahedron at a degenerate crossing are
always 1.)

There are four possible cases of gluing pattern as in Figure 17, and we assume
the crossing j is degenerate and j + 1 is nondegenerate. (The case when both of j
and j + 1 are degenerate can be proved similarly.)

The part of the potential function V containing zk in Figure 17 (top left) is

V (a)
= logw j

k log zk +Li2
( ze

zk

)
−Li2

( z f

zk

)
,
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Figure 17. Four cases of a gluing pattern.

and

exp
(

zk
∂V
∂zk

)
= exp

(
zk
∂V (a)

∂zk

)
= w

j
k

(
1− ze

zk

)(
1−

z f

zk

)−1
= 1

is equivalent to the following completeness condition

1
w

j
k

(
1− ze

zk

)−1(
1−

z f

zk

)
= 1

along a meridian m in Figure 18 (top left). (Compare it with Figure 11 of [Cho et al.
2014].) Here, aj , bj , cj , b j+1, c j+1, d j+1 in Figure 18 (top left) are the points of
the cusp diagram, which lie on the edges Aj Ej , Bj Ej , Cj Ej , B j+1F j+1, C j+1F j+1,
D j+1F j+1 of Figure 7 (left), respectively.

The part of the potential function V containing zk in Figure 17 (top right) is

V (b)
=− logw j

k log zk −Li2
( zk

ze

)
+Li2

( zk
z f

)
,

and

exp
(

zk
∂V
∂zk

)
= exp

(
zk
∂V (b)

∂zk

)
=

1

w
j
k

(
1−

zk

ze

)(
1−

zk

z f

)−1
= 1

is equivalent to the completeness condition

1

w
j
k

(
1−

zk

z f

)−1(
1−

zk

ze

)
= 1

along a meridian m in Figure 18 (top right). Here, bj , cj , dj , a j+1, b j+1, c j+1 in
Figure 18 (top right) are the points of the cusp diagram, which lie on the edges Bj Fj ,
Cj Fj , Dj Fj , A j+1E j+1, B j+1E j+1, C j+1E j+1 of Figure 7 (left), respectively. (To
simplify the cusp diagram in Figure 18 (top right), we subdivided the polygon
Aj Bj Cj Dj Fj in Figure 7 (right) into three tetrahedra by adding the edge Bj Dj .)

The part of the potential function V containing zk in Figure 17 (bottom left) is

V (c)
=− logw j

k log zk +Li2
( ze

zk

)
−Li2

( z f

zk

)
,
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aj = cj+1

bj+1

cj

bj = dj+1

m

m

bj+1

cj

Figure 18. Four cusp diagrams from Figure 17.

and

exp
(

zk
∂V
∂zk

)
= exp

(
zk
∂V (c)

∂zk

)
=

1

w
j
k

(
1−

ze

zk

)(
1−

z f

zk

)−1
= 1

is equivalent to the gluing equation

w
j
k

(
1−

ze

zk

)−1(
1−

z f

zk

)
= 1

of cj = c j+1 in Figure 18 (bottom left). (Compare it with Figure 12 of [Cho et al.
2014].) Here, bj , cj , dj , b j+1, c j+1, d j+1 in Figure 18 (bottom left) are the
points of the cusp diagram, which lie on the edges Bj Fj , Cj Fj , Dj Fj , B j+1F j+1,
C j+1F j+1, D j+1F j+1 of Figure 7 (left), respectively, and the edges dj cj and bj cj are
identified to b j+1c j+1 and d j+1c j+1, respectively. (To simplify the cusp diagram in
Figure 18 (bottom left), we subdivided the polygon Aj Bj Cj Dj Fj in Figure 7 (right)
into three tetrahedra by adding the edge Bj Dj .)

The part of the potential function V containing zk in Figure 17 (bottom right) is

V (d)
= logw j

k log zk −Li2
( zk

ze

)
+Li2

( zk

z f

)
,
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Figure 19. A region-coloring.

and

exp
(

zk
∂V
∂zk

)
= exp

(
zk
∂V (d)

∂zk

)
= w

j
k

(
1−

zk

ze

)(
1−

zk

z f

)−1
= 1

is equivalent to the gluing equation

w
j
k

(
1−

zk

ze

)(
1−

zk

z f

)−1
= 1

of bj = b j+1 in Figure 18 (bottom right). (Compare it with Figure 13 of [Cho et al.
2014].) Here, aj , bj , cj , a j+1, b j+1, c j+1 in Figure 18 (bottom right) are the
points of the cusp diagram, which lie on the edges Aj Ej , Bj Ej , Cj Ej , A j+1E j+1,
B j+1E j+1, C j+1E j+1 of Figure 7 (left), respectively, and the edges aj bj and cj bj

are identified to c j+1b j+1 and a j+1b j+1, respectively.
Note that the case when both of the crossings j and j + 1 in Figure 17 are

degenerate can be proved in the same way.
On the other hand, it was already shown in [Cho et al. 2014] that all hyperbolicity

equations are induced by these types of equations (see the discussion that follows
Lemma 3.1 of [Cho et al. 2014]), so the proof is done. �

In [Cho et al. 2014], we could not prove the existence of a solution of H, in
other words S 6=∅, so we assumed it. However, the following theorem proves the
existence by directly constructing one solution from the given boundary-parabolic
representation ρ together with the shadow-coloring.

Theorem 3.2. Consider a shadow-coloring of a link diagram D induced by ρ and
the potential function V (z1, . . . , zn, w

j
k , . . .) from D. For each side of D with the

side variable zk , arc-color al and the region-color s, as in Figure 19, we define

(32) z(0)k :=
det(al, p)
det(al, s)

.

Also, if the positive crossing j in Figure 20 (left) is degenerate, then we define

(33)

(w j
e )
(0)
: =

det(s, p)
det(s ∗ ak, p)

, (w
j
f )
(0)
: =

det((s ∗ al) ∗ ak, p)
det(s ∗ ak, p)

,

(w j
g)
(0)
: =

det((s ∗ al) ∗ ak, p)
det(s ∗ al, p)

, (w
j
h)
(0)
: =

det(s, p)
det(s ∗ al, p)

,
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Figure 20. Crossings with shadow-colors and side-variables for a
positive crossing (left) and a negative crossing (right).

and, if the negative crossing j in Figure 20 (right) is degenerate, then we define

(w j
e )
(0)
:=

det(s ∗ al, p)
det((s ∗ al) ∗ ak, p)

, (w
j
f )
(0)
:=

det(s ∗ ak, p)
det((s ∗ al) ∗ ak, p)

,

(w j
g)
(0)
:=

det(s ∗ ak, p)
det(s, p)

, (w
j
h)
(0)
:=

det(s ∗ al, p)
det(s, p)

.

Then z(0)k 6= 0, 1,∞, (w j
k )
(0)
6= 0, 1 for all possible j, k, and

(z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .) ∈ S.

Note that the ± signs in the arc-colors of Figure 20 appear due to the repre-
sentatives of the colors in C2

\ {0}. However, ± does not change the value of z(0)k
because

det(±al, p)
det(±al, s)

=
det(al, p)
det(al, s)

= z(0)k .

Likewise, the value of (w j
k )
(0) does not depend on the choice of ± because the

representatives of region-colors are uniquely determined from the fact s∗(±a)= s∗a
for any s, a ∈ C2

\ {0}.

Proof of Theorem 3.2. First, when the crossing j in Figure 20 is degenerate, we
will show

(34) z(0)e = z(0)f = z(0)g = z(0)h ,

which satisfies (31). Using h(ak)= h(al), we put ak =
(
α β

)
and al =

(
c α c β

)
=

c ak for some constant c ∈C\{0}. Then we obtain al ∗ak = al and, if j is a positive
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crossing, then

z(0)e =
c det(ak, p)
c det(ak, s)

=
det(al, p)
det(al, s)

= z(0)h ,

z(0)f =
det(±al ∗ ak, p)

det(±al ∗ ak, s ∗ ak)
=

det(al ∗ ak, p)
det(al ∗ ak, s ∗ ak)

=
det(al, p)
det(al, s)

= z(0)h ,

z(0)g =
c det(ak, p)

c det(ak, s ∗ al)
=

det(al, p)
det(al, s ∗ al)

= z(0)h .

If j is a negative crossing, then by exchanging the indices e ↔ g in the above
calculation, we obtain the same result.

Note that Lemma 2.4 and the definition of p in Section 2C guarantee z(0)k 6=

0, 1,∞ and (w j
k )
(0)
6= 0, 1, so we will concentrate on proving

(z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .) ∈ S.

Consider the positive crossing j in Figure 20 (top left) and assume it is nonde-
generate. Also consider the tetrahedra in Figures 9 (left) and 10 (left), and assign
variables ze, z f , zg, zh to sides of the link diagram as in Figure 20 (top left). Then,
using (21) and (32), the shape parameters assigned to the horizontal edges Aj Bj

and Dj Aj are
1 6= [h(s ∗ ak), h(p), h(±al ∗ ak), h(ak)]

=
det(s, ak)

det(s ∗ ak,±al ∗ ak)

det(p,±al ∗ ak)

det(p, ak)
=

z(0)f

z(0)e
,

1 6= [h(s), h(p), h(ak), h(al)] =
det(s, al)

det(s, ak)

det(p, ak)

det(p, al)
=

z(0)e

z(0)h

,

respectively. Likewise, the shape parameters assigned to Bj Cj and Cj Dj are z(0)g /z(0)f
and z(0)h /z(0)g respectively. Furthermore, for any a, b ∈ C2

\ {0}, we can easily show
that h(a ∗ b− a)= h(b). If z(0)g /z(0)e = det(ak, s)/det(ak, s ∗ al)= 1, then h(ak)=

h(s ∗ al − s) = h(al), which is contradiction. Therefore, we obtain z(0)g /z(0)e 6= 1,
and z(0)h /z(0)f 6= 1 can be obtained similarly.

We can verify the same holds for nondegenerate negative crossings j in the
same way.

Now consider the case when the positive crossing j in Figure 20 (top left) is
degenerate. (See Figures 7 (right) and 11 (left).) Then, using (21) and (33), the shape
parameters assigned to the edges Fj Aj , Ej Bj , Fj Cj and Ej Dj in Figure 7 (right) are

[h(ak), h(s), h(p), h(s ∗ al)][h(ak), h(s ∗ ak), h((s ∗ al) ∗ ak), h(p)]

=
det(s, p)

det(s ∗ ak, p)
= (w j

e )
(0),

[h(±al ∗ ak), h(p), h((s ∗ al) ∗ ak), h(s ∗ ak)] =
det(p, (s ∗ al) ∗ ak)

det(p, s ∗ ak)
= (w

j
f )
(0),
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[h(ak), h((s ∗ al) ∗ ak), h(p), h(s ∗ ak)][h(ak), h(s ∗ al), h(s), h(p)]

=
det((s ∗ al) ∗ ak, p)

det(s ∗ al, p)
= (w j

g)
(0),

[h(al), h(p), h(s), h(s ∗ al)] =
det(p, s)

det(p, s ∗ al)
= (w

j
h)
(0),

respectively. We can verify the same holds for degenerate negative crossings j in
the same way.

Therefore (z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .) satisfies the hyperbolicity equations of

octahedral triangulation defined in Section 2C and, from Proposition 3.1, we
get that (z(0)1 , . . . , z(0)n , (w

j
k )
(0), . . .) is a solution of H. By the definition of S,

we obtain (z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .) ∈ S. �

To get the complex volume of ρ from the potential function V (z1,...,zn,(w
j
k ),...),

we modify it to

(35) V0(z1, . . . , zn, (w
j
k ), . . .) := V (z1, . . . , zn, (w

j
k ), . . .)

−

∑
k

(
zk
∂V
∂zk

)
log zk −

∑
j :degenerate

k

(
w

j
k
∂V

∂w
j
k

)
logw j

k .

This modification guarantees the invariance of the value under the choice of any log-
branch. (See Lemma 2.1 of [Cho et al. 2014].) Note that V0(z

(0)
1 , . . . , z

(0)
n , (w

j
k )
(0), . . .)

means the evaluation of the function V0(z1, . . . , zn, (w
j
k ), . . .) at

(z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .).

Theorem 3.3. Consider a hyperbolic link L , the shadow-coloring induced by ρ,
the potential function V (z1, . . . , zn, (w

j
k ), . . .) and the solution

(z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .) ∈ S

defined in Theorem 3.2. Then,

(36) V0(z
(0)
1 , . . . , z(0)n , (w

j
k )
(0), . . .)≡ i(vol(ρ)+ i cs(ρ)) (mod π2).

Proof. When the crossing j is degenerate, direct calculation shows that the potential
function Vj of the crossing defined at (28) satisfies

(37) (Vj )0(z, z, z, z, w1, w2, w3)= 0,

for any nonzero values of z, w1, w2, w3. To simplify the potential function, we
rearrange the side variables z1, . . . , zn to z1, . . . , zr , zr+1, z1

r+1, z2
r+1, z3

r+1, . . . ,

zt , . . . , z3
t so that all endpoints of sides with variables z1, . . . , zr are nondegener-

ate crossings and the degenerate crossings induce z(0)r+1 = (z
1
r+1)

(0)
= (z2

r+1)
(0)
=

(z3
r+1)

(0), . . . , z(0)t = . . .= (z3
t )
(0). (Refer to (34).) Then we define the simplified
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potential function V̂ by

V̂ (z1, . . . , zt) :=
∑

j :nondegenerate

Vj (z1, . . . , zr , zr+1, zr+1, zr+1, zr+1, . . . , zt , zt , zt , zt).

Note that V̂ is obtained from V by removing the potential functions (28) of the
degenerate crossings and substituting the side variables ze, z f , zg, zh around the
degenerate crossing with ze. From (37), we have

V̂0(z
(0)
1 , . . . , z(0)t )= V0(z

(0)
1 , . . . , z(0)n , (w

j
k )
(0), . . .),

which suggests V̂ is just a simplification of V with the same value. Therefore, from
now on, we will use only V̂ and substitute the side variables of the link diagram
z1

r+1, z2
r+1, z3

r+1 with zr+1 and z1
t , . . . , z3

t with zt , etc, except at Lemma 3.4 below.
Also, we remove octahedra (15) or (16) placed at all degenerate crossings (in other
words, the octahedra in Figure 10) because they do not have any effect on the
complex volume. (See the comment below the proof of Theorem 2.11.)

Now we will follow ideas of the proof of Theorem 1.2 in [Cho et al. 2014].
However, due to the degenerate crossings, we will improve the proof to cover more
general cases. At first, we define rk by

(38) rkπ i = zk
∂ V̂
∂zk

∣∣∣∣
z1=z(0)1 ,...,zt=z(0)t

,

for k = 1, . . . , t , where |z1=z(0)1 ,...,zt=z(0)t
means the evaluation of the equation at

(z(0)1 , . . . , z(0)t ). Unlike [Cho et al. 2014], we cannot guarantee rk is an even integer
yet, so we need the following lemma.

Lemma 3.4. For the value z(0)k defined in Theorem 3.2, (z(0)1 , . . . , z(0)t ) is a solution
of the set of equations

Ĥ=
{

exp
(

zk
∂ V̂
∂zk

)
= 1 | k = 1, . . . , t

}
.

Proof. For a degenerate crossing j , from (28),

Vj (zk, zk, zk, zk, w
j
e , w

j
f , w

j
g)= (− logw j

e + logw j
f − logw j

g + logw j
h) log zk .

Therefore, using w j
fw

j
h/(w

j
ew

j
g)= 1, we obtain

exp
(

zk
∂Vj

∂zk
(zk, zk, zk, zk, w

j
e , w

j
f , w

j
g)
)
= 1.

This equation implies that, if we substitute the variables z1
r+1, z2

r+1, z3
r+1 with zr+1

and z1
t , . . . , z3

t with zt , etc., in the equation of H, it becomes Ĥ. Thus, Theorem 3.2
induces this lemma. �
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Figure 21. Long-edge parameters of nonhorizontal edges.

As a corollary of Lemma 3.4, now we know rk defined in (38) is an even integer.
To avoid redundant complicated indices, we use zk instead of z(0)k in this proof

from now on. Using the even integer rk , we can denote V0(z1, . . . , zt) by

(39) V̂0(z1, . . . , zt)= V̂ (z1, . . . , zt)−

t∑
k=1

rkπ i log zk .

Now we introduce notations αm, βm, γl, δj for the long-edge parameters defined
in (20). We assign αm and βm to nonhorizontal edges as in Figure 21, where m is over
all sides of the link diagram. (Recall that the edges Aj Bj , Bj Cj , Cj Dj and Dj Aj

in Figure 21 were named horizontal edges.) We also assign γl to horizontal edges,
where l is over all regions, and δj to the edge Ej Fj inside the octahedron. Although
we have αa = αc and βb = βd because of the gluing, we use αa for the tetrahedra
Ej Fj Aj Bj and Ej Fj Aj Dj , αc for Ej Fj Cj Bj and Ej Fj Cj Dj , βb for Ej Fj Aj Bj and
Ej Fj Cj Bj , and βd for Ej Fj Cj Dj and Ej Fj Aj Dj . Note that the labeling is consistent
even when some crossing is degenerate because, when the crossing j in Figure 21 is
degenerate, we obtain za = zb = zc = zd and, after removing the octahedron of the
crossing, the long-edge parameters satisfy αa=αb=αc=αd and βa=βb=βc=βd .
Now consider a side with variable zk and two possible cases in Figure 22. We

consider the case when the crossing is nondegenerate, or equivalently, za 6= zk 6= zb.
(If it is degenerate, we assume there is a degenerated octahedron9 at the crossing.)
For m=a, b, let σm

k ∈{±1} be the sign of the tetrahedron10 between the sides zk and
zm , and um

k be the shape parameter of the tetrahedron assigned to the horizontal edge.
We put τm

k = 1 when zk is the numerator of (um
k )
σm

k and τm
k =−1 otherwise. We also

9 An octahedron is called degenerate when two vertices at the top and the bottom coincide.
10 The sign of a tetrahedron is the sign of the coordinate in (13) or (14).
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Figure 22. Two cases with respect to zk .

define pm
k and qm

k by (25) so that σm
k [(u

m
k )
σm

k ; pm
k , qm

k ] becomes the element of P̂(C)
corresponding to the tetrahedron. Then 1

2

∑
1≤k,m≤t σ

m
k [(u

m
k )
σm

k ; pm
k , qm

k ] is the
element11 of B̂(C) corresponding to the octahedral triangulation in Section 2C, and

(40)
1
2

∑
1≤k,m≤t

σm
k L̂[(um

k )
σm

k ; pm
k , qm

k ] ≡ i(vol(ρ)+ i cs(ρ)) (mod π2),

from Theorem 2.11.
By definition, we know

(41) ua
k =

zk

za
, ub

k =
zb

zk
.

In the case of Figure 22 (left), we have

σ a
k = 1, σ b

k =−1 and τ a
k = τ

b
k = 1.

Using (25) and Figure 23 (left), we decide pm
k and qm

k as follows:{
log(zk/za)+ pa

kπ i = (logαk − logβk)− (logαa − logβa),

log(zk/zb)+ pb
kπ i = (logαk − logβk)− (logαb− logβb),

(42)

{
− log(1− zk/za)+ qa

k π i = logβk + logαa − log γ1− log δ1,

− log(1− zk/zb)+ qb
kπ i = logβk + logαb− log γ2− log δ1.

(43)

In the case of Figure 22 (right), we have

σ a
k =−1, σ b

k = 1 and τ a
k = τ

b
k =−1.

Using (25) and Figure 23 (right), we decide pm
k and qm

k as follows:

(44)

{
log(za/zk)+ pa

kπ i = (logαa − logβa)− (logαk − logβk),

log(zb/zk)+ pb
kπ i = (logαb− logβb)− (logαk − logβk),

11 The coefficient 1
2 appears because the same tetrahedron is counted twice in the summation.
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Figure 23. Tetrahedra of Figure 22.

(45)

{
− log(1− za/zk)+ qa

k π i = logβa + logαk − log γ1− log δ1,

− log(1− zb/zk)+ qb
kπ i = logβb+ logαk − log γ2− log δ1.

The equations (42) and (44) hold for all (nondegenerate and degenerate) crossings,
so we get the following observation.

Observation 3.5. We have

logαk − logβk ≡ log zk + A (mod π i),

for all k = 1, . . . , t , where A is a complex constant number independent of k.

Note that, by (27), the potential function V̂ is expressed by

(46) V̂ (z1, . . . , zt)=
1
2

∑
1≤k,m≤t

σm
k Li2((um

k )
σm

k )=
1
2

t∑
k=1

∑
m=a,...,d

σm
k Li2((um

k )
σm

k ),

where the range of the index m is determined by k and we define the range of m by
m = a, . . . , d12 from now on. Recall that rk was defined in (38). Direct calculation
shows

rkπ i =−
∑

m=a,...,d

σm
k τ

m
k log(1− (um

k )
σm

k ).

Combining (43) and (45), we obtain∑
m=a,b

σm
k τ

m
k

{
− log(1− (um

k )
σm

k )+ qm
k π i

}
=− log γ1+ log γ2,

12 The range m = a, . . . , d means that each side with one of the side variables za, . . . , zd shares a
nondegenerate crossing with a side with zk .



QUANDLE THEORY AND OPTIMISTIC LIMITS OF LINK GROUPS REPRESENTATIONS 361

for both cases in Figure 22. (Note that αa = αb in (43) and βa = βb in (45).)
Therefore, we obtain∑

m=a,...,d

σm
k τ

m
k

{
− log(1− (um

k )
σm

k )+ qm
k π i

}
= 0,

and
(47) rkπ i =−

∑
m=a,...,d

σm
k τ

m
k qm

k π i.

Lemma 3.6. For all possible k and m, we have

(48) 1
2

∑
1≤k,m≤t

σm
k qm

k π i log(um
k )
σm

k ≡−

t∑
k=1

rkπ i log zk (mod 2π2).

Proof. Note that, by definition, σm
k = σ

k
m , τm

k =−τ
k
m and

(um
k )
σm

k =

( zk
zm

)τm
k
= (zk)

τm
k (zm)

τ k
m .

Using the above and (47), we can directly calculate

1
2

t∑
k=1

∑
m=a,...,d

σm
k qm

k π i log(um
k )
σm

k ≡

t∑
k=1

( ∑
m=a,...,d

σm
k τ

m
k qm

k π i
)

log zk (mod 2π2)

=−

t∑
k=1

rkπ i log zk . �

Lemma 3.7. For all possible k and m, we have

1
2

∑
1≤k,m≤t

σm
k log

(
1− (um

k )
σm

k
)(

log(um
k )
σm

k + pm
k π i

)
≡−

t∑
k=1

rkπ i log zl (mod 2π2).

Proof. From (42) and (44), we have

log(um
k )
σm

k + pm
k π i = τm

k (logαk − logβk)+ τ
k
m(logαm − logβm).

Therefore,
1
2

∑
1≤k,m≤t

σm
k log

(
1− (um

k )
σm

k
)(

log(um
k )
σm

k + pm
k π i

)
=

t∑
k=1

( ∑
m=a,...,d

σm
k τ

m
k log(1− (um

k )
σm

k )

)
(logαk − logβk)

=−

t∑
k=1

rkπ i(logαk − logβk).

Note that t∑
k=1

rkπ i =
t∑

k=1

zk
∂ V̂
∂zk
= 0
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because V̂ is expressed by the summation of certain forms of Li2(za/zb) and

za
∂Li2(za/zb)

∂za
+ zb

∂Li2(za/zb)

∂zb
=− log

(
1− za

zb

)
+ log

(
1− za

zb

)
= 0.

By using Observation 3.5, the above, and the fact that rk is even, we have

−

t∑
k=1

rkπ i(logαk − logβk)≡−

t∑
k=1

rkπ i(log zk + A)

=−

t∑
k=1

rkπ i log zk (mod 2π2). �

Combining (40), (46), Lemma 3.6 and Lemma 3.7, we complete the proof of
Theorem 3.3 as follows:

i(vol(ρ)+ i cs(ρ))

≡
1
2

∑
1≤k,m≤t

σm
k L̂[(um

k )
σm

k ; pm
k , qm

k ]

=
1
2

∑
1≤k,m≤t

σm
k

(
Li2
(
(um

k )
σm

k
)
−
π2

6

)
+

1
4

∑
1≤k,m≤t

σm
k qm

k π i log(um
k )
σm

k

+
1
4

∑
1≤k,m≤t

σm
k log

(
1− (um

k )
σm

k
)(

log(um
k )
σm

k + pm
k π i

)
≡ V̂ (z1, . . . , zn)−

t∑
k=1

rkπ i log zk = V̂0(z1, . . . , zt) (mod π2). �

4. Examples

4A. A figure-eight knot 41. For the figure-eight knot diagram in Figure 24, let the
elements of P corresponding to the arcs be

a1 =
(
0 t
)
, a2 =

(
1 0

)
, a3 =

(
−t 1+ t

)
, a4 =

(
−t t

)
,

where t is a solution of t2
+ t + 1= 0. These elements satisfy

(49) a1 ∗ a2 = a4, a3 ∗ a4 = a2, a1 ∗ a3 =−a2, a3 ∗ a1 = a4,

where the identities are expressed in C2
\ {0}, not in P = (C2

\ {0})/±. Let
ρ : π1(41)→ PSL(2,C) be the boundary-parabolic representation determined by
a1, . . . , a4. We define the shadow-coloring of Figure 24 induced by ρ by letting

s1 =
(
1 1

)
, s2 =

(
0 1

)
, s3 =

(
−t − 1 t + 2

)
,

s4 =
(
−2t − 1 2t + 3

)
, s5 =

(
−2t − 1 t + 4

)
, s6 =

(
1 t + 2

)
,

and p =
(
2 1

)
. Direct calculation shows this shadow-coloring satisfies (5) in

Lemma 2.4. (However, this does not satisfy (6).)
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s1

s2

s3

s4

s5

s6

Figure 24. A figure-eight knot 41 with parameters.

All values of h(a1), . . . , h(a4) are different, therefore the potential function
V (z1, . . . , z8) of Figure 24 is (29). Applying Theorem 3.2, we obtain

z(0)1 =
det(a1, p)
det(a1, s6)

= 2, z(0)2 =
det(a1, p)
det(a1, s5)

=
−2

2t + 1
,

z(0)3 =
det(a2, p)
det(a2, s6)

=
1

t + 2
, z(0)4 =

det(a2, p)
det(a2, s1)

= 1,

z(0)5 =
det(a3, p)
det(a3, s4)

=−3t − 2, z(0)6 =
det(a3, p)
det(a3, s5)

=
3t + 2

2t
,

z(0)7 =
det(a4, p)
det(a4, s4)

=
3
2
, z(0)8 =

det(a4, p)
det(a4, s3)

= 3,

and (z(0)1 , . . . , z(0)8 ) becomes a solution of H = {exp(zk
∂V
∂zk
) = 1 | k = 1, . . . , 8}.

Applying Theorem 3.3, we obtain

V0(z
(0)
1 , . . . , z(0)8 )≡ i(vol(ρ)+ i cs(ρ)) (mod π2),

and numerical calculation verifies it by

V0(z
(0)
1 , . . . , z(0)8 )={

i(2.0299...+ 0 i)= i(vol(41)+ i cs(41)) if t = 1
2(−1−

√
3 i),

i(−2.0299...+ 0 i)= i(−vol(41)+ i cs(41)) if t = 1
2(−1+

√
3 i).

4B. Trefoil knot 31. For the trefoil knot diagram in Figure 25, let the elements of
P corresponding to the arcs be

a1 =
(
1 0

)
, a2 =

(
0 1

)
, a3 = a4 =

(
−1 1

)
.
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s1
s2

s5
s3 s4

a4

1 2

3

4

Figure 25. A trefoil knot 31 with parameters.

(Note that crossing 4 is degenerate.) These elements satisfy

(50) a4 ∗ a2 =−a1, a2 ∗ a1 = a3, a1 ∗ a4 = a2, a4 ∗ a3 = a3,

where the identities are expressed in C2
\ {0}, not in P = (C2

\ {0})/±. Let
ρ : π1(31)→ PSL(2,C) be the boundary-parabolic representation determined by
a1, a2, a3, a4. We define the shadow-coloring of Figure 24 induced by ρ by letting

s1 =
(
−1 2

)
, s2=

(
1 2

)
, s3 =

(
−1 3

)
,

s4 =
(
0 1

)
, s5 =

(
1 1

)
, s6 =

(
−2 3

)
,

and p =
(
2 1

)
. Direct calculation shows this shadow-coloring satisfies (5) in

Lemma 2.4. (However, this does not satisfy (6).)
All values of h(a1), h(a2), h(a3)= h(a4) are different, hence the potential func-

tion V of Figure 25 is

V (z1, . . . , z8, w
4
6, w

4
7)= Li2

(
z2

z5

)
−Li2

(
z2

z4

)
+Li2

(
z1

z4

)
−Li2

(
z1

z5

)
+Li2

(
z6

z3

)
−Li2

(
z6

z2

)
+Li2

(
z5

z2

)
−Li2

(
z5

z3

)
+Li2

(
z4

z1

)
−Li2

(
z4

z8

)
+Li2

(
z3

z8

)
−Li2

(
z3

z1

)
− logw4

6 log z6+ logw4
6 log z8,

and the simplified potential function V̂ defined in the proof of Theorem 3.3 is

V̂ (z1, . . . , z6)= Li2
( z2

z5

)
−Li2

( z2
z4

)
+Li2

( z1
z4

)
−Li2

( z1
z5

)
+Li2

( z6
z3

)
−Li2

( z6
z2

)
+Li2

( z5
z2

)
−Li2

( z5
z3

)
+Li2

( z4
z1

)
−Li2

( z4
z6

)
+Li2

( z3
z6

)
−Li2

( z3
z1

)
.
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Applying Theorem 3.2, we obtain

z(0)1 =
det(a4, p)
det(a4, s5)

=
3
2
, z(0)2 =

det(a1, p)
det(a1, s2)

=
1
2
,

z(0)3 =
det(a1, p)
det(a1, s5)

= 1, z(0)4 =
det(a2, p)
det(a2, s3)

=−2,

z(0)5 =
det(a2, p)
det(a2, s5)

= 2, z(0)6 = z(0)7 = z(0)8 =
det(a3, p)
det(a3, s4)

= 3,

(w4
6)
(0)
=

det(s1, p)
det(s4, p)

=
5
2
, (w4

7)
(0)
=

det(s1, p)
det(s6, p)

=
5
8
.

Note that (z(0)1 , . . . , z(0)8 , (w4
6)
(0), (w4

7)
(0)) and (z(0)1 , . . . , z(0)6 ) are solutions of

H=
{

exp
(

zk
∂V
∂zk

)
= 1, exp

(
w

j
k
∂V
∂w

j
k

)
= 1 | j = 4, k = 1, . . . , 8

}
and Ĥ=

{
exp

(
zk
∂ V̂
∂zk

)
= 1 | k = 1, . . . , 6

}
,

respectively. Applying Theorem 3.3, we obtain

V0(z
(0)
1 , . . . , (w4

7)
(0))≡ V̂0(z

(0)
1 , . . . , z(0)6 )≡ i(vol(ρ)+ i cs(ρ)) (mod π2),

and numerical calculation verifies it by

V̂0(z
(0)
1 , . . . , z(0)6 )= i(0+ 1.6449...i),

where vol(31)= 0 holds trivially and 1.6449...= π2/6 holds numerically.
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CLASSIFICATION OF POSITIVE SMOOTH SOLUTIONS TO
THIRD-ORDER PDES INVOLVING FRACTIONAL LAPLACIANS

WEI DAI AND GUOLIN QIN

In this paper, we are concerned with the third-order equations{
(−1)

3
2 u = u

d+3
d−3 , x ∈ Rd,

u ∈ C3(Rd), u(x) > 0, x ∈ Rd,

and (−1)
3
2 u =

(
1
|x|6 ∗ |u|

2
)

u, x ∈ Rd,

u ∈ C3(Rd), u(x) > 0, x ∈ Rd, d ≥ 7,

with Ḣ
3
2 -critical nonlinearity. By showing the equivalence between the

PDEs and the corresponding integral equations and using results from
Chen et al. (2006) and Dai et al. (2018), we prove that positive classical
solutions u to the above equations are radially symmetric about some point
x0 ∈ Rd and derive the explicit forms for u.

1. Introduction

In this paper, we mainly consider the positive classical solutions to the following
third-order conformal invariant equation with Ḣ

3
2 -critical nonlinearity:

(1-1)

{
(−1)

3
2 u = u

d+3
d−3 , x ∈ Rd ,

u ∈ C3(Rd), u(x) > 0, x ∈ Rd ,

where d ≥ 4 and the nonlocal fractional Laplacian (−1)
1
2 can be defined by Fourier

transform, that is,

(1-2)
∧

(−1)
1
2 f (ξ) := (2π |ξ |) f̂ (ξ),

with f̂ (ξ) :=
∫

Rd f (x)e−2π i x ·ξ dx . If f is in the Schwartz space S of rapidly
decreasing C∞ functions in Rd , then (−1)

1
2 f can also be defined equivalently by

Dai was supported by the NNSF of China (No. 11501021).
MSC2010: primary 35R11; secondary 35B06, 35J91.
Keywords: fractional Laplacians, odd order, positive smooth solutions, radial symmetry, uniqueness,

equivalence.
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(1-3) (−1)
α
2 f (x)= Cα,d P.V.

∫
Rd

f (x)− f (y)
|x − y|d+α

dy

:= Cα,d lim
ε→0

∫
|y−x |≥ε

f (x)− f (y)
|x − y|d+α

dy

with α = 1, where the constant Cα,d =
(∫

Rd (1− cos(2πζ1))/|ζ |
d+αdζ

)−1. For
general 0< α < 2, the definition (1-3) for (−1)

α
2 f can be extended and it is well

defined for f ∈ C1,1
loc ∩Lα(R

d) (see [Chen et al. 2015; 2017; Dai et al. 2017; Zhuo
et al. 2014]) with

Lα(Rd) :=

{
f : Rd

→ R |
∫

Rd

| f (x)|
1+ |x |d+α

dx <∞
}
.

Throughout this paper, we define

(−1)
3
2 u := (−1)

1
2 (−1u)

by definition (1-3) (with f = −1u) provided that 1u ∈ C1,1
loc ∩L1(R

d) (i.e., (c)
and (d) in Theorems 1.1 and 1.3), otherwise we will define (−1)

3
2 u by Fourier

transform (i.e., (a) and (b) in Theorems 1.1 and 1.3). See the extension method of
defining (−1)

α
2 in [Caffarelli and Silvestre 2007]. The equation (1-1) is Ḣ

3
2 -critical

in the sense that both it and the Ḣ
3
2 norm are invariant under the same scaling

uρ(x)= ρ(d−3)/2u(ρx),

where the homogeneous Sobolev norm is defined as

‖u‖
Ḣ

3
2 (Rd )
:= ‖(−1)

3
4 u‖L2(Rd ) =

(∫
Rd
|ξ |3|û(ξ)|2dξ

) 1
2

.

The quantitative and qualitative properties of solutions to fractional order or
higher order conformally invariant equations of the form

(1-4) (−1)
α
2 u = u

d+α
d−α

have been extensively studied. In the special case α = 2, (1-4) becomes the well-
known Yamabe problem (for related results, please see Gidas, Ni and Nirenberg
[Gidas et al. 1979] and Caffarelli, Gidas and Spruck [Caffarelli et al. 1989]); for
d = 2, Chen and Li [2010] classified all the positive smooth solutions with finite
total curvature of the equation

(1-5)

{
−1u = e2u, x ∈ R2,∫

R2 e2u dx <∞.

In general, when α= d , under some assumptions, Chang and Yang [1997] classified
the smooth solutions to

(1-6) (−1)
d
2 u = (d − 1)!edu .
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For α = 4, Lin [1998] proved the classification results for all the positive smooth
solutions of (1-4) (d ≥ 5) and all the smooth solutions of

(1-7)

{
12u = 6e4u, x ∈ R4,∫

R4 e4u dx <∞, u(x)= o(|x |2) as |x | →∞.

Xu [2006] obtained similar results to Chang and Yang [1997] and Lin [1998] for
(1-7) under the assumption 1u(x)→ 0 as |x |→∞. For α ∈ (0, d] an even integer,
Wei and Xu [1999] classified the positive smooth solutions of (1-4), they also
established the classification results for the smooth solutions of (1-6) with finite
total curvature under the assumption u(x) = o(|x |2) as |x | → ∞. Zhu [2004]
classified all the smooth solutions with finite total curvature of the problem

(1-8)

{
(−1)

3
2 u = 2e3u, x ∈ R3,∫

R3 e3u dx <∞, u(x)= o(|x |2) as |x | →∞.

In [Chen et al. 2006], by developing the method of moving planes in integral forms,
Chen, Li and Ou classified all the positive L2d/(d−α)

loc solutions to the equivalent
integral equation of PDE (1-4). As a consequence, they obtained the classification
results for positive weak solutions to PDE (1-4), moreover, they also derived
classification results for positive smooth solutions to (1-4) provided α ∈ (0, d) is
an even integer. For more literature on the quantitative and qualitative properties
of solutions to fractional order or higher order conformally invariant PDE and IE
problems, please refer to [Chen and Li 2010; Chen et al. 2017; Dai et al. 2017; Xu
2005]. One should observe that, when α ∈ (0, d) is an odd integer, the classification
for positive smooth solutions to (1-4) is still open.

By proving the equivalence between PDE (1-1) and the integral equation

(1-9) u(x)=
∫

Rd

R3,d

|x − y|d−3 u
d+3
d−3 (y) dy

and using the results for IE (1-9) from [Chen et al. 2006], we will study the
classification of positive smooth solutions to the third-order equation (1-1) under
assumptions which are similar to (or even weaker than) those in [Chen et al. 2017;
Lin 1998; Xu 2006; Zhu 2004].

Our classification result for (1-1) is the following theorem.

Theorem 1.1. Assume d ≥ 4 and u is a positive solution of (1-1). If u satisfies one
of the four assumptions

(a)
∫

Rd u
2d

d−3 dx <∞ and 1u(x)→ 0 as |x | →∞,

(b)
∫

Rd u
2d

d−3 dx <∞ and there exists some τ < 3 such that u(x) = O(|x |τ ) as
|x | →∞,
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(c) 1u ∈ C1,1
loc ∩L1(R

d) and 1u ≤ 0 in Rd,

(d) 1u ∈ C1,1
loc ∩L1(R

d),
∫

Rd
u(d+3)/(d−3)

|x |d−3 dx <∞ and u(x)= o(|x |2) as |x | →∞,

then u is radially symmetric and monotone decreasing about some point x0 ∈ Rd; in
particular, the positive solution u must assume the form

u(x)=
( 1

R3,d I
( d−3

2

)) d−3
6
(

λ

1+λ2|x−x0|
2

) d−3
2

for some λ > 0,

where Rm,d := 0(
d−m

2 )/(π
d
2 2m0(m

2 )) with 0< m < d and

I (s) :=
π

d
20(1

2(d − 2s))
0(d − s)

for 0< s < d
2 .

Remark 1.2. In Theorem 1.1, we should observe that the integrable condition∫
Rd

u
d+3
d−3

|x |d−3 dx <∞

in (d) is much weaker than the condition
∫

Rd u
2d

d−3 dx <∞ in (a) and (b). In fact,
one immediately has∫

|x |≥1

u
d+3
d−3 (x)
|x |d−3 dx ≤

(∫
|x |≥1

u
2d

d−3 dx
) d+3

2d
(∫
|x |≥1

1
|x |2d dx

) d−3
2d

<∞,

provided that
∫

Rd u
2d

d−3 dx < ∞. The assumption 1u ∈ C1,1
loc in (c) and (d) in

Theorem 1.1 can also be replaced by weaker assumptions 1u ∈ C1,ε
loc or u ∈ C3,ε

loc
for arbitrarily small ε > 0.

We also consider the classification of positive classical solutions to the following
third-order Ḣ

3
2 -critical static Hartree equation with nonlocal nonlinearity:

(1-10)

(−1)
3
2 u =

(
1
|x |6 ∗ |u|

2
)

u, x ∈ Rd ,

u ∈ C3(Rd), u(x) > 0, x ∈ Rd , d ≥ 7.

The solution u to problem (1-10) is also a stationary solution to the Ḣ
3
2 -critical

focusing fractional order dynamic Schrödinger–Hartree equation

(1-11) i∂t u+ (−1)
3
2 u =

(
1
|x |6
∗ |u|2

)
u, (t, x) ∈ R×Rd ,

where d ≥ 7. The Hartree equation has many interesting applications in the quantum
theory of large systems of nonrelativistic bosonic atoms and molecules (see, e.g.,
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[Fröhlich and Lenzmann 2004]). PDEs of the type (1-10) also arise in the Hartree–
Fock theory of the nonlinear Schrödinger equations (see [Lieb and Simon 1977]).

There is lots of literature on the quantitative and qualitative properties of solutions
to fractional order or higher order Hartree equations of the form

(1-12) (−1)
α
2 u =

(
1
|x |2α

∗ |u|2
)

u

and various related Choquard equations, please see [Cao and Dai 2017; Dai et al.
2018; Liu 2009; Ma and Zhao 2010]. Cao and Dai [2017] classified all the positive
C4 solutions to the Ḣ 2-critical biharmonic equation (1-12) with α = 4; they also
derived Liouville theorems in the subcritical cases. For general 0< α < d

2 , Dai et
al. [2018] classified all the positive L2d/(d−α) integrable solutions to the equivalent
integral equation of PDE (1-12). As a consequence, they obtained the classification
results for positive weak solutions to PDE (1-12).

By proving the equivalence between PDE (1-10) and the integral equation

(1-13) u(x)=
∫

Rd

R3,d

|x − y|d−3

(∫
Rd

1
|y− z|6

|u(z)|2 dz
)

u(y) dy

and using the results for IE (1-13) from [Dai et al. 2018], we establish the following
classification theorem for positive smooth solutions of PDE (1-10) under similar
assumptions as in Theorem 1.1.

