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We show that any closed oriented immersed Hamiltonian stationary isotropic
surface 6 with genus g6 in S5 ⊂C3 is (1) Legendrian and minimal if g6 = 0;
(2) either Legendrian or with exactly 2g6 − 2 Legendrian points if g6 ≥ 1.
In general, every compact oriented immersed isotropic submanifold Ln−1 ⊂

S2n−1 ⊂ Cn such that the cone C(Ln−1) is Hamiltonian stationary must be
Legendrian and minimal if its first Betti number is zero. Corresponding
results for nonorientable links are also provided.

1. Introduction

In this note we study the problem of when a Hamiltonian stationary cone C(L)
with isotropic link L on S2n−1 in Cn becomes special Lagrangian. A submanifold
M ⊂ Cn, not necessarily a Lagrangian submanifold, is Hamiltonian stationary if

divM(JH)= 0,

where J is the complex structure in Cn and H is the mean curvature vector of M
in Cn. In fact this is the variational equation of the volume of M, when one makes
an arbitrary deformation J∇Mϕ with ϕ ∈ C∞0 (M) for M :∫

M
〈H, J∇Mϕ〉 =

∫
M
ϕ divM(JH)− divM(ϕ JH)=

∫
M
ϕ divM(JH).

The notion of Hamiltonian stationary Lagrangian submanifolds in a Kähler manifold
was introduced in [Oh 1993] as critical points of the volume functional under
Hamiltonian variations (known to A. Weinstein, as noted there). Chen and Morvan
[1994] generalized it to the isotropic deformations.

As in [Harvey and Lawson 1982], a submanifold M in Cn is isotropic at p ∈M if

J (Tp M)⊥ Tp M,
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and it is isotropic if it is isotropic for every p. A submanifold M being isotropic is
equivalent to the standard symplectic 2-form on R2n vanishing on M. The dimension
of an isotropic submanifold is at most n, the half real dimension of Cn, and when it
is n, the submanifold is Lagrangian.

For an immersed (n−1)-dimensional submanifold L in the unit sphere S2n−1, let
u : L→ S2n−1 be the restriction of the coordinate functions in R2n to L . A point
u ∈ L is Legendrian if Tu L is isotropic in R2n and

J (Tu L)⊥ u.

L is Legendrian if all the points u are Legendrian. This is equivalent to L being
an (n−1)-dimensional integral submanifold of the standard contact distribution
on S2n−1. The cone

C(L)= {r x : r ≥ 0, x ∈ L}

is said to have link L . In this article, all links Lare assumed to be connected, and
we shall use 6 for the 2-dimensional link L .

The Hamiltonian stationary condition is a third-order constraint on the subman-
ifold M, as seen when M is locally written as a graph over its tangent space at a
point. The minimal submanifolds, a second-order constraint on the local graphical
representation of M, are automatically Hamiltonian stationary. We are particularly
interested in the case when M is a Lagrangian submanifold. The existence of
(many) compact Hamiltonian stationary Lagrangian submanifolds in Cn versus the
nonexistence of compact minimal submanifolds makes the study of Hamiltonian
stationary ones interesting. In this note, we shall not be concerned with the existence
of Hamiltonian stationary ones; instead, we shall concentrate on the rigidity property,
namely, when the Hamiltonian stationary ones reduce to special Lagrangians, in
the case when the submanifold is a cone over a spherical link in Cn.

A well-known fact about a link Lm
⊂ Sn and the cone C(L) over it is that L

is minimal in Sn if and only if C(L) \ {0} is minimal in Rn+1. When C(L) is
Hamiltonian stationary and isotropic, possibly away from the cone vertex 0 ∈ R2n,
we observe that the Hamiltonian stationary equation for C(L) splits into two
equations:

divL(JHL)= 0,

i.e., the link L is Hamiltonian stationary in R2n as well, and

〈JHL , u〉 = 0,

where HL is the mean curvature vector of L in R2n and u is the position vector
of L . Moreover, if the link L is isotropic in Cn, then

divL(JH L)= 0,
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where H L = HL −mu is the mean curvature vector of L in S2n−1; in fact,

divL(Ju)=
m∑

i=1

〈DEi (Ju), Ei 〉 =

m∑
i=1

〈JDEi u, Ei 〉 = 0

as DEi u is tangent to L , where D is the derivative in R2n and {E1, . . . , Em} is an
orthonormal local frame on T L .

