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MAXIM ARNOLD AND MISHA BIALY

This paper is devoted to the examination of the properties of the string
construction for the Birkhoff billiard. Based on purely geometric consid-
erations, string construction is suited to providing a table for the Birkhoff
billiard, having the prescribed caustic. Exploiting this framework together
with the properties of convex caustics, we give a geometric proof of a result
by Innami first proved in 2002 by means of Aubry–Mather theory. In the
second part of the paper we show that applying the string construction one
can find a new collection of examples of C2-smooth convex billiard tables
with a nonsmooth convex caustic.

1. Introduction

Let 0 be a simple closed C1-smooth convex curve in the Euclidean plane. We
consider a Birkhoff billiard inside 0. This simple dynamical system creates many
geometric and dynamical questions and reflects many difficulties appearing in
general Hamiltonian systems. Readers may refer to any textbook among the wide
variety written on the subject (e.g., [Katok et al. 1986; Kozlov and Treshchëv 1991;
Mather and Forni 1994; Tabachnikov 2005]).

We will use the following nonstandard notations: the interior of the set bounded by
the simple closed curve γ will be denoted by γ ◦, while γ denotes the compact γ ◦∪γ .
The length of the curve is denoted by Length(γ ). The convex hull of γ is denoted
by Conv(γ ).

Definition 1. A simple closed curve γ ⊂ 0◦ is called a convex caustic for 0 if γ
is a convex set and any supporting line for γ remains a supporting line for γ after
billiard reflection in 0.

Every convex caustic γ corresponds to an invariant curve rγ of the billiard ball
map. The curve rγ ⊂ R+ ×S1 consists of all supporting lines to γ . This curve
winds once around the phase cylinder and therefore is called rotational. We shall
denote its rotation number by ργ .
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In the original Birkhoff paper [1917] there was posed a conjecture that the
existence of a continuous set of caustics, being a very restrictive property, actually
provides an extreme rigidity on the shape of the curve 0. The first result in this
direction was achieved in [Bialy 1993]. Our paper is motivated by recent progress
in the Birkhoff conjecture solution achieved in [Avila et al. 2016; Kaloshin and
Sorrentino 2016]. The crucial assumption in these papers consists in the existence
of convex caustics such that the rotation numbers of the corresponding invariant
curves form a rational sequence in the interval

(
0; 1

3

]
, converging to 0. It seems

natural to compare such a result with one proved by N. Innami [2002].

Theorem 2 [Innami 2002]. Assume that there exists a sequence of convex caustics
γn inside 0 such that the rotation numbers ρn of the corresponding invariant curves
tend to 1

2 . Then 0 is an ellipse.

Originally, Innami’s arguments were based on the Aubry–Mather variational
theory. In the next section we present a simple geometric proof using string
construction. Yet, it remains a challenging question whether one can prove a more
general statement relaxing the requirement of convexity of the caustics.

Let us recall the string construction framework. Given a convex compact set
γ bounded by γ , and a number S > Length(γ ), define the curve 0 as a union
of those points P such that the cap-body Conv(P ∪ γ ) has boundary of length S.
Geometrically such a construction gives the set of all points traversed by the tip of
a nonelastic string of length S > Length(γ ) wrapped around γ and stretched to its
full extent. The curve 0 provided by such construction has γ as its billiard caustic.
We shall refer to S as a string parameter of the caustic. A closely related so-called
Lazutkin parameter is defined as L = S− Length(γ ).

The string construction is widely known and can be easily proved to provide 0
for smooth enough γ . In fact it remains valid also in the more general case as it is
stated in the following theorem.

Theorem 3 [Stoll 1930; Turner 1982].

(1) For a given compact convex set γ and for every S > Length(γ ) the string
construction determines a C1-smooth convex closed curve 0 such that γ is a
billiard caustic for 0.

(2) If γ is a convex billiard caustic for a C1 curve 0 then 0 can be obtained from
γ by the string construction for some S.