Theorem 1.3. Assume u is a positive solution of (1-10) such that
∫

Rd u
2d

d−3 dx <∞.
If u satisfies one of the four assumptions

(a) 1u(x)→ 0 as |x | →∞,

(b) there exists some τ < 3 such that u(x)= O(|x |τ ) as |x | →∞,

(c) 1u ∈ C1,1
loc ∩L1(R

d) and 1u ≤ 0 in Rd,

(d) 1u ∈ C1,1
loc ∩L1(R

d) and u(x)= o(|x |2) as |x | →∞,

then u is radially symmetric and monotone decreasing about some point x0 ∈ Rd; in
particular, the positive solution u must assume the following form:

u(x)=

√
1

R3,d I (3)I
( d−3

2

)( λ

1+ λ2|x − x0|2

) d−3
2

for some λ > 0.

The rest of our paper is organized as follows. In Section 2, we carry out our
proof for Theorem 1.1. Section 3 is devoted to proving Theorem 1.3.

In the following, we will use C to denote a general positive constant that may
depend on d and u, and whose value may differ from line to line.
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2. Proof of Theorem 1.1

Lemma 2.1 (Hardy–Littlewood–Sobolev inequality, [Lieb 1983]). Letting d ≥ 1,
0< s < d and 1< p < q <∞ be such that d

q =
d
p − s, we have∥∥∥∥∫

Rd

f (y)
|x − y|d−s dy

∥∥∥∥
Lq (Rd )

≤ Cd,s,p,q‖ f ‖L p(Rd )

for all f ∈ L p(Rd).

Define

(2-1) v(x) := −
∫

Rd

R3,d

|x − y|d−3 u
d+3
d−3 (y) dy, w(x) := u(x)+ v(x),

where the Riesz potential’s constants Rm,d = 0((d −m)/2)/(π
d
2 2m0(m/2)) with

0 < m < d. Since u is a solution to (1-1), we get immediately (−1)
3
2w ≡ 0 and

hence 12w ≡ 0 in Rd.
Under the following four entirely different assumptions (a), (b), (c) and (d) on

u, we will prove that the solution u to PDE (1-1) always satisfies the equivalent
integral equation.

(a) Suppose 1u→ 0 as |x | →∞. By the Hardy–Littlewood–Sobolev inequality,

(2-2) ‖1v‖L2d/(d+1)(Rd ) =

Cd

∥∥∥∥∫
Rd

1
|x−y|d−1 u

d+3
d−3 (y) dy

∥∥∥∥
L2d/(d+1)(Rd )

≤ C̃d‖u‖
d+3
d−3
L2d/(d−3)(Rd )

.

Now assume z ∈ Rd is arbitrary. We can infer from 1v ∈ L2d/(d+1)(Rd) that there
exists a sequence of radii rk→∞ such that

(2-3) rk ·

∫
∂Brk (z)

|1v(x)|
2d

d+1 dσ → 0, as k→∞.

Since 1w is harmonic in Rd, the mean value property yields that

(2-4) 1w(z)=−
∫
∂Brk (z)

1w(x) dσ,

where −
∫
∂Brk (z)

1w(x) dσ is the integral average of 1w over the sphere |x− z| = rk .
Therefore, by the Jensen inequality and (2-4), we get

|1w(z)|
2d

d+1 ≤

(
−

∫
∂Brk (z)

(
|1u(x)| + |1v(x)|

)
dσ
) 2d

d+1

(2-5)

≤ Cd

{
−

∫
∂Brk (z)

|1u(x)|
2d

d+1 dσ +−
∫
∂Brk (z)

|1v(x)|
2d

d+1 dσ
}
.
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Letting k→∞ in (2-5), we can deduce from (2-3) and the assumption 1u→ 0 as
|x | →∞ that

(2-6) 1w(z)= 0.

Since z ∈ Rd is arbitrarily chosen, we actually have 1w ≡ 0 in Rd.
Applying Hardy–Littlewood–Sobolev inequality again, we deduce that

(2-7) ‖v‖L2d/(d−3)(Rd ) ≤ Cd‖u
d+3
d−3 ‖L2d/(d+3)(Rd ) ≤ Cd‖u‖

d+3
d−3
L2d/(d−3)(Rd )

.

Since w ∈ L2d/(d−3)(Rd) is harmonic in Rd, the Gagliardo–Nirenberg interpolation
inequality implies that

(2-8) ‖∇w‖L2d/(d−1)(Rd ) ≤ Cd‖w‖
1
2
L2d/(d−3)(Rd )

‖1w‖
1
2
L2d/(d+1)(Rd )

= 0,

thus we arrive at w ≡ 0 in Rd. That is, u also satisfies the integral equation

(2-9) u(x)=
∫

Rd

R3,d

|x − y|d−3 u
d+3
d−3 (y) dy.

(b) Suppose there exists some τ < 3 such that u(x)= O(|x |τ ) as |x |→∞. Without
loss of generality, we may assume τ > 2. By the Hölder inequality, we have for |x |
sufficiently large,

|v(x)| ≤ Cd

[∫
|x−y|≥1

1
|x − y|d−3 u

d+3
d−3 (y) dy

+

∫
|x−y|≤1

1
|x − y|d−3 u

d+3
d−3 (y) dy

]
≤ Cd +Cd,δ

(
sup
B1(x)

u
)1+δ
≤ C |x |(1+δ)τ ,

where δ > 0 is fixed sufficiently small such that τ < (1+ δ)τ < 3. It follows that
w(x)= O(|x |τ̃ ) with τ̃ := (1+ δ)τ < 3.

Since 1w is harmonic in Rd, from the mean value property, we get that, for any
x ∈ Rd and s > 0,

(2-10) 1w(x)=
d

ωd−1sd

∫
|y−x |≤s

1w(y) dy =
d

ωd−1sd

∫
|y−x |=s

∂w

∂s
(y) dσ,

where ωd−1 is the area of the unit sphere in Rd. By integrating with respect to s
from 0 to r in (2-10), we have

(2-11) r2

2d
1w(x)= 1

ωd−1rd−1

∫
|y−x |=r

w(y) dσ −w(x).
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Therefore, we can deduce from w(x) = O(|x |τ̃ ) and (2-11) that, for any x ∈ Rd

with |x | sufficiently large and r = |x |/2,

(2-12) |1w(x)| ≤ 2d
r2

{
sup

1
2 |x |≤|y|≤

3
2 |x |
|w(y)| + |w(x)|

}
≤ C |x |τ̃−2,

that is, 1w(x)= O(|x |τ̃−2) as |x | →∞. Thus, by gradient estimates for harmonic
functions, we have

(2-13) 1w(x)≡ C for all x ∈ Rd ,

which implies thatw(x)−C/(2d)|x |2 is harmonic in Rd. Sincew(x)−C/(2d)|x |2=
O(|x |τ̃ ), by gradient estimates for harmonic functions, w must be a quadratic
polynomial, that is,

(2-14) w(x)=
∑
i, j

ai j xi x j +
∑

i

bi xi + c.

Since w ∈ L2d/(d−3)(Rd), all the coefficients ai j , bi and c in (2-14) must be zero,
that is w(x)≡ 0 in Rd, thus u also satisfies the equivalent integral equation (2-9).

(c) Suppose 1u ∈ C1,1
loc ∩L1(R

d) and 1u ≤ 0 in Rd. We will prove the classical
solution u to PDE (1-1) also satisfies the equivalent integral equation (2-9) using
the ideas from [Chen et al. 2015; Zhuo et al. 2014]. To this end, we will need the
following two lemmas established in [Chen et al. 2017; Silvestre 2007; Zhuo et al.
2014].

Lemma 2.2 (maximum principle, [Chen et al. 2017; Silvestre 2007]). Let � be a
bounded domain in Rd and 0< α < 2. Assume that u ∈ Lα ∩C1,1

loc (�) and is lower
semicontinuous on �. If (−1)

α
2 u ≥ 0 in � and u ≥ 0 in Rd

\�, then u ≥ 0 in Rd.
Moreover, if u = 0 at some point in �, then u = 0 almost everywhere in Rd. These
conclusions also hold for an unbounded domain � if we assume further that

lim inf
|x |→∞

u(x)≥ 0.

Lemma 2.3 (Liouville theorem, [Zhuo et al. 2014]). Assume d ≥ 2 and 0< α < 2.
Let u be a strong solution of{

(−1)
α
2 u = 0, x ∈ Rd ,

u(x)≥ 0, x ∈ Rd ,

then u ≡ C ≥ 0.

Remark 2.4. Lemma 2.2 has been established first by Silvestre [2007] without
the assumption u ∈ C1,1

loc (�). In [Chen et al. 2017], Chen, Li and Li provided a
much more elementary and simpler proof for Lemma 2.2 under the assumption
u ∈ C1,1

loc (�).
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First, assume u is a positive solution to (1-1) satisfying 1u ∈ C1,1
loc ∩L1(R

d) and
1u ≤ 0 in Rd; we will show that −1u also satisfies the integral equation

(2-15) −1u =
∫

Rd

R1,d

|x − y|d−1 u
d+3
d−3 (y) dy+C1,

where C1 ≥ 0 is a constant.
For arbitrary R > 0, let

(2-16) ṽR(x)=
∫

BR(0)
G1

R(x, y)u
d+3
d−3 (y) dy,

where the Green’s function for (−1)
1
2 on BR(0) is given by

(2-17) G1
R(x, y)=

Cd

|x − y|d−1

∫ tR
sR

0

1

b
1
2 (1+ b)

d
2

db, if x, y ∈ BR(0)

with sR = |x − y|2/R2, tR = (1− |x |2/R2)(1− |y|2/R2), and G1
R(x, y) = 0 if x

or y ∈ Rd
\ BR(0) (see [Kulczycki 1997]).

Then, we can derive

(2-18)

{
(−1)1/2ṽR(x)= u

d+3
d−3 (x), x ∈ BR(0),

ṽR(x)= 0, x ∈ Rd
\ BR(0).

Letting w̃R(x)=−1u(x)− ṽR(x), by (1-1) and (2-18), we have

(2-19)

{
(−1)1/2w̃R(x)= 0, x ∈ BR(0),

w̃R(x)≥ 0, x ∈ Rd
\ BR(0).

By Lemma 2.2, we deduce that for any R > 0,

(2-20) w̃R(x)=−1u(x)− ṽR(x)≥ 0, for all x ∈ Rd .

Now, for each fixed x ∈ Rd, letting R→∞ in (2-20), we have

(2-21) −1u(x)≥
∫

Rd

R1,d

|x − y|d−1 u
d+3
d−3 (y) dy =: ṽ(x) > 0.

Taking x = 0 in (2-21), we get

(2-22)
∫

Rd

u
d+3
d−3 (y)
|y|d−1 dy <∞,

and it follows easily that
∫

Rd |u(x)|/(1+ |x |d) dx <∞, and hence u ∈ Lα for any
α > 0. One can easily observe that ṽ is a solution of

(2-23) (−1)
1
2 ṽ(x)= u

d+3
d−3 (x), x ∈ Rd .
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Define w̃(x)=−1u(x)− ṽ(x), then it satisfies

(2-24)

{
(−1)

1
2 w̃(x)= 0, x ∈ Rd ,

w̃(x)≥ 0 x ∈ Rd .

From Lemma 2.3, we can deduce that

(2-25) w̃(x)=−1u(x)− ṽ(x)≡ C1 ≥ 0.

Therefore, we have proved (2-15), that is,

(2-26) −1u =
∫

Rd

R1,d

|x − y|d−1 u
d+3
d−3 (y) dy+C1 =: f (u)≥ C1 ≥ 0.

Next, we will prove u also satisfies the equivalent integral equation (2-9). For
arbitrary R > 0, let

(2-27) vR(x)=
∫

BR(0)
G2

R(x, y) f (u)(y) dy,

where the Green’s function for −1 on BR(0) is given by

G2
R(x, y)= Cd

[
1

|x−y|d−2 −
1(

|x |·|Rx/|x |2−y/R|
)d−2

]
if x, y ∈ BR(0),

and G2
R(x, y)= 0 if x or y ∈ Rd

\ BR(0). Then, we can get

(2-28)

{
−1vR(x)= f (u)(x), x ∈ BR(0),

vR(x)= 0, x ∈ Rd
\ BR(0).

Let wR(x)= u(x)− vR(x), by (2-26) and (2-28), we have

(2-29)

{
−1wR(x)= 0, x ∈ BR(0),

wR(x) > 0, x ∈ Rd
\ BR(0).

By the maximum principle, we deduce that for any R > 0,

(2-30) wR(x)= u(x)− vR(x) > 0, for all x ∈ Rd .

Now, for each fixed x ∈ Rd, letting R→∞ in (2-30), we have

(2-31) u(x)≥
∫

Rd

R2,d

|x − y|d−2 f (u)(y) dy =: V (x) > 0.

Taking x = 0 in (2-31), we get

(2-32)
∫

Rd

C1

|y|d−2 dy ≤
∫

Rd

f (u)(y)
|y|d−2 dy <∞,
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and it follows easily that C1 = 0, and hence

−1u = f (u)=
∫

Rd

R1,d

|x − y|d−1 u
d+3
d−3 (y) dy.

One can easily observe that V is a solution of

(2-33) −1V (x)= f (u)(x), x ∈ Rd .

Define W (x)= u(x)− V (x), then it satisfies

(2-34)

{
−1W (x)= 0, x ∈ Rd ,

W (x)≥ 0 x ∈ Rd .

From the Liouville theorem for harmonic functions, we can deduce that

(2-35) W (x)= u(x)− V (x)≡ C2 ≥ 0.

Therefore, we have proved that

(2-36) u(x)=
∫

Rd

R2,d

|x − y|d−2 f (u)(y) dy+C2 ≥ C2 ≥ 0.

Now (2-22) implies that

(2-37)
∫

Rd

C
d+3
d−3
2 (y)
|y|d−1 dy ≤

∫
Rd

u
d+3
d−3 (y)
|y|d−1 dy <∞,

from which we can infer that C2 = 0. Thus, by using the formula

(2-38)
∫

Rd

1
|x − y|d−2 ·

1
|y|d−1 dy =

R3,d

R1,d R2,d
·

1
|x |d−3

(see [Stein 1970]) and direct calculations, we finally deduce from (2-36) that

u(x)=
∫

Rd

R2,d

|x − y|d−2

∫
Rd

R1,d

|y− z|d−1 u
d+3
d−3 (z) dz dy(2-39)

=

∫
Rd

R3,d

|x − z|d−3 u
d+3
d−3 (z) dz,

that is, u also satisfies the equivalent integral equation (2-9).

(d) Suppose 1u ∈ C1,1
loc ∩L1(R

d),∫
Rd

u
d+3
d−3

|x |d−3 dx <∞

and u(x)= o(|x |2) as |x | →∞. By the above proof under assumption (c), we only
need to prove the super-harmonic property −1u ≥ 0 under assumption (d).
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For that purpose, we will first estimate the upper bound for −v(x). Since one
can verify that

(2-40) 1v(x)=
∫

Rd

(d − 3)R3,d

|x − y|d−1 u
d+3
d−3 (y) dy ≥ 0,

we deduce that, for |x | sufficiently large,

0≤−v(x)=
∫

Rd

R3,d

|x − y|d−3 u
d+3
d−3 (y) dy

=

∫
|y−x |≥ |x |6

R3,d

|x − y|d−3 u
d+3
d−3 (y) dy+

∫
|y−x |< |x |6

R3,d

|x − y|d−3 u
d+3
d−3 (y) dy

≤ 7d−3 R3,d

∫
|y−x |≥ |x |6

u
d+3
d−3 (y)
|y|d−3 dy+

|x |2

36

∫
|y−x |< |x |6

R3,d

|x − y|d−1 u
d+3
d−3 (y) dy

≤ Cd

∫
Rd

u
d+3
d−3 (y)
|y|d−3 dy+

|x |2

36(d − 3)
1v(x).

As a consequence, we deduce from the assumption∫
Rd

u
d+3
d−3

|x |d−3 dx <∞

that, as |x | →∞,

(2-41) 0≤−v(x)≤ O(1)+
|x |2

36(d − 3)
1v(x).

Next, we can deduce from (2-11) that, for any x ∈ Rd with |x | sufficiently large
and r = |x |/2,

1w(x)≤
2d
r2

{
sup

1
2 |x |≤|y|≤

3
2 |x |
w(y)− u(x)− v(x)

}
(2-42)

≤
2d
r2

{
sup

1
2 |x |≤|y|≤

3
2 |x |

u(y)− v(x)
}
.

Therefore, we get from (2-40), (2-41), (2-42) and the assumption u(x)= o(|x |2) as
|x | →∞ that, as |x | →∞,

1w(x)=1u(x)+1v(x)≤ 8d
|x |2

{
o(|x |2)+ O(1)+ |x |2

36(d−3)
1v(x)

}
(2-43)

≤ o(1)+ d
4(d−3)

1v(x).
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We can deduce from (2-43) that

(2-44) lim sup
|x |→∞

1u(x)≤ 0, that is , lim inf
|x |→∞

(−1u(x))≥ 0.

Therefore, from (1-1), (2-44) and the maximum principle (Lemma 2.2), we can infer

(2-45) −1u ≥ 0 in Rd.

In conclusion, we have proved respectively under the four different assumptions
(a), (b), (c) and (d) on u that the classical solution u to PDE (1-1) always satisfies
the equivalent integral equation (2-9). Applying [Chen et al. 2006, Theorem 1.1]
(u ∈ L2d/(d−3)

loc (Rd) was assumed therein) to integral equation (2-9), we deduce
immediately that u is radially symmetric and monotone decreasing about some
point x0 ∈ Rd and thus assumes the form

(2-46) u(x)=
(

1
R3,d I

(d−3
2

)) d−3
6
(

λ

1+λ2|x−x0|2

) d−3
2

for some positive constant λ, where

I (s) :=
π

d
20
( d−2s

2

)
0(d − s)

for 0< s < d
2 . This concludes the proof of Theorem 1.1.

Remark 2.5. In the proof of Theorem 1.1 under assumption (d), one crucial step
is to deduce 1u ≤ 0 from the assumptions∫

Rd

u
d+3
d−3

|x |d−3 dx <∞

and u(x)= o(|x |2) as |x | →∞, where the fractional Laplacian (−1)
1
2 is given by

definition (1-3). Suppose (−1)
1
2 can be defined in terms of the Fourier transform,

that is, ∧

(−1)
1
2 f (ξ) := (2π |ξ |) f̂ (ξ)

with f̂ (ξ) :=
∫

Rd f (x)e−2π i x ·ξ dx , then the super-harmonic property 1u ≤ 0 can
be deduced directly from

∫
Rd u(d+3)/(d−3)/|x |d−1 dx <∞. Indeed, we only need

to show that
∫

Rd (−1u)φdx ≥ 0 for any nontrivial 0 ≤ φ ∈ C∞0 (R
d). To this end,

we define

ψ(x) := (−1)−
1
2φ(x)=

∫
Rd

R1,d

|x − y|d−1φ(y) dy ≥ 0,

then ψ ∈ C∞(Rd) and satisfy (2π |ξ |)ψ̂(ξ)= φ̂(ξ) (see [Stein 1970]). Moreover,
one can easily verify that ψ(x) ∼ 1/|x |d−1 for |x | large enough, thus we have
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Rd u

d+3
d−3ψ dx <∞ provided

∫
Rd u

d+3
d−3 /|x |d−1 dx <∞. Therefore, we may multiply

both sides of the PDE (1-1) by ψ and integrate, then by Parseval’s formula, we get

∞>

∫
Rd

u
d+3
d−3ψdx=

∫
Rd
(−1)

3
2 u·ψdx=

∫
Rd
(2π |ξ |)−̂1u· ¯̂ψdξ=

∫
Rd
(−1u)·φ dx≥0.

3. Proof of Theorem 1.3

We define

v(x) :=−
∫

Rd

R3,d

|x − y|d−3

(∫
Rd

1
|y− z|6

|u(z)|2 dz
)

u(y) dy,

w(x) :=u(x)+ v(x).

(3-1)

Since u is a solution to (1-10), we get immediately (−1)
3
2w≡0 and hence12w≡0

in Rd.
Our goal is to show under the following four entirely different assumptions (a),

(b), (c) and (d) that the solution u to PDE (1-10) always satisfies the equivalent
integral equation

(3-2) u(x)=−v(x)=
∫

Rd

R3,d

|x − y|d−3

(∫
Rd

1
|y−z|6

|u(z)|2 dz
)

u(y) dy.

(a) Suppose1u→0 as |x |→∞. The key ingredients are showing v∈ L2d/(d−3)(Rd)

and 1v ∈ L2d/(d+1)(Rd).
Indeed, let P(x) := 1/|x |6∗|u|2, then by the Hardy–Littlewood–Sobolev inequal-

ity, one has

(3-3) ‖P‖Ld/3(Rd ) ≤ C‖u2
‖Ld/(d−3)(Rd ) ≤ C‖u‖2L2d/(d−3)(Rd )

.

Therefore, by using Hardy–Littlewood–Sobolev inequality again, we get

‖v‖L2d/(d−3)(Rd ) ≤ Cd‖Pu‖L2d/(d+3)(Rd ) ≤ Cd‖P‖Ld/(3)(Rd )‖u‖L2d/(d−3)(Rd )(3-4)

≤ Cd‖u‖3
L

2d
d−3 (Rd )

,

‖1v‖
L

2d
d+1 (Rd )

= Cd

∥∥∥∫
Rd

P(y)u(y)
|x − y|d−1 dy

∥∥∥
L

2d
d+1 (Rd )

(3-5)

≤ C̃d‖Pu‖
L

2d
d+3 (Rd )

≤ C̃d‖u‖3
L

2d
d−3 (Rd )

.

The rest of the proof is similar to the proof of Theorem 1.1 under assumption (a) in
Section 2.

(b) Suppose there exists some τ < 3 such that u(x)= O(|x |τ ) as |x |→∞. Without
loss of generality, we may assume τ > 2. The key ingredient is proving w(x) =
O(|x |τ̃ ) for some τ < τ̃ < 3.
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In fact, using Hölder’s inequality, one can verify that for |x | large enough,

P(x)≤
∫
|x−y|≥1

1
|x − y|6

|u(y)|2 dy+
∫
|x−y|≤1

1
|x − y|6

|u(y)|2 dy(3-6)

≤ Cd +Cd
(

sup
B1(x)

u
)2
≤ C |x |2τ .

Therefore, by P ∈ L
d
3 (Rd) and the Hölder inequality, we have for |x | sufficiently

large,

(3-7) |v(x)| ≤ Cd

[∫
|x−y|≥1

1
|x−y|d−3 P(y)u(y) dy

+

∫
|x−y|≤1

1
|x−y|d−3 P(y)u(y) dy

]
≤ Cd +Cd,δ

(
sup
B1(x)

u
)(

sup
B1(x)

P
)δ
≤ C |x |(1+2δ)τ ,

where δ > 0 is fixed sufficiently small such that τ < (1+ 2δ)τ < 3. It follows that
w(x) = O(|x |τ̃ ) with τ̃ := (1+ 2δ)τ < 3. The rest of the proof is similar to the
proof of Theorem 1.1 under assumption (b) in Section 2.

(c) The proof is similar to the proof of Theorem 1.1 under assumption (c) in
Section 2.

(d) Suppose1u ∈C1,1
loc ∩L1(R

d) and u(x)=o(|x |2) as |x |→∞. The key ingredient
is proving

∫
Rd P(x)u(x)/|x |d−3 dx <∞. Indeed, we have∫

Rd

P(x)u(x)
|x |d−3 dx ≤

∫
|x |≤1

1
|x |d−3 dx · ‖Pu‖L∞(B1)

+

(∫
|x |>1

1
|x |2d dx

) d−3
2d

‖P‖Ld/3‖u‖L2d/(d−3) <∞.

The rest of the proof is similar to the proof of Theorem 1.1 under assumption (d) in
Section 2.

In conclusion, we have proved respectively under the four different assumptions
(a), (b), (c) and (d) on u that the classical solution u to PDE (1-10) always satisfies
the equivalent integral equation (3-2). Applying [Dai et al. 2018, Theorem 1.4]
(u ∈ L

2d
d−3 (Rd) was assumed therein) to integral equation (3-2), we deduce imme-

diately that u is radially symmetric and monotone decreasing about some point
x0 ∈ Rd and thus assumes the form

(3-8) u(x)=

√
1

R3,d I (3)I
( d−3

2

)( λ

1+λ2|x−x0|2

)d−3
2

for some positive constant λ. This concludes the proof of Theorem 1.3.
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THE PROJECTIVE LINEAR SUPERGROUP AND THE
SUSY-PRESERVING AUTOMORPHISMS OF P1|1

RITA FIORESI AND STEPHEN D. KWOK

The purpose of this paper is to describe the projective linear supergroup, its
relation with the automorphisms of the projective superspace and to deter-
mine the supergroup of SUSY-preserving automorphisms of P1|1.

1. Introduction

The works of Manin [1988; 1991] and more recently of Witten et al. [Witten 2012;
Donagi and Witten 2015] have drawn attention to projective supergeometry and
more specifically to SUSY curves and their moduli superspaces.

In this paper we study the automorphisms of the projective superspace Pm|n

and its SUSY-preserving subsupergroup. We start by defining the projective linear
supergroup PGLm|n , using the functor of points formalism, and then we show that
this supergroup functor is indeed representable, that is, it is the functor of points
of a superscheme. We achieve this by realizing PGLm|n as a closed subsupergroup
scheme of GLm2+n2|2mn , mimicking the ordinary procedure.

In relating this supergroup scheme to the automorphism supergroup of Pm|n we
encounter a difficulty, not present in the ordinary setting, namely the fact that the
Picard group of the projective superspace is not known in general and involves some
difficulties. This is a consequence of the fact that the supergroup of automorphisms
of the projective superspace is larger than PGLm|n for n > 1. Nevertheless, going
to the special case of n = 1, we are able to give the projective linear supergroup
quite explicitly and to prove it coincides with the automorphisms of the projective
superspace.

The question of singling out the SUSY-preserving automorphisms inside this
supergroup was already settled over the complex field by Manin [1991] and Witten
[2012]; we extend their considerations to an arbitrary algebraically closed field k,
char(k) 6= 2, and provide some extra details of their proofs.

The organization of this paper is as follows. In Section 2 we start by reviewing
some generally known facts on the projective superspace and its functor of points
to establish our notation. We then discuss line bundles and projective morphisms,
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proving, in Proposition 2.3, that the Picard group of Pm|1 is Z. To our knowledge
this result is new and gives insight into projective supergeometry. In Section 3 we
define the projective linear supergroup in terms of functor of points and we prove
its representability by realizing it as a closed subsuperscheme of the general linear
supergroup. Then, in Section 4 we prove that the projective linear supergroup is
the supergroup of automorphisms of the projective superspace in the case of one
odd dimension. Though the approach in both Sections 3 and 4 closely resembles
the ordinary one, the results are novel in the supergeometric context. In Section 5,
we use the machinery developed previously to prove that the subsupergroup of
Aut(P1|1) of SUSY-preserving automorphisms of P1|1 consists precisely of the
irreducible component (SpO2|1)

0 of the 2|1-symplectic-orthogonal supergroup
SpO2|1 containing the identity. This section is a generalization of the claims made
in [Manin 1991] regarding complex supergeometry and provides proofs for such
claims for a generic algebraically closed field.

2. The projective superspace Pm|n

In this section we want to recall different, but equivalent definitions of projective
superspace and we describe the line bundles on it. For all of our notation and main
definitions of supergeometry, we refer the reader to [Manin 1988; Deligne and
Morgan 1999; Carmeli et al. 2011].

Let k be our ground ring.
We recall that, by definition, the functor of points of a superscheme X= (|X |,OX )

is the functor

X : (sschemes)o→ (sets), X (S)= Hom(sschemes)(S, X), X (φ)( f )= f ◦φ,

where (sschemes) denotes the category of superschemes (it is customary to use the
same letter for X and its functor of points). Equivalently (see [Carmeli et al. 2011,
Chapter 10]), we can view the functor of points of X as X : (salg)→ (sets):

X (R)= Hom(sschemes)(Spec R, X), X (φ)( f )= f ◦Spec (φ),

where (salg) denotes the category of superalgebras (over k), (we shall use the
same letter for this functor also). In fact the functor of points of a superscheme is
determined by its behavior on the affine superscheme subcategory, which in turn is
equivalent to the category of superalgebras; see [Carmeli et al. 2011, Chapter 10,
Theorem 10.2.5]. If X = SpecO(X), that is, X is affine, we have that

X (R)= Hom(sschemes)(Spec R, X)= Hom(salg)(O(X), R),

where O(X) denotes the superalgebra of global sections of the sheaf of superalge-
bras OX . We say that the X (R) are the R-points of the superscheme X.
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The algebraic superscheme Pm|n is defined as the patching of the m+ 1 affine
superspaces Ui=SpecO(Ui ), with O(Ui )=Spec k[x i

0, . . . , x̂ i
i , . . . , x i

m, ξ
i
1, . . . , ξ

i
n]

through the change of charts:

(1)

φi j :O(U j )[(x
j

i )
−1
] 7→O(Ui )[(x i

j )
−1
]

x j
k 7→ x i

k/x i
j

x j
i 7→ 1/x i

j

ξ
j

k 7→ ξ i
k/x i

j ,

(where as usual x̂ i
i means that we are omitting the indeterminate x i

i ). Notice that
O(U j )[(x

j
i )
−1
] is the superalgebra representing the open subscheme U j ∩Ui of U j

(and similarly for O(Ui )[(x i
j )
−1
]).

Proposition 2.1. The R-points of Pm|n, R ∈ (salg) are given equivalently by:

(i) Pm|n(R)= {α : Rm+1|n
→ L , R-linear, surjective}/∼,

Pm|n(ψ) : Rm+1|n
⊗R T → L ⊗R T,

where L is locally free of rank 1|0, ψ : R → T and α : Rm+1|n
→ L ∼

α′ : Rm+1|n
→ L ′ if and only if ker(α) = ker(α′) (or equivalently, α ∼ α′ if

they differ by an automorphism of L by multiplication of an element in R×).

(ii) Pm|n(R)= {α : L ↪→ Rm+1|n R-linear, injective},

Pm|n(ψ) : L ⊗R T → Rm+1|n
⊗R T,

where L is locally free of rank 1|0.

Let Om+1|n
S = OS ⊗ km+1|n. The S-points of Pm|n, S ∈ (sschemes) are given

equivalently by:

(a) Pm|n(S)= {α :Om+1|n
S → L, surjective}/∼,

Pm|n(ψ) : (ψ∗OS)
m+1|n

→ ψ∗(L),

where ψ : T → S, L is a line bundle on S (of rank 1|0) and

α :Om+1|n
S → L∼ α′ :Om+1|n

S → L′

if and only if ker(α) = ker(α′) (or equivalently, α ∼ α′ if they differ by an
automorphism of L by multiplication of an element in O×S ).

(b) Pm|n(S)= {α : L ↪→Om+1|n
S },

Pm|n(ψ) : ψ∗L→ (ψ∗OS)
m+1|n.

Proof. The proof relative to (i) and (a) works as in the ordinary setting and it is
detailed in [Carmeli et al. 2011, Chapter 10]. The equivalence with (ii) and (b)



388 RITA FIORESI AND STEPHEN D. KWOK

is immediate. The equivalence between (i) and (ii) is essentially the same as
in the ordinary setting (see [Eisenbud and Harris 2000, Chapter III, Section 2,
Proposition III-40, Corollary III-42]). �

For every A ∈ (salg), we denote by (salg)A the category of superalgebras over A.
We will need to consider also P

m|n
A , that is, the projective superspace over a base

A ∈ (salg). This means that we are considering the superscheme obtained by
patching the affine superspaces Ui = A[x i

j , ξ
i
k ], i, j =0, . . . ,m, j 6= i , k=1, . . . , n

as above. For example, in the second case in Proposition 2.1 each of the T -points,
T ∈ (salg)A, is identified with a morphism α : L→ T m+1|n of A-modules, where
L and T m+1|n are T -modules which become A-modules via the map φ : A→ T :

(2) P
m|n
A (T )= Hom(sschemes)A

(
Spec T,P

m+1|n
A

)
= {α : L ↪→ T m+1|n

}.

Notice that the functor of points of P
m|n
A is defined on the category of A-superalgebras

or equivalently on the category of A-superschemes (that is, superschemes equipped
with a morphism to the superscheme Spec A and morphisms compatible with it).

We leave to the reader the generalization of the other cases of Proposition 2.1
since it is straightforward.

We end this section with some observations on line bundles and morphisms
on P

m|n
A . We start with a result completely similar to the ordinary counterpart, left

to the reader as a simple exercise; see also [Carmeli et al. 2011, Chapter 9].

Proposition 2.2. We have a bijective correspondence between the following:

(i) The set of equivalence classes of m+n+2-tuples (L , s0, . . . , sm, σ1, . . . , σn),
where L is a line bundle on P

m|n
A globally generated by the global sections

s0, . . . , sm, σ1, . . . , σn of L , under the relation

(L , s0, . . . , sm, σ1, . . . , σn)∼ (L , s ′0, . . . , s ′m, σ
′

1, . . . , σ
′

n)

if and only if there exists some c ∈O(Pm|n
A )∗0 such that s ′i = csi and σ ′i = cσi

for all i .

(ii) The set of A-morphisms P
m|n
A → P

m|n
A .

In the ordinary setting we have that a line bundle on Pm
A is of the form O(n)⊗L,

where L is a line bundle on Spec A. This nontrivial fact is still true in supergeometry
for P

m|1
A , and it will turn out to be crucial in our treatment.

Proposition 2.3. Every line bundle on P
m|1
A is isomorphic to O(n)⊗L, where L is

a line bundle on Spec A.

Proof. A line bundle on P
m|1
A is determined once we know its transition functions,

say gi j ∈OP
m|1
A
(Ui ∪U j )

∗

0, which are even. We then need to prove that any such set
of transition functions is equivalent, up to a coboundary, to a set of transition
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functions for a line bundle of the form O(n)⊗L, for L a line bundle on Spec A. In
other words we need to show

hi |Ui∩U j gi j h−1
j |Ui∩U j = (x

i
j )

n, hi ∈OP
m|1
A
(Ui )

∗

0.

Notice that

O
P

m|1
A
(Up)

∗
= (A[x p

k , ξ
p
])∗0 = (A[ξ

p
][x p

k ])
∗

0, p = i, j.

Since φi j (ξ
j ) = ξ i/x i

j , φi j (x
j

i ) = 1/x i
j and φi j (x

j
k ) = x i

k/x i
j , where φi j is the

change of chart as in (1), we can view the restrictions of the h p’s (p = i, j) to
Ui ∩U j , through this identification, as both belonging to (A[ξ i

][x i
j , (x

i
j )
−1
])∗0. We

now apply the classical result and obtain h′p ∈ (A[ξ
i
][x i

j , (x
i
j )
−1
])∗0 such that

h′i gi j (h′j )
−1
= (x i

j )
n.

The h′p’s thus obtained are not yet the sections we want; since the odd dimension is
one by hypothesis, the most general possible form for h′j is

h′j = a0+α0ξ
i
+

∑
K

aK x i
K (x

i
j )
−|K |
+

∑
L

αL x i
L(x

i
j )
−|L|ξ i

+

∑
k

βk(x i
j )
−kξ i ,

where K and L are multi-indices, K = (k1, . . . , kr ), kl 6= j (r ∈ N) and x i
K :=

x i
k1
· · · x i

kr
(similarly for L).

In order to eliminate the term α0ξ
i which is not well defined on U j , we define:

hi := (a0+α0ξ
i )h′i , h j := (a−1

0 − a−2
0 α0ξ

i )h′j ,

and this gives the required sections. �

Notice that it was absolutely fundamental for our argument that there is only
one odd dimension. This calculation will give us key information when we want to
determine the automorphism supergroup of the projective linear supergroup.

3. The projective linear supergroup

In this section we want to define the supergroup functor of the projective linear
supergroup and to show it is representable by producing an embedding of it as a
closed subgroup into the general linear supergroup.

Let M m|n(R) denote the associative superalgebra of supermatrices of order
m|n by m|n with entries in a commutative superalgebra R. More intrinsically,
M m|n(R)= EndR(R

m|n).

Definition 3.1. The automorphism supergroup of supermatrices is the supergroup
functor Aut(M m|n) : (salg)→ (grps),

[Aut(M m|n)](R) :=

{ f :M m|n(R)→M m|n(R) | f is an R-superalgebra automorphism}.
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In analogy with the ordinary setting we also will call this supergroup functor the
projective linear supergroup and denote it with PGLm|n .

Since M m|n(R) is itself a free R-module of rank M |N, where M =m2
+ n2 and

N = 2mn, Aut(M m|n) is a subfunctor of GLM |N in a natural way. We want to
prove this is the functor of points of a closed subsuperscheme of GLM |N . Before
proceeding we need a lemma characterizing the morphisms of the superalgebra of
supermatrices.

Lemma 3.2. (i) An R-linear parity-preserving map ψ :M m|n(R)→M m|n(R) is
a morphism of the superalgebra of supermatrices M m|n(R) if and only if
(a) ψ(id)= id;
(b) ψ(ei j )ψ(ekl)= δk jψ(eil),
where ei j are the elementary matrices in M m|n(R).

(ii) If R is a local superalgebra, all of the automorphisms of the superalgebra
M m|n(R) are of the form

Mm|n(R)→Mm|n(R), (T, X) 7→ T XT−1,

for a suitable T ∈ GLm|n(R).

(iii) Aut(M m|n) is a closed subsuperscheme of GLM |N = Spec k[xi j,kl][d−1
1 , d−1

2 ],
M = m2

+ n2 and N = 2mn, defined by the equations:

(3)
∑

k

xi j,kk = δi j ,
∑

s

xrs,i j xst,kl = δ jk xr t,il,

where GLM |N (R) is identified with the parity-preserving automorphisms of the
free R-module M m|n(R).

Proof. (i) If ψ is an R-superalgebra endomorphism of M m|n(R) then the two
relations are obviously satisfied and vice versa.

(ii) Now assume ψ is an automorphism of Mm|n(R), R local, which satisfies the
relations (a) and (b). We need to find T ∈ GLm|n(R) such that ψ(ei j )= T ei j T−1.
This is an application of super Morita theory (see [Kwok 2013]), however we shall
recall the main idea to make this proof self-contained. By (a) and (b) we have∑

ψ(ei i )= id, ψ(ei i )
2
= ψ(ei i ), ψ(ei i )ψ(e j j )= 0, i 6= j,

hence we can write
Rm|n
=⊕ψ(ei i )Rm|n.

Since by (b),ψ(e j i )ψ(ei i )=ψ(e j i )=ψ(e j j )ψ(e j i )we haveψ(e j i ) :ψ(ei i )Rm|n
→

ψ(e j j )Rm|n (recall that R is local so projective implies free). Hence there exists a
basis {ti } of the free module Rm|n such that

ψ(ei i )Rm|n
= spanR{ti }
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and ψ(e j i )ti = t j . Let T be the matrix whose columns are the ti ’s, T =
∑

ti ⊗ e∗i ,
T−1
=
∑

ei ⊗ t∗i . It is then immediate to verify ψ(ei j )= T ei j T−1.

(iii). This is immediate from (i). �

Let us view the multiplicative algebraic supergroup G
1|0
m : (salg)→ (grps) as the

following subsupergroup of GLm|n:

G1|0
m (R)= {aI | a ∈ R∗0} ⊂ GLm|n(R).

(Here I denotes the identity matrix).
We do not specify the definition on the arrows whenever it is clear, as in this case.

Definition 3.3. We define the supergroup functor: P̂GLm|n : (salg)→ (grps),

P̂GLm|n(R)= GLm|n(R)/G1|0
m (R),

and we call its sheafification (as customary) GLm|n/G
1|0.

We wish to show that GLm|n/G
1|0 is representable and coincides with the projec-

tive linear supergroup, that is, with the automorphism supergroup of supermatrices.

Definition 3.4. We say that a functor F : (salg) → (grps) is stalky if for any
superalgebra R, the natural map

lim
−−→
f /∈p

F(R f )→ F(Rp)

is an isomorphism for any prime ideal p ∈ R0.

The next two lemmas are standard and their proof is the same as in the ordinary
case; see [Sun 2009].

Lemma 3.5. GLm|n/G
1|0 and Aut(M m|n) are stalky.

Lemma 3.6. Let F,G be stalky Zariski sheaves (salg)→ (grps) and α : F→ G be
a morphism. If αR : F(R)→ G(R) is an isomorphism for all local superrings R,
then α is an isomorphism of sheaves.

Proposition 3.7. The supergroup functor GLm|n/G
1|0 is representable and is re-

alized as the closed subsupergroup Aut(M m|n) of GLM |N for M = m2
+ n2

and N = 2mn.

Proof. We need to establish an isomorphism of sheaves between GLm|n/G
1|0 and

a closed subsupergroup of GLM |N . We will first give a morphism of sheaves and
then show it is an isomorphism on local superalgebras; since GLm|n/G

1|0 is a stalky
sheaf, this will be enough. We start by giving a morphism of presheaves P̂GLm|n

and GLM |N ; since GLM |N is a sheaf then such a morphism will factor through the
sheafification of P̂GLm|n thus giving us a sheaf morphism.
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Consider the action of GLM |N on supermatrices M m|n , where M = m2
+ n2,

N = 2mn:

φ : GLm|n(R)×M m|n(R)→M m|n(R), (T, X) 7→ T XT−1.

This clearly factors through G
1|0
m (R) and hence gives a well defined action ρ of

P̂GLm|n and then in turn of GLm|n/G
1|0 (see comments at the beginning of the

proof ). Since X 7→ T XT−1 and T ∈ (GLm|n/G
1|0)(R) is a parity-preserving R-

superalgebra morphism, it is immediate to verify we have a morphism of sheaves,

GLm|n/G
1|0
→ Aut

(
M m|n

)
.