Our observation is that the rigidity statements in [Chen and Yuan 2006] for
minimal links generalize to the Hamiltonian stationary setting.

Theorem 1.1. Let6 be a closed oriented immersed isotropic surface with genus g6
in S5

⊂ C3 such that the cone C(6) is Hamiltonian stationary away from its vertex.
Then

(1) if g6 = 0, the surface 6 is Legendrian and minimal (in fact, totally geodesic);

(2) if g6 ≥1, the surface6 is either Legendrian or has exactly 2g6−2 Legendrian
points counting the multiplicity.

It is known that the immersed minimal Legendrian sphere (g6 = 0) must be a
great two-sphere in S5; see, for example, [Haskins 2004, Theorem 2.7]. Simple
isotropic tori (g6 = 1) can be constructed so that the Hamiltonian stationary cone
C(6) is nowhere Lagrangian. A family of Hamiltonian stationary (nonminimal)
Lagrangian cones C(6) with g6 = 1 are presented in [Iriyeh 2005]. Bryant’s
classification [1985, p. 269] of minimal surfaces with constant curvature in spheres
provides examples of flat Legendrian minimal tori, as well as flat non-Legendrian
isotropic minimal tori (g6 = 1) in S5. The constructions of [Haskins 2004; Haskins
and Kapouleas 2007] show that there are infinitely many immersed (embedded if
g6 = 1) minimal Legendrian surfaces for each odd genus in S5.

In general dimensions and codimensions, we have:

Theorem 1.2. Let Lm be a compact isotropic immersed oriented submanifold in
the unit sphere S2n−1

⊂ Cn such that the cone C(Lm) is Hamiltonian stationary
away from its vertex. Suppose that the first Betti number of Lm is 0. Then, away
from its vertex,

(1) when m is the top dimension n − 1, the cone C(Ln−1) is Lagrangian and
minimal (or equivalently Ln−1 is Legendrian and minimal);

(2) for m < n − 1, the cone C(Lm) is isotropic, and if the differential 1-form
〈JHC(Lm), · 〉 is closed then the mean curvature HC(Lm) of C(Lm) vanishes on
the normal subbundle JTC(Lm).

We make two remarks when the dimension m of the link is two. First, Theorem 1.2
also implies Theorem 1.1(1). Second, if the first Betti number of L2 is not zero
(gL2 > 0) and L is isotropically immersed in S2n−1, with 2n− 1≥ 5, and C(L) is
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Hamiltonian stationary away from its cone vertex, the same argument as in the proof
of Theorem 1.1 leads to the same conclusion as in part (2) of Theorem 1.1, that the
cone C(L2) is isotropic either everywhere or along exactly 2gL2−2=−χ(L2) lines.

Theorems 1.2 and 1.1 (except the totally geodesic part) remain valid for nonori-
entable links (note that χ(6) = 2− g6 for a compact nonorientable surface 6);
see Remarks 2.1 and 3.1. The nonorientable version of Theorem 1.2 implies that
one cannot immerse a compact nonorientable Ln−1 with first Betti number zero
Hamiltonian stationarily and isotropically into S2n−1

⊂ Cn. Otherwise, the cone
C(Ln−1) would be a special Lagrangian cone; then C(Ln−1) would be orientable,
and Ln−1 would also be orientable. In particular, there exists no isotropic Hamilton-
ian stationary immersion of a real projective sphere RP2 into S5

⊂ C3. In passing,
we mention that Lê and Wang [2001] showed that minimal link Ln−1

⊂ S2n−1 is
Legendrian if and only if f = 〈Au, Ju〉 satisfies 4L f =−2n f for any A ∈ su(n).

It is interesting to find out whether there exists an isotropic Hamiltonian stationary
surface in S5 with exactly 2g6 − 2 Legendrian points for g6 > 1.

2. Hopf differentials and proof of Theorem 1.1

To measure how far the isotropic 6 is from being Legendrian, or the deviation of
the corresponding is cone from being Lagrangian, we project Ju onto the tangent
space of 6 in C3, where J is the complex structure in C3. Denote the length of the
projection by

f = | Pr Ju|2.