Let us emphasize that the string construction is highly nonexplicit and makes
calculations difficult. A very important consequence of KAM theory, proved by
Lazutkin [1973; 1981] and Douady [1982], states the existence of convex caustics
near the boundary of a sufficiently smooth (at least C6) billiard table. On the other
hand, applying string construction to the triangle, one gets a billiard table which is
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Figure 1. A switched caustic string construction.

piecewise C2 with jumps of the curvature and hence by [Hubacher 1987] cannot
have caustics near the boundary.

The scenario of destruction of caustics when one moves away from the boundary
towards the interior could be understood in principle by the analogy with wave
front propagation inside a convex curve [Mather and Forni 1994]. For example,
take the ellipse and consider the wave fronts as in the famous picture [Arnold 1990,
Figure 36]. For small distances the fronts remain smooth, but starting from some
critical value they start to develop singularities. However, nobody has observed
such a bifurcation in practice for caustics of convex billiards due to the lack of
integrable examples. On the other hand, nonconvex caustics exist, for instance, for
convex bodies of constant width, and were studied in [Knill 1998].

Motivated by the above discussion, the natural question about the existence
of nonsmooth convex caustics arises. More generally, it is natural to study how
irregular the convex caustic can be. In [Fetter 2012] a billiard table of class C2 was
constructed which has a caustic of a regular hexagon. In this paper we were able to
construct the whole functional family of the examples of C2 billiard tables having
nonsmooth convex caustics.

Theorem 4. There exist a one-parametric family of strictly convex nonsmooth
compact sets γ and values of the string parameter S such that the curves 0 obtained
by the string construction are C2-smooth.

We will use the following geometric idea (we use the complex notation x + iy
for points (x, y) in the plane). Start with a curve γ0(t) : [−1, 1] → C such that
γ0(−1)= A=−1−i , γ0(1)= i A= 1−i and γ0(t) is symmetric with respect to the
vertical axis (i.e., iγ0(−t)= iγ0(t)) (see Figure 1). Construct γ as a concatenation
of {ikγ0}

3
k=0. Parametrize γ by the arc-length parameter s and choose the initial
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point in such a way that γ (0) = A. We will denote the total length of γ by 4S.
Then γ (S)= i A.

The main idea is to choose the curve γ and string parameter S in such a way
that the string construction will have the following properties:

• At the beginning (point P in Figure 1), the left part AP of the string remains
fixed at point A while the right part of the string unwinds from the arc ( ̂i A, i2 A).

• At the moment when the left part of the string becomes tangent to γ at the
point A (this corresponds to the point P̂ on 0) the right part reaches the point
i2 A and remains fixed after that. We will call this moment the switching of the
first kind.

• While the left part of the string winds around the arc ( Â, i A) the right part
remains fixed at i2 A (see Figure 1) until the moment when the vertex of the
string reaches the point i P. We will call this the switching of the second kind.

• D4 symmetry provides the whole picture.

Let us reemphasize, that the string construction, being a nonexplicit procedure,
typically does not provide any analytic expression for the table 0 from a given γ . In
the example [Fetter 2012], the construction is made explicit by fixing two end-points
on the string. The disadvantage of such a situation is the complete loss of any
flexibility, since the corresponding table may consist only of the elliptic arcs. We
propose another, more flexible yet explicit construction, fixing only one end-point
of the string and allowing another point to slide along the given curve γ .

Structure of the paper. In the next section we will provide geometric arguments
for the proof of Theorem 2. Section 3 is devoted to the construction of the C2 tables
with nonsmooth caustics. In Section 4 we will pose some open questions arising in
our considerations.

2. Geometric proof of Innami’s result

We will start with the following simple remarks.

Remark 5. If the billiard in 0 has a convex caustic γ with γ ◦ =∅ then 0 is either
an ellipse or a circle.

Indeed, the condition γ ◦ =∅ for convex γ means that γ is either a point or a
segment. The rest follows from the string construction.

Remark 6. Recall that for any point P and for any convex body with nonempty
interior there exist exactly two supporting lines to the body passing through P.
Moreover if the convex caustic γ has nonempty interior, then every supporting line
to γ after reflection in 0 at point P becomes the second supporting line to γ from P.
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Indeed, assume that there exists a supporting line l to γ which is reflected to
itself at a point P ∈ 0. This means that l is orthogonal to 0 at P. Let l ′ be the other
supporting line to γ passing through P. Then by the definition of convex caustic,
the line l ′ is also reflected to itself at the point P and hence is also orthogonal to 0
at P. Thus l and l ′ coincide, which contradicts the assumption that l and l ′ are two
different supporting lines to γ .

Lemma 7. Let γ be a convex caustic for 0. Then γ ◦ 6=∅ if and only if the rotation
number of the corresponding invariant curve is strictly less then 1

2 .

Proof. If a convex caustic γ has empty interior then, by the Remark 5, 0 is
necessarily an ellipse (or a circle) and the invariant curve corresponding to γ has
rotation number 1

2 since it contains a diameter. Vice versa, any convex caustic with
nonempty interior has a rotation number strictly less than 1

2 , since otherwise the
invariant curve corresponding to the caustic would have a 2-periodic orbit, i.e., a
diameter, which is not possible due to Remark 6. �

Let γn be a sequence of convex caustics for0 with the rotation numbers ρn ∈
(
0; 1

2

]
of corresponding invariant curves. By Lemma 7 we may assume that ρn <

1
2 since

otherwise γn has empty interior and then 0 must be an ellipse by the Remark 5.
Passing to a subsequence we can assume with no loss of generality that ρn is strictly
increasing, ρn ↗

1
2 .

Lemma 8. Let γ1 and γ2 be two convex caustics for 0. If the corresponding
invariant curves have rotation numbers ρ1 < ρ2, then γ 2 ⊂ γ

◦

1 .

Proof. Assume that γ 2 is not a subset of γ ◦1 . Then there are only three possibilities:
(1): γ 1 ∩ γ 2 =∅; (2): γ1 ∩ γ2 6=∅ or (3): γ 1 ⊂ γ

◦

2 .
In the third case one obviously has ρ1 ≥ ρ2 contrary to the assumption of the

lemma. In the first and the second cases there necessarily exists a supporting line
to both γ 1 and γ 2. Therefore, all billiard reflections in 0 of this line are also
supporting lines for both γ 1 and γ 2. This means that there exists a whole infinite
orbit lying in the intersection of the invariant curves r1 and r2 corresponding to γ1

and γ2. But then ρ1 must be equal to ρ2, since the rotation number is completely
determined by one orbit. �

Remark 9. The statement of Lemma 8 holds true also in the opposite direction
which will not be used below. Namely, γ 2 ⊂ γ

◦

1 implies ρ1 < ρ2. As we already
mentioned in the proof, it is obvious that ρ1 ≤ ρ2. In addition ρ1 cannot be equal
to ρ2. Otherwise there exist two disjoint graphs of r1 and r2 with the same rotation
number, invariant under the billiard map of the cylinder, which is impossible since
a billiard map is a twist map (see [Katok and Hasselblatt 1995, p. 428]).

Let {Sn} be the sequence of string parameters corresponding to the caustics γn .
Then by Lemma 8, Sn is decreasing. Denote S = lim

n→∞
Sn .
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Figure 2. A family of nested convex caustics with decreasing
string parameter.

Lemma 10. The boundary of the intersection set

C =
∞⋂

n=1

γ n

is a convex caustic for 0 with string parameter S.

Proof. The intersection set C is compact and convex. Moreover, it is easy to see
that ∂C is also a caustic with string parameter S. Indeed, this follows from the
following geometric consideration (see Figure 2). Fix a point P on 0 and consider
the cap-bodies

Kn = Conv(P ∪ γ n), K = Conv(P ∪C).

Then, obviously,
Kn ⊆ K , K =

∞⋂
n=1

Kn,

and moreover
Length(∂Kn )= Sn→ S = Length(∂K ).

In addition, since γn is a caustic then Sn does not depend on P ∈ 0 (by Theorem 3).
Therefore, S also does not depend on P, and hence C reconstructs 0 via string
construction. Thus ∂C is a caustic by Theorem 3. �

The last step in the proof of Theorem 2 consists in the following Lemma.

Lemma 11. The limit caustic ∂C has empty interior.

Proof. First notice that it follows from continuity of the invariant curves and their
rotation numbers that the invariant curve corresponding to C has rotation number 1

2 .
Then from Lemma 7 we conclude that ∂C has empty interior. �

3. Nonsmooth caustic

The main idea of the proof of our result is to carefully choose the Lazutkin parameter
and the germ of the function γ at the point A. While a vertex of the string slides in
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Figure 3. A switched caustic string construction.

the regime corresponding to the unwinding from γ (s), its trajectory corresponds
to the smooth curve. Thus we have to take care of the smoothness of 0 near only
two points corresponding to the switching moments of the first and second kinds
respectively. We will denote by 0(s) the part of 0 corresponding to the switching
of the second kind about the point A. The part of 0 corresponding to the switching
of the first kind about the point A will be denoted by 0̂. The smoothness conditions
read as follows: all odd terms in the germs of 0 and 0̂ have to be orthogonal to the
axis of the symmetry while all the even terms must be collinear with the axis of
symmetry. Indeed, let 0(s) be the curve symmetric with respect to the line l and
intersecting l at the point 0(0). Let Rl be the reflection of the plane in the line l.
Differentiating the identity

Rl0(s)= 0(−s)
n times, at s = 0, we get

Rl(0
(n)(0))= (−1)n0(n)(0).

Coordinate formulation. Parametrize the curve γ by the arc-length parameter s, so
that |γ ′(s)| = 1. Choose the initial point such that γ (0)= A. Denote by α the angle
between γ ′(0) and the horizontal axis. Then one easily obtains a parametrization
for 0 and 0̂ (see Figure 3):

(1)
0(s)= γ (s)− t (s)γ ′(s),

0̂(s)= γ (s)+ t̂(s)γ ′(s),

where t (s) and t̂(s) are some functions of s denoting the length of the right part
of the string near the point 0(s) and the left part of the string near the point 0̂(s)
correspondingly. Functions t and t̂ can be found from the condition of the string to
be unstretchable. We will denote iA = B.

(2)
|0(s)+ B| + |tγ ′(s)| − s = 2`,

|0̂(s)+ A| + |t̂γ ′(s)| + s = 2 ˆ̀,



264 MAXIM ARNOLD AND MISHA BIALY

where `= 1/sinα and ˆ̀ =
√

2/sin(π/4−α). Simple computations yield:

(3)
t (s)=

p(s)
p′(s)

, with p(s)= 1
2

(
(s+ 2`)2− |γ (s)+ B|2

)
,

t̂(s)=−
p̂(s)
p̂′(s)

, with p̂(s)= 1
2

(
(s− 2 ˆ̀)2− |γ (s)+ A|2

)
.

Finally, introducing (3) into (1) we get

(4) 0(s)= γ (s)−
p(s)
p′(s)

γ ′(s), 0̂(s)= γ (s)−
p̂(s)
p̂′(s)

γ ′(s).

Orient the curve γ as it is shown in Figure 3. We will use the complex notation
for the coordinates of the points. Then smoothness conditions for the n-th derivative
of 0 read

(5) <(in−10(n)(0))= 0, <(in−10̂(n)(0))= =(in−10̂(n)(0)).

Here < and = stand for the real and imaginary part of the complex number. For the
curve γ (s) we get the following parametrization:

(6) γ (s)= A+

s∫
0

exp{i(ϕ(t)−α)} dt, where ϕ(t)=
∞∑

n=0

ϕntn.

Thus ϕ0 = 0, and ϕn corresponds to the (n−1)-st derivative of the curvature κ .

Lemma 12. The smoothness conditions in (5) for n = 1 are always satisfied.

This lemma follows from the fact that any C0 caustic produces a C1 table via
string construction. However, we present a more analytic proof of this result for
the sake of completeness.

Proof. Switching of the second kind. From (4) we get

0′ =
(

1−
( p

p′
)′)
γ ′−

p
p′
γ ′′.

Therefore the conditions in (5) read <(p′′γ ′− p′γ ′′)= 0. We will denote z1 · z2 :=
1
2<(z1 z̄2). Using (3) we get

p′ =−(A+ B) · γ ′+ 2`, p′′ =−(A+ B) · γ ′′.

From (6) it follows that γ ′′ = iκγ ′ thus p′′γ ′− p′γ ′′ can be written as

p′′γ ′− p′γ ′′ = 1
2

(
−<((A+ B)iκγ ′)γ ′+<((A+ B)γ ′)(iκγ ′)− 4`iκγ ′

)
= iκ(A+ B− 2`γ ′).

Thus
<(p′′γ ′− p′γ ′′)= κ=(A+ B− 2`γ ′).
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The latter is identically zero since `γ ′(0) = 0(0)− γ (0) and so =(`γ ′) = =(A)
(see Figure 3).

Switching of the first kind. Similarly, the smoothness conditions in (5) read

<( p̂′′γ ′− p̂′γ ′′)= =( p̂′′γ ′− p̂′γ ′′),

where
p̂′ =−(2A) · γ ′− 2 ˆ̀, p̂′′ =−(2A) · γ ′′

and so

p̂′′γ ′− p̂′γ ′′ =
(
<(Aiκγ ′)γ ′+<(Aγ ′)(iκγ ′)+ 2 ˆ̀iκγ ′

)
= 2iκ(A+ ˆ̀γ ′).

The real part of the right-hand side of the latter is always equal to the imaginary
part by the definition of ˆ̀. �

The two conditions in (5) for n = 2 provide, via computations similar to the
above, two equations for parameters ϕ1 and ϕ2 with coefficients depending on α:

ϕ2
1 sinα−ϕ1 sinα cosα−ϕ2 cosα

sinα cos2 α
= 0,

ϕ1(cos 2α+ 2(sinα− cosα)ϕ1)− 2(cosα+ sinα)ϕ2

(cosα− sinα)(1+ sin 2α)
= 0.

The latter system has a solution,

(7) ϕ1 =
1
2 cosα(1+ sin 2α), ϕ2 =−

1
8 cos2 2α sin 2α,

which provides a family of germs for γ , depending on the parameter α, guaranteeing
the C2-smoothness for the table 0.

Next we will need to construct the whole curve γ providing the needed phenome-
non in the string construction. Recall that our geometric idea was based on the con-
struction of the curve γ0 (see Figure 1). Thus we need to present a convex curve of
length S, starting at A and ending at i A, having tangent slope −α at the left end and
being symmetric with respect to the vertical axis. We define γ from ϕ through (6).
In order to finish the construction we have to prove the following theorem.

Theorem 13. There exists a strictly monotonically increasing function ϕ(s) sat-
isfying the following three conditions: (1) ϕ(s) has the given germ (7) at s = 0,
(2) ϕ0(S/2)= α and ϕ2n(S/2)= 0 for n > 1, and (3)

∫ S/2
0 cosϕ(s) ds = 1.

Proof. The Borel theorem states that every power series is the Taylor series of
some smooth function. Obviously, using cutting off, one can find a smooth function
having a given Taylor series at two given points. Thus there exists a nonempty set
9 of C∞ functions having given germs at s = 0 and s = S/2. Since for α < π

2 the
term ϕ1 in (7) is positive, one may assume without loss of generality that 9 consists
of strictly monotonically increasing functions. Therefore the only condition which
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Figure 4. Construction of the solution.

has to be satisfied is Theorem 13(3). Taking a small enough ε-step in s we can
ensure ψ(ε) < α

100 for all ψ ∈9. Next we choose two functions ψ− and ψ+ from
the set 9 as in Figure 4. That is, ψ+(s) is almost equal to α for s ∈ (ε+δ, S/2−δ)
and ψ−(s) is almost equal to ψ(ε) for s ∈ (ε, S/2− δ) for small enough δ. We will
look for ϕ as a convex combination ϕ(s)= lψ−(s)+ (1− l)ψ+(s). Therefore ϕ(s)
obviously satisfies conditions 1 and 2. If we may choose ψ± in such a way that

(8) (S/2)cosα<

S/2∫
0

cos(ψ−(s)−α)ds<1 and S/2>

S/2∫
0

cos(ψ+(s)−α)ds>1

then there exists l such that
∫ S/2

0 cos(ϕ(s)) ds = 1, thus satisfying condition
Theorem 13(3). Hence it is sufficient to check that the conditions in (8) can be
satisfied for an open set of parameters α. Recall that by the construction S= 2 ˆ̀−2`.
From the first inequality in (8) we obtain, since α < π

4 ,

ˆ̀− `=
2

cosα−sinα
−

1
sinα

<
1

cosα
.

This condition can be interpreted as follows: the length of the curve γ cannot
exceed the sum of the lengths of the segments of the two tangent lines from point P
to γ (see Figure 1). The latter inequality is satisfied whenever tan 2α < 1 or

(9) α <
π

8
.

The second condition in (8) has the following geometric interpretation: the length
of γ cannot be less than the distance between points A and B. This yields:

3 sinα− cosα > cosα sinα− sin2 α.

Since the latter is satisfied for α = π
8 we have found an open set of α for which one

can find appropriate functions ψ− and ψ+ shown in Figure 4. �

Remark 14. Since the conditions in (5) provide two conditions on ϕn to obtain
C3 of 0 one gets four equations for ϕ1, ϕ2, ϕ3 and α. Although the number
of parameters matches the number of equations, the corresponding value of α
violates (9). Since (9) arises from the construction based on square symmetry, there
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Figure 5. The convex hull of two intersecting caustics is also a caustic.

is a hope that starting from other regular polygons one can obtain an inequality
which can be satisfied. However, we haven’t found any such examples.

4. Open problems

Here we want to highlight some general questions which are ultimately related to
the string construction. Since the string construction is implicit these questions turn
out to be nontrivial.

Question 15. Is it possible to have two convex caustics γ1 and γ2 of 0 such that
neither of them is a subset of the interior of the other?

In such a case γ1 and γ2 must have the same rotation number since there is a line
tangent to both of the caustics. Moreover it is obvious that γ 1 and γ 2 cannot be
disjoint. So the question is if it is possible that two convex caustics have nontrivial
intersection. In such a case their convex hull is also a caustic. One can strengthen
the question:

Question 16. Is it possible for a 0 which is symmetric with respect to a certain
axis to have a convex caustic C which is not symmetric with respect to this axis?

For example one could imagine two caustics forming a rounded Star of David
(Figure 5). The answer to the quantum analog of this question is positive: for a
symmetric domain the Dirichlet eigenfunction can be nonsymmetric. We could not
however decide if such a counterexample would be possible in the original setting.

Question 17. How irregular a convex caustic can be compared to a regular boundary
curve 0?

Question 18. Let 0 be a billiard table different from a circle and having a convex
caustic γ . For every point P ∈ 0, denote by P−, and P+ the tangency points of the
caustic γ with tangent lines to γ passing through P. Is it possible that the length of
the arc of γ between P− and P+ does not depend on P?
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