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NONSMOOTH CONVEX CAUSTICS
FOR BIRKHOFF BILLIARDS

MAXIM ARNOLD AND MISHA BIALY

This paper is devoted to the examination of the properties of the string
construction for the Birkhoff billiard. Based on purely geometric consid-
erations, string construction is suited to providing a table for the Birkhoff
billiard, having the prescribed caustic. Exploiting this framework together
with the properties of convex caustics, we give a geometric proof of a result
by Innami first proved in 2002 by means of Aubry—Mather theory. In the
second part of the paper we show that applying the string construction one
can find a new collection of examples of C2-smooth convex billiard tables
with a nonsmooth convex caustic.

1. Introduction

Let T' be a simple closed C'-smooth convex curve in the Euclidean plane. We
consider a Birkhoff billiard inside I". This simple dynamical system creates many
geometric and dynamical questions and reflects many difficulties appearing in
general Hamiltonian systems. Readers may refer to any textbook among the wide
variety written on the subject (e.g., [Katok et al. 1986; Kozlov and Treshchév 1991;
Mather and Forni 1994; Tabachnikov 2005]).

We will use the following nonstandard notations: the interior of the set bounded by
the simple closed curve y will be denoted by °, while ¥ denotes the compact y°Uy.
The length of the curve is denoted by Length(y). The convex hull of y is denoted
by Conv(y).

Definition 1. A simple closed curve y C I'° is called a convex caustic for ' if y
is a convex set and any supporting line for ¥ remains a supporting line for ¥ after
billiard reflection in I.

Every convex caustic y corresponds to an invariant curve r,, of the billiard ball
map. The curve r, C Ry x S! consists of all supporting lines to y. This curve
winds once around the phase cylinder and therefore is called rotational. We shall
denote its rotation number by p,,.

MSC2010: primary 37E30, 37E40; secondary 78 A05.
Keywords: string construction, convex caustics, Birkhoff billiard.
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In the original Birkhoff paper [1917] there was posed a conjecture that the
existence of a continuous set of caustics, being a very restrictive property, actually
provides an extreme rigidity on the shape of the curve I". The first result in this
direction was achieved in [Bialy 1993]. Our paper is motivated by recent progress
in the Birkhoff conjecture solution achieved in [Avila et al. 2016; Kaloshin and
Sorrentino 2016]. The crucial assumption in these papers consists in the existence
of convex caustics such that the rotation numbers of the corresponding invariant
curves form a rational sequence in the interval (0; %], converging to 0. It seems
natural to compare such a result with one proved by N. Innami [2002].

Theorem 2 [Innami 2002]. Assume that there exists a sequence of convex caustics
v, inside I" such that the rotation numbers p, of the corresponding invariant curves
tend to % Then T is an ellipse.

Originally, Innami’s arguments were based on the Aubry—Mather variational
theory. In the next section we present a simple geometric proof using string
construction. Yet, it remains a challenging question whether one can prove a more
general statement relaxing the requirement of convexity of the caustics.

Let us recall the string construction framework. Given a convex compact set
y bounded by y, and a number S > Length(y), define the curve I" as a union
of those points P such that the cap-body Conv(P U y) has boundary of length S.
Geometrically such a construction gives the set of all points traversed by the tip of
a nonelastic string of length S > Length(y) wrapped around y and stretched to its
full extent. The curve I" provided by such construction has y as its billiard caustic.
We shall refer to S as a string parameter of the caustic. A closely related so-called
Lazutkin parameter is defined as L = S — Length(y).

The string construction is widely known and can be easily proved to provide I
for smooth enough y. In fact it remains valid also in the more general case as it is
stated in the following theorem.

Theorem 3 [Stoll 1930; Turner 1982].

(1) For a given compact convex set ¥ and for every S > Length(y) the string
construction determines a C'-smooth convex closed curve T such that y is a
billiard caustic for I.

(2) If y is a convex billiard caustic for a C' curve " then T' can be obtained from
y by the string construction for some S.

Let us emphasize that the string construction is highly nonexplicit and makes
calculations difficult. A very important consequence of KAM theory, proved by
Lazutkin [1973; 1981] and Douady [1982], states the existence of convex caustics
near the boundary of a sufficiently smooth (at least C®) billiard table. On the other
hand, applying string construction to the triangle, one gets a billiard table which is
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Figure 1. A switched caustic string construction.

piecewise C? with jumps of the curvature and hence by [Hubacher 1987] cannot
have caustics near the boundary.

The scenario of destruction of caustics when one moves away from the boundary
towards the interior could be understood in principle by the analogy with wave
front propagation inside a convex curve [Mather and Forni 1994]. For example,
take the ellipse and consider the wave fronts as in the famous picture [Arnold 1990,
Figure 36]. For small distances the fronts remain smooth, but starting from some
critical value they start to develop singularities. However, nobody has observed
such a bifurcation in practice for caustics of convex billiards due to the lack of
integrable examples. On the other hand, nonconvex caustics exist, for instance, for
convex bodies of constant width, and were studied in [Knill 1998].

Motivated by the above discussion, the natural question about the existence
of nonsmooth convex caustics arises. More generally, it is natural to study how
irregular the convex caustic can be. In [Fetter 2012] a billiard table of class C? was
constructed which has a caustic of a regular hexagon. In this paper we were able to
construct the whole functional family of the examples of C? billiard tables having
nonsmooth convex caustics.

Theorem 4. There exist a one-parametric family of strictly convex nonsmooth
compact sets y and values of the string parameter S such that the curves I" obtained
by the string construction are C*-smooth.

We will use the following geometric idea (we use the complex notation x + iy
for points (x, y) in the plane). Start with a curve yy(¢) : [—1, 1] — C such that
w(—1)=A=—-1—-i, y(l)=iA=1—i and yy(¢) is symmetric with respect to the
vertical axis (i.e., i yo(—t) = in(t)) (see Figure 1). Construct y as a concatenation
of {i kyo},fzo. Parametrize y by the arc-length parameter s and choose the initial
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point in such a way that y(0) = A. We will denote the total length of y by 4S.
Then y (S) =iA.

The main idea is to choose the curve y and string parameter S in such a way
that the string construction will have the following properties:

* At the beginning (point P in Figure 1), the left part AP of the string remains
fixed at point A while the right part of the string unwinds from the arc (i A, i2A).

« At the moment when the left part of the string becomes tangent to y at the
point A (this corresponds to the point P onT) the right part reaches the point
i2 A and remains fixed after that. We will call this moment the switching of the
first kind.

o While the left part of the string winds around the arc (m) the right part
remains fixed at i”A (see Figure 1) until the moment when the vertex of the
string reaches the point i P. We will call this the switching of the second kind.

o D4 symmetry provides the whole picture.

Let us reemphasize, that the string construction, being a nonexplicit procedure,
typically does not provide any analytic expression for the table I" from a given y. In
the example [Fetter 2012], the construction is made explicit by fixing two end-points
on the string. The disadvantage of such a situation is the complete loss of any
flexibility, since the corresponding table may consist only of the elliptic arcs. We
propose another, more flexible yet explicit construction, fixing only one end-point
of the string and allowing another point to slide along the given curve y.

Structure of the paper. In the next section we will provide geometric arguments
for the proof of Theorem 2. Section 3 is devoted to the construction of the C? tables
with nonsmooth caustics. In Section 4 we will pose some open questions arising in
our considerations.

2. Geometric proof of Innami’s result

We will start with the following simple remarks.

Remark 5. If the billiard in I" has a convex caustic y with y° = & then I is either
an ellipse or a circle.

Indeed, the condition y° = @ for convex y means that y is either a point or a
segment. The rest follows from the string construction.

Remark 6. Recall that for any point P and for any convex body with nonempty
interior there exist exactly two supporting lines to the body passing through P.
Moreover if the convex caustic y has nonempty interior, then every supporting line
to y after reflection in I" at point P becomes the second supporting line to y from P.
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Indeed, assume that there exists a supporting line / to ¥ which is reflected to
itself at a point P € I". This means that / is orthogonal to I" at P. Let I’ be the other
supporting line to ¥ passing through P. Then by the definition of convex caustic,
the line [’ is also reflected to itself at the point P and hence is also orthogonal to I"
at P. Thus / and I’ coincide, which contradicts the assumption that / and [’ are two
different supporting lines to y.

Lemma 7. Let y be a convex caustic for I'. Then y° # & if and only if the rotation
L

Proof. If a convex caustic y has empty interior then, by the Remark 5, I' is
necessarily an ellipse (or a circle) and the invariant curve corresponding to ¥ has
rotation number % since it contains a diameter. Vice versa, any convex caustic with
nonempty interior has a rotation number strictly less than %, since otherwise the
invariant curve corresponding to the caustic would have a 2-periodic orbit, i.e., a
diameter, which is not possible due to Remark 6. O

number of the corresponding invariant curve is strictly less then

Let y,, be a sequence of convex caustics for I with the rotation numbers p,, € (0; %]
of corresponding invariant curves. By Lemma 7 we may assume that p, < % since
otherwise ¥, has empty interior and then I' must be an ellipse by the Remark 5.
Passing to a subsequence we can assume with no loss of generality that p,, is strictly
increasing, p, /! %

Lemma 8. Ler y; and y, be two convex caustics for U'. If the corresponding
invariant curves have rotation numbers py < pz, then y, C y;.

Proof. Assume that y; is not a subset of y”. Then there are only three possibilities:
M:y1Ny2=T; 2Ny #Sor(3): y1 Cy,.

In the third case one obviously has p; > p, contrary to the assumption of the
lemma. In the first and the second cases there necessarily exists a supporting line
to both ¥, and ¥,. Therefore, all billiard reflections in I" of this line are also
supporting lines for both ¥ and ;. This means that there exists a whole infinite
orbit lying in the intersection of the invariant curves r; and r, corresponding to y;
and y». But then p; must be equal to p;, since the rotation number is completely
determined by one orbit. U

Remark 9. The statement of Lemma 8 holds true also in the opposite direction
which will not be used below. Namely, > C y; implies p; < p2. As we already
mentioned in the proof, it is obvious that p; < p;. In addition p; cannot be equal
to pp. Otherwise there exist two disjoint graphs of r| and r, with the same rotation
number, invariant under the billiard map of the cylinder, which is impossible since
a billiard map is a twist map (see [Katok and Hasselblatt 1995, p. 428]).

Let {S,,} be the sequence of string parameters corresponding to the caustics ;.

Then by Lemma 8, S, is decreasing. Denote S = lim §,,.
n—odo
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Figure 2. A family of nested convex caustics with decreasing
string parameter.

Lemma 10. The boundary of the intersection set
o0
n=1

is a convex caustic for I with string parameter S.

Proof. The intersection set C is compact and convex. Moreover, it is easy to see
that d¢ is also a caustic with string parameter S. Indeed, this follows from the
following geometric consideration (see Figure 2). Fix a point P on I' and consider
the cap-bodies
K, = Conv(PUYy,), K = Conv(PUCQ).
Then, obviously, 00
KiCK.  K=[)Kn
n=1

and moreover
Length(dk,) = Sn — S = Length(dk).

In addition, since y, is a caustic then S, does not depend on P € I" (by Theorem 3).
Therefore, S also does not depend on P, and hence C reconstructs I" via string
construction. Thus d¢ is a caustic by Theorem 3. U

The last step in the proof of Theorem 2 consists in the following Lemma.
Lemma 11. The limit caustic 9¢c has empty interior.

Proof. First notice that it follows from continuity of the invariant curves and their
rotation numbers that the invariant curve corresponding to C has rotation number %
Then from Lemma 7 we conclude that d¢ has empty interior. (]

3. Nonsmooth caustic

The main idea of the proof of our result is to carefully choose the Lazutkin parameter
and the germ of the function y at the point A. While a vertex of the string slides in
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Figure 3. A switched caustic string construction.

the regime corresponding to the unwinding from y (s), its trajectory corresponds
to the smooth curve. Thus we have to take care of the smoothness of I" near only
two points corresponding to the switching moments of the first and second kinds
respectively. We will denote by I'(s) the part of I corresponding to the switching
of the second kind about the point A. The part of I corresponding to the switching
of the first kind about the point A will be denoted by I. The smoothness conditions
read as follows: all odd terms in the germs of I" and I have to be orthogonal to the
axis of the symmetry while all the even terms must be collinear with the axis of
symmetry. Indeed, let I'(s) be the curve symmetric with respect to the line / and
intersecting / at the point I'(0). Let R; be the reflection of the plane in the line /.
Differentiating the identity
RiI'(s) =T'(—s)
n times, at s =0, we get
R/(T™(0)) = (=1)"T"(0).

Coordinate formulation. Parametrize the curve y by the arc-length parameter s, so
that |y’(s)| = 1. Choose the initial point such that y (0) = A. Denote by « the angle
between y’(0) and the horizontal axis. Then one easily obtains a parametrization
for T and [ (see Figure 3):

L(s) = y(s) —t(s)y'(s),
[(s) =y (s) +1(5)y'(5),

where 7 (s) and 7(s) are some functions of s denoting the length of the right part
of the string near the point I"(s) and the left part of the string near the point ['(s)
correspondingly. Functions ¢ and 7 can be found from the condition of the string to
be unstretchable. We will denote iA = B.

IT(s) + Bl +[ty' ()] —s = 2¢,

(D

(2) . . .
IT(s)+ Al +1ty'(s)| +5 =2¢,
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where £ = 1/sin« and = V2/sin(r /4 — «). Simple computations yield:

1(s) = &, with p(s) = 3((s +20)> — |y (s) + BI?),
3) pA(s)
(s) = —%, with p(s) = 1((s = 20> — |y (s) + A]?).

Finally, introducing (3) into (1) we get

p (S) / - ﬁ(S)
Y (s), )=y -5 v
p'(s) P'(s)
Orient the curve y as it is shown in Figure 3. We will use the complex notation
for the coordinates of the points. Then smoothness conditions for the n-th derivative
of I read

"(s).

“ L) =y()—

) RGE'TPO0) =0,  RGET'T0) =36"T00)).

Here N and 3 stand for the real and imaginary part of the complex number. For the
curve y(s) we get the following parametrization:

N

(6) y(s):A—i—/exp{i((p(t)—a)}dt, where ¢(1) =) gut".
0 n=0

Thus ¢g = 0, and ¢, corresponds to the (n—1)-st derivative of the curvature «.
Lemma 12. The smoothness conditions in (5) for n = 1 are always satisfied.

This lemma follows from the fact that any C° caustic produces a C! table via
string construction. However, we present a more analytic proof of this result for
the sake of completeness.

Proof. Switching of the second kind. From (4) we get

Py p
=(1=(5) )y =L
Therefore the conditions in (5) read R(p”y’ — p’y”) = 0. We will denote z; - 7 :=

%Eﬂ(miz). Using (3) we get
p'=—(A+B)-y'+2¢, p'=—(A+B)-y".

From (6) it follows that y” = ixy’ thus p”y’ — p’y” can be written as
Py = p'y" = 3(=R(A+ B)iky)y' +R(A+ By )ixy') —4Liky')
—ik(A+ B —20y).

Thus
Ry —p'y") =kI(A+ B =2Ly").
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The latter is identically zero since £y’(0) = I'(0) — ¥ (0) and so JI(£y’) = IJ(A)
(see Figure 3).

Switching of the first kind. Similarly, the smoothness conditions in (5) read

q{( ’\// I _ ’\/ //) — S(p// I _ ’\/ //)

where A
/\=_(2A).y/_2E’ ﬁ”:—(ZA)-]/”

and so

Py = py" = (RAiky"y +RAY ) iky' )+ 2Liky ') =2ik(A +iy").
The real part of the right-hand side of the latter is always equal to the imaginary
part by the definition of £. O

The two conditions in (5) for n = 2 provide, via computations similar to the
above, two equations for parameters ¢; and ¢, with coefficients depending on «:

(plz sina — ¢ Sin® cos o — ) COS &

’

sin o cos? o

@1(cos2a 4+ 2(sina — cos &) @1) — 2(cos o + sin &) ¢p B

(cosa —sina) (1 + sin 2w)
The latter system has a solution,

(7) Q1= 2 cos (1 + sin2a), = —% cos? 2a sin 2c,

which provides a family of germs for y, depending on the parameter «, guaranteeing
the C2-smoothness for the table T.

Next we will need to construct the whole curve y providing the needed phenome-
non in the string construction. Recall that our geometric idea was based on the con-
struction of the curve y4 (see Figure 1). Thus we need to present a convex curve of
length S, starting at A and ending at i A, having tangent slope —« at the left end and
being symmetric with respect to the vertical axis. We define y from ¢ through (6).
In order to finish the construction we have to prove the following theorem.

Theorem 13. There exists a strictly monotonically increasing function ¢(s) sat-
isfying the following three conditions: (1) ¢(s) has the glven germ (T)ats =0,
2) 9o(S/2) = @ and ¢2,(S8/2) =0 forn > 1, and (3) fo cosp(s)ds =1.

Proof. The Borel theorem states that every power series is the Taylor series of
some smooth function. Obviously, using cutting off, one can find a smooth function
having a given Taylor series at two given points. Thus there exists a nonempty set
W of C* functions having given germs at s = 0 and s = §/2. Since for @ < 7 the
term ¢ in (7) is positive, one may assume without loss of generality that W consists
of strictly monotonically increasing functions. Therefore the only condition which
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ye

=% i—¢

Figure 4. Construction of the solution.

has to be satisfied is Theorem 13(3). Taking a small enough e-step in s we can
ensure ¥ (¢) < 155 for all ¥ € W. Next we choose two functions ¥ and ¥, from
the set W as in Figure 4. That is, ¥ (s) is almost equal to « for s € (¢ 46, S/2—6)
and ¥_(s) is almost equal to () for s € (g, §/2 —§) for small enough 5. We will
look for ¢ as a convex combination ¢(s) = [{_(s) 4+ (1 — )y (s). Therefore ¢(s)

obviously satisfies conditions 1 and 2. If we may choose 1+ in such a way that

5/2 §/2
(8) (S/2)cosa</cos(w(s)—a)ds<1 and S/2>fcos(w+(s)—a)ds>1
0 0

then there exists / such that /OS/ 2 cos(p(s))ds = 1, thus satisfying condition
Theorem 13(3). Hence it is sufficient to check that the conditions in (8) can be
satisfied for an open set of parameters «. Recall that by the construction S = 20-2¢.
From the first inequality in (8) we obtain, since @ < Z,

A 2 1 1

L—10= - — — < .
coso—sino  sinoe  coso

This condition can be interpreted as follows: the length of the curve y cannot
exceed the sum of the lengths of the segments of the two tangent lines from point P
to y (see Figure 1). The latter inequality is satisfied whenever tan 2« < 1 or

€)) a< %.

The second condition in (8) has the following geometric interpretation: the length
of y cannot be less than the distance between points A and B. This yields:

3sina —cosa > cosa sina — sin’ .

Since the latter is satisfied for & = & we have found an open set of & for which one
can find appropriate functions {_ and 4 shown in Figure 4. O

Remark 14. Since the conditions in (5) provide two conditions on ¢, to obtain
C? of T one gets four equations for i, ¢, @3 and «. Although the number
of parameters matches the number of equations, the corresponding value of «
violates (9). Since (9) arises from the construction based on square symmetry, there
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Conv (v, Up) e~

Figure 5. The convex hull of two intersecting caustics is also a caustic.

is a hope that starting from other regular polygons one can obtain an inequality
which can be satisfied. However, we haven’t found any such examples.

4. Open problems

Here we want to highlight some general questions which are ultimately related to
the string construction. Since the string construction is implicit these questions turn
out to be nontrivial.

Question 15. Is it possible to have two convex caustics y; and y, of I such that
neither of them is a subset of the interior of the other?

In such a case y; and y» must have the same rotation number since there is a line
tangent to both of the caustics. Moreover it is obvious that | and Y, cannot be
disjoint. So the question is if it is possible that two convex caustics have nontrivial
intersection. In such a case their convex hull is also a caustic. One can strengthen
the question:

Question 16. Is it possible for a I which is symmetric with respect to a certain
axis to have a convex caustic C which is not symmetric with respect to this axis?

For example one could imagine two caustics forming a rounded Star of David
(Figure 5). The answer to the quantum analog of this question is positive: for a
symmetric domain the Dirichlet eigenfunction can be nonsymmetric. We could not
however decide if such a counterexample would be possible in the original setting.

Question 17. How irregular a convex caustic can be compared to a regular boundary
curve I'?

Question 18. Let I be a billiard table different from a circle and having a convex
caustic y. For every point P € I', denote by P_, and P the tangency points of the
caustic y with tangent lines to y passing through P. Is it possible that the length of
the arc of y between P_ and P, does not depend on P?
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CERTAIN CHARACTER SUMS AND
HYPERGEOMETRIC SERIES

RUPAM BARMAN AND NEELAM SAIKIA

We prove two transformations for the p-adic hypergeometric series which
can be described as p-adic analogues of a Kummer’s linear transformation
and a transformation of Clausen. We first evaluate two character sums, and
then relate them to the p-adic hypergeometric series to deduce the trans-
formations. We also find another transformation for the p-adic hypergeo-
metric series from which many special values of the p-adic hypergeometric
series as well as finite field hypergeometric functions are obtained.

1. Introduction and statement of results

For a complex number a, the rising factorial or the Pochhammer symbol is defined
as (@)p=1and (a)y =a(a+1)---(a+k—1), k> 1. For a nonnegative integer r,
and a;, b; € C with b; ¢ {..., =3, =2, —1}, the classical hypergeometric series
r+1F, is defined by

ai, a Ay (@i (arsDe Ak
F R o B Y Dk M+ Dk A™
! ( b ) g (g (b kU

which converges for || < 1. Throughout the paper, p denotes an odd prime and
[, denotes the finite field with ¢ elements, where g = p’, r > 1. Greene [1987]
introduced the notion of hypergeometric functions over finite fields analogous
to the classical hypergeometric series. Finite field hypergeometric series were
developed mainly to simplify character sum evaluations. Let F; be the group
of all multiplicative characters on F;. We extend the domain of each y € F; to [y,
by setting x (0) = O including the trivial character . For multiplicative characters
A and B on [, the binomial coefficient (g) is defined by

Ay B(—1 _ B(~1 _
(1-1) (B>:: (q ) J(A. B) = (q )ZA(x)B(l—x),

xel,

MSC2010: 11580, 11T24, 33E50, 33C99.
Keywords: character sum, hypergeometric series, p-adic gamma function.
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where J(A, B) denotes the usual Jacobi sum and B is the character inverse of
B. Let n be a positive integer. For characters Ay, Ay, ..., A, and By, By, ..., B,
on [F,, Greene defined the 11 F;, finite field hypergeometric functions over [, by

Ao, A1, ..., Ay ) 9 <A0X)(A1X> (AnX)
”“F”< Bi.. .... B, |" g q—1 Z X Bix B x x(x)-

xeFy

Some of the biggest motivations for studying finite field hypergeometric functions
have been their connections with Fourier coefficients and eigenvalues of modular
forms and with counting points on certain kinds of algebraic varieties. Their links
to Fourier coefficients and eigenvalues of modular forms are established by many
authors, for example, see [Ahlgren and Ono 2000; Evans 2010; Frechette et al.
2004; Fuselier 2010; Fuselier and McCarthy 2016; Lennon 2011b; McCarthy 2012b;
Mortenson 2005]. Very recently, McCarthy and Papanikolas [2015] linked the finite
field hypergeometric functions to Siegel modular forms. It is well known that finite
field hypergeometric functions can be used to count points on varieties over finite
fields. For example, see [Barman and Kalita 2013a; 2013b; Fuselier 2010; Koike
1992; Lennon 2011a; Ono 1998; Salerno 2013; Vega 2011].