To compute the length, we need some preparation. Locally, take an isothermal
coordinate system (t1, t2) on the isotropic surface

u :6→ S5
⊂ C3.

Set the complex variable
z = t1

+
√
−1t2.

Then the induced metric has the local expression with the conformal factor ϕ

g = ϕ2
[(dt1)2+ (dt2)2] = ϕ2 dz dz̄.

We project Ju to each of the orthonormal bases ϕ−1u1, ϕ−1u2 with ui = ∂u/∂t i.
Then the sum of the squares of each projection is

f =
|〈Ju, u1〉|

2
+ |〈Ju, u2〉|

2

ϕ2 =
4|〈Ju, uz〉|

2

ϕ2 ,

where uz = ∂u/∂z and 〈 · , · 〉 is the Euclidean inner product on R6, and in particular
0 ≤ f ≤ 1. In fact, f is the square of the norm of the symplectic form ω in C3
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restricted on the cone C(6) with link 6:

ω|C(6) ∧∗ω|C(6) = f · volume form of C(6).

The Hamiltonian stationary condition for the cone C(6)= ru(t1, t2) is

0= divC(6)(JHC(6))

= 〈∂r (JHC(6)), ∂r 〉+
1
r2 div6

(
J 1

r
H6
)

=−
1
r2 〈JH6, u〉+ 1

r3 div6(JH6).

It follows that
div6(JH6)= 0

and

0= 〈JH6, u〉 = −
〈

4
ϕ2 uzz̄, Ju

〉
.

Coupled with the isotropy condition

〈Jui , u j 〉 = 0,

we have the holomorphic condition

〈Ju, uz〉z̄ = 〈Ju z̄, uz〉+ 〈Ju, uzz̄〉 =
〈
Ju,−1

2ϕ
2u
〉
= 0.

The induced metric g yields a compatible conformal structure on the oriented
surface 6, which makes 6 a Riemann surface. We shall consider two cases
according to the genus g6 .

Case 1: g6 = 0. By the uniformization theorem for Riemann surfaces, see, for
example, [Ahlfors and Sario 1960, p. 125, p. 181], there exists a holomorphic
covering map

8 : (S2, gcanonical)→ (6, g),
or locally

8 :

(
C1,

1
(1+ |w|2)2

dw dw̄
)
→ (6, g).

For z =8(w) one has

1
(1+ |w|2)2

dw dw̄ =8∗(ψ2g)=8∗(ψ2ϕ2 dz dz̄)= ψ2ϕ2
|zw|2 dw dw̄,

where ψ is a positive (real analytic) function on 6. In particular

|zw|2 =
1

ψ2ϕ2(1+ |w|2)2
.

Note that
〈Ju, uw〉 = 〈Ju, uz〉zw = 〈Ju, uz〉

1
wz
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is a holomorphic function of z; in turn it is a holomorphic function of w. Also
〈Ju, uw〉 is bounded, approaching 0 as w goes to∞, because

|〈Ju, uw〉|2 =
|〈Ju, uz〉|

2

ϕ2

1
ψ2(1+ |w|2)2

.

So 〈Ju, uw〉≡0. Therefore f ≡0 and6 is Legendrian. We conclude that C(6)\{0}
is Lagrangian.

The 1-form 〈JHC(6), · 〉 on the Lagrangian submanifold C(6) \ {0} is closed.
(This follows directly either from Theorem 3.4 of [Dazord 1981], or can be verified
by local exactness via the local expression

HC(6) =−J∇C(6)θ

given in [Harvey and Lawson 1982]; this will be done in next section.) Its restriction
along 6 is therefore a closed 1-form i∗〈JHC(6), · 〉 as the pullback by the inclusion
i :6→C(6) of a closed 1-form. Since the first Betti number of 6 is zero (g6 = 0),
there is a smooth function θ6 on 6 such that

dθ6 = i∗〈JHC(6), · 〉.

Then
〈∇6θ6, · 〉 = dθ6 = 〈JH6, · 〉.

As we have seen, the Hamiltonian stationary condition on C(6) implies

0= div6(JH6)= div6(∇6θ6)=1gθ6.