By the first part of Lemma 3.2, we know that Aut(M m|n) is represented by the closed
subsuperscheme H of GLM |N = Spec k[xi j,kl][d−1

1 , d−1
2 ] defined by the equations

(4)
∑

k

xi j,kk = δi j ,
∑

s

xrs,i j xst,kl = δ jk xr t,il .

(Here di denotes as usual the determinants of the diagonal blocks of indetermi-
nates). We want to show that the group homomorphism (GLm|n/G

1|0)(R) →
[Aut(M m|n)](R) is an isomorphism for R local. The automorphism ψ ∈GLM |N (R)
belongs to H(R) if and only if its entries ψ(ei j )kl satisfy the above relations (4)
(where in our convention xi j,kl corresponds to ψ(ei j )kl). Hence by Lemma 3.2 we
have the result for R local. By Lemmas 3.5 and 3.6, it is true for any superalgebra
R and this concludes the proof. �

Remark 3.8. The projective linear supergroup may also be obtained through the
Chevalley supergroup recipe as detailed in [Fioresi and Gavarini 2011; 2012; 2013].
It corresponds to the choice of the adjoint action of the Lie superalgebra slm|n . In
fact one may readily check that the Lie superalgebra of PGLm|n is indeed slm|n and
(PGLm|n)0 = PGLm ×PGLn × k×.

4. The automorphisms of the projective superspace

We want to define the automorphism supergroup of the superscheme Pm|n.

Definition 4.1. We define the supergroup functor of automorphisms of the projective
superspace:

Aut(Pm|n)(A) := AutA(P
m|n
×Spec A)= AutAP

m|n
A , A ∈ (salg).

Aut(Pm|n) is defined in an obvious way on the morphisms.

The equality in the definition is straightforward, noticing that we can identify
the T -points of Pm|n

×Spec A and of P
m|n
A . In fact, a T -point of Pm|n

×Spec A is
a morphism φ : A→ T and a morphism L→ T m|n of A-modules via φ. This is
exactly an element of P

m|n
A (T ) and vice versa.
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An automorphism ψ ∈ AutAP
m|n
A is a family of automorphisms ψT for all

T ∈ (salg)A, which is functorial in T. The automorphism ψT :P
m|n
A (T )→P

m|n
A (T )

must assign to a T -point of P
m|n
A (T ), that is, a morphism α : L→ T m|n, another

morphism α′ : L ′ → T m|n, where L and L ′ are projective rank 1|0 T -modules,
where the morphisms are interpreted as A-module morphisms. Similarly for the
other characterizations of T -points as in Proposition 2.1.

We are now ready to relate the supergroup scheme PGLm|n with the automor-
phisms of Pm−1|n.

Proposition 4.2. There is an embedding of supergroup functors

PGLm|n ↪→ Aut(Pm−1|n).

Proof. We first establish a morphism φ′ : GLm|n→ Aut(Pm−1|n). If X ∈ GLm|n(A)
and α ∈ P

m−1|n
A (T )= {T m|n

→ L}/∼, ψ : A→ T we define

φ′(X)= α ◦GLm|n(ψ)(X).

Clearly φ′ factors through Gm(A). Since Aut(Pm−1|1) is a sheaf, we have defined
a morphism

φ : PGLm|n→ Aut(Pm−1|n).

The injectivity is clear. �

Remark 4.3. In general we cannot expect to get an isomorphism between PGLm|n

and Aut(Pm−1|n) for n> 1 and this is because of the peculiarity of the odd elements.
Let us see this in a simple example, P1|2. Consider the morphism φ ∈ P

1|2
A given

on the affine pieces U0 = Spec A[u, µ1, µ2] and U1 = A[v, ν1, ν2] by

φ|U0(u, µ1, µ2)= (u+µ1µ2, µ1, µ2), φ|U1(v, ν1, ν2)= (v− ν1ν2, ν1, ν2).

As φ is invertible, φ ∈ Aut(Pm|n)(A), but it is not obtained through an element
of PGL2|2(A). In fact the coefficient in φ|U0 of µ1µ2 in an automorphism induced
by a PGL2|2(A) transformation must be nilpotent. Hence φ 6∈ PGL2|2(A).

We now want to show that we have an isomorphism between the projective
linear supergroup and the automorphism of the super projective when n = 1. The
argument we give follows along the lines of the calculation of Aut(Pn) given in
[Hartshorne 1977, Chapter 2, Section 7].

Proposition 4.4. We have an isomorphism of supergroup functors:

PGLm+1|1 ∼= Aut(Pm|1).

In particular, Aut(Pm|1) is a supergroup scheme.

Proof. Proposition 4.2 gives us an embedding of supergroup functors PGLm+1|1 ↪→

Aut(Pm|1). Now let f ∈ Aut(Pm|1
A ) and let g be its inverse. We want to show

f ∈ PGLm+1|1(A). The automorphism f induces the two line bundle morphisms
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f ∗OA(1) → OA(1) and g∗OA(1) → OA(1), where OA(1) := p∗1(O(1)), with
p1 : P

m|1
A → Pm|1 being the natural projection. By Proposition 2.3, we know that

f ∗OA(1)=O(k)⊗L f and g∗OA(1)=O(l)⊗Lg. Let us choose a suitable open
cover of A in which both L f and Lg are trivial. By a common abuse of notation
we shall still write A to denote the ring of global sections of an element of the
open cover, so we in fact are replacing A with its localization. With such a choice
we have f ∗OA(1) ∼= OA(k) and g∗OA(1) ∼= OA(l). Since f and g are mutually
inverse, we have

OA(1)= ( f ∗ ◦ g∗)(OA(1))= f ∗(g∗(OA(1)))= f ∗(OA(l))=OA(kl).

Hence kl = 1, whence k = l = 1, because for k = l = −1 we do not have global
sections.

So f ∗(O(1)) ∼= O(1), and choosing an isomorphism F : f ∗(O(1))→ O(1)
yields an isomorphism of the global sections 0(Pm, f ∗OA(1))∼= 0(Pm,OA(1)).
By composing such an isomorphism with the natural isomorphism

f ∗ : 0(Pm,OA(1))→ 0(Pm, f ∗OA(1))

we obtain an A-linear automorphism,

TF : 0(P
m,OA(1))→ 0(Pm,OA(1)),

and identifying 0(Pm,OA(1)) with Am+1|1 we see that TF ∈GLm+1|1(A). However,
TF depends on F. Suppose G : f ∗(O(1))→ O(1) is another isomorphism, then
F−1
◦G is an automorphism of O(1). Since Hom(L , L)= L∗⊗ L =O for any line

bundle L , we see that an automorphism of O(1) is the same thing as an invertible
even function on P

m|1
A , and F and G differ by composing with multiplication by

such a function.
Therefore f determines TF only up to multiplication by an invertible even

function, i.e., f uniquely determines an element T := [TF ] of PGLm+1|1(A).
Now in suitable coordinates we have that T induces (up to scalar multiplication)

an automorphism of the Z-graded superalgebra A[z0, . . . , zm, ζ ]. We leave to the
reader the check that φ(T ) is indeed f . �

5. The SUSY-preserving automorphisms of P
1|1
k

In this section we want to consider those automorphisms of P
1|1
k which preserve

its unique (up to isomorphism) SUSY structure. For all of the standard notation of
supergeometry refer to [Carmeli et al. 2011].

Let k be our ground field, char(k) 6= 2, k algebraically closed. All algebraic
supergroups discussed below will be algebraic supergroups over k.

We recall that if X is a smooth algebraic supervariety over k of dimension 1|1,
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we define a SUSY structure on X as a 0|1 distribution D on X such that the
Frobenius map

D⊗D→ T X/D, Y ⊗ Z 7→ [Y, Z ] mod D

is an isomorphism (see, for example, [Manin 1991] for the definition of a SUSY
structure in the complex analytic case). If X→ S is a smooth family of algebraic
supervarieties of relative dimension 1|1 over an algebraic k-supervariety S, then
the notion of relative SUSY structure may be defined in the analogous way, as a
relative distribution in the relative tangent sheaf T X/S. In this case we say that
X→ S is a relative SUSY family.

Our discussion is based on [Witten 2012].
We start by interpreting P

1|1
k as a homogeneous superspace. Let k2|1

= (k2,Ok2|1)

denote the affine superspace canonically associated to the k-super vector space k2|1.
Let us consider the action of the algebraic group k× on k2|1

\ {0}, given in the
functor of points notation by

t · (z0, z1, ζ )= (t z0, t z1, tζ ).

Consider the projection (as topological map)

π : k2
\ {0} → k2

\ {0}/k× ∼= P1.

Define the sheaf on the topological space P1
k consisting of the k×-invariant sections

F(U ) :=Ok2|1(π−1(U )))k
×

.

One can readily check that (P1
k,F) is the superscheme P

1|1
k as defined in Section 2.

Let z0, z1, ζ be global coordinates on k2|1. We now consider the Euler vector
field E = z0∂z0 + z1∂z1 + ζ∂ζ , which represents (in the chosen coordinates) the
infinitesimal generator for the k× action on k2|1

\ {0}. Since E is everywhere
nonsingular, it generates a trivial 1|0 line bundle. As in the classical case, we have
the Euler exact sequence of vector bundles on P

1|1
k :

(5) 0→O1|0 i
→O(1)⊗Der(S) j

→ T P
1|1
k → 0,

where i is the inclusion of the trivial 1|0 line bundle 〈E〉 with global basis the
Euler vector field. Here Der(S) is the k-super vector space of k-linear derivations
on S := Sym((k2|1)∗); it has as basis the derivations ∂zi , ∂ζ . Thus O(1)⊗Der(S)
is the sheaf whose sections on U are the linear vector fields on π−1(U ). Any local
section of O(1)⊗Der(S) induces a corresponding local k-linear derivation on O

P
1|1
k

by restricting it to act on k×-invariant functions; this defines j. Injectivity of i and
the inclusion im(i) ⊆ ker( j) follow from the fact that E is nonsingular and the
infinitesimal generator for the k×-action; a standard calculation in the usual affine
cells shows that ker( j) ⊆ im(i) and that j is surjective. Note that the sequence
continues to remain exact on P

1|1
A after base change to any affine k-supervariety
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Spec (A), with T P
1|1
k replaced by the relative tangent bundle T P

1|1
A /Spec(A). We

will denote the A-superalgebra S⊗k A by SA.
We now come to the SUSY structure.

Definition 5.1. Let (X→ S,D) be a relative SUSY family. An S-automorphism
f : X→ X is SUSY structure-preserving (or simply SUSY-preserving) if and only
if (d f p)(Dp)= D f (p) for any p ∈ X.

We will consider SUSY structures given by sections of OA(1)⊗�S/A. Here�S/A

denotes the A-module of Kähler differentials on SA, i.e., the A-dual to Der(SA); it
has as basis the differentials dzi , dζ . When we speak of the kernel of a section ω
of OA(1)⊗�S/A, we mean the kernel of ω when ω is interpreted as a morphism of
sheaves of O

P
1|1
A

-modules from OA(1)⊗Der(SA)→OA(2).

Proposition 5.2. Let s := z1 dz0− z0 dz1−ζ dζ . Then the image of ker(s) under j
is a SUSY structure on P

1|1
k .

Proof. In the affine open subsupervariety U1 := {z1 6= 0} ⊂ P
1|1
k , one calculates that

the Euler vector field E and the linear vector field Ẑ1 = ζ∂z0 + z1∂ζ lie in ker(s)
and are linearly independent. At any point p ∈ P

1|1
k , s induces a linear map of super

vector spaces, sp : [O(1)⊗Der(S)]p→ [O(2)]p, on the fibers. It is clear that s is
a basepoint-free section, hence sp is always surjective. By linear algebra, ker(sp)

is 1|1 dimensional and hence E p and Ẑ1,p span ker(sp). By the super Nakayama’s
lemma, E and Ẑ1 span ker(s) near p. Since p was arbitrary, E and Ẑ1 form a basis
for ker(s) in U1.

One sees that Z1 := j (Ẑ1)= ∂η+ η∂w, where w = z0/z1 and η = ζ/z1 are the
usual affine coordinates in U1. Z2

1 = ∂w and so Z1 defines a SUSY structure in U1.
A similar calculation with the linear vector field Ẑ0 := −ζ∂z1 + z0∂ζ shows that
j (ker(s)) defines a SUSY structure on U0 = {z0 6= 0}, hence the image of ker(s)
under j defines a SUSY structure on P

1|1
k . �

We note that by the considerations of [Fioresi and Lledó 2015], this is the unique
SUSY structure on P

1|1
k , up to SUSY-isomorphism.

We now need the following proposition. The proof is completely similar to the
one in [Fioresi and Lledó 2015, Proposition 5.2], however since the context here is
more general, we include it for completeness.

Lemma 5.3. Let A be an affine k-superalgebra. Let ω,ω′ be two global sections of
OA(1)⊗�S/A such that D := j (ker(ω)) and D′ := j (ker(ω′)) are 0|1 distributions
on P

1|1
A . Suppose D=D′. Then ω′= hω for some even invertible function h on P

1|1
A .

Proof. Let p∈P
1|1
A be a point. D is locally a direct summand of T P

1|1
A /Spec (A), so

we have a local splitting D|U⊕E= (T P
1|1
A /Spec(A))|U in some neighborhood U 3 p.

Via the Euler exact sequence (base changed to Spec(A)), we may lift D|U (resp. E)
uniquely to a rank 1|1 (resp. 2|0) submodule D̂ (resp. Ê) of [OA(1)⊗Der(SA)]|U
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containing the 1|0 line bundle 〈E〉 spanned by the Euler vector field, such that
D̂ ∩ Ê = 〈E〉. We may therefore find local sections Ẑ (resp. X̂ ) of D̂ (resp. Ê)
such that Ẑ , E (resp. X̂ , E) form a basis for D̂ (resp. Ê). Note that the condition
D̂∩ Ê = 〈E〉 implies X̂ , Ẑ , E form a basis of [OA(1)⊗Der(SA)]|U .

Viewing ω|U as an O
P

1|1
A

-linear map from [OA(1)⊗Der(SA)]|U to OA(2)|U , we
have an induced linear map of super vector spaces,

ωp : (OA(1)⊗Der(SA))p→ (OA(2))p.

As ker(ωp) = span{Ẑ p, E p}, we see by linear algebra that ωp is a surjection,
and that ωp(X̂ p) is a basis for (OA(2))p; the analogous conclusion holds for ω′p
and ω′p(X̂ p). Hence by the super Nakayama’s lemma, ω(X̂) is a basis for OA(2)|U ,
and the same is true of ω′(X̂) (shrinking U if necessary). Hence ω′(X̂)/ω(X̂) is an
invertible even function on U ; let us denote it by h.

To show that h is independent of the local complement E and the choice of
basis element X̂ , suppose E ′ is another local complement to D on U, and let
X̂ ′, E be a basis of the lift Ê ′ of E ′. Then we have X̂ ′ = a X̂ + bE + α Ẑ for
some a, b, α ∈O

P
1|1
A
(U ), with a, b even and α odd. As X̂ , E, Ẑ and X̂ ′, E, Ẑ ′ are

both local bases for OA(1)⊗Der(SA), a must be a unit.
Then we have

ω′(X̂ ′)/ω(X̂ ′)= ω′(a X̂ + bE +α Ẑ)/ω(a X̂ + bE +α Ẑ)= ω′(X̂)/ω(X̂),

since ω,ω′ both annihilate E and Ẑ . This proves that the expression ω′(X̂)/ω(X̂)
is independent of all choices and hence h is a well-defined function on all of P

1|1
A .

The equality ω′ = hω clearly holds locally, and since h is now known to be globally
defined, it holds globally. �

Proposition 5.4. Let f be an automorphism of P
1|1
A . Then f preserves the SUSY

structure defined by s if and only if for some (hence every) lift f̃ of f to GL2|1(A),
f̃ ∗(s)= ts for some invertible function t.

Proof. We begin by noting that GL2|1(A) preserves A∗0-invariant open subsets of
A

2|1
A \ {0}, hence it acts naturally by pullback of functions on OA(1)⊗Der(SA),

where we interpret the latter as the sheaf assigning to any open subset U ⊆ P
1|1
A the

linear vector fields on π−1(U )⊆ A
2|1
A \ {0}.

The subsupergroup of invertible scalar matrices {cI : c ∈ A∗0} is central in
GL2|1(A), hence this GL2|1(A)-action preserves the subalgebra of A∗0-invariant
functions on any A∗0-invariant open subset of A

2|1
A \ {0}. Hence we have an induced

GL2|1(A)-action on the sheaf O
P

1|1
A

. Clearly, invertible scalar matrices act trivially
on O

P
1|1
A

, thus the GL2|1(A)-action on O
P

1|1
A

factors through PGL2|1(A).
We see from the above that the action of GL2|1(A) on OA(1)⊗ Der(SA) by

pullback of functions induces naturally a PGL2|1(A)-action on O
P

1|1
A

, hence on
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T P
1|1
A /Spec (A), also given by pullback of functions. But this is precisely the

PGL2|1(A)-action on T P
1|1
A /Spec (A) induced by the action of PGL2|1(A) on P

1|1
A

by automorphisms.
Since the sheaf morphism j :OA(1)⊗Der(SA)→ T P

1|1
A /Spec (A) is just given

by restricting a linear vector field to act on A∗0-invariant functions, we see j is
equivariant with respect to the GL2|1(A)- and PGL2|1(A)-actions previously defined.

We also have a GL2|1(A)-action on OA(1)⊗�S/A by the natural action on both
factors, and for ω∈0(OA(1)⊗�S/A)=0(OA(1))⊗�S/A, we write g∗(ω) for g ·ω.

Since the action of GL2|1(A) on OA(1)⊗Der(SA) is the same as the natural
action on the individual factors, and the GL2|1(A)-action on �S/A is dual to that
on Der(SA), it follows that the evaluation pairing

[OA(1)⊗Der(SA)]⊗ [OA(1)⊗�S/A] →OA(2)

is GL2|1(A)-equivariant, where OA(2) is endowed with the natural GL2|1(A)-action.
From the preceding discussion, we see that f is SUSY-preserving if and only if

j [ker(ω)]p = j [ker( f̃ ∗(ω)]p for any point p.
We claim this is true if and only if j [ker(ω)] = j [ker( f̃ ∗(ω))]. One direction is

clear. For the other, suppose j [ker(ω)]p = j [ker( f̃ ∗(ω))]p for any point p. Then
by the super Nakayama’s lemma j [ker(ω)] = j [ker( f̃ ∗(ω))] in a neighborhood
of p, hence globally. The claim then follows from Lemma 5.3. �

In order to determine the supergroup of SUSY-preserving automorphisms of P
1|1
k

we must discuss various other supergroups. We follow closely the discussion in
[Manin 1991].

Definition 5.5. The 2|1-dimensional conformal symplectic-orthogonal supergroup
C2|1 is the subfunctor of GL2|1 that preserves, up to multiplication by an even
invertible constant, the split nondegenerate supersymplectic form on k2|1 given by
(v,w)= vt Hw, where

(6) H :=

 0 1 0
−1 0 0

0 0 −1

,
and t denotes the super transpose of a matrix. More precisely, for every k-
superalgebra A, C2|1 is the functor (salg)k→ (grps) given by

(7) C2|1(A) := {B ∈ GL2|1(A) : B t H B = Z(B)H},

where Z : GL2|1→ G
1|0
m is a fixed homomorphism.

The 2|1-dimensional projective conformal symplectic-orthogonal supergroup
PC2|1 is the image of C2|1 in PGL2|1, i.e, it is the sheafification of the group-valued
functor A→ C2|1(A)/{aI : a ∈ A∗0}.
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Proposition 5.6. C2|1 and PC2|1 are representable.

Proof. Taking the Berezinian of both sides of (7), one sees that Z(B)= Ber(B)2.
Thus, given

B =

a b α

c d β

γ δ e

 ∈ GL2|1(A),

a direct calculation shows that B satisfies (7) if and only if the following equa-
tions hold: e2

+ 2αβ = Ber(B)2, aβ − cα − eγ = 0, ad − bc− γ δ = Ber(B)2,
bβ − dα− eδ = 0. Thus these equations define C2|1 as a closed affine algebraic
subsupergroup of GL2|1.

To prove that PC2|1 is representable, we use the trick of [Manin 1991]. Let SC2|1

denote the functor (salg)k→ (grps) given by

SC2|1(A) := {B ∈ C2|1(A) : Ber(B)= 1}.

Since its defining equations are those of C2|1 together with Ber(B)= 1, SC2|1 is
a closed affine algebraic subsupergroup of GL2|1. There is a short exact sequence
of supergroups,

(8) 0→ SC2|1→ C2|1
Ber
−→G1|0

m → 0.

There is a splitting of this sequence, given on A-points by sending a ∈ A∗0 to aI,
and the image of G

1|0
m under the splitting is clearly normal in C2|1, hence C2|1 is

the internal direct product of SC2|1 and the subsupergroup {aI : a ∈ A∗0}. This
direct product decomposition allows us to naturally identify the functor PC2|1 with
the functor of points of SC2|1; in particular, we see PC2|1 is an affine algebraic
supergroup, isomorphic to SC2|1. �

Definition 5.7. The 2|1-dimensional symplectic-orthogonal supergroup SpO2|1 is
the functor (salg)k→ (grps),

(9) SpO2|1(A) := {B ∈ GL2|1(A) : B t H B = H}.

Remark 5.8. SpO2|1 is well known to be representable; the reader may readily
write down defining equations for SpO2|1, completely analogous to those for C2|1,
which show that SpO2|1 is a closed affine algebraic subsupergroup of GL2|1.

Proposition 5.9. PC2|1 is isomorphic to the irreducible component (SpO2|1)
0 of

SpO2|1 containing the identity.

Proof. Taking the Berezinian of both sides of (9) shows that Ber(B)=±1 for any
B ∈ SpO2|1(A). This yields a short exact sequence of supergroups

(10) 0→ SC2|1→ SpO2|1
Ber
−→{±1} → 0,
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which is split by the morphism ±1 7→ ±I and {±I } is obviously normal in SpO2|1.
Thus SpO2|1 is the internal direct product of {±I } and SC2|1. Note that SC2|1 is
irreducible (one sees from its defining equations that its reduced algebraic group
is SL2, which is known to be irreducible). Let (SpO2|1)

0 denote the irreducible
component of SpO2|1 that contains the identity. We claim SC2|1 = (SpO2|1)

0.
Since I ∈ SC2|1 ∩ (SpO2|1)

0, it is clear SC2|1 ⊆ (SpO2|1)
0. Conversely, we see

that (SpO2|1)
0
⊆ SC2|1: the restriction of the morphism Ber to the irreducible

supervariety (SpO2|1)
0 must be constant, hence equal to 1. Since we previously

showed PC2|1 is isomorphic to SC2|1, the proposition is proven. �

Theorem 5.10. The algebraic supergroup AutSUSY(P
1|1
k ) of SUSY-preserving auto-

morphisms of P
1|1
k is isomorphic to (SpO2|1)

0.

Proof. As AutSUSY(P
1|1
k ) is a sheaf, the theorem reduces to the case of calculating

AutSUSY(P
1|1
k )(A) where A is a k-superalgebra. For this, we note that P

1|1
A has the

SUSY structure over A induced by base change from P
1|1
k , given by s.

Let g ∈ PGL2|1(A) be an automorphism of P
1|1
A , and ĝ a lift of g to GL2|1(A).

Recall that we have a natural action of the group of A-points of GL2|1(A) on
0(OA(1)⊗ �S/A). More concretely, in the given coordinates we have for any
matrix ĝ ∈ GL2|1(A),

ĝ ·

z0

z1

ζ

= ĝ

z0

z1

ζ

, ĝ ·

dz0

dz1

dζ

= ĝ

dz0

dz1

dζ

,
where we write zi for zi ⊗ 1 and so on.

By Lemma 5.3, g is SUSY-preserving if and only if ĝ sends

s = z1dz0− z0dz1− ζdζ =
(
z0 z1 ζ

)
H

dz0

dz1

dζ

, H =

 0 1 0
−1 0 0
0 0 −1

,
to a multiple of s by an invertible even function. Hence

(
z0 z1 ζ

)
ĝt H ĝ

dz0

dz1

dζ

= (z0 z1 ζ
)

Z(ĝ)H

dz0

dz1

dζ

,
i.e., ĝ ∈ C2|1(A). It follows from (8) that g lies in PC2|1(A), which is naturally
identified with (SpO2|1)

0(A) by Proposition 5.9. �
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THE GROMOV WIDTH OF COADJOINT ORBITS OF
THE SYMPLECTIC GROUP

IVA HALACHEVA AND MILENA PABINIAK

We prove that the Gromov width of a coadjoint orbit of the symplectic group
through a regular point λ, lying on some rational line, is at least equal to:

min{|〈α∨, λ〉| : α∨ a coroot}.

Together with the results of Zoghi and Caviedes concerning the upper bounds,
this establishes the actual Gromov width. This fits in the general conjecture
that for any compact connected simple Lie group G, the Gromov width of
its coadjoint orbit through λ ∈ Lie(G)∗ is given by the above formula. The
proof relies on tools coming from symplectic geometry, algebraic geometry
and representation theory: we use a toric degeneration of a coadjoint orbit
to a toric variety whose polytope is the string polytope arising from a string
parametrization of elements of a crystal basis for a certain representation of
the symplectic group.

1. Introduction

The nonsqueezing theorem of Gromov motivated the question of finding the biggest
ball that could be symplectically embedded into a given symplectic manifold (M, ω).
Consider the ball of capacity a:

B2N
a =

{
(x1, y1, . . . , xN , yN ) ∈ R2N |π

N∑
i=1
(x2

i + y2
i ) < a

}
⊂ R2N,

with the standard symplectic form ωstd =
∑

dx j ∧ dy j . The Gromov width of a
2N -dimensional symplectic manifold (M, ω) is the supremum of the set of a’s such
that B2N

a can be symplectically embedded in (M, ω). It follows from Darboux’s
theorem that the Gromov width is positive unless M is a point.

Coadjoint orbits form an important class of symplectic manifolds. Let K be a
compact Lie group. It acts on itself by conjugation

K 3 g : K → K , g(h)= ghg−1.

MSC2010: 20G05, 53D99.
Keywords: Gromov width, coadjoint orbits, toric degenerations, Okounkov bodies, crystal bases,

string polytopes.
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Associating to g ∈ K the derivative of the above map, taken at the identity,
dge : Te K → Te K , one obtains the adjoint action of K on k = Lie(K ) = Te K .
This induces the action of K on k∗ = Lie(K )∗, the dual of its Lie algebra, called
the coadjoint action. Each orbit O ⊂ Lie(K )∗ of the coadjoint action is naturally
equipped with the Kostant–Kirillov–Souriau symplectic form:

ωξ (X#, Y #)= 〈ξ, [X, Y ]〉, ξ ∈O ⊂ Lie(K )∗, X, Y ∈ Lie(K ),

where X#, Y # are the vector fields on Lie(K )∗ corresponding to X, Y ∈ Lie(K ),
induced by the coadjoint K action. The coadjoint action of K on O is Hamiltonian,
and the momentum map is the inclusion O ↪→ Lie(K )∗. Every coadjoint orbit
intersects a chosen positive Weyl chamber in a single point. Therefore there is a bi-
jection between the coadjoint orbits and points in the positive Weyl chamber. Points
in the interior of the positive Weyl chamber are called regular points. The orbits
corresponding to regular points are of maximal dimension. They are diffeomorphic
to K/T, for T a maximal torus of K, and are called generic orbits. For example,
when K =U (n,C), the group of (complex) unitary matrices, a coadjoint orbit can
be identified with the set of Hermitian matrices with a fixed set of eigenvalues. The
generic orbits are diffeomorphic to the manifold of full flags in Cn.

In this note we concentrate on the (compact) symplectic group

K = Sp(n)=U (n,H).

The main result of this manuscript is the following theorem.

Theorem 1.1. Let M :=Oλ be the coadjoint orbit of K = Sp(n) through a regular
point λ lying on some rational line in k∗, equipped with the Kostant–Kirillov–Souriau
symplectic form. The Gromov width of M is at least the minimum,

min{|〈α∨, λ〉| : α∨ a coroot}.

If λ = λ1ω1 + · · · + λnωn where ω1, . . . , ωn are the fundamental weights,
and λ j > 0, then the above minimum is equal to, as we explain in Section 3,
min{λ1, . . . , λn}.

This particular lower bound is important because it coincides with the known
upper bound. Zoghi [2010] proved that for a compact connected simple Lie group K,
the above formula gives an upper bound for the Gromov width of a regular inde-
composable coadjoint K -orbit through λ ([Zoghi 2010, Proposition 3.16]). This
result was later extended to nonregular orbits by Caviedes.

Theorem 1.2 [Caviedes 2016, Theorem 8.3; Zoghi 2010, Proposition 3.16, regular
orbits]. Let K be a compact connected simple Lie group. The Gromov width
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of a coadjoint orbit Oλ through λ, equipped with the Kostant–Kirillov–Souriau
symplectic form, is at most

min{|〈α∨, λ〉| : α∨ a coroot and 〈α∨, λ〉 6= 0}.

Putting these results together we obtain the following corollary.

Corollary 1.3. The Gromov width of a coadjoint orbit Oλ of Sp(n) through a
regular point λ lying on some rational line in k∗, is exactly

min{|〈α∨, λ〉| : α∨ a coroot}.

What adds importance to our result is the fact that it is a special case of a
general conjecture about the Gromov width of coadjoint orbits of compact Lie
groups. Namely, it has been conjectured, and by now proved in many cases, that
for any compact connected simple Lie group K, the Gromov width of its coadjoint
orbit through λ ∈ Lie(K )∗ is given by the formula from Theorem 1.2, i.e., it is
the minimum over the positive results of pairings of λ with coroots in the system.
Karshon and Tolman [2005], and independently Lu [2006a], showed that the Gromov
width of complex Grassmannians (which are degenerate coadjoint orbits of U (n,C))
is given by the above formula. Combining the results of Zoghi [2010] and Caviedes
[2016] about upper bounds, and the results of [Pabiniak 2014] about lower bounds,
one proves that the Gromov width of (not necessarily regular) coadjoint orbits of
U (n,C), SO(2n,R) and SO(2n+ 1,R) is also given by that formula. (The result
for SO(2n+ 1,R) works only for orbits satisfying one mild technical condition;
see [Pabiniak 2014] for more details).

To prove the main result we use tools from symplectic geometry, algebraic
geometry and representation theory. Here is a brief outline. Using the work of
[Harada and Kaveh 2015] one can construct a toric degeneration from the given
coadjoint orbit Oλ to a toric variety. By “pulling back” the toric action from the
toric variety one equips (an open dense subset of ) Oλ with a toric action and can
use its flow to construct embeddings of balls. If λ is a dominant weight, there
exists a particularly nice toric degeneration to a toric variety whose associated
Newton–Okounkov body is the string polytope parametrizing a crystal basis for
(the dual of ) the irreducible representation with highest weight λ ([Kaveh 2015a]).
Such string polytopes have been studied by Littelmann [1998], and using his work
we prove Theorem 1.1 for orbits Oλ with λ a dominant weight. We then further
extend this result to any regular λ lying on a rational line in k∗.

The techniques used in this paper could be applied to other compact connected
simple Lie groups to obtain a lower bound for the Gromov width by studying the
structure of (more general) string polytopes. We do not pursue this idea here for
the following reason. As the formula for the conjectured Gromov width is given in
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purely Lie-theoretic language, we believe that there should be a way of proving the
(lower bound part of the) conjecture for all groups at once, by a proof described in
purely Lie-theoretic language.

In Section 2 we introduce the tools that are used in Section 3 to prove the
main result.

2. Tools

2A. Using a toric action to construct symplectic embeddings of balls. Toric ge-
ometry proves to be very helpful in finding lower bounds for the Gromov width.
When a manifold (M, ω) is equipped with a Hamiltonian (so also effective) action
of a torus T, one can use the flow of the vector field generated by this action to
construct explicit embeddings of balls and therefore to obtain a lower bound for
the Gromov width (a construction by Karshon and Tolman [2005]). If additionally
the action is toric, that is dim T = 1

2 dim M, then more constructions are available
(see, for example, [Traynor 1995; Schlenk 2005; Latschev et al. 2013]).

Recall that a Hamiltonian action of a torus T on a symplectic manifold (M, ω)
gives rise to a momentum map µ : M → Lie(T )∗ =: 3R, from M to the dual
of the Lie algebra of T, which we denote by 3R. This map is unique up to
a translation in 3R. A manifold M equipped with a Hamiltonian T action is
often called a Hamiltonian T -space. When M is compact, the image µ(M) is a
Delzant polytope. Identifying 3R with Rdim T, we can view µ(M) as a polytope
in Rdim T. Such an identification is not unique: it depends on the choice of a
splitting of T into a product of circles, and on the choice of an identification of
the Lie algebra of S1 with the real line R. Changing the splitting of T results in
applying a GL(dim T,Z) transformation to Rdim T, while changing the identification
Lie(S1)∼= R results in rescaling. In this work, S1

= R/Z, that is, the exponential
map exp : R = Lie(S1)→ S1 is given by t 7→ e2π i t . With this convention, the
momentum map for the standard S1-action on C by rotation with speed 1 is given
(up to the addition of a constant) by z 7→ −π |z|2.

Consider the standard T n
= (S1)n action on Cn where each circle rotates a

corresponding copy of C with speed 1, with a momentum map

(z1, . . . , zn) 7→ −π(|z1|
2, . . . , |zn|

2).

The image of the n-dimensional ball of capacity a (radius
√

a/π) centered at the
origin is (−1) times the standard simplex of size a;

1n(a) :=
{
(x1, . . . , xn) ∈ Rn

≥0 |
n∑

k=1

xk < π · (
√

a/π)2 = a
}
.

Moreover, simplices embedded in the momentum map image signify the existence
of embeddings of balls, as the following result explains.
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Proposition 2.1 [Lu 2006b, Proposition 1.3; Pabiniak 2014, Proposition 2.5]. For
any connected, proper (not necessarily compact) Hamiltonian T n-space M2n of
dimension 2n let

W(8(M))= sup
{
a > 0 | there exists 9 ∈ GL(n,Z), x ∈ Rn,

such that 9(1n(a))+ x ⊂8(M)
}
,

where 8 is some choice of momentum map. Then the Gromov width of M is at least
W(8(M)).

2B. Coadjoint orbits as flag varieties. Coadjoint orbits of compact Lie groups can
be viewed as flag manifolds of complex reductive groups. This interpretation allows
us to later construct toric degenerations of coadjoint orbits (Section 2C).

Let G be a connected reductive group over C and B a Borel subgroup. Denote
by 3 the weight lattice of G and by 3+ the dominant weights. Let K be the
compact form of G and T its maximal torus. A generic coadjoint orbit of K,
K/T, is diffeomorphic to the flag manifold G/B. To equip the manifold G/B
with a symplectic structure, fix λ ∈ 3+ and let Vλ denote the finite dimensional
irreducible representation of G with highest weight λ. There exists a very ample
G-equivariant line bundle Lλ on G/B whose space of sections H 0(G/B,Lλ) is
isomorphic to V ∗λ (Borel–Weil theorem). Embed G/B into P(H 0(G/B,Lλ)∗) (the
Kodaira embedding), and use this embedding to pull back to G/B the Fubini–Study
symplectic structure. If ωλ denotes the symplectic structure on G/B obtained
this way, then (G/B, ωλ) is symplectomorphic to the coadjoint orbit Oλ with the
Kostant–Kirillov–Souriau symplectic structure defined in the introduction.

In this manuscript, G = Sp(2n,C) and K = Sp(n)=U (n,H).

2C. Obtaining a toric action via a toric degeneration. Coadjoint orbits of a com-
pact Lie group K are naturally equipped with a Hamiltonian action of a maximal
torus of K. This action, however, is rarely toric. We note that for U (n,C),SO(n,R)

a toric action can be constructed by Thimm’s trick [Pabiniak 2014].
To obtain a toric action on a dense open subset of a coadjoint orbit of Sp(n), we

apply a method developed by Harada and Kaveh [2015] using toric degenerations.
We briefly sketch the main ingredients of their construction and for details direct
the reader to [Harada and Kaveh 2015].

Consider the situation where X is a d-dimensional projective algebraic variety,
L an ample line bundle over X, L = H 0(X,L), and let C(X) denote the field of
rational functions on X. Given a valuation ν : C(X)\{0}→Zd with one-dimensional
leaves, one builds an additive semigroup

S = S(X, L , v, h)=
⋃
k>0

{
(k, v( f/hk)) | f ∈ L⊗k

\ {0}
}
.
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and a convex body

1(S)= conv
(⋃

k>0

{
x/k | (k, x) ∈ S

})
,

in Rd, called an Okounkov (or Newton–Okounkov) body. Here h is a fixed section
of L and L⊗k denotes the image of the k-fold product L ⊗ · · ·⊗ L in H 0(X,L⊗k).

Theorem 2.2 [Anderson 2013, Proposition 5.1 and Corollary 5.3; Harada and
Kaveh 2015, Corollary 3.14]. With the notation as above, assume in addition
that S is finitely generated. Then there exists a finitely generated, N-graded, flat
C[t]-subalgebra R⊂ C(X)[t] inducing a flat family π : X= ProjR→ C such that:

• For any z 6= 0 the fiber Xz = π
−1(z) is isomorphic to X = Proj C(X), i.e.,

π−1(C \ {0}) is isomorphic to X × (C \ {0}).

• The special fiber X0 = π
−1(0) is isomorphic to Proj C[S] and is equipped

with an action of (C∗)d, where d = dimC X. The normalization of the variety
Proj C[S] is the toric variety associated to the rational polytope 1(S).

Fix a Hermitian structure on the very ample line bundle L and equip X with the
symplectic structure ω induced from the Fubini–Study form on P(H 0(X,L)∗) via
the Kodaira embedding.

Theorem 2.3 [Harada and Kaveh 2015, Theorem 3.25]. With the notation as above,
assume in addition that (X, ω) is smooth and that the semigroup S is finitely
generated. Then:

(1) There exists an integrable system µ= (F1, . . . , Fd) : X→Rd on (X, ω) in the
sense of [Harada and Kaveh 2015, Definition 1], and the image of µ coincides
with the Newton–Okounkov body 1=1(S).

(2) The integrable system generates a torus action on the inverse image under µ
of the interior of the moment polytope 1.1

In this manuscript we use valuations (with one-dimensional leaves) coming from
the following examples.

Example 2.4 [Harada and Kaveh 2015, Example 3.3]. Fix a linear ordering on Zd.
Let p be a smooth point in X, and let u1, . . . , ud be a regular system of parameters
in a neighborhood of p. Using this system, we can construct the lowest and the
highest term valuations on C(X): the lowest (resp. highest) term valuation vlow

(resp. vhigh) assigns to each f (u1, . . . , ud)=
∑

j=( j1,..., jd ) c j u
j1
1 · · · u

jd
d ∈ C(X) a

d-tuple of integers which is the smallest (resp. biggest) among j = ( j1, . . . , jd)
with c j 6= 0, in the fixed order. To a rational function f/h ∈ C(X) this valuation

1In fact the action is defined on the set U introduced in [Harada and Kaveh 2015, Definition 1],
which contains, but might be strictly bigger than, the inverse image under µ of the interior of the
moment polytope 1.
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assigns vlow( f )−vlow(h) (resp. vhigh( f )−vhigh(h)). Both of these valuations have
one-dimensional leaves.

Example 2.5. What will be very relevant for this manuscript is a special case of the
previous example. In the situation we consider here, X is the flag variety G/B of
the symplectic group G = Sp(2n,C), with B a fixed Borel subgroup of G. Choose
a reduced decomposition w0= (αi1, . . . , αiN ) of the longest word in the Weyl group
w0 = sαi1

· · · sαiN
, where sαi is the reflection through the hyperplane orthogonal to

the simple root αi :

sαi (β)= β − 2
〈β, αi 〉

〈αi , αi 〉
αi .

It defines a sequence of (Schubert) subvarieties, i.e., a Parshin point

{o} = XwN ⊂ · · · ⊂ Xw0 = X,

where Xwk is the Schubert variety corresponding to the Weyl group element
wk = sαik+1

· · · sαiN
, and {o} is the unique B-fixed point in X. This sequence of

varieties, in turn, gives rise to a regular system of parameters u1, . . . , ud , in which
Xwk = {u1 = · · · = uk = 0} (see Section 2.2 of [Kaveh 2015a]). Following Kaveh
[2015a], we denote the associated highest term valuation (as in Example 2.4) on
C(X) \ {0} by vw0 .

2D. Crystal bases and Newton–Okounkov bodies. We now return to analyzing
the flag manifold. With G, B, λ ∈ 3+, Vλ, and Lλ as in Section 2B, recall that
G acts on the space of sections H 0(G/B,Lλ) giving a representation isomorphic
to the dual representation V ∗λ . There exists a particular toric degeneration of the
flag variety G/B for which the associated Okounkov body is the string polytope
parametrizing the elements of a crystal basis of the representation V ∗λ . Before
analyzing this toric degeneration, we recall some basic facts about crystal bases.

Let I denote the Dynkin diagram, and {αi }i∈I , {α
∨

i }i∈I denote the simple roots
and coroots respectively. We will look at the perfect basis for V ∗λ coming from the
specialization of Lusztig’s canonical basis to q = 1 for the quantum enveloping
algebra, which Kaveh [2015a] refers to as a crystal basis for V ∗λ . Note that this
differs from Kashiwara’s notion of crystal basis being the specialization at q = 0.

A perfect basis for a finite-dimensional representation V of G is a weight
basis BV of the vector space V together with a pair of operators, called Kashiwara
operators, Ẽα, F̃α : BV → BV ∪ {0} for each simple root α, and maps ε̃α, φ̃α :
V \ {0} → Z satisfying certain compatibility conditions. For further information,
we refer the reader to [Kaveh 2015a, Section 3.1].

