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CERTAIN CHARACTER SUMS AND
HYPERGEOMETRIC SERIES

RUPAM BARMAN AND NEELAM SAIKIA

We prove two transformations for the p-adic hypergeometric series which
can be described as p-adic analogues of a Kummer’s linear transformation
and a transformation of Clausen. We first evaluate two character sums, and
then relate them to the p-adic hypergeometric series to deduce the trans-
formations. We also find another transformation for the p-adic hypergeo-
metric series from which many special values of the p-adic hypergeometric
series as well as finite field hypergeometric functions are obtained.

1. Introduction and statement of results

For a complex number a, the rising factorial or the Pochhammer symbol is defined
as (a)0 = 1 and (a)k = a(a+1) · · · (a+ k−1), k ≥ 1. For a nonnegative integer r ,
and ai , bi ∈ C with bi /∈ {. . . ,−3,−2,−1}, the classical hypergeometric series
r+1 Fr is defined by

r+1 Fr

(
a1, a2, . . . , ar+1

b1, . . . , br | λ
)
:=

∞∑
k=0

(a1)k · · · (ar+1)k

(b1)k · · · (br )k
·
λk

k!
,

which converges for |λ|< 1. Throughout the paper, p denotes an odd prime and
Fq denotes the finite field with q elements, where q = pr, r ≥ 1. Greene [1987]
introduced the notion of hypergeometric functions over finite fields analogous
to the classical hypergeometric series. Finite field hypergeometric series were
developed mainly to simplify character sum evaluations. Let F̂×q be the group
of all multiplicative characters on F×q . We extend the domain of each χ ∈ F̂×q to Fq

by setting χ(0)= 0 including the trivial character ε. For multiplicative characters
A and B on Fq , the binomial coefficient

(A
B

)
is defined by( A

B

)
:=

B(−1)
q

J (A, B)=
B(−1)

q

∑
x∈Fq

A(x)B(1− x),(1-1)
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where J (A, B) denotes the usual Jacobi sum and B is the character inverse of
B. Let n be a positive integer. For characters A0, A1, . . . , An and B1, B2, . . . , Bn

on Fq , Greene defined the n+1 Fn finite field hypergeometric functions over Fq by

n+1 Fn

( A0, A1, . . . , An

B1, . . . , Bn | x
)

q
=

q
q − 1

∑
χ∈F̂×q

( A0χ

χ

)( A1χ

B1χ

)
· · ·

( Anχ

Bnχ

)
χ(x).

Some of the biggest motivations for studying finite field hypergeometric functions
have been their connections with Fourier coefficients and eigenvalues of modular
forms and with counting points on certain kinds of algebraic varieties. Their links
to Fourier coefficients and eigenvalues of modular forms are established by many
authors, for example, see [Ahlgren and Ono 2000; Evans 2010; Frechette et al.
2004; Fuselier 2010; Fuselier and McCarthy 2016; Lennon 2011b; McCarthy 2012b;
Mortenson 2005]. Very recently, McCarthy and Papanikolas [2015] linked the finite
field hypergeometric functions to Siegel modular forms. It is well known that finite
field hypergeometric functions can be used to count points on varieties over finite
fields. For example, see [Barman and Kalita 2013a; 2013b; Fuselier 2010; Koike
1992; Lennon 2011a; Ono 1998; Salerno 2013; Vega 2011].

Since the multiplicative characters on Fq form a cyclic group of order q − 1,
a condition like q ≡ 1 (mod `) must be satisfied where ` is the least common
multiple of the orders of the characters appearing in the hypergeometric function.
Consequently, many results involving these functions are restricted to primes in
certain congruence classes. To overcome these restrictions, McCarthy [2012a;
2013] defined a function nGn[ · · · ]q in terms of quotients of the p-adic gamma
function which can best be described as an analogue of hypergeometric series in
the p-adic setting (defined in Section 2).

Many transformations exist for finite field hypergeometric functions which are
analogues of certain classical results [Greene 1987; McCarthy 2012c]. Results in-
volving finite field hypergeometric functions can readily be converted to expressions
involving nGn[ · · · ]. However these new expressions in nGn[ · · · ] will be valid
for the same set of primes for which the original expressions involving finite field
hypergeometric functions existed. It is a nontrivial exercise to then extend these
results to almost all primes. There are very few identities and transformations for the
p-adic hypergeometric series nGn[ · · · ]q which exist for all but finitely many primes
(see for example [Barman and Saikia 2014; 2015; Barman et al. 2015]. Recently,
Fuselier and McCarthy [2016] proved certain transformations for nGn[ · · · ]q , and
used them to establish a supercongruence conjecture of Rodriguez-Villegas between
a truncated 4 F3 hypergeometric series and the Fourier coefficients of a certain
weight four modular form.

Let χ4 be a character of order 4. Then a finite field analogue of 2 F1
( 1/4, 3/4

1 | x
)

is the function 2 F1
(
χ4, χ

3
4
ε | x

)
. Using the relation between finite field hypergeo-
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metric functions and nGn-functions as given in Proposition 3.5 in Section 3, the
function 2G2

[ 1/4, 3/4
0, 0 |

1
x

]
q can be described as a p-adic analogue of the classical

hypergeometric series 2 F1
( 1/4, 3/4

1 | x
)
. In this article, we prove the following

transformation for the p-adic hypergeometric series which can be described as a
p-adic analogue of the Kummer’s linear transformation [Bailey 1935, p. 4, Equa-
tion (1)]. Let ϕ be the quadratic character on Fq .

Theorem 1.1. Let p be an odd prime and x ∈ Fq . Then, for x 6= 0, 1, we have

2G2

[ 1
4 ,

3
4

0, 0 |
1
x

]
q
= ϕ(−2)2G2

[ 1
4 ,

3
4

0, 0 |
1

1−x

]
q
.

We note that the finite field analogue of Kummer’s linear transformation was
discussed by Greene [1984, p. 109, Equation (7.7)] when q ≡ 1 (mod 4).

We have ϕ(−2)=−1 if and only if p≡ 5, 7 (mod 8). Hence, using Theorem 1.1
for x = 1

2 , we obtain the following special value of the 2G2-function.

Corollary 1.2. Let p be a prime such that p ≡ 5, 7 (mod 8). Then we have

2G2

[ 1
4 ,

3
4

0, 0 | 2
]

p
= 0.(1-2)

If we convert the 2G2-function given in (1-2) using Proposition 3.5 in Section 3,
then we have 2 F1

(
χ4, χ

3
4
ε |

1
2

)
p = 0 for p ≡ 5 (mod 8) which also follows from

[Greene 1987, Equation (4.15)]. The value of 2G2
[ 1/4, 3/4

0, 0 | 2
]

p can be deduced
from [Greene 1987, Equation (4.15)] when p ≡ 1 (mod 8). It would be interesting
to know the value of 2G2

[ 1/4, 3/4
0, 0 | 2

]
p when p ≡ 3 (mod 8).

The following transformation for classical hypergeometric series is a special case
of Clausen’s famous classical identity [Bailey 1935, p. 86, Equation (4)]:

(1-3) 3 F2

( 1
2 ,

1
2 ,

1
2

1, 1 | x
)
= (1− x)−1/2

2 F1

( 1
4 ,

3
4
1 |

x
x − 1

)2

.

A finite field analogue of (1-3) was studied by Greene [1984, p. 94, Proposition 6.14].
Evans and Greene [2009a] gave a finite field analogue of the Clausen’s classical
identity. We prove the following transformation for the nGn-function which can be
described as a p-adic analogue of (1-3). Let δ be the function defined on Fq by

δ(x)=
{

1 if x = 0;
0 if x 6= 0.

Theorem 1.3. Let p be an odd prime and x ∈ Fp. Then, for x 6= 0, 1, we have

3G3

[ 1
2 ,

1
2 ,

1
2

0, 0, 0 |
1
x

]
p
= ϕ(1− x) · 2G2

[ 1
4 ,

3
4

0, 0 |
x − 1

x

]2

p
− p ·ϕ(1− x).
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We also prove the following transformation using Theorem 1.1 and [Greene
1987, Theorem 4.16].

Theorem 1.4. Let p be an odd prime and x ∈ Fq . Then, for x 6= 0,±1, we have

2G2

[ 1
4 ,

3
4

0, 0 |
(1+ x)2

(1− x)2

]
q
= ϕ(−2)ϕ(1+ x)2G2

[ 1
2 ,

1
2

0, 0 | x
−1
]

q
.(1-4)

The following transformation is a finite field analogue of (1-4).

Theorem 1.5. Let p be an odd prime and q = pr for some r ≥ 1 such that q ≡
1 (mod 4). Then, for x 6= 0,±1, we have

2 F1

(
χ4, χ

3
4
ε |

(1− x)2

(1+ x)2

)
q
= ϕ(−2)ϕ(1+ x)2 F1

(
ϕ, ϕ

ε | x
)

q
.

Using Theorems 1.4 and 1.5, one can deduce many special values of the p-adic hy-
pergeometric series as well as the finite field hypergeometric functions. For example,
we have the following special values of a 2G2-function and its finite field analogue.

Theorem 1.6. For any odd prime p, we have

2G2

[ 1
4 ,

3
4

0, 0 | 9
]

p

=

{
0 if p ≡ 3 (mod 4);

−2xϕ(6)(−1)
x+y+1

2 if p ≡ 1 (mod 4), x2
+ y2
= p, and x odd.

For p ≡ 1 (mod 4), we have

2 F1

(
χ4, χ

3
4
ε |

1
9

)
p
=

2xϕ(6)(−1)
x+y+1

2

p
,

where x2
+ y2
= p and x is odd.

We also find special values of the following 2G2-function.

Theorem 1.7. For q ≡ 1 (mod 8) we have

2G2

[ 1
4 ,

3
4

0, 0 |
(

6
√

2±3
−2
√

2±3

)2]
q
=−qϕ(6± 12

√
2)
{(χ4
ϕ

)
+

(χ3
4
ϕ

)}
.(1-5)

For q ≡ 11 (mod 12) we have

2G2

[ 1
4 ,

3
4

0, 0 |
(

6±
√

3
−2±
√

3

)2]
q
= 0.(1-6)
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For q ≡ 1 (mod 12) we have

2G2

[ 1
4 ,

3
4

0, 0 |
(

6±
√

3
−2±
√

3

)2]
q
=−qϕ

(
8±5
√

3
12±6

√
3

){(
ϕ

χ3

)
+

( ϕ
χ2

3

)}
.(1-7)

The following theorem is a finite field analogue of Theorem 1.7.

Theorem 1.8. For q ≡ 1 (mod 8) we have

(1-8) 2 F1

(
χ4, χ

3
4
ε |

(
−2
√

2±3
6
√

2±3

)2)
q
= ϕ(6± 12

√
2)
{(χ4
ϕ

)
+

(χ3
4
ϕ

)}
.

For q ≡ 1 (mod 12) we have

(1-9) 2 F1

(
χ4, χ

3
4
ε |

(
−2±
√

3
6±
√

3

)2)
q
= ϕ

(
8±5
√

3
12±6

√
3

){(
ϕ

χ3

)
+

( ϕ
χ2

3

)}
.

In Section 3 we prove two character sum identities and then use them to prove
Theorems 1.1, 1.3, and 1.4. We also prove Theorem 1.5 in Section 3. In Section 4
we prove Theorems 1.6, 1.7 and 1.8.

2. Notations and preliminaries

Let Zp and Qp denote the ring of p-adic integers and the field of p-adic numbers,
respectively. Let Qp be the algebraic closure of Qp and Cp the completion of
Qp. Let Zq be the ring of integers in the unique unramified extension of Qp with
residue field Fq . We know that χ ∈ F̂×q takes values in µq−1, where µq−1 is the
group of (q−1)-th roots of unity in C×. Since Z×q contains all (q−1)-th roots of
unity, we can consider multiplicative characters on F×q to be maps χ : F×q → Z×q .
Let ω : F×q → Z×q be the Teichmüller character. For a ∈ F×q , the value ω(a) is just
the (q−1)-th root of unity in Zq such that ω(a)≡ a (mod p).

We now introduce some properties of Gauss sums. For further details, see [Berndt
et al. 1998]. Let ζp be a fixed primitive p-th root of unity in Qp. The trace map
tr : Fq → Fp is given by

tr(α)= α+α p
+α p2

+ · · ·+α pr−1
.

For χ ∈ F̂×q , the Gauss sum is defined by

g(χ) :=
∑
x∈Fq

χ(x)ζ tr(x)
p .

Now, we will see some elementary properties of Gauss and Jacobi sums. We let T
denote a fixed generator of F̂×q .

Lemma 2.1 [Greene 1987, Equation 1.12]. If k ∈ Z and T k
6= ε, then

g(T k)g(T−k)= qT k(−1).
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Let δ denote the function on multiplicative characters defined by

δ(A)=
{

1 if A is the trivial character;
0 otherwise.

Lemma 2.2 [Greene 1987, Equation 1.14]. For A, B ∈ F̂×q we have

J (A, B)=
g(A)g(B)

g(AB)
+ (q − 1)B(−1)δ(AB).

The following are character sum analogues of the binomial theorem [Greene
1987]. For any A ∈ F̂×q and x ∈ Fq we have

A(1− x)= δ(x)+
q

q − 1

∑
χ∈F̂×q

( Aχ
χ

)
χ(x),(2-1)

A(1+ x)= δ(x)+
q

q − 1

∑
χ∈F̂×q

( A
χ

)
χ(x).(2-2)

We recall some properties of the binomial coefficients from [Greene 1987]:( A
B

)
=

( A
AB

)
,(2-3) ( A

ε

)
=

( A
A

)
=
−1
q
+

q − 1
q

δ(A).(2-4)

Theorem 2.3 [Berndt et al. 1998, Davenport–Hasse relation]. Let m be a positive
integer and let q = pr be a prime power such that q ≡ 1 (mod m). For multiplicative
characters χ and ψ in F̂×q , we have∏

χm=ε

g(χψ)=−g(ψm)ψ(m−m)
∏
χm=ε

g(χ).

Now, we recall the p-adic gamma function. For further details, see [Koblitz
1980]. For a positive integer n, the p-adic gamma function 0p(n) is defined as

0p(n) := (−1)n
∏

0< j<n,p - j

j

and one extends it to all x ∈ Zp by setting 0p(0) := 1 and

0p(x) := lim
xn→x

0p(xn)

for x 6= 0, where xn runs through any sequence of positive integers p-adically
approaching x . This limit exists, is independent of how xn approaches x , and
determines a continuous function on Zp with values in Z×p . For x ∈Q we let bxc
denote the greatest integer less than or equal to x and 〈x〉 denote the fractional part
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of x , i.e., x −bxc, satisfying 0 ≤ 〈x〉 < 1. We now recall the McCarthy’s p-adic
hypergeometric series nGn[ · · · ] as follows.

