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For a given boundary-parabolic representation of a link group to PSL(2, C),
Inoue and Kabaya suggested a combinatorial method to obtain the devel-
oping map of the representation using the octahedral triangulation and the
shadow-coloring of certain quandles. A quandle is an algebraic system
closely related to the Reidemeister moves, so their method changes quite
naturally under the Reidemeister moves.

We apply their method to the potential function, which was used to
define the optimistic limit, and construct a saddle point of the function.
This construction works for any boundary-parabolic representation, and it
shows that the octahedral triangulation is good enough to study all possible
boundary-parabolic representations of the link group. Furthermore, the
evaluation of the potential function at the saddle point becomes the complex
volume of the representation, and this saddle point changes naturally under
the Reidemeister moves because it is constructed using the quandle.

1. Introduction

A link L has the hyperbolic structure when there exists a discrete faithful representa-
tion ρ : π1(L)→ PSL(2,C), where the link group π1(L) is the fundamental group
of the link complement S3

\L . The standard method to find the hyperbolic structure
of L is to consider some triangulation of S3

\ L and solve certain sets of equations.
(These equations are called the hyperbolicity equations.) Each solution determines a
boundary-parabolic representation1 and one of them is the geometric representation,
which means the determined boundary-parabolic representation is discrete and
faithful. Due to Mostow’s rigidity theorem, the hyperbolic structure of a link is a
topological property. Therefore, it is natural to expect the invariance of the hyper-
bolic structure under the Reidemeister moves. However, this cannot be seen easily,
because even a small change on the triangulation changes the solution radically.

MSC2010: primary 57M27; secondary 51M25, 58J28.
Keywords: optimistic limit, quandle, hyperbolic volume, boundary-parabolic representation, link

group.
1 boundary-parabolic means the image of the peripheral subgroup π1(∂(S

3
\ L)) is a parabolic

subgroup of PSL(2, C). Note that the geometric representation is boundary-parabolic.
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Recently, Inoue and Kabaya [2014] developed a method to construct the hyper-
bolic structure of L using the link diagram and the geometric representation. More
generally, for a given boundary-parabolic representation ρ, they constructed the
explicit geometric shapes of the tetrahedra of certain triangulations using ρ. Their
main method is to construct the geometric shapes using certain quandle homology,
which is defined directly from the link diagram D and the representation ρ. Here, a
quandle is an algebraic system whose axioms are closely related to the Reidemeister
moves of link diagrams, so their construction changes quite naturally under the
Reidemeister moves. (The definition of the quandle is in Section 2A. A good survey
of quandles is the book [Elhamdadi and Nelson 2015].) A result of Inoue and
Kabaya [2014] suggests a combinatorial method to obtain the hyperbolic structure
of the link complement.

Interestingly, the triangulation used in [Inoue and Kabaya 2014] was also used
to define the optimistic limit of the Kashaev invariant in [Cho et al. 2014]. As a
matter of fact, this triangulation arises naturally from the link diagram. (See Section
3 of [Weeks 2005] and Section 2C of this article for the definition.) We call this
triangulation octahedral triangulation of S3

\ (L ∪ {two points}) associated with
the link diagram D.

The optimistic limit first appeared in [Kashaev 1995] where the volume conjecture
was proposed. This conjecture relates certain limits of link invariants, called Kashaev
invariants, with the hyperbolic volumes. The optimistic limit, which was first defined
in [Murakami 2000], is the value of a certain potential function evaluated at a saddle
point, where the function and the value are expected to be an analytic continuation
of the Kashaev invariant and the limit of the invariant, respectively. As a matter
of fact, physicists usually call the evaluation the classical limit and consider it the
actual limit of the invariant. A mathematically rigorous definition of the optimistic
limit was proposed in [Yokota 2011] and the value was proved to coincide with the
hyperbolic volume. Several versions of the optimistic limit have been developed, in
a number of articles, but we will modify the version of [Cho et al. 2014] so as to
construct a solution without the need to solve equations.

The optimistic limit is defined by the potential function V (z1, . . . , zn, w
j
k , . . .).