One can associate to a perfect basis BV a directed labeled graph, called the
crystal graph of the representation V , whose vertices are the elements of BV ∪ {0},
and whose directed edges are labeled by the simple roots following the rule: There
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is an edge from b to b′ labeled α if and only if Ẽα(b)= b′ (equivalently, F̃α(b′)= b).
Also there is an edge from b to 0 if Ẽα(b)= 0, and from 0 to b if F̃α(b)= 0. The
graphs obtained in this way are isomorphic for each perfect basis of the given
G-representation V [Berenstein and Kazhdan 2007, Theorem 5.55].

A perfect basis Bλ for the representation Vλ with highest weight vector vλ can
be obtained by considering the nonzero elements gvλ where g is an element in the
specialization to q = 1 of the Lusztig canonical basis of the quantum enveloping
algebra of G. The dual basis B∗λ is then a perfect basis for the dual representation V ∗λ ,
and will be referred to as the dual crystal basis (see [Berenstein and Kazhdan 2007,
Lemma 5.50]). The crystal Bλ can be thought of as a combinatorial realization of Vλ
and reflects its internal structure. For more information about crystals see [Beren-
stein and Kazhdan 2007; Hong and Kang 2002; Henriques and Kamnitzer 2006].

There exists a nice parametrization of the elements of a (dual) crystal basis, called
the string parametrization, by integral points in ZN where N is the length of the
longest word in the Weyl group W. This parametrization depends on a choice of a re-
duced decompositionw0= (αi1, . . . , αiN ) of the longest wordw0= sαi1

· · · sαiN
in W :

ιw0 :

∐
λ∈3+

B∗λ→3+×ZN
≥0, ιw0(B

∗

λ)⊂ {λ}×ZN
≥0.

The image of ιw0 is the intersection of a rational convex polyhedral cone Cw0 in
3R×RN with the lattice3×ZN. The projection of Cw0 to RN is a rational polyhedral
cone in RN, called the string cone, and will be denoted by Cw0 . Littelmann [1998]
analyzed the image of string parametrizations (see also [Alexeev and Brion 2004,
Theorem 1.1; Kaveh 2015a, Theorem 3.4]).

Theorem 2.6 [Littelmann 1998, Proposition 1.5]. For any dominant weight λ, the
string parametrization is one-to-one. Moreover, Sλ := ιw0(B

∗

λ) is the set of integral
points of a convex rational polytope 1w0(λ)⊂ RN obtained as the intersection of
the string cone, Cw0 , and the N half-spaces

xk ≤ 〈λ, α
∨

ik
〉−

N∑
l=k+1

xl〈αil , α
∨

ik
〉, k = 1, . . . , N .

(Note that in [Kaveh 2015a] the symbol Cw0 denotes a slightly different object:
the projection of Cw0 from [Kaveh 2015a] to RN is “our” Cw0 already intersected
with the above N half-spaces).

Definition 2.7. The polytope 1w0(λ)⊂RN is called the string polytope associated
to λ.

For integral λ, the vertices of the polytope 1w0(λ) are rational, so

Cone(1w0(λ))= {(t, t x); t ∈ R≥0, x ∈1w0(λ)} ⊂ R×RN,
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the cone over 1w0(λ), is a strongly convex rational polyhedral cone.
Kaveh [2015a] observed the following relation between the string polytopes and

Newton–Okounkov bodies associated to certain valuations that we have described
in Section 2C.

Theorem 2.8 [Kaveh 2015a, Theorem 1]. The string parametrization for a dual
crystal basis of V ∗λ = H 0(G/B,Lλ) is the restriction of the valuation vw0 and the
string polytope 1w0(λ) coincides with the Newton–Okounkov body of the algebra
of sections of Lλ and the valuation vw0 .

Corollary 2.9. The semigroup associated to the valuation vw0 is finitely generated.

This is a consequence of Theorem 2.8, the observation above that the cone
Cone(1w0(λ)) ⊂ R× RN over 1w0(λ) is a strongly convex rational polyhedral
cone, and Gordon’s Lemma.

3. Proof of the main result

We aim to prove that the Gromov width of a generic coadjoint orbit Oλ of Sp(n),
passing through a point λ in the interior of a chosen positive Weyl chamber and on
a rational line, equipped with the Kostant–Kirillov–Souriau symplectic form, is

min{|〈λ, α∨| : α∨ a coroot}.

Recall that all generic coadjoint orbits Oλ are diffeomorphic to the flag mani-
fold G/B, for G = Sp(2n,C). For i = 1, . . . , 2n, let εi : sp(2n,C)→C denote the
linear functional assigning to a matrix its i-th diagonal entry, εi (x)= xi i . With this
notation we can express the simple roots as:

(3-1) αn = ε1− ε2, αn−1 = ε2− ε3, . . . , α2 = εn−1− εn, α1 = 2εn.

Note that the above enumeration is nonstandard. We follow Littelmann’s enu-
meration, as we are going to quote some results from [Littelmann 1998]. All the
roots are given by ±2εi and ±(εi ± ε j ), i 6= j. The fundamental weights are
ωi = ε1+ ε2+ · · ·+ εi , i = 1, 2, . . . , n, and each λ ∈3+R can be expressed as

λ= λ1ω1+ λ2ω2+ · · ·+ λnωn (λi ≥ 0)

= (λ1+ λ2+ · · ·+ λn)ε1+ (λ2+ · · ·+ λn)ε2+ · · ·+ λnεn.

Then
min{|〈λ, α∨〉| : α∨ a coroot} =min{λ1, . . . , λn}.

We first analyze the situation when λ is integral. Then λ is a dominant weight
and thus there exists a very ample line bundle Lλ on G/B whose space of sections
H 0(G/B,Lλ) is isomorphic to V ∗λ . The very ample line bundle Lλ induces the
Kodaira embedding jλ : G/B ↪→ P(H 0(G/B,Lλ)∗) and one can use jλ to pull
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back the Fubini–Study symplectic structure from the projective space to G/B. The
thus obtained symplectic manifold (G/B, ωλ = j∗λ (ωF S)) is symplectomorphic to
Oλ with the standard Kostant–Kirillov–Souriau symplectic structure.

As explained in Section 2 (page 409), a choice of a reduced decomposition
w0 = (αi1, . . . , αiN ) of the longest word w0 = sαi1

· · · sαiN
in the Weyl group gives

rise to a highest term valuation vw0 with one-dimensional leaves, and to a semigroup
S with the associated Newton–Okounkov body 1(S). This semigroup is finitely
generated (Corollary 2.9). Theorems 2.2, 2.3 and 2.8 imply the following:

Corollary 3.1. For integral λ, there exists a toric action on an open dense subset
of Oλ. Its moment map image is the interior of the string polytope 1w0(λ)⊂ Rn2

.

We prove the main theorem by exhibiting an embedding of (a GL(n2,Z) image
of ) a simplex 1n2

(min{λ1, . . . , λn}), of size equal to min{λ1, . . . , λn}, in the string
polytope 1w0(λ). The polytope 1w0(λ) for the longest word decomposition

w0 = s1(s2s1s2) · · · (sn−1 · · · s1 · · · sn−1)(snsn−1 · · · s1 · · · sn−1sn),

(where s j = sα j , with the numbering of the simple roots from (3-1)), was described
by Littelmann ([1998, Section 6, Theorem 6.1 and Corollary 6]; note the misprint
in Corollary 6: λm− j+1 should be λ j as can be deduced from [Littelmann 1998,
Proposition 1.5]).

Proposition 3.2 [Littelmann 1998]. Fix a dominant weight,

λ= λ1ω1+ · · ·+ λnωn = (λ1+ · · ·+ λn)ε1+ · · ·+ λnεn.

Then the associated string polytope 1w0(λ) is the convex polytope in Rn2
given by

n2-tuples {ai, j | 1≤ i ≤ n, i ≤ j ≤ 2n− i} which satisfy

ai,i ≥ ai,i+1 ≥ · · · ≥ ai,2n−i ≥ 0, for all i = 1, . . . n,

and

āi, j ≤ λ j + s(āi, j−1)− 2s(ai−1, j )+ s(ai−1, j+1),

ai, j ≤ λ j + s(āi, j−1)− 2s(āi, j )+ s(ai, j+1),

ai,n ≤ λn + s(āi,n−1)− s(ai−1,n),

for all 1≤ i, j ≤ n, where we use the notation

āi, j := ai,2n− j for 1≤ j ≤ n,

and

s(āi, j ) := āi, j +

i−1∑
k=1

(ak, j + āk, j ), s(ai, j ) :=

i∑
k=1

(ak, j + āk, j ),

for j < n (so s(ai,n)= 2
∑i

k=1 ak,n).
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l1 l2 l3

z1,1

y2,2

z2,2

y3,3

z3,3

z1,2 z1,3

y2,3

z2,3

Figure 1. A graphical presentation of a Gelfand–Tsetlin pattern
(for n = 3).

In the above formula we use the convention that ai, j = āi, j = 0 if j < i . Note that
if i > 1 then for j < i the expression s(āi, j ) is not 0 but equals

∑i−1
k=1(ak, j + āk, j ).

Moreover, Littelmann [1998] defines a map from Rn2
to Rn2

which maps 1w0(λ)

to the polytope GT(λ), obtained from a Gelfand–Tsetlin pattern,2 which induces
a bijection between the integral points of 1w0(λ) and GT(λ). We first recall from
[Littelmann 1998] the definition of the polytope GT(λ). For simplicity of notation let

l j := λ j + · · ·+ λn

so that λ= l1ε1+ · · · + lnεn . Let {yi, j }, 2 ≤ i ≤ j ≤ n, and {zi, j }, 1 ≤ i ≤ j ≤ n,
denote coordinates in Rn2

. A point

(y, z) := (z1,1, . . . , z1,n, y2,2, . . . , y2,n, z2,2, . . . , z2,n, . . . , yn,n, zn,n)

in Rn2

≥0 is called a Gelfand–Tsetlin pattern for λ= l1ε1+ · · ·+ lnεn if the entries
satisfy the “betweenness ” condition:

(3-2) lk ≥ z1,k ≥ lk+1, zi−1, j−1 ≥ yi, j ≥ zi−1, j , yi, j ≥ zi, j ≥ yi, j+1

for 1≤ k≤ n, 1≤ i ≤ j ≤ n, where y1, j = l j for simplicity of notation. A convenient
way to visualize these conditions is to organize the coordinates of Rn2

as in Figure 1
(for n = 3). The value of each coordinate must be between the values of its top
right and top left neighbors. Littelmann’s map from the string polytope 1w0(λ) to
the Gelfand–Tsetlin polytope GT(λ) associates to each element a ∈ Rn2

the pattern
P(a)= (yi, j , zi, j ) of highest weight λ= y1,1ε1+· · ·+y1,nεn defined by the equations

2Remark on notation: Performing Thimm’s trick for the sequence of subgroups Sp(1) ⊂ · · · ⊂
Sp(n − 1) ⊂ Sp(n) produces a Hamiltonian action of a torus of dimension 1

2 n(n − 1) on Oλ. The
image of the momentum map for this torus (not toric) action is a polytope of dimension 1

2 n(n− 1)
which is sometimes called a Gelfand–Tsetlin polytope. This polytope can be obtained from GT(λ)
described here via a projection forgetting the {zi, j } coordinates.
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in [Littelmann 1998] (note the misprint therein: αm−k+1 should be αm− j+1):

(3-3)

yi,1ε1+ · · ·+ yi,nεn = λ−

i−1∑
k=1

(
ak,nα1+

n−1∑
j=k

(ak, j + āk, j )αn− j+1

)

zi,1ε1+ · · ·+ zi,nεn =

n∑
k=1

yi,kεk −
ai,n

2
α1−

n−1∑
j=i

āi, jαn− j+1,

where α j are the simple roots as in (3-1):

αn = ε1− ε2, αn−1 = ε2− ε3, . . . , α2 = εn−1− εn, α1 = 2εn.

In fact this map is a GL(n2,Z)-transformation followed by a translation, as we now
show.

Proposition 3.3. The map (3-3) which maps the polytope 1w0(λ) to the Gelfand–
Tsetlin polytope GT(λ) is a GL(n2,Z)-transformation followed by a translation.

We are grateful to the referee for suggesting we replace our original proof (by
direct computation) with the following one.

Proof. Clearly (3-3) defines a composition of a linear map8∈GL(n2,R), defined by
a matrix with integral entries (remember that α1 = 2εn) and a translation. It suffices
to show that |det8| = 1 as this will imply that 8−1 is also a matrix with integral
entries, proving that 8 ∈ GL(n2,Z). The fact that (3-3) is a bijection between
integral points of 1w0(kλ)= k1w0(λ) and integral points of GT(kλ)= k GT(λ) for
any k ∈ N, together with the fact that the volume of any integral polytope 1 ∈ Rn2

,
is the limit

vol(1)= lim
k→∞

#(k1∩Zn2
)

kn2 ,

implies that vol(1w0(λ))= vol GT(λ). Therefore, we must have that |det8|= 1. �

Example 3.4. Let’s take a closer look at the case n = 2 and reprove the above
proposition by direct computation. In this case, the simple roots are: α1 = 2ε2,
α2 = ε1 − ε2. We fix a reduced word decomposition w0 = s1 s2 s1 s2, and fix a
weight

λ= λ1w1+ λ2w2 = (λ1+ λ2)ε1+ λ2ε2.

The associated string polytope 1 = 1w0(λ) is a subset of R4, for which we use
coordinates a22, a11, a12, a13, and is defined by the inequalities

a22 ≥ 0, a11 ≥ a12 ≥ a13 ≥ 0,
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and
a13 = ā11 ≤ λ1,

a11 ≤ λ1− 2s(ā11)+ s(a12)= λ1− 2a13+ 2a12,

a12 ≤ λ2+ s(ā11)= λ2+ a13,

a22 ≤ λ2+ s(ā21)− s(a12)= λ2+ a11+ a13− 2a12.

We derive the second set of inequalities for the symplectic group (see also Corollary 6
of [Littelmann 1998]) from the description of the string polytope for a general G
given in [Littelmann 1998, definition on page 5, Proposition 1.5]. According to this
description (using our fixed reduced word decomposition and numbering of simple
roots):

a13 ≤ 〈λ, α
∨

2 〉 = 〈λ, (ε1− ε2)
∨
〉 = (λ1+ λ2)− λ2 = λ1,

a12 ≤ 〈λ− a13α2, α
∨

1 〉 = 〈λ, 2ε∨2 〉− a13〈ε1− ε2, 2ε∨2 〉 = λ2+ a13,

a11 ≤ 〈λ− a13α2− a12α1, α
∨

2 〉

= 〈λ, (ε1− ε2)
∨
〉− a13〈ε1− ε2, (ε1− ε2)

∨
〉− a12〈2ε2, (ε1− ε2)

∨
〉

= λ1− 2a13− a12(−2),

a22 ≤ 〈λ− a13α2− a12α1− a11α2, α
∨

1 〉

= λ2+ a13− a12〈2ε2, 2ε∨2 〉− a11〈ε1− ε2, 2ε∨2 〉

= λ2+ a13− 2a12+ a11.

We now analyze the map from the above string polytope to the Gelfand–Tsetlin
polytope, given by equations (3-3). As

z11ε1+ z12ε2 = (λ1+ λ2)ε1+ λ2ε2−
a12

2
(2ε2)− a13(ε1− ε2),

we get

z11 = λ1+ λ2− a13,

z12 = λ2− a12+ a13.

The value of y22 is the coefficient of ε2 in λ− a12(2ε2)− (a11+ a13)(ε1− ε2), and
z22 is the coefficient of ε2 in y21ε1+ y22ε2−

1
2a22(2ε2), thus

y22 = λ2+ a11− 2a12+ a13,

z22 = y22− a22,

i.e., 
z11

z12

y22

z22

=


0 0 0 −1
0 0 −1 1
0 1 −2 1
−1 1 −2 1

 ·


a22

a11

a12

a13

+

λ1+ λ2

λ2

λ2

λ2

 .
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Therefore, the inequalities describing the string polytope translate to the following
inequalities:

a22≥ 0⇐⇒ y22≥ z22,

a11≥ a12⇐⇒ y22+2a12−a13−λ2≥ a12⇐⇒ y22≥−a12+a13+λ2= z12,

a12≥ a13⇐⇒ 0≤ λ2− z12,

a13≥ 0⇐⇒ λ1+λ2 ≥ z11,

a13≤ λ1⇐⇒ z11≥ λ2,

a12−a13≤ λ2⇐⇒ λ2− z12≤ λ2⇐⇒ 0≤ z12,

a11−2a12+2a13≤ λ1⇐⇒ y22− z11+λ1≤ λ1⇐⇒ y22≤ z11,

a22−a11+2a12−a13≤ λ2⇐⇒ λ2− z22≤ λ2⇐⇒ 0≤ z22.

The inequalities on the right are exactly the inequalities describing the Gelfand–
Tsetlin polytope.

Theorem 3.5. Let r = min{λ1, . . . , λn} and 1(r) be an n2-dimensional simplex
of size (the lattice length of the edges) r . There exist 9 ∈ GL(n2,Z) and x ∈ Rn2

such that
9(1(r))+ x ⊂ GT(λ).

Proof. Recall from (3-2) the definition of GT(λ). Let V0 := V0(λ) be a vertex of
GT(λ) where all the coordinates yi, j , zi, j are equal to their upper bounds, i.e.,

zi, j = yi, j = zi−1, j−1 = yi−1, j−1 = · · · = z1, j−i+1 = l j−i+1.

We will analyze the edges starting from V0. To obtain an edge starting from V0,
we pick one of the inequalities (3-2) defining GT(λ) which is an equality at V0,
and consider the set of points in GT(λ) satisfying all the same equations that V0

l1 l2 l3

l1

l1

l1

l1

l1

l2 l3

y2;3

y2;3

y2;3 2 [l3; l2]

l1 l2 l3

l1

l1

z2;2

l2 l3

z2;2 2 [l2; l1]

l2

l2

z2;2

z2;2

Figure 2. The edges E2,3 and F2,2, where y2,3 ∈ [l3, l2] (left) and
z2,2 ∈ [l2, l1] (right).
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satisfies, except possibly this chosen one. More precisely, each of the 1
2 n(n− 1)

pairs (i0, j0) with 2≤ i0 ≤ j0 ≤ n gives us an edge Ei0, j0 defined as the set of points
(y, z) ∈ Rn2

satisfying

yi, j = zi, j = l j−i+1 unless j − i = j0− i0 and i ≥ i0,

yi0, j0 = zi0, j0 = yi0+1, j0+1 = · · · = zn− j0+i0,n ∈ [l j0−i0+2, l j0−i0+1].

The lattice length of this edge is l j0−i0+1− l j0−i0+2 = λ j0−i0+1. An example of such
an edge is presented in Figure 2, on the left.

Moreover, each of the 1
2 n(n+ 1) pairs (i0, j0) with 1≤ i0 ≤ j0 ≤ n gives us an

edge Fi0, j0 defined as the set of points (y, z) ∈ Rn2
satisfying

yi, j = zi, j = l j−i+1 unless j − i = j0− i0 and i ≥ i0,

yi0, j0 = l j0−i0+1,

zi0, j0 = yi0+1, j0+1 = zi0+1, j0+1 = · · · = zn− j0+i0,n ∈ [l j0−i0+2, l j0−i0+1].

The lattice length of this edge is also l j0−i0+1− l j0−i0+2 = λ j0−i0+1. An example
of such an edge is presented in Figure 2, on the right.

The above collection gives 1
2 n(n− 1)+ 1

2 n(n+ 1)= n2 edges. Observe that the
directions of these n2 edges from V0 form a Z-basis of Zn2

⊂ Rn2
. Indeed, if we

keep the ordering

z1,1, z1,2, . . . , z1,n, y2,2, y2,3, . . . , y2,n, z2,2, . . . , z2,n, . . .

of our usual coordinates on Rn2
and order the edge generators by

F1,1, F1,2, . . . , F1,n, E2,2, E2,3, . . . , E2,n, F2,2, . . . , F2,n, . . . ,

then the matrix of edge generators expressed in our usual basis is an upper triangular
matrix with (−1)’s on the diagonal. Therefore, there exist 9 ∈ GL(n2,Z) and
x ∈ Rn2

such that

9(1(min{λ j | j = 1, . . . , n}))+ x ⊂ GT(λ). �

Combining the above claims, we prove our main result.

Proof of Theorem 1.1. Let

λ= λ1ω1+ · · ·+ λnωn = (λ1+ · · ·+ λn)ε1+ · · ·+ λnεn

be a point in the interior of the chosen Weyl chamber 3+R for the symplectic
group Sp(n), which lies on some rational line. We want to show that the Gromov
width of the coadjoint orbit Oλ through λ is at least min{λ1, . . . , λn}.

Recall that 3+ denotes the integral points of the positive Weyl chamber and let
3+

Q
denote the rational ones. If λ is integral then, by Corollary 3.1, an open dense
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subset of Oλ is equipped with a toric action. The momentum map image is the inte-
rior of a polytope equivalent under the action of GL(n2,Z) and a translation to the
Gelfand–Tsetlin polytope GT(λ) (see Propositions 3.2 and 3.3). Then Theorem 3.5
and Proposition 2.1 together with Theorem 1.2 prove that the Gromov width of Oλ
is exactly min{λ1, . . . , λn}.

If λ is not integral, let a ∈ R+ be such that aλ is integral. Observe that the
coadjoint orbits Oaλ and Oλ are diffeomorphic and differ only by a rescaling of
their symplectic forms. Thus the Gromov width of Oaλ, which is min{aλ1, . . . , aλn},
is a times bigger than the Gromov width of Oλ. This proves that the Gromov width
of Oλ for λ rational is exactly min{λ1, . . . , λn}. �

3A. Further comments. Note that the Gromov width of Oλ is lower semicontinu-
ous as a function of λ, which one can prove by adjusting a “Moser type” argument
from [Mandini and Pabiniak 2018]. However, to extend our result to orbits Oλ with
arbitrary λ, what is in fact needed is upper semicontinuity. We are very grateful to
the referee for this remark. It is not known in general if the Gromov width of Oλ is
upper semicontinuous. It would be if, for example, all obstructions to embeddings
of balls came from J -holomorphic curves. (The last condition is often called the
“Biran Conjecture”.) Note that an implication of the above conjecture of Biran is
that the Gromov width of integral symplectic manifolds must be greater than or
equal to 1. This statement was proved, under certain assumptions: using Seshadri
constants by Lazarsfeld [2004a; 2004b] and by McDuff and Polterovich [1994],
and also, using degenerations, by Kaveh [2015b].
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MINIMAL BRAID REPRESENTATIVES
OF QUASIPOSITIVE LINKS

KYLE HAYDEN

We show that every quasipositive link has a quasipositive minimal braid
representative, partially resolving a question posed by Orevkov. These
quasipositive minimal braids are used to show that the maximal self-
linking number of a quasipositive link is bounded below by the negative
of the minimal braid index, with equality if and only if the link is an
unlink. This implies that the only amphichiral quasipositive links are the
unlinks, answering a question of Rudolph’s.

1. Introduction

Quasipositive links in S3 were introduced by Rudolph [1983] and defined in terms of
special braid diagrams, the details of which we recall below. These links possess a
variety of noteworthy features. Perhaps most strikingly, results from [Rudolph 1983;
Boileau and Orevkov 2001] show that quasipositive links are precisely those links
which arise as transverse intersections of the unit sphere S3

⊂C2 with complex plane
curves 6⊂C2. The hierarchy of braid-positive, positive, strongly quasipositive, and
quasipositive links interacts in compelling ways with conditions such as fiberedness
[Etnyre and Van Horn-Morris 2011; Hedden 2010], sliceness [Rudolph 1993],
homogeneity [Baader 2005], and symplectic or Lagrangian fillability [Boileau and
Orevkov 2001; Hayden and Sabloff 2015]. Quasipositive links also have well-
understood behavior with respect to invariants such as the four-ball genus, the
maximal self-linking number, and the Ozsváth–Szabó concordance invariant τ
[Hedden 2010]. For a different perspective, we can view quasipositive braids as a
monoid in the mapping class group of a disk with marked points, where they lie in-
side the contact-geometrically important monoid of right-veering diffeomorphisms;
see [Etnyre and Van Horn-Morris 2015] for more details.

The braid-theoretic description of quasipositivity is as follows: A braid is called
quasipositive if it is the closure of a word∏

i

ωiσ jiω
−1
i ,
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where ωi is any word in the braid group and σ ji is a positive standard generator.
A link is then called quasipositive if it has a quasipositive braid representative.
However, an arbitrary braid representative of a quasipositive link need not be a
quasipositive braid. Along these lines, Orevkov [2000] posed the following question:

Question 1.1 (Orevkov). Let L be a quasipositive link and β a minimal braid index
representative of L. Is β quasipositive?

Partial resolutions to this question have appeared in [Etnyre and Van Horn-Morris
2011; Feller and Krcatovich 2017]. The first of these showed that the answer to
Question 1.1 is “yes” for fibered strongly quasipositive links. (In contrast, the
answer to the analogue of Question 1.1 for positive braids is “no”, as Stoimenow
[2002] has provided examples of braid positive knots that have no positive minimal
braid representatives. See also [Stoimenow 2006, §1].) The main purpose of this
note is to provide another partial answer to Question 1.1.

Theorem 1.2. Every quasipositive link has a quasipositive minimal braid index
representative.

This claim follows quickly from the proof of the generalized Jones conjecture
in [LaFountain and Menasco 2014] — a substantial result in the theory of braid
foliations. Our method of proof is similar to that of [Etnyre and Van Horn-Morris
2011; 2015].

A few simple consequences follow from Theorem 1.2. First, by considering
the self-linking number of a quasipositive minimal braid index representative of a
quasipositive link, we obtain a lower bound on the maximal self-linking number sl
in terms of the minimal braid index b:

Theorem 1.3. If L is a quasipositive link, then

sl(L)≥−b(L),

with equality if and only L is an unlink.

The calculation underlying Theorem 1.3 also lets us resolve an earlier question
of Rudolph’s from [Morton 1988, Problem 9.2]:

Question 1.4 (Rudolph). Are there any amphichiral quasipositive links other than
the unlinks?

At the time this question was asked, it was already known that nontrivial strongly
quasipositive knots were chiral; see [Rudolph 1999, Remark 4] for a discussion of
precedent results. Additional evidence for a negative answer came in the form of
strong constraints on invariants of amphichiral quasipositive links (including their
being slice [Wu 2011]). We confirm that the answer to Rudolph’s question is “no”.
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Corollary 1.5. If a link L and its mirror m(L) are both quasipositive, then L is an
unlink. In particular, the unlinks are the only amphichiral quasipositive links.

After recalling the necessary background in Section 2, we supply proofs for the
above results in Section 3.

2. Background

The generalized Jones conjecture, first confirmed by Dynnikov and Prasolov [2013],
relates the writhe w and braid index n of braids with a given link type.

Theorem 2.1 [Dynnikov and Prasolov 2013, generalized Jones conjecture]. Let β
and β0 be closed braids with the same link type L, where n(β0) is minimal for L.
Then there is an inequality

|w(β)−w(β0)| ≤ n(β)− n(β0).

Recall Bennequin’s formula for the self-linking number of a braid β:

sl(β)= w(β)− n(β).

It follows from the generalized Jones conjecture, Bennequin’s formula, and the
transverse Alexander theorem that a minimal braid index representative of L
achieves the maximal self-linking number among all transverse representatives
of L, denoted sl(L). For any braid β representing a link type L, we can plot the
pair (w(β), n(β)) in a plane. The cone of β is the collection of all pairs (w, n)
realized by braids which are stabilizations of β; see Figure 1 for an example. If
β0 is a minimal braid index representative of L, we see that the right edge of its
cone consists of all pairs (w, n) corresponding to braids achieving the maximal
self-linking number of L.

The other tool central to the proof of Theorem 1.2 is due to Orevkov and concerns
braid moves that preserve quasipositivity.

Theorem 2.2 [Orevkov 2000]. Suppose the braids β and β ′ are related by positive
(de)stabilization. Then β is quasipositive if and only if β ′ is quasipositive.

−2 0 2 4 6 8 10

(w(β), n(β))
2

4

6

n

w

Figure 1. The cone of a braid β with (w(β), n(β))= (4, 2).
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Remark 2.3. In [Orevkov 2000], an n-stranded braid is viewed as an isotopy class
of n-valued functions f : [0, 1]→ C where f (0) and f (1) equal {1, 2, . . . , n} ⊂ C.
A braid is then quasipositive if one of its representatives can be expressed as a
product of conjugates of the standard generators. For us, it is more convenient to
study closed braids (up to isotopy through closed braids). Two closed braids are
equivalent if and only if they can be expressed as closures of conjugate open braids.
Since quasipositivity is a property of conjugacy classes of open braids, Theorem 2.2
holds equally well for closed braids.

3. Quasipositive minimal braids

We proceed to the proof of the of the main result, namely that every quasipositive
link has a quasipositive minimal braid representative.

Proof of Theorem 1.2. Let L be a quasipositive link with a minimal braid index
representative β0 and a quasipositive braid representative β+. Since the slice-
Bennequin inequality is sharp for quasipositive links [Rudolph 1993; Hedden 2010],
β+ achieves the maximal self-linking number for L. As noted above, it follows
that (w(β+), n(β+)) lies along the right edge of the cone of β0. The braids β0 and
β+ have the same link type, so [LaFountain and Menasco 2014, Proposition 1.1]
implies that there are braids β ′0 and β ′

+
obtained from β0 and β+ by negative and

positive stabilization, respectively, such that β ′0 and β ′
+

cobound embedded annuli.
Note that β ′0 and β ′

+
lie along the left and right edges of the cone, respectively, as

depicted on the left side of Figure 2. We also note that β ′
+

is quasipositive since it
is obtained from β+ by positive stabilization.

Next, as in the proof of [LaFountain and Menasco 2014, Proposition 3.2], we can
find braids β ′′0 and β ′′

+
obtained from β ′0 and β ′

+
by braid isotopy, destabilization,

and exchange moves such that w(β ′′
+
)= w(β ′′0 ) and n(β ′′

+
)= n(β ′′0 ). We claim that

β ′′
+

has minimal braid index (as does β ′′0 ). Indeed, since β ′0 and β ′
+

lie on the left
and right edges of the cone of β0, the destabilizations applied to them must be
negative and positive, respectively. Given this and the fact that exchange moves
preserve writhe and braid index, we see that β ′′0 and β ′′

+
must also lie on the left

and right edges of the cone of β0, respectively. But since these braids occupy the
same (w, n)-point, they must lie where the edges of the cone meet. As depicted
on the right side of Figure 2, this implies that β ′′0 and β ′′

+
have minimal braid

index.
Finally, we show that the braid β ′′

+
is quasipositive. As noted above, any destabi-

lizations of β ′
+

must be positive, and these preserve quasipositivity by Theorem 2.2.
An exchange move also preserves quasipositivity, since it can be expressed as a
combination of one positive stabilization, one positive destabilization, and a number
of conjugations; see [Birman and Wrinkle 2000, Figure 8]. �
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β0

β+

β ′0

β ′
+

β ′0

β ′
+

β0, β
′′

0 , β
′′
+

n

w

n

w

Figure 2. On the left, β ′0 and β ′
+

are obtained from β0 and β+ by
negative and positive stabilization, respectively. Then, on the right,
β ′′0 and β ′′

+
are obtained from β ′0 and β ′

+
by negative and positive

destabilization, respectively.

Remark 3.1. The question of whether or not all minimal braid index representatives
of a quasipositive link are quasipositive remains open. The answer is seen to be “yes”
for transversely simple link types: beginning with a quasipositive braid representa-
tive of a transversely simple link, the transverse Markov theorem implies that any
minimal braid index representative can be related to it by positive (de)stabilization,
which preserves quasipositivity. By the same reasoning, the answer to Question 1.1
is “yes” for any link type that has a unique transverse class achieving its maximal
self-linking number (but is not necessarily transversely simple). This is the case
for fibered strongly quasipositive links, as shown by Etnyre and Van Horn-Morris.
But it fails to hold even for nonfibered strongly quasipositive links; as pointed out
by Etnyre and Van Horn-Morris, there are infinite families of 3-braids found by
Birman and Menasco [2006] which are (strongly) quasipositive and of minimal
braid index but not transversely isotopic.

Remark 3.2. As pointed out by Eli Grigsby, the proof of Theorem 1.2 can be
mirrored to show that any property of closed braids that is

(1) preserved under transverse isotopy, and

(2) satisfied by at least one braid representative of L with maximal self-linking
number

is also satisfied by at least one minimal braid index representative of L.

Now we obtain the lower bound in Theorem 1.3 by applying Bennequin’s formula
to a quasipositive minimal braid.

Proof of Theorem 1.3. Recall that a quasipositive braid always achieves the maximal
self-linking number of its link type. Thus if β is a quasipositive minimal braid
index representative of L, we have

sl(L)= sl(β)= w(β)− n(β)= w(β)− b(L).
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The desired inequality now follows from the fact that the writhe of a quasipositive
braid is nonnegative, vanishing if and only if the braid is trivial. �

Finally, we prove the corollary that resolves Question 1.4.

Proof of Corollary 1.5. Observe that if β is a minimal braid index representative
of L, then its mirror m(β) is minimal for m(L). Now suppose L and m(L) are both
quasipositive. The preceding proof implies that w(β) and w(m(β))=−w(β) are
both nonnegative, so w(β) must be zero. Since we can choose the braid β to be
quasipositive, the vanishing of its writhe implies that the braid itself is trivial. �
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FOUR-DIMENSIONAL STATIC AND RELATED CRITICAL
SPACES WITH HARMONIC CURVATURE

JONGSU KIM AND JINWOO SHIN

We study any four-dimensional Riemannian manifold (M, g)with harmonic
curvature which admits a smooth nonzero solution f to the equation

∇ d f = f
(

Rc−
R

n− 1
g
)
+ xRc+ y(R)g,

where Rc is the Ricci tensor of g, x is a constant and y(R) a function of
the scalar curvature R. We show that a neighborhood of any point in some
open dense subset of M is locally isometric to one of the following five types:
(i) S2( R

6

)
×S2( R

3

)
with R> 0, (ii) H2( R

6

)
×H2( R

3

)
with R< 0, where S2(k)

and H2(k) are the two-dimensional Riemannian manifolds with constant
sectional curvatures k > 0 and k < 0, respectively, (iii) the static spaces
we describe in Example 3, (iv) conformally flat static spaces described by
Kobayashi (1982), and (v) a Ricci flat metric.

We then get a number of corollaries, including the classification of the
following four-dimensional spaces with harmonic curvature: static spaces,
Miao–Tam critical metrics and V -static spaces.

For the proof we use some Codazzi-tensor properties of the Ricci tensor
and analyze the equation displayed above depending on the various cases of
multiplicity of the Ricci-eigenvalues.

1. Introduction

In this article we consider an n-dimensional Riemannian manifold (M, g) with
constant scalar curvature R which admits a smooth nonzero solution f to the
equation

(1-1) ∇ d f = f
(

Rc−
R

n− 1
g
)
+ x ·Rc+ y(R)g,
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where Rc is the Ricci curvature of g, x is a constant and y(R) a function of R.
There are several well-known classes of spaces which admit such solutions. Be-
low we describe them and briefly explain their geometric significance and recent
developments.

A static space admits by definition a smooth nonzero solution f to

(1-2) ∇ d f = f
(

Rc−
R

n− 1
g
)
.

A Riemannian geometric interest of a static space comes from the fact that
the scalar curvature functional S, defined on the space M of smooth Riemannian
metrics on a closed manifold, is locally surjective at g ∈M if there is no nonzero
smooth function satisfying (1-2); see Chapter 4 of [Besse 1987].

This interpretation also holds in a local sense. Roughly speaking, if no nonzero
smooth function on a compactly contained subdomain � of a smooth manifold
satisfies (1-2) for a Riemannian metric g on �, then the scalar curvature functional
defined on the space of Riemannian metrics on � is locally surjective at g in a
natural sense; see Theorem 1 of [Corvino 2000]. This local viewpoint has been
developed to make remarkable progress in Riemannian and Lorentzian geometry
[Chruściel et al. 2005; Corvino 2000; Corvino et al. 2013; Corvino and Schoen
2006; Qing and Yuan 2016].

Kobayashi [1982] studied a classification of conformally flat static spaces. In
his study the list of complete ones is made. Moreover, all local ones are described
for all varying parameter conditions and initial values of the static space equation.
Indeed, they belong to the cases I–VI in Section 2 of [Kobayashi 1982] and the
existence of solutions in each case is thoroughly discussed. Lafontaine [1983]
independently proved a classification of closed conformally flat static spaces. Qing
and Yuan [2013] classified complete Bach-flat static spaces which contain compact
level hypersurfaces.

Next to static spaces we consider a Miao–Tam critical metric [2009; 2011], which
is a compact Riemannian manifold (M, g) that admits a smooth nonzero solution f ,
vanishing at the smooth boundary of M, to

(1-3) ∇ d f = f
(

Rc−
R

n− 1
g
)
−

g
n− 1

.

In [Miao and Tam 2011], Miao–Tam critical metrics are classified when they are
Einstein or conformally flat. In [Barros et al. 2015], Barros, Diógenes and Ribeiro
proved that if (M4, g, f ) is a Bach-flat simply connected, compact Miao–Tam
critical metric with boundary isometric to a standard sphere S3, then (M4, g) is
isometric to a geodesic ball in a simply connected space form R4, H4 or S4.
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In [Corvino et al. 2013], Corvino, Eichmair and Miao defined a V -static space
to be a Riemannian manifold (M, g) which admits a nontrivial solution ( f, c), for
a constant c, to the equation

(1-4) ∇ d f = f
(

Rc−
R

n− 1
g
)
−

c
n− 1

g.

Note that (M, g) is a V -static space if and only if it admits a solution f to (1-2)
or (1-3) on M, seen by scaling constants. Under a natural assumption, a V -static
metric g is a critical point of a geometric functional, as explained in Theorem 2.3
of [Corvino et al. 2013]. Like static spaces, local V -static spaces are still important;
see, e.g., Theorems 1.1, 1.6 and 2.3 in [Corvino et al. 2013].

Lastly, one may consider Riemannian metrics (M, g) which admit a nonconstant
solution f to

(1-5) ∇ d f = f
(

Rc−
R

n− 1
g
)
+Rc−

R
n

g.

If M is a closed manifold, then g is a critical point of the total scalar curvature
functional defined on the space of Riemannian metrics with unit volume and
with constant scalar curvature on M. By an abuse of terminology we shall call a
metric g satisfying (1-5) a critical point metric even when M is not closed. There
are a number of works on this subject, including [Besse 1987, Section 4.F] and
[Lafontaine 1983; Yun et al. 2014; Barros and Ribeiro 2014; Qing and Yuan 2013].

Finally we note that the existence of a nonzero or nonconstant solution to any
of (1-2)–(1-5) guarantees the scalar curvature is constant. Indeed, it is shown for
(1-2)–(1-4) in [Corvino 2000; Miao and Tam 2009; Corvino et al. 2013] and can be
shown similarly for (1-5). But it does not hold true generally for (1-1).

In this paper we study spaces with harmonic curvature having a nonzero solution
to (1-1). It is confined to four-dimensional spaces here, but our study may be
extendible to higher dimensions. As motivated by Corvino’s local deformation
theory of scalar curvature, we study local (i.e., not necessarily complete) classifica-
tion. We completely characterize nonconformally flat spaces, so that together with
Kobayashi’s work on conformally flat ones we get a full classification as follows.

Theorem 1.1. Let (M, g) be a four-dimensional (not necessarily complete) Rie-
mannian manifold with harmonic curvature, satisfying (1-1) with nonconstant f .
Then for each point p in some open dense subset M̃ of M, there exists a neighbor-
hood V of p with one of the following properties:

(i) (V, g) is isometric to a domain in
(
S2
( R

6

)
×S2

( R
3

)
, gR/6+ gR/3

)
with R > 0,

where S2(k) is the two-dimensional sphere with constant sectional curvature k > 0
and gk is the Riemannian metric of constant curvature k, and f = c1 cos

(√ R
6 s
)
− x
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for any constant c1, where s is the distance from a point on S2
( R

6

)
. The constant R

equals the scalar curvature of g. It holds that 1
3 x R+ y(R)= 0.

(ii) (V, g) is isometric to a domain in
(
H2
( R

6

)
×H2( R

3 ), gR/6+ gR/3
)

with R < 0,
where H2(k) is the hyperbolic plane with constant sectional curvature k < 0. The
metric gR/6 can be written as gR/6= ds2

+ p(s)2 dt2 with p(s)= k1 sinh
(√
−

R
6 s
)
+

k2 cosh
(√
−

R
6 s
)

for constants k1, k2, and then f =c2 p′(s)−x for any constant c2. It
holds that 1

3 x R+ y(R)= 0.

(iii) (V, g) is isometric to a domain in one of the static spaces in Example 3 of
Section 2A2, which is the Riemannian product (R1

×W 3, dt2
+ ds2

+ h(s)2g̃) of
(R1,dt2)and some three-dimensional conformally flat static space (W 3,ds2

+h(s)2g̃)
with zero scalar curvature, and f = c · h′(s)− x for any constant c. It holds that
R = 0 and y(0)= 0.

(iv) (V, g) is conformally flat. It is one of the metrics whose existence is described
in Section 2 of [Kobayashi 1982]; g = ds2

+ h(s)2gk , where h is a solution of

(1-6) h′′+ 1
12 Rh = ah−3 for a constant a.

For the constant k, the function h satisfies

(1-7) (h′)2+ ah−2
+

1
12 Rh2

= k,

and f is a nonconstant solution to the following ordinary differential equation for f :

(1-8) h′ f ′− f h′′ = x
(
h′′+ 1

3 Rh
)
+ y(R)h.

Conversely, any (V, g, f ) from (i)–(iv) has harmonic curvature and satisfies (1-1).

Theorem 1.1 only considers the case when f is a nonconstant solution, but the
other case of f being a nonzero constant solution is easier, which is described in
Section 2A1.

Theorem 1.1 yields a number of classification theorems on four-dimensional
spaces with harmonic curvature as follows. Theorem 8.2 classifies complete spaces
satisfying (1-1). Then Theorems 9.1, 10.2 and 11.1 state the classification of local
static spaces, V -static spaces and critical point metrics, respectively. Theorems 9.2
and 11.2 classify complete static spaces and critical point metrics, respectively.
Theorem 10.3 gives a characterization of some four-dimensional Miao–Tam critical
metrics with harmonic curvature, which is comparable to the aforementioned Bach-
flat result [Barros et al. 2015].

To prove Theorem 1.1 we look into the eigenvalues of the Ricci tensor, which
is a Codazzi tensor under the harmonic curvature condition. This Codazzi tensor
encodes some geometric information, as investigated by Derdziński [1980]. In [Kim
2017], one of us has analyzed it in the Ricci soliton setting. We shall work in the
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same framework of arguments: we show that all Ricci-eigenvalues λi , i = 1, 2, 3, 4,
locally depend on the function f only, and then analyze case I when the three
λ2, λ3, λ4 are pairwise distinct and case II when exactly two of them are equal.

Our contribution in this paper is first to show the dependence of all Ricci-
eigenvalues on f in the setting of (1-1) by modifying the original soliton proof.
Then in analyzing cases I and II, we manage to prove the desired key arguments
of Propositions 4.2, 6.3 and 6.4 using involved formulas, which turns out to be
fairly different from the soliton proof. Finally in the last five sections we discuss
local-to-global results ranging from static spaces to critical point metrics.

This paper is organized as follows. In Section 2, we discuss examples and
some properties from (1-1) and harmonic curvature. In Section 3, we prove that
all Ricci-eigenvalues locally depend on only one variable. We study in Section 4
the case when the three eigenvalues λ2, λ3, λ4 are pairwise distinct. In Sections 5
and 6 we analyze the case when exactly two of the three are equal. In Section 7
we characterize the case when all the three are equal, and then prove the local
classification theorem as Theorem 1.1. We discuss the classification of complete
spaces in Section 8. In Sections 9, 10 and 11 we treat static spaces, Miao–Tam
critical and V -static spaces and critical point metrics respectively.

2. Examples and properties from (1-1) and harmonic curvature

We are going to describe some examples of spaces which satisfy (1-1) in Section 2A
and state basic properties of spaces with harmonic curvature satisfying (1-1) in
Section 2B.

2A. Examples of spaces satisfying (1-1).

2A1. Spaces with a nonzero constant solution to (1-1). When (M, g) has a constant
solution f =−x to (1-1), then y(R)+x R/(n−1)= 0. Conversely, any metric with
its scalar curvature satisfying y(R)+ x R/(n− 1)= 0 admits the constant solution
f =−x to (1-1) because

∇ d f = f
(

Rc−
R

n− 1
g
)
+ xRc+ y(R)g = ( f + x)

(
Rc−

R
n− 1

g
)
.

This proves the following lemma.

Lemma 2.1. An n-dimensional Riemannian manifold (M, g) of constant scalar
curvature R admits the constant solution f = −x if and only if it satisfies
y(R)+ x R/(n− 1)= 0.

If (M, g) has a constant solution f = c0, which does not equal −x , then g is an
Einstein metric. Conversely, if g is Einstein, i.e., Rc= (R/n)g with R 6= 0, then
any constant c0 satisfying c0 R = (n− 1)x R+ y(R)n(n− 1) is a solution to (1-1);
but if g is Ricci-flat, then f = c0 is a solution exactly when y(0)= 0.
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2A2. Some examples of spaces which satisfy (1-1) with nonconstant f .

Example 1 (Einstein spaces satisfying (1-1) with nonconstant f ). Let (M, g, f )
be a four-dimensional space satisfying (1-1), where g is an Einstein metric. We
shall show that g has constant sectional curvature. We may use the argument in
Section 1 of [Cheeger and Colding 1996]. In fact, the relation (1.6) of that paper
corresponds to the equation

(2-1) ∇ d f =
[
−

1
12 R f + x 1

4 R+ y(R)
]
g

in our Einstein case. One can readily see that their argument to get their (1.19) still
works; in some neighborhood of any point in M we can write g = ds2

+ ( f ′(s))2g̃,
where s is a function such that ∇s =∇ f/|∇ f | and g̃ is considered as a Riemannian
metric on a level surface of f .

As g is Einstein, so is g̃ from Lemma 4 in [Derdziński 1980]. As g̃ is three-
dimensional, it has constant sectional curvature, say k. Moreover, f satisfies
f ′′ =− 1

12 R f + 1
4 x R+ y(R), by feeding (∂/∂s, ∂/∂s) to (2-1).

Since g is Einstein, we can readily see that our warped product metric g has
constant sectional curvature. In particular, a four-dimensional complete positive
Einstein space satisfying (1-1) with nonconstant f is a round sphere; see [Obata
1962; Yano and Nagano 1959].

Example 2. Assume 1
3 x R+ y(R)= 0. Then (1-1) reduces to

∇d f = ( f + x)
(

Rc−
R

n− 1
g
)
.

This is the static space equation for g and F = f + x . We recall one example
from [Lafontaine 1983]. On the round sphere S2(1) of sectional curvature 1, we
consider the local coordinates (s, t)∈ (0, π)×S1 so that the round metric is written
ds2
+ sin2(s) dt2. Let f (s) = c1 cos s − x for any constant c1. Then the product

metric of S2(1)×S2(2) with f satisfies (1-1). This example is neither Einstein nor
conformally flat.

Example 3. Here we shall describe some four-dimensional nonconformally flat
static space gW + dt2. We first recall some spaces among Kobayashi’s warped
product static spaces [1982] on I × N (k) with the metric g = ds2

+ r(s)2ḡ, where
I is an interval and (ḡ, N (k)) is an (n−1)-dimensional Riemannian manifold of
constant sectional curvature k. Moreover, f = cr ′ for a nonzero constant c.

In order for g to be a static space, the next equation needs to be satisfied; for a
constant α
(2-2) r ′′+

R
n(n− 1)

r = αr1−n,

along with an integrability condition: for a constant k,

(2-3) (r ′)2+
2α

n− 2
r2−n
+

R
n(n− 1)

r2
= k.
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Existence of solutions depends on the values of α, R, k. Here we consider only
when R = 0. Then there are three cases:

(i) R = 0, α > 0.

(ii) R = 0, α < 0.

(iii) R = 0, α = 0.

The above (i), (ii) and (iii) correspond respectively to the cases IV.1, III.1 and II
in Section 2 of [Kobayashi 1982]. The solutions for these cases are discussed in
Proposition 2.5, Example 5 and Proposition 2.4 in that paper. In particular, if R = 0,
α > 0 (then k > 0) and n = 3, we get the warped product metric on R1

×S2(1)
which contains the spatial slice of a Schwarzschild space-time. Next, if R = 0,
α < 0, then there is an incomplete metric on I × N (k). If R = 0, α = 0, then g is
readily seen to be a flat metric.

Let (W 3, gW , f ) be one of the three-dimensional static spaces (g, f ) in the above
paragraph. We now consider the four-dimensional product metric gW + dt2 on
W 3
×R1. One can check that (W 3

×R1, gW + dt2, f ◦ pr1) is a static space, where
pr1 is the projection of W 3

×R1 onto the first factor. When R= 0 and α 6= 0 for gW ,
the metric gW + dt2 is not conformally flat and has three distinct Ricci-eigenvalues.

2B. Spaces with harmonic curvature. A Riemannian metric is said to have har-
monic curvature [Besse 1987, Chapter 16] if the divergence of the curvature tensor
is zero. The Ricci tensor Rc of a Riemannian metric, when evaluated on two vectors
(X, Y ), shall be denoted by R(X, Y ) rather than Rc(X, Y ), and its components in
vector frames shall be written as Ri j .

By the differential Bianchi identity, the Ricci tensor of a Riemannian metric with
harmonic curvature is a Codazzi tensor, written in local coordinates as ∇k Ri j =

∇i Rk j . A Riemannian metric with harmonic curvature has constant scalar curvature.
We begin with a basic formula.

Lemma 2.2. For a four-dimensional manifold (M4, g, f ) with harmonic curvature
satisfying (1-1), it holds that

−R(X, Y, Z ,∇ f )=−R(X, Z)g(∇ f, Y )+ R(Y, Z)g(∇ f, X)

−
1
3 R{g(∇ f, X)g(Y, Z)− g(∇ f, Y )g(X, Z)}.

Proof. By the Ricci identity, ∇i∇j∇k f −∇j∇i∇k f =−
∑

l Ri jkl∇l f . The equation
(1-1) gives∑

l

− Ri jkl∇l f =∇i
{

f
(
Rjk −

1
3 Rgjk

)
+ x Rjk + y(R)gjk

}
−∇j

{
f
(
Rik −

1
3 Rgik

)
+ x Rik + y(R)gik

}
=∇i f

(
Rjk −

1
3 Rgjk

)
−∇j f

(
Rik −

1
3 Rgik

)
,

which yields the lemma. �
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A Riemannian manifold with harmonic curvature is real analytic in harmonic
coordinates [DeTurck and Goldschmidt 1989]. Equation (1-1) then implies that f
is real analytic in harmonic coordinates.

One may mimic arguments in [Cao and Chen 2013] and get the next lemma. We
shall often denote the metric g(X, Y ) by 〈X, Y 〉.

Lemma 2.3. Let (Mn, g, f ) have harmonic curvature, satisfying (1-1) with non-
constant f . Let c be a regular value of f and 6c = {x | f (x) = c} be the level
surface of f . Then the following hold:

(i) E1 := ∇ f/|∇ f | is an eigenvector field of Rc, where ∇ f 6= 0.

(ii) |∇ f | is constant on any connected component of 6c.

(iii) There is a function s locally defined with s(x) =
∫

d f/|∇ f |, so that ds =
d f/|∇ f | and E1 =∇s.

(iv) R(E1, E1) is constant on any connected component of 6c.

(v) Near a point in 6c, the metric g can be written as

g = ds2
+

∑
i, j>1

gi j (s, x2, . . . , xn) dxi ⊗ dx j ,

where x2, . . . , xn is a local coordinate system on 6c.

(vi) ∇E1 E1 = 0.

Proof. In Lemma 2.2, put Y = Z =∇ f and X ⊥∇ f to get

0=−R(X,∇ f,∇ f,∇ f )=−R(X,∇ f )g(∇ f,∇ f ).

So, R(X,∇ f ) = 0. Hence E1 = ∇ f/|∇ f | is an eigenvector of Rc. By (1-1),
1
2∇X |∇ f |2 = 〈∇X∇ f,∇ f 〉 = f R(∇ f, X)= 0 for X ⊥∇ f . This proves (ii). Next

d
(

d f
|∇ f |

)
=−

1

2|∇ f |
3
2

d|∇ f |2 ∧ d f = 0

as ∇X (|∇ f |2)= 0 for X ⊥ ∇ f . So, (iii) is proved. As ∇ f and the level surfaces
of f are perpendicular, one gets (v). One uses (v) to compute Christoffel symbols
and gets (vi).

Now we shall prove (iv). Locally, f is a function of the local variable s only.
We can write

E1( f )= d f (E1)=
d f
ds

ds(E1)=
d f
ds

g(∇s,∇s)=
d f
ds
,

which again depends on s only. Similarly we get E1 E1( f )= d2 f/ds2. By (1-1),
we have

E1 E1 f = E1 E1 f − (∇E1 E1) f

=∇ d f (E1, E1)= ( f + x)R(E1, E1)−
1

n− 1
R f + y(R).
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Since f + x is not zero on an open subset,

R(E1, E1)=
1

( f + x)

{
E1 E1 f +

1
n− 1

R f − y(R)
}

depends on s only. So R(E1, E1) is constant on any connected component of 6c.
This proves (iv). �

As (M, g) has harmonic curvature, the Ricci tensor Rc is a Codazzi tensor.
Following [Derdziński 1980], for x ∈ M, let ERc(x) be the number of distinct
eigenvalues of Rcx , and set MRc={x ∈M | ERc is constant in a neighborhood of x}.
The open subset MRc is dense in M. To see this, one may argue as follows. For each
point x ∈ M, consider any open ball B centered at x . As the range of the map ERc

is finite, there is a point q ∈ B where ERc(q) equals the maximum of ERc on B. By
definition ERc ≥ ERc(q) near q. So, ERc ≡ ERc(q) near q. Then q ∈ MRc. This
implies that MRc is dense.

Now we have:

Lemma 2.4. For a Riemannian metric g of dimension n ≥ 4 with harmonic cur-
vature, consider orthonormal vector fields Ei , i = 1, . . . , n, such that R(Ei , · )=

λi g(Ei , · ). Then the following hold in each connected component of MRc:

(i) (λj−λk)〈∇Ei E j ,Ek〉+Ei {R(E j ,Ek)}=(λi−λk)〈∇E j Ei ,Ek〉+E j {R(Ek,Ei )},
for any i, j, k = 1, . . . , n.

(ii) If k 6= i and k 6= j , then (λj − λk)〈∇Ei E j , Ek〉 = (λi − λk)〈∇E j Ei , Ek〉.

(iii) Given distinct Ricci-eigenvalues λ,µ and local vector fields v, u such that
R(v, · )= λg(v, · ) and R(u, · )= µg(u, · ) with |u| = 1, it holds that v(µ)=
(µ− λ)〈∇uu, v〉.

(iv) For each eigenvalue λ, the λ-eigenspace distribution is integrable and its leaves
are totally umbilic submanifolds of M.

Proof. The statement (i) was proved in [Kim 2017]. Parts (ii) and (iii) follow
from (i). Parts (iii) and (iv) are from Section 2 of [Derdziński 1980]. �

Given (Mn, g, f ) with harmonic curvature satisfying (1-1), f is real analytic
in harmonic coordinates, so {∇ f 6= 0} is open and dense in M. Lemma 2.3 gives
that for any point p in the open dense subset Mr ∩ {∇ f 6= 0} of Mn, there is a
neighborhood U of p where there exist orthonormal Ricci-eigenvector fields Ei ,
i = 1, . . . , n, such that

(i) E1 =∇ f/|∇ f |,

(ii) Ei is tangent to smooth level hypersurfaces of f for i > 1.

These local orthonormal Ricci-eigenvector fields {Ei } shall be called an adapted
frame field of (M, g, f ).
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3. Constancy of λi on level hypersurfaces of f

For an adapted frame field of (Mn, g, f ) with harmonic curvature satisfying (1-1),
we set ζi := −〈∇Ei Ei , E1〉 = 〈Ei ,∇Ei E1〉 for i > 1. Then by (1-1),

∇Ei E1 =∇Ei

(
∇ f
|∇ f |

)
=
∇Ei∇ f
|∇ f |

=
f R(Ei , · )− f R/(n− 1)g(Ei , · )+ x R(Ei , · )+ y(R)g(Ei , · )

|∇ f |
.

So we may write

(3-1) ∇Ei E1 = ζi Ei , where ζi =
( f + x)R(Ei , Ei )− f R/(n− 1)+ y(R)

|∇ f |
.

Due to Lemma 2.3, in a neighborhood of a point p ∈ MRc ∩ {∇ f 6= 0}, f may be
considered as a function of s only, and we write the derivative in s by a prime:
f ′ = d f/ds.

Lemma 3.1. Let (M, g, f ) be a four-dimensional space with harmonic curvature,
satisfying (1-1) with nonconstant f . Then the Ricci-eigenvalue λi associated to an
adapted frame field Ei is constant on any connected component of a regular level
hypersurface 6c of f , and so depend on the local variable s only. Moreover, ζi ,
i=2, 3, 4, in (3-1) also depend on s only. In particular, we have Ei (λj )= Ei (ζk)=0
for i, k > 1 and any j .

Proof. We denote ∇Ei f by fi and ∇E j∇Ei f by fi j . We have

4∑
j=1

1
2∇E j∇E j (|∇ f |2)=

∑
i, j

1
2∇E j∇E j ( fi fi )=

∑
i, j

∇E j ( fi fi j ).

We use fi j = f
(
Ri j −

1
3 Rgi j

)
+ x Ri j + y(R)gi j from (1-1) to compute:∑

i, j

∇E j ( fi fi j )=
∑
i, j

∇E j

{
f fi
(
Ri j−

1
3 Rgi j

)
+x fi Ri j+y(R) fi gi j

}
=

∑
i, j

f j fi
(
Ri j−

1
3 Rgi j

)
+ f fi j

(
Ri j−

1
3 Rgi j

)
+x fi j Ri j+y(R) fi j gi j

=
(
R11−

1
3 R
)
|∇ f |2+

∑
i, j

( f+x)2 Ri j Ri j−
2
9 R2 f 2

−
2
3 x R2 f

+
(
2x− 2

3 f
)
y(R)R+4y(R)2,

where in obtaining the second equality we use the Bianchi identity ∇k Rjk =
1
2∇k R

and the fact that R is constant.
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Meanwhile,
4∑

j=1

∇E j∇E j (|∇ f |2)=
4∑

j=1

E j E j (|∇ f |2)− (∇E j E j )(|∇ f |2)

= (|∇ f |2)′′+
4∑

j=2

ζj (|∇ f |2)′.

Since R and λ1 = R11 depend on s only by Lemma 2.3, the function
∑4

j=2 ζj

depends only on s by (3-1). We compare the above two expressions of
4∑

j=1

∇E j∇E j (|∇ f |2)

to see that ∑
i, j

( f + x)2 Ri j Ri j

depends only on s. As f is nonconstant real analytic,
∑

i, j Ri j Ri j depends only
on s.

We compute∑
i, j,k

∇k( fi fi j Rjk)

=

∑
i, j,k

∇k
[

fi Rjk
{

f (Ri j −
1
3 Rgi j )+ x Ri j + y(R)gi j

}]
=

∑
i, j,k

∇k
[

fi
{
( f + x)Ri j Rjk −

( 1
3 f R− y(R)

)
gi j Rjk

}]
=

∑
i, j,k

fik
{
( f + x)Ri j Rjk −

( 1
3 f R− y(R)

)
gi j Rjk

}
+

∑
i, j,k

fi
{

fk Ri j Rjk + ( f + x)Rjk∇k Ri j −
1
3 fk Rgi j Rjk

}
=

∑
i, j,k

{
( f +x)Rik−

( 1
3 f R−y(R)

)
gik
}{
( f +x)Ri j Rjk−

( 1
3 f R−y(R)

)
gi j Rjk

}
+

∑
i, j,k

fi fk Ri j Rjk + ( f + x) fi Rjk∇k Ri j −
1
3 fi fk Rgi j Rjk

=

∑
i, j,k

( f + x)2 Rik Ri j Rjk + ( f + x) fi Rjk∇k Ri j + L(s),

where L(s) is a function of s only, and the Bianchi identity ∇k Rjk =
1
2∇k R = 0 is

used in obtaining the third equality.

Using ∇k Ri j =∇i Rjk , we get

(3-2)
∑
i, j,k

∇k( fi fi j Rjk)=
∑
i, j,k

( f +x)2 Rik Ri j Rjk+
1
2( f +x) fi∇i (Rjk Rjk)+L(s).
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All terms except ( f + x)2 Ri j Rjk Rik in the right-hand side of (3-2) depend on s
only. From the constancy of R and (3-1) we also get

(3-3)
∑
i, j,k

2∇k( fi fi j Rjk)

=

∑
i, j,k

∇k(2 fi fi j ) · Rjk =
∑
i, j,k

∇k∇j ( fi fi ) · Rjk

=

∑
i, j,k

Ek E j ( fi fi ) · Rjk − (∇Ek E j )( fi fi ) · Rjk

=

∑
j,i

E j E j ( fi fi ) · Rj j − (∇E j E j )( fi fi ) · Rj j

=

∑
i

E1 E1( fi fi ) · R11+

4∑
j=2

ζj E1(|∇ f |2) · Rj j

= (|∇ f |2)′′ · R11+

4∑
j=2

( f + x)Rj j Rj j −
1
3 R f Rj j + y(R)Rj j

|∇ f |
E1(|∇ f |2),

which depends only on s.
So, we compare (3-2) with (3-3) to see that Ri j Rjk Rik depends only on s. Now

λ1 and
∑4

i=1(λi )
k, k = 1, 2, 3, depend only on s. This implies that each λi ,

i = 1, 2, 3, 4, depends only on s. By (3-1), ζi , i = 2, 3, 4, depends on s only. �

4. Four-dimensional space with distinct λ2, λ3, λ4

Let (M, g, f ) be a four-dimensional Riemannian manifold with harmonic curvature
satisfying (1-1). For an adapted frame field {E j } with its eigenvalue λj in an open
subset of MRc ∩ {∇ f 6= 0}, we may only consider three cases depending on the
distinctiveness of λ2, λ3, λ4; the first case is when λi , i = 2, 3, 4, are all equal (on
an open subset), and the second is when exactly two of the three are equal. And the
last is when the three λi , i = 2, 3, 4, are mutually distinct. In this section we shall
study the last case. Note that by (3-1) two eigenvalues λi and λj are distinct if and
only if ζi and ζj are. We set 0k

i j := 〈∇Ei E j , Ek〉.

Lemma 4.1. Let (M, g, f ) be a four-dimensional Riemannian manifold with har-
monic curvature satisfying (1-1) with nonconstant f . Suppose that for an adapted
frame field E j , j = 1, 2, 3, 4, in an open subset W of MRc ∩ {∇ f 6= 0}, the
eigenvalues λ2, λ3, λ4 are distinct from each other. Then the following hold in W :

R1i j1 = 0 for distinct i, j > 1,

R1i i1 =−ζ
′

i − ζ
2
i ,

R1i i1 =−Ri i +
1
3 R,



4-D STATIC AND RELATED SPACES WITH HARMONIC CURVATURE 441

where
R11 =−ζ

′

2− ζ
2
2 − ζ

′

3− ζ
2
3 − ζ

′

4− ζ
2
4 ,

R22 =−ζ
′

2− ζ
2
2 − ζ2ζ3− ζ2ζ4− 202

340
2
43,

R33 =−ζ
′

3− ζ
2
3 − ζ3ζ2− ζ3ζ4+ 2

ζ2− ζ4

ζ3− ζ4
02

340
2
43,

R44 =−ζ
′

4− ζ
2
4 − ζ4ζ2− ζ4ζ3+ 2

ζ2− ζ3

ζ4− ζ3
02

340
2
43,

Proof. Now ∇E1 E1 = 0 from Lemma 2.3(vi) and ∇Ei E1 = ζi Ei from (3-1). Let
i, j > 1 be distinct. From Lemma 2.4(iii) and Lemma 3.1, 〈∇Ei Ei , E j 〉 = 0. Since
〈∇Ei Ei , E1〉 = −〈Ei ,∇Ei E1〉 = −ζi , we get ∇Ei Ei =−ζi E1. Now,

〈∇Ei E j , Ei 〉 = −〈∇Ei Ei , E j 〉 = 0,

〈∇Ei E j , E j 〉 = 0,

〈∇Ei E j , E1〉 = −〈∇Ei E1, E j 〉 = 0.

So, ∇Ei E j = 0
k
i j Ek , where k is the number such that {2, 3, 4} = {i, j, k}. Clearly

0k
i j =−0

j
ik . From Lemma 2.4(ii), (λi − λj )〈∇E1 Ei , E j 〉 = (λ1− λj )〈∇Ei E1, E j 〉.

As 〈∇Ei E1, E j 〉=0, we have 〈∇E1 Ei , E j 〉=0. This gives∇E1 Ei =0. Summarizing,
we have the following for i, j > 1, i 6= j :

∇E1 E1 = 0, ∇Ei E1 = ζi Ei , ∇Ei Ei =−ζi E1, ∇E1 Ei = 0,

∇Ei E j = 0
k
i j Ek, where k is the number such that {2, 3, 4} = {i, j, k}.

One uses Lemma 3.1 in computing curvature components. For i > 1, we get
R1i i1 =−ζ

′

i − ζ
2
i , and for distinct i, j, k > 1, we get

Rj i i j =−ζjζi −0
k
ji0

j
ik −0

k
ji0

j
ki +0

k
i j0

j
ki ,

Rki jk = Ek(0
k
i j ),

R1i j1 = 0.

From Lemma 2.4, for distinct i, j, k > 1, we have

(4-1) (ζj − ζk)0
k
i j = (ζi − ζk)0

k
ji ,

which helps to express Ri i . Lemma 2.2 gives

−R(E1, Ei , Ei ,∇ f )=
(
Ri i −

1
3 R
)
g(∇ f, E1)

for i > 1. From this we get

(4-2) R1i i1 =−Ri i +
1
3 R. �
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From the proof of the above lemma, we may write

(4-3) [E2, E3] = αE4, [E3, E4] = βE2, [E4, E2] = γ E3.

From the Jacobi identity [[E1, E2], E3] + [[E2, E3], E1] + [[E3, E1], E2] = 0,
we have

(4-4) E1(α)= α(ζ4− ζ2− ζ3).

Moreover, (4-1) gives

(4-5) β =
(ζ3− ζ4)

2

(ζ2− ζ3)2
α, γ =

(ζ2− ζ4)
2

(ζ2− ζ3)2
α.

We set a := ζ2, b := ζ3 and c := ζ4. Lemma 4.1 states two formulas for R1i i1:
R1i i1 = −ζ

′

i − ζ
2
i and R1i i1 = −Ri i +

1
3 R for i > 1. So we have R22 − R33 =

a′+ a2
− b′− b2. The Ricci curvature formulas in Lemma 4.1 also give

R22− R33 =−a′− a2
+ b′+ b2

− ac− 202
340

2
43+ bc− 2

a− c
b− c

02
340

2
43.

Adding the last two equalities, we obtain

2(R22− R33)= (b− a)c− 202
340

2
43− 2

a− c
b− c

02
340

2
43.

From (1-1), ζi f ′ = f
(
Ri i −

1
3 R
)
+ x Ri i + y(R) for i > 1. Then we get

(a−b)
f ′

f
=

(
1+

x
f

)
(R22− R33)=

1
2

(
1+

x
f

)[
(b−a)c−2

{
1+

a− c
b− c

}
02

340
2
43

]
.

So,

(4-6) −
f ′

f
=

1
2

(
1+

x
f

)[
c+ 2

a+ b− 2c
(a− b)(b− c)

02
340

2
43

]
.

Similarly,

(a− c)
f ′

f
=

1
2

(
1+

x
f

)[
(c− a)b− 2

{
1+

a− b
c− b

}
02

340
2
43

]
.

So,

(4-7) −
f ′

f
=

1
2

(
1+

x
f

)[
b+ 2

a+ c− 2b
(a− c)(c− b)

02
340

2
43

]
.

From (4-6) and (4-7), we get

402
340

2
43 =

(a− b)(a− c)(b− c)2

(a2+ b2+ c2− ab− bc− ac)
,(4-8)

−
f ′

f
=

1
2

(
1+

x
f

)
a2b+ a2c+ ab2

+ ac2
+ b2c+ c2b− 6abc

2(a2+ b2+ c2− ab− bc− ac)
.(4-9)
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The formula (4-2) gives R1212− R1313 = R22− R33, which reduces to

(4-10) 2(a′−b′)=−2(a2
−b2)+bc−ac+

(a−b)(b−c)(c−a)(a+b−2c)
2(a2+b2+c2−ab−bc−ac)

=−2(a2
−b2)+

a−b
2P

A,

where we set P := a2
+ b2
+ c2
− ab− bc− ac, and A := 6abc− a2b− ab2

−

a2c− ac2
− b2c− bc2. By symmetry, we get

(4-11) ζ ′i − ζ
′

j =−(ζ
2
i − ζ

2
j )+

ζi − ζj

4P
A for i, j ∈ {2, 3, 4}.

The formula (4-11) looks different from the corresponding one in the soliton
case in [Kim 2017]: ζ ′i − ζ

′

j =−(ζ
2
i − ζ

2
j ). But surprisingly the next proposition

still works in resolving (1-1); refer to Proposition 3.4 in [Kim 2017]. Here the
formula (4-9) is crucial.

Proposition 4.2. Let (M, g, f ) be a four-dimensional Riemannian manifold with
harmonic curvature, satisfying (1-1) with nonconstant f . For any adapted frame
field E j , j = 1, 2, 3, 4, in an open dense subset MRc ∩ {∇ f 6= 0} of M, the three
eigenfunctions λ2, λ3, λ4 cannot be pairwise distinct, i.e., at least two of the three
coincide.

Proof. Suppose that λ2, λ3, λ4 are pairwise distinct. We shall prove then that f
should be a constant, a contradiction to the hypothesis.

From (4-8) and (4-1),

(α− γ +β)2 = 4(02
34)

2
= 402

340
2
43

a− b
a− c

=
(a− b)2(b− c)2

(a2+ b2+ c2− ab− bc− ac)
.

From (4-5),

(α− γ +β)2 = α2
{

1−
(a− c)2

(a− b)2
+
(b− c)2

(a− b)2

}2

=
4α2(b− c)2

(a− b)2
.

So, α2
= (a− b)4/(4P). Since a, b, c are all functions of s only, so is α. We

compute from (4-11)

(4-12) (a− b)(a′− b′)+ (a− c)(a′− c′)+ (b− c)(b′− c′)

=−(a− b)(a2
− b2)− (a− c)(a2

− c2)− (b− c)(b2
− c2)

+
A

4P
{(a− b)2+ (a− c)2+ (b− c)2}

= −2(a3
+ b3
+ c3)+ a2b+ ab2

+ a2c+ ac2
+ b2c+ bc2

+
1
2 A

=−2(a3
+ b3
+ c3
− 3abc)− 1

2 A.
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Differentiating α2
= (a− b)4/(4P) in s and using (4-11) and (4-12),

2αα′=
(a−b)3(a′−b′)

P
−
(a−b)4(2aa′+2bb′+2cc′−ab′−ba′−ac′−ca′−cb′−bc′)

4P2

=
−(a−b)3(a2

−b2)

P
+
(a−b)4

4P2 A

−
(a−b)4{(a−b)(a′−b′)+(a−c)(a′−c′)+(b−c)(b′−c′)}

4P2

=−
(a−b)4(a+b)

P
+
(a−b)4

4P2 A+
(a−b)4{2(a3

+b3
+c3
−3abc)}

4P2 +
(a−b)4

{1
2 A
}

4P2

=−
(a−b)4

P
(a+b−c)

2
+

3(a−b)4

8P2 A.

Meanwhile, from (4-4) and α2
= (a− b)4/(4P),

2αα′ = 2α2(c− a− b)=−
(a− b)4

2P
(a+ b− c).

Equating these two expressions for 2αα′, we get A = 0. From (4-9), f ′ = 0. �

5. Four-dimensional space with λ2 6= λ3 = λ4

In this section we study when exactly two of λ2, λ3, λ4 are equal. We may well
assume that λ2 6= λ3 = λ4. By (3-1) we then have ζ2 6= ζ3 = ζ4. We use (3-1),
Lemma 2.4 and Lemma 3.1 to compute ∇Ei E j and get the next lemma.

Lemma 5.1. Let (M, g, f ) be a four-dimensional Riemannian manifold with har-
monic curvature satisfying (1-1) with nonconstant f . Suppose that λ2 6= λ3 = λ4 for
an adapted frame field E j , j = 1, 2, 3, 4, on an open subset U of MRc ∩ {∇ f 6= 0}.
Then we have

[E1, E2] = −ζ2 E2,

〈∇Ei E j , E2〉 = 0 and 〈∇Ei E j , E1〉 = −δi jζ3 for i, j ∈ {3, 4}.

In particular, the distribution spanned by E1 and E2 is integrable. So is that
spanned by E3 and E4.

Proof. From Lemma 2.4 (ii) and (3-1),

(λ2− λi )〈∇E1 E2, Ei 〉 = (λ1− λi )〈∇E2 E1, Ei 〉 = (λ1− λi )〈ζ2 E2, Ei 〉 = 0

for i = 3, 4. This gives ∇E1 E2 = 0, and so [E1, E2] = −ζ2 E2.
From Lemma 2.4 (ii), (λ2− λ4)〈∇E3 E2, E4〉 = (λ3− λ4)〈∇E2 E3, E4〉 = 0. So,
〈∇E3 E2, E4〉 = −〈E2,∇E3 E4〉 = 0. This and (3-1) yield ∇E3 E4 = β3 E3 for some
function β3. Similarly, ∇E4 E3 = −β4 E4 for some function β4. Then [E3, E4] =
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β3 E3+β4 E4. For i = 3, 4, Lemma 2.4(iii) and Lemma 3.1 give 〈∇Ei Ei , E2〉 = 0
and (3-1) gives 〈∇Ei E j , E1〉 = −δi jζ3 for i, j ∈ {3, 4}. �

We shall express the metric g in a simple form as in the next lemma.

Lemma 5.2. Under the same hypothesis as Lemma 5.1, for each point p0 in U,
there exists a neighborhood V of p0 in U with coordinates (s, t, x3, x4) such that
∇s =∇ f/|∇ f | and g can be written on V as

(5-1) g = ds2
+ p(s)2 dt2

+ h(s)2g̃,

where p := p(s) and h := h(s) are smooth functions of s and g̃ is (a pull-back of )
a Riemannian metric of constant curvature, say k, on a two-dimensional domain
with x3, x4 coordinates.

Proof. Once Lemma 5.1 is in hand, this lemma may follow from the proof of
Lemma 4.3 in [Kim 2017]. We produce a simplified proof for the sake of complete-
ness.

We let D1 be the two-dimensional distribution spanned by E1 = ∇s and E2,
and let D2 be the one spanned by E3 and E4. Then D1 and D2 are both in-
tegrable by Lemma 5.1. We may consider the coordinates (x1, x2, x3, x4) from
Lemma 4.2 of [Kim 2017], so that D1 is tangent to the two-dimensional level sets
{(x1, x2, x3, x4)|x3, x4 constants} and D2 is tangent to the level sets {(x1, x2, x3, x4)|

x1, x2 constants}. We may write g as

g = g11 dx2
1 + g12 dx1� dx2+ g22 dx2

2 + g33 dx2
3 + g34 dx3� dx4+ g44 dx2

4 ,

where � is the symmetric tensor product and gi j are functions of (x1, x2, x3, x4).

Defining a 1-form ω2( · ) := g(E2, · ), we can see that

ds2
+ω2

2 = g11 dx2
1 + g12 dx1� dx2+ g22 dx2

2 .

Setting a function
p(s) := e

∫ s
s0
ζ2(u) du

for a constant s0, we can check that d(ω2/p)= 0 from Lemma 5.1. So, ω2/p = dt
for some local function t modulo a constant. The metric g can be now written as

(5-2) g = ds2
+ p(s)2 dt2

+ g33 dx2
3 + g34 dx3� dx4+ g44 dx2

4 .

Writing ∂i :=∂/∂xi in new coordinates (x1 := s, x2 := t, x3, x4), from Lemma 5.1,
we compute 0= 〈∇∂i ∂j , ∂2〉 = −

1
2∂2gi j for i, j ∈ {3, 4}.

We consider the second fundamental form of a leaf for D2 with respect to E1:
H E1(u, v)=−〈∇uv, E1〉. For i, j ∈ {3, 4}, from Lemma 5.1

ζ3gi j = H E1(∂i , ∂j )=−
〈
∇∂i ∂j ,

∂

∂s

〉
=

1
2
∂

∂s
gi j .
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If g34 > 0 or g34 < 0 in a neighborhood of p0, we can integrate the above and get

ln |gi j | =

∫ s

c0

2ζ3(u) du+Ci j (x3, x4)

for i, j ∈ {3, 4} and a constant c0. Setting

h(s) := e
∫ s

c0
ζ3(u) du

,

we have |gi j | = (h(s))2eCi j (x3,x4). Then we may write

G := g33 dx2
3 + g34 dx3� dx4+ g44 dx2

4 = (h(s))
2g̃,

where g̃ is a Riemannian metric in a domain of the (x3, x4)-plane.
If g34(p0)= 0, by changing coordinates as x3 = z3 and x4 = z3+ z4, we get

G = g33 dz2
3+ g34 dz3� (dz3+ dz4)+ g44(dz3+ dz4)

2

= a33 dz2
3+ a34 dz3� dz4+ a44 dz2

4,

where ai j = g(∂/∂zi , ∂/∂z j ). As g44(p0) > 0, we have a34(p0) 6= 0. So, a34 6= 0 in
a neighborhood of p0. In zi -coordinates we can still have ∂2ai j = 0 and ζ3ai j =
1
2(∂/∂s)ai j . Arguing as the above paragraph, we can write G in the form G =
(h(s))2g̃, where

h(s) := e
∫ s

c1
ζ3(u) du

for a constant c1 and g̃ is a Riemannian metric in a domain of the (z3, z4)-plane
which is also a domain of the (x3, x4)-plane.

In any case g can be written as g = ds2
+ p(s)2 dt2

+ h(s)2g̃, where g̃ can be
viewed as a Riemannian metric in a domain of the (x3, x4)-plane.

The argument used in the proof of Lemma 4 in [Derdziński 1980] can prove that
g̃ has constant curvature, say k. �

6. Analysis of the metric when λ2 6= λ3 = λ4

We continue to suppose that λ2 6=λ3=λ4 for an adapted frame field E j , j=1, 2, 3, 4.
The metric g̃ in (5-1) can be written locally: g̃ = dr2

+u(r)2dθ2 on a domain in
R2 with polar coordinates (r, θ), where u′′(r)=−ku. We set an orthonormal basis

e3 =
∂

∂r
and e4 =

1
u(r)

∂

∂θ
.

Lemma 6.1. For the local metric g = ds2
+ p(s)2 dt2

+ h(s)2g̃ with harmonic
curvature satisfying (1-1) with nonconstant f , obtained in Lemma 5.2, if we set

E1 =
∂

∂s
, E2 =

1
p(s)

∂

∂t
, E3 =

1
h(s)

e3, E4 =
1

h(s)
e4,
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where e3 and e4 are as in the above paragraph, then we have the following. Here
Ri j = R(Ei , E j ) and Ri jkl = R(Ei , E j , Ek, El):

∇E1 E1 = 0,

for i = 2, 3, 4, ∇E1 Ei = 0, ∇Ei E1 = ζi Ei , where ζ2 =
p′

p
, ζ3 = ζ4 =

h′

h
,

∇E2 E2 =−ζ2 E1, ∇E2 E3 = 0, ∇E2 E4 = 0, ∇E3 E2 = 0,

∇E3 E3 =−ζ3 E1, ∇E3 E4 = 0, ∇E4 E2 = 0, ∇E4 E3 =−β4 E4,

∇E4 E4 =−ζ4 E1+β4 E3 for some function β4,

and

R1221 =−
p′′

p
=−ζ ′2− ζ

2
2 ,

R1i i1 =−ζ
′

i − ζ
2
i =−

h′′

h
for i = 3, 4,

R11 =−ζ
′

2− ζ
2
2 − 2ζ ′3− 2ζ 2

3 =−
p′′

p
− 2

h′′

h
,

R22 =−ζ
′

2− ζ
2
2 − 2ζ2ζ3 =−

p′′

p
− 2

p′

p
h′

h
,

R33 = R44 =−ζ
′

3− ζ
2
3 − ζ3ζ2− (ζ3)

2
+

k
h2 =−

h′′

h
−

p′

p
h′

h
−
(h′)2

h2 +
k
h2 ,

Ri j = 0 for i 6= j.

Proof. Now ∇E1 E1 = 0 from Lemma 2.3(vi) and ∇Ei E1 = ζi Ei , i > 1, from (3-1).
From the proof of Lemma 5.1, we already have ∇E1 E2 = 0, ∇E3 E4 = β3 E3 and
∇E4 E3 =−β4 E4.

As 〈∇E1 E3, E2〉 = −〈E3,∇E1 E2〉 = 0, one can readily get ∇E1 E3 = ρE4 for
some function ρ and ∇E1 E4 = −ρE3. We get ρ = 0 by computing directly (in
coordinates)

∇E1 E3 =∇∂/∂s
1

h(s)
∂

∂r
= 0.

From Lemma 3.1 and Lemma 2.4(iii), we have

(λ2− λi )〈∇E2 E2, Ei 〉 = Ei (λ2)= 0 for i = 3, 4,

〈∇E2 E2, E1〉 = −〈E2,∇E2 E1〉 = −ζ2(s).

So, ∇E2 E2 = −ζ2(s)E1. By a similar argument, ∇E3 E3 = −ζ3 E1 − β3 E4 and
∇E4 E4 =−ζ4 E1+β4 E3. Direct computation of the coordinates gives β3 = 0.

Then ∇E2 E3 = q E4 for some function q and ∇E2 E4 = −q E3. One computes
directly that q = 0. We similarly get ∇E3 E2 = 0 and ∇E4 E2 = 0.
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We compute directly that∇E2 E1= (p′/p)E2 and∇E3 E1= (h′/h)E3 so that (3-1)
gives ζ2= p′/p and ζ3= ζ4= h′/h. We now get ∇E3 E4= 0 and ∇E4 E3=−β4 E4,

where β4 = u′(r)/(h(s)u(r)).
With these computations in hand, it is straightforward to compute the curvature

components. �

We set a := ζ2 and b := ζ3.

Lemma 6.2. For the local metric g = ds2
+ p(s)2 dt2

+ h(s)2g̃ with harmonic
curvature satisfying (1-1) with nonconstant f , obtained in Lemma 5.2, it holds that

(6-1)
(
ab+ 1

12 R
)
b = 0.

Proof. Equation (4-2) gives
2a′+ 2a2

+ 2ab+ 1
3 R = 0,(6-2)

2b′+ 3b2
+ ab−

k
h2 +

1
3 R = 0.(6-3)

From ∇d f (Ei , Ei )= f
(
Rc− 1

3 Rg
)
(Ei , Ei )+ x R(Ei , Ei )+ y(R), we get

−(∇Ei Ei ) f = f
(
Ri i −

1
3 R
)
+ x Ri i + y(R)=− f R1i i1+ x Ri i + y(R)

for i = 2, 3. From Lemma 6.1 we have

f ′a = f (a′+ a2)− x(a′+ a2
+ 2ab)+ y(R),(6-4)

f ′b = f (b′+ b2)− x
(

b′+ 2b2
+ ab−

k
h2

)
+ y(R).(6-5)

From the harmonic curvature condition we have

(6-6) 0=∇E1 R22−∇E2 R12 =∇E1(R22)+ R(∇E2 E1, E2)+ R(∇E2 E2, E1)

= (R22)
′
+ a(R22− R11)

= (−a′− a2
− 2ab)′+ a(−2ab+ 2b′+ 2b2)

=−a′′− 2aa′− 2a′b− 2a2b+ 2ab2.

We differentiate (6-2) to get a′′+ 2aa′+ a′b+ ab′ = 0. Together with (6-6) we
obtain

(6-7) ab′− a′b− 2a2b+ 2ab2
= 0.

Putting (6-2) and (6-3) into (6-7) we get

0=−a
(

3b2
+ ab−

k
h2 +

1
3 R
)
+ 2

(
a2
+ ab+ 1

6 R
)
b− 4a2b+ 4ab2

= a
k
h2 +

1
3 R(b− a)+ 3ab(b− a).
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Then, as a 6= b,

(6-8)
a

a− b
k
h2 =

1
3 R+ 3ab.

From (6-4) and (6-5) we get

f ′

f
(a− b)= (a′+ a2

− b′− b2)−
x
f

(
a′+ a2

+ 2ab− b′− 2b2
− ab+

k
h2

)
.

With (6-3) and (6-2), the above gives

2
f ′

f
(a− b)=

(
1+

x
f

)(
b2
− ab−

k
h2

)
.

Then by (6-8),

2
f ′

f
a =

(
1+

x
f

)(
−ab−

ka
h2(a− b)

)
=

(
1+

x
f

)(
−4ab− 1

3 R
)
.

Meanwhile, (6-4) and (6-2) give f ′a =− f
(
ab+ 1

6 R
)
− x

(
ab− 1

6 R
)
+ y(R), so

−2
(
ab+ 1

6 R
)
−

2x
f

(
ab− 1

6 R
)
+

2y(R)
f
= 2

f ′

f
a =

(
1+

x
f

)(
−4ab− 1

3 R
)
.

So we obtain

(6-9) x
(
ab+ 1

3 R
)
+ y(R)=− f ab.

Differentiating (6-9) and dividing by f ,

f ′

f
ab =−

x
f
(a′b+ ab′)− (a′b+ ab′).

From (6-4) we get

f ′

f
ab = (a′+ a2)b−

x
f
(a′+ a2

+ 2ab)b+
yb
f
.

Equating the above and arranging terms, we get

x
f
(−ab′+ a2b+ 2ab2)= 2a′b+ ab′+ a2b+

yb
f
.

Using (6-9) we get

(6-10)
x
f

(
−ab′+ a2b+ 3ab2

+
1
3 Rb

)
= 2a′b+ ab′+ a2b− ab2.

Using (6-7) and (6-2), the left-hand side of (6-10) equals (x/ f )
(
6ab2
+

1
2 Rb

)
,

while the right-hand side equals −
(
6ab2
+

1
2 Rb

)
.

So we get (1+ x/ f )
(
6ab+ 1

2 R
)
b = 0. Then (ab+ 1

12 R)b = 0. �
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Proposition 6.3. For the local metric g = ds2
+ p(s)2 dt2

+ h(s)2g̃ with harmonic
curvature satisfying (1-1) with nonconstant f , obtained in Lemma 5.2, suppose that
ab =− 1

12 R.
Then R = 0, y(0)= 0 and p is a constant. The metric g is locally isometric to a

domain in the nonconformally flat static space (W 3
×R1, gW + dt2) of Example 3

in Section 2A2. Moreover, f = ch′(s)− x.

Proof. As ab =− 1
12 R, (6-9) gives 1

4 Rx + y(R)= 1
12 R f .

If R 6= 0, then f is a constant, a contradiction to the hypothesis. Therefore R= 0.
Then y(0)= 0 from the preceding equation. From (6-2), a′+ a2

= 0 and we have
two cases: (i) a = 1/(s+ c) for a constant c or (ii) a = 0.

Case (i): a = 1/(s+ c). From (6-4), f ′a = 0, so f is a constant, a contradiction to
the hypothesis.

Case (ii): a = 0, i.e., p is a constant. From (6-5) and (6-3), we get f ′(h′/h) =
( f + x)(h′′/h). If h′ vanishes, we get λ2 = λ3, a contradiction. So we may assume
that h is not constant. Then ch′ = f + x for a constant c 6= 0. Evaluating (1-1) at
(E1, E1),

(6-11) f ′′ = ( f + x)R(E1, E1)−
1
3 R f + y(R).

Here we get f ′′=−2( f +x)(h′′/h), so h′′′=−2h′(h′′/h). Hence, for a constant α,

(6-12) h2h′′ = α.

From (6-3),

0= 2b′+ 3b2
−

k
h2 = 2

(
h′′

h

)
+

(
h′

h

)2

−
k
h2 =

2α
h3 +

(
h′

h

)2

−
k
h2 .

So we have

(6-13) (h′)2+
2α
h
− k = 0.

We have exactly (2-2) and (2-3) in the case R = 0 and n = 3. At this point we
may write

g = ds2
+ dt2

+ h(s)2g̃ =
(

k−
2α
h

)−1

dh2
+ dt2

+ h(s)2g̃.

When α = 0, we have (h′)2 = k ≥ 0. As h is not constant, k > 0. When
h′ =±

√
k 6= 0, we have h =±

√
ks+ c0 for a constant c0. One can see that g is a

flat metric, a contradiction to λ2 6= λ3.

When α > 0, then k > 0 from (6-13). We set r := h/
√

k, and then

g =
(

1−
2α

k
√

kr

)−1

dr2
+ dt2

+ r2g̃1,
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where g̃1 is the metric of constant curvature 1 on S2. When α < 0, the three-
dimensional metric (1 − 2α/(k

√
kr))−1dr2

+ r2g̃1 corresponds to case III.1 of
Kobayashi’s conditions [1982, p. 670]. It is incomplete as explained in his Proposi-
tion 2.4.

In these two cases of α > 0 and α < 0, we get the same Riemannian metrics as
those of static spaces (W 3

×R1, gW+dt2) explained in Example 3, and f = ch′−x .
Conversely, these metrics have harmonic curvature and satisfy (1-1) with the

above f . Indeed, nontrivial components of (1-1) are (6-4), (6-5) and (6-11), whereas
the harmonic curvature condition essentially consists of (6-6) and the equation
∇E1 R33−∇E3 R13 = 0; all these can be verified from a = R = y(0)= 0 and h, f
which satisfy (6-12), (6-13) and f = ch′− x . �

Proposition 6.4. For the local metric g = ds2
+ p(s)2 dt2

+ h(s)2g̃ with harmonic
curvature satisfying (1-1) with nonconstant f , obtained in Lemma 5.2, suppose that
b = 0 and that ab = 0 6= − 1

12 R. Then the following hold:

(i) 1
3 x R+ y(R)= 0.

(ii) If R>0, then g is locally isometric to the Riemannian product
(
S2
( R

6

)
×S2

( R
3

)
,

gR/6+ gR/3
)
, where gδ is the two-dimensional Riemannian metric of constant

curvature δ, and f = c1 cos
(√ R

6 s
)
− x for any constant c1, where s is the

distance from a point on S2
( R

6

)
.

(iii) If R < 0, then g is locally isometric to
(
H2
( R

6

)
×H2

( R
3

)
,gR/6+gR/3

)
. The met-

ric gR/6 can be written as gR/6=ds2
+p(s)2 dt2 with p(s)=k1 sinh

(√
−

R
6 s
)
+

k2 cosh
(√
−

R
6 s
)

for constants k1, k2, and then f = c2 p′−x for any constant c2.

Proof. As b = 0, (6-9) gives (i). Next, (6-3) gives k/h2
=

1
3 R and (6-2) gives

a′+ a2
+

1
6 R = p′′/p+ 1

6 R = 0. Along with (6-4) these give

(6-14) f ′a =− 1
6 R( f + x).

Assume R > 0. Set r0 =
√

R
6 . For some constants C1 6= 0 and s0, we have

p = C1 sin(r0(s + s0)) so that a = r0 cot(r0(s + s0)). Then (6-14) and (i) give
f = c1 cos(r0(s+s0))−x . Then g= ds2

+sin2(r0(s+s0)) dt2
+ g̃R/3 by absorbing

a constant into dt2 and using k/h2
=

1
3 R.

Replacing s + s0 by a new s, we have g = ds2
+ sin2(r0s) dt2

+ g̃R/3. Here s
becomes the distance from a point on S2

( R
6

)
. And f = c1 cos(r0s)− x .

Assume R < 0. From p′′/p+ 1
6 R = 0 we get p(s)= k1 sinh(r1s)+ k2 cosh(r1s)

for constants k1, k2, where r1 =
√
−

R
6 , and f = c2 p′− x for any constant c2.

Conversely, the above product metrics clearly have harmonic curvature. One can
check they satisfy (1-1). Indeed, as in the proof of Proposition 6.3 one may check
(6-4), (6-5) and (6-11). �
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7. Local four-dimensional space with harmonic curvature

We first treat the remaining case of λ2 = λ3 = λ4 and then give the proof of
Theorem 1.1.

Proposition 7.1. Let (M, g, f ) be a four-dimensional Riemannian manifold with
harmonic curvature satisfying (1-1) with nonconstant f . Suppose that λ2 = λ3 =

λ4 6= λ1 for an adapted frame field in an open subset U of MRc ∩ {∇ f 6= 0}.

Then for each point p0 in U, there exists a neighborhood V of p0 in U where g
is a warped product,
(7-1) g = ds2

+ h(s)2g̃,

where h is a positive function and the Riemannian metric g̃ has constant curvature,
say k. In particular, g is conformally flat.

As a Riemannian manifold, (M, g) is locally one of Kobayashi’s warped product
spaces, as described in Sections 2 and 3 of [Kobayashi 1982], so that

(7-2) h′′+ 1
12 Rh = ah−3

for a constant a, so that by integration we have for some constant k

(7-3) (h′)2+ ah−2
+

1
12 Rh2

= k.

Moreover, f is a nonconstant solution to

(7-4) h′ f ′− f h′′ = x
(
h′′+ 1

3 Rh
)
+ y(R)h.

Conversely, any (h, f ) satisfying (7-2), (7-3) and (7-4) gives rise to (g, f ) which
has harmonic curvature and satisfies (1-1).

Proof. To prove that g is in the form of (7-1), we may use Lemma 2.3(v) and
Lemma 2.4(iii)–(iv). For a detailed proof we refer to that of Proposition 7.1 of
[Kim 2017] since the argument is almost the same as in the gradient Ricci soliton
case. To prove that g̃ has constant curvature, we use Lemma 4 in [Derdziński 1980].
It then follows that the metric g in (7-1) is conformally flat.

In the setting of Lemma 2.3, f is a function of s only. For g = ds2
+ h(s)2g̃, in

a local adapted frame field, we have

(7-5)

R11 =−3
h′′

h
, Ri i =−

h′′

h
− 2

(h′)2

h2 + 2
k
h2 ,

Ri j = 0 for i 6= j,

R =−6
h′′

h
− 6

(h′)2

h2 + 6
k
h2 .

Feeding (Ei , Ei ), i = 1, 2 to (1-1) we obtain

f ′′ =−3 f
h′′

h
− f 1

3 R− 3x
h′′

h
+ y(R),(7-6)

h′ f ′− f h′′ = x
(
h′′+ 1

3 Rh
)
+ y(R)h.(7-7)
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Differentiating (7-7) and using (7-6), we get

( f + x)
{

h′′′+ 3
h′′h′

h
+

1
3 Rh′

}
= 0.

As f 6= −x , we get

h′′′+ 3
h′′h′

h
+

1
3 Rh′ = 0.

Multiplying this by h3, we get
(
h3h′′+ 1

12 Rh4
)′
= 0. Then we have (7-2) and then

(7-3). Kobayashi solved these completely according to each parameter and initial
condition.

One can check that any h and f satisfying (7-7), (7-2) and (7-3) satisfy (7-5)
and (7-6). �

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Recall that we have already discussed the case λ1 = λ2 =

λ3 = λ4 in Example 1 of Section 2A2. The conformally flat spaces in Example 1
belong to the type (iv) of Theorem 1.1; in particular a = 0 in (1-6) and (1-7).

As the metrics g and f are real analytic, the Ricci-eigenvalues λi are real
analytic on MRc ∩ {∇ f 6= 0}. And ζi ’s are real analytic from (3-1). So we can
combine Proposition 4.2, Lemma 6.2, Propositions 6.3, 6.4, 7.1 and Example 1
of Section 2A2, to obtain a classification of four-dimensional local spaces with
harmonic curvature satisfying (1-1) as Theorem 1.1. �

Remark 7.2. In the statement of Theorem 1.1, among the types (i)–(iv), there is
possibly only one type of neighborhood V on a connected space (M, g, f ); this
holds by a continuity argument of Riemannian metrics. Then one can prove that
M̃ = M if M is of type (i), (ii) or (iii).

8. Complete four-dimensional space with harmonic curvature

It is not hard to describe complete spaces corresponding to parts (i), (ii), (iii) of
Theorem 1.1.

For the complete conformally flat case corresponding to (iv) of Theorem 1.1,
we may use Theorem 3.1 of Kobayashi’s classification [1982]. Then (M, g) can
be either S4, H4, a flat space or one of the spaces in Examples 1–5 in [Kobayashi
1982]. Now our task is to determine f , which is described by (1-8).

We first recall the spaces in Examples 3–5 in [Kobayashi 1982]. Any space in
Examples 3 and 4 in that paper is a quotient of a warped product R×h N (1) where
h is a smooth periodic function on R; recall that N (k) is a Riemannian manifold of
constant sectional curvature k. Any space in Example 5 in that paper is a quotient
of a warped product R×h N (k) where h is smooth on R. Here h ≥ ρ1 > 0.

We verify the following lemma.
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Lemma 8.1. For any one of the spaces in Examples 3, 4 and 5 in [Kobayashi 1982],
the following hold:

(i) The solution f to (1-1) can be defined and is smooth on R.

(ii) If h is periodic and 1
3 x R+ y(R)= 0, then f is periodic.

Proof. As stated in Proposition 7.1, any (h, f ) satisfying (7-2), (7-3) and (7-4)
gives rise to (g, f ) which satisfies (1-1). So, (h, f ) satisfies (7-6).

Choose some point s0 with h′′(s0) 6= 0. For any constant c, we consider the
initial-value problem

(8-1) f ′′ =− f
( 1

12 R+ 3ah−4)
+ 3x

( 1
12 R− ah−4)

+ y(R),

with initial conditions f ′(s0)= c and

f (s0)=
ch′(s0)−

{
x(h′′(s0)+

1
3 Rh(s0))+ y(R)h(s0)

}
h′′(s0)

so that (1-8) holds at s0. Note that (8-1) is equivalent to (7-6) since h satisfies (1-6).
As h exists smoothly on R as a solution of (1-6), by global Lipschitz continuity

of the right-hand side of (8-1), the solution f exists globally on R.
From (1-6) we obtain

(8-2) h′′′ =−
( 1

12 R+ 3ah−4)h′.
Then by (8-1) and (8-2) it satisfies

h′ f ′′− f h′′′ = x
(
h′′′+ 1

3 Rh′
)
+ y(R)h′,

which is the derivative of (1-8). So, (1-8) holds on R. As h and f satisfy (1-8), the
induced (g, f ) satisfies (1-1) on R.

If 1
3 x R+ y(R)= 0, then from (1-8) we get f (s)=−x+Ch′(s) for a constant C ,

which is periodic as h. �

About Lemma 8.1(ii), we note that if 1
3 x R+ y(R) 6= 0 and h is periodic, then

the periodicity of f should be checked by computation.
We are ready to state the following result.

Theorem 8.2. Let (M, g) be a four-dimensional complete Riemannian manifold
with harmonic curvature satisfying (1-1) with nonconstant f . Then it is one of the
following:

(8.2-i) (M, g) is isometric to a quotient of
(
S2
( R

6

)
×S2

( R
3

)
, gR/6+ gR/3

)
with

R > 0, where f = c1 cos
(√ R

6 s
)
− x for any constant c1, where s is the distance

from a point on S2
( R

6

)
. It holds that 1

3 x R+ y(R)= 0.
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(8.2-ii) (M, g) is isometric to a quotient of
(
H2
( R

6

)
×H2

( R
3

)
, gR/6+ gR/3

)
with

R < 0. The metric gR/6 can be written as gR/6 = ds2
+ p(s)2 dt2 with p(s) =

k1 sinh
(√
−

R
6 s
)
+ k2 cosh

(√
−

R
6 s
)

for constants k1, k2, and then f = c2 p′− x for
any constant c2. It holds that 1

3 x R+ y(R)= 0.

(8.2-iii) (M, g) is isometric to a quotient of one of the static spaces in Example 3 of
Section 2A2, which is the Riemannian product (R1

×W 3, dt2
+ ds2

+ h(s)2g̃) of
R1 and some three-dimensional conformally flat static space (W 3

= R1
×S2(1),

ds2
+ h(s)2g̃) with zero scalar curvature, which contains the spatial slice of the

Schwarzschild space-time
And f = c · h′(s)− x for a constant c. It holds that R = y(0)= 0.

(8.2-iv) (M, g) is conformally flat. It is either S4, H4, a flat space or one of the
spaces in Examples 1–5 in [Kobayashi 1982]. Below we describe f in each subcase:

(8.2-iv-1) S4(k2) with the metric g = ds2
+ (sin(ks)2/k2)g1 for any constant c,

f (s)= c · cos(ks)+ 3x +
y(12k2)

k2 .

(8.2-iv-2) H4(−k2) with g = ds2
+ (sinh(ks)2/k2)g1 for any constant c,

f (s)= c · cosh(ks)+ 3x −
y(−12k2)

k2 .

(8.2-iv-3) A flat space, f = a +
∑

i +bi xi +
1
2 y(0)x2

i in local Euclidean coordi-
nates xi for constants a and bi .

(8.2-iv-4) Examples 1 and 2 in [Kobayashi 1982]: the Riemannian product (R×N(k),
ds2
+ gk) or its quotient, k 6= 0, where N (k) is three-dimensional complete space

of constant sectional curvature k,

f =

{
c1 sin

√
R
3 s+ c2 cos

√
R
3 s− x when R > 0,

c1 sinh
√
−

R
3 s+ c2 cosh

√
−

R
3 s− x when R < 0.

It holds that 1
3 x R+ y(R)= 0 and R = 6k.

(8.2-iv-5) Examples 3 and 4 in [Kobayashi 1982]: a warped product R×h N (1) or
its quotient, where h is a periodic function on R, f is on R, satisfying (1-8).

(8.2-iv-6) Example 5 in [Kobayashi 1982]: a warped product R×h N (k) where h
is defined on R, f is on R, satisfying (1-8).

Proof. To obtain (8.2-i), (8.2-ii) and (8.2-iii), we use the continuity argument of
Riemannian metrics from Theorem 1.1. To describe f in the subcases of (8.2-iv),
we use (1-8) and (7-6). �
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9. Four-dimensional static spaces with harmonic curvature

In this section we study static spaces, i.e., those satisfying (1-2). As explained in
the Introduction, studying local static spaces is interesting due to Corvino’s local
deformation theory of scalar curvature. Qing and Yuan’s work [2016] on local scalar
curvature rigidity arouses another motivation. Here we state a local classification
which can be read off from Theorem 1.1:

Theorem 9.1. Let (M, g, f ) be a four-dimensional (not necessarily complete) static
space with harmonic curvature and nonconstant f . Then for each point p in some
open dense subset M̃ of M, there exists a neighborhood V of p with one of the
following properties:

(9.1-i) (V, g) is isometric to a domain in
(
S2
( R

6

)
×S2

( R
3

)
, gR/6+ gR/3

)
with R>0.

And f = c1 cos
(√ R

6 (s + s0)
)
, where s is the distance from a point on S2

( R
6

)
and

c1, s0 are constants.

(9.1-ii) (V, g) is isometric to a domain in
(
H2
( R

6

)
×H2

( R
3

)
, gR/6+ gR/3

)
with

R < 0. The metric gR/6 can be written as gR/6 = ds2
+ p(s)2 dt2 with p(s) =

k1 sinh
(√
−

R
6 s
)
+ k2 cosh

(√
−

R
6 s
)

for constants k1, k2, and then f = c2 p′ for any
constant c2.

(9.1-iii) (V, g) is isometric to a domain in one of the static spaces in Example 3
of Section 2A2, which is the Riemannian product R1

×W 3 of R1 and some three-
dimensional conformally flat static space (W 3, ds2

+ h(s)2g̃) with zero scalar
curvature, and f = ch′.

(9.1-iv) (V, g) is conformally flat. So, it is one of the warped product metrics of the
form ds2

+ h(s)2gk whose existence is described in Section 2 of [Kobayashi 1982].
The function h satisfies (1-6) and (1-7), and we have f (s)= Ch′(s).

For complete conformally flat case corresponding to (9.1-iv) in Theorem 9.1, if
we use Theorem 3.1 of Kobayashi’s classification, we get either S4, H4, a flat space
or one of the spaces in Examples 1–5 in [Kobayashi 1982]. We may thus obtain
classification of complete four-dimensional static spaces with harmonic curvature:

Theorem 9.2. Let (M, g, f ) be a complete four-dimensional static space with
harmonic curvature. Then it is one of the following:

(9.2-i) (M, g) is isometric to a quotient of
(
S2
( R

6

)
×S2

( R
3

)
, gR/6+ gR/3

)
with

R > 0. And f = c1 cos
(√ R

6 s
)
, where s is the distance function from a point on

S2
( R

6

)
.

(9.2-ii) (M, g) is isometric to a quotient of
(
H2
( R

6

)
×H2

( R
3

)
, gR/6+ gR/3

)
with

R < 0. The metric gR/6 can be written as gR/6 = ds2
+ p(s)2 dt2 with p(s) =

k1 sinh
(√
−

R
6 s
)
+ k2 cosh

(√
−

R
6 s
)

for constants k1, k2, and then f = c2 p′ for any
constant c2.
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(9.2-iii) (M, g) is isometric to a quotient of the Riemannian product (R1
×W 3,

dt2
+g̃), where (W 3, g̃) denotes the warped product manifold on the smooth product

R1
×S2(1) which contains the spatial slice of the Schwarzschild space-time; see

Example 3 of Section 2A2.

(9.2-iv) (M, g, f ) is S4, H4, a flat space or one of the spaces in Examples 1–5 in
[Kim 2017].

(9.2-v) g is a complete Ricci-flat metric with f a constant function.

Proof. It follows from Theorem 8.2. When f is a nonzero constant, g is clearly
Ricci-flat. So we get (v). �

Fischer and Marsden [1974] made the conjecture that any closed static space is
Einstein. But it was disproved by conformally flat examples in [Lafontaine 1983;
Kobayashi 1982]. Now we ask:

Question 1. Does there exist a closed static space which does not have harmonic
curvature?

The space in (9.2-iii) of Theorem 9.2 has three distinct Ricci-eigenvalues. We
only know examples of static spaces with at most three distinct Ricci-eigenvalues.
So we ask the following:

Question 2. Does there exist a static space with more than three distinct Ricci-
eigenvalues? Is there a limit on the number of distinct Ricci-eigenvalues for a static
space?

10. Miao–Tam critical metrics and V -critical spaces

In this section we treat Miao–Tam critical metrics. These metrics originate from
[Miao and Tam 2009], where they studied the critical points of the volume func-
tional on the space MK

γ of metrics with constant scalar curvature K on a compact
manifold M with a prescribed metric γ at the boundary of M. Miao–Tam critical
metrics are precisely described [Miao and Tam 2011] in case they are Einstein or
conformally flat.

Here we first describe four-dimensional metrics with harmonic curvature which
have a nonzero solution f to (1-3). We do not assume the condition f|6 = 0 but
still can show that any such metric must be conformally flat;

Theorem 10.1. Let (M, g) be a four-dimensional (not necessarily complete) Rie-
mannian manifold with harmonic curvature, satisfying (1-3) with nonconstant f .
Then (M, g) is conformally flat. It is one of the warped product metrics of the form
ds2
+ h(s)2gk whose existence is described in Section 2 of [Kobayashi 1982]. The

function h satisfies (1-6) and (1-7), and f satisfies h′ f ′− f h′′ =−h/(n− 1).
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Proof. The proof is immediate from Theorem 1.1; the cases (i)–(ii) of Theorem 1.1
require 1

3 x R+ y(R)= 0 and (iii) requires y(0)= 0, which contradict the conditions
x = 0 and y(R)=− 1

3 that (1-3) has. The description of Theorem 1.1(iv) holds for
g and f of Theorem 10.1, and in particular g is conformally flat. �

Theorem 10.1 shows an advantage of our local approach over [Barros et al. 2015]
in analyzing (1-3). In fact, the integration argument of Lemma 5 of that paper only
works for compact manifolds, but our analysis can resolve local solutions.

From Theorems 9.1 and 10.1 we can classify local four-dimensional V -static
spaces with harmonic curvature:

Theorem 10.2. Let (M, g, f ) be a four-dimensional (not necessarily complete)
V -static space with harmonic curvature and nonconstant f . Then for each point p
in some open dense subset M̃ of M, there exists a neighborhood V of p with one of
the following properties:

(10.2-i) (V, g) is isometric to a domain in
(
S2
( R

6

)
×S2

( R
3

)
, gR/6+ gR/3

)
with

R > 0. And f = c1 cos
(√ R

6 (s+ s0)
)
, where s is the distance function from a point

on S2
( R

6

)
and c1, s0 are constants.

(10.2-ii) (V, g) is isometric to a domain in
(
H2
( R

6

)
×H2

( R
3

)
, gR/6+ gR/3

)
with

R < 0. The metric gR/6 can be written as gR/6 = ds2
+ p(s)2 dt2 with p(s) =

k1 sinh
(√
−

R
6 s
)
+ k2 cosh

(√
−

R
6 s
)

for constants k1, k2, and then f = c2 p′ for any
constant c2.

(10.2-iii) (V, g) is isometric to a domain in one of the static spaces in Example 3
of Section 2A2 which is the Riemannian product R1

×W 3 of R1 and some three-
dimensional conformally flat static space (W 3, ds2

+ h(s)2g̃) with zero scalar
curvature. And f = ch′ for any constant c.

(10.2-iv) (V, g) is conformally flat. It is one of the warped product metrics of
the form ds2

+ h(s)2gk whose existence is described in Section 2 of [Kobayashi
1982]. The function h satisfies (1-6) and (1-7), and we have f (s)= ch′(s) for any
constant c.

(10.2-v) (V, g) is conformally flat. It is one of the warped product metrics of the
form ds2

+ h(s)2gk whose existence is described in Section 2 of [Kobayashi 1982].
The function h satisfies (1-6) and (1-7) and f is any constant multiple of a solution
f0 satisfying h′ f ′0− f0h′′ =−h/(n− 1).

Note that the last equation in (10.2-v) comes from (1-4), which allows any
constant multiple of one solution.

As a corollary of Theorem 10.1, we could state an extension of Theorem 1.2 in
[Miao and Tam 2011] to the case of harmonic curvature. Instead we choose to state
the following version, which is a twin to Corollary 1 of [Barros et al. 2015].
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Theorem 10.3. If (M4, g, f ) is a simply connected, compact Miao–Tam critical
metric of harmonic curvature with boundary isometric to a standard sphere S3, then
(M4, g) is isometric to a geodesic ball in a simply connected space form R4, H4

or S4.

One can also make classification statements of complete spaces with harmonic
curvature satisfying (1-3) or (1-4). We omit them.

Theorem 10.1 gives a speculation that it might hold in general dimension. So,
we ask the following:

Question 3. Let (M, g) be an n-dimensional Miao–Tam critical metric with har-
monic curvature. Is it conformally flat?

It is also interesting to find examples of nonconformally flat Miao–Tam critical
metrics in any dimension.

11. On critical point metrics

In this section we study a critical point metric, i.e., a Riemannian metric g on a
manifold M which admits a nonzero solution f to (1-5). According to [Yun et al.
2014], these critical point metrics with harmonic curvature on closed manifolds in
any dimension are Einstein.

On a closed manifold, by taking the trace of this equation, R must be positive
and f satisfies

∫
M f dv = 0. Here M is not necessarily closed and g may have

nonpositive scalar curvature. From Theorem 1.1, we can easily obtain the next
theorem.

Theorem 11.1. Let (M, g) be a four-dimensional (not necessarily complete) Rie-
mannian manifold with harmonic curvature, satisfying (1-5) with nonconstant f .
Then one of the following holds:

(11.1-i) (M, g) is locally isometric to a domain in one of the static spaces of
Example 3 in Section 2A2, which is the Riemannian product (R1

×W 3, dt2
+ ds2

+

h(s)2g̃) of R1 and a three-dimensional conformally flat static space (W 3, ds2
+

h(s)2g̃) with zero scalar curvature. And f = c · h′(s)− 1.

(11.1-ii) (M, g) is conformally flat and is locally one of the metrics whose existence
is described in Section 2 of [Kobayashi 1982]: g = ds2

+ h(s)2gk where h and f
satisfy (1-6), (1-7) and (1-8).

Proof. We have 1
3 x R+ y(R) = 0 and R 6= 0 in the cases (i), (ii) of Theorem 1.1.

This is not compatible with (1-5). �

Complete spaces with harmonic curvature which admit a solution f to (1-5) are
described in the next theorem. We obtain nonconformally flat examples with zero
scalar curvature in (11.2-i), which is in contrast to the above result of [Yun et al.
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2014] for closed manifolds. The case (11.2-v) is also noteworthy; it is conformally
flat with positive scalar curvature and the metric g can exist on a compact quotient
but the function f can survive on the universal cover R×h N (1).

Theorem 11.2. Let (M, g) be a four-dimensional complete Riemannian manifold
with harmonic curvature, satisfying (1-5) with nonconstant f . Then (M, g) is one
of the following:

(11.2-i) (M, g) is isometric to a quotient of one of the static spaces of Example 3 in
Section 2A2, which is the Riemannian product (R1

×W 3, dt2
+ds2

+h(s)2g̃) of R1

and a three-dimensional conformally flat static space (W 3, ds2
+ h(s)2g̃) with zero

scalar curvature which contains the spatial slice of the Schwarzschild space-time.
And f = c · h′(s)− 1 for a constant c.

(11.2-ii) S4(k2) with the metric g= ds2
+ (sin2(ks)/k2)g1, with f (s)= c ·cos(ks).

(11.2-iii) H4(−k2) with g = ds2
+ (sinh(ks)2/k2)g1, with f (s)= c · cosh(ks).

(11.2-iv) A flat space, f = a +
∑

i bi xi in a local Euclidean coordinate xi and
constants a, bi .

(11.2-v) Example 3 in [Kobayashi 1982]: a warped product R×h N (1) where h is
a periodic function on R, f is smooth on R but is not periodic. Here R > 0.

(11.2-vi) Example 5 in [Kobayashi 1982]: a warped product R×h N (k) where h is
defined on R, f is smooth on R. Here R ≤ 0.

Proof. We may check the list in Theorem 8.2. The spaces of (8.2-i) and (8.2-ii)
in Theorem 8.2 are excluded as in the proof of Theorem 11.1. The space for
(8.2-iv-4) of Theorem 8.2, where R 6= 0, does not satisfy the equation h′ f ′− f h′′=
x
(
h′′+ 1

3 Rh
)
+ y(R)h; when x = 1, y(R)=− 1

4 R and h = 1, it reduces to 0= 1
12 R.

On the space of (8.2-iv-5) in Theorem 8.2, f is defined and smooth on R by
Lemma 8.1 (i). As 1

3 x R+ y(R) 6= 0, Lemma 8.1(ii) does not apply. According to
Section E.2 of [Lafontaine 1983], f cannot be periodic. This yields (11.2-v). �
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BOUNDARY SCHWARZ LEMMA FOR
NONEQUIDIMENSIONAL HOLOMORPHIC MAPPINGS

AND ITS APPLICATION

YANG LIU, ZHIHUA CHEN AND YIFEI PAN

In this paper, we give a boundary Schwarz lemma for holomorphic map-
pings between nonequidimensional unit balls. As an application, a new
boundary rigidity result is presented.

1. Introduction

Let Bn be the unit ball in Cn for n ≥ 1. Denote by Hol(Bn, B N ) the set of all
holomorphic mapping from the unit ball Bn

⊂ Cn into B N
⊂ CN. For a bounded

domain V ⊂ Cn , let C1+α(V ) be the set of all functions f on V whose first order
partial derivatives exist and are Hölder continuous. For z0 ∈ ∂Bn , the tangent space
Tz0(∂Bn) and holomorphic tangent space T 1,0

z0
(∂Bn) at z0 are defined by

Tz0(∂Bn)= {β ∈ Cn
| Re(z0

Tβ)= 0}, T (1,0)
z0

(∂Bn)= {β ∈ Cn
| z0

Tβ = 0},

respectively. In this paper, we give a general boundary Schwarz lemma for holo-
morphic mappings between unit balls in any dimensions as follows.

Theorem 1.1. Let f ∈ Hol(Bn, B N ) for any n, N ≥ 1, and denote by Jf (z) the
Jacobian matrix of f at z. If f is C1+α at z0 ∈ ∂Bn and f (z0) = w0 ∈ ∂B N , then
we have:

(I) Jf (z0)β ∈ Tw0(∂B N ) for any β ∈ Tz0(∂Bn), and Jf (z0)β ∈ T (1,0)
w0 (∂B N ) for any

β ∈ T (1,0)
z0 (∂Bn).

(II) There exists λ ∈ R such that

Jf (z0)
Tw0 = λz0

with λ≥ |1− āTw0|
2/(1−‖a‖2) > 0, where a = f (0).

Remark 1.2. For the case of biholomorphic mapping, item (I) holds; see Chapter 3
of [Krantz 1992]. Here we conclude the same result for holomorphic mappings
between unit balls of different dimensions. For n = N = 1, the theorem says

MSC2010: primary 32H02; secondary 30C80.
Keywords: Boundary Schwarz lemma, boundary rigidity, holomorphic mapping, unit ball.
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f ′(z0) > 0, so the image f (∂B1) at w0 is always smooth. For n > 1, if f (∂Bn) is a
smooth manifold, then conclusion (I) is almost trivial. However, we would like to
point out that f (∂Bn) may be not a smooth manifold.

In the special case when n = N , Theorem 1.1 reduces to (1) and (2) in Theorem
3.1 of [Liu et al. 2015]. For n = N = 1, part (II) of the theorem gives the classical
boundary Schwarz lemma in [Garnett 1981].

As an application of Theorem 1.1, we will present a new boundary rigidity result.
First, recall the following famous rigidity result for holomorphic self-mappings
on Bn .

Theorem 1.3 [Burns and Krantz 1994]. Let f ∈ Hol(Bn, Bn) with n ≥ 1 such that

f (z)= z+ O(|z− 1|4)

as z→ 1, where 1= (1, 0, . . . , 0)T ∈ ∂Bn . Then f (z)≡ z.

Notice that the order of the estimation O(|z− 1|4) is sharp in Theorem 1.3, as
shown by the example [Burns and Krantz 1994]

f (z)= z− 1
10(z− 1)3, z ∈ D,

where D is the unit disk.
On the other hand, Huang [1995] shows that if f ∈Hol(Bn, Bn) satisfies f (z)=

z + O(|z − 1|3) as z → 1, and f (z0) = z0 with z0 ∈ Bn , then f (z) = z on the
unit ball. This result gives a condition under which the order of the estimation
O(|z− 1|4) in [Burns and Krantz 1994] can be lower with a fixed point.

A problem of the boundary rigidity for nonequidimensional mappings was given
by Krantz [2011]. Using Theorem 1.1, we give a positive answer to this problem,
and provide a new boundary rigidity result for holomorphic mappings between
nonequidimensional unit balls. In fact, we find conditions under which the order
of the estimation can be lower and is also sharp without internal fixed point. Our
result is given as follows.

Theorem 1.4. Let f ∈ Hol(Bn, B N ) for N ≥ n ≥ 1, such that

(1-1) f (z)= (zT , 0)T + O(|z− 1|3)

as z→ 1. If f is C2 at 1 and f1(z)= z1, where f1 is the first component of f , then
f (z)≡ (zT , 0)T .

Example. Let f (z1, z2) = (z1, z2zk
1, 0)T ∈ Hol(B2, B3) for integer k ≥ 1. Since

f (z)− (z1, z2, 0)T = (0, z2(zk
1− 1), 0)T , and

| f (z)− (z1, z2, 0)|
|z− 1|2

=
|z2(zk

1− 1)|
|z1− 1|2+ |z2|2

≤
1
2
|zk

1− 1|2+ |z2|
2

|z1− 1|2+ |z2|2
≤

1
2(k

2
+ 1),
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it satisfies f (z) = (z1, z2, 0)T + O(|z− 1|2). However, it is obvious that f (z) 6=
(z1, z2, 0)T, which indicates that the order of O(|z− 1|3) is sharp.

2. Proof of Theorem 1.1

To prove the main result, we first give some notation and lemmas. For any z =
(z1, . . . , zn)

T , w = (w1, . . . , wn)
T
∈ Cn , the inner product and the corresponding

norm are given by 〈z, w〉 =
∑n

j=1 z jwj and ‖z‖= 〈z, z〉
1
2 respectively. ∂Bn denotes

the boundary of Bn .

Lemma 2.1 [Rudin 1980]. Let f ∈ Hol(Bn, B N ) with n, N ≥ 1. If f (0)= 0, then
‖ f (z)‖ ≤ ‖z‖, z ∈ Bn .

Lemma 2.2 [Dai et al. 2010; Liu et al. 2016]. For given p ∈ Bn
∪ ∂Bn and q ∈ Cn

with q 6= 0, let L(ξ)= p+ ξq for ξ ∈ C. Then

L(Dp,q)⊂ Bn, L(∂Dp,q)⊂ ∂Bn,

where Dp,q = {ξ ∈ C | |ξ − cp,q |< rp,q}, with

cp,q =−
〈p, q〉
‖q‖2

, rp,q =

√
1−‖p‖2

‖q‖2
+

∣∣∣∣〈p, q〉
‖q‖2

∣∣∣∣2.
Proof. Assume ‖L(Dp,q)‖

2 < 1, which means

‖p‖2+ 2 Re( p̄T ξq)+‖ξq‖2 < 1,
and

‖p‖2

‖q‖2
+ 2

Re( p̄T qξ)
‖q‖2

+ |ξ |2 <
1
‖q‖2

,

i.e., ∣∣∣∣ξ + 〈p, q〉
‖q‖2

∣∣∣∣2 < 1−‖p‖2

‖q‖2
+

∣∣∣∣〈p, q〉
‖q‖2

∣∣∣∣2. �

Proof of Theorem 1.1. We prove the theorem in five steps.

Step 1. Denote by en
i the i-th column of the n × n identity matrix. Assume

z0 = en
1 = 1 ∈ ∂Bn , and f is C1+α in a neighborhood V of z0. Moreover, assume

f (0)= 0 and f (z0)= w0 = eN
1 .

We first show that for any q ∈ H = {z ∈ Cn
| Re z1 < 0}, there exists a rq > 0

such that

(2-1) 1+ tq ∈ Bn, 0< t < rq .

Assume q = (q1, . . . , qn)
T
∈ H and Re q1 < 0. Then for t ∈ R,

1+ tq ∈ Bn
⇔ ‖1+ tq‖2 < 1 ⇔ |1+ t Re q1|

2
+ |t Im q1|

2
+

n∑
j=2

|q j |
2t2 < 1,
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which is equivalent to

0< t <
−2 Re q1∑n

j=1 |q j |
2 .

Letting rq =−2 Re q1/(
∑n

j=1 |q j |
2) implies the claim.

Let p= z0, q = (−1+ ik)z0 for any given k ∈R. Then from (2-1), when t→ 0+,
p+ tq ∈ Bn

∩ V . For such t , taking the Taylor expansion of f ((1− t + ikt)z0) at
t = 0, we have

f ((1− t + ikt)z0)= w0+ Jf (z0)(−1+ ik)z0t + O(t1+α).

By Lemma 2.1,

‖ f ((1−t+ikt)z0)‖
2
=‖w0+ Jf (z0)(−1+ik)z0t+O(t1+α)‖2≤‖(1−t+ikt)z0‖

2,

i.e.,
1+ 2 Re

(
w0

T Jf (z0)(−1+ ik)z0t
)
+ O(t1+α)≤ 1− 2t + O(t2).

Substituting w0 = eN
1 , z0 = en

1 and let t→ 0+, we have

Re
(
eN

1
T Jf (z0)(−1+ ik)en

1
)
≤−1,

i.e.,

Re
(
∂ f1(z0)

∂z1
(−1+ ik)

)
≤−1.

Let ∂ f1(z0)/∂z1 = Re(∂ f1(z0)/∂z1) + i Im(∂ f1(z0)/∂z1). Then from the above
inequality, one gets

−Re
∂ f1(z0)

∂z1
− k Im

∂ f1(z0)

∂z1
≤−1,

i.e.,

(2-2) −k Im
∂ f1(z0)

∂z1
≤ Re

∂ f1(z0)

∂z1
− 1.

Since (2-2) is valid for any k ∈ R, we have

Im
∂ f1(z0)

∂z1
= 0,

which implies

0≤ Re
∂ f1(z0)

∂z1
− 1,

and

(2-3)
∂ f1(z0)

∂z1
= Re

∂ f1(z0)

∂z1
≥ 1.
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Step 2. Let p = z0, q = −z0 + iken
j for 2 ≤ j ≤ n and k ∈ R. Then as t → 0+,

p+ tq ∈ Bn
∩ V. Similarly, taking the Taylor expansion of f

(
(1− t)z0+ ikten

j

)
at

t = 0, we have

f
(
(1− t)z0+ ikten

j
)
= w0+ Jf (z0)(−z0+ iken

j )t + O(t1+α).

By Lemma 2.1,∥∥ f
(
(1− t)z0+ ikten

j
)∥∥2
= ‖w0+ Jf (z0)(−z0+ iken

j )t + O(t1+α)‖2

≤ ‖(1− t)z0+ ikten
j‖

2,

i.e.,

1+ 2 Re
(
w0

T Jf (z0)(−z0+ iken
j )t
)
+ O(t1+α)≤ 1− 2t + O(t2).

Substituting w0 = eN
1 , z0 = en

1 and letting t→ 0+, we have

Re
(
eN

1
T Jf (z0)(−en

1 + iken
j )
)
≤−1,

i.e.,

Re
(
−
∂ f1(z0)

∂z1
+ ik

∂ f1(z0)

∂z j

)
≤−1.

From the above inequality as well as inequality (2-3), one has

−k Im
∂ f1(z0)

∂z j
≤
∂ f1(z0)

∂z1
− 1.

With an argument similar to Step 1, we have

Im
∂ f1(z0)

∂z j
= 0, 2≤ j ≤ n.

Meanwhile, if we assume p = z0, q =−z0+ ken
j for 2≤ j ≤ n and any k ∈ R. It

is easy to find

Re
∂ f1(z0)

∂z j
= 0, 2≤ j ≤ n.

Therefore,

(2-4)
∂ f1(z0)

∂z j
= 0, 2≤ j ≤ n,

as well. As a result of (2-3) and (2-4), we have

Jf (z0)
Tw0 = λ f z0(2-5)

for w0 = eN
1 , z0 = en

1 and λ f = ∂ f1(z0)/∂z1 ≥ 1.
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Step 3. Now let z0 be any given point at ∂Bn . Then there exists a unitary matrix Uz0

such that Uz0(z0)= en
1 . Assume f (0)= 0, f (z0)= w0 and w0 is not necessarily

eN
1 at ∂B N . Similarly, there is a unitary matrix Uw0 such that Uw0(w0)= eN

1 . Let

g(z)=Uw0 ◦ f ◦Uz0
T
;

then g(0)= 0, g(en
1)= eN

1 . Moreover,

(2-6) Jg(z)=Uw0 Jf (Uz0
T z)Uz0

T .

From Steps 1 and 2, we have

Jg(en
1)

T eN
1 = λgen

1

for z0 = en
1 and λg = ∂g1(en

1)/∂z1 ≥ 1, which implies

Uw0 Jf (Uz0
T en

1)Uz0
T T eN

1 = λgen
1,

i.e.,
Uz0 Jf (z0)

T Uw0
T eN

1 = λgen
1 .

After multiplying by Uz0
T on both sides of the above equation, we obtain

Uz0
T Uz0 Jf (z0)

T Uw0
T eN

1 = λgUz0
T en

1,

i.e.,

(2-7) Jf (z0)
Tw0 = λgz0,

where λg = ∂g1(en
1)/∂z1 ≥ 1.

Step 4. Let f (z0) = w0 with z0 ∈ ∂Bn, w0 ∈ ∂B N . If f (0) = a 6= 0, then we use
the automorphism of B N to get the result. Assume φa(w) is an automorphism of
B N such that φa(a)= 0. Then φa(w0) ∈ ∂B N as well. With a similar analysis to
Step 3, there exists a Uφa(w0) such that Uφa (φa(w0))= w0. Let

h =Uφa ◦φa ◦ f,

then h(0)= 0, h(z0)=w0. As a result of Step 3, there is a real number γ ≥ 1 such
that

Jh(z0)
Tw0 = γ z0.

Using the expression for h, we obtain

(2-8) Jh(z0)
Tw0 =Uφa Jφa (w0)Jf (z0)

Tw0 = Jf (z0)
T Jφa (w0)

T Uφa
Tw0 = γ z0.

Since Uφa (φa(w0))=w0, we have Uφa
Tw0 = φa(w0). From the expression for the

automorphism φa given by [Rudin 1980], we have the following equality:

Jφa (w0)
T Uφa

Tw0 = Jφa (w0)
Tφa(w0)=

1−‖a‖2

|1− āTw0|2
w0.
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Therefore, combining with (2-8) we get

Jf (z0)
T 1−‖a‖2

|1− āTw0|2
w0 = γ z0.

Consequently,

(2-9) Jf (z0)
Tw0 = λz0,

where

λ=
|1− āTw0|

2

1−‖a‖2
γ ≥
|1− āTw0|

2

1−‖a‖2
> 0 and a = f (0).

The proof of (II) is completed.

Step 5. For any β ∈ Tz0(∂Bn), we have

(2-10) Re(z0
Tβ)= 0.

To prove Jf (z0)β ∈ Tw0(∂B N ), it is sufficient to verify

(2-11) Re
(
w0

T Jf (z0)β
)
= 0.

From (2-9), Jf (z0)
Tw0 = λz0, which means

(2-12) w0
T Jf (z0)= Jf (z0)Tw0

T
= λz0

T .

Then

Re
(
w0

T Jf (z0)β
)
= Re(λz0

Tβ)= λRe(z0
Tβ)= 0,

where the last equality comes from (2-10). Therefore, (2-11) is proved and hence

Jf (z0)β ∈ Tw0(∂B N ).

On the other hand, for any β ∈ T (1,0)
z0 (∂Bn), we have

(2-13) z0
Tβ = 0.

To prove J (1,0)f (z0)β ∈ T (1,0)
w0 (∂B N ), it is sufficient to get

w0
T Jf (z0)β = 0.

From (2-12) and (2-13),

w0
T Jf (z0)β = λz0

Tβ = λz0
Tβ = 0,

Therefore, Jf (z0)β ∈ T (1,0)
w0 (∂B N ). The proof of (I) is completed. �
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3. Proof of Theorem 1.4

For any fixed point b ∈ Bn , let Lb be the complex (straight) line joining b and 1:

Lb = {z ∈ Cn
| z = 1+ ξ(1− b), ∀ξ ∈ C},

and let db be the complex disc given by Lb ∩ Bn . In particular,

d0 = {z ∈ Bn
| z2 = · · · = zn = 0}.

From Lemma 2.2, it is found that db = L(D1,1−b).

Lemma 3.1. Let f = ( f1, . . . , fN )
T
∈Hol(Bn, B N ) with N ≥ n ≥ 1, and f1(z)=

z1, z ∈ Bn . Then

f (z1, 0, . . . , 0)= (z1, 0, . . . , 0)T , z ∈ d0.

Proof. Restricting f (z)= (z1, f2, . . . , fN )
T on d0, then f |d0 can be regarded as a

holomorphic mapping from D into B N , which implies |z1|
2
+
∑N

j=2 | f j (z)|2 < 1,
z ∈ d0 and then

∑N
j=2 | f j (z)|2 < 1− |z1|

2, z ∈ d0. By z1 → 1, the maximum
principle of subharmonic function guarantees f j |d0≡0 for any 2≤ j ≤ N . Therefore,
f |d0 = (z1, 0, . . . , 0)T. �

Proof of Theorem 1.4. Step 1. Given f = ( f1, . . . , fN )
T
∈ Hol(Bn, B N ) such that

(1-1) holds and f1(z)≡ z1 on Bn . From Lemma 3.1, one gets f |d0 = (z1, 0, . . . , 0)T .
We aim to prove f j (z)= z j for 2≤ j ≤ n and f j (z)= 0 for n+ 1≤ j ≤ N on the
unit ball.

Represent f j by

(3-1) f j (z)=
n∑

k=2

φ jk(z)zk, z ∈ Bn, 2≤ j ≤ N ,

where φ jk(z) are all holomorphic functions on the unit ball. In fact, taking the
Taylor expansion for f j (z) at 0 for 2≤ j ≤ N , one gets

f j (z)= f j (0)+
∞∑

k=1

∑
|v|=k

Cvzv, z ∈ Bn.

Let φ j1(z1)=
∑
∞

i=1 Ci zi
1. Then there are holomorphic functions φ jk(z) satisfying

f j (z)= f j (0)+
∞∑

k=1

∑
|v|=k

Cvzv = f j (0)+φ j1(z1)+

n∑
k=2

φ jk(z)zk, z ∈ Bn.

We notice that, for 2≤ k≤ n, the φ jk(z) are not necessarily unique in this expression
for f j (z). Since f j (z1, 0, . . . , 0) = 0 for any (z1, 0, . . . , 0)T ∈ Bn

∪ {1}, we have
f j (0)= 0 and φ j1(z1)≡ 0, z ∈ Bn

∪ {1}, so that (3-1) holds.
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In particular, if

(3-2) φ jk(z)≡ δ jk, 2≤ j ≤ N , 2≤ k ≤ n,

then the theorem is proved. If not, due to f (z) ∈ B N ,

(3-3) |z1|
2
+

N∑
j=2

∣∣∣∣ n∑
k=2

φ jk(z)zk

∣∣∣∣2 < 1, z ∈ Bn.

Given a b ∈ Bn with b̃ = (b2, . . . , bn)
T
6= 0, there at least exists one b j 6= 0 for

2≤ j ≤ n; without loss of generality, let b2 6= 0. We consider db = L(D1,1−b) from
Lemma 2.2, where the expression for D1,1−b can be given by

(3-4) D1,1−b =

{
ξ ∈ C

∣∣∣ ∣∣∣∣ξ + 1− b̄1

‖1− b‖2

∣∣∣∣< |1− b1|

‖1− b‖2

}
.

Notice that ξ = 0 ∈ ∂D1,1−b and z = 1 ∈ ∂db. Furthermore, for any z ∈ db,
z = L(ξ)= 1+ ξ(1− b) ∈ db, ξ ∈ D1,1−b, i.e.,

(z1, z2, . . . , zn)
T
= (1+ ξ(1− b1),−ξb2, . . . ,−ξbn)

T, ξ ∈ D1,1−b,

which gives that for z ∈ db ∪ ∂db, the following inequality holds:

(3-5)
1− |z1|

2

|z2|2
≥

n∑
j=2

|z j |
2

|z2|2
=

n∑
j=2

∣∣∣∣b j

b2

∣∣∣∣2.
The equality is available only for z ∈ ∂db and z 6= 1, i.e., z2 6= 0 (ξ 6= 0).

Step 2. Since (1-1) holds as z→ 1, it follows that

f (z)− (z1, . . . , zn, 0, . . . , 0)T = O(|z− 1|3).

Restricting z ∈ db, we obtain

(3-6a) f (z)− (z1, . . . , zn, 0, . . . , 0)T |z∈db

=

(
0,

n∑
k=2

φ2k(z)zk − z2, . . . ,

n∑
k=2

φnk(z)zk − zn,

n∑
k=2

φ(n+1)k(z)zk, . . . ,

n∑
k=2

φNk(z)zk

)T

=

(
0,
( n∑

k=2

φ2k(z)
bk

b2
−

b2

b2

)
z2, . . . ,

( n∑
k=2

φnk(z)
bk

b2
−

bn

b2

)
z2,( n∑

k=2

φ(n+1)k(z)
bk

b2

)
z2, . . . ,

( n∑
k=2

φNk(z)
bk

b2

)
z2

)T

,
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and

(3-6b) O(|z− 1|3)|z∈db = O
((∣∣∣∣1− b1

b2

∣∣∣∣2+ n∑
j=2

∣∣∣∣b j

b2

∣∣∣∣2)3
2

|z2|
3
)
= O(|z2|

3).

Setting

0(z)= (02(z), . . . , 0N (z))T

,

( n∑
k=2

φ2k(z)
bk

b2
, . . . ,

n∑
k=2

φnk(z)
bk

b2
,

n∑
k=2

φ(n+1)k(z)
bk

b2
, . . . ,

n∑
k=2

φNk(z)
bk

b2

)T

,

we have from (3-6a) and (3-6b),

(3-7) 0(z)−
(

b2

b2
, . . . ,

bn

b2
, 0 . . . , 0

)T

= O(|z2|
2), z ∈ db.

Letting z→ 1 ∈ ∂db, gives z2→ 0 and hence (3-7) yields the following equalities:

(3-8)

n∑
k=2

φ jk(1)
bk

b2
−

b j

b2
= 0, 2≤ j ≤ n,

n∑
k=2

φ jk(1)
bk

b2
= 0, n+ 1≤ j ≤ N .

We consider the first order derivative of (3-7) at 1 and obtain

(3-9)
n∑

k=2

φ′jk(1)
bk

b2
= 0, 2≤ j ≤ N .

We now set

A0 = (φi j (1))(N−1)×(n−1), A1 = (φ
′

i j (1))(N−1)×(n−1),

so (3-8) and (3-9) are equivalent to

(3-10) A0b̃ = (b̃, 0, . . . , 0)T , A1b̃ = 0,

where b̃ = (b2, . . . , bn)
T . Since (3-10) is valid for any b̃ 6= 0, we have A0 =

(In−1, 0)T and A1 = 0, which implies that

(3-11) φi j (1)= δi j , φ′i j (1)= 0, 2≤ i ≤ N , 2≤ j ≤ n,

Step 3. Restricting f on db, from (3-3), we have

N∑
j=2

∣∣∣∣ n∑
k=2

φ jk(z)zk

∣∣∣∣2 = N∑
j=2

∣∣∣∣ n∑
k=2

φ jk(z)
bk

b2

∣∣∣∣2|z2|
2 < 1− |z1|

2, z ∈ db.
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Then
N∑

j=2

∣∣∣∣ n∑
k=2

φ jk(z)
bk

b2

∣∣∣∣2 < 1− |z1|
2

|z2|2
, z ∈ db.

From (3-5),

(3-12)
N∑

j=2

∣∣∣∣ n∑
k=2

φ jk(z)
bk

b2

∣∣∣∣2 ≤ 1− |z1|
2

|z2|2
=

n∑
j=2

∣∣∣∣b j

b2

∣∣∣∣2, z ∈ ∂db, z 6= 1.

For z = 1, i.e., z2 = 0, it follows from (3-11) that

(3-13)
N∑

j=2

∣∣∣∣ n∑
k=2

φ jk(1)
bk

b2

∣∣∣∣2 = n∑
j=2

∣∣∣∣b j

b2

∣∣∣∣2.
Combining (3-12) and (3-13), we have

(3-14)
N∑

j=2

∣∣∣∣ n∑
k=2

φ jk(z)
bk

b2

∣∣∣∣2 ≤ n∑
j=2

∣∣∣∣b j

b2

∣∣∣∣2, z ∈ ∂db.

Since db = L(D1,1−b), (3-14) is equivalent to

(3-15)
N∑

j=2

∣∣∣∣ n∑
k=2

φ jk(L(ξ))
bk

b2

∣∣∣∣2 ≤ n∑
j=2

∣∣∣∣b j

b2

∣∣∣∣2, ξ ∈ ∂D1,1−b.

Considering the maximum principle for the subharmonic function

N∑
j=2

∣∣∣∣ n∑
k=2

φ jk(L(ξ))
bk

b2

∣∣∣∣2
on D1,1−b, we have

N∑
j=2

∣∣∣∣ n∑
k=2

φ jk(L(ξ))
bk

b2

∣∣∣∣2 ≤ n∑
j=2

∣∣∣∣b j

b2

∣∣∣∣2, ξ ∈ D1,1−b,

which means that

(3-16)
N∑

j=2

∣∣∣∣ n∑
k=2

φ jk(z)
bk

b2

∣∣∣∣2 ≤ n∑
j=2

∣∣∣∣b j

b2

∣∣∣∣2, z ∈ db.

Step 4. Consider the mapping 0(z) on db, which is a holomorphic mapping from
db to the closure of the ball in Cn−1 with the center 0 and radius

(∑n
j=2 |b j/b2|

2
) 1

2

from (3-16). From the expression of D1,1−b given by (3-4), let

η1(ξ)=
ξ + (1− b̄1)/‖1− b‖2

|1− b1|/‖1− b‖2
: D1,1−b→ D,
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and

η2(ξ)=
|1− b1|

1− b̄1
ξ : D→ D,

where D1,1−b and D denote the closures of D1,1−b and D, respectively. Constructing
a mapping

9(ξ)=

( n∑
j=2

∣∣∣∣b j

b2

∣∣∣∣2)− 1
2

·0 ◦ η−1
1 ◦ η

−1
2 : D→ B N−1,

we have from (3-11) that

9(1)=
( n∑

j=2

∣∣∣∣b j

b2

∣∣∣∣2)− 1
2

·

(
b2

b2
, . . . ,

bn

b2
, 0, . . . , 0

)T

∈ ∂B N−1.

Moreover, the mapping f is holomorphic on Bn and satisfies (1-1) as z→1; from the
construction, 9 is holomorphic on D and C2 at 1. In addition 9(1)=w0 ∈ ∂B N−1.
According to Theorem 1.1, there exists a λ > 0 such that

J9(1)Tw0 = λ · 1> 0

unless 9 is a constant mapping. In other words, the above inequality means that( n∑
j=2

∣∣∣∣b j

b2

∣∣∣∣2)−1

·
|1− b1|

‖1− b‖2
·

1− b̄1

|1− b1|
·0′(1) ·

(
b2

b2
, . . . ,

bn

b2

)T

> 0.

However, from (3-11), it is found that 0′(1)= 0, which is a contradiction and forces
9 to be a constant mapping such that 0 satisfies (3-11), i.e.,

φi j (z)= φi j (1)≡ δi j , 2≤ i ≤ N , 2≤ j ≤ n.

Consequently, from the expression for f j (z) in (3-1), one gets f j (z) = z j for
2≤ j ≤ n and f j (z)= 0 for n+ 1≤ j ≤ N . Therefore, we have f (z)≡ (zT , 0)T

on the unit ball. �
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THETA CORRESPONDENCE AND
THE PRASAD CONJECTURE FOR SL(2)

HENGFEI LU

We use relations between the base change representations and theta lifts,
to give a new proof to the local period problems of SL(2) over a nonar-
chimedean quadratic field extension E/F. Then we verify the Prasad
conjecture for SL(2). With a similar strategy, we obtain a certain result
for the Prasad conjecture for Sp(4).

1. Introduction

Assume that F is a nonarchimedean local field with characteristic 0. Let G be a
connected reductive group defined over F and H be a closed subgroup of G. Given a
smooth irreducible representation π of G(F), one may consider the complex vector
space HomH(F)(π,C). If it is nonzero, then we say that π is H(F)-distinguished,
or has a nonzero H(F)-period.

Period problems, which are closely related to harmonic analysis, have been ex-
tensively studied for classical groups. The most general situations have been studied
in [Sakellaridis and Venkatesh 2017] when G is split. Given a spherical variety
X = H \G, Sakellaridis and Venkatesh [2017] introduce a certain complex reductive
group Ĝ X associated with the variety X, to deal with the spectral decomposition of
L2(H \G) under the assumption that G is split. In a similar way, Prasad [2015, §9]
introduces a certain quasisplit reductive group Gop to deal with the period problem
when the subgroup H is the Galois fixed points of G, i.e., H = GGal(E/F), where E
is a quadratic field extension of F. In this paper, we will mainly focus on the cases
G = RE/F SL2 and H = SL2, where RE/F denotes the Weil restriction of scalars,
i.e., the Prasad conjecture [2015, Conjecture 2] for SL2.

Let WF and WE be the Weil groups of F and E , and let WDF and WDE be
the Weil–Deligne groups. Let ψ be any additive character of F and ψE = ψ ◦

trE/F . Assume that τ is an irreducible smooth representation of SL2(F), with a
Langlands parameter φτ :WDF → PGL2(C) and a character λ of the component
group Sφτ = C(φτ )/C◦(φτ ), where C(φτ ) is the centralizer of φτ in PGL2(C) and
C◦(φτ ) is the connected component of C(φ). Then φτ |WDE gives a Langlands

MSC2010: 11F27, 11F70, 22E50.
Keywords: theta lifts, periods, base change, Prasad’s conjecture.
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parameter of SL2(E). The map φτ → φτ |WDE is called the base change map.
Prasad’s conjecture for SL(2) predicts the following result, which was shown in
[Anandavardhanan and Prasad 2003].

Theorem 1.1. Let E be a quadratic field extension of a nonarchimedean local field
F with associated Galois group Gal(E/F)= {1, σ } and associated quadratic char-
acter ωE/F of F×. Assume that τ is an irreducible smooth admissible representation
of SL2(E) with central character ωτ satisfying ωτ (−1)= 1. Then the following are
equivalent:

(i) τ is SL2(F)-distinguished.

(ii) φτ = φτ ′ |WDE for some irreducible representation τ ′ of SL2(F) and τ has a
Whittaker model with respect to a nontrivial additive character of E which is
trivial on F.

Anandavardhanan and Prasad [2003] deal with the cases for the principal series
and square-integrable representations separately, using the restriction of GL2(F)-
distinguished representations of GL2(E). There is a key lemma [Anandavardhanan
and Prasad 2003, Lemma 3.1] that if τ is SL2(F)-distinguished, then τ has a
Whittaker model with respect to a nontrivial additive character of E which is
trivial on F. Moreover, the multiplicity dim HomSL2(F)(τ,C) is invariant under
the GL2(F)-conjugation action on τ . In [Anandavardhanan and Prasad 2016],
they use a similar idea to deal with the case for SLn , involving the restriction
of GLn(F)-distinguished representations of GLn(E). In this paper, we will use
the local theta correspondence to give a new proof for a tempered representation
of SL2(E). Then we use Mackey theory and the double coset decomposition to
deal with the principal series, instead of involving representations of GL(2). In
order to verify Prasad’s conjecture [2015, Conjecture 2] for SL(2), we will list all
possible explicit parameter lifts

φ̃ :WDF → PGL2(C)

such that φ̃|WDE = φτ , which are different from Prasad’s descriptions in [2015, §18].
Our methods can also be used for the Sp(4)-distinction problems over a quadratic
field extension; see Theorem 4.2.

Theorem 1.2. Assume that τ is an irreducible SL2(F)-distinguished representation
of SL2(E), with an enhanced L-parameter (φτ , λ), where λ is a character of the
component group Sφτ , then

dimC HomSL2(F)(τ,C)= |F(φτ )|,

where F(φτ ) = {φ̃ : WDF → PGL2(C) : φ̃|WDE = φτ and λ|Sφ̃ ⊃ 1} and |F(φτ )|
denotes its cardinality.
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Remark 1.3. The statement in Theorem 1.2 is slightly different from the original
Prasad conjecture for SL(2). We have used the fact that the degree of the base
change map

8 : Hom(WDF ,PGL2(C))→ Hom(WDE ,PGL2(C))

at each parameter φ̃ is equal to the size of the cokernel

coker{Sφ̃→ SGal(E/F)
φτ

}

for φ̃ ∈ F(φτ ) when G = SL(2), which is easy to check; see [Prasad 2015, §18].

Remark 1.4. Raphael Beuzart-Plessis [2017, Theorem 1] uses the relative trace
formula to give an identity for the multiplicity dimC HomH ′(F)(π

′, χH ′), where H ′

is an inner form of H defined over F, χH ′ is a quadratic character of H ′(F) and π ′

is a stable square-integrable representation of (RE/F H ′)(F)= H ′(E). For example,
H ′ = SL1(D) and H ′(E) = SL2(E), where D is a quaternion division algebra
defined over F. We plan to use the local theta correspondence to deal with the
distinction problems for the pair (SL2(E),SL1(D)) in a subsequent paper. More
precisely, we will figure out the multiplicity dimC HomSL1(D)(τ,C) for a smooth
irreducible representation τ of SL2(E).

Remark 1.5. Anandavardhanan and Prasad [2006; 2013] discuss the global period
problems for SL2 over a quadratic number field extension E/F. More generally, there
are several results for the global period problems of SL1(D) in [Anandavardhanan
and Prasad 2013, §9], where SL1(D) is an inner form of SL2 defined over a number
field F. We hope that we can also use the global theta correspondence to revisit
these questions in future.

Now we briefly describe the contents and the organization of this paper. In §2, we
set up the notation about the local theta lifts. In §3, we give the proof of Theorem 1.1,
and then we verify Prasad’s conjecture for SL(2), i.e., Theorem 1.2 in §4. Finally,
we give a partial result for the Prasad conjecture for Sp4, i.e., Theorem 4.2.

2. The local theta correspondences

In this section, we will briefly recall some results about the local theta correspon-
dence, following [Kudla 1996].

Let F be a local field of characteristic zero. Consider the dual pair O(V )×Sp(W ).
For simplicity, we may assume that dim V is even. Fix a nontrivial additive character
ψ of F. Let ωψ be the Weil representation for O(V ) × Sp(W ), which can be
described as follows. Fix a Witt decomposition W = X ⊕ Y and let P(Y ) =
GL(Y )N (Y ) be the parabolic subgroup stabilizing the maximal isotropic subspace Y.
Then

N (Y )= {b ∈ Hom(X, Y ) | bt
= b},
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where bt
∈Hom(Y ∗, X∗)∼=Hom(X, Y ). The Weil representationωψ can be realized

on the Schwartz space S(X ⊗ V ) and the action of P(Y )×O(V ) is given by the
usual formula

ωψ(h)φ(x)= φ(h−1x), for h ∈ O(V ),
ωψ(a)φ(x)= χV (detY (a))|detY a|

1
2 dim Vφ(a−1

· x), for a ∈ GL(Y ),
ωψ(b)φ(x)= ψ(〈bx, x〉)φ(x), for b ∈ N (Y ),

where χV is the quadratic character associated to the disc V ∈ F×/F×2 and 〈−,−〉
is the natural symplectic form on W ⊗ V. To describe the full action of Sp(W ),
one needs to specify the action of a Weyl group element, which acts by a Fourier
transform.

If π is an irreducible representation of O(V ) (resp. Sp(W )), the maximal π-
isotypic quotient has the form

π �2ψ(π)

for some smooth representation of Sp(W ) (resp. O(V )). We call 2ψ(π) the big
theta lift of π . It is known that 2ψ(π) is of finite length and hence is admissible.
Let θψ(π) be the maximal semisimple quotient of 2ψ(π), which is called the small
theta lift of π . Then there is a conjecture of Howe which states that
• θψ(π) is irreducible whenever 2ψ(π) is nonzero.

• the map π 7→ θψ(π) is injective on its domain.

This has been proved by Waldspurger [1990] when the residual characteristic p of
F is not 2. Recently, it has been proved completely in [Gan and Takeda 2016a;
2016b].

Theorem 2.1. The Howe conjecture holds.

First occurrence indices for pairs of orthogonal Witt towers. Let Wn be the 2n-
dimensional symplectic vector space with associated symplectic group Sp(Wn) and
consider the two towers of orthogonal groups attached to the quadratic spaces with
nontrivial discriminant. Let VE and εVE be 2-dimensional quadratic spaces with
discriminant E and Hasse invariants +1 and −1, respectively, and let H be the
2-dimensional hyperbolic quadratic space over F,

V+r = VE ⊕Hr−1 and V−r = εVE ⊕Hr−1,

and denote the orthogonal groups by O(V+r ) and O(V−r ), respectively. For an
irreducible representation π of Sp(Wn), one may consider the theta lifts θ+r (π)
and θ−r (π) to O(V+r ) and O(V−r ), respectively, with respect to a fixed nontrivial
additive character ψ . Set{

r+(π)= inf {2r : θ+r (π) 6= 0};
r−(π)= inf {2r : θ−r (π) 6= 0}.
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Then Kudla and Rallis [2005] and B. Sun and C. Zhu [2015] showed the following:

Theorem 2.2 (conservation relation). For any irreducible representation π of
Sp(Wn), we have

r+(π)+ r−(π)= 4n+ 4= 4+ 2 dim Wn.

On the other hand, one may consider the mirror situation, where one fixes an
irreducible representation of O(V+r ) or O(V−r ), and consider its theta lifts θn(π) to
the tower of the symplectic group Sp(Wn). Then with n(π) defined in the analogous
fashion, due to [Sun and Zhu 2015, Theorem 1.10], we have

n(π)+ n(π ⊗ det)= dim V±r .

See-saw identities. Let (V, q) be a quadratic vector space over E of even dimension.
Let V ′ = ResE/F V be the same space V but now thought of as a vector space over
F with a quadratic form

q ′(v)= 1
2 trE/F q(v).

If W0 is a symplectic vector space over F, then W0⊗F E is a symplectic vector
space over E . Then we have the following isomorphism of symplectic spaces:

ResE/F [(W0⊗F E)⊗E V ] ∼=W0⊗ V ′ =W .

There is a pair

(Sp(W0),O(V ′)) and (Sp(W0⊗ E),O(V ))

of dual reductive pairs in the symplectic group Sp(W). A pair (G1, H1) and
(G2, H2) of dual reductive pairs in a symplectic group is called a see-saw pair if
H1 ⊂ G2 and H2 ⊂ G1.

Lemma 2.3 [Kudla 1984]. For a see-saw pair of dual reductive pairs (G1, H1) and
(G2, H2), let π1 be an irreducible representation of H1 and π2 of H2, then we have
the isomorphism

HomH1(2ψ(π2), π1)∼= HomH2(2ψ(π1), π2).

Quadratic spaces. Let K/E be a quadratic field extension and V = VK be a 2-
dimensional quadratic space over E with the norm map NK/E . Set $ to be the
uniformizer of OF and Gal(K/E)= 〈s〉. Let u be a unit in O×F \O

×

F
2. Assume that

the Hilbert symbol ($, u)F is −1.

Example 2.4. Assume that p is odd. Let L = F(
√
−$) be a quadratic field exten-

sion over F with associated quadratic character ωL/F = ωF(
√
−$)/F by local class

field theory. Let K be a quadratic field extension over E , then VK is a 2-dimensional
quadratic space over E with norm map NK/E . We may regard VK as a 4-dimensional
quadratic space V ′ over F with quadratic form q ′(k)= 1

2 trE/F NK/E(k) for k ∈ K.
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(i) If E = F(
√
$) is ramified, then:

• If K = E(
√

u), then the discriminant disc(V ′) = 1 ∈ F×/F×2 and the
Hasse invariant ε(V ′)=−1.

• If K = E( 4
√
$), then V ′ = VL ⊕H and disc(V ′)=−$ ∈ F×/F×2.

• If K = E( 4
√
$ ·
√

u), then disc(V ′)= L .

(ii) If E = F(
√

u) is unramified, then:
• If K = E(

√
$), then disc(V ′)= 1 and

ε(V ′)=−(−1,$)F =

{
+1 if − 1 ∈ uF×2

;

−1 if − 1 ∈ F×2
.

• If K = E(
√

u′) and u′ /∈ F×, then disc(V ′)= NE/F (u′) ∈ F×/F×2.

If −1 ∈ (F×)2 is a square in F× and the discriminant of V ′ = ResE/F VK is
the same as the discriminant of the 2-dimensional vector space E over F, i.e.,
disc(V ′) = E , then χV ′ is ωE/F and its special orthogonal group, denoted by
SO(V ′)= SO(3, 1), is isomorphic to

SO(3, 1)=
{(g, λ) ∈ GL2(E)× F× : λ2 NE/F (det g)= 1}

{(t, NE/F (t)−1) : t ∈ E×}

∼=
{g ∈ GL2(E) : det(g) ∈ F×}

F×
.

Set K 1
= {k ∈ K× : k · ks

= 1}, then there is a natural embedding

O(VK )= K 1 oµ2 ⊂ SO(3, 1) where K 1
= SO(VK )⊂ GL2(E).

In general, the discriminant disc(V ′) may not be equal to E . There is a group
embedding K 1 ↪→ GL2(L ′) where L ′ = F(δ) and δ2

= NE/F (u′) if K = E(
√

u′).

Remark 2.5. If V ′ = ResE/F VK has discriminant 1 ∈ F×/F×2 and Hasse in-
variant +1, then V ′ is called a split 4-dimensional quadratic space over F. Set
SO2,2(F)= SO(V ′) to be the special orthogonal group.

Degenerate principal series representations. Let VK be a 2-dimensional quadratic
space over E with the norm map NK/E . Assume that V ′ = ResE/F VK is a split
4-dimensional quadratic space over F. There is a natural embedding O(VK ) ↪→

O2,2(F). Let P be a Siegel parabolic subgroup of O2,2(F). Assume that I(s)
is the degenerate principal series of O2,2(F). Let us consider the double coset
decomposition P \O2,2(F)/O(VK ).

• If K is a field, then there are four open orbits in P \O2,2(F)/O(VK ).

• If K = E ⊕ E , then there are one closed orbit and three open orbits in
P \O2,2(F)/O1,1(E).
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Assume that there is a stratification P\O2,2(F)/O(VK )=t
r
i=0 X i such that

⊔k
i=0 X i

is open for each k lying in {0, 1, 2, . . . , r}. Then there is an O(VK )-equivariant
filtration {Ii }i=0,1,2,...,r of I(s)|O(VK ) such that

0= I−1 ⊂ I0 ⊂ I1 ⊂ · · · ⊂ Ir = I(s)|O(VK )

and the smooth functions in the quotient Ii/Ii−1 are supported on a single orbit X i

in P \O2,2(F)/O(VK ).

Definition 2.6. Given an irreducible representation π of O(VK ), if

HomO(VK )(Ii+1/Ii , π) 6= 0

implies that Ii+1/Ii is supported on the open orbits in P \O2,2(F)/O(VK ), then
we say that the representation π does not occur on the boundary of I(s).

It is well known that only the open orbits can support supercuspidal representa-
tions. Due to the Casselman criterion for a tempered representation, only the open
orbits can support the tempered representations in our case if s = 1

2 ; see [Lu 2017,
Lemma 4.2.9].

3. Proof of Theorem 1.1

Before we prove Theorem 1.1, let us recall some facts.

Lemma 3.1. If the discriminant of V ′ = ResE/F VK is E , then the theta lift of the
trivial representation from SL2(F) to SO(3, 1)= SO(V ′) is a character, i.e.,

2ψ(1)= 1�ωE/F .

Proof. Due to [Lu 2017, Theorem 2.4.11], the big theta lift of the Steinberg
representation St from GL+2 (F) to GSO(3, 1) is2ψ(St)=StE �ωE/F . By a similar
argument, one can get 2ψ(1)= 1�ωE/F . Notice that

2ψ(1|SL2)=2ψ(1)|SO(3,1),

then we are done. �

Remark 3.2. In fact, the theta lift θ ′ψ(1) from SL2(F) to O(3, 1) remains irreducible
when restricted to SO(3, 1), see [Prasad 1993, §5].

Now we begin the proof of Theorem 1.1, which we will complete in Section 4.

Proof of Theorem 1.1. According to the representation τ , we separate the proof
into four cases:

• τ is a supercuspidal representation; see (A).

• τ is an irreducible principal series representation; see (B).
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• τ is a Steinberg representation StE ; see (C).

• τ is a constituent of a reducible principle series I (χ) with χ2
= 1; see (D).

These exhaust all irreducible smooth representations of SL2(E).

(A) If τ is supercuspidal, then there exists a character µ : K×→ C× such that
φτ = i ◦ (IndWE

WK
µ), where

• WK is the Weil group of K, where K is a quadratic field extension over E ;

• µ does not factor through the norm map NK/E , so the irreducible Langlands
parameter

IndWE
WK
µ :WE → GL2(C)

corresponds to a dihedral supercuspidal representation of GL2(E) with respect
to K ;

• i :GL2(C)→ PGL2(C) is the projection map, which coincides with the adjoint
map

Ad : GL(2)→ SO(3).

In fact, the Langlands parameter φ of the representation 6 of O(VK ), where
τ = θψ(6), is given by

φ(g)=


(
χK (g)

χ−1
K (g)

)
if g ∈WK ,(

0 1
1 0

)
if g = s,

where s ∈ WE \ WK and the character χK : WK → C× is the pull back of a
nontrivial character µ1 of K 1 under the map K× → K 1 via k 7→ ksk−1, i.e.,
χK (k)= µ1(ksk−1), see [Kudla 1996, §6.4]. Furthermore, there is an isomorphism
between two Langlands parameters of O(2),

φ⊗ωK/E ∼= IndWE
WK

µs

µ
.

In other words, one has χK = µ
sµ−1 and µ1 = µ|K 1 is the restricted character.

Moreover, if µ2
1 6= 1, then

τ = θψ(IndO(VK )
SO(VK )

(µ1)).

If µ2
1 = 1, then there are two extensions of µ1 from SO(VK ) to O(VK ), denoted by

µ±1 . For convenience, if µ2
1 6= 1, we denote the irreducible representation

IndO(VK )
SO(VK )

(µ1)

by µ+1 as well. Assume that τ =2ψ(µ+1 ) is supercuspidal.
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If the discriminant disc V ′= L ∈ F×/(F×)2 is nontrivial, by the see-saw diagram

τ SL2(E) O(V ′) 2ψ(1)

1 SL2(F) O(VK ) µ1
+

one has an isomorphism

HomSL2(F)(τ,C)∼= HomO(VK )(1�ωL/F , µ
+

1 )

which is nonzero if and only if µ1 = 1. But HomK 1(1, µ1) = 0, and therefore
HomSL2(F)(τ,C)= 0.

If the discriminant of V ′ is 1 ∈ F×/(F×)2 and its Hasse invariant is −1, then the
theta lift θψ(1) from SL2(F) to O(V ′) is zero by the conservation relation, so that

HomSL2(F)(τ,C)= HomO(VK )(2ψ(1), θψ(τ ))= 0.

If V ′ ∼= H2 is a split 4-dimensional quadratic space over F, we denote by
I(s) the degenerate principal series of O2,2(F) and we assume that F×/(F×)2 ⊃
{1, u,$, u$ } and E=F(

√
u)with associated Galois group Gal(E/F)=〈σ 〉. Then

(3-1) HomSL2(F)(τ,C)= HomO(VK )

(
I
(1

2

)
, µ+1

)
∼=

4⊕
j=1

HomO(V j )(µ
+

1 ,C),

where K = F(
√
$,
√

u) is a biquadratic field over F, and

• V1 = VE ′ (where E ′ = F(
√
$) is a quadratic field extension over F) is a

2-dimensional quadratic space over F with quadratic form q(e′)= NE ′/F (e′),
Hasse invariant +1 and quadratic character χV1 = ωE ′/F = ωF(

√
ω)/F ;

• V2= ε
′V1(ε

′
∈ F×\NE ′/F (E ′)×) is the 2-dimensional quadratic space F(

√
$)

with quadratic form ε′NE ′/F , Hasse invariant −1 and quadratic character
χV2 = χV1 ;

• V3 = VE ′′ is a 2-dimensional quadratic space over F with quadratic character
ωF(
√
$u)/F and Hasse invariant +1, where E ′′ = F(

√
$u) is a quadratic field

extension over F ; and

• V4 = ε
′′V3 with Hasse invariant −1, where ε′′ ∈ F× \ NE ′′/F (E ′′)×.

In the latter case, (3-1) can be rewritten as the identity

(3-2) dimC HomSL2(F)(τ,C)=

4∑
j=1

dimC HomO(V j )(µ
+

1 ,C),

which is nonzero if and only if one of the following holds:
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• µ(x − y
√
$)= µ(x + y

√
$) for x, y ∈ F .

• µ(x − y
√

u$)= µ(x + y
√

u$) for x, y ∈ F.

Remark 3.3. Because µs
6= µ, these two conditions cannot hold at the same time

unless p = 2.

We would like to highlight a fact about the group embeddings O(V j ) ↪→ K 1o〈s〉
for j ∈ {1, 2}. There is a natural group embedding SO(V1)o 〈s〉 → K 1 o 〈s〉. Via
the isomorphism between two quadratic E-vector spaces (VE ′ ⊗F E, ε′NE ′/F )∼=

(VK , NK/E), one has an identity

dim HomO(ε′VE ′ )
(µ+1 ,C)= dim HomO(VE ′ )

((µ+1 )
gε′ ,C),

where (µ+1 )
gε′ is a representation of O(VK ) given by

(µ+1 )
gε′ (x)=µ+1 (g

−1
ε′ xgε′), x∈O(VK ), gε′∈GSO(VK )=K× with NK/E(gε′)=ε′.

Further, if the Whittaker datum is fixed, then the enhanced L-parameter of (µ+1 )
gε′ is

known if the enhanced L-parameter of µ+1 is given; see [Atobe and Gan 2017, §3.6].

The case p 6= 2. (i) If µ2
1 6= 1, then IndO(VK )

SO(VK )
(µ1) is irreducible and

dim HomO(V2)(IndO(VK )
SO(VK )

(µ1),C)= dim HomO(V1)(IndO(VK )
SO(VK )

(µ1),C).

(ii) If µ2
1 = 1, then µ2

= χE ◦ NK/E and µs
=−µ, so

dim HomO(V2)(µ
+

1 ,C)= dim HomO(V1)(µ
−

1 ,C).

Hence, if p 6= 2, (3-2) implies the following:
• If µ2

1 6= 1 and µ|E ′ factors through the norm map NE ′/F for E ′ 6= E , then

dim HomSL2(F)(τ,C)= 2.

• If µ2
1 = 1 and µ|E ′ factors through the norm map NE ′/F for E ′ 6= E , then

dim HomSL2(F)(τ,C)= 1.

If µ2
1 = 1 and τ = θψ(µ+1 ) is SL2(F)-distinguished, then

dim HomSL2(F)(θψ(µ
−

1 ),C)= dim HomO(VK )

(
I
( 1

2

)
, µ−1

)
which is equal to

4∑
j=1

dim HomO(V j )(µ
−

1 ,C)= dim HomSL2(F)(θψ(µ
+

1 ),C).

Hence
dim HomSL2(F)(θψ(µ

−

1 ),C)= 1

if and only if µ|E ′ factors through the norm map NE ′/F for E ′ 6= E .
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The case p = 2. (i) Suppose that there are two distinct quadratic fields E ′ and E ′′

over F such that µ|E ′ = χ ′F ◦ NE ′/F and µ|E ′′ = χ ′′F ◦ NE ′′/F . Furthermore, χ ′F/χ
′′

F
is a quadratic character of F× that is not trivial restricted on the Weil group WK

of K, i.e., χ ′F/χ
′′

F is different from three quadratic characters ωE/F , ωE ′/F and
ωE ′′/F , which may happen only when p = 2. In this case, µs(t)= µ(t) ·χ ′F/χ

′′

F (t)
for t ∈WK ,

dim HomO(V1)(µ
+

1 ,C)= dim HomO(V2)(µ
+

1 ,C),

and dim HomSL2(F)(τ,C)= 4 by the identity (3-2).