On the closed surface 6, we have θ6 is constant, and in turn, 6 is minimal.
An immersed minimal Legendrian 2-sphere in S5 is totally geodesic. This is a

known fact; for a proof, see, for example, [Chen and Yuan 2006].

Case 2: g6 ≥ 1. As in Case 1, where g6 = 0, the isotropic and Hamiltonian
stationary condition gives us a local holomorphic function 〈Ju, uz〉 and global
holomorphic Hopf 1-differential 〈Ju, uz〉 dz. We only consider the case where
〈Ju, uz〉 dz is not identically zero. The zeros of 〈Ju, uz〉 are therefore isolated and
near each of the zeros, we can write

〈Ju, uz〉 = h(z)zk,

where h is a local holomorphic function, nonvanishing at the zero point z = 0 and
k is a positive integer. One can also view

〈Ju, uz〉 =
1
2

(
〈Ju, u1〉−

√
−1〈Ju, u2〉

)
as the tangent vector

1
2〈Ju, u1〉u1−

1
2〈Ju, u2〉u2 =

1
2〈Ju, u1〉 ∂1−

1
2〈Ju, u2〉 ∂2
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along the tangent space T6, where ∂i = ∂u/∂t i. The projection Pr Ju on the tangent
space of T6 is locally represented as

Pr Ju =
〈Ju, u1〉 ∂1+〈Ju, u2〉 ∂2

ϕ2 .

The index of the globally defined vector field Pr Ju at each of its singular points,
i.e., where Pr Ju = 0, is the negative of that for the vector field 1

2〈Ju, u1〉 ∂1 −
1
2〈Ju, u2〉 ∂2. Note that the index of the latter is k.

From the Poincaré–Hopf index theorem, for any vector field V with isolated
singularities on 6, one has∑

V=0

index(V )= χ(6)= 2− 2g6 ≤ 0.

The zeros of Pr Ju are just the Legendrian points on 6. So we conclude that the
number of Legendrian points is 2g6 − 2 counting the multiplicity. This completes
the proof of Theorem 1.1.

Remark 2.1. As mentioned in the Introduction, Theorem 1.1 (except the totally
geodesic part) and its generalization to higher codimensions can be extended for
the nonorientable links. This can be seen as follows. The Poincaré–Hopf index
theorem holds on compact nonorientable surfaces, our count of the indices of the still
globally defined Pr Ju via local holomorphic functions is valid too, and the index
of a singular point of a vector field is independent of local orientations. Moreover,
this index-counting argument yields an alternative proof for Theorem 1.1(1) (except
the totally geodesic part) and its generalization.

3. Harmonic forms and proof of Theorem 1.2

Consider an immersed isotropic Hamiltonian stationary submanifold in S2n−1

u : Lm
→ S2n−1

⊂ Cn.

The isotropy condition for any local coordinates (t1, . . . , tm) on Lm is given by

〈Jui , u j 〉 = 0,

where J is the complex structure of Cn and ui = ∂u/∂t i.
The Hamiltonian stationary condition for the cone C(6)= ru(t) is

0= divC(L)(JHC(L))

= 〈∂r (JHC(L)), ∂r 〉+
1
r2 divL

(
J
( 1

r
HL

))
=−

1
r2 〈JHL , u〉+ 1

r3 divL(JHL).
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Notice that 〈JHL , u〉 and divL(JHL) are independent of r . Therefore, the equation
above splits into two equations

divL(JHL)= 0
and

0= 〈JHL , u〉 = −〈1gu, Ju〉,

where g is the induced metric on L and1g is the Laplace–Beltrami operator of (L ,g).
To measure the deviation of the corresponding cone C(u(Lm)) from being

isotropic, we project Ju onto the tangent space of u(Lm) in Cn. Note that the
projection is the vector field along u(L)

Pr Ju =
m∑

i, j=1

gi j
〈Ju, ui 〉u j ,

where gi j = 〈ui , u j 〉, 1≤ i, j ≤ m. The corresponding 1-form

α =

m∑
i=1

〈Ju, ui 〉 dt i

is of course globally defined on Lm. In fact it is a harmonic 1-form, because α is
closed and coclosed as verified as follows:

dα =
m∑

i, j=1

〈Ju, ui 〉j dt j
∧ dt i

=

m∑
i, j=1

(〈Ju j , ui 〉+ 〈Ju, ui j 〉) dt j
∧ dt i

=

m∑
i, j=1

〈Ju, ui j 〉 dt j
∧ dt i

= 0,

and
δα = (−1)m·1+m+1

∗ d ∗α

=−∗ d
( m∑

i, j=1

(−1) j+1√ggi j
〈Ju, ui 〉 dt1

∧ · · · ∧ d̂t j ∧ · · · ∧ dtm
)

=−∗

m∑
i, j=1

∂j (
√

ggi j
〈Ju, ui 〉) dt1

∧ · · · ∧ dt j
∧ · · · ∧ dtm

=−
1
√

g

m∑
i, j=1

∂j (
√

ggi j
〈Ju, ui 〉)

=−

m∑
i, j=1

(
〈Ju j , gi j ui 〉+

〈
Ju, 1
√

g
∂j (
√

ggi j ui )
〉)
=−〈Ju,1gu〉 = 0,
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where we have used the isotropy condition and the consequence of Hamiltonian
stationary condition in the last two steps, respectively.

The Hodge–de Rham theorem implies that the harmonic 1-form α must vanish
because the first Betti number of Lm is zero by assumption. It follows that Pr Ju
must vanish. Therefore, the cone C(Lm) is isotropic.

Next, we claim that the differential 1-form

β = 〈JHL , · 〉

on Lm is closed. When m = n− 1, the isotropic cone C(Ln−1) is Lagrangian. By
[Harvey and Lawson 1982], around each point of C(Ln−1) \ {0}, there is a locally
defined Lagrangian angle θ such that

HC(L) =−J∇C(L)θ.

Now the globally defined 1-form β on the link L can be expressed locally as

β = 〈∇C(L)θ, · 〉 = 〈∇Lθ, · 〉 = dLθ

by noticing that HC(L) = HL as r = 1, where the second equality holds as the two
1-forms are on T L and the tangent vectors to L are orthogonal to ∂r , and dL stands
for the exterior differentiation on L . We conclude that β is a closed 1-form on L .
When m < n− 1, the 1-form 〈JHC(L), · 〉 is closed by assumption, so its restriction
β on L is closed.

Since the first Betti number of L is zero, there is a smooth function θL on L such
that 〈JHL , · 〉 = dLθL . This implies that the projection of JHL onto T L satisfies

m∑
i=1

〈JHL , Ei 〉Ei =∇LθL ,

where {E1, . . . , Em} is a local orthonormal frame of T L . The Hamiltonian stationary
condition on C(L) asserts, as we have seen earlier, that

1LθL = divL∇LθL = divL(JHL)= 0.

On the closed submanifold L , we know θL is constant. In turn, for m = n − 1,
C(Ln−1) is minimal, and for m < n − 1, C(Lm) is partially minimal, namely
HC(Lm) vanishes on the normal subbundle JTC(Lm). The proof of Theorem 1.2 is
complete.

Remark 3.1. As the projection Pr Ju and the adjoint operator δ are independent of
the local orientations and the Hodge–de Rham theorem holds for compact nonori-
entable manifolds, see, for example, [Lawson and Michelsohn 1994, p. 125–126],
we see that Theorem 1.2 remains true for nonorientable links Lm.
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Remark 3.2. For a surface link L2
⊂ S2n−1 with gL = 0 for the case n > 3, if it is

isotropic and C(L2) is Hamiltonian stationary, the same argument as in [Chen and
Yuan 2006] leads to the conclusion that the second fundamental form of L in S2n−1

vanishes in the normal subbundle Ju⊕ J T L . When n = 3, L is totally geodesic in
S5 as noted before.

Corollary 3.3. Let Lm be a compact immersed isotropic submanifold in the unit
sphere S2n−1

⊂ Cn. If the Ricci curvature of Lm is nonnegative, and it is positive
somewhere or the Euler characteristic χ(Lm) is not zero, then the Hamiltonian
stationary cone C(Lm) is isotropic; in particular, C(Ln−1) is Lagrangian (or
equivalently Ln−1 is Legendrian) and minimal when m is the top dimension n− 1.

Under the above condition, from [Bochner 1948, p. 381], it follows immediately
that the first Betti number of Lm is zero. Then Theorem 1.2 and its nonorientable
version imply the corollary.
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