Since the multiplicative characters on [, form a cyclic group of order g — 1,
a condition like ¢ = 1 (mod £) must be satisfied where £ is the least common
multiple of the orders of the characters appearing in the hypergeometric function.
Consequently, many results involving these functions are restricted to primes in
certain congruence classes. To overcome these restrictions, McCarthy [2012a;
2013] defined a function ,G,[-- -], in terms of quotients of the p-adic gamma
function which can best be described as an analogue of hypergeometric series in
the p-adic setting (defined in Section 2).

Many transformations exist for finite field hypergeometric functions which are
analogues of certain classical results [Greene 1987; McCarthy 2012c]. Results in-
volving finite field hypergeometric functions can readily be converted to expressions
involving ,G,[---]. However these new expressions in ,G,[ - --] will be valid
for the same set of primes for which the original expressions involving finite field
hypergeometric functions existed. It is a nontrivial exercise to then extend these
results to almost all primes. There are very few identities and transformations for the
p-adic hypergeometric series ,G,[ - - - |, which exist for all but finitely many primes
(see for example [Barman and Saikia 2014; 2015; Barman et al. 2015]. Recently,
Fuselier and McCarthy [2016] proved certain transformations for ,G,[ - - - 1,, and
used them to establish a supercongruence conjecture of Rodriguez-Villegas between
a truncated 4 F3 hypergeometric series and the Fourier coefficients of a certain
weight four modular form.

Let x4 be a character of order 4. Then a finite field analogue of » F; ( 1/4, 3/ 4 | x)
is the function , F'; ( X4 X4 | x) Using the relation between finite field hypergeo—
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metric functions and ,, G, -functions as given in Proposition 3.5 in Section 3, the
function 2G2[ 1(/)4’ 3(/)4 | %]q can be described as a p-adic analogue of the classical
hypergeometric series o F 1( 174, 3{4 |x) In this article, we prove the following
transformation for the p-adic hypergeometric series which can be described as a
p-adic analogue of the Kummer’s linear transformation [Bailey 1935, p. 4, Equa-
tion (1)]. Let ¢ be the quadratic character on [,.

Theorem 1.1. Let p be an odd prime and x € . Then, for x #0, 1, we have

RN 13
e B A L T W I A Ly
2 2|:0’ 0 x]q P(—=2)2 2[0’ 0 1_XL

We note that the finite field analogue of Kummer’s linear transformation was
discussed by Greene [1984, p. 109, Equation (7.7)] when ¢ = 1 (mod 4).
We have ¢(—2) = —1 if and only if p =5, 7 (mod 8). Hence, using Theorem 1.1
1

for x = 7, we obtain the following special value of the ,G>-function.

Corollary 1.2. Let p be a prime such that p =5, 7 (mod 8). Then we have

1 3
(1-2) 202[ Z‘_) (Z) 2} =0.
p

If we convert the , G»-function given in (1-2) using Proposition 3.5 in Section 3,
then we have , F’ 1( X4 )f; | %)p =0 for p = 5 (mod 8) which also follows from
[Greene 1987, Equation (4.15)]. The value of 2G2[ 1(/;" 3(/)4 | 2]p can be deduced
from [Greene 1987, Equation (4.15)] when p = 1 (mod 8). It would be interesting
to know the value of ,G5[ 1(/;" 3(/)4 | 2]p when p =3 (mod 8).

The following transformation for classical hypergeometric series is a special case
of Clausen’s famous classical identity [Bailey 1935, p. 86, Equation (4)]:

11 13 \2
(1-3) B 222 \x —(1-x) 2R (%8 .
1, 1 1 1x—1

A finite field analogue of (1-3) was studied by Greene [1984, p. 94, Proposition 6.14].
Evans and Greene [2009a] gave a finite field analogue of the Clausen’s classical
identity. We prove the following transformation for the , G, -function which can be
described as a p-adic analogue of (1-3). Let é be the function defined on [, by

1 ifx=0;

o) = {o if x £ 0.

Theorem 1.3. Let p be an odd prime and x € [,. Then, for x #0, 1, we have

111 i
202 2 |
363[0, 0, 0 ‘x]

103 x—17?
=¢(l—x)-,G 4’4‘— —p-o(l—x).
p(l—x)-2 2[0’0 P } p-e(l—x)

p p



274 RUPAM BARMAN AND NEELAM SAIKIA

We also prove the following transformation using Theorem 1.1 and [Greene
1987, Theorem 4.16].

Theorem 1.4. Let p be an odd prime and x € . Then, for x # 0, x1, we have
1

13 (14x)? I
~ 4° 4 _ _ 20 2
(1-4) sz[Q : (rjzg]q—w( mw(r+x»Gz[Q 2| }4

The following transformation is a finite field analogue of (1-4).

Theorem 1.5. Let p be an odd prime and g = p” for some r > 1 such that g =
1 (mod 4). Then, for x # 0, £1, we have

3 1— 2

¢ (1+x)2)q=<p(—2)<p(1+x)2F1(‘p’ ‘2’ ‘x>q‘

Using Theorems 1.4 and 1.5, one can deduce many special values of the p-adic hy-
pergeometric series as well as the finite field hypergeometric functions. For example,
we have the following special values of a , G>-function and its finite field analogue.

Theorem 1.6. For any odd prime p, we have

0 if p=3 (mod4);
x+y+1
—2xp(6)(—=1)" 2 ifp=1 (mod4), x>+ y> = p, and x odd.
For p =1 (mod 4), we have

x+y+1
2

’

3
, 1 2x¢(6)(—1
(0 1|y (=D
& 9 p p

where x*> 4+ y? = p and x is odd.
We also find special values of the following » G,-function.

Theorem 1.7. For g = 1 (mod 8) we have
6243 2} { X4 X }
OVEES V| p6+ 1242 .
’(—Zﬁjﬁ) q q9( )(go)+<go)

For g =11 (mod 12) we have
(2257
-2+43) 1,

1

_ 4
(1-5) 2G2|: 0.

O Blw

(1-6)

i8]

Q

[\S]
1

-
O W
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For g =1 (mod 12) we have

13 2
an el i [(525) ], = (BRE )+ (D)}

The following theorem is a finite field analogue of Theorem 1.7.

Theorem 1.8. For g =1 (mod 8) we have

(1-8) ZFI(X“’ X ‘(‘Zﬁﬂ)z) :¢(6i12\/§){():04)+<)j)}.
q

€ 6243

For g =1 (mod 12) we have

3 2
Xar X3 ‘ —2i¢§)) _ <8:l:5\/§ (@) ((p)
1-9 F =o| ——= + .
(-9 2 1( e ( 6=v3 ) ), ~ "\ az6v3 ) |\ s X3
In Section 3 we prove two character sum identities and then use them to prove

Theorems 1.1, 1.3, and 1.4. We also prove Theorem 1.5 in Section 3. In Section 4
we prove Theorems 1.6, 1.7 and 1.8.

2. Notations and preliminaries

Let Z, and Q,, denote the ring of p-adic integers and the field of p-adic numbers,
respectively. Let @ p» be the algebraic closure of Q, and C,, the completion of
Q,. Let Z, be the ring of integers in the unique unramified extension of @, with
residue field F,. We know that x € F; takes values in u,—1, where p,_ is the
group of (¢—1)-th roots of unity in C*. Since Z; contains all (¢—1)-th roots of
unity, we can consider multiplicative characters on [ to be maps x : F; — Z7.
Letw: I]:j; — Zj; be the Teichmiiller character. For a € I]:qx, the value w(a) is just
the (¢—1)-th root of unity in Z, such that w(a) = a (mod p).

We now introduce some properties of Gauss sums. For further details, see [Berndt
et al. 1998]. Let ¢, be a fixed primitive p-th root of unity in Q p- The trace map
tr:F, — [, is given by

r—1

tr(e) = a + o +011’2 4o taf
For x € E; the Gauss sum is defined by
g =Y x ()

xely,

Now, we will see some elementary properties of Gauss and Jacobi sums. We let T’
denote a fixed generator of Fj.

Lemma 2.1 [Greene 1987, Equation 1.12]. Ifk € Z and T* # ¢, then

g(THg(T™) = qT*(-1).
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Let 6 denote the function on multiplicative characters defined by

5(A) = il if Ais .the trivial character;
0 otherwise.
Lemma 2.2 [Greene 1987, Equation 1.14]. For A, B € F\ we have
g(A)g(B)
J(A,B)=—+——+4+ (@ —1)B(—1)§(AB).
8(AB)

The following are character sum analogues of the binomial theorem [Greene
1987]. For any A € F; and x € F, we have

_ A
@1 A =0 =3+ 15 37 (7 )xwo,
xeFy
(2-2) A(lJmc):a(x)Jrqu1 > (;‘)X(x).
x€Fg

We recall some properties of the binomial coefficients from [Greene 1987]:

(3)-(%)

(=()=3 4o

Theorem 2.3 [Berndt et al. 1998, Davenport—Hasse relation]. Let m be a positive
integer and let g = p" be a prime power such that ¢ = 1 (mod m). For multiplicative
characters x and  in F;, we have

[T stxw)=—g@™wm™) [ s0.
x"=e x"=¢e

Now, we recall the p-adic gamma function. For further details, see [Koblitz
1980]. For a positive integer n, the p-adic gamma function I', () is defined as

Lyy:=0" [

O<j<n,ptj

and one extends it to all x € Z, by setting I',(0) := 1 and

Ip(x) = x}llinx Iy (xn)
for x # 0, where x, runs through any sequence of positive integers p-adically
approaching x. This limit exists, is independent of how x, approaches x, and
determines a continuous function on Z, with values in Z;. For x € Q we let | x|
denote the greatest integer less than or equal to x and (x) denote the fractional part
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of x, i.e., x — [ x], satisfying 0 < (x) < 1. We now recall the McCarthy’s p-adic
hypergeometric series ,G,[ - - - ] as follows.

Definition 2.4 [McCarthy 2013, Definition 5.1]. Let p be an odd prime and ¢ = p”,
r > 1. Lett € F,. For a positive integer n and 1 <k <n, let ay, by € QNZ,. Then
the function ,G,[ - - -] is defined by

a17 aZs AR | an R
”G”[bl, by, .... b, ’L‘_
q—2 n r—l1 i
-1 an —a - —b a—1
_IZ(_I) (’)XHH( e p') J L(=bep®) IJ
q a=0 k=1i=0
Iy (((ax —

P )) Ly (b + 245) ")
Tp(axp')) Iy (= bkp D

Let m € C, be the fixed root of xP~! 4+ p = 0 which satisfies

T =¢,—1(mod (¢, — 1)?).

Then the Gross—Koblitz formula relates Gauss sums and the p-adic gamma function
as follows.

Theorem 2.5 [Gross and Koblitz 1979]. Fora € Z and q = p’,

Pyl i
sy =" B T (22)

i=0
The following lemma relates products of values of p-adic gamma function.

Lemma 2.6 [Barman and Saikia 2014, Lemma 3.1]. Let p be a prime and g = p
ForO<a<qg—2andt > 1with p{t, we have

m)l—[F< tpa)}i-h( ) nl—[r<p(1+h) qpial>)_

We now prove a lemma that will be used to prove our results.

Lemma 2.7. Let p be an odd prime and g = p". Then for 0 < a < q — 2 and
0<i<r—1wehave

oo | o | 2| - e )
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Proof. Let

_ i
L 4"PJ = 4k +,
qg—1

where k, s € Z satisfy 0 <s < 3. Then

—dap’
(2-6) 4k +s < T <4k+s+1.
q_
If p' =1 (mod 4), then (2-6) yields
—2ap’ 2 if s =0, 1;
27 ap' | _ k %s 0,1;
qg—1 | 2k+1 ifs=2,3,
f " ifs=0,1,2;
(2-8) <p_>_ ap' | _ [k ifs 0,1,2
4 qg—1] k+1 ifs=3,
3p' ! k if s =0;
(2-9) <i>_ i 1 s
4 qg—1] k+1 ifs=1,2,3.

Putting the above values for different values of s we readily obtain (2-5). The proof
of (2-5) is similar when p’ = 3 (mod 4). O

3. Proofs of the main results

We first prove two propositions which enable us to express certain character sums
in terms of the p-adic hypergeometric series.

Proposition 3.1. Let p be an odd prime and x € ;. Then we have

; ()¢l =2y +xy) =¢<2x>+% Z[F; () ()
q X€ ;

13
= —p(-2 4 4 .
o >2G2[0 0\ L

, X
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Proof. Applying (2-3) and then (1-1) we have

5 (7)) = X (G

xeFy xeFy

= @ Z (wxx)x(%x)J(wxz, %)

xeFy

_e=Dh M) (7 ) (5 )extorena-»

q
xeFy
yel,

_eb Y el - y)((pXX )x (—

q ~
xeFg
yeky,y#1

Now, (2-1) yields

= () (E)
~ \ X X 4

xeFy

_o(=D(@—1) xy?
= ) w(y)w(l—y)(w(1+4(l_y)>—3<

1 yely, y#l1

— Dep(—1 2
~OEDEED T o -1+ 50

4 yeFgy#1
Since p is an odd prime, taking the transformation y — 2y we get
2 ()G)
~ \ X X 4
xeFg

= =D S g = 214

ye[Fq
)'?57

Z PNl —2y+xy?)

vel,
y#3

_lg— 1)<p(

— De(=2 —x)(g —1
_ );0( )Zgo(y)w(l—2y+xy2)—(p( x)(g—1)

q vel,

from which we readily obtain the first identity of the proposition.

Xy2

4(1—y)

q2

279

)

)

4(1—y)

’
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To complete the proof of the proposition, we relate the above character sums to
the p-adic hypergeometric series. From (1-1), Lemma 2.2, and then using the facts
that 5(x) =0 for x £ e, 6(¢) =1 and g(e) = —1, we deduce that

a= X () ))

x€Fy
=% > T 0 0x(3)
xeFy
_ 1 8@xDeEx) (x 88 ( x
q? X%% g(p) ( ) XEF; 8(®) ( 4)8(”)
1o 8ex)gPX) (x\_q4-
g’ ZA 8(¢) X(4)

Now, taking x = »® we have

1 2 0(0a0™)g2 @) L x\ -
:_Zzo g(p) w(1>_ 2 P

Using the Davenport—Hasse relation for m =2 and ¥ = w>* we obtain

20y — (@)™ (4)g(p)

g(pw (@)
Thus,
1 — 2 8@ @) g—1
=_22 ()@ (4) pros e ¢(=x).
a=0

Applying the Gross—Koblitz formula we deduce that

o (1) () P~ D 1—[ Do((Z4ENr2(22) g -1
—2api
i D(52F)

1y

A=
q2

L

Il
=}

a

where
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Using Lemma 2.6 for ¢t =4 and ¢ = 2, we deduce that

S o e T PG 2P DTG = ) D3
el () ()
e

Finally, using Lemma 2.7 we have

O Blw

-1 1
AA::—-q -2(;2[ 42

‘1] qg—1 (—x) O
—| - o(—x).
PE 0, . 2

X q
Proposition 3.2. Let p be an odd prime and x € F,. Then, for x # 1, we have
q> oxX*\ (Px
> e =2y +0y) =200 = D+ —— 3 (Y1) (Y5 xw -1

—1 x J\x?
yE[Fq q XGIF:;

Ly
=—G ’ .
2 2[ 0, 01— x]
q
Proof. From (1-1) and then using Lemma 2.2, we have

a0 (2)(55) =2 s s

X X

1 e(x
_ i )[g(fpx )g(X) +(q_1)x(_1)5(¢x)]
q 8(px)

[g(wx)g(iz)
| 8P0)8X7)

—— +(q — 1)8(<p7<)].
glex)

From Lemma 2.1, we have g(¢)* = qe(—1). Since §(x) =0for x #e, d(e) =1
and g(e) = —1, (3-1) yields

G2 B=) (wfz)(iﬁ)x(x— D

x ek
2o (7)o (72 -1
:q_12 3 8lpx ;ip(;;g(x )x(l—x)—quz o(x — 1),
xeFy

Using Lemma 2.2 and then (1-1) we obtain

2 -2 2
(3-3) 8lexIe(X?) _ ((px )

g(p) x*
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and

8(@)g(x) %

SO -1
8(pXx) ( )(X

From (2-4), we have (¥) = —_. Hence, (3-3) and (3-4) yield

(3-4) ) — (@ = Dx (=15,

—\o(52
(3-5) Z 8px*)8(8 (X )X(l—x)
x €F,

8(oXx)
=Z(¢XX;>< Yt ==L 3 xix= (% ot
xek) xeFy
-3 (‘”X"5>(§)x<x—l>—"%(‘Dw—1>
x €k
- (A0)
X€lq

Applying (1-1) on the right-hand side of (3-5), and then (2-2) we have

x(I—x)

Z gexDe(X)g(x?
g(wx)
x€elF q

o Z (;’j)x(x — Dox (x>l —

x kg
yel,
1 ¢ (x—1y*"\ , ¢—1
Tq Z go(y)(x>x( (1—y)2 )"‘ 7 p(x—1)
elFy
)’E)[(anY#l
- [ <1 (x—1>y2) <(X—1)y2>} q—1
q2 yeu;#l q)(y) % (1 _ y)2 (1 _ y)z q2 gﬂ(x )
- 2y +xy
vel,
y#l

Adding and subtracting the term under summation for y = 1, we have

2y +xy?).

x(1—x) =12

g(ex® (g%
3-6
(-0 Z g(px)
x €l q

vel,

Combining (3-2) and (3-6) we readily obtain the first equality of the proposition.
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To complete the proof of the proposition, we relate the character sums given
in (3-2) to the p-adic hypergeometric series. Using the Davenport—Hasse relation
form =2, ¥ = x>and m =2, ¥ = ¥, we have

SUNEDXA 1 om) = SFE@IX@)
g(x?) g0

respectively. Plugging these two expressions into (3-2) we obtain

glox?) =

4 —1
=500 ¢’
x€ly

Now, considering x = »“ and then applying the Gross—Koblitz formula we obtain

q—2 r—1 r *4(1Pi F2 d_,Di
B=L2 wa(l_x)a3a(4)n(17—l)ot1_[ p(< q—1 )_)za;’i«q—l» 2(q l)w(x D,
E— i=0 Ly (MT» ¢’
where
r—1 ; ; ]
_ i i _ i
«=LAZE ) 2 5) - (T2
; q—1 q—1 q—1
i=0
Proceeding in a similar way to that shown in the proof of Proposition 3.1, we deduce:
g—1 13 1 -1
B=— 2G| A A | —— 1 : O
q2 0, 0 11—x], q>

Before we prove our main results, we now recall the following definition of a
finite field hypergeometric function introduced by McCarthy [2012c].

Definition 3.3 [McCarthy 2012c, Definition 1.4]. Let Ao, Ay,...,A,,B1,B>,..., B,
be in F;. Then the , 41 F,(---)* finite field hypergeometric function over F, is
defined by

Ag, Ay, ..., A
n—HFn( 0 1 n

By, ..., By

L840 18BN e

E[FX i=0

The following proposition gives a relation between McCarthy’s and Greene’s

finite field hypergeometric functions when certain conditions on the parameters are
satisfied.
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Proposition 3.4 [McCarthy 2012c, Proposition 2.5]. If Ay # ¢ and A; # B; for

1 <i <n,then
* n —1
_ A,‘ AO, Al, ) An
x)q_[l. 11<B"> }"*1’7"( Bi. ... B, 1"),
1=

T G

McCarthy [2013, Lemma 3.3] proved a relation between ,,41 F,(- - - )* and the
p-adic hypergeometric series ,G,[ - --]. We note that the relation is true for [,
though it was proved for [, in [McCarthy 2013]. Hence, we obtain a relation
between ,G,[ - - - ] and the Greene’s finite field hypergeometric functions due to
Proposition 3.4. In the following proposition, we list three such identities which
will be used to prove our main results.

Proposition 3.5. Let x # 0. Then

(3-7) 2G2|:E_1‘): (%) x_q=—Q~2F1(X4’ )f ’%)q;
l’ 1 T ¢, ¢ |1
(3-8) 262[3, 2 X_q=—Q'2F1< ’ \;)q;
U B T B 0. 9. 9|1
B0 e g g ] =en(" L),

We note that (3-7) is valid when g = 1 (mod 4).

Proof. Applying [McCarthy 2013, Lemma 3.3] we have

1

3 3
a X4 X3 | LY _ i1 ‘
(3-10) 2F1< ‘ ‘x>q_2G2[0, o1+

From (2-4), we have (’f )= ’71 Using this value and Proposition 3.4 we find that
x4 X3 |1 1 X4 Xi | 1\*

(3-11) i ( 1), =2 ( ).
& X/q q & X/q

Now, combining (3-10) and (3-11) we readily obtain (3-7). Proceeding similarly
we deduce (3-8) and (3-9). This completes the proof. J

We now prove our main results.

Proof of Theorem 1.1. From Proposition 3.1 and Proposition 3.2 we have

) 1 3.1 13 1
> 0(e(1—2y+xy?) = —p(=2)2G,| ¥ 4 \— = —G,| ¥ 4 \ ,
0, 0 |x 0, 0]1—x
yely, q q

which readily gives the desired transformation. U
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Proof of Theorem 1.3. From [Greene and Stanton 1986, Equation 4.5] we have

612 p(~ ) (* ¥ M

= o) f)?+22—

u—]

(1)

—u),

where u = x/(x — 1), x # 1 and

=2 3 ()(5)x(3)

—_—

x€F,

From (3-9) and (3-12), we have

(3-13) p((1 ;;t)/u) G3[(2)’(%) é‘u;I]P
— o) f@? +225
Now, Proposition 3.1 gives
(3-14) fw) = _‘”(_”)—1-262[%’ : 1] .
» » 0.0 lul,

Finally, combining (3-13) and (3-14) and then putting u = -*; we obtain the desired
result. This completes the proof of the theorem. ([l

Proof of Theorem 1.4. Let A= B = ¢ and x # 0,£1. Then [Greene 1987,
Theorem 4.16] yields

p(x(1+x))

(3-15) zFl(“” f ‘x) _ o=

S O )

X

xelf;

+@(1+x)
q

Now, using Proposition 3.1 we have

2
10 3 (%)) )

x€Fy

. oq—1 ( —4x ) q—1
- 2 ¢ (1_|_x)2

O Blw

2
‘ - :xX) i|q.
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Applying Theorem 1.1 on the right-hand side of (3-16) we obtain

2
(3-17) Z (¢))(< )(wxx )X ((1 j—cx)Z)

xekg 1 3 2
qg—1 qg—1 7, > 1 (+x)
=— —x)— —2)-2G,| 47 4 .
7 ¢(—x) 7 P(=2) -2 2|:0, 0l a—x2),
Combining (3-15) and (3-17) we have
(1+x)?

13
(3-18) 2G2[4’ 4

— o — . ¢, ¢
0, 0 (l_x)zL— qe(—=2)p(1+x) 2F1( . ‘x)q,

which completes the proof of the theorem due to (3-8). (]

Proof of Theorem 1.5. Let g = 1 (mod 4). Then we readily obtain the desired
transformation for the finite field hypergeometric functions from (1-4) using (3-7)
and (3-8). O

4. Special values of ,G[ - - - ]

Finding special values of hypergeometric function is an important and interesting
problem. Only a few special values of the , G, -functions are known; see for example
[Barman et al. 2015]. Therein, we obtained some special values of ,G,[ - - -] when
n=2,3,4. From (3-18), for any odd prime p and x # 0, £1, we have

13 (14x)? ,
w0 e § 5] = meeepeasn (7 ]),

Values of the finite field hypergeometric function ;, Fj ( A4 |x) are obtained
for many values of x. For example, see [Barman and Kalita 2012; 2013a; Evans
and Greene 2009b; Greene 1987; Kalita 2018; Ono 1998].

Proof of Theorem 1.6. Let A € {—1, %, }. If p is an odd prime, then from [Ono
1998, Theorem 2] we have

0, ¢ 0 if p =3 (mod 4);
ZFI( p ‘X)p 1 2™ it p=1(mod4), x2+y2 = p, and x odd.
p

Putting the above values for A = % 2 into (4-1) we readily obtain the required values
of the »G,-function.
: ‘ 9} .
q

Let ¢ =1 (mod 4). Then from (3-7) we have
From the above identity we readily obtain the required value of the finite field
hypergeometric function. This completes the proof of the theorem. (]

)
™
/N
=
i
=
A~
O —
N——
_
|
|
| —
)
Q
)
| — |
o=
O BIw
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Corollary 4.1. Let p =1 (mod 4). We have
Xy, (0 2x(=)TT
< © ) + ( 1% ) - f
where x> + y? = p and x is odd.

Proof. From Theorem 1.6 and [Barman and Kalita 2013a, Theorem 1.4(i)] we have

9

<X4> + (X2> _ 2x<p(2)X4(_1)(_1)#
% @ ;

where x2 + y?> = p and x is odd. Let m be the order of x € F;. We know that
x(—1) =—1if and only if m is even and (¢ — 1)/m is odd. Since p =1 (mod 4),
therefore, either p = 1 (mod 8) or p =5 (mod 8). If p =1 (mod 8), then p(2) =
x4(—1) = 1. Also, if p =5 (mod 8), then ¢(2) = x4(—1) = —1. Hence, in both the
cases, ¢(2) - xa(—1) = 1. This completes the proof. U

Proof of Theorem 1.7. From [Kalita 2018, Theorem 1.1], for ¢ = 1 (mod 8), we
have

(Y |, —vosaa| ()< (4)]

Now, comparing (3-18) and (4-2) for x =4+/2/(2+/243), we obtain (1-5). Similarly,
using [Kalita 2018, Theorem 1.1] and (3-18) for x =4/(2 % ﬁ) we derive (1-6)
and (1-7). O

Proof of Theorem 1.8. From (3-7), we have
(5%5)]
-2v243) |,

3 2 1
(4_3) 2F1(X4’ X4 ‘<_2\/§Z|:3> ) 2—1'2G2|:4’
q q
Comparing (1-5) and (4-3) we readily obtain (1-8). Again, we have

€ 6+/243 0,
; 2 13 2
@4 an( —2iﬁ>) = Loalo 616”_
€ 6+v3 )/, q 0, 0 [\22£v3/ ],

Now, comparing (1-7) and (4-4) we deduce (1-9). O

O AW

Applying Corollary 4.1, from (1-5) and (1-8) we have the following corollary.

Corollary 4.2. Let p =1 (mod 8). Then
3

1 2
10 1 6«/—2:f:3 xty+l
G,| 4 4‘ —)] =-2x 6:|:12\/§ —1 2,
2 2| 0. 0 ( NG @( )(=D

where x> + y? = p and x is odd.
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ON THE STRUCTURE OF HOLOMORPHIC ISOMETRIC
EMBEDDINGS OF COMPLEX UNIT BALLS INTO
BOUNDED SYMMETRIC DOMAINS

SHAN TA1 CHAN

We study general properties of holomorphic isometric embeddings of com-
plex unit balls B"” into bounded symmetric domains of rank > 2. In the
first part, we study holomorphic isometries from (B", kgg) to (2, gg) with
nonminimal isometric constants k for any irreducible bounded symmetric
domain 2 of rank > 2, where g, denotes the canonical Kihler-Einstein
metric on any irreducible bounded symmetric domain D normalized so
that minimal disks of D are of constant Gaussian curvature —2. In partic-
ular, results concerning the upper bound of the dimension of isometrically
embedded B” in 2 and the structure of the images of such holomorphic
isometries are obtained.

In the second part, we study holomorphic isometries from (B", gg») to
(2, gg) for any irreducible bounded symmetric domains & € CV of rank
equal to 2 with 2N > N’ +1, where N’ is an integer such that ¢ : X, < PV is
the minimal embedding (i.e., the first canonical embedding) of the compact
dual Hermitian symmetric space X, of . We completely classify images
of all holomorphic isometries from (B", gg») to (2, gg) for 1 < n < ny(R),
where n¢(2) :=2N — N’ > 1. In particular, for 1 <n < ny(2) — 1 we prove
that any holomorphic isometry from (B", gg») to (2, gg) extends to some
holomorphic isometry from (B0, gpno@) to (2, gg).

1. Introduction

Calabi [1953] studied local holomorphic isometries from Kihler manifolds endowed
with real-analytic metrics into complex space forms and their local rigidity. Many
results concerning local holomorphic isometric embeddings between bounded
symmetric domains were obtained by Mok [2002b; 2011; 2012; 2016] and by Ng
[2010; 2011]. In [Chan and Mok 2017], henceforth abbreviated [CM], Mok and
the author obtained a general result concerning general properties of the images of
holomorphic isometric embeddings from (B", gg-) to (€2, ga), where gp denotes
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the canonical K&hler—FEinstein metric on D normalized so that minimal disks of
D are of constant Gaussian curvature —2 for any irreducible bounded symmetric
domain D € CV in its Harish-Chandra realization. In addition, Mok and the author
[CM] classified images of all holomorphic isometric embeddings from (B™, gg) to
(Df,v, g D’IZV) for1 <m <n—1 and n > 3, where D,IlV denotes the type-IV domain
(i.e., the Lie ball) of complex dimension n (see Section 2). On the other hand, Xiao
and Yuan [2016] and Upmeier, Wang and Zhang [Upmeier et al. 2016] classified
all holomorphic isometric embeddings from (B”_l, gmn—1) to (D;V, g D;[V), n >3,
independently with explicit parametrizations. Moreover, Xiao and Yuan [2016,
Theorem 1.1] proved that any proper holomorphic map from the complex unit
m-ball B™ to DIV, n >3 and m < n — 1, with certain boundary regularities is a
holomorphic isometric embedding provided that the codimension n — m of the
image of the m-ball is sufficiently small and m > 4.

In the present article, we also denote by dslzj the Bergman metric of any bounded
domain U € CY and we will simply use the term “holomorphic isometries” for holo-
morphic isometric embeddings. In what follows, we will assume that any bounded
symmetric domain in a complex Euclidean space is in its Harish-Chandra realization.

Let f: (B", AMgp) — (2, go) be a holomorphic isometry for some positive
real constant A/, where €2 is an irreducible bounded symmetric domain. It is well
known that any bounded symmetric domain is equivalently a Hermitian symmetric
space of the noncompact type and vice versa by the Harish-Chandra embedding
theorem; see [Wolf 1972; Mok 1989]. Then, it follows from [CM, Lemma 3]
that A’ is a positive integer satisfying 1 < A’ < r, where r := rank(2) is the rank
of Q as a Hermitian symmetric space of the noncompact type. Throughout the
present article, we will call A" the isometric constant of any given holomorphic
isometry from (B", 'gg) to (2, go). In addition, given any holomorphic isometry
F: (A, ka’si) — (AP, dsi,,), we will call k the isometric constant of F, where
A € C (resp. A? € CP) denotes the open unit disk (resp. open unit polydisk) in the
complex plane C (resp. the complex p-dimensional Euclidean space C?).

In the present article, we denote by ﬁlk(B”, 2) the space of all holomorphic
isometries from (B", kgpr) to (€2, gg), where k is any positive integer satisfying 1 <
k <rank(€2). Motivated by [Mok 2016] and [CM], we continue to study the structure
of holomorphic isometries from (B", kgg») to (€2, gg) for any irreducible bounded
symmetric domain €2 of rank r > 2 and any positive integer k such that 1 <k <r.

In the first part, we consider the case where k£ > 2 is not the minimal isometric
constant and obtain a result similar to [CM, Theorem 1] when the isometric constant
k is equal to 2. As a corollary of this result, we will also show that given any
irreducible bounded symmetric domain €2 of rank at most 3, all holomorphic
isometries from (B", kgg-) to (2, gg) arise from linear sections of the minimal
embedding of the compact dual Hermitian symmetric space X, of €.



ON THE STRUCTURE OF HOLOMORPHIC ISOMETRIC EMBEDDINGS 293

In the second part, the aim is to generalize our results in [CM] for type-IV
domains to more general irreducible bounded symmetric domains 2 of rank 2.
Let @ € CV be an irreducible bounded symmetric domain of rank > 2. Mok
[2016] proved that if f : (B", gg) — (2, go) is a holomorphic isometry, then
n < p(2) + 1, where p(R2) := p(X.) = p is defined by c;(X.) = (p + 2)5 for
the compact dual Hermitian symmetric space X, of €2 and the positive generator
8 of H*(X.,7Z) = Z; see [Mok 2016] and [CM]. By slicing the complex unit
ball BP®Y+! with affine linear subspaces L of CP$Y*! such that L NBPEY+! s
nonempty, we obtain many holomorphic isometries in Al (B", 2) from any given
holomorphic isometry F € HI; (BP@*!, Q) for n < p(). It is natural to ask
whether all holomorphic isometries in ﬁll (B", 2) were obtained in that way for
each n < p(2). In the case where Q = D}\y is the type-IV domain for some
integer N > 3, the author and Mok [CM, Theorem 2] have shown that the answer
is affirmative. In general, this problem remains open. In [CM], we showed that
holomorphic isometries from (B", gg-) to (€2, gg) arise from linear sections of the
compact dual X, of 2, where €2 is an irreducible bounded symmetric domain of
rank > 2. In general, we do not know whether this gives any relation between the
spaces ﬁll(B”, Q) and }ﬁl(B’", Q) for 1 <n <m < p(2) + 1, except in the case
where Q2 = D}\Y, N > 3, is the type-1V domain; see [CM]. Recall that a type-IV
domain is of rank 2. On the other hand, for a rank-r irreducible bounded symmetric
domain €2, any holomorphic isometry from (B”, rgg-) to (2, ge) is totally geodesic
by the Ahlfors—Schwarz lemma; see [CM, Proposition 1]. In particular, we only
need to consider the space ﬁll (B", 2) if 2 is of rank 2. Therefore, it is natural to
study the problem when the target bounded symmetric domain €2 is of rank 2.

In short, we will generalize the method in [CM] for classifying images of all
holomorphic isometries in ﬁIl (B, D}y) for N >3 and n > 1 to the study of images
of holomorphic isometries in ﬁll (B", Q) for 1 < n < ng and certain irreducible
bounded symmetric domains 2 € CN of rank 2, where ny = no(2) > 1 is some
integer depending on 2. One of the key ingredients is the use of the explicit
form of the polynomial g (z, z), as mentioned in [CM, Remark 1]. On the other
hand, the author has found that the relation between hq(z, £) and t|cv obtained
from [Loos 1977] has been written down explicitly by Fang, Huang and Xiao
[Fang et al. 2016] for each irreducible bounded symmetric domain 2, where
i X > P(T(X,, 0(1))*) =PV is the minimal embedding, i.e., the first canonical
embedding; see [Nakagawa and Takagi 1976]. Here O(1) is the positive generator
of the Picard group Pic(X,) = Z of the compact dual X, of €2, and CN c X, is
identified as a dense open subset of X. by the Harish-Chandra embedding theorem;
see [Mok 1989; 2016] and [CM]. In addition, I"'(X., O(1))* denotes the dual of the
space I'(X., O(1)) of all holomorphic sections of the holomorphic line bundle O(1)
over X.; see [Mok 2016] and [CM]. We refer the readers to [CM, Section 2.1] for
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the background of bounded symmetric domains and their compact dual Hermitian

symmetric spaces. We will identify P(I'(X., O(1))*) = PV and write N’ :=

dime P(T'(X, O(1))*) throughout the present article, where X, is the compact

dual Hermitian symmetric space of the irreducible bounded symmetric domain £2.
The main results in the first part of the present article are as follows.

Theorem 1.1. Let Q €CY be an irreducible bounded symmetric domain of rank >?2
and A > 2 be an integer. If I:I\Iy(B", Q) # O, then we have n < n; _1(2),
where n;;_1(RQ) is the (\'—1)-th null dimension of Q2 (see [Mok 1989, p. 253]
and Section 2A).

Theorem 1.2. Let Q@ € CV be an irreducible bounded symmetric domain with
rank(Q) =:r >2and f € H\IN(B”, Q) for some real constant . > 0. We have
the standard embeddings Q € CV C X, of Q as a bounded domain and its Borel
embedding Q C X, as an open subset of its compact dual Hermitian symmetric
space X (see [CM, Theorem 1]). Suppose that either ' =2 or 2 <r < 3. Then,
f(B") is an irreducible component of ¥ = V' N Q for some affine-algebraic
subvariety ¥' C CN such that 1(¥) = P N (), where P C PN is some projective
linear subspace and 1 : X. < PV " is the minimal embedding.

The main result of the second part is the following.

Theorem 1.3. Let Q@ € CV be an irreducible bounded symmetric domain of rank 2
satisfying 2N > N’ +1, where N' := dim¢ [P’(F(XC, (’)(1))*) and X is the compact
dual Hermitian symmetric space of Q. Set ng(2):=2N—N'. For1 <n <no(Q)—1,
if f:(B" gg) — (2, ga) is a holomorphic isometric embedding, then f = F o p
for some holomorphic isometric embeddings F : (B, gpu@) — (R, gq) and
p: (B, ggr) = (B, ggu@).

Remark 1.4. (1) Theorem 1.3 actually asserts that any holomorphic isometric
embedding f € Al 1(B", 2), 1 <n <np(2) —1, extends to a holomorphic isometric
embedding F € HI; (B, Q), where € CV is a rank-2 irreducible bounded
symmetric domain satisfying 2N > N’ + 1.

(2) We will show that for such irreducible bounded symmetric domains €2, we have
no(2)=p(2)+1onlyif Q= D}\‘,’ is the type-IV domain for some N > 3. Therefore,
one may regard this theorem as a generalization of Theorem 2 in [CM] to holomor-
phic isometric embeddings from (B", gg») to (€2, go) for any rank-2 irreducible
bounded symmetric domain 2 satisfying n¢(2) > 1 and 1 <n < ng(2) — 1.

2. Preliminaries

Denote by ||v||c» the standard complex Euclidean norm of any vector v in C".
The following lemma is a special case of a well-known result of Calabi [1953,
Theorem 2 (local rigidity)]:
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Lemma 2.1 [Calabi 1953; Ng 2011, Lemma 3.3]. Let g, f : B — C" be holomor-
phic maps defined on some open subset B C C" such that ||f(w)||éN = |lg(w) ||éN
for any w € B. Then, there exists a unitary transformation U in CN such that

f=Uog.
Remark 2.2. Writing f = (f',..., f¥) and g = (g!,..., g"), there exists an
N x N unitary matrix U’ such that

U(f'w), ..., fNw)! =@ w),...,g"w)T forall we B.

Moreover, we have the following fact from linear algebra.

Lemma 2.3 [CM, Lemma 5]. Let m’ and n’ be integers such that 1 < m’ < n’
and let A" € M(m', n'"; C) be such that A”A"T = I,,.. Then, there exists U’ €
M@n' —m', n’; C) such that

U/
|:A”:| eUn).
For the complex unit ball B" C C", the Kéhler form w,,, of (B", gg) is given by
Wegn = —~/ =133 log(1 — [|w]|%,)

so that (B", ggr) is of constant holomorphic sectional curvature —2. Note that the
Bergman metric K(z, &) of Q2 can be expressed as

Ko(z, &) = ho(z, &)~ P+

Vol(£2)

where Vol(£2) is the Euclidean volume of Q € CV, hq(z, &) is some polynomial in
(z, &) such that hg(z, 0) =1 and p(L2) is defined as in Section 1. It follows from
[CM] that the Kéhler form w,,, of (€2, gq) is given by

wgq = —v/—133loghq(z, )
in terms of the Harish-Chandra coordinates z € Q € CV. The type-IV domain DY,

N > 3, is given by

2
DY ={z=G1,....,an € CV: X0 1517 <2, T 5P < 1+ 3 20, 2] )

see [Mok 1989, p. 83]. Then, the Kéhler form Wg 1y of (D}\‘/, gD}vV) is given by
N

)
As mentioned in Section 1, we have the following: for any irreducible bounded
symmetric domain Q € C" of rank r > 2, we may suppose that the Harish-Chandra

coordinates z = (z1, ..., zy) on 2 € C" are chosen so that there are homogeneous
polynomials G;(z) in z of degree deg(G;), 1 <1 < N’, such that

N

N
- 1
gy = V=19 log(l = Izl + ‘5 oz
J j=1

i—1
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(i) 2<deg(G)) <rfor N+1<I<N'and Gj(z) =zjfor1 <j <N,
(i) ha(z, &) =1+ Z,N; (= })deg(GﬁG,(z)Gl(s) and the restriction of the minimal
embedding ¢ : X. < PV to the dense open subset C C X. may be written as

1(z)=1[1,G1(2),...,Gy ()]
in terms of the Harish-Chandra coordinates z = (z1, ..., zy) € CV,
(iii) For any integer u, 2 < u < r, there exists [, N + 1 <[ < N/, such that
deg(G)) = u.
For instance, if Q2 = D}\y € CN, N >3, is the type-IV domain, then

N N2 N

_ 2 |1 2 _ 1 2

ha(z,2) =1— § |21 +‘§ Elzj and ((z) = [21,...,ZN, L3 Elzj]
j= Jj=

j=1
for z = (z1, ..., zy) € CV; see [Mok 1989, p. 83]. We refer the readers to [Loos
1977; Fang et al. 2016] for details of the above facts.

Let f : (B", kgp») — (€2, go) be a holomorphic isometry such that f(0) = 0,
where 2 is an irreducible bounded symmetric domain of rank » > 2 and k is an
integer such that 1 < k <r. Then, we have the functional equation

ha(f(w), fw)) = (1 — [wl|g)*
for w € B"; see [Mok 2012] and [CM].

2A. On higher-characteristic bundles over irreducible bounded symmetric do-
mains. Let Q € CV be an irreducible bounded symmetric domain of rank r and
X be the compact dual of 2. Throughout this section, we follow [Wolf 1972; Mok
1989, pp. 251-253]. We always identify the base point 0 € Xo with0 € @ =&~1 (X)),
where & :mT =CV — G®/P = X, is the embedding defined by & (v) =exp(v)- P; see
[Wolf 1972; Mok 1989, p. 94]. Let W = {yr1, ..., ¥} C AAJC[ be a maximal strongly
orthogonal set of noncompact positive roots; see [Wolf 1972]. Then, we have the
corresponding root vectors ey, 1 < j < r. Moreover, we have gy, = Cey, for
1 < j <r and the maximal polydisk A" =I1 C Q is given by I[1 = (EB;:] g¢j) N ;
see [Wolf 1972; Mok 2014]. From [Mok 1989, p. 252], for any v € m™ = Ty(R2),
there exists k € £ such that ad(k) - v = er':l ajey, witha; € R (1 < j <r) and
ap>--->a, >0. Then, n = Z‘;:l ajey, is said to be the normal form of v and
is uniquely determined by v. The cardinality of the set {j € {1,...,r}:a; #0}is
called the rank of v, which is denoted by r(v). For 1 <k <r =rank(£2), we define

Si,x (2) == {[v] e P(T:()) : 1 = r(v) =k} € P(Tx(2)),

called the k-th characteristic projective subvariety at x € Q. Then, S;(2) :=
U, eq Sk.x(2) C PT(Q) is called the k-th characteristic bundle over 2. We simply
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call §,(2) := S1.,(2) the characteristic variety at x € . From [Mok 1989],
Sy (2) CP(T:(£2)) is a connected complex submanifold, while S , (2) C P (75 (£2))
is singular for 2 < k < r — 1 provided that r = rank(2) > 3. In addition,
Srx () =P(T(£2)) for x € 2 and we have the inclusions Sy ,(2) C - - - C S, 1 (2).
Furthermore, for r > 2, k > 2 and x € 2, we know & (€2) € P(7,(€2)) is an
irreducible projective subvariety because S (€2) \ Sk—1,x(£2) = P - [v] is an orbit
for any [v] such that v € T, (2) \ {0} is a rank-k vector, see [Mok 2002a], and
Sk.x(82) \ Sk—1,x(S2) is dense in S ,(£2).

Proposition 2.4 [Mok 1989, p. 252]. The k-th characteristic bundle S (2) — Q2
is holomorphic. In addition, in terms of the Harish-Chandra embedding Q < CV,
Si(Q) is parallel on X in the Euclidean sense; i.e., identifying PT () with Qx PN~
using the Harish-Chandra coordinates, we have S (2) = Q x Sk 0(£2).

Remark 2.5. For any nonzero vector v € Typ(2), we let N, := {& € TH(RQ) :
Rz (2, go) =0} be the null space of v. From [Mok 1989], the k-th null dimension
of Q is defined by nx(2) := dimg¢ N, = dim¢ N;,, where n = ij:l ajey, (aj >0
for 1 < j < k) is the normal form of some vector v € Typ(2) of rank k. Here
ni(2) := dim¢ N, only depends on the rank k = r(v) of v. Then, Mok [1989]
proved that dim¢ Sk (2) = 2N — ng(2) — 1. In particular, Sg ,(€2) is of dimension
N —ni(2) — 1 as an irreducible projective subvariety of P(7(£2)) for any x € Q.
Moreover, we have n(2) :=n1(2) > --- > n,(2) =0 and n(£2) is called the null
dimension of 2. From [Mok 1989], we define p(€2) = dim¢ So(€2). Then, we have
dimgc Q=N =p(Q)+n(Q)+1.

For x € 2, under the identification 7, (2) = T (X,), we have S, (2) = €, (X.),
where 4, (X.) C P(Ty(X.)) is the variety of minimal rational tangents (VMRT)
of the compact dual X, of Q at y € X.. We define p(X,) := dim¢ %,(X,) for the
base point 0 € X, which is identified with 0 € m™, i.e., £(0) =0 € X, = G@/P.
For the notion of the VMRTSs of Hermitian symmetric spaces of the compact type,
we refer the reader to [Hwang and Mok 1999]. Note that dim¢ %y (X,) does not
depend on the choice of y € X.. Then, we have p(X.) = p(2) = dim¢ %, (X,) for
any x € Q C X,.

2A1. Holomorphic sectional curvature. Let Q@ € CV be an irreducible bounded
symmetric domain of rank r and X, be its compact dual Hermitian symmetric space.
Recall that gg is the canonical Kdhler—Einstein metric on 2 normalized so that
minimal disks are of constant Gaussian curvature —2. Then, the Bergman kernel
on 2 is given by

Ka(z,§) = ha(z, &)~ PO+,

Vol(Q)

where Vol(Q2) is the Euclidean volume of  in CV, hq(z, &) is a polynomial in
(z, &) and p(Q) := p(X,) is the complex dimension of the VMRT of X, at the base
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point 0 € X.; see [Mok 2016]. For z € Q = Gy/K, there exists k € K such that
k-z=)"_ ajey; € (B gy,) NQ =TI for laj|* <1, 1 <j <r,and

ho(z.2) = [ = la; .
j=1
where r is the rank of the irreducible bounded symmetric domain 2, [T = A" is a
maximal polydisk in  which satisfies (IT, goln) = (A", 1ds3,); see [Mok 2014].
In particular, it follows from the polydisk theorem, see [Mok 1989, p. 88], that

2
-2 =< Ra&(x&(Q, gQ) =< _;

for any unit vector @ € T,(€2) and x € Q. Let x € Q2 and B € T,(f2) be such
that ||,3||§,Q = 1. If B is of rank (8) = s, then we have RﬂBﬂB(Q,gQ) < -=-2/s
because there exists g € Go = Autg(£2) such that g - € To(I1;) for some totally
geodesic submanifold (I1;, go|m,) C (I1, galn) which is holomorphically isometric
to (A%, 1ds3,).

3. On holomorphic isometries of complex unit balls into bounded symmetric
domains with nonminimal isometric constants

Let 2 € C" be an irreducible bounded symmetric domain of rank > 2. Mok [2016]
studied the space a1, (B", 2) and provided a sharp upper bound on dimensions of
isometrically embedded complex unit balls (B", gg») in the irreducible bounded
symmetric domain (2, go) equipped with the canonical Kéhler—Einstein metric gq.
Recall that given any f € HI(B", Q) with k > 0 being a real constant, k is a
positive integer satisfying 1 < k < rank(£2); see [CM]. It is natural to ask whether
some results in Mok’s study [2016] could be generalized to the study of the space
HI (B", ) for k > 2.

In the first part of this section (see Section 3A), we provide an upper bound of n
whenever HI; (B, Q) # &, where k > 2. Note that such an upper bound is not sharp
iE general. For instance, if 2 = D},’ q with ¢ > p > 2 and k = rank(2) = p, then
HI, (B", ) # & implies n < g/ p; see [Koziarz and Maubon 2008, Proposition 3.2].
On the oth/e\r hand, our general result will imply thatn <n,_; (Di% D=9—p+1
whenever HI,(B", D}, ) # @ with ¢ > p > 2. In the case where ¢ =3 and p =2,
we have n < 2 from our general result. But then it follows from [Koziarz and
Maubon 2008, Proposition 3.2] that n = 1 whenever PTIZ([B”, D53) # @&. This
explains that the upper bound obtained in our general result is not sharp in general.
However, one of the applications of our general result is that if €2 satisfies certain
conditions and ﬁlk(B", ) # @ for some fixed real constant k > 1, then n < p(Q2).
In the second part of this section (see Section 3B), we continue our study in [CM]
to the study of the space ﬁlz(B”, ). In particular, we will obtain an analogue
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of [CM, Theorem 1] for holomorphic isometries in the space ﬁIQ(B”, ) without
using the system of functional equations introduced in [Mok 2012].

3A. Upper bounds on dimensions of isometrically embedded complex unit balls
in an irreducible bounded symmetric domain. Let Q@ € CV be an irreducible
bounded symmetric domain of rank > 2. Motivated by Mok’s study [2016], one
may continue to study the space I/{\IN([EB", Q) for A’ > 1. In this section, we study
the upper bound on dimensions of isometrically embedded complex unit balls in an
irreducible bounded symmetric domain of rank > 2 when the isometric constant is
equal to A’ > 1. It is natural to ask whether the upper bound p(£2) + 1 obtained in
[Mok 2016] is optimal in the sense that n < p(£2) 4+ 1 whenever ﬁIN([EB", Q) #£0
for some real constant A’ > 0. More specifically, we may ask whether n < p(Q2)
whenever I/{\IA/(B", Q) # & for some real constant A" > 1.

For any given integer A’ > 2, in order to obtain a sharp upper bound of n such that
I:I\IA/([EB”, Q) # &, one should construct a holomorphic isometry f € I:I\I,\/(B”O, Q)
for some integer ng > 1 such that I:I\I,\/(B”, Q) # & only if n < ny. Note that
this problem remains unsolved, but we can provide a (rough) upper bound of n
by using the k-th characteristic bundle on €. More precisely, for any integer A’
satisfying 2 < A’ < rank(2), we prove that if IfI\Iy(B”, Q) # I, then n < ny_1(2),
where ny (€2) is the k-th null dimension of €2; see [Mok 1989]. This is precisely the
assertion of Theorem 1.1. Moreover, for certain irreducible bounded symmetric
domains €2 of rank > 2 (including the two irreducible bounded symmetric domains
of the exceptional type) we will show that n < p(£2) whenever IfI\I,\/([B”, Q) £
for some integer A’ > 2. Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let f € I:I\IN(B”, 2) be a holomorphic isometry. Write
S:= f(B"). HP(T,(S)NSy—1,y(2) # & for some y € §, then there exists a vector
a € Ty(S) C T,(£2) of unit length with respect to go and of rank k < A" —1 such that

2 2
Ra&a&(Q» gQ) = _% = _)\/ 1

(see Section 2A1). But then we have

2
o= Roaaa (S, gals) < Ruaaa (L2, 8) < — 1
from the Gauss equation, which is a contradiction. Hence, we have P(7(S)) N
Sy—1,y(82) = @ for any y € S. Recall from Section 2A that Syr—1 ,(£2) € P(T,(£2))
is an irreducible projective subvariety of complex dimension N — n,,_1(2) — 1.

Then, it follows from the inequality
dimC(IP(Ty(S))ﬂS,\/,Ly (SZ)) > dim¢ P(T,(S))+dime Syr—1,, (R2) —dime P(T, (€2))
that n <n;,_1(Q); see [Mumford 1976, p. 57]. O
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Lemma 3.1. Let Q € CV be an irreducible bounded symmetric domain of rank > 2.
Then, n(2) < p() if and only if Q2 is biholomorphic to one of the following:

€)) D}r),’q,, where p’ and q’ are integers satisfying2 = p’ <q' or p' =¢q’ =3.
2) Dg for some integer m satisfying 5 <m <7.

3) D}lv for some integer n > 3.

4) DV.

(5) DV*.

Proof. From [Mok 1989, pp. 105-106], we have n(2) + p(2) + 1 = N. Then, the
result follows from direct computations by the explicit data provided in [Mok 1989,
pp. 249-251]. ]

Remark 3.2. We observe that if Q2 satisfies n(2) < p(£2), then rank(2) < 3. In
addition, Lemma 3.1 implies that any irreducible bounded symmetric domain 2
of rank 2 satisfies n(2) < p(€2). From [Mok 1989], it is clear that the condition
n(2) < p(R) is equivalent to dim¢ P(7,(X.)) <2 -dim¢ 6,(X.), where X is the
compact dual Hermitian symmetric space of Q2 and o € X, is a fixed base point.

The following corollary shows that for certain irreducible bounded symmetric do-
mains €2 of rank > 2 and a fixed real constant A’ > 0, we have I:I\I,\/ (BP(Q)“, Q) £0
only if A’ = 1. On the other hand, Mok [2016, Main Theorem] proved that
ﬁll(Bp(Q)+1, Q) # @ for any irreducible bounded symmetric domain 2 of
rank > 2. Therefore, combining with [Mok 2016, Main Theorem], we actually
have HL, (BP®*!, Q) # & if and only if A’ = 1 for certain irreducible bounded
symmetric domains €2 of rank > 2.

Corollary 3.3. Let Q@ € CV be an irreducible bounded symmetric domain of
rank > 2 such that n(2) < p(Q). If f € HI,/(B", 2) for some real constant
A >2,thenn < p(Q).

Proof. Note that 1 is an integer satisfying 2 < A’ < rank(2). By the assumption, it
follows from Theorem 1.1 that n < ny —1(2) < n(R) < p(2). O

Remark 3.4. Actually, Corollary 3.3 together with [Mok 2016, Main Theorem]
implies that the upper bound p(€2) + 1 is optimal when the bounded symmetric
domain €2 satisfies n(2) < p(£2). Moreover, the statement of Corollary 3.3 holds
true for any irreducible bounded symmetric domain €2 of rank 2.

3A1. Holomorphic isometries with the maximal isometric constant and applications.
Let € CV be an irreducible bounded symmetric domain of rank r > 2. Recall that
if fe Hl, (B", ©2), then f is totally geodesic by the Ahlfors—Schwarz lemma. The
results obtained in Section 3A can be applied so that we may prove n < p(£2) without
using the total geodesy of holomorphic isometries lying in the space ﬁlr(B”, Q).
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Proposition 3.5. Let Q@ € CV be an irreducible bounded symmetric domain of rank
r > 2 such that Q % ng and let f € ﬁlr (B", Q). Then, we have n < p(2). If
F e ﬁlr(B”, Q), where Q2 is an irreducible bounded symmetric domain of rank
r > 2 and of tube type, then we have n = 1.

Proof. Under the assumptions, Theorem 1.1 asserts that n < n,_;(2), so it remains
to check that n,_(2) < p(€2) for any irreducible bounded symmetric domain €2 of
rank r > 2 and % DYV Note that if @ = DYV, then r =2 and n,_1 () = 1 = p(Q).
It follows from [Mok 2002a] that €2 is of tube type if and only if n,_;(2) = 1 due
to the dimension formula dim¢ S, x(£2) = dimc P(7%(2)) — n,—1(2) of [Mok
1989]. It is clear that if  is of tube type and Q Z DL, then p() > 1 so that
n,—1(2) =1 < p(2). If 2 is not of tube type, then €2 is biholomorphic to one of
the following:

(1 D;/’q, for some integers p’, g’ satisfying 2 < p’ < ¢".

(2) D}, for some integer m > 2.

(3) DV.

From the classification of the boundary components of bounded symmetric domains
and the fact that n,_; (2) is precisely the dimension of rank-1 boundary components
of 2, see [Wolf 1972; Mok 2002a, p. 298], we have

np/_l(D;,’q,) =q'—p' +1< p(D;,’q/) =p' +q' -2 for2<p' <q,

Mm—1(DY, ) =3 < p(D,, ) =22m — 1) form > 2,
ni(DY)=5< p(DY) = 10.
Hence, we have n < p(€2). On the other hand, given an irreducible bounded

symmetric domain €2 of rank r > 2 and of tube type, if F € ﬁIr(B”, ), then we
haven <n,_1(Q)=1,ie,n=1. O

From the proof of Proposition 3.5, we have n,_(2) < p(2) for any irreducible
bounded symmetric domain 2 of rank r > 2. Given any irreducible bounded
symmetric domain 2 of rank r > 2, we define

A(Q)=minfAeZ:1<i<r, n(Q) < p()}.
Then, we have 1¢(€2) < r — 1. Note that 2 satisfies n(2) < p(€2) if and only if
Ap(€2) = 1. Combining with Corollary 3.3, we have the following:

Theorem 3.6. Let Q € CV be an irreducible bounded symmetric domain of rank
r>2and ) > 2 be an integer. If Hl,/ (B", Q) # &, then n < p(Q) provided that
one of the following holds true:

(1) Q2 satisfies n(2) < p(K2).

(2) M\ satisfies Ao(2) +1 <)X <r.
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Proof. If the bounded symmetric domain €2 satisfies n(2) < p(€2), then the result
follows from Corollary 3.3. If A’ satisfies Ag(2) + 1 < A’ < r, then we have
n~1(82) < nyy)(2) < p(2). By Theorem 1.1, we have n <njy_1(R2) < p(2). U

Remark 3.7. If Q satisfies n(2) < p(2), then A¢(€2) = 1 so that the condition (2)
does not provide an additional restriction on the given isometric constant A’.

In general, let 2 € CV be an irreducible bounded symmetric domain of rank > 2
such that n(2) > p(€2). Then, Lemma 3.1 asserts that €2 is biholomorphic to one
of the following:

€)) D;’q for some integers p, g satisfying 3 < p < ¢ and (p, q) # (3, 3).
) D;nl for some integer m > 8.

3) DEI for some integer m > 3.

In particular, we are able to compute Ag(£2) explicitly for each case.

type Q 2(£2)
LgB<p=<q.(p.9)#3.3)) | D | [3((p+0)—/(q—p)*+4(p+q—2))]
10, (m > 8) Dl [1(@m—1)—v/16m=31)]
1L, (m > 3) pl [1(2m+1)—/8m=T)]

Here [x] denotes the smallest integer greater than or equal to x for any real
number x.

Example 3.8. If Q = DI, then Q is of rank 7, n(Q) = 3(7—k)(7 —k+ 1) and
p(2) =6, see [Mok 1989, p. 86, p. 250], so that A¢(€2) =4 = rank(£2) — 3. Given
any integer A’ satisfying 5 <A’ <7, Theorem 3.6 asserts that n < p(£2) =6 whenever
HI, (8", D) # 2.

In general, by using the expression of )\O(DEIH) in terms of m for any integer
m > 1 (see the table above), one observes that the sequence

{rank(Dy,},0) = (ho(Dyl0) + DI
is monotonic increasing and a,, := rank(Dggﬂ) — (AO(D},{IH) +1) —> +ooasm —
+00. Moreover, a,, /rank(Dgﬂrz) — 0 as m — 4+00. That means rank(DgIﬂ)
grows much faster than a,, as m is increasing. This shows that in general the
range of the isometric constants A" mentioned in condition (2) of Theorem 3.6 is
quite restrictive for a rank-r irreducible bounded symmetric domain €2, r > 2, such
that n(2) > p(2).
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3B. Holomorphic isometries with the isometric constant equal to 2 and applica-
tions. Let Q € CV be an irreducible bounded symmetric domain of rank > 2 and
X be the compact dual Hermitian symmetric space of 2. Then, it follows from
the observation in Section 2 that the polynomial g (z, z) can be written as

m1(2) m(£2)

ho(z, ) =1- Y 1G@F+ Y G @,

=1 I'=1

where Gl(])(z), G1(2 ) (z) are homogeneous polynomials in z and m(£2), m,(€2) are
positive integers depending on €2 such that

(1) m () +my(Q2) =N and m(22) > N,
() deg(G\") (1 <l <m(R))is odd, while deg(G ) > 2 (1 <I' <m»(R)) is even,
3) G' () =z for 1 <j <N,

(4) when Q is of rank > 3, we have m1(2) > N and deg(Gl(l)) >3forN+1<
I <m(2).

Moreover, in terms of the Harish-Chandra coordinates z = (z;, ..., zn) € CV, the
restriction of ¢ to the dense open subset CV C X, may be written as

(@2 =116 @) G @). G ). ... G o) (D]

1 2

up to reparametrizations, where ¢ : X, <> PV’ is the minimal embedding.

Remark 3.9. As mentioned in Section 2, the above observation can be obtained
from [Loos 1977] and has been written down explicitly by Fang, Huang and Xiao
[Fang et al. 2016].

In [CM], we studied images of holomorphic isometries in I:I\I)V(B", 2) when
A" = 1. However, it is not obvious how the method in [CM] could be generalized
to the study of images of holomorphic isometries in I’{\IA/(B”, Q) for ' > 1 so
as to obtain an analogue of Theorem 1 in [CM] for all holomorphic isometries
in ﬁ\Iy(B", Q) and for any A’ > 0. After that, we observe that the above explicit
form of hq(z, z) is useful for continuing the study of images of holomorphic
isometries in ITIA/([B”, Q) when the isometric constant A" equals 2. Recall that the
case where A" =2 in Theorem 1.2 is exactly an analogue of Theorem 1 in [CM] for
all holomorphic isometries in ﬁIQ(B”, 2). We are now ready to prove Theorem 1.2
for the case where A/ = 2.

Proof of Theorem 1.2 for the case where )’ =2. Let f : (B", 2gpr) — (2, ga)
be a holomorphic isometric embedding, where Q € C" is an irreducible bounded
symmetric domain of rank > 2. Assume without loss of generality that f(0) = 0.
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Then, we have the functional equation
m(£2) m(£2)

G- 1= Y G F@)P+ Y16 (fw)?

=1 =1
n
=<I_Z|w“|2> _l_zl*/_wﬂ + 2 lwewel®
/,L:1 1<Mu<n

for w € B" and the polarized functional equation
m1(§2) ma(S2)

32) 1- Z GGV ren+ Y. 6P @GP (F©)
=1 2
-(-5)
n=1
for w, ¢ € B"; see equation (14) in [CM, p. 688]. We write
>0 wewp =) 1Eiw)
1<wp,u'<n =1

for some homogeneous polynomials E;(w) of degree 2 and mg := 2n(n + 1).
Moreover, we write G (z) = (G(])( ), . G(])(Q)(Z))T for j =1, 2. Let Ny :=
max{n + my(2), mg+m(2)}. Then, there exists U € U (Ny) such that

V2w, E1(w)
(3-3) U- V2w, = Emo(w)
G (f(w)) GV (f(w))
O(Ng—n—m>(2)x1 0(Ng—my (2)—mo)x1

by Lemma 2.1 and (3-1). We write

U,
v= [Uj

with Uy € M (mg, Ny; C) and U, € M(Ny — mg, No; C). We also write U, =
[Ua1 Usy] with Uy € M(No—myo, n; C) and Uy € M(No—mo, No—n; C). Denote
by (Jf)(w) the complex Jacobian matrix of the holomorphic map f:B" — Qe CV
at w € B". Recall that G(l)(z) =zjforl <j <N, G(z)(z) 1 <1 <my(),
are homogeneous polynomlals of degree > 2 in z so that —G(z) (2)|z=0 =0 for
1<j<N, 1=<Il<my(R). In addition, if the rank of les at least 3 so that
m1(2) > N, then G;l)(z) N + 1 <1 <m(2), are homogeneous polynomials of
degree > 3 in z, so that G,(“(z)|Z 0=0for1<j<N, N+1<I<m(Q).
Then, we have

(3-4) HO (L), ..o, NN’ =20wr, ..., wy)"
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by differentiating both sides of (3-2) with respect to E,L at{ =0foreach u, 1 <pu<n.
In addition, (Jf)(0) € M (N, n; C) is of rank n. Moreover, from the above settings
and (3-3) we have

V2w

: GO(f(w) \ _ GV (f(w))
o o \/_ i (0(No—n—mz(9))><l> B (O(No—ml(m_mO)XI) ‘
2w,

Differentiating both sides of (3-5) with respect to w,, at w =0 foreach u, 1 <pu <n,

we obtain
AUy = ( (J)(0) ) .

O(Ny—mo—N)xn

In addition, by differentiating both sides of (3-4) with respect to w,, at w = 0 for
each u, 1 < u <n, we have (Jf)(0)” (Jf)(0) = 21,. Therefore, it follows from
(3-5) and (3-4) that

56 [[%(Jf)(O)(Jf)(O)T] 0] S ( GO (f @) )

G(z)(f(w))
o 0Ny —mo—
O (Ny—mo—N)x N 0Ny —n—my ()1 (Ng—mo—m (2))x 1

for any w e B", where f(w):=(f'(w),..., f¥(w))’. Writing B := [ﬁzl Uy, | with

. -
Oy, = [Q(Jf)(O)(Jf)(O)T] ’
O(No—mo—N)xN
we define
T

; (1)
(7 V= gzeCliB| GO =<0 GV (z) )
O(N n—my(2))x1 (No—mo—m1(§2))x1
e

and ¥ :=¥'NQ. Then, we have f(B") C ¥ by (3-6). Note that the tangential dimen-
sion tdimg ¥ of ¥ at 0 is less than or equal to N — rank(%(]f) 0)(Jf)(0) — IN).
Here we refer the readers to [Gunning 1990] for the notion of the tangential dimen-
sion tdim, V' of a complex-analytic variety V at a point x € V. From [Zhang 1999,
p. 49], we have

rank(3(J£)(O)(TF)(0)" — Iy) = |rank (3 (J£)(0)(J)(0)") —rank Iy| =N —n.
On the other hand, (3(J£)(O0)(J)(©0)T — Iy) - (Jf)(0) = 0 so that

0 > rank(3(J£)(O)(J)(0)" — I) +rank(Jf)(0) — N
and thus rank (3 (J£)(0)(J£)(0)” — Iy) < N — n. Therefore, we have

rank(3(J )@ (JF)(0) —Iy) =N —n.
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Moreover, ¥ contains f(B") and 0 € f(B"), thus dimg ¥ > n > tdimg . Note that
dimg ¥ < tdimg ¥'; see [Gunning 1990]. Hence, we have dimgy ¥ = tdimg ¥ = n
and thus ¥ is smooth at 0. Let S be the irreducible component of ¥ containing
f(B"™). Then, we have dim S = n = dim f(B") and thus S = f(B") because both
S and f(B") are irreducible complex-analytic subvarieties of ¥ containing the
smooth point 0 € ¥ of ¥. In particular, f(B") is the irreducible component of ¥
containing 0. Moreover, it is clear that 7’ C CV is an affine-algebraic subvariety
and «(¥) = P N1(2), where

(3-8) P:={[&0, &1, ..., En1 € PV Bx =y},
with ;
x=(&1, . EN Em@+1s s NS Ol (No—n—ma ()
T
y="_(5 " Em@ OxWommo—m1(©)))
is a projective linear subspace of PV ; (]

3B1. On holomorphic isometries from the Poincaré disk into polydisks. The author
[Chan 2016] and Ng [2010] studied the classification problem of all holomorphic
isometries from the Poincaré disk into the p-disk with any isometric constant k,
1 <k < p, and p > 2. The classification problem remains unsolved when p > 5. In
this section, we consider the structure of images of such holomorphic isometries
for k < 2 and obtain an analogue of Theorem 1.2 when the domain is the Poincaré
disk and the target is the p-disk for some p > 2.

Note that the restriction ¢ of the Segre embedding ¢ : (P")? — P?'~! to the
dense open subset C” C (P!)? is given by

01, -..nzp) =c(L,z1], ..., [1, 2p])

in terms of the standard holomorphic coordinates z = (z1, ..., z,) € CP. Here C? is
identified with its image £(C?) in (P!)?, where the map & : CP < (P)? is defined
by £(z1,...,2p) =1, z1l, ..., [1, zpD.

Actually, the author [Chan 2016] observed that the following can be proved by
the same method as the proof of Theorem 1 in [CM].
Proposition 3.10 [Chan 2016, Proposition 5.2.4]. Let f : (A, dsi) — (AP, dsi,,)
be a holomorphic isometric embedding, where p > 2 is an integer. Then, f(A) is an
irreducible component of ¥ N\ AP for some affine-algebraic subvariety v C CP such
that (¥ N AP) = o(AP) N P, where P € P?"~1 is a projective linear subspace.

Similarly, we observe that the method in the proof of Theorem 1.2 is also valid
for any holomorphic isometry from (A, 2dsi) to (AP, dsi,,), where p > 2.
Proposition 3.11. Let f : (A, 2dsi) — (AP, dsi,,) be a holomorphic isometric
embedding, where p > 2 is an integer. Then, f(A) is an irreducible component
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of ¥ N AP for some affine-algebraic subvariety ¥ C CP such that o(¥ N AP) =
o(AP) N P, where P C P> ~!is a projective linear subspace.

Proof. Assume without loss of generality that f(0) = 0. Note that

p
har(z, 2 =] [(A=1z;
j=1
L(p+1)/2] Lp/2]

=1- Z Z |Ziy ** Zigy 1>+ Z Z |z, "'Zj2n|2-

n=1 1<ij<--<ip-1=<p n=1 1<ji<-+<jm<p

In the proof of Theorem 1.2, we put 2 = 1 and replace the term /"' (¥ |G{" (2)|?

(resp. Y2162 (2)]) by

L(p+1)/2] 2n—1 2 Lp/2] 2n 2
(3-9) Z Z 1_[ Zi, (resp. Z Z 1_[ Zj, )
n=1 1<ij<-<izpm-1=<p p=I1 n=1 1<ji<-<jyu<p p=1

Indeed, we may define m;(A?) and my(AP). Then, we compute m;(AP) =
ma(AP) 4+ 1 = 2P~1 In this situation, the integer Ny defined in the proof of
Theorem 1.2 is equal to m | (AP) + 1 =2P~1 4 1. Then, the result follows directly
from the arguments in the proof of Theorem 1.2. (I

3B2. On holomorphic isometries of complex unit balls into irreducible bounded
symmetric domains of rank at most 3. Given an irreducible bounded symmetric
domain € CV of rank > 2, it is natural to ask whether all holomorphic isometries
in ﬁI(B", Q) arise from linear sections of the minimal embedding of the compact
dual X, of © in general. In [CM], we showed that the answer is affirmative
for all holomorphic isometries in IfI\Iy([EB", 2) whenever I/{\IA/(B”, Q) # @ and
A’ € {1, rank(2)}. On the other hand, Theorem 1.2 asserts that the answer is also
affirmative for all holomorphic isometries in ﬁIz(B", 2) whenever I:I\IZ(B", Q) £ 0.
In other words, we may prove Theorem 1.2 for the case where 2 < rank(£2) <3 as
follows.

Proof of Theorem 1.2 for the case where 2 < rank(2) < 3. Recall that A’ is an
integer satisfying 1 <1’ <r; see [CM, Lemma 3]. If r =2, then .’ =1 or A’ = 2.
In the case of A’ = 1, the result follows from [CM, Theorem 1]. When A’ =2, we
may suppose that f(0) = 0. Then, f is totally geodesic by [CM, Proposition 1] and
f(B") is indeed an affine linear section of Q in CV; see [Mok 2012]. Therefore,
the result follows when » = 2. Now, we suppose that r =3. If A’ =1 or ' =3,
then the result follows from Proposition 1 and Theorem 1 in [CM]. If A’ =2, then
the result follows from the proof of Theorem 1.2 for the case where A’ = 2. ([l

The proof of Theorem 1.2 is complete.
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Remark 3.12. In general, we expect that Theorem 1 in [CM] holds true for any
holomorphic isometry from (B”, kgg-) to (2, go) for 1 < k <rank(€2). Actually,
the case where 2 < rank(£2) < 3 in Theorem 1.2 asserts that our expectation is true
when 2 is an irreducible bounded symmetric domain of rank at most 3. Moreover,
the statement of Theorem 1.2 for the case where 2 < rank(£2) < 3 also holds true for
any holomorphic isometry from (A, kdsi) to (AP, dsi ») for any positive integer k
and any integer p such that 2 < p < 3. However, for 2 < p < 3 one may make use
of Ng’s classification of all holomorphic isometries from (A, kdsi) to (AP, dsip),
see [Ng 2010], to prove such an analogue of Theorem 1.2 for the case where
2 <rank(2) < 3.

On the other hand, when © € C" is an irreducible bounded symmetric domain of
rank r > 4, it is not known whether all holomorphic isometries in ﬁlk(B”, Q) arise
from linear sections of the minimal embedding of the compact dual X, of 2 for
3 <k <r —1. In other words, the problem remains open for the space ﬁlk (B", Q)
when Qisofrankr >4 and3 <k <r—1.

Now, we would like to emphasize the following consequence of both Theorem 3.6
and Theorem 1.2.

Corollary 3.13. Let Q € CV be an irreducible bounded symmetric domain of
rank > 2 such that n(Q) < p(Q). If f € HL (B", Q) for some real constant )/ > 0,
then we have the following:

(1) n<p(Q)when ) >2;n < p(Q)+1when ) =1.

(2) f(B") is anirreducible component of some complex-analytic subvariety v C 2
satisfying 1(V) = P N(2), where 1 : X, — PN is the minimal embedding
and P C PV is some projective linear subspace.

Proof. Note that (1) follows from Theorem 3.6 when A’ > 2. On the other hand, (1)
follows from Theorem 2 in [Mok 2016] when A’ = 1. Moreover, (2) follows from
Theorem 1.2 because €2 is of rank at most 3 whenever 2 satisfies n(2) < p(2). U

Remark 3.14. (1) In particular, Corollary 3.13 holds true when € is either of
type IV or of the exceptional type by Lemma 3.1. From the method used in this
section, it is not known whether both parts (1) and (2) of Corollary 3.13 still hold
true in general when the assumption n(€2) < p(£2) is removed.

(2) Recently, Yuan (personal communication, 2017) pointed out to the author that
one may obtain upper bounds on dimensions of isometrically embedded complex
unit balls into irreducible bounded symmetric domains €2 of rank > 2 by using the
functional equation for any holomorphic isometry f : (B", kgg:) — (2, ga), k > 2,
with f(0) = 0 and the signature of the sum of squares; see [Xiao and Yuan 2016,
Proposition 2.11]. When the target is Q = D; 4» it suffices to consider the case
where k =2 and we compute m; (D} ,) = (3)(3) = 18 by [Fang et al. 2016] (noting
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that Q = D; 4 does not satisfy n(€2) < p(€2)). Moreover, one may make use of the
signature of the sum of squares, see [Xiao and Yuan 2016, Proposition 2.11], to
conclude that 3n(n + 1) < my(Dj ) = (;) (g) =18,i.e.,n <5=p(Dj ). In other
words, combining with the results of the present article, both parts (1) and (2) of
Corollary 3.13 hold true for Q = Dé, 4+ Moreover, in general this method does not
imply that n < p(€2) if there exists a holomorphic isometry f : (B", kgp:) — (€2, go)
with k > 2, where 2 is any irreducible bounded symmetric domain of rank > 2.

4. On holomorphic isometries of complex unit balls into certain irreducible
bounded symmetric domains of rank 2

4A. Characterization of images of holomorphic isometries. We start with the
following lemma which identifies those irreducible bounded symmetric domains
Q € CV of rank 2 which carry extra properties.

Lemma 4.1. Let Q@ € CV be an irreducible bounded symmetric domain of rank 2.
Then, 2N > N’ + 1 provided that S is not biholomorphic to Dg’q forany g > 5.

Proof. The proof follows from direct computation for any irreducible bounded
symmetric domain 2 of rank 2 by using results in [Nakagawa and Takagi 1976,
p. 663]. Actually, we obtain from that paper the value of N’ := N (1) for any
irreducible Hermitian symmetric space X. of the compact type.

Case 1: When €2 is not biholomorphic to any type-I domains D; q forg >3, Qis
either biholomorphic to DE,,V (for some m > 3), D? or DV because of Div = D%,z’
DY = Dl'and D= DY. If Q= DIV, m > 3, then it is clear that 2m > N'+ 1 =
m+2.If Q= DY, then 2dim¢ DY =20 > N+ 1=2"1=16. If @ = DV, then
2dimgc DY =32 > N +1=26+1 =27, where X, is the compact dual of DV.

Thus, any such €2 satisfies the desired property.

Case 2: When Q = Déq for some g > 3, we have
2+
4g=2N>N'+1=( q") =g+ 1qg+2)

if and only if 0 > g% —5¢ +2 = (q — %)22 — %, which is equivalent tog =3 or g =4
because g > 3 is an integer and (q — %) > 24—5 > 14—7 for ¢ > 5. The result follows. [J
Remark 4.2. We consider rank-2 irreducible bounded symmetric domains 2 be-
cause the functional equations of holomorphic isometries from (B”, gg») to (2, go)
are similar to those of holomorphic isometries from (B", gg-) to (D,Inv, gpu) for
m > 3 under the assumption that the isometries map 0 to 0. This is related to
the study in [CM]. In addition, we will assume that such a bounded symmetric

domain  satisfies 2 -dim¢ Q > N/ + 1.
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Let Q € CV be an irreducible bounded symmetric domain of rank 2 satisfying
2N > N’+1, where N’ is defined in Section 1. Recall that g, is the canonical Kihler—
Einstein metric on 2 normalized so that minimal disks are of constant Gaussian cur-
vature —2. In terms of the Harish-Chandra coordinates z = (z, ..., zn) € 2 C CV,
the Kéahler form with respect to gq is equal to w,, = —/—199 log hq(z, z), where

N'—N

N -
ho(.&)=1-Y &+ > Gi(2)G/(&)

j=1 =1

such that each G, (z) is a homogeneous polynomial of degree 2 in z so that 6; (A2)=
)»2@1 (z) for any A € C*. Note that from Section 2, we have G4y (z) = 61 (z) for
[=1,...,N —N. Write G(z) := (G1(2), ..., Gn—n(2)T. Let n, N and N’ be
positive integers satisfying N — N +n < N. We also let U' € M(N —n, N; C) be
such that rank(U’) = N — n. Then, we define

4-1) Wy = {z:(zl,...,zN)EQ:U/ZT:(O G(2) )}
(2N—n—N")x1

The following generalizes the study of ﬁll (B", D}\Y), N > 3, in [CM]. Moreover,
in the following proposition, the reason of assuming n < 2N — N’ =: no(R) is
that there is a certain explicitly defined class of complex-analytic subvarieties of €2
which contains the images of all holomorphic isometries (B", gg-) — (€2, go) up to
composing with elements in Aut(£2), and each of them is contained entirely in Wy~
for some matrix U” € M(N —no(R), N; C) satisfying U"U"T = Iy _ny ). We will
show that this gives a relation between the spaces ﬁIl B", Q), 1 <n<ny()—1,
and HI, (B"@, Q).

Proposition 4.3. Let Q@ € CV be an irreducible bounded symmetric domain of
rank 2 such that 2N > N’ + 1, where N’ is defined in Section 1. Let n be an
integer satisfying 1 <n <2N — N. If f € a1, (B", Q), then W(f(B")) is the
irreducible component of Wy, containing 0 for some matrix U' € M(N —n, N; C)
satisfying U'U'T = Iy _, and some W € Aut() satisfying W( £ (0)) =0. Conversely,
given any matrix U" € M(N —n, N; C) satisfying U"U"" = Iy _,, the irreducible
component of Wy containing 0 is the image of some f € ﬁIl (B", ).

Proof. Let f € ﬁll (B", 2). Assume without loss of generality that f(0) = 0. Then,
we have N NN "
L= 1@+ D 1G(fFnlP=1=>" |wl*
j=1 =1 =1

Note that 2N — 1 > N’ and 2N — N’ > n. By Lemma 2.1, there exists U € U(N)
such that

4-2) U W), ..., fN )" =i, ..., we, G, 015 an—n_n»)".
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We write U = [A’ U’]7, where U’ € M(N —n, N; C) is a matrix which satisfies
U'UT =1Iy_,. Then, we have f(B") C Wy, by (4-2). It is clear that the Jacobian
matrix of Wy, at 0 is equal to U’, which is of full rank N — n so that W[, is
smooth at 0 and of dimension 7 at 0. Let S be the irreducible component of Wy,
containing f(B"), which also contains 0. Then, we have dim § = n. Since both
S and f(B") are irreducible complex-analytic subvarieties of 2, f(B") € S and
dim S = dim f(B") = n, we have S = f(B"). Thus, the irreducible component
of Wy, containing 0 is the image of some holomorphic isometric embedding f :
(B, gmr) — (2, ga)-

Conversely, let n be an integer satisfying 1 < n < 2N — N’ and let U” €
M(N —n, N; C) be a matrix satisfying U"U"" = Iy_,. By Lemma 2.3, there
exists A” € M(n, N; C) such that [A” U"]" € U(N) so that

A" <1 w(z)
4-3) [U”] = G(2) forall z = (z1,...,2z,) € Wyr,
N 02N —n—N)x1
where w(z) = (w1(2), ..., w,(2)T := A"(z1, ..., zn)T. Note that the Jacobian

matrix of Wy~ at 0 is equal to U”, which is of full rank N — n so that Wy~ is
smooth at 0 and of dimension n at 0. Let S’ be the irreducible component of Wy~
containing 0. Then, we have dim S’ = n. Actually S’ is precisely the point set
closure of the connected component of Reg(Wy~) containing 0 in 2. Denote by
Reg(S’) the regular locus of S”. Then, Reg(S’) is a connected complex manifold
lying inside 2 and 0 € Reg(S’). Let ¢ : B(0) — Reg(S’) be a biholomorphism
onto an open neighborhood of 0 in Reg(S’) such that ¢(0) = 0, where B(0) is
some open neighborhood of 0 in C". Here the image ¢(B(0)) is a germ of complex
submanifold of €2 at 0, i.e., a complex submanifold of some open neighborhood of
0in Q. Note that hg(z,2) =1-> |, lw;(z)|*> forany z € 8’ and ¢ = ({1, ..., &n)
can be regarded as local holomorphic coordinates on Reg(S’) around 0 € Reg(S").
Then, it follows from (4-3) that for ¢ € B(0), we have

(4-4) ha(@(2), p(©) =1=") " lwi(p@)I?

=1

and —log ho(¢(0), () =—1log(1—=Y"/_, lwi(¢(¢))|?) is alocal Kihler potential
on Reg(S”") which is the restriction of the Kéhler potential on (€2, go) to an open
neighborhood of 0 in Reg(S’). It follows from (4-4) that the germ of S’ at 0 is the
image of a germ of holomorphic isometry f 1 (B gpr; 0) — (2, go; 0). By the
extension theorem of [Mok 2012], f extends to a holomorphic isometric embedding
f - (B", gpr) — (L2, go). Since both f (B") and S’ are n-dimensional irreducible
complex-analytic subvarieties of €2 and f (B"(0,¢)) C f (B") N S’ for some real
number ¢ € (0, 1). It follows that $’ = f(B"). Hence, the irreducible component
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of Wy~ containing 0 is the image of some holomorphic isometric embedding
f e HI;(B", Q). O

Remark 4.4. From the proof of Lemma 4.1, we see that Proposition 4.3 precisely
holds true for the space HI; (B", 2) whenever the integer n and the bounded sym-
metric domain 2 satisfy one of the following:

() QED} 5, 1<n<3=p(Dj,).

2 Q=D}, 1<n<2.

B3 Q=D 1<n<5=pDH-1.

@4 Q= Dfnv for some integerm >3, 1 <n<m—1 =p(Dan)+ 1.
B5) Q=DY, 1<n<6.

Moreover, Proposition 4.3 actually provides the classification of images of all
fe I, (A, 2) whenever 2 is a rank-2 irreducible bounded symmetric domain
which is not biholomorphic to D; q for any g > 5. This also solves part of Problem 3
in [Mok and Ng 2009, p. 2645] theoretically. It is expected that there are many
incongruent holomorphic isometries in ﬁII(A, 2). However, Proposition 4.3 at
least provides a source of constructing explicit examples of holomorphic isometries
in HI 1(A, Q). In particular, for the case where the target is an irreducible bounded
symmetric domain of rank 2, Problem 3 in [Mok and Ng 2009, p. 2645] remains
unsolved precisely in the case where the target €2 is Dé’ g for some g > 5.

4B. Proof of Theorem 1.3. As we have mentioned in Section 4A, Proposition 4.3
actually gives a relation between the spaces HI{ (B", 2), 1 <n <ng(2) — 1, and
HI, (B™Y, Q). In other words, this yields Theorem 1.3.

Proof of Theorem 1.3. We follow the setting in the proof of Proposition 4.3. Assume
without loss of generality that f(0) =0. Note that N'— N +n < N and thus f (B") is
the irreducible component of W/, containing 0 for some matrix U’ € M(N —n, N; C)
satisfying U'U'T = Iy _, by Proposition 4.3. Moreover, we have

A/
[U,} Fra) Y @)” = (i wn G @) Oixen-w-n)

for some A’ € M(n, N; C) such that [A’ U’]T € U(N) after composing with some
element in the isotropy subgroup of Aut(B”) at 0 if necessary (by Lemma 2.3). We
write
/ U 1/ / / / /
U = U for some Uy e M(N'—N,N;C), Uye M2N —N"—n, N; C).
2

Moreover, we have U/ (z1, ..., zv)T = G(z) and Ul’l7’1T = Iy _y for any z € Wy,
It follows from Proposition 4.3 that the irreducible component of Wy containing 0
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is the image of some holomorphic isometric embedding F : (B, ggw) — (€2, gq),
where ng = ng(R2) := 2N — N’. We may suppose that F(0) = 0 without loss of
generality. Since f(B") C €2 is irreducible and f(B") C Wy, we know S := f(B")
lies inside the irreducible component S’ := F(B") of Wy, containing 0. Since
(S, gals) = (B", gpr) and (5, gals) = (B, ggro) are of constant holomorphic
sectional curvature —2, we have (S, gals) C (8, gals) is totally geodesic and the
result follows; see the proof of [CM, Theorem 2]. ]

Remark 4.5. (1) It follows from Lemma 4.1 that Theorem 1.3 holds true when
the pair (€2, no(£2)) is one of the following:

(a) Q= D23, no(2) =3.

(b)) Q= D2 4 10(2) =2.

(©) Q= DI, np(Q) =5.

(d) QEDY (m>3), no(Q)=m—1.

(e) L= DY, ng(Q) =6
(2) Itis not known whether Theorem 1.3 still holds true when ny(£2) is replaced by
p(Q) + 1 and Q 2 DIV for any integer m > 3.

(3) For the partlcular case where Q2 = D2 3, it follows from [Mok 2016] that if
the space A, (B", Dy 3) is nonempty, then n < p(D2’3) + 1 =4. In this case, it is
motivated by our study in the present article to consider the following problem in
order to classify all holomorphlc isometries in HI, (B", D£ 3):

Given any f € HII(B D} 23), can f be factorized as f = F o p for some
F € HI; (B, D} ;) and p € HII(B3 B+)?

If the problem were solved and the answer were affirmative, then the classification
of all holomorphic isometries in a1, (B", D£’3) would be reduced to the uniqueness
problem for nonstandard (i.e., not totally geodesic) holomorphic isometries in
A1, (B4, D£’3) constructed by Mok [2016].
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HAMILTONIAN STATIONARY CONES
WITH ISOTROPIC LINKS

JINGYI CHEN AND YU YUAN

In memory of Professor Wei-Yue Ding

We show that any closed oriented immersed Hamiltonian stationary isotropic
surface X with genus g5 in S5 c C? is (1) Legendrian and minimal if g5 = 0;
(2) either Legendrian or with exactly 2gx — 2 Legendrian points if g5 > 1.
In general, every compact oriented immersed isotropic submanifold L"~! c
§27=1 = C" such that the cone C (L") is Hamiltonian stationary must be
Legendrian and minimal if its first Betti number is zero. Corresponding
results for nonorientable links are also provided.

1. Introduction

In this note we study the problem of when a Hamiltonian stationary cone C (L)
with isotropic link L on $?*~! in C" becomes special Lagrangian. A submanifold
M C C", not necessarily a Lagrangian submanifold, is Hamiltonian stationary if

divy (JH) =0,

where J is the complex structure in C" and H is the mean curvature vector of M
in C". In fact this is the variational equation of the volume of M, when one makes
an arbitrary deformation J Vy ¢ with ¢ € C°(M) for M:

f(H, Jqu;):f (pdivM(JH)—divM(wH):/ o divy (JH).
M M M

The notion of Hamiltonian stationary Lagrangian submanifolds in a Kihler manifold
was introduced in [Oh 1993] as critical points of the volume functional under
Hamiltonian variations (known to A. Weinstein, as noted there). Chen and Morvan
[1994] generalized it to the isotropic deformations.

As in [Harvey and Lawson 1982], a submanifold M in C" is isotropic at p € M if

J(T,M) L T,M,

Chen is partially supported by NSERC, and Yuan is partially supported by an NSF grant .
MSC2010: 58]05.
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and it is isotropic if it is isotropic for every p. A submanifold M being isotropic is
equivalent to the standard symplectic 2-form on R?" vanishing on M. The dimension
of an isotropic submanifold is at most n, the half real dimension of C", and when it
is n, the submanifold is Lagrangian.

For an immersed (n—1)-dimensional submanifold L in the unit sphere S 2n=1 et
u: L — S?"~! be the restriction of the coordinate functions in R?" to L. A point
u € L is Legendrian if T, L is isotropic in R?" and

J(T,L) L u.

L is Legendrian if all the points u are Legendrian. This is equivalent to L being
an (n—1)-dimensional integral submanifold of the standard contact distribution
on §?"~1. The cone

ClL)y={rx:r=0,xe L}

is said to have link L. In this article, all links Lare assumed to be connected, and
we shall use X for the 2-dimensional link L.

The Hamiltonian stationary condition is a third-order constraint on the subman-
ifold M, as seen when M is locally written as a graph over its tangent space at a
point. The minimal submanifolds, a second-order constraint on the local graphical
representation of M, are automatically Hamiltonian stationary. We are particularly
interested in the case when M is a Lagrangian submanifold. The existence of
(many) compact Hamiltonian stationary Lagrangian submanifolds in C" versus the
nonexistence of compact minimal submanifolds makes the study of Hamiltonian
stationary ones interesting. In this note, we shall not be concerned with the existence
of Hamiltonian stationary ones; instead, we shall concentrate on the rigidity property,
namely, when the Hamiltonian stationary ones reduce to special Lagrangians, in
the case when the submanifold is a cone over a spherical link in C".

A well-known fact about a link L C S” and the cone C (L) over it is that L
is minimal in S” if and only if C(L) \ {0} is minimal in R"*1. When C(L) is
Hamiltonian stationary and isotropic, possibly away from the cone vertex 0 € R?",
we observe that the Hamiltonian stationary equation for C(L) splits into two
equations:

diVL(JHL) = 0,

i.e., the link L is Hamiltonian stationary in R2" as well, and
(JHL,u) =0,

where H; is the mean curvature vector of L in R?" and u is the position vector
of L. Moreover, if the link L is isotropic in C”, then

divy(JH) =0,
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where H; = H; — mu is the mean curvature vector of L in S*"~!; in fact,

m m

div,(Ju) =Y (Dg,(Ju), Ej) = (JDgu, E;) =0
i=1 i=1

as Dg,u is tangent to L, where D is the derivative in R?* and {E1, ..., E,} is an
orthonormal local frame on T'L.

Our observation is that the rigidity statements in [Chen and Yuan 2006] for
minimal links generalize to the Hamiltonian stationary setting.

Theorem 1.1. Let X be a closed oriented immersed isotropic surface with genus gy,
in 8% C C3 such that the cone C(X) is Hamiltonian stationary away from its vertex.
Then

(1) if gx =0, the surface X is Legendrian and minimal (in fact, totally geodesic);

(2) if g= =1, the surface X is either Legendrian or has exactly 2gy, —?2 Legendrian
points counting the multiplicity.

It is known that the immersed minimal Legendrian sphere (gx = 0) must be a
great two-sphere in S°; see, for example, [Haskins 2004, Theorem 2.7]. Simple
isotropic tori (gx = 1) can be constructed so that the Hamiltonian stationary cone
C(X) is nowhere Lagrangian. A family of Hamiltonian stationary (nonminimal)
Lagrangian cones C(X) with gs = 1 are presented in [Iriyeh 2005]. Bryant’s
classification [1985, p. 269] of minimal surfaces with constant curvature in spheres
provides examples of flat Legendrian minimal tori, as well as flat non-Legendrian
isotropic minimal tori (gx = 1) in S. The constructions of [Haskins 2004; Haskins
and Kapouleas 2007] show that there are infinitely many immersed (embedded if
gs = 1) minimal Legendrian surfaces for each odd genus in S°.

In general dimensions and codimensions, we have:

Theorem 1.2. Let L™ be a compact isotropic immersed oriented submanifold in
the unit sphere S>"~! C C" such that the cone C(L™) is Hamiltonian stationary
away from its vertex. Suppose that the first Betti number of L™ is 0. Then, away
from its vertex,

(1) when m is the top dimension n — 1, the cone C(L""") is Lagrangian and
minimal (or equivalently L"~" is Legendrian and minimal);

(2) for m < n — 1, the cone C(L™) is isotropic, and if the differential 1-form
(JHcmy, - ) is closed then the mean curvature Hemy of C(L™) vanishes on
the normal subbundle JTC(L™).

We make two remarks when the dimension m of the link is two. First, Theorem 1.2
also implies Theorem 1.1(1). Second, if the first Betti number of L? is not zero
(gr2 > 0) and L is isotropically immersed in §2"=1 with 2n — 1 > 5, and C(L) is
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Hamiltonian stationary away from its cone vertex, the same argument as in the proof
of Theorem 1.1 leads to the same conclusion as in part (2) of Theorem 1.1, that the
cone C (L?) is isotropic either everywhere or along exactly 2g;> —2 = — x (L?) lines.

Theorems 1.2 and 1.1 (except the totally geodesic part) remain valid for nonori-
entable links (note that x (X) = 2 — gy for a compact nonorientable surface X);
see Remarks 2.1 and 3.1. The nonorientable version of Theorem 1.2 implies that
one cannot immerse a compact nonorientable L"~! with first Betti number zero
Hamiltonian stationarily and isotropically into $?*~! C C". Otherwise, the cone
C (L") would be a special Lagrangian cone; then C (L") would be orientable,
and L"~! would also be orientable. In particular, there exists no isotropic Hamilton-
ian stationary immersion of a real projective sphere RP? into S° C C. In passing,
we mention that Lé and Wang [2001] showed that minimal link L"~! ¢ §2"~! is
Legendrian if and only if f = (Au, Ju) satisfies Ap f = —2nf for any A € su(n).

It is interesting to find out whether there exists an isotropic Hamiltonian stationary
surface in S° with exactly 2gx — 2 Legendrian points for g5 > 1.

2. Hopf differentials and proof of Theorem 1.1

To measure how far the isotropic X is from being Legendrian, or the deviation of
the corresponding is cone from being Lagrangian, we project Ju onto the tangent
space of ¥ in C3, where J is the complex structure in C3. Denote the length of the
projection by

f=|PrJul®.

To compute the length, we need some preparation. Locally, take an isothermal
coordinate system (!, £2) on the isotropic surface

u:Y — 8> cC
Set the complex variable
z=tl /=172
Then the induced metric has the local expression with the conformal factor ¢
g =@’ [(dtH)? + (d1*)?*) = ¢* dz dZ.

We project Ju to each of the orthonormal bases ¢~ luy, ¢~ 'us with u; = du/dt'.
Then the sum of the squares of each projection is

[(Ju, ug) >+ [(Ju, uz))® 4(Ju, uy)?

f = = )
@? @?

where u, = du/dz and (-, - ) is the Euclidean inner product on RS, and in particular
0 < f < 1. In fact, f is the square of the norm of the symplectic form w in C3
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restricted on the cone C(X) with link X:
olcx) A *olcxy = f - volume form of C(X).
The Hamiltonian stationary condition for the cone C(X) = ru(t!, 1?) is

0= divc(z)(JHC();))
1 .. 1
= (0, (JHew), 0,) + 5 divs (4 Hs )

= —%(JHE, Lt) + % dng(]H{;).
r r
It follows that
din (JHE) =0
and
4
0= (JHs,u)= —<—2uzg, Ju>.
4
Coupled with the isotropy condition
(Jui,uj) =0,
we have the holomorphic condition
(Ju,uz)z = (Juz, ug) + (Ju, uzz) = (Ju, —39%u) = 0.

The induced metric g yields a compatible conformal structure on the oriented
surface >, which makes ¥ a Riemann surface. We shall consider two cases
according to the genus gy.

Case 1: gx = 0. By the uniformization theorem for Riemann surfaces, see, for
example, [Ahlfors and Sario 1960, p. 125, p. 181], there exists a holomorphic
covering map

D (S2’ &canonical) = (X, &),

or locally

1
Al -
(O (C , —(1 T Twl)? dwdw) - (X, 9).

For z = ®(w) one has
1

(1+w[?)?

where 1 is a positive (real analytic) function on X. In particular

1
2wl = —5— VR
Vro(1+[wl?)

dwdw = &*(Y2g) = O* (Y29 dzd7) = ¥2¢*|z0|> dw dw,

Note that 1
(Ju,uy) = (Ju,uz)zy = (Ju,u;)—
W,
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is a holomorphic function of z; in turn it is a holomorphic function of w. Also
(Ju, uy) is bounded, approaching 0 as w goes to 0o, because

[(Ju, u;)|? 1
* YA+ wH?
So (Ju, uy) =0. Therefore f =0 and X is Legendrian. We conclude that C(X)\ {0}
is Lagrangian.
The 1-form (JHc(x), -) on the Lagrangian submanifold C (%) \ {0} is closed.
(This follows directly either from Theorem 3.4 of [Dazord 1981], or can be verified
by local exactness via the local expression

|(Ju, uy)|* =

Hc(z) = —JVC():)Q

given in [Harvey and Lawson 1982]; this will be done in next section.) Its restriction
along ¥ is therefore a closed 1-form i*(JHc¢(x), - ) as the pullback by the inclusion
i: X — C(X)ofaclosed 1-form. Since the first Betti number of X is zero (gx = 0),
there is a smooth function 0x; on ¥ such that

dbs =i*(JHc(s), - ).
Then
(Vgbx, ) =dbs = (JHyx, - ).
As we have seen, the Hamiltonian stationary condition on C(X) implies

0= dng(JHg) = din (Vg@g) = AgQZ.

On the closed surface X, we have Oy, is constant, and in turn, X is minimal.
An immersed minimal Legendrian 2-sphere in S° is totally geodesic. This is a
known fact; for a proof, see, for example, [Chen and Yuan 2006].

Case 2: gy > 1. As in Case 1, where gy = 0, the isotropic and Hamiltonian
stationary condition gives us a local holomorphic function (Ju, u;) and global
holomorphic Hopf 1-differential (Ju, u;) dz. We only consider the case where
(Ju, u;) dz is not identically zero. The zeros of (Ju, u;) are therefore isolated and
near each of the zeros, we can write

(Ju,u;) = h(z)z",

where 4 is a local holomorphic function, nonvanishing at the zero point z = 0 and
k is a positive integer. One can also view

(Ju,uz) = 3((Ju, ur) — /= 1(Ju, us))
as the tangent vector

TJu,uyuy — 5 (Ju, uz)uz = 3 (Ju, uy) 9y — 3 (Ju, ua) &
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along the tangent space T ¥, where 9; = du/dt'. The projection Pr Ju on the tangent
space of T X is locally represented as

(Ju,uy) 01+ (Ju, uz) 9,

¢? '
The index of the globally defined vector field Pr Ju at each of its singular points,
i.e., where Pr Ju = 0, is the negative of that for the vector field %(Ju, uy) o —
%(Ju, uy) 0. Note that the index of the latter is k.

From the Poincaré—Hopf index theorem, for any vector field V with isolated
singularities on X, one has

PrJu=

Z index(V) = x(X)=2—2gx <O0.
V=0
The zeros of Pr Ju are just the Legendrian points on X. So we conclude that the
number of Legendrian points is 2gy — 2 counting the multiplicity. This completes
the proof of Theorem 1.1.

Remark 2.1. As mentioned in the Introduction, Theorem 1.1 (except the totally
geodesic part) and its generalization to higher codimensions can be extended for
the nonorientable links. This can be seen as follows. The Poincaré—Hopf index
theorem holds on compact nonorientable surfaces, our count of the indices of the still
globally defined Pr Ju via local holomorphic functions is valid too, and the index
of a singular point of a vector field is independent of local orientations. Moreover,
this index-counting argument yields an alternative proof for Theorem 1.1(1) (except
the totally geodesic part) and its generalization.

3. Harmonic forms and proof of Theorem 1.2
Consider an immersed isotropic Hamiltonian stationary submanifold in §"~!
u:l™— >t
The isotropy condition for any local coordinates (¢!, ..., ") on L™ is given by
(Jui,uj) =0,

where J is the complex structure of C" and u; = du/dt'.
The Hamiltonian stationary condition for the cone C(X) = ru(t) is

0= diVC(L)(JHC(L))

=(0-(JHc (1)), 0r) + rlz divy (J(%HL»

1 1
= _r_ZUHL’ u) + 3 divy (JHL).
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Notice that (JHy, u) and divy (JHy) are independent of . Therefore, the equation
above splits into two equations

diVL(JHL) =0
and

0=(JHp,u)=—(Agu, Ju),

where g is the induced metric on L and A, is the Laplace-Beltrami operator of (L, g).

To measure the deviation of the corresponding cone C(u(L"™)) from being
isotropic, we project Ju onto the tangent space of u(L™) in C". Note that the
projection is the vector field along u(L)

m
PrJu = Z g (Ju, uiu;,
ij=1

where g;; = (u;, u;), 1 <i, j <m. The corresponding 1-form
m
o= Z(Ju, uji) dr’
i=1

is of course globally defined on L™. In fact it is a harmonic 1-form, because « is
closed and coclosed as verified as follows:

m

da = (Ju,u;); dt’ adt’

< <
_

mn

(Juj, ui) + (Ju, uij)) dt’ Adt'

<
Il
—_

(Ju,u;;)dt! ndt' =0,

Il
_

Il

»J

and
Sa = (=)™l ywdxa
m _—
=— *d( Z (=) g (Ju,uydt' A AdLT A - /\dt’”)
i,j=1

=—x Y (/E8g (Ju,ui))dt' - AdtI A AdE”
ij=1

1 m -
=—— 9 (Vgg" (Ju, u;))
Vi

= i ((Juj, gu;) —|—<Ju, %aj(\/ggi/ui)» = —(Ju, Agu) =0,

ij=1
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where we have used the isotropy condition and the consequence of Hamiltonian
stationary condition in the last two steps, respectively.

The Hodge—de Rham theorem implies that the harmonic 1-form « must vanish
because the first Betti number of L™ is zero by assumption. It follows that Pr Ju
must vanish. Therefore, the cone C(L™) is isotropic.

Next, we claim that the differential 1-form

B=(JHL,")

on L™ is closed. When m = n — 1, the isotropic cone C(L"~') is Lagrangian. By
[Harvey and Lawson 1982], around each point of C(L"~!)\ {0}, there is a locally
defined Lagrangian angle 8 such that

HC(L) = —JVC(L)Q.
Now the globally defined 1-form § on the link L can be expressed locally as
B=(Vew)0,-)=(V0,-)=d.0

by noticing that Hc(ry = Hy as r = 1, where the second equality holds as the two
1-forms are on 7L and the tangent vectors to L are orthogonal to 9,, and d; stands
for the exterior differentiation on L. We conclude that 8 is a closed 1-form on L.
When m < n — 1, the I-form (JHc¢ (1), ) is closed by assumption, so its restriction
B on L is closed.
Since the first Betti number of L is zero, there is a smooth function #; on L such
that (JHy, -) = d;6r. This implies that the projection of JH;, onto T'L satisfies
m
Y (JHL. E)E; = V.0,

i=1

where {E1, ..., E,}isalocal orthonormal frame of 7 L. The Hamiltonian stationary
condition on C (L) asserts, as we have seen earlier, that

ALQL = diVLVLQL = diVL(JHL) =0.

On the closed submanifold L, we know 6, is constant. In turn, form =n — 1,
C(L""") is minimal, and for m < n — 1, C(L™) is partially minimal, namely
Hc (1) vanishes on the normal subbundle JTC(L™). The proof of Theorem 1.2 is
complete.

Remark 3.1. As the projection Pr Ju and the adjoint operator § are independent of
the local orientations and the Hodge—de Rham theorem holds for compact nonori-
entable manifolds, see, for example, [Lawson and Michelsohn 1994, p. 125-126],
we see that Theorem 1.2 remains true for nonorientable links L™
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Remark 3.2. For a surface link L2 ¢ S~ ! with gr = 0 for the case n > 3, if it is
isotropic and C(L?) is Hamiltonian stationary, the same argument as in [Chen and
Yuan 2006] leads to the conclusion that the second fundamental form of L in $%*~!
vanishes in the normal subbundle Ju @& JTL. When n = 3, L is totally geodesic in
S’ as noted before.

Corollary 3.3. Let L™ be a compact immersed isotropic submanifold in the unit
sphere S*"~1 C C". If the Ricci curvature of L™ is nonnegative, and it is positive
somewhere or the Euler characteristic x (L™) is not zero, then the Hamiltonian
stationary cone C(L™) is isotropic; in particular, C(L"™") is Lagrangian (or
equivalently L~ is Legendrian) and minimal when m is the top dimension n — 1.

Under the above condition, from [Bochner 1948, p. 381], it follows immediately
that the first Betti number of L™ is zero. Then Theorem 1.2 and its nonorientable
version imply the corollary.
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QUANDLE THEORY AND THE OPTIMISTIC LIMITS OF
THE REPRESENTATIONS OF LINK GROUPS

JINSEOK CHO

For a given boundary-parabolic representation of a link group to PSL(2, C),
Inoue and Kabaya suggested a combinatorial method to obtain the devel-
oping map of the representation using the octahedral triangulation and the
shadow-coloring of certain quandles. A quandle is an algebraic system
closely related to the Reidemeister moves, so their method changes quite
naturally under the Reidemeister moves.

We apply their method to the potential function, which was used to
define the optimistic limit, and construct a saddle point of the function.
This construction works for any boundary-parabolic representation, and it
shows that the octahedral triangulation is good enough to study all possible
boundary-parabolic representations of the link group. Furthermore, the
evaluation of the potential function at the saddle point becomes the complex
volume of the representation, and this saddle point changes naturally under
the Reidemeister moves because it is constructed using the quandle.

1. Introduction

A link L has the hyperbolic structure when there exists a discrete faithful representa-
tion p : w1 (L) — PSL(2, C), where the link group m(L) is the fundamental group
of the link complement S*\ L. The standard method to find the hyperbolic structure
of L is to consider some triangulation of S*\ L and solve certain sets of equations.
(These equations are called the hyperbolicity equations.) Each solution determines a
boundary-parabolic representation! and one of them is the geometric representation,
which means the determined boundary-parabolic representation is discrete and
faithful. Due to Mostow’s rigidity theorem, the hyperbolic structure of a link is a
topological property. Therefore, it is natural to expect the invariance of the hyper-
bolic structure under the Reidemeister moves. However, this cannot be seen easily,
because even a small change on the triangulation changes the solution radically.

MSC2010: primary 57M27; secondary 51M25, 58J28.
Keywords: optimistic limit, quandle, hyperbolic volume, boundary-parabolic representation, link

group.
1 boundary-parabolic means the image of the peripheral subgroup 7 (9 (Ss3 \ L)) is a parabolic
subgroup of PSL(2, C). Note that the geometric representation is boundary-parabolic.
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Recently, Inoue and Kabaya [2014] developed a method to construct the hyper-
bolic structure of L using the link diagram and the geometric representation. More
generally, for a given boundary-parabolic representation p, they constructed the
explicit geometric shapes of the tetrahedra of certain triangulations using p. Their
main method is to construct the geometric shapes using certain quandle homology,
which is defined directly from the link diagram D and the representation p. Here, a
quandle is an algebraic system whose axioms are closely related to the Reidemeister
moves of link diagrams, so their construction changes quite naturally under the
Reidemeister moves. (The definition of the quandle is in Section 2A. A good survey
of quandles is the book [Elhamdadi and Nelson 2015].) A result of Inoue and
Kabaya [2014] suggests a combinatorial method to obtain the hyperbolic structure
of the link complement.

Interestingly, the triangulation used in [Inoue and Kabaya 2014] was also used
to define the optimistic limit of the Kashaev invariant in [Cho et al. 2014]. As a
matter of fact, this triangulation arises naturally from the link diagram. (See Section
3 of [Weeks 2005] and Section 2C of this article for the definition.) We call this
triangulation octahedral triangulation of S3\ (L U {two points}) associated with
the link diagram D.

The optimistic limit first appeared in [Kashaev 1995] where the volume conjecture
was proposed. This conjecture relates certain limits of link invariants, called Kashaev
invariants, with the hyperbolic volumes. The optimistic limit, which was first defined
in [Murakami 2000], is the value of a certain potential function evaluated at a saddle
point, where the function and the value are expected to be an analytic continuation
of the Kashaev invariant and the limit of the invariant, respectively. As a matter
of fact, physicists usually call the evaluation the classical limit and consider it the
actual limit of the invariant. A mathematically rigorous definition of the optimistic
limit was proposed in [ Yokota 2011] and the value was proved to coincide with the
hyperbolic volume. Several versions of the optimistic limit have been developed, in
a number of articles, but we will modify the version of [Cho et al. 2014] so as to
construct a solution without the need to solve equations. .

The optimistic limit is defined by the potential function V(zy, ..., z,, w,i, o).
Previously, in [Cho et al. 2014], this function was defined purely by the link diagram,
but here we modify it using the information of the representation p. (The definition
is in Section 3.) We consider a solution of the set
H:= {exp(zkg—v> =1, exp(w,{a—V) =1 | J :degenerate crossings, k=1, .. .,n},

2k ow ,ﬁ
which is a saddle-point of the potential function V. Then Proposition 3.1 will show
that # becomes the hyperbolicity equations of the octahedral triangulation.

Solving the equations in H is not easy because there are infinitely many solutions.
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The standard way to avoid this difficulty is to deform the octahedral triangulation of
S3 \ (L U{two points}) to the triangulation of s? \ L, as in [Yokota 2011]. However,
this deformation produces the problem of the existence of solutions because some
triangulations constructed from a link diagram may have no solution. (Sakuma
and Yokota [2016] proved the existence of solutions for the alternating links.)
Furthermore, the author believes these deformations of the triangulation lose the
combinatorial properties of link diagrams. Therefore, we will use the octahedral
triangulation without any deformation and do not solve the equations in H. Instead,

we will construct an explicit solution (z(o) 720 (wy Oy of H.

Theorem 1.1. Using the quandle associated with the representation p, there exists
a formula to construct a solution (Z(O) .. (O), (wk)(o) ...) of H. (The exact
formulas are in Theorem 3.2.)

The evaluation of the potential function V depends on the choice of log-branch.
To obtain a well-defined value, modify the potential function to

(D) Vot s zns W), .. ) =

j aVv aVv
V@l 2 (W), . .0) _Z<Zk8_zk> log zx —Z(w,ﬁ ) J)logwk
k

ik Wy

Theorem 1.2. For the constructed solution (z(o) 720 (wk)m) ..) of H and
the modified potential function Vo above, the following holds:

) Voz ... 29, )@, .. ) =i(vol(p) +i cs(p)) (mod 2,

where vol(p) and cs(p) are the hyperbolic volume and the Chern—Simons invariant
of p defined in [Zickert 2009], respectively.

The proof will be in Theorem 3.3. The left-hand side of (2) is called the optimistic
limit of p, and vol(p) +i cs(p) in the right-hand side is called the complex volume
of p.

Note that for any boundary-parabolic representation p, we can always construct
the solution associated with p. This implies that the octahedral triangulation is
good enough for the study of all possible boundary-parabolic representations from
the link group to PSL(2, C). The set of all possible representations can be regarded
as the Prolemy variety (see [Garoufalidis et al. 2015] for detail) and we expect the
octahedral triangulation will be very useful to the study of the Ptolemy variety. (An
actual application to the Ptolemy variety is in preparation now.)

Furthermore, the construction of the solution is based on the quandle in [Inoue
and Kabaya 2014]. Therefore, this solution changes locally under the Reidemeister
moves. This implies that we can explore the hyperbolic structure of a link by finding
the solution and keeping track of the changes of the solution under the Reidemeister
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moves. As a matter of fact, after the appearance of the first draft of this article, this
idea was successfully used in [Cho 2016a; Cho and Murakami 2017] and more
applications are in preparation.

Among the applications, we remark that [Cho 2016a] contains very similar
results to this article. Both articles construct the solution associated with p using
the same quandle. However, the major differences are the triangulations. Both use
the same octahedral decomposition of S\ (L U {two points}), but this article uses
the subdivision of each octahedron into four tetrahedra and call the result four-term
(or octahedral) triangulation, whereas [Cho 2016a] uses the subdivision of the
same octahedron into five tetrahedra and calls the result five-term triangulation.
Some tetrahedra in the four-term triangulation can be degenerate and this introduces
technical difficulties. However, the five-term triangulation used in [Cho 2016a]
does not contain any degenerate tetrahedra, so it is far easier and more convenient.
In conclusion, this article contains the original idea of using a quandle to construct
the solution and [Cho 2016a] improved the idea.

The layout of this article is as follows. In Section 2, we will summarize some
results from [Inoue and Kabaya 2014]. In particular, the definition of the quandle
and the octahedral triangulation will appear. Section 3 will define the optimistic
limit and the hyperbolicity equations. The main formula (Theorem 3.3) of the
solution associated with the given representation p will appear. Section 4 will
discuss two simple examples, the figure-eight knot 4 and the trefoil knot 3;.

2. Quandles

In this section, we will survey some results of [Inoue and Kabaya 2014]. We remark
that all formulas in this section come from that article, and the author learned them
from the series of lectures given by Ayumu Inoue at Seoul National University
during the spring of 2012.

2A. Conjugation quandle of parabolic elements.

Definition 2.1. A quandle is a set X with a binary operation * satisfying the
following three conditions:

(1) a*xa=aforanya e X.
(2) The map *b : X — X (a — a *b) is bijective for any b € X.
3) (@axb)yxc=(a*c)*(bxc) foranya,b, c € X.

The inverse of b is notated by s~ 'b. In other words, the equation a +~' b =¢
is equivalent to c xb = a.

Definition 2.2. Let G be a group and X be a subset of G satisfying
g 'Xg=X for any g € G.



QUANDLE THEORY AND OPTIMISTIC LIMITS OF LINK GROUPS REPRESENTATIONS 333

Define the binary operation * on X by

3) axb=>b"'ab

for any a, b € X. Then (X, %) becomes a quandle and is called the conjugation
quandle.

As an example, let P be the set of parabolic elements of PSL(2, C) =Isom™ (H?).
Then,
g 'Pg="P

holds for any g € PSL(2, C). Therefore, (P, *) is a conjugation quandle, and this
is the only quandle we use in this article.

To perform concrete calculations, an explicit expression of (P, ) was introduced
in [Inoue and Kabaya 2014]. First, note that

pq_lll pq\_(l+rs 2
ros 01)\r s) \ =2 1—-rs)’

for (7 1) € PSL(2, C). Therefore, we can identify (C?\ {0})/=% with P by
14+ ap /‘32
@ @e— ("1 P )

where + means the equivalence relation (oz ,8) ~ (—a - ,8). We define the opera-
tion * on P by

2
@Bl =G ) (157 ) e oz

where the matrix multiplication on the right-hand side is the standard multiplication.
(This definition is the transpose of the one used in [Inoue and Kabaya 2014] and [Cho
2016a].) Note that this definition coincides with the operation of the conjugation
quandle (P, %) by

2
(o« B)x (v 8)=(« B) <1_+yy28 1fy3> € (C\{op/£

1498 8 \ ' [14+af —a® \[1+ys &
<—)(—y2 1—)/5) (,32 1—a/3)(—y2 1—)/5)
=(y 8) ' (¢ B) (v 8) ePSL2,C).

The inverse operation is given by

@oto = n) (5 7)

From now on, we use the notation P instead of (C?\ {0}) /=x.
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Figure 1. The figure-eight knot 4.

2B. Link group and shadow-coloring. Consider a representation p : m(L) —
PSL(2, C) of ahyperbolic link L. We call p boundary-parabolic when the peripheral
subgroup (9 (S*\ L)) of w1 (L) maps to a subgroup of PSL(2, C) whose elements
are all parabolic.

For a fixed oriented link diagram? D of L, Wirtinger presentation gives an
algorithmic expression of m1(L). For each arc o of D, we draw a small arrow
labeled ay as in Figure 1, which represents a loop. (The details are in [Rolfsen 1976].
Here we are using the opposite orientation of a; to be consistent with the operation
of the conjugation quandle.) This loop corresponds to one of the meridian curves of
the boundary tori, so p(ay) is an element in P. Hence we call {p(a;), ..., p(a,)}
the arc-coloring® of D, where each p(ay) is assigned to the corresponding arc .

The Wirtinger presentation of the link group is given by

jTl(L):<al7"'7an;rl,"'7rn>,

where the relation r; is assigned to each crossing as in Figure 2. Note that r;
coincides with (3), so we can write down the relation of the arc-colors as in Figure 3.

From now on, we always assume p : 71 (L) — PSL(2, C) is a given boundary-
parabolic representation. To avoid redundant notations, arc-coloring will be denoted
by {ai, ..., a,} without indicating p from now on. Choose an element sy € P

2 We always assume the diagram does not contain a trivial knot component which has only over-
crossings or under-crossings or no crossing. (For example, any inseparable link diagram satisfies this
condition.) If it happens, then we change the diagram of the trivial component slightly. For example,
applying a Reidemeister second move to make different types of crossings or a Reidemeister first
move to add a kink is good enough. This assumption is necessary to guarantee that the octahedral
triangulation becomes a topological triangulation of s3 \ (L U {two points})

3 Strictly speaking, an arc-coloring is a map from arcs of D to P, not a set. (A region-coloring,
which will be defined below, is also a map from regions of D to P.) However, we abuse the set
notation here for convenience.
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Figure 2. Relations at crossings, where r; : a;11 = ak_lalak (left),
orrjia; = a,;lalHak (right).

corresponding to a region of the diagram D and determine sy, 3, ..., 5, € P
corresponding to each regions using the relation in Figure 4.

The assignment of elements of P to all regions using the relation in Figure 4
is called the region-coloring. This assignment is well defined because the two
curves in Figure 5, which we call the cross-changing pair, determine the same
region-coloring, and any pair of curves with the same starting and ending points
can be transformed into each other by a finite sequence of cross-changing pairs.

An arc-coloring together with a region-coloring is called a shadow-coloring.
Lemma 2.4 shows an important property of shadow-colorings, which is crucial for
showing the existence of solutions of certain equations.

Definition 2.3. The Hopf map h : P —> CP' = CU {00} is defined by

(01 ﬂ)l—) %.

Note that & (a ,8) = «/P is the fixed point of the Mobius transformation

(14+aB)z —a?

T = a=apy

Lemma 2.4. Let L be a link and assume an arc-coloring is already given by the
boundary-parabolic representation p : w1(L) —> PSL(2, C). Then there exists a

plar) p(ax)

N

plar) * p(ai)

Figure 3. An arc-coloring.
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ag

St
Sfkag

Figure 4. A region-coloring.

region-coloring such that, for any edge of the link diagram with its arc-color ay,

(k =1,...,n) and its surrounding region-colors s¢, sy * ay (see Figure 4), the
following holds:
) h(a) # hisp) # h(sy *ap) # h(ay).

Proof. Note that this was already proved inside the proof of Proposition 2 of [Inoue
and Kabaya 2014]. However, finding the proof in the article is not easy, so we write
it down below for the readers’ convenience.

For the given arc-colors ay, . .., a,, we choose region-colors s1, ..., s, so that
(6) {h(s1)s ...  h(sm)} N {R(ar), ..., h(an)} = 2.
This is always possible because each h(sy) is written as h(s;) = My (h(s1)) by a
Mobius transformation My, which only depends on the arc-colors ay, ..., a,. If we

choose h(sy) € CP! away from the finite set
U (M @y, ... M (@)},
1<k<n

we have h(sy) ¢ {h(ay), ..., h(a,)} for all k. This choice of a region-coloring
guarantees h(ay) # h(sy) and h(s¢ * ax) # h(ay).

%y

(s*a)*a,
I X

al*ak (S*ak)*(al*ak) a,*ak

Figure 5. Well-definedness of region-coloring for a positive cross-
ing (left) and a negative crossing (right).
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(s xa;) *ay

ag

ajp x ay

Figure 6. Positive (left) and negative (right) crossings of j with
shadow-coloring.

Now assume h(s s * ay) = h(sy) holds under the choice of the region-coloring
above. Then we obtain

(7) h(sy*xar) = ax(h(sg)) = h(sys),
where @ : CP! — CP' is the Mdbius transformation

(1+ Bz —of
Bz + (1 — o)

of a = (ak ,Bk). Then (7) implies A(s) is the fixed point of a;, which means
h(ayx) = h(s), which contradicts (6). [l

ar(z) =

We remark that the condition (6) of a region-coloring is stronger than the condition
in Lemma 2.4. For example, the region-colorings of the examples in Section 4
satisfy Lemma 2.4, but they do not satisfy (6). Even though we actually proved
the stronger condition (6) in the proof, the region-colorings we consider are always
assumed to satisfy Lemma 2.4 from now on. The arc-coloring induced by p together
with the region-coloring satisfying Lemma 2.4 is called the shadow-coloring induced
by p. This shadow-coloring will determine the exact coordinates of points of the
octahedral triangulation in the next section.

2C. Octahedral triangulations of link complements. In this section, we describe
the ideal triangulation of S* \ (L U {two points}) which appeared in [Cho et al.
2014]. Note that this triangulation naturally arises from the link diagram and has
been widely used under various names. For example, the software SnapPea used
this triangulation to obtain an ideal triangulation of the link complement S* \ L
[Weeks 2005] (see also [Yokota 2011].) Another name of this construction is the
tunnel construction in [Baseilhac and Benedetti 2007]. It seems the first written
appearance of this construction was in [Thurston 1999].

To obtain the triangulation, we consider the crossing j in Figure 6 and place an
octahedron A;B;C;D;E;F; on each crossing j as in Figure 7 (left). Then we twist the
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Figure 7. An octahedron on the crossing j.

octahedron by identifying edges B;F; to D;F; and AE; to C;E;, respectively. The
edges A;B;, B;C;, C;D; and D;A; are called horizontal edges and we sometimes
express these edges in the diagram as arcs around the crossing as in Figure 6.

Then we glue faces of the octahedra following the lines of the link diagram.
Specifically, there are three gluing patterns as in Figure 8. In each of the cases (left,
center and right), we identify the faces

AAB;E;UAC;BE; with AC;1 D 1Fj;1UAC; 1B 1Fjy,
AB;C;F; UAD;C;F; with AD; 1C;j1Fjy1UAB;1Cj11Fj4q,
AAijEj UACJ'B]'E]' with ACj+1Bj+1Ej+] UAAj+1Bj+1Ej+1,

respectively.

Note that this gluing process identifies vertices {A;, C;} to one point, denoted
by —o0, and {B;, D;} to another point, denoted by oo, and finally {E;, F;} to the
other points, denoted by P, wherer =1, .. ., c and c is the number of the components
of the link L. The regular neighborhoods of —oo and oo are two 3-balls and that
of | J;_, P; is a tubular neighborhood of the link L. Therefore, after removing all
vertices of the gluing, we obtain an octahedral decomposition of S3 \ (L U {£00}).
The octahedral triangulation is obtained by subdividing each octahedron of the
decomposition into four tetrahedra in a certain way.

To apply the construction of the developing map of p in Theorem 4.11 of [Zickert
2009], we subdivide each octahedron into four tetrahedra using the shadow-coloring
of p as follows.

CJ A .-'/|Bj+l DJ|\‘ .-'/|Bj+1 CJ by i Aj+1
A B Cj+l"\|Dj_H Bj|/-cj Cf'“\|D,~+1 A /B BiN]c,,,

Figure 8. Three gluing patterns.
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Figure 9. Coordinates of tetrahedra when h(ay) # h(a;) with a
positive crossing (left) and a negative cross (right).

Definition 2.5. Consider a crossing j with the shadow-coloring in Figure 6. The
crossing j is called nondegenerate when h(ay) # h(a;) and degenerate when
h(ay) = h(ap).

If a crossing j is nondegenerate, then we subdivide the octahedron on the
crossing j into four tetrahedra by adding the edge E;F; as in Figure 7 (center).
Also, if a crossing j is degenerate, then we subdivide it by adding edge A;C; as
in Figure 7 (right). This subdivision guarantees nondegeneracy of all tetrahedra,
which will be proved at the end of this section. The resulting triangulation is called
the octahedral triangulation of S\ (L U {#00}).

Consider the shadow-coloring of a link diagram D induced by p, and let

{ai,ay, ..., a,} be the arc-colors and {sy, s2, ..., sy} be the region-colors. The
number of these colors is finite, so we can choose an element p € P satisfying
(8) h(p)%{h(al)’7h(an)vh(sl)9ah(sm)}

The geometric shape of the triangulation is determined by the shadow-coloring
induced by p in the following way. If the crossing j in Figure 6 is nondegenerate
and positive, then let the signed coordinates of the tetrahedra E;F;C;D;, E;F;A;D;,
E;F;A;B;, and E;F;C;B; be

(ar, a, s xay, p),
—(ay, ar, s, p),
)
(ar * ak, ax, s * ax, p),
—(ar * ak, ag, (s *ap) * ax, p),

respectively. Here, the minus sign of the coordinate means the orientation of the
tetrahedron does not coincide with the one induced by the vertex-ordering. Also, if
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Figure 10. Figure 9 in octahedral position for a positive crossing
(left) and a negative crossing (right).

the crossing j is nondegenerate and negative, then let the signed coordinates of the
tetrahedra EijCij, EijAij, EijAij, and EijCij be
(a1, ak, s, p),
—(ar, ax, s xay, p),
(10) P
(ar * ag, ak, (s *ap) *ai, p),
—(ar *ay, ar, s * ag, p),

respectively. Figures 9 and 10 show the signed coordinates of (9) and (10).

On the other hand, if the crossing j in Figure 6 is degenerate and is positive,
then let the signed coordinates of the tetrahedra F;A;C;D;, E;A;C;D;, E;A;C;B;,
and FjAjCij be

—(ax, s, s xay, p),
(ar, s, s*ay, p),
(an 1 P
—(ar * ax, s * ar, (s *ay) * ax, p),
(ag, s * ag, (s xa;) * ai, p),
respectively. If j is degenerate and negative, then let the signed coordinates be
—(ax, s *ay, s, p),
(ai, sxay, s, p),
(12) 1 1 V4
—(a; * ag, (s xa;) *x ay, s x ai, p),
(ak, (s xa;) *x ag, s * ag, p),

respectively.
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Figure 11. Coordinates of tetrahedra when & (ay) = h(a;), for a
positive crossing (left) and a negative crossing (right).

Figure 11 shows the signed coordinates of (11) and (12). Note that the orientations
of (9)—(12) are different from [Inoue and Kabaya 2014] and match [Cho et al. 2014].

We remark that the signed coordinates (9)—(12) actually define an element in
certain simplicial quandle homology in [Inoue and Kabaya 2014]. Although this
homology is crucial for proving the main results of [Inoue and Kabaya 2014], we
will use their results without the homology.

Definition 2.6. Let vy, vy, v2, v3 € CP! = CU {00} = dH>. The hyperbolic ideal
tetrahedron with signed coordinate o (vg, v, va, v3) with o € {£1} is called degen-
erate when some of the vertices vg, v1, v2, v3 coincide, and nondegenerate when
all the vertices are different. The cross-ratio [vg, vi, v2, v3]° of the nondegenerate
signed coordinate o (vg, v1, V2, v3) is defined by
wu)a eC\ {0, 1}.
Uy — 7V V3 — V]

The tetrahedra in (9)—(12) have elements of the coordinates in 7. Therefore, we
need to send them to points in the boundary of the hyperbolic 3-space dH? so as to ob-
tain hyperbolic ideal tetrahedra. The Hopf map / (see Definition 2.3) plays this role.

[vo, v1, v2, 13]° = (

Lemma 2.7. The images of (9)—(12) under the Hopf map h are nondegenerate
tetrahedra. Specifically, if the crossing j is nondegenerate and positive, then

(h(ar), h(ax), h(s xar), h(p)),
—(h(ar), h(ax), h(s), h(p)),
(h(ar x ax), h(ax), h(s *ax), h(p)),
—(h(ar *ax), h(ax), h((s *ap) * ag), h(p)),

(13)
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are nondegenerate hyperbolic ideal tetrahedra and, if the crossing j is nondegener-
ate and negative, then

(h(ar), h(ak), h(s), h(p)),
—(h(ar), h(ax), h(s xar), h(p)),
(h(a; * ax), h(ax), h((s * a;) * a), h(p)),
—(h(a; *ax), h(ak), h(s *ar), h(p)),

are nondegenerate hyperbolic ideal tetrahedra also.

(14)

If the crossing j is degenerate and positive, then
(h(ap), h(s), h(s *a;), h(p)),
—(h(ar), h(s), h(s xar), h(p)),
(h(ak), h(s = ar), h((s *a;) * ax), h(p)),
—(h(a; = a), h(s *ar), h((s *a;) *ax), h(p)),

are nondegenerate hyperbolic ideal tetrahedra and, if the crossing j is degenerate
and negative, then

15)

(h(ar), h(s *xap), h(s), h(p)),
—(h(ar), h(s *ar), h(s), h(p)),
(h(ar), h((s xa;) *ay), h(s xar), h(p)),
—(h(ar *ai), h((s *ar) * ag), h(s *ax), h(p)),

are nondegenerate hyperbolic ideal tetrahedra.

(16)

Proof. Note that the region-coloring we are considering satisfies Lemma 2.4. To
show the nondegeneracy of a tetrahedron, it is enough to show any two endpoints
of an edge are different.

In the cases of (13)-(14), endpoints of any edge are adjacent, as a pair among
ax, s, s x ay in Figure 4 (to check the adjacency, refer to Figure 5), or one of them
is p, except the edges (a;, ax), (a; *ax, ax). Therefore, it is enough to show that
h(ag) # h(a;) implies h(a; * ar) # h(ay), which is trivial because h(a; x ay) =
h(ay x ay) implies h(a;) = h(ag).

In the cases of (15)—(16), all endpoints of edges are adjacent or one of them is p,
so we get the proof. O

Note that, when the crossing j is degenerate, the first two tetrahedra in (15) share
the same coordinate with different signs and the others do the same. Therefore, all
tetrahedra cancel each other out geometrically and we can remove the octahedron
of the crossing. (This is why the crossing is called degenerate.) Also, the same
holds for (16). This idea will be used in Section 3.

The assignment of the coordinates to tetrahedra above is from [Inoue and Kabaya
2014]. Note that this assignment is based on the construction of the developing
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Vo 801 ot

Figure 12. Edge parameters.

map of p proposed in [Neumann and Yang 1999] and [Zickert 2009], so the shape
of the triangulation determines the developing map of p.

2D. Complex volume of p. Consider an ideal tetrahedron with vertices vy, vy, vy,
and vz, where vy € CP!. For each edge vrv;, we assign gg; and gy € CP!, and
call them long-edge parameter and edge parameter, respectively. (See Figure 12.)
Later, we will distinguish them by considering that g, is assigned to the edge of a
triangulation and gy, to the edge of a tetrahedron.

Definition 2.8. For the edge parameter g; of an ideal tetrahedron, the Prolemy
relation is the following equation:

802813 = 801823 + 803812-
For example, if we define the edge parameter g;; := v; — vy, then direct calcula-
tion shows

17) (v2 — o) (V3 — V1) = (V1 — Vo) (V3 — V2) + (v3 — Vo) (V2 — V1),
which is the Ptolemy relation. Furthermore, these edge parameters satisfy
(18) [v0, 1, 2, 3] = S0,
802813

To apply the results of [Zickert 2009] and [Hikami and Inoue 2015], the edge
parameters should satisfy the Ptolemy relation, (18) and one more condition that
they should depend on the edge of the triangulation, not of the tetrahedron. In
other words, if two edges are glued in the triangulation, the edge parameters should
be the same. We call this latter condition the coincidence condition. When the
edge-parameters satisfy the coincidence condition, we call them the long-edge
parameters and denote this by gi;. (We also need the extra condition that the
orientations of the two glued edges induced by the vertex-orientations of each
tetrahedron should coincide. However, the vertex-orientation in (13)—(16) always
satisfies this.) Unfortunately, the edge-parameter g;; = v; — vy defined above does
not satisfy this condition, so we will redefine the edge-parameter and the long-edge
parameter using [Inoue and Kabaya 2014] as follows.
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At first, consider two elements a = («; a2), b= (81 B2) in P. We define the
determinant det(a, b) by

o] o
B1 B2

Note that the determinant is defined up to sign due to the choice of the representative
4

det(a, b) ::j:det( ) =+(a182 —a281).

a= (011 012) = (—a1 —az) € P. To remove this ambiguity, we fix representatives
of arc-colors in C? \ {0} once and for all. Then we fix a representative of one
region-color, which uniquely determines the representatives of all the other region-
colors by the arc-coloring. (This is due to the fact that s * (+a) = s * a for any
s,a € C*\ {0}.)

After fixing all the representatives of the shadow-coloring, we obtain a well-
defined determinant

(19) det(a, b) = det (Zi Zi) — @12 — a2 fBy.

Lemma 2.9. Fora, b, c € C?\ {0}, the determinant satisfies
det(a % c, b *c) =det(a, b).

Proof. Leta = (al az), b= (,31 ,32), c= ()/1 J/z), and
co (1+y12y2 %3 )
-yi l=nn
Then

det(a xc, bxc) =det(aC, bC) =det(a, b) - det C = det(a, b). (]

Consider the shadow-coloring and the coordinates of tetrahedra in Figure 9 (or
Figure 10) and Figure 11. We define the edge parameter g, using those coordinates.
Specifically, when the signed coordinate of the tetrahedron is o (ag, a1, az, az) with
o € {%1} and g € C?\ {0}, we define the edge parameter by

(20) 8 = det(ax, a1).

For example, the edge parameters of the tetrahedron F(ay, a, s, p) in the left-hand
or the right-hand side of Figure 9 (or Figure 10) are defined by

go1 =det(as, ), gop =det(a;, s), 8oz = det(a, p),

g2 =det(ar, s), g3 =det(a, p), 8§23 = det(s, p).

4 The difference in [Inoue and Kabaya 2014] is that they chose a sign of the determinant once
and for all. Their choice is good enough to define the long-edge parameter g jx, but not for the edge
parameter g .
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Figure 13. An example of the inconsistency of the edge parameter.

Lemma 2.10. The edge parameter gy of the tetrahedron o (ay, a1, az, a3) defined
in (20) satisfies the Ptolemy identity and

203812
1) [h(ao), h(ar), h(az), h(az)] = 52512,

802813

Proof. From (19), we obtain

det(x,
22) B —h(yy =20 - 4ty
X2 Y2 X2¥2
where x = (x; x2) and y = (y1 »2).
Let ay = (ax Pi) fork=0,...,3, and let vy = h(ax) = a/Bx. Then (17) and
(22) imply

det(ag, ap) det(ay, az) . det(ag, ay) det(ap, az)  det(ag, az) det(ay, ay)
Bobz BiBs BB B3 BoBs 1B

which is equivalent to the Ptolemy identity 802813 = 01823 + £03&12-
Also, using (22), we obtain

’

det(ap, az) det(ay, az)

_ BB BiBr 803812
B1B3 PoB2
Note that, by the same calculation as in the proof above, we obtain
[h(ao). has), h(ar). h@)] = 5252 [h(ag), h@), has), h(a)] = =552
801823 803812

If we put z° = [h(ap), h(a1), h(az), h(az)], using the Ptolemy identity, the above
equations are expressed by
o = 803812 1 gnéi3 1 1 goigs

(23) = —, =, —.
802813 1—2z° 801823 bad 803812

The edge parameter g, defined above satisfies all needed properties of the
long-edge parameter g ;i except the coincidence , which g i satisfies up to sign.
To see this phenomenon, consider the two edges of Figure 9 (left) as in Figure 13,
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which are glued in the triangulation. Assume the chosen representative of a,, in
Figure 13 satisfies a,, = —a; * ay € C? \ {0}. (This actually happens often and is
quite important. For example, the minus signs of (49) and (50) in Section 4 show
this situation. This scenario will be discussed in depth in a later article.) Then the
edge parameters satisfy

go1 = det(ay, ax) = det(a; * ax, ax) = — det(am, ax) = — (-

To obtain the long-edge parameter g;i, we assign certain signs to the edge
parameters

gjk = %8k,

so that the consistency property holds. Due to Lemma 6 of [Inoue and Kabaya
2014], any choice of values of g, determines the same complex volume. Actually,
in Section 3, we do not need the exact values of g i, but we use the existence of
them.

The relations of the edge parameters in (23) become

1 1
803812 _ i802813 1 - — i801823

gngis  1-2z° 801823 bad 803812

(24) ==

Using (24), we define integers p and g by

pri = —logz” +1log go3 + log g12 — log goa — log g13,

(25) { .
gmi =log(l —z%) +log go2 +log g13 — log go1 — log g23.

Now we consider the tetrahedron with the signed coordinate o (ag, a1, az, az) and
the signed triples o[z%; p, q] € P(C). (The extended pre-Bloch group is denoted
by 73(6) here. For the definition, see Definition 1.6 of [Zickert 2009].) To consider
all signed triples corresponding to all tetrahedra in the triangulation, we denote the
triple by o;[z;"; p:, q:], where t is the index of tetrahedra. We define a function
L: 73(6) — C/n*7Z by

7
6 9

thi{e Lix(z) = — foz % log(1 —t)dt is the dilogarithm function. (Well-definedness
of L was proved in [Neumann 2004].) Recall that, for a boundary-parabolic
representation p, the hyperbolic volume vol(p) and the Chern—Simons invariant
cs(p) were already defined in [Zickert 2009]. We call vol(p) +i cs(p) the complex
volume of p. The following theorem is one of the main results of [Inoue and Kabaya

2014].

(26) [z: p. g1+ Lia(2) + 3 logzlog(1 —2) + T (g log 2 + plog(1 —2)) —

Theorem 2.11 [Zickert 2009; Inoue and Kabaya 2014]. For a given boundary-
parabolic representation p and the shadow-coloring induced by p, the complex
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volume of p is calculated by

> oi LIz": pr. gl = i(vol(p) +i cs(p)) (mod 72,
t

where t is over all tetrahedra of the triangulation defined in Section 2C.
Proof. See Theorem 5 of [Inoue and Kabaya 2014]. U

Note that the removal of the tetrahedra in (15) and (16) does not have any
effect on the complex volume. For example, if we let [z; p, ¢] and —[Z'; p’, ¢']
be the corresponding triples of the tetrahedron (h(a;), h(s), h(s *xa;), h(p)) and
—(h(ag), h(s), h(s *a;), h(p)) in (15), respectively, and put {g;}, {g,/d} the sets of
long-edge parameters of the two tetrahedra, respectively, then, from h(a;) = h(ay),
we obtain z = z’. Furthermore, we can choose long-edge parameters so that gi; = g,
holds for all pairs of edges sharing the same coordinate, which induces p = p/,
q=q and L[z: p,q]— L[z"; p'.q'] =0.

3. Optimistic limit

In this section, we will use the result of Section 2 to redefine the optimistic limit
of [Cho et al. 2014] and construct a solution of . At first, we consider a given
boundary-parabolic representation p and fix its shadow-coloring of a link diagram D.
For the diagram, define the sides of the diagram to be the lines connecting two
adjacent crossings. (The word edge is more common than side here. However, we
want to keep the word edge for the edges of a triangulation.) For example, the
diagram in Figure 14 has eight sides. We assign zy, ..., 2, to sides of D as in
Figure 14 and call them side variables.

Z; g

4

Figure 14. Sides of a link diagram.
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Figure 15. A crossing j with arc-colors and side variables.

For the crossing j in Figure 15, let z., 2 ¢, z¢, 25 be side variables and let a;, a
be the arc-colors. If h(ax) # h(a;), then we define the potential function V; of the
crossing j by

Q7)) Vi(ze, 2f,2g,20) = Liz(z—f> - LiZ(Z_f> + Li2<z_h> - Li2<z_h>'
Ze Zg Zg Ze

On the other hand, if & (a;) = h(ay) in Figure 15, then we introduce new variables

wl, wj‘-, wy of the crossing j and define

(28) ‘/j(Z(fv Zf? Zgazl’h wga wj;‘y wé)
= —log wg log z, + log w} logz; —log wé logz, + log(wg wé/wjp) log zj.

For notational convenience, we put w;{':: wé wé{ / w} (In (28), we can choose any
three variables among w wjl wg, wi free variables.) We call the crossing j in
Figure 15 degenerate when h(a;) = h(ax) holds. In particular, when the degenerate

crossing forms a kink, as in Figure 16, we put
‘G(Ze,Zf,Zg’wgawj;) ‘ . S
= —log w/ log z, +log w log zy — log w log z s + log(w; w’ /w?) log z

= —log wg log z, + log wg log z,.

Consider the crossing j in Figure 15 and place the octahedron A;B;C;D;E,F; as
in Figure 7. When the crossing j is nondegenerate, in other words h(ay) # h(a;),
we consider Figure 7 (center) and assign shape parameters z ¢ /z., 2¢/2f, Zn/2g
and z./z, to the horizontal edges A;B;, B;C;, C;D;, D;A;, respectively. On the
other hand, if the crossing j is degenerate, in other words /i (ay) = h(a;), then we

Figure 16. A kink.
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consider Flgure 7 (right) and assign shape parameters wé , W, 2 wg and wh to the

edges A;F , C;F; and D;E;, respectlvely
The potentzal funcnon V(zi, ..., zZn, wk, ...) of the link diagram D is defined by

V(Zl,---,zn,w,g,.,,)=zv.,

where j is over all crossings. For example, if h(ajl) # h(ay) in Figure 14, then
ay = ay xay implies® h(ay) # h(an), ar = a; * a3 implies’ h(ay) # h(az) # h(ay),
ap = a3 x aq implies h(as) # h(asz), as = az xa; implies h(as) # h(ay), and the
potential function becomes

(29) V(zl,...,zg)_{Liz( 7)— '(ZS)+LI< )_L12<Z
{n(5) L (G) +1i(3) -1 (3
{(3) - La(3) +1i(2) - La(3)

H{en(E) ~Lia(32) +Lia(F) - 1a(3) |

Note that, if h(a;) # h(ax) for any crossing j in Figure 15, then the definition of
the potential function above coincides with the definition in Section 2 of [Cho et al.
2014]. Therefore, the above definition is a slight modification of the previous one.

On the other hand, if & (a;) = h(ay) in Figure 14, then a; xa> = a,. This equation
and the relations at crossings induce® a; = ap = a3 = a4, and the potential function
becomes

~

I\lol’d&“lé.ﬁ ==

&

(
:
:

2\l

1 1 1 2 .2 2 3 3 3 .4
V(Zl’ <. -5 28, wSa U)4, w77 U)4, w87 w’;v w()v w3’ wS’ w27 w77 wl) -

—log w8 log zg + log w4 log z4 — log w7 log z7 +log w% log z5
—log wi log z4 + log w§ log zs — log w% log z3 + log wl2 log z1
—log wg log z¢ + log wg log z3 — log wg log z5 +log wg log z»

—log w‘z1 log z; + log wé‘ log z7 — log w‘f log z; + log wé log zg,

5 Note that, when & (a) = h(a), by adding one more edge B;D; to Figure 7 (right), we obtain
another subdivision of the octahedron with five tetrahedra. (This subdivision was already used in [Cho
2016b].) Focusing on the middle tetrahedron that contains all horizontal edges, we obtain w) wé’, =

chwh Furthermore, the shape-parameters assigned to D;F; and B;F; are (1 — l/w )/(1 - wg) and

a- l/wg)/(l - we), respectively.

o1f h(ag) = h(ayp), then h(ay x ar) = h(ap) = h(ag) = h(ay *ap) induces h(ap) = h(ay), which
is a contradiction.

T1f h(ay) = h(a3), then h(az *a3) = h(az) = h(ay) = h(ay *az) induces h(as) = h(az) = h(ay),
which is a contradiction. Likewise, if 1(a|) =h(a3), then h(ay) =h(a|*a3) =h(ay) is a contradiction.

8 The relation a4 = ay xap induces aq = a1, a4 = a3 xay induces aq = a3, and ay = a3 x a4
induces ap = ay.
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1l 2 3_ — whw?
where ws = wgw;/w,, wj w4w3/w8, wz—w6u)5/w3 and w6— /w7

For the potential function V (zy, ..., zx, wk, ...), let H be the set of equations

(30) H:= {exp(zka—v) =1,ex p( J 8V‘> =1 | k=1,...,n, j :degenerate},
92k aw,i

and S={(z1, ..., Zn, w,{ ...)} be the solution set of H. Here, solutions are assumed
to satisfy the properties that zy #O forallk =1,...,nand zy/z. # 1, z4/25 # 1,
Zn/zg # 1, ze/zn # 1, 2¢/2¢ # 1, zn/zy # 1 in Figure 15 for any nondegenerate
crossing, and w,ﬁ # 0 for any degenerate crossing j and the index k. (All these
assumptions are essential to avoid singularity of the equations in H and log 0 in the
formula Vj defined in (1). Even though we allow w,ﬂ =1 here, the value we are
interested in always satisfies w,{ #1.)

Proposition 3.1. For the arc-coloring of a link diagram D induced by p and
the potential function V(z1, ..., Zn, w,ﬂ, ...), the set H induces the whole set of
hyperbolicity equations of the octahedral triangulation defined in Section 2C.

The hyperbolicity equations consist of Thurston’s gluing equations of edges and
the completeness condition.

Proof of Proposition 3.1. For the case where no crossing is degenerate, this proposi-
tion was already proved in Section 3 of [Cho et al. 2014]. To see the main idea,
check Figures 10-13 and equations (3.1)—(3.3) of [Cho et al. 2014]. Equation (3.1)
is a completeness condition along a meridian of a certain annulus, and (3.2)—(3.3)
are gluing equations of certain edges. These three types of equations induce all the
other gluing equations.

Therefore, we consider the case when the crossing j in Figure 15 is degenerate.
Then, the three equations

31) exp(wf 8V)=Z—h=1,exp<wf 8V)_Z—_l exp( a—v.)zz—hzl
dwl/) ze owy/) 2 gawg, Zg

induce z, = zy = 7z = z5. This guarantees the gluing equations of horizontal edges
trivially by the assigning rule of shape parameters. (Note that the shape parameters
assigned to the horizontal edges of the octahedron at a degenerate crossing are
always 1.)

There are four possible cases of gluing pattern as in Figure 17, and we assume
the crossing j is degenerate and j + 1 is nondegenerate. (The case when both of j
and j + 1 are degenerate can be proved similarly.)

The part of the potential function V containing z; in Figure 17 (top left) is

V@ = log wk log zx + L12( > le(z—f>,
Zk 2k
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if f
SN oL 1B ity o A
A; /’;Bj Cj+l=-""‘x_ Dji B; /’;CJ' Bj+l=='"‘\_ Cjti
Ze Ze
if f
DJ\ @ /7 Bjti G ™~ u /] Aj+1
B, /’;CJ Cj+li""'\\ IZ)].+1 A /"E:Bj BjH::""\\ ch+1
e e

Figure 17. Four cases of a gluing pattern.

vV V@ - 77\ !
exp(ag, ) =ew(ay, ) =wl(1-2)(1-2) =1

is equivalent to the following completeness condition

L(1- Z—6)_1<1 ~Y) =1
w]i Tk 2k
along a meridian m in Figure 18 (top left). (Compare it with Figure 11 of [Cho et al.
2014].) Here, aj, bj, cj, bjy1, cj+1, dj41 in Figure 18 (top left) are the points of
the cusp diagram, which lie on the edges AjEj, BjEj, CjEj, Bj+1Fj+1, Cj+1Fj+1,
D;1F;4 of Figure 7 (left), respectively.

The part of the potential function V containing z; in Figure 17 (top right) is

and

v — _ log w,i log zi — Li2<z—k> +Li2(z—k>,
Ze Zf

oV av® 1 i 2\~
exp(ag ) =ewp(a )=~ (1-)(1-7) =1
Tk Zk wy, Ze Zf

is equivalent to the completeness condition

i.(1 = Z—k>_](1 - %) =1

wj Zf Ze

along a meridian m in Figure 18 (top right). Here, b;, c;j, d;, aji1, bj41, cj41 In

Figure 18 (top right) are the points of the cusp diagram, which lie on the edges B;F;,

C;F;, D;F;, Aj1Ejq1, Bj11Ej41, Cj1Ejy of Figure 7 (left), respectively. (To

simplify the cusp diagram in Figure 18 (top right), we subdivided the polygon

A;B;C;D;F; in Figure 7 (right) into three tetrahedra by adding the edge B;D;.)
The part of the potential function V containing z; in Figure 17 (bottom left) is

and

V© = _log w,ﬂ log zx + Liz(Z—e> — Liz(z—f>,
Zk Tk
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j+1 d

b =d

J J+l

Figure 18. Four cusp diagrams from Figure 17.

and

v av© 1 Ze 25\
exp(ag ) =exe(ay =) = — (1= ) (1-F) =
0Zk 0Zk wy Tk Zk

is equivalent to the gluing equation

wl(1-2) " (1-F) =1
3k 2k
of ¢; = ¢4 in Figure 18 (bottom left). (Compare it with Figure 12 of [Cho et al.
2014].) Here, bj, c;, dj, bji1, cjy1, djq1 in Figure 18 (bottom left) are the
points of the cusp diagram, which lie on the edges B,F;, C;F;, D;F;, B F; 1,
C;+1Fj41, Dj1Fj4q of Figure 7 (left), respectively, and the edges d;c; and bjc; are
identified to bj1cj4+1 and dj41c 41, respectively. (To simplify the cusp diagram in
Figure 18 (bottom left), we subdivided the polygon A;B;C;D;F; in Figure 7 (right)
into three tetrahedra by adding the edge B;D;.)

The part of the potential function V' containing z; in Figure 17 (bottom right) is

v = log w,ﬂ log zx — Lig(z—k> +Li2<z—k),
Ze Zf
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a
<k

NEX?)]

Figure 19. A region-coloring.

and

vV V@ i % 2\ !
exp(zk—> = exp(zk ) = w; (1 — —)(1 — —) =1
02k 0Zk Ze Zf

is equivalent to the gluing equation

wi(1-2) (1= Z—")_l =1

Ze Zf
of b; = b; 1 in Figure 18 (bottom right). (Compare it with Figure 13 of [Cho et al.
2014].) Here, a;, bj, c¢j, ajy1, bji1, cjy1 in Figure 18 (bottom right) are the
points of the cusp diagram, which lie on the edges A;E;, BE;, C;E;, A;1E 1,
B;11Ejy1, C;11E 41 of Figure 7 (left), respectively, and the edges a;b; and c;b;
are identified to cj1b; 41 and aj1b; 1, respectively.

Note that the case when both of the crossings j and j + 1 in Figure 17 are
degenerate can be proved in the same way.

On the other hand, it was already shown in [Cho et al. 2014] that all hyperbolicity

equations are induced by these types of equations (see the discussion that follows
Lemma 3.1 of [Cho et al. 2014]), so the proof is done. ]

In [Cho et al. 2014], we could not prove the existence of a solution of #, in
other words S # &, so we assumed it. However, the following theorem proves the
existence by directly constructing one solution from the given boundary-parabolic
representation p together with the shadow-coloring.

Theorem 3.2. Consider a shadow-coloring of a link diagram D induced by p and
the potential function V(zy, ..., Zn, w,ﬁ, ...) from D. For each side of D with the
side variable zy, arc-color a; and the region-color s, as in Figure 19, we define

det(qay,
(32) O (a; P)_
det(a;, s)
Also, if the positive crossing j in Figure 20 (left) is degenerate, then we define

(w)®; = det(s, p) ’ (wj)(o): _
¢ det(s x ay, p) f

det((s x a;) * ay, p)

det(s x ay, p)

(wj)(o).z det(s, p)
’ W det(s xay, p)’

(33)
det((s * a;) * ag, p)

7). _
(wg) ™ det(s xa;, p)
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a ak a ak

NEN?)]

Zg

(s *ap) *ay NEX) NEX1

<f

ay +a; % ay ay (s *ap) *ay

Figure 20. Crossings with shadow-colors and side-variables for a
positive crossing (left) and a negative crossing (right).

and, if the negative crossing j in Figure 20 (right) is degenerate, then we define

det(s *aj, p) ')(0) L det(s * A, P)

INUS INO.
W) = e wap ran, p) det((s *ap) *ag, p)’
_det(s *dg, p)

det(s, p)

' j det(s *a;, p)
70 . jy© ._det(s xai, p)
Then Z}({O) #0,1, 0o, (w,f)“” £0, 1 for all possible j, k, and
(ZgO), ey Zlgo)’ (w/‘i)(O)? . ) c S.

Note that the + signs in the arc-colors of Figure 20 appear due to the repre-
sentatives of the colors in C2 \ {0}. However, + does not change the value of z,((o)
because

det(+a;, p)  det(a, p) O
det(a;,s)  det(aq,s) ¢

Likewise, the value of (w,{)(()) does not depend on the choice of + because the
representatives of region-colors are uniquely determined from the fact s (+a) =s*a
for any s, a € C*\ {0}.

Proof of Theorem 3.2. First, when the crossing j in Figure 20 is degenerate, we
will show

(34) 10 =70 =:0=2,

which satisfies (31). Using h(ax) = h(a;), we put ay = (a ,3) and q; = (ca c ,3) =
¢ ay for some constant ¢ € C\ {0}. Then we obtain a; xa; = a; and, if j is a positive
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crossing, then

L0 € det(ax, p) _ det(a, p) (o
¢ c det(ay,s)  det(ay, s) h

o _  det(xa;xar,p) det(ar*xax, p)  det(ar, p) (o
h >

El

- det(ta; xax, s xay)  det(a; xayx,sxax) det(a,s)
©) ¢ det(ag, p) det(as, p) )

= = =Zh .
8 ¢ det(ay, s xa;)  det(ay, s *a;)

If j is a negative crossing, then by exchanging the indices e <> g in the above
calculation, we obtain the same result.

Note that Lemma 2.4 and the definition of p in Section 2C guarantee z,({()) #*
0,1, 00 and (w})©@ # 0, 1, so we will concentrate on proving

@0, .20 w)HO, . )es.

Consider the positive crossing j in Figure 20 (top left) and assume it is nonde-
generate. Also consider the tetrahedra in Figures 9 (left) and 10 (left), and assign
variables z., 7, Zg, 75 to sides of the link diagram as in Figure 20 (top left). Then,
using (21) and (32), the shape parameters assigned to the horizontal edges A;B;
and D;A; are

1 # [h(s *ak), h(p), h(xa; * ai), h(ar)]
det(s, ai) det(p, £a; * ay) 259)

- det(s * ax, +a; xar)  det(p,ar) zi_o)’

det(s, a;) d , 20)
s s - EERERT -
b ) Zh

respectively. Likewise, the shape parameters assigned to B;C; and C;D; are zg,o) / z?)

and zﬁlo) / zéo) respectively. Furthermore, for any a, b € C?\ {0}, we can easily show
that h(a b —a) = h(b). If 23 /z = det(ay, 5)/det(a, s % a;) = 1, then h(ay) =
h(s *a; —s) = h(a;), which is contradiction. Therefore, we obtain zéo) /zio) # 1,
and zg))/ zgf)) # 1 can be obtained similarly.

We can verify the same holds for nondegenerate negative crossings j in the
same way.

Now consider the case when the positive crossing j in Figure 20 (top left) is
degenerate. (See Figures 7 (right) and 11 (left).) Then, using (21) and (33), the shape

parameters assigned to the edges F;A;, E;B;, F;C; and E;D; in Figure 7 (right) are

[h(ak), h(s), h(p), h(s x a;)][h(ax), h(s * ar), h((s x a;) * ax), h(p)]
. det(s, p)
~ det(s x ag, p)

= (w/)©
e ’

[h(Za; = ag), h(p), h((s % ar) = ar)., h(s xar)] = det;’;’(ij ”;C:L:)“") = (wh,




356 JINSEOK CHO

[har), h((s % a)) xa), h(p), h(s x a)llh(ar), h(s xa;), h(s), h(p)]
_ det((s x ay) *ay, p)

PN
det(s *a;, p) (wg)™,

d , .
[h(ar), h(p), h(s), h(s xa;)] = % = (w)?,

respectively. We can verify the same holds for degenerate negative crossings j in
the same way.
Therefore (z;
octahedral trlangulatlon defined in Section 2C and, from Proposition 3.1, we
get that (z(o) .. (O), (wk)(o) ..) is a solution of H. By the definition of S,
we obtain (zlo), .. ) (wk)(o) ..)€eS. U

o . (0), (wj ) ...) satisfies the hyperbolicity equations of

To get the complex volume of p from the potential function V (zy,..., 2, (w,{ ),...),
we modify it to

(35) Vol vor 2 W)y ) =V &1y 2o (W), ..

oV oV ;
— 2r— ) log zx — (w’—.)lo w.
Y (age)ossi— X (vh s

Jj:degenerate
k

This modification guarantees the invariance of the value under the choice of any log-
branch. (See Lemma 2.1 of [Cho et al. 2014].) Note that Vo(z(o) .. Z,(IO), (w,ﬂ)(o), o))

means the evaluation of the function Vy(z1, ..., z,, (w k) ..)at
0 )
@, ..., 20, (wp“”, ).

Theorem 3.3. Consider a hyperbolic link L, the shadow-coloring induced by p,
the potential function V(zy, ..., Zn, (w,ﬁ), ...) and the solution

(zio), 29 (w,{)(o), ..)ES
defined in Theorem 3.2. Then,
36) Vo, ..., 29 )@, ..) =i(vol(p) +ics(p)) (mod 7?).

Proof. When the crossing j is degenerate, direct calculation shows that the potential
function V; of the crossing defined at (28) satisfies

(37) (Vio(z, 2z, 2, 2, wy, wz, w3) =0

for any nonzero values of z, wy, wy, ws. To simplify the potential function, we
rearrange the side variables zy,...,2, t0 z1, ..., 25, Zr41, Z,H, ZEH, sz, cees
Zpyenns zf so that all endpoints of sides with Vanables Z1, ..., 2 are nondegener—
ate crossings an(c(l))the degenerate crossings induce z' ng = (Zr +])(O) = (Z DO =
@, DO, oz = =)0, (Refer to (34).) Then we define the sunpliﬁed
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potential function V by

V(Zlv""zl) = E Vj(Zl’---aZr,Zr+ler+1’Zr+laZr+1v---’Ztaztvzt’zt)-

Jjmondegenerate

Note that V is obtained from V by removing the potential functions (28) of the
degenerate crossings and substituting the side variables z., z ¢, z¢, 2, around the
deg