(ii) Given a cuspidal representation π of GL2(E) with π |SL2(E) ⊃ τ , if π is not
dihedral with respect to any quadratic extension K over E , then π |SL2(E) = τ is
irreducible.

We consider a 4-dimensional quadratic space X over F with discriminant E , then
the orthogonal group O(X)=O(3, 1) can be naturally embedded into the orthogonal
group O(X ⊗F E) = O(2, 2)(E). Let π � π be the irreducible representation of
the similitude special orthogonal group GSO(2, 2)(E). By the property of the big
theta lift 2(π) from GL2(E) to GSO(2, 2)(E),

(π �π)|SO(2,2)(E) =2(π)|SO(2,2)(E) =2(π |SL2(E))=2(τ)

is irreducible since τ is supercuspidal. Let I(s) be the degenerate principal series
of Sp4(F). Assume that (π �π)+ is the unique extension from GSO(2, 2)(E) to
GO(2, 2)(E) which participates with the theta correspondence with GL2(E). Then
(π �π)+|O(2,2)(E) is irreducible. Considering the see-saw diagram

I
(1

2

)
Sp4(F) O(2, 2)(E) (π �π)+

π |SL2(E) SL2(E) O(3, 1)(F) C

due to the structure of I
( 1

2

)
in [Gan and Ichino 2014, Proposition 7.2], one can get

an equality

dim HomSL2(E)
(
I
( 1

2

)
, π
)
= dim HomO(3,1)(F)((π �π)+,C).

The supercuspidal representation π |SL2(E) does not occur on the boundary of I
(1

2

)
,

therefore

dim HomSL2(E)
(
I
(1

2

)
, π
)
= dim HomSL2(F)(π

∨,C).

By the conservation relation, the fact that the first occurrence index of the de-
terminant map det of O(3, 1)(F) is 4 implies that 2ψ(det) from O(3, 1)(F) to
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Sp(W2)= Sp4(F) is zero and

HomO(3,1)(F)((π �π)−,C)∼= HomO(3,1)(F)((π �π)+, det)

= HomSL2(E)(2ψ(det), π |SL2(E))= 0.
Hence

(3-3) dim HomSL2(F)(π
∨,C)

= dim HomO(3,1)(F)((π �π)+,C)

= dim HomO(3,1)(F)((π �π)+,C)+ dim HomO(3,1)(F)((π �π)−,C)

= dim HomO(3,1)(F)(IndO(2,2)(E)
SO(2,2)(E)(π �π)|SO(2,2)(E),C)

= dim HomSO(3,1)(F)((π �π),C)

= dim HomGSO(3,1)(F)(π �π,C)

= dim HomGL2(E)(π
σ , π∨).

Therefore, if π is not dihedral with respect to any quadratic field extension K over
E then τ = π |SL2(E) is irreducible, and so the following are equivalent:

• πσ ∼= π∨, i.e., φπ is conjugate-self-dual in the sense of [Gan et al. 2012, §3].

• dim HomSL2(F)(τ,C)= 1.

Remark 3.4. This method can be used to deal with the case when τ is the Steinberg
representation StE of SL2(E), which will imply dim HomSL2(F)(StE ,C)=1 directly.
It will appear in the proof of Theorem 4.2 as well.

(B) Let χ be a unitary character of E×. If τ = I (z, χ)= IndSL2(E)
B(E) χ |−|zE (normal-

ized induction) is an irreducible principal series, by the double coset decomposition
for B(E) \SL2(E)/SL2(F)

SL2(E)= B(E)SL2(F)t B(E)η1SL2(F)t B(E)η2SL2(F),

where

η1 =

(
1
√

d 1

)
and η2 =

(
1

ε
√

d 1

)
,

ε ∈ F× \ NE/F (E×), then there is a short exact sequence

(3-4) HomF×(|−|
z
Eχ,C) ↪→ HomSL2(F)(τ,C)

→
∏2

j=1 HomE1(τ η j ,C)→ Ext1F×(|−|
z
Eχ,C),

where τ η j
(a ∗

ā

)
=χ(a) for a ∈ E1

= ker{NE/F : E×→ F×}. Then HomSL2(F)(τ,C)

is not equal to 0 if and only if one of the following conditions holds:

• χ |F× = 1 and z = 0;

• χ = χF ◦ NE/F .
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In order to verify the Prasad conjecture, we need to figure out the exact dimension
dimC HomSL2(F)(τ,C).

(i) If χ is trivial and z=0, then τ= I (1) is irreducible and dim HomSL2(F)(τ,C)=2.

(ii) If χ = χF ◦ NE/F with χ2
= 1 6= χ and z = 0, then I (χ) is reducible, which

belongs to the tempered cases and we will discuss later; see (D).

(iii) If χ = χF ◦ NE/F with χ2
6= 1, then dim HomSL2(F)(τ,C)= 2.

(iv) If χ does not factor through NE/F but χ |F× = 1 and s = 0, then

dim HomSL2(F)(τ,C)= 1.

(C) If τ = StE is a Steinberg representation of SL2(E), then the exact sequence
(3-4) implies that

dim HomSL2(F)(I (|−|E),C)= 2,

so that dim HomSL2(F)(StE ,C)= 2− 1= 1.

(D) Assume that τ is tempered. If τ ⊂ I (ωK/E) is an irreducible constituent of a
reducible principal series, set χ = ωK/E , χ+(ω)= 1, ω =

(
1

1), then from [Kudla
1996, page 86], we can see that

I (ωK/E)= θψ(χ
+)⊕ θψ(χ

−) where χ− = χ+⊗ det

and τ = θψ(χ+)=2ψ(χ+), where θψ(χ+) is the theta lift of χ+ from O1,1(E) to
SL2(E). By the see-saw diagram

τ SL2(E) O2,2(F) I
( 1

2

)

C SL2(F) O1,1(E) χ+

where I(s) is the principal series of O2,2(F), we have an identity,

dim HomSL2(F)(τ,C)= dim HomO1,1(E)
(
I
( 1

2

)
, χ+

)
,

which is equal to

dim HomO1,1(F)(χ
+,C)+ dim HomO(VE )(χ

+,C)+ dim HomO(εVE )(χ
+,C).

If χ |F× = 1, then dim HomO1,1(F)(χ
+,C)= 1 and dim HomO1,1(F)(χ

−,C)= 0.
If χ = χF ◦ NE/F , then dim HomO(VE )(χ

+,C)= 1. Hence we have the conclusion:

• If χ = ωK/E = χF ◦ NE/F with χ2
F = 1, then

dim HomO(εVE )(χ
+,C)= dim HomO(VE )(χ

+,C)= 1

and
dim HomSL2(F)(τ,C)= 3.
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• If χ = χF ◦ NE/F with χ2
F = ωE/F , then

dim HomO(εVE )(χ
+,C)= dim HomO(VE )(χ

−,C)

and
dim HomSL2(F)(θψ(χ

+),C)= dim HomE1(χ,C)= 1.

• If χ does not factor through the norm map NE/F , but χ |F× = 1, then

dim HomSL2(F)(τ,C)= 1.

In this case, if dim HomSL2(F)(θψ(χ
+),C) 6= 0, then dim HomSL2(F)(θψ(χ

−),C)

is equal to the sum

dim HomO1,1(F)(χ
+, det)+ dim HomO(VE )(χ

+, det)+ dim HomO(εVE )(χ
+, det),

which is nonzero if and only if χ = χF ◦ NE/F with χ2
F = ωE/F .

After the discussions for the parameter side in Section 4, we finish the proof of
Theorem 1.1.

4. The Prasad conjecture for SL(2)

Let us recall a well known result for SL2.

Proposition 4.1 [Shelstad 1979]. Let φ :WDF → GL2(C) be an irreducible rep-
resentation and τ = i(φ)= Ad(φ) :WDF → PGL2(C) be the associated discrete
series L-parameter for SL2, then there is a short exact sequence of component
groups,

1→ Sφ→ Sτ → I (φ)→ 1,

where I (φ)= {χ : F×→ C× | χ2
= 1 and φ⊗χ = φ}.

Assume that τ is SL2(F)-distinguished and ` ∈WF \WE , ωE/F (`)=−1. We
start to verify the Prasad conjecture for SL2. The main work here is to choose a
proper element A ∈ PGL2(C) such that φ̃(`) = A and φ̃|WDE = φτ for a certain
Langlands parameter φ̃ ∈ Hom(WDF ,PGL2(C)) under the assumption that τ is
SL2(F)-distinguished. In accordance with the discussions in Section 3, we separate
the possible cases for τ into four parts.

Recall that F×/F×2
⊃ {1, u,$, u$ }, E = F(

√
u), E ′′ = F(

√
u$) and E ′ =

F(
√
$). Let K = F(

√
u,
√
$) be a biquadratic field extension over F with Galois

group Gal(K/F)=〈1, s, σ, sσ 〉 and Weil group WK . Suppose that Gal(K/E)=〈s〉,
Gal(K/E ′′)= 〈sσ 〉 and Gal(K/E ′)= 〈σ 〉.

(A) Assume that τ ⊂ π |SL2(E) is a supercuspidal representation of SL2(E). If the
Langlands parameter of τ ,

φτ = i(IndWE
WK
µ)= ωK/E ⊕ IndWE

WK

(
µs

µ

)
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with µ|E ′′ = χF ◦ NE ′′/F , then µ(t)µsσ (t)= χF (t) for t ∈WK . So(
µs

µ

)σ
(t)=

µsσ (t)
µσ (t)

=
χF (t)

µ(t)µσ (t)
=
χF (sts−1)

µ(t)µσ (t)
=
µs(t)
µ(t)

for t ∈WK ,

i.e., µs/µ= χE ′ ◦ NK/E ′ for a character χE ′ of E ′×.

The case p 6= 2. • If µ2
1 = 1, then the Langlands parameter satisfies

φτ = ωK/E ⊕ωK2/E ⊕ωK1/E ,

where each K j 6= K is a quadratic field extension over E :

WF

WE WE ′

WK2 WK1 WK

Set

(4-1) φ̃ = ωE ′/F ⊕ IndWF
WE ′

χE ′,

where E ′ 6= E are two distinct quadratic field extensions over F, then φ̃|WE = φτ .

• If µ2
1 6= 1, then the Langlands parameter

φτ = ωK/E ⊕ IndWE
WK

µs

µ

has a lift φ̃ defined in (4-1). Moreover, there is one more lift,

φ̃′ = ωE ′/F ⊕ IndWF
WE ′

χ−1
E ′ with χE ′ ◦ NK/E ′ =

µs

µ

since IndWE
WK
(µ/µs) = IndWE

WK
(µs/µ) is irreducible. In the L-packet 5φτ contain-

ing φτ , set φ = IndWE
WK
µ and φτ = Ad(φ).

If the component group Sφτ has order 4, then we denote the four characters of
Sφτ by {λ++, λ−−, λ−+, λ+−} which corresponds to the L-packet

5φτ = {τ
++, τ−−, τ−+, τ+−}.

If the order of Sφτ is 2, then we denote its two characters as {λ+, λ−}, which
corresponds to 5φτ = {τ

+, τ−}.
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• Ifµ2
1=1, then |I (φ)|=4, two representations in5φτ are SL2(F)-distinguished

and of dimension 1, say τ++ and τ−−. Since the component group Sφ̃ =µ2 ↪→

Sφτ is the diagonal embedding, τ+− and τ−+ are not SL2(F)-distinguished,
which is compatible with the fact that neither the restricted representation
λ+−|Sφ̃ nor λ−+|Sφ̃ contains the trivial character of Sφ̃ , where λ+− and λ−+

correspond to the representations τ+− and τ−+, respectively.

• If µ2
1 6= 1, then |I (φ)| = 2 and only one of them is SL2(F)-distinguished,

say τ+ = θψ,VK ,W ((µ
s/µ)+). If τ− = θψ,εVK ,W ((µ

s/µ)+) corresponds to the
nontrivial character of Sφτ , denoted by λ−, where εVK is the 2-dimensional
quadratic space K over E with a quadratic form εNK/E , ε ∈ E× \ NK/E(K×)
and the Hasse invariant of ResE/F (εVK ) is −1, then

dim HomSL2(F)(τ
−,C)= 0.

Note that Sφ̃ = µ2 ∼= Sφτ , then λ−|Sφ̃ is nontrivial.

The case p = 2. There are some special cases if p = 2.

• If dim HomSL2(F)(τ,C)= 4, then µ2
1 = 1 and there is a quadratic field extension

D over K such that χK = ωD/K and D is the composite field K E4, where E4 is
the quadratic field extension of F corresponding to the quadratic character χ ′F/χ

′′

F
where µ|E ′ = χ ′F ◦ NE ′/F , µ|E ′′ = χ ′′F ◦ NE ′′/F and E ′ and E ′′ are two distinct
quadratic field extensions over F, which are different from E :

D

K K1 K2

E ′′ E ′ E E4

Set {1, u,$, d, du,$u,$d,$du} ⊂ F×/F×2, E4= F(
√

d), K = F(
√

u,
√
$),

K2 = F(
√

u,
√

d), and K1 = F(
√

u,
√

d$). There are four distinct Langlands
parameter lifts of φτ :

φ̃1 = ωE4/F ⊕ωF(
√
$u)/F ⊕ωF(

√
d$u)/F ,

φ̃2 = ωE4/F ⊕ωF(
√
$)/F ⊕ωF(

√
d$)/F ,

φ̃3 = ωF(
√

du)/F ⊕ωF(
√
$u)/F ⊕ωF(

√
d$)/F ,

φ̃4 = ωF(
√

du)/F ⊕ωF(
√
$)/F ⊕ωF(

√
$ud)/F ,

where ωF(
√
$)/F is the quadratic character associated to the quadratic field extension

F(
√
$)/F, and similarly for the other quadratic characters ωF(

√
du)/F and so on.
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Since Sφ̃i
= Sφτ ∼= µ2×µ2, only τ++ can survive, i.e., the rest of the elements in

the L-packet 5φτ cannot be SL2(F)-distinguished.

• If dim HomSL2(F)(τ,C)= 1 and π is not dihedral, i.e., τ =π |SL2(E) is irreducible,
then φτ = φστ . There exists one element A ∈ PGL2(C) such that

φτ (` · t · `−1)= A ·φτ (t) · A−1

for t ∈WDE . Set φ̃(`)= A and φ̃(t)=φτ (t) for t ∈WDE . Since φτ is irreducible, A
is unique. Hence φτ admits a unique lift φ̃ :WF → PGL2(C) such that φ̃|WE = φτ .

(B) If φτ (t)=
(
χ(t)|t |z

1

)
∈ PGL2(C), then

• if z= 0 and χ is trivial, φ̃(`) can be chosen as
(
ωE/F (`)

1

)
=

(
−1

1

)
or
(

1
1

)
;

• if z = 0, χ does not factor through the norm NE/F but χ |F× = 1, set χ = νσ/ν
for a quadratic character ν of E×, then there is only one lift,

φ̃ = i(IndWF
WE
ν);

• if χ = χF ◦ NE/F ,χ2
6= 1, then there are two lifts

φ̃(`)=
(
χF (`)

1

)
or
(
−χF (`)

1

)
.

(C) If φτ =Ad(1⊗ S2) corresponds to the Steinberg representation StE of SL2(E),
then there is only one lift φ̃ = Ad(1⊗ S2) :WDF → PGL2(C).

(D) If φτ (t)=
(
ωK/E(t)

1

)
∈ PGL2(C), then there are several subcases.

• If ωK/E = χF ◦ NE/F with χ2
F = 1, then

φ̃(`)=
(
χF (`)

1

)
or
(
−χF (`)

1

)
.

Moreover, ωK/E |F× = χ
2
F = 1, and ωK/E = ν

σ/ν so for a quadratic character
ν of E×, we may set

φ̃3 = i(IndWF
WE
ν)= ωE/F ⊕ IndWF

WE

(
νσ

ν

)
.

• If ωK/E = χF ◦ NE/F with χ2
F = ωE/F , then there is only one extension

φ̃(`)=
(
χF (`)

1

)
.

• If ωK/E does not factor through the norm map NE/F but ωK/E |F× = 1, then

φ̃ = i(IndWF
WE
ν) where ωK/E = ν

σ/ν.

Hence, we finish the proof of Theorem 1.1 and Theorem 1.2. �
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Further discussion. Inspired by the case that τ = π |SL2(E) is an irreducible rep-
resentation of SL2(E), where π is a representation of GL2(E), we have a certain
result of the Prasad conjecture for G = Sp4.

Theorem 4.2. Let E be a quadratic field extension over a nonarchimedean local
field F with characteristic zero. Assume that τ is an irreducible representation of
Sp4(E). Let π be an irreducible representation of GSp4(E) and π |Sp4(E) ⊃ τ , then

(i) if π is tempered and nongeneric, then HomSp4(F)(τ,C)= 0;

(ii) if π is a generic square-integrable representation of GSp4(E) and π |Sp4(E) is
irreducible, then the L-packet 5φτ is a singleton and

dim HomSp4(F)(τ,C)= |F(φτ )|,

where F(φτ ) = {φ̃ :WDF → SO5(C) | φ̃|WDE = φτ } and |F(φτ )| denotes its
cardinality.

Proof. (i) If π is tempered and nongeneric, then π = 2(6) where 6 is an
irreducible representation of GSO(VDE ), where VDE is the nonsplit 4-dimensional
quadratic space over E with trivial discriminant and Hasse invariant −1. Since
ResE/F VDE is an 8-dimensional quadratic space over F with trivial discriminant
and Hasse invariant −1, the conservation relation implies that the theta lift of the
trivial representation from Sp4(F) to O(ResE/F VDE ) is zero. Due to the see-saw
diagram

τ Sp4(E) O(ResE/F (VDE )) 0

C Sp4(F) O(VDE ) θ(τ )

one has the desired equality, HomSp4(F)(τ,C)= 0.

(ii) By the assumption, τ = π |Sp4(E) is a square-integrable representation. Fix
` ∈WF \WE .

• If the theta lift 22,2(π) from GSp4(E) to GSO(2, 2)(E) is zero, then one can
use a similar method appearing in the proof of [Lu 2017, Theorem 4.2.18(iii)] to
obtain the equality

dim HomSp4(F)(π,C)= dim HomSO(3,3)(F)(2
3,3(π),C),

which is equal to the number∣∣{χ : F×→ C× | HomGSO(3,3)(F)(2
3,3(π), χ ◦ λ) 6= 0}

∣∣,
where 23,3(π) is the theta lift of π from GSp4(E) to GSO(3, 3)(E) and λ is
the similitude character of the group GSO(3, 3)(F). Therefore, the dimension
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dim HomSp4(E)(τ,C) = 1 if and only if the Langlands parameter φπ of π is
conjugate-self-dual, i.e., φ∨π = φ

σ
π .

On the parameter side, φτ : WDE → PGSp4(C) = SO5(C) is irreducible and
φτ ∼= φ

∨
τ
∼= φστ . There exists a unique element A ∈ SO5(C) such that

φτ (` · t · `−1)= A ·φτ (t) · A−1

for t ∈ WDE . Set φ̃(`) = A and φ̃(t) = φτ (t) for t ∈ WDE . Then φ̃ is what we
want.

• If 22,2(π) 6= 0, then φπ = φ1⊕φ2 where φi :WDE→GL2(C) is irreducible and
φ1 6= φ2. Moreover, φτ = 1⊕ (φ∨1 ⊗φ2); see [Gan and Takeda 2010, page 3008].
Let 6 be the irreducible representation of GSO(2, 2)(E) satisfying θψ(6) = π ,
then 6|SO(2,2)(E) is irreducible since π |Sp4(E) is irreducible. Using a similar method
appearing in [Lu 2017, Theorem 4.2.18(ii)], one can get that the dimension

dim HomSp4(F)(τ,C)

has an upper bound

(4-2) dim HomSO(3,3)(F)(2
3,3(π),C)+ dim HomSO(4,0)(F)(6,C)

and a lower bound

(4-3)
∑

X

dim HomSO(X,F)(6,C),

where X runs over all elements in the kernel ker{H 1(F,O(4))→ H 1(E,O(4))}.
We will show that both the lower bound (4-3) and the upper bound (4-2) are equal
to 2 if π |Sp4(E) is an irreducible Sp4(F)-distinguished representation. Then

dimC HomSp4(F)(τ,C)= 2.

There are two subcases.

(a) If φ∨1 = φ
σ
1 , then φ∨1 6= φ

σ
2 , otherwise φ1 = φ2, which contradicts φ1 6= φ2.

Since φ1 is irreducible, the Langlands parameter φ1 is either conjugate-orthogonal
or conjugate-symplectic, but cannot be both. Note that there is an equality

dim HomSO(3,3)(F)(2
3,3(π),C)

=
∣∣{χ : F×→ C× | HomGSO(3,3)(F)(2

3,3(π), χ ◦ λ) 6= 0}
∣∣.

We have a similar result for dim HomSO(4,0)(F)(6,C) and dim HomSO(2,2)(F)(6,C).
If φ∨2 = φ

σ
2 is conjugate-self-dual with the same sign as φ1, then

dim HomSp4(E)(τ,C)= 2.

Otherwise, τ is not Sp4(F)-distinguished.
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On the parameter side, 1/detφ1 = (detφ1)
σ. Without loss of generality, sup-

pose that φ1 is conjugate-orthogonal, i.e., detφ1 = ν
σ/ν = detφ2, then ν⊗ φ j is

Gal(E/F)-invariant. For each j, there exists a parameter φ̃ j :WDF → GL2(C)

such that φ̃ j |WDE = φ j ⊗ ν. Set ρ1 = φ̃1 ⊕ φ̃2 and ρ2 = φ̃1 ⊕ φ̃2ωE/F . Let
i : GSp4(C)→ SO5(C) be the natural projection map. Then the parameters i(ρ1)

and i(ρ2) are what we want.

(b) If φ∨1 = φ
σ
2 , then dim HomSp4(F)(τ,C) = 2 since the upper bound (4-2) is 2

and the lower bound (4-3) is at least 2. On the parameter side, φτ = 1⊕ (φσ2 ⊗φ2)

is Gal(E/F)-invariant. There exist two natural parameters φ̃ j :WDF → GL5(C)

such that φ̃ j |WDE = φτ , which are ωE/F ⊕As+(φ2) and ωE/F ⊕As−(φ2), where
As±(φ2) are the Asai lifts of φ2; see [Gan et al. 2012, §7]. Then the images of φ̃ j

lie in SO5(C). Therefore, we have finished the proof. �

Remark 4.3. If τ = π |Sp4(E) is irreducible, one can also use the method appear-
ing in [Anandavardhanan and Prasad 2003] directly to get that the dimension
dim HomSp4(F)(τ,C) equals the sum

(4-4)
∑

χ :F×/(F×)2→C×

dim HomGSp4(F)(π, χ).

Combining this with the results in [Lu 2017, Theorem 4.2.18], we can obtain
dim HomSp4(F)(τ,C) if π is tempered.

Remark 4.4. Let U2(D) be the unique inner form of Sp4(F) defined over F. Sup-
pose that π is a generic representation of GSp4(E). Thanks to [Beuzart-Plessis
2017, Theorem 1], if π |Sp4(E) = τ is an irreducible square-integrable representation
of Sp4(E) and 22,2(π) is 0, then

dim HomU2(D)(τ,C)= 1.
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CONVEXITY OF LEVEL SETS AND A TWO-POINT FUNCTION

BEN WEINKOVE

We establish a maximum principle for a two-point function in order to ana-
lyze the convexity of level sets of harmonic functions. We show that this can
be used to prove a strict convexity result involving the smallest principal
curvature of the level sets.

1. Introduction

The study of the convexity of level sets of solutions to elliptic PDEs has a long history,
starting with the well-known result that the level curves of the Green’s function of
a convex domain � in R2 are convex [Ahlfors 1973]. Gabriel [1957] proved the
analogous result in three dimensions and this was extended by Lewis [1977] and
later Caffarelli and Spruck [1982] to higher dimensions and more general elliptic
PDEs. These results show that for a large class of PDEs, there is a principle that
convexity properties of the boundary of the domain � imply convexity of the level
sets of the solution u.

There are several approaches to these kinds of convexity results; see for example
[Kawohl 1985, Section III.11]. One is the “macroscopic” approach, which uses
a globally defined function of two points x, y (which could be far apart) such as
u
( 1

2(x + y)
)
−min(u(x), u(y)). Another is the “microscopic” approach, which

computes with functions of the principal curvatures of the level sets at a single
point. This is often used together with a constant rank theorem. There is now a vast
literature on these and closely related results, see for example [Alvarez et al. 1997;
Bian and Guan 2009; Bianchini et al. 2009; Borell 1982; Brascamp and Lieb 1976;
Caffarelli and Friedman 1985; Caffarelli et al. 2007; Diaz and Kawohl 1993; Hamel
et al. 2016; Korevaar 1983; 1990; Korevaar and Lewis 1987; Rosay and Rudin 1989;
Shiffman 1956; Singer et al. 1985; Székelyhidi and Weinkove 2016; Wang 2014].

It is natural to ask whether these ideas can be extended to cases where the
boundary of the domain is not convex. Are the level sets of the solution at least as
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convex as the boundary in some appropriate sense? In this short note we introduce
a global “macroscopic” function of two points which gives a kind of measure of
convexity and makes sense for nonconvex domains. Our function

(1-1) (Du(y)− Du(x)) · (y− x)

is evaluated at two points x , y, which are constrained to lie on the same level set of u.
Under suitable conditions, a level set of u is convex if and only if this quantity has
the correct sign on that level set. We prove a maximum principle for this function
using the method of Rosay and Rudin [1989], who considered a different two-point
function

(1-2) 1
2(u(x)+ u(y))− u

( x+y
2

)
.

In addition, we show that our “macroscopic” approach can be used to prove a
“microscopic” result. Namely, we localize our function and show that it gives
another proof of a result of Chang, Ma, and Yang [Chang et al. 2010] on the
principal curvatures of the level sets of a harmonic function u. In this paper,
we consider only the case of harmonic functions. However, we expect that our
techniques extend to some more general types of PDEs.

We now describe our results more precisely. Let �0 and �1 be bounded domains
in Rn with �1 ⊂�0. Define �=�0 \�1. Assume that u ∈ C1(�) satisfies

(1-3) 1u = 0 in �=�0 \�1, u = 0 on ∂�0, u = 1 on ∂�1,

and

(1-4) Du is nowhere vanishing in �.

It is well known that (1-4) is satisfied if �0 and �1 are both starshaped with respect
to some point p ∈�1. A special case of interest is when both�0 and�1 are convex,
but this is not required for our main result.

To introduce our two-point function, first fix a smooth function ψ : [0,∞)→ R

satisfying

(1-5) ψ ′(t)− 2|ψ ′′(t)|t ≥ 0.

For example, we could take ψ(t)= at for a ≥ 0. Then define

(1-6) Q(x, y)= (Du(y)− Du(x)) · (y− x)+ψ(|y− x |2)

restricted to (x, y) in

6 = {(x, y) ∈�×� | u(x)= u(y)}.

Comparing with the Rosay–Rudin function (1-2), note that the function Q(x, y)
does not require 1

2(x + y) ∈ � and makes sense whether or not ∂�0 or ∂�1 are
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convex. Taking ψ = 0, the level set {u= c} is convex if and only if the quantity Q is
nonpositive on {u= c}. If ψ(t)= at for a> 0 then Q≤ 0 implies strict convexity of
the level set. More generally Q gives quantitative information about the convexity
of the level sets {u = c}, relative to the gradient Du.

We also remark that the function (1-6) looks formally similar to the two-point
function of Andrews and Clutterbuck [2011], a crucial tool in their proof of the
fundamental gap conjecture. However, here x and y are constrained to lie on the
same level set of u and so the methods of this paper are quite different.

Our main result is the following:

Theorem 1.1. Q does not attain a strict maximum at a point in the interior of 6.

Roughly speaking, this result says that the level sets {u = c} for 0≤ c ≤ 1 are
“the least convex” when c = 0 or c = 1. As mentioned above, the result holds even
in the case that ∂�0 and ∂�1 are nonconvex.

The proof of Theorem 1.1 follows quite closely the paper of Rosay and Rudin
[1989]. Indeed a key tool of [Rosay and Rudin 1989] is Lemma 2.1 below, which
gives a map from points x to points y with the property that x, y lie on the same
level set.

Next we localize our function (1-6) to prove a strict convexity result on the level
sets of u. If we assume now that ∂�0 and ∂�1 are strictly convex, we can apply
the technique of Theorem 1.1 to obtain an alternative proof of the following result
of Chang, Ma, and Yang [Chang et al. 2010].

Theorem 1.2. Assume in addition that ∂�0 and ∂�1 are strictly convex and C2.
Then the quantity |Du|κ1 attains its minimum on the boundary of �, where κ1 is
the smallest principal curvature of the level sets of u.

Note that many other strict convexity results of this kind are proved in [Chang
et al. 2010; Jost et al. 2012; Longinetti 1983; Ma et al. 2010; 2011; Ortel and
Schneider 1983; Zhang and Zhang 2013].

2. Proof of Theorem 1.1

First we assume that n is even. We suppose for a contradiction that Q attains a
maximum at an interior point, and assume that sup6 Q > sup∂6 Q. Then we may
choose δ > 0 sufficiently small so that

Qδ(x, y)= Q(x, y)+ δ|x |2

still attains a maximum at an interior point.
We use a lemma from [Rosay and Rudin 1989]. Suppose (x0, y0) is an interior

point with u(x0) = u(y0). We may assume that Du(x0) and Du(y0) are nonzero
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vectors. Let L be an element of O(n) with the property that

(2-1) L(Du(x0))= cDu(y0) for c = |Du(x0)|/|Du(y0)|.

Note that there is some freedom in the definition of L . We will make a specific
choice later. Rosay and Rudin [1989, Lemma 1.3] show the following — it is a
special case of the lemma:

Lemma 2.1. There exists a real analytic function α(w)= O(|w|3) such that for all
w ∈ Rn sufficiently close to the origin,

(2-2) u(x0+w)= u(y0+ cLw+ f (w)ξ +α(w)ξ), where ξ =
Du(y0)

|Du(y0)|
,

where f is a harmonic function defined in a neighborhood of the origin in Rn , given
by

(2-3) f (w)=
1

|Du(y0)|
(u(x0+w)− u(y0+ cLw)).

Proof of Lemma 2.1. We include the brief argument here for the sake of complete-
ness. Define a real analytic map G which takes (w, α) ∈ Rn

×R sufficiently close
to the origin to

G(w, α)= u(y0+ cLw+ f (w)ξ +αξ)− u(x0+w),

for c, L , ξ , and f defined by (2-1), (2-2), and (2-3). Note that G(0, 0)= 0 and, by
the definition of ξ ,

∂G
∂α
(0, 0)= Di u(y0)ξi = |Du(y0)|> 0,

where here and henceforth we are using the convention of summing repeated indices.
Hence by the implicit function theorem there exists a real analytic map α= α(w)

defined in a neighborhood U of the origin in Rn to R with α(0) = 0 such that
G(w, α(w))= 0 for all w ∈U . It only remains to show that α(w)= O(|w|3).

Write y = y0 + cLw + f (w)ξ + α(w)ξ , x = x0 +w, and L = (L i j ) so that
L i j D j u(x0)= cDi u(y0) and cL i j Di u(y0)= D j u(x0). Then at w ∈U ,

(2-4)

0= ∂G
∂w j

= Di u(y)
(

cL i j+
(D j u(x)−cDku(y0+cLw)Lk j )

|Du(y0)|
ξi+

∂α

∂w j
ξi

)
−D j u(x),

and evaluating at w = 0 gives 0= |Du(y0)| ∂α/∂w j (0) and hence ∂α/∂w j (0)= 0
for all j .
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Differentiating (2-4) and evaluating at w = 0, we obtain for all j, `,

0= ∂2G
∂w`∂w j

= Dk Di u(y0)c2L i j Lk`− D`D j u(x0)

+ Di u(y0)

(
(D`D j u(x0)− c2 Dm Dku(y0)Lk j Lm`)

|Du(y0)|
ξi +

∂2α

∂w`∂w j
(0)ξi

)
= |Du(y0)|

∂2α

∂w`∂w j
(0).

Hence α(w)= O(|w|3), as required. �

Now assume that Qδ achieves a maximum at the interior point (x0, y0). Write
x = x0 +w = (x1, . . . , xn) and y = y0 + cLw+ f (w)ξ + α(w)ξ = (y1, . . . , yn)

and

F(w)= Qδ(x, y)= Q(x0+w, y0+ cLw+ f (w)ξ +α(w)ξ)+ δ|x0+w|
2.

To prove the lemma it suffices to show that 1wF(0) > 0, where we write 1w =∑
j ∂

2/∂w2
j . Observe that

1wx(0)= 0=1wy(0).

Hence, evaluating at 0, we get

1wF =
∑

j

(
∂2

∂w2
j
(Di u(y)− Di u(x))

)
(yi − xi )

+ 2
∂

∂w j
(Di u(y)− Di u(x))

∂

∂w j
(yi − xi )+

∑
j

∂2

∂w2
j
ψ(|y− x |2)+ 2nδ.

First we compute

∑
j

∂2

∂w2
j
ψ(|y−x |2)= 2ψ ′

∑
i, j

(cL i j−δi j )
2
+4ψ ′′

∑
j

(∑
i

(yi−xi )(cL i j−δi j )

)2

≥ 2ψ ′
∑
i, j

(cL i j−δi j )
2
−4|ψ ′′||y−x |2

∑
i, j

(cL i j−δi j )
2
≥ 0

using the Cauchy–Schwarz inequality and the condition (1-5).
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Next, at w = 0,

∂

∂w j
Di u(y)= Dk Di u(y)

∂yk

∂w j
= cDk Di u(y)Lk j ,

∑
j

∂2

∂w2
j

Di u(y)= D`Dk Di u(y)
∂yk

∂w j

∂y`
∂w j
= c2 D`Dk Di u(y)Lk j L`j = 0,

∂

∂w j
Di u(x)= D j Di u(x),

∑
j

∂2

∂w2
j

Di u(x)= D j D j Di u(x)= 0,

where for the second line we used the fact that 1wy(0)= 0 and Lk j L`j D`Dku =
1u = 0. Hence, combining the above,

1wF > 2(cDk Di u(y)Lk j − D j Di u(x))(cL i j − δi j )

= 2c21u(y)− 2cLki Dk Di u(y)− 2cL i j D j Di u(x)+ 21u(x)

=−2cLki Dk Di u(y)− 2cL i j D j Di u(x).

Now we use the fact that n is even, and we make an appropriate choice of L
following [Rosay and Rudin 1989, Lemma 4.1(a)]. Namely, after making an
orthonormal change of coordinates, we may assume, without loss of generality that
Du(x0)/|Du(x0)| is e1, and

Du(y0)/|Du(y0)| = cos θ e1+ sin θ e2,

for some θ ∈ [0, 2π). Here we are writing e1 = (1, 0, . . . 0) and e2 = (0, 1, 0, . . .),
etc., for the standard unit basis vectors in Rn . Then define the isometry L by

L(ei )=

{
cos θ ei + sin θ ei+1 for i = 1, 3, . . . , n− 1,
− sin θ ei−1+ cos θ ei for i = 2, 4, . . . , n.

In terms of entries of the matrix (L i j ), this means that Lkk = cos θ for k = 1, . . . , n
and for α = 1, 2, . . . , 1

2 n, we have

L2α−1,2α =− sin θ, L2α,2α−1 = sin θ,

with all other entries zero. Then

(2-5)
∑
i,k

Lki Dk Di u(y)

=

n∑
k=1

Lkk Dk Dku(y)+
n/2∑
α=1

(L2α−1,2α + L2α,2α−1)D2α−1 D2αu(y)

= (cos θ)1u(y)= 0.

Similarly
∑

i,k Lki Dk Di u(x)= 0. This completes the proof of Theorem 1.1 in the
case of n even.
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For n odd, we argue in the same way as in [Rosay and Rudin 1989]. Let L be an
isometry of the even-dimensional Rn+1, defined in the same way as above, but now

L(Du(x0), 0)= (c(Du)(y0), 0).

In Lemma 2.1, replace w ∈ Rn by w ∈ Rn+1. Define π : Rn+1
→ Rn to be the

projection (w1, . . . , wn+1) 7→ (w1, . . . , wn) and replace (2-2) and (2-3) by

(2-6) u(x0+π(w))= u
(
y0+ cπ(Lw)+ f (w)ξ +α(w)ξ

)
,

where ξ = Du(y0)/|Du(y0)| and f is given by

(2-7) f (w)= 1
|Du(y0)|

(
u(x0+π(w))− u(y0+ cπ(Lw))

)
.

As in [Rosay and Rudin 1989], note that if g : Rn
→ R is harmonic in Rn then

w 7→ g(π(Lw)) is harmonic in Rn+1. In particular, f is harmonic in a neighborhood
of the origin in Rn+1. The function G above becomes G(w, α)= u(y0+cπ(Lw)+
f (w)ξ +αξ)− u(x0+π(w)) with w ∈ Rn+1, and we make similar changes to F .
It is straightforward to check that the rest of the proof goes through. �

Remark 2.2. The proof of Theorem 1.1 also shows that when ψ = 0 the quantity
Q(x, y) does not attain a strict interior minimum.

3. Global to infinitesimal

Here we give a proof of Theorem 1.2 using the quantity Q. We first claim that, for
x ∈� and a > 0,

(Du(y)− Du(x)) · (y− x)+ a|y− x |2 ≤ O(|y− x |3) for y ∼ x, u(x)= u(y)

if and only if
(κ1|Du|)(x)≥ a.

Indeed, to see this, first choose coordinates such that at x we have Du = (0, . . . , 0,
Dnu) and (Di D j u)1≤i, j≤n−1 is diagonal with

D1 D1u ≥ · · · ≥ Dn−1 Dn−1u.

For the “if” direction of the claim, choose y(t)= x+ te1+O(t2) such that u(x)=
u(y(t)), for t small. By Taylor’s theorem,(

Du(y(t))− Du(x)
)
· (y(t)− x)+ a|y(t)− x |2 = t2 D1 D1u(x)+ at2

+ O(t3),

giving D1 D1u(x) ≤ −a, which is the same as |Du|κ1 ≥ a. Indeed, from a well-
known and elementary calculation (see for example [Chang et al. 2010, § 2]),

κ1 =
−D1 D1u
|Du|
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at x . Hence |Du|κ1 ≥ a. The “only if” direction of the claim follows similarly.
We will make use of this correspondence in what follows.

Proof of Theorem 1.2. By assumption, κ1|Du| ≥ a > 0 on ∂�. It follows from
Theorem 1.1 and the discussion above that the level sets of u are all strictly convex.
Assume for a contradiction that κ1|Du| achieves a strict (positive) minimum at a
point x0 in the interior of �, say

(3-1) (κ1|Du|)(x0)= a− η > 0 for some η > 0.

We may assume without loss of generality that η < 1
6a. Indeed, if not then if x0

lies on the level set {u = c} for some c ∈ (0, 1) we can replace � by a convex ring
{c0 < u< c1} for c0, c1 with 0≤ c0 < c< c1≤ 1. We still denote by a the minimum
value of κ1|Du| on the boundary of this new �. For appropriately chosen c0, c1 we
have (3-1) and η < 1

6a. This changes the boundary conditions on ∂�0 and ∂�1 to
u = c0 and u = c1, but this will not affect any of the arguments.

Pick ε > 0 sufficiently small, so that the distance from x0 to the boundary of �
is much larger than ε, and in addition, so that ε1/3

� η.
Consider the quantity

Q(x, y)= (Du(y)− Du(x)) · (y− x)+ a|y− x |2−
a

6ε2 |y− x |4,

and restrict to the set

6ε = {(x, y) ∈ �̄× �̄ | u(x)= u(y), |y− x | ≤ ε}.

Suppose that Q attains a maximum on 6ε at a point (x, y). First assume that (x, y)
lies in the boundary of 6ε. There are two possible cases:

(1) If x, y ∈6ε with x and y in ∂� (note that since u(x)= u(y), if one of x, y is
a boundary point then so is the other), then since κ1|Du| ≥ a on ∂� we have

(Du(y)− Du(x)) · (y− x)+ a|y− x |2 ≤ O(ε3).

Hence in this case Q(x, y)≤ O(ε3).

(2) If |y− x | = ε then since κ1|Du| ≥ a− η everywhere,

Q(x, y)≤−(a− η)ε2
+ O(ε3)+ aε2

−
1
6aε2
=
(
η− 1

6a
)
ε2
+ O(ε3) < 0,

by the assumption η < 1
6a.

We claim that neither case can occur. Indeed, consider y = x0+ tv+O(t2) for t
small, where v is vector in the direction of the smallest curvature of the level set of
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u and x0 satisfies (3-1). Then since (|Du|κ1)(x0)= a− η,

Q(x, y)=−(a− η)|y− x0|
2
+ O(|y− x0|

3)+ a|y− x0|
2
−

a
6ε2 |y− x0|

4

= η|y− x0|
2
−

a
6ε2 |y− x0|

4
+ O(|y− x0|

3).

If |y−x0|∼ ε
4/3 say then Q(x0, y)∼ηε8/3

+O(ε3)� ε3 since we assume η� ε1/3.
Since Q here is larger than in (1) or (2), this rules out (1) or (2) as being possible
cases for the maximum of Q.

This implies that Q must attain an interior maximum, contradicting the argument
of Theorem 1.1. Here we use the fact that if ψ(t)= at − a/(6ε2) t2 then for t with
0≤ t ≤ ε2,

ψ ′(t)− 2|ψ ′′(t)|t = a(1− t/ε2)≥ 0. �

Remark 3.1. In [Chang et al. 2010] and also [Ma et al. 2011] it was shown that
when n = 3 the smallest principal curvature κ1 also satisfies a minimum principle.
It would be interesting to know whether a modification of the quantity (1-6) can
give another proof of this.
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