Definition 2.4 [McCarthy 2013, Definition 5.1]. Let p be an odd prime and q = pr ,
r ≥ 1. Let t ∈ Fq . For a positive integer n and 1≤ k ≤ n, let ak , bk ∈Q∩Zp. Then
the function nGn[ · · · ] is defined by

nGn

[
a1, a2, . . . , an

b1, b2, . . . , bn | t
]

q
:=

−1
q−1

q−2∑
a=0

(−1)an ωa(t)×
n∏

k=1

r−1∏
i=0

(−p)
−b〈ak pi

〉−
api

q−1c−b〈−bk pi
〉+

api

q−1c

×

0p(〈(ak −
a

q−1)p
i
〉)

0p(〈ak pi 〉)
·

0p(〈(−bk +
a

q−1)p
i
〉)

0p(〈−bk pi 〉)
.

Let π ∈ Cp be the fixed root of x p−1
+ p = 0 which satisfies

π ≡ ζp − 1 (mod (ζp − 1)2).

Then the Gross–Koblitz formula relates Gauss sums and the p-adic gamma function
as follows.

Theorem 2.5 [Gross and Koblitz 1979]. For a ∈ Z and q = pr ,

g(ωa)=−π
(p−1)

r−1∑
i=0
〈

api

q−1〉
r−1∏
i=0

0p

(〈 api

q−1
〉)
.

The following lemma relates products of values of p-adic gamma function.

Lemma 2.6 [Barman and Saikia 2014, Lemma 3.1]. Let p be a prime and q = pr.
For 0≤ a ≤ q − 2 and t ≥ 1 with p - t , we have

ω(t−ta)

r−1∏
i=0

0p

(〈−tpi a
q−1

〉) t−1∏
h=1

0p

(〈hpi

t
〉)
=

r−1∏
i=0

t−1∏
h=0

0p

(〈 pi (1+h)
t

−
pi a

q−1
〉)
.

We now prove a lemma that will be used to prove our results.

Lemma 2.7. Let p be an odd prime and q = pr . Then for 0 ≤ a ≤ q − 2 and
0≤ i ≤ r − 1 we have

(2-5) −

⌊
−4api

q − 1

⌋
+

⌊
−2api

q − 1

⌋
=−

⌊〈 pi

4

〉
−

api

q − 1

⌋
−

⌊〈3pi

4

〉
−

api

q − 1

⌋
.
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Proof. Let ⌊
−4api

q−1

⌋
= 4k+ s,

where k, s ∈ Z satisfy 0≤ s ≤ 3. Then

(2-6) 4k+ s ≤
−4api

q − 1
< 4k+ s+ 1.

If pi
≡ 1 (mod 4), then (2-6) yields

⌊
−2api

q − 1

⌋
=

{
2k if s = 0, 1;
2k+ 1 if s = 2, 3,

(2-7)

⌊〈 pi

4

〉
−

api

q − 1

⌋
=

{
k if s = 0, 1, 2;
k+ 1 if s = 3,

(2-8)

⌊〈3pi

4

〉
−

api

q − 1

⌋
=

{
k if s = 0;
k+ 1 if s = 1, 2, 3.

(2-9)

Putting the above values for different values of s we readily obtain (2-5). The proof
of (2-5) is similar when pi

≡ 3 (mod 4). �

3. Proofs of the main results

We first prove two propositions which enable us to express certain character sums
in terms of the p-adic hypergeometric series.

Proposition 3.1. Let p be an odd prime and x ∈ F×q . Then we have

∑
y∈Fq

ϕ(y)ϕ(1− 2y+ xy2)= ϕ(2x)+
q2ϕ(−2)

q − 1

∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x

4

)

=−ϕ(−2)2G2

[ 1
4 ,

3
4

0, 0 |
1
x

]
q
.
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Proof. Applying (2-3) and then (1-1) we have∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x

4

)
=

∑
χ∈F̂×q

(
ϕχ

χ

)
χ
( x

4

)(
ϕχ2

ϕχ

)

=
ϕ(−1)

q

∑
χ∈F̂×q

(
ϕχ

χ

)
χ
(
−x
4

)
J (ϕχ2, ϕχ)

=
ϕ(−1)

q

∑
χ∈F̂×q
y∈Fq

(
ϕχ

χ

)
χ
(
−x
4

)
ϕχ2(y)ϕχ(1− y)

=
ϕ(−1)

q

∑
χ∈F̂×q

y∈Fq ,y 6=1

ϕ(y)ϕ(1− y)
(
ϕχ

χ

)
χ

(
−

xy2

4(1− y)

)
.

Now, (2-1) yields∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x

4

)

=
ϕ(−1)(q − 1)

q2

∑
y∈Fq ,y 6=1

ϕ(y)ϕ(1− y)
(
ϕ

(
1+

xy2

4(1− y)

)
− δ

(
xy2

4(1− y)

))

=
(q − 1)ϕ(−1)

q2

∑
y∈Fq ,y 6=1

ϕ(y)ϕ(1− y)ϕ
(

1+
xy2

4(1− y)

)
.

Since p is an odd prime, taking the transformation y 7→ 2y we get∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x

4

)

=
(q − 1)ϕ(−2)

q2

∑
y∈Fq

y 6= 1
2

ϕ(y)ϕ(1− 2y)ϕ
(

1+
xy2

1− 2y

)

=
(q − 1)ϕ(−2)

q2

∑
y∈Fq

y 6= 1
2

ϕ(y)ϕ(1− 2y+ xy2)

=
(q − 1)ϕ(−2)

q2

∑
y∈Fq

ϕ(y)ϕ(1− 2y+ xy2)−
ϕ(−x)(q − 1)

q2 ,

from which we readily obtain the first identity of the proposition.
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To complete the proof of the proposition, we relate the above character sums to
the p-adic hypergeometric series. From (1-1), Lemma 2.2, and then using the facts
that δ(χ)= 0 for χ 6= ε, δ(ε)= 1 and g(ε)=−1, we deduce that

A :=
∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x

4

)
=

1
q2

∑
χ∈F̂×q

J (ϕχ2, χ)J (ϕχ, χ)χ
( x

4

)

=
1
q2

∑
χ∈F̂×q

g(ϕχ2)g2(χ)

g(ϕ)
χ
( x

4

)
+

q − 1
q2

∑
χ∈F̂×q

g(ϕχ)g(χ)
g(ϕ)

χ
(
−

x
4

)
δ(ϕχ)

=
1
q2

∑
χ∈F̂×q

g(ϕχ2)g2(χ)

g(ϕ)
χ
( x

4

)
−

q − 1
q2 ϕ(−x).

Now, taking χ = ωa we have

A = 1
q2

q−2∑
a=0

g(ϕω2a)g2(ωa)

g(ϕ)
ωa
( x

4

)
−

q − 1
q2 ϕ(−x).

Using the Davenport–Hasse relation for m = 2 and ψ = ω2a we obtain

g(ϕω2a)=
g(ω4a)ω2a(4)g(ϕ)

g(ω2a)
.

Thus,

A = 1
q2

q−2∑
a=0

ωa(x)ω3a(4)
g(ω4a)g2(ωa)

g(ω2a)
−

q − 1
q2 ϕ(−x).

Applying the Gross–Koblitz formula we deduce that

A = 1
q2

q−2∑
a=0

ωa(x)ω3a(4)π (p−1)α
r−1∏
i=0

0p
(〈
−4api

q−1

〉)
02

p
(〈 api

q−1

〉)
0p
(〈
−2api

q−1

〉) −
q − 1

q2 ϕ(−x),

where

α =

r−1∑
i=0

{〈
−4api

q−1

〉
+ 2

〈 api

q−1

〉
−

〈
−2api

q−1

〉}
.
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Using Lemma 2.6 for t = 4 and t = 2, we deduce that

A = 1
q2

q−2∑
a=0

ωa(x)π (p−1)α
r−1∏
i=0

0p
(〈(1

4 −
a

q−1

)
pi
〉)
0p
(〈( 3

4 −
a

q−1

)
pi
〉)
02

p
(〈 api

q−1

〉)
0p
(〈 pi

4

〉)
0p
(〈3pi

4

〉)
−

q − 1
q2 ϕ(−x).

Finally, using Lemma 2.7 we have

A =−
q − 1

q2 · 2G2

[ 1
4 ,

3
4

0, 0 |
1
x

]
q
−

q − 1
q2 ϕ(−x). �

Proposition 3.2. Let p be an odd prime and x ∈ Fq . Then, for x 6= 1, we have

∑
y∈Fq

ϕ(y)ϕ(1− 2y+ xy2)= 2ϕ(x − 1)+
q2

q − 1

∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ2

)
χ(x − 1)

=−2G2

[ 1
4 ,

3
4

0, 0 |
1

1− x

]
q
.

Proof. From (1-1) and then using Lemma 2.2, we have

(3-1)
(
ϕχ2

χ

)(
ϕχ

χ2

)
=
χ(−1)

q2 J (ϕχ2, χ)J (ϕχ, χ2)

=
χ(−1)

q2

[
g(ϕχ2)g(χ)

g(ϕχ)
+ (q − 1)χ(−1)δ(ϕχ)

]
×

[
g(ϕχ)g(χ2)

g(ϕχ)
+ (q − 1)δ(ϕχ)

]
.

From Lemma 2.1, we have g(ϕ)2 = qϕ(−1). Since δ(χ)= 0 for χ 6= ε, δ(ε)= 1
and g(ε)=−1, (3-1) yields

B :=
∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ2

)
χ(x − 1)

=
1
q2

∑
χ∈F̂×q

g(ϕχ2)g(χ)g(χ2)

g(ϕχ)
χ(1− x)− 2

q − 1
q2 ϕ(x − 1).

(3-2)

Using Lemma 2.2 and then (1-1) we obtain

g(ϕχ2)g(χ2)

g(ϕ)
= q

(
ϕχ2

χ2

)
,(3-3)
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and
g(ϕ)g(χ)

g(ϕχ)
= qχ(−1)

(
ϕ

χ

)
− (q − 1)χ(−1)δ(ϕχ).(3-4)

From (2-4), we have
(
ϕ
ε

)
=−

1
q . Hence, (3-3) and (3-4) yield

(3-5) 1
q2

∑
χ∈F̂×q

g(ϕχ2)g(χ)g(χ2)

g(ϕχ)
χ(1− x)

=

∑
χ∈F̂×q

(
ϕχ2

χ2

)(
ϕ

χ

)
χ(x − 1)−

q − 1
q

∑
χ∈F̂×q

χ(x − 1)
(
ϕχ2

χ2

)
δ(ϕχ)

=

∑
χ∈F̂×q

(
ϕχ2

χ2

)(
ϕ

χ

)
χ(x − 1)−

q − 1
q

(
ϕ

ε

)
ϕ(x − 1)

=

∑
χ∈F̂×q

(
ϕχ2

χ2

)(
ϕ

χ

)
χ(x − 1)+

q − 1
q2 ϕ(x − 1).

Applying (1-1) on the right-hand side of (3-5), and then (2-2) we have

1
q2

∑
χ∈F̂×q

g(ϕχ2)g(χ)g(χ2)

g(ϕχ)
χ(1− x)

=
1
q

∑
χ∈F̂×q
y∈Fq

(
ϕ

χ

)
χ(x − 1)ϕχ2(y)χ2(1− y)+

q − 1
q2 ϕ(x − 1)

=
1
q

∑
χ∈F̂×q

y∈Fq ,y 6=1

ϕ(y)
(
ϕ

χ

)
χ

(
(x − 1)y2

(1− y)2

)
+

q − 1
q2 ϕ(x − 1)

=
q − 1

q2

∑
y∈Fq ,y 6=1

ϕ(y)
[
ϕ

(
1+

(x − 1)y2

(1− y)2

)
− δ

(
(x − 1)y2

(1− y)2

)]
+

q − 1
q2 ϕ(x − 1)

=
q − 1

q2

∑
y∈Fq
y 6=1

ϕ(y)ϕ(1− 2y+ xy2)+
q − 1

q2 ϕ(x − 1).

Adding and subtracting the term under summation for y = 1, we have

1
q2

∑
χ∈F̂×q

g(ϕχ2)g(χ)g(χ2)

g(ϕχ)
χ(1− x)=

q − 1
q2

∑
y∈Fq

ϕ(y)ϕ(1− 2y+ xy2).(3-6)

Combining (3-2) and (3-6) we readily obtain the first equality of the proposition.
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To complete the proof of the proposition, we relate the character sums given
in (3-2) to the p-adic hypergeometric series. Using the Davenport–Hasse relation
for m = 2, ψ = χ2 and m = 2, ψ = χ , we have

g(ϕχ2)=
g(χ4)g(ϕ)χ2(4)

g(χ2)
and g(ϕχ)=

g(χ2)g(ϕ)χ(4)
g(χ)

,

respectively. Plugging these two expressions into (3-2) we obtain

B = 1
q2

∑
χ∈F̂×q

g(χ4)g2(χ)

g(χ2)
χ3(4)χ(1− x)− 2

(q − 1)
q2 ϕ(x − 1).

Now, considering χ = ωa and then applying the Gross–Koblitz formula we obtain

B = 1
q2

q−2∑
a=0

ωa(1−x)ω3a(4)π (p−1)α
r−1∏
i=0

0p
(〈
−4api

q−1

〉)
02

p
(〈 api

q−1

〉)
0p
(〈
−2api

q−1

〉) − 2(q−1)
q2 ϕ(x−1),

where

α =

r−1∑
i=0

{〈
−4api

q−1

〉
+ 2

〈 api

q−1

〉
−

〈
−2api

q−1

〉}
.

Proceeding in a similar way to that shown in the proof of Proposition 3.1, we deduce:

B =−
q − 1

q2 · 2G2

[ 1
4 ,

3
4

0, 0 |
1

1− x

]
q
− 2

q − 1
q2 ϕ(x − 1). �

Before we prove our main results, we now recall the following definition of a
finite field hypergeometric function introduced by McCarthy [2012c].

Definition 3.3 [McCarthy 2012c, Definition 1.4]. Let A0,A1,...,An,B1,B2,...,Bn

be in F̂×q . Then the n+1 Fn( · · · )
∗ finite field hypergeometric function over Fq is

defined by

n+1 Fn

(
A0, A1, . . . , An

B1, . . . , Bn | x
)∗

q
=

1
q − 1

∑
χ∈F̂×q

n∏
i=0

g(Aiχ)

g(Ai )

n∏
j=1

g(B jχ)

g(B j )
g(χ)χ(−1)n+1χ(x).

The following proposition gives a relation between McCarthy’s and Greene’s
finite field hypergeometric functions when certain conditions on the parameters are
satisfied.
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Proposition 3.4 [McCarthy 2012c, Proposition 2.5]. If A0 6= ε and Ai 6= Bi for
1≤ i ≤ n, then

n+1 Fn

(
A0, A1, ..., An

B1, ..., Bn |x
)∗

q
=

[ n∏
i=1

( Ai
Bi

)−1]
n+1 Fn

(
A0, A1, ..., An

B1, ..., Bn |x
)

q
.

McCarthy [2013, Lemma 3.3] proved a relation between n+1 Fn(· · · )
∗ and the

p-adic hypergeometric series nGn[ · · · ]. We note that the relation is true for Fq

though it was proved for Fp in [McCarthy 2013]. Hence, we obtain a relation
between nGn[ · · · ] and the Greene’s finite field hypergeometric functions due to
Proposition 3.4. In the following proposition, we list three such identities which
will be used to prove our main results.

Proposition 3.5. Let x 6= 0. Then

2G2

[ 1
4 ,

3
4

0, 0 | x
]

q
=−q · 2 F1

(
χ4, χ

3
4
ε |

1
x

)
q
;(3-7)

2G2

[ 1
2 ,

1
2

0, 0 | x
]

q
=−q · 2 F1

(
ϕ, ϕ

ε |
1
x

)
q
;(3-8)

3G3

[ 1
2 ,

1
2

1
2

0, 0, 0 | x
]

q
= q2
· 3 F2

(
ϕ, ϕ, ϕ

ε, ε |
1
x

)
q
.(3-9)

We note that (3-7) is valid when q ≡ 1 (mod 4).

Proof. Applying [McCarthy 2013, Lemma 3.3] we have

2 F1

(
χ4, χ

3
4
ε |

1
x

)∗
q
= 2G2

[ 1
4 ,

3
4

0, 0 | x
]

q
.(3-10)

From (2-4), we have
(
χ3

4
ε

)
=
−1
q . Using this value and Proposition 3.4 we find that

2 F1

(
χ4, χ

3
4
ε |

1
x

)
q
=−

1
q 2 F1

(
χ4, χ

3
4
ε |

1
x

)∗
q
.(3-11)

Now, combining (3-10) and (3-11) we readily obtain (3-7). Proceeding similarly
we deduce (3-8) and (3-9). This completes the proof. �

We now prove our main results.

Proof of Theorem 1.1. From Proposition 3.1 and Proposition 3.2 we have∑
y∈Fq

ϕ(y)ϕ(1−2y+xy2)=−ϕ(−2) ·2G2

[ 1
4 ,

3
4

0, 0 |
1
x

]
q
=−2G2

[ 1
4 ,

3
4

0, 0 |
1

1− x

]
q
,

which readily gives the desired transformation. �
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Proof of Theorem 1.3. From [Greene and Stanton 1986, Equation 4.5] we have

(3-12) ϕ
(1− u

u

)
3 F2

(
ϕ, ϕ, ϕ

ε, ε |
u

u− 1

)
p

= ϕ(u) f (u)2+ 2
ϕ(−1)

p
f (u)−

p− 1
p2 ϕ(u)+

p− 1
p2 δ(1− u),

where u = x/(x − 1), x 6= 1 and

f (u) :=
p

p− 1

∑
χ∈F̂×p

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
(u

4

)
.

From (3-9) and (3-12), we have

(3-13)
ϕ((1− u)/u)

p2 · 3G3

[ 1
2 ,

1
2 ,

1
2

0, 0, 0 |
u− 1

u

]
p

= ϕ(u) f (u)2+ 2
ϕ(−1)

p
f (u)−

p− 1
p2 ϕ(u)+

p− 1
p2 δ(1− u).

Now, Proposition 3.1 gives

f (u)=
−ϕ(−u)

p
−

1
p
· 2G2

[ 1
4 ,

3
4

0, 0 |
1
u

]
p
.(3-14)

Finally, combining (3-13) and (3-14) and then putting u= x
x−1 we obtain the desired

result. This completes the proof of the theorem. �

Proof of Theorem 1.4. Let A = B = ϕ and x 6= 0,±1. Then [Greene 1987,
Theorem 4.16] yields

(3-15) 2 F1

(
ϕ, ϕ

ε | x
)

q
=
ϕ(−1)

q
ϕ(x(1+ x))

+ϕ(1+ x)
q

q − 1

∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x
(1+ x)2

)
.

Now, using Proposition 3.1 we have

(3-16)
∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x
(1+ x)2

)
=−

q − 1
q2 ϕ

(
−4x

(1+ x)2

)
−

q − 1
q2 · 2G2

[ 1
4 ,

3
4

0, 0 |
(1+ x)2

4x

]
q
.
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Applying Theorem 1.1 on the right-hand side of (3-16) we obtain

(3-17)
∑
χ∈F̂×q

(
ϕχ2

χ

)(
ϕχ

χ

)
χ
( x
(1+ x)2

)
=−

q − 1
q2 ϕ

(
−x
)
−

q − 1
q2 ϕ(−2) · 2G2

[ 1
4 ,

3
4

0, 0 |
(1+ x)2

(1− x)2

]
q
.

Combining (3-15) and (3-17) we have

2G2

[ 1
4 ,

3
4

0, 0 |
(1+ x)2

(1− x)2

]
q
=−qϕ(−2)ϕ(1+ x) · 2 F1

(
ϕ, ϕ

ε | x
)

q
,(3-18)

which completes the proof of the theorem due to (3-8). �

Proof of Theorem 1.5. Let q ≡ 1 (mod 4). Then we readily obtain the desired
transformation for the finite field hypergeometric functions from (1-4) using (3-7)
and (3-8). �

4. Special values of 2G2[ · · · ]

Finding special values of hypergeometric function is an important and interesting
problem. Only a few special values of the nGn-functions are known; see for example
[Barman et al. 2015]. Therein, we obtained some special values of nGn[ · · · ] when
n = 2, 3, 4. From (3-18), for any odd prime p and x 6= 0,±1, we have

2G2

[ 1
4 ,

3
4

0, 0 |
(1+ x)2

(1− x)2

]
q
=−qϕ(−2)ϕ(1+ x) · 2 F1

(
ϕ, ϕ

ε | x
)

q
.(4-1)

Values of the finite field hypergeometric function 2 F1
(
ϕ, ϕ

ε | x
)

q are obtained
for many values of x . For example, see [Barman and Kalita 2012; 2013a; Evans
and Greene 2009b; Greene 1987; Kalita 2018; Ono 1998].

Proof of Theorem 1.6. Let λ ∈ {−1, 1
2 , 2}. If p is an odd prime, then from [Ono

1998, Theorem 2] we have

2 F1

(
ϕ, ϕ

ε | λ
)

p
=

{
0 if p ≡ 3 (mod 4);

2x
p
(−1)

x+y+1
2 if p ≡ 1 (mod 4), x2

+ y2
= p, and x odd.

Putting the above values for λ= 1
2 , 2 into (4-1) we readily obtain the required values

of the 2G2-function.
Let q ≡ 1 (mod 4). Then from (3-7) we have

2 F1

(
χ4, χ

3
4
ε |

1
9

)
q
=−

1
q 2G2

[ 1
4 ,

3
4

0, 0 | 9
]

q
.

From the above identity we readily obtain the required value of the finite field
hypergeometric function. This completes the proof of the theorem. �
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Corollary 4.1. Let p ≡ 1 (mod 4). We have

(χ4
ϕ

)
+

(χ3
4
ϕ

)
=

2x(−1)
x+y+1

2

p
,

where x2
+ y2
= p and x is odd.

Proof. From Theorem 1.6 and [Barman and Kalita 2013a, Theorem 1.4(i)] we have

(χ4
ϕ

)
+

(χ3
4
ϕ

)
=

2xϕ(2)χ4(−1)(−1)
x+y+1

2

p
,

where x2
+ y2

= p and x is odd. Let m be the order of χ ∈ F̂×q . We know that
χ(−1)=−1 if and only if m is even and (q − 1)/m is odd. Since p ≡ 1 (mod 4),
therefore, either p ≡ 1 (mod 8) or p ≡ 5 (mod 8). If p ≡ 1 (mod 8), then ϕ(2) =
χ4(−1)= 1. Also, if p≡ 5 (mod 8), then ϕ(2)= χ4(−1)=−1. Hence, in both the
cases, ϕ(2) ·χ4(−1)= 1. This completes the proof. �

Proof of Theorem 1.7. From [Kalita 2018, Theorem 1.1], for q ≡ 1 (mod 8), we
have

2 F1

(
ϕ, ϕ

ε |
4
√

2
2
√

2±3

)
q
= ϕ(3± 2

√
2)
{(χ4
ϕ

)
+

(χ3
4
ϕ

)}
.(4-2)

Now, comparing (3-18) and (4-2) for x=4
√

2/(2
√

2±3), we obtain (1-5). Similarly,
using [Kalita 2018, Theorem 1.1] and (3-18) for x = 4/(2±

√
3) we derive (1-6)

and (1-7). �

Proof of Theorem 1.8. From (3-7), we have

2 F1

(
χ4, χ

3
4
ε |

(
−2
√

2±3
6
√

2±3

)2)
q
=−

1
q
· 2G2

[ 1
4 ,

3
4

0, 0 |
(

6
√

2±3
−2
√

2±3

)2]
q
.(4-3)

Comparing (1-5) and (4-3) we readily obtain (1-8). Again, we have

2 F1

(
χ4, χ

3
4
ε |

(
−2±
√

3
6±
√

3

)2)
q
=−

1
q
· 2G2

[ 1
4 ,

3
4

0, 0 |
(

6±
√

3
−2±
√

3

)2]
q
.(4-4)

Now, comparing (1-7) and (4-4) we deduce (1-9). �

Applying Corollary 4.1, from (1-5) and (1-8) we have the following corollary.

Corollary 4.2. Let p ≡ 1 (mod 8). Then

2G2

[ 1
4 ,

3
4

0, 0 |
(

6
√

2±3
−2
√

2±3

)2]
p
=−2xϕ(6± 12

√
2)(−1)

x+y+1
2 ,

where x2
+ y2
= p and x is odd.
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