Previously, in [Cho et al. 2014], this function was defined purely by the link diagram,
but here we modify it using the information of the representation ρ. (The definition
is in Section 3.) We consider a solution of the set

H :=
{

exp
(

zk
∂V
∂zk

)
=1,exp

(
w

j
k
∂V
∂w

j
k

)
=1| j :degenerate crossings,k=1, . . . ,n

}
,

which is a saddle-point of the potential function V. Then Proposition 3.1 will show
that H becomes the hyperbolicity equations of the octahedral triangulation.

Solving the equations in H is not easy because there are infinitely many solutions.
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The standard way to avoid this difficulty is to deform the octahedral triangulation of
S3
\(L∪{two points}) to the triangulation of S3

\L , as in [Yokota 2011]. However,
this deformation produces the problem of the existence of solutions because some
triangulations constructed from a link diagram may have no solution. (Sakuma
and Yokota [2016] proved the existence of solutions for the alternating links.)
Furthermore, the author believes these deformations of the triangulation lose the
combinatorial properties of link diagrams. Therefore, we will use the octahedral
triangulation without any deformation and do not solve the equations in H. Instead,
we will construct an explicit solution (z(0)1 , . . . , z(0)n , (w

j
k )
(0), . . .) of H.

Theorem 1.1. Using the quandle associated with the representation ρ, there exists
a formula to construct a solution (z(0)1 , . . . , z(0)n , (w

j
k )
(0), . . .) of H. (The exact

formulas are in Theorem 3.2.)

The evaluation of the potential function V depends on the choice of log-branch.
To obtain a well-defined value, modify the potential function to

(1) V0(z1, . . . , zn, (w
j
k ), . . .) :=

V (z1, . . . , zn, (w
j
k ), . . .)−

∑
k

(
zk
∂V
∂zk

)
log zk −

∑
j,k

(
w

j
k
∂V
∂w

j
k

)
logw j

k .

Theorem 1.2. For the constructed solution (z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .) of H and

the modified potential function V0 above, the following holds:

(2) V0(z
(0)
1 , . . . , z(0)n , (w

j
k )
(0), . . .)≡ i(vol(ρ)+ i cs(ρ)) (mod π2),

where vol(ρ) and cs(ρ) are the hyperbolic volume and the Chern–Simons invariant
of ρ defined in [Zickert 2009], respectively.

The proof will be in Theorem 3.3. The left-hand side of (2) is called the optimistic
limit of ρ, and vol(ρ)+ i cs(ρ) in the right-hand side is called the complex volume
of ρ.

Note that for any boundary-parabolic representation ρ, we can always construct
the solution associated with ρ. This implies that the octahedral triangulation is
good enough for the study of all possible boundary-parabolic representations from
the link group to PSL(2,C). The set of all possible representations can be regarded
as the Ptolemy variety (see [Garoufalidis et al. 2015] for detail) and we expect the
octahedral triangulation will be very useful to the study of the Ptolemy variety. (An
actual application to the Ptolemy variety is in preparation now.)

Furthermore, the construction of the solution is based on the quandle in [Inoue
and Kabaya 2014]. Therefore, this solution changes locally under the Reidemeister
moves. This implies that we can explore the hyperbolic structure of a link by finding
the solution and keeping track of the changes of the solution under the Reidemeister
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moves. As a matter of fact, after the appearance of the first draft of this article, this
idea was successfully used in [Cho 2016a; Cho and Murakami 2017] and more
applications are in preparation.

Among the applications, we remark that [Cho 2016a] contains very similar
results to this article. Both articles construct the solution associated with ρ using
the same quandle. However, the major differences are the triangulations. Both use
the same octahedral decomposition of S3

\ (L ∪ {two points}), but this article uses
the subdivision of each octahedron into four tetrahedra and call the result four-term
(or octahedral ) triangulation, whereas [Cho 2016a] uses the subdivision of the
same octahedron into five tetrahedra and calls the result five-term triangulation.
Some tetrahedra in the four-term triangulation can be degenerate and this introduces
technical difficulties. However, the five-term triangulation used in [Cho 2016a]
does not contain any degenerate tetrahedra, so it is far easier and more convenient.
In conclusion, this article contains the original idea of using a quandle to construct
the solution and [Cho 2016a] improved the idea.

The layout of this article is as follows. In Section 2, we will summarize some
results from [Inoue and Kabaya 2014]. In particular, the definition of the quandle
and the octahedral triangulation will appear. Section 3 will define the optimistic
limit and the hyperbolicity equations. The main formula (Theorem 3.3) of the
solution associated with the given representation ρ will appear. Section 4 will
discuss two simple examples, the figure-eight knot 41 and the trefoil knot 31.

2. Quandles

In this section, we will survey some results of [Inoue and Kabaya 2014]. We remark
that all formulas in this section come from that article, and the author learned them
from the series of lectures given by Ayumu Inoue at Seoul National University
during the spring of 2012.

2A. Conjugation quandle of parabolic elements.

Definition 2.1. A quandle is a set X with a binary operation ∗ satisfying the
following three conditions:

(1) a ∗ a = a for any a ∈ X .

(2) The map ∗b : X→ X (a 7→ a ∗ b) is bijective for any b ∈ X .

(3) (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) for any a, b, c ∈ X .

The inverse of ∗b is notated by ∗−1b. In other words, the equation a ∗−1 b = c
is equivalent to c ∗ b = a.

Definition 2.2. Let G be a group and X be a subset of G satisfying

g−1 Xg = X for any g ∈ G.
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Define the binary operation ∗ on X by

(3) a ∗ b = b−1ab

for any a, b ∈ X . Then (X, ∗) becomes a quandle and is called the conjugation
quandle.

As an example, let P be the set of parabolic elements of PSL(2,C)= Isom+(H3).
Then,

g−1Pg = P

holds for any g ∈ PSL(2,C). Therefore, (P, ∗) is a conjugation quandle, and this
is the only quandle we use in this article.

To perform concrete calculations, an explicit expression of (P, ∗) was introduced
in [Inoue and Kabaya 2014]. First, note that(

p q
r s

)−1 (
1 1
0 1

)(
p q
r s

)
=

(
1+ rs s2

−r2 1− rs

)
,

for
( p

r
q
s

)
∈ PSL(2,C). Therefore, we can identify (C2

\ {0})/± with P by

(4)
(
α β

)
←→

(
1+αβ β2

−α2 1−αβ

)
,

where ± means the equivalence relation
(
α β

)
∼
(
−α −β

)
. We define the opera-

tion ∗ on P by(
α β

)
∗
(
γ δ

)
:=
(
α β

) (1+ γ δ δ2

−γ 2 1− γ δ

)
∈ (C2

\ {0})/±,

where the matrix multiplication on the right-hand side is the standard multiplication.
(This definition is the transpose of the one used in [Inoue and Kabaya 2014] and [Cho
2016a].) Note that this definition coincides with the operation of the conjugation
quandle (P, ∗) by(
α β

)
∗
(
γ δ

)
=
(
α β

) (1+ γ δ δ2

−γ 2 1− γ δ

)
∈ (C2

\ {0})/±

←→

(
1+ γ δ δ2

−γ 2 1− γ δ

)−1 (
1+αβ −α2

β2 1−αβ

)(
1+ γ δ δ2

−γ 2 1− γ δ

)
=
(
γ δ

)−1 (
α β

) (
γ δ

)
∈ PSL(2,C).

The inverse operation is given by(
α β

)
∗
−1 (γ δ

)
=
(
α β

) (1− γ δ −γ 2

δ2 1+ γ δ

)
.

From now on, we use the notation P instead of (C2
\ {0})/±.
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Figure 1. The figure-eight knot 41.

2B. Link group and shadow-coloring. Consider a representation ρ : π1(L) →
PSL(2,C) of a hyperbolic link L . We call ρ boundary-parabolic when the peripheral
subgroup π1(∂(S

3
\L)) of π1(L) maps to a subgroup of PSL(2,C) whose elements

are all parabolic.
For a fixed oriented link diagram2 D of L , Wirtinger presentation gives an

algorithmic expression of π1(L). For each arc αk of D, we draw a small arrow
labeled ak as in Figure 1, which represents a loop. (The details are in [Rolfsen 1976].
Here we are using the opposite orientation of ak to be consistent with the operation
of the conjugation quandle.) This loop corresponds to one of the meridian curves of
the boundary tori, so ρ(ak) is an element in P . Hence we call {ρ(a1), . . . , ρ(an)}

the arc-coloring3 of D, where each ρ(ak) is assigned to the corresponding arc αk .
The Wirtinger presentation of the link group is given by

π1(L)= 〈a1, . . . , an ; r1, . . . , rn〉,

where the relation rl is assigned to each crossing as in Figure 2. Note that rl

coincides with (3), so we can write down the relation of the arc-colors as in Figure 3.
From now on, we always assume ρ : π1(L)→ PSL(2,C) is a given boundary-

parabolic representation. To avoid redundant notations, arc-coloring will be denoted
by {a1, . . . , an} without indicating ρ from now on. Choose an element s f ∈ P

2 We always assume the diagram does not contain a trivial knot component which has only over-
crossings or under-crossings or no crossing. (For example, any inseparable link diagram satisfies this
condition.) If it happens, then we change the diagram of the trivial component slightly. For example,
applying a Reidemeister second move to make different types of crossings or a Reidemeister first
move to add a kink is good enough. This assumption is necessary to guarantee that the octahedral
triangulation becomes a topological triangulation of S3

\ (L ∪ {two points})
3 Strictly speaking, an arc-coloring is a map from arcs of D to P , not a set. (A region-coloring,

which will be defined below, is also a map from regions of D to P .) However, we abuse the set
notation here for convenience.
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Figure 2. Relations at crossings, where rl : al+1 = a−1
k alak (left),

or rl : al = a−1
k al+1ak (right).

corresponding to a region of the diagram D and determine s1, s2, . . . , sm ∈ P
corresponding to each regions using the relation in Figure 4.

The assignment of elements of P to all regions using the relation in Figure 4
is called the region-coloring. This assignment is well defined because the two
curves in Figure 5, which we call the cross-changing pair, determine the same
region-coloring, and any pair of curves with the same starting and ending points
can be transformed into each other by a finite sequence of cross-changing pairs.

An arc-coloring together with a region-coloring is called a shadow-coloring.
Lemma 2.4 shows an important property of shadow-colorings, which is crucial for
showing the existence of solutions of certain equations.

Definition 2.3. The Hopf map h : P −→ CP1
= C∪ {∞} is defined by(

α β
)
7→

α

β
.

Note that h
(
α β

)
= α/β is the fixed point of the Möbius transformation

f (z)=
(1+αβ)z−α2

β2z+ (1−αβ)
.

Lemma 2.4. Let L be a link and assume an arc-coloring is already given by the
boundary-parabolic representation ρ : π1(L)−→ PSL(2,C). Then there exists a

�
�
�

�
�
�	

@
@
@

@
@
@

ρ(ak)ρ(al)

ρ(al) ∗ ρ(ak)

Figure 3. An arc-coloring.
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�	

s f
s f ∗ ak

ak

Figure 4. A region-coloring.

region-coloring such that, for any edge of the link diagram with its arc-color ak

(k = 1, . . . , n) and its surrounding region-colors s f , s f ∗ ak (see Figure 4), the
following holds:

(5) h(ak) 6= h(s f ) 6= h(s f ∗ ak) 6= h(ak).

Proof. Note that this was already proved inside the proof of Proposition 2 of [Inoue
and Kabaya 2014]. However, finding the proof in the article is not easy, so we write
it down below for the readers’ convenience.

For the given arc-colors a1, . . . , an , we choose region-colors s1, . . . , sm so that

(6) {h(s1), . . . , h(sm)} ∩ {h(a1), . . . , h(an)} =∅.

This is always possible because each h(sk) is written as h(sk)= Mk(h(s1)) by a
Möbius transformation Mk , which only depends on the arc-colors a1, . . . , ar . If we
choose h(s1) ∈ CP1 away from the finite set⋃

1≤k≤n

{
M−1

k (h(a1)), . . . ,M−1
k (h(ar ))

}
,

we have h(sk) /∈ {h(a1), . . . , h(ar )} for all k. This choice of a region-coloring
guarantees h(ak) 6= h(s f ) and h(s f ∗ ak) 6= h(ak).

Figure 5. Well-definedness of region-coloring for a positive cross-
ing (left) and a negative crossing (right).
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al

al ∗ ak

s

s ∗ al s ∗ ak

(s ∗ al) ∗ ak

Figure 6. Positive (left) and negative (right) crossings of j with
shadow-coloring.

Now assume h(s f ∗ ak)= h(s f ) holds under the choice of the region-coloring
above. Then we obtain

(7) h(s f ∗ ak)= âk(h(s f ))= h(s f ),

where âk : CP1
→ CP1 is the Möbius transformation

âk(z)=
(1+αkβk)z−α2

k

β2
k z+ (1−αkβk)

of ak =
(
αk βk

)
. Then (7) implies h(s) is the fixed point of âk , which means

h(ak)= h(s), which contradicts (6). �

We remark that the condition (6) of a region-coloring is stronger than the condition
in Lemma 2.4. For example, the region-colorings of the examples in Section 4
satisfy Lemma 2.4, but they do not satisfy (6). Even though we actually proved
the stronger condition (6) in the proof, the region-colorings we consider are always
assumed to satisfy Lemma 2.4 from now on. The arc-coloring induced by ρ together
with the region-coloring satisfying Lemma 2.4 is called the shadow-coloring induced
by ρ. This shadow-coloring will determine the exact coordinates of points of the
octahedral triangulation in the next section.

2C. Octahedral triangulations of link complements. In this section, we describe
the ideal triangulation of S3

\ (L ∪ {two points}) which appeared in [Cho et al.
2014]. Note that this triangulation naturally arises from the link diagram and has
been widely used under various names. For example, the software SnapPea used
this triangulation to obtain an ideal triangulation of the link complement S3

\ L
[Weeks 2005] (see also [Yokota 2011].) Another name of this construction is the
tunnel construction in [Baseilhac and Benedetti 2007]. It seems the first written
appearance of this construction was in [Thurston 1999].

To obtain the triangulation, we consider the crossing j in Figure 6 and place an
octahedron Aj Bj Cj Dj Ej Fj on each crossing j as in Figure 7 (left). Then we twist the
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AjAj Bj

Cj
Dj

Fj

Ej

AjAj Bj

Cj
Dj

Fj

Ej

AjAj Bj

Cj
Dj

Fj

Ej

Figure 7. An octahedron on the crossing j .

octahedron by identifying edges Bj Fj to Dj Fj and Aj Ej to Cj Ej , respectively. The
edges Aj Bj , Bj Cj , Cj Dj and Dj Aj are called horizontal edges and we sometimes
express these edges in the diagram as arcs around the crossing as in Figure 6.

Then we glue faces of the octahedra following the lines of the link diagram.
Specifically, there are three gluing patterns as in Figure 8. In each of the cases (left,
center and right), we identify the faces

4A j B j E j ∪4C j B j E j with 4C j+1D j+1F j+1 ∪4C j+1B j+1F j+1,

4B j C j F j ∪4D j C j F j with 4D j+1C j+1F j+1 ∪4B j+1C j+1F j+1,

4A j B j E j ∪4C j B j E j with 4C j+1B j+1E j+1 ∪4A j+1B j+1E j+1,

respectively.
Note that this gluing process identifies vertices {Aj ,Cj } to one point, denoted

by −∞, and {Bj ,Dj } to another point, denoted by∞, and finally {Ej ,Fj } to the
other points, denoted by Pt where t=1, . . . , c and c is the number of the components
of the link L . The regular neighborhoods of −∞ and∞ are two 3-balls and that
of
⋃c

t=1 Pt is a tubular neighborhood of the link L . Therefore, after removing all
vertices of the gluing, we obtain an octahedral decomposition of S3

\ (L ∪ {±∞}).
The octahedral triangulation is obtained by subdividing each octahedron of the
decomposition into four tetrahedra in a certain way.

To apply the construction of the developing map of ρ in Theorem 4.11 of [Zickert
2009], we subdivide each octahedron into four tetrahedra using the shadow-coloring
of ρ as follows.

Aj
Bj

Cj

D j+1
C j+1

B j+1

Bj
Cj

Dj

D j+1
C j+1

B j+1

Aj
Bj

Cj

C j+1
B j+1

A j+1

Figure 8. Three gluing patterns.
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p

p

p

p

ak

akal

al *ak

s

s *al

s *ak

l(s *a )*ak

p

p

p

p

ak

akal

al *ak

s

s *al

s *ak

l(s *a )*ak

Figure 9. Coordinates of tetrahedra when h(ak) 6= h(al) with a
positive crossing (left) and a negative cross (right).

Definition 2.5. Consider a crossing j with the shadow-coloring in Figure 6. The
crossing j is called nondegenerate when h(ak) 6= h(al) and degenerate when
h(ak)= h(al).

If a crossing j is nondegenerate, then we subdivide the octahedron on the
crossing j into four tetrahedra by adding the edge Ej Fj as in Figure 7 (center).
Also, if a crossing j is degenerate, then we subdivide it by adding edge Aj Cj as
in Figure 7 (right). This subdivision guarantees nondegeneracy of all tetrahedra,
which will be proved at the end of this section. The resulting triangulation is called
the octahedral triangulation of S3

\ (L ∪ {±∞}).
Consider the shadow-coloring of a link diagram D induced by ρ, and let
{a1, a2, . . . , an} be the arc-colors and {s1, s2, . . . , sm} be the region-colors. The
number of these colors is finite, so we can choose an element p ∈ P satisfying

(8) h(p) /∈ {h(a1), . . . , h(an), h(s1), . . . , h(sm)}.

The geometric shape of the triangulation is determined by the shadow-coloring
induced by ρ in the following way. If the crossing j in Figure 6 is nondegenerate
and positive, then let the signed coordinates of the tetrahedra Ej Fj Cj Dj , Ej Fj Aj Dj ,
Ej Fj Aj Bj , and Ej Fj Cj Bj be

(9)

(al, ak, s ∗ al, p),

−(al, ak, s, p),

(al ∗ ak, ak, s ∗ ak, p),

−(al ∗ ak, ak, (s ∗ al) ∗ ak, p),

respectively. Here, the minus sign of the coordinate means the orientation of the
tetrahedron does not coincide with the one induced by the vertex-ordering. Also, if
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(s*al)*ak

ak

ak

ak

ak

al

al

al*ak

(s*al)*ak

s*al

s*ak

al*ak

p

s

p

p

p

ak

ak

ak

ak

al

al

al*ak

(s*al)*ak

s*al

s*ak

al*ak

p

s
p

p

p

(s*al)*ak

Figure 10. Figure 9 in octahedral position for a positive crossing
(left) and a negative crossing (right).

the crossing j is nondegenerate and negative, then let the signed coordinates of the
tetrahedra Ej Fj Cj Dj , Ej Fj Aj Dj , Ej Fj Aj Bj , and Ej Fj Cj Bj be

(10)

(al, ak, s, p),

−(al, ak, s ∗ al, p),

(al ∗ ak, ak, (s ∗ al) ∗ ak, p),

−(al ∗ ak, ak, s ∗ ak, p),

respectively. Figures 9 and 10 show the signed coordinates of (9) and (10).
On the other hand, if the crossing j in Figure 6 is degenerate and is positive,

then let the signed coordinates of the tetrahedra Fj Aj Cj Dj , Ej Aj Cj Dj , Ej Aj Cj Bj ,
and Fj Aj Cj Bj be

(11)

−(ak, s, s ∗ al, p),

(al, s, s ∗ al, p),

−(al ∗ ak, s ∗ ak, (s ∗ al) ∗ ak, p),

(ak, s ∗ ak, (s ∗ al) ∗ ak, p),

respectively. If j is degenerate and negative, then let the signed coordinates be

(12)

−(ak, s ∗ al, s, p),

(al, s ∗ al, s, p),

−(al ∗ ak, (s ∗ al) ∗ ak, s ∗ ak, p),

(ak, (s ∗ al) ∗ ak, s ∗ ak, p),

respectively.
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Figure 11. Coordinates of tetrahedra when h(ak) = h(al), for a
positive crossing (left) and a negative crossing (right).

Figure 11 shows the signed coordinates of (11) and (12). Note that the orientations
of (9)–(12) are different from [Inoue and Kabaya 2014] and match [Cho et al. 2014].

We remark that the signed coordinates (9)–(12) actually define an element in
certain simplicial quandle homology in [Inoue and Kabaya 2014]. Although this
homology is crucial for proving the main results of [Inoue and Kabaya 2014], we
will use their results without the homology.

Definition 2.6. Let v0, v1, v2, v3 ∈ CP1
= C∪ {∞} = ∂H3. The hyperbolic ideal

tetrahedron with signed coordinate σ(v0, v1, v2, v3) with σ ∈ {±1} is called degen-
erate when some of the vertices v0, v1, v2, v3 coincide, and nondegenerate when
all the vertices are different. The cross-ratio [v0, v1, v2, v3]

σ of the nondegenerate
signed coordinate σ(v0, v1, v2, v3) is defined by

[v0, v1, v2, v3]
σ
=

(
v3−v0
v2−v0

v2−v1
v3−v1

)σ
∈ C \ {0, 1}.

The tetrahedra in (9)–(12) have elements of the coordinates in P . Therefore, we
need to send them to points in the boundary of the hyperbolic 3-space ∂H3 so as to ob-
tain hyperbolic ideal tetrahedra. The Hopf map h (see Definition 2.3) plays this role.

Lemma 2.7. The images of (9)–(12) under the Hopf map h are nondegenerate
tetrahedra. Specifically, if the crossing j is nondegenerate and positive, then

(13)

(h(al), h(ak), h(s ∗ al), h(p)),

−(h(al), h(ak), h(s), h(p)),

(h(al ∗ ak), h(ak), h(s ∗ ak), h(p)),

−(h(al ∗ ak), h(ak), h((s ∗ al) ∗ ak), h(p)),
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are nondegenerate hyperbolic ideal tetrahedra and, if the crossing j is nondegener-
ate and negative, then

(14)

(h(al), h(ak), h(s), h(p)),

−(h(al), h(ak), h(s ∗ al), h(p)),

(h(al ∗ ak), h(ak), h((s ∗ al) ∗ ak), h(p)),

−(h(al ∗ ak), h(ak), h(s ∗ ak), h(p)),

are nondegenerate hyperbolic ideal tetrahedra also.
If the crossing j is degenerate and positive, then

(15)

(h(al), h(s), h(s ∗ al), h(p)),

−(h(ak), h(s), h(s ∗ al), h(p)),

(h(ak), h(s ∗ ak), h((s ∗ al) ∗ ak), h(p)),

−(h(al ∗ ak), h(s ∗ ak), h((s ∗ al) ∗ ak), h(p)),

are nondegenerate hyperbolic ideal tetrahedra and, if the crossing j is degenerate
and negative, then

(16)

(h(al), h(s ∗ al), h(s), h(p)),

−(h(ak), h(s ∗ al), h(s), h(p)),

(h(ak), h((s ∗ al) ∗ ak), h(s ∗ ak), h(p)),

−(h(al ∗ ak), h((s ∗ al) ∗ ak), h(s ∗ ak), h(p)),

are nondegenerate hyperbolic ideal tetrahedra.

Proof. Note that the region-coloring we are considering satisfies Lemma 2.4. To
show the nondegeneracy of a tetrahedron, it is enough to show any two endpoints
of an edge are different.

In the cases of (13)–(14), endpoints of any edge are adjacent, as a pair among
ak, s, s ∗ ak in Figure 4 (to check the adjacency, refer to Figure 5), or one of them
is p, except the edges (al, ak), (al ∗ ak, ak). Therefore, it is enough to show that
h(ak) 6= h(al) implies h(al ∗ ak) 6= h(ak), which is trivial because h(al ∗ ak) =

h(ak ∗ ak) implies h(al)= h(ak).
In the cases of (15)–(16), all endpoints of edges are adjacent or one of them is p,

so we get the proof. �

Note that, when the crossing j is degenerate, the first two tetrahedra in (15) share
the same coordinate with different signs and the others do the same. Therefore, all
tetrahedra cancel each other out geometrically and we can remove the octahedron
of the crossing. (This is why the crossing is called degenerate.) Also, the same
holds for (16). This idea will be used in Section 3.

The assignment of the coordinates to tetrahedra above is from [Inoue and Kabaya
2014]. Note that this assignment is based on the construction of the developing
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ĝ23
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Figure 12. Edge parameters.

map of ρ proposed in [Neumann and Yang 1999] and [Zickert 2009], so the shape
of the triangulation determines the developing map of ρ.

2D. Complex volume of ρ. Consider an ideal tetrahedron with vertices v0, v1, v2,
and v3, where vk ∈ CP1. For each edge vkvl , we assign gkl and ĝkl ∈ CP1, and
call them long-edge parameter and edge parameter, respectively. (See Figure 12.)
Later, we will distinguish them by considering that gkl is assigned to the edge of a
triangulation and ĝkl to the edge of a tetrahedron.

Definition 2.8. For the edge parameter ĝkl of an ideal tetrahedron, the Ptolemy
relation is the following equation:

ĝ02ĝ13 = ĝ01ĝ23+ ĝ03ĝ12.

For example, if we define the edge parameter ĝkl := vl − vk , then direct calcula-
tion shows

(17) (v2− v0)(v3− v1)= (v1− v0)(v3− v2)+ (v3− v0)(v2− v1),

which is the Ptolemy relation. Furthermore, these edge parameters satisfy

(18) [v0, v1, v2, v3] =
ĝ03ĝ12

ĝ02ĝ13
.

To apply the results of [Zickert 2009] and [Hikami and Inoue 2015], the edge
parameters should satisfy the Ptolemy relation, (18) and one more condition that
they should depend on the edge of the triangulation, not of the tetrahedron. In
other words, if two edges are glued in the triangulation, the edge parameters should
be the same. We call this latter condition the coincidence condition. When the
edge-parameters satisfy the coincidence condition, we call them the long-edge
parameters and denote this by gkl . (We also need the extra condition that the
orientations of the two glued edges induced by the vertex-orientations of each
tetrahedron should coincide. However, the vertex-orientation in (13)–(16) always
satisfies this.) Unfortunately, the edge-parameter ĝkl = vl − vk defined above does
not satisfy this condition, so we will redefine the edge-parameter and the long-edge
parameter using [Inoue and Kabaya 2014] as follows.
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At first, consider two elements a =
(
α1 α2

)
, b =

(
β1 β2

)
in P . We define the

determinant det(a, b) by

det(a, b) := ± det
(
α1 α2

β1 β2

)
=±(α1β2−α2β1).

Note that the determinant is defined up to sign due to the choice of the representative
a =

(
α1 α2

)
=
(
−α1 −α2

)
∈ P . To remove this ambiguity, we fix representatives4

of arc-colors in C2
\ {0} once and for all. Then we fix a representative of one

region-color, which uniquely determines the representatives of all the other region-
colors by the arc-coloring. (This is due to the fact that s ∗ (±a) = s ∗ a for any
s, a ∈ C2

\ {0}.)
After fixing all the representatives of the shadow-coloring, we obtain a well-

defined determinant

(19) det(a, b)= det
(
α1 α2

β1 β2

)
= α1β2−α2β1.

Lemma 2.9. For a, b, c ∈ C2
\ {0}, the determinant satisfies

det(a ∗ c, b ∗ c)= det(a, b).

Proof. Let a =
(
α1 α2

)
, b =

(
β1 β2

)
, c =

(
γ1 γ2

)
, and

C =
(

1+ γ1γ2 γ 2
2

−γ 2
1 1− γ1γ2

)
.

Then

det(a ∗ c, b ∗ c)= det(aC, bC)= det(a, b) · det C = det(a, b). �

Consider the shadow-coloring and the coordinates of tetrahedra in Figure 9 (or
Figure 10) and Figure 11. We define the edge parameter ĝkl using those coordinates.
Specifically, when the signed coordinate of the tetrahedron is σ(a0, a1, a2, a3) with
σ ∈ {±1} and ak ∈ C2

\ {0}, we define the edge parameter by

(20) ĝkl = det(ak, al).

For example, the edge parameters of the tetrahedron ∓(al, ak, s, p) in the left-hand
or the right-hand side of Figure 9 (or Figure 10) are defined by

ĝ01 = det(al, ak), ĝ02 = det(al, s), ĝ03 = det(al, p),

ĝ12 = det(ak, s), ĝ13 = det(ak, p), ĝ23 = det(s, p).
4 The difference in [Inoue and Kabaya 2014] is that they chose a sign of the determinant once

and for all. Their choice is good enough to define the long-edge parameter g jk , but not for the edge
parameter ĝ jk .
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Figure 13. An example of the inconsistency of the edge parameter.

Lemma 2.10. The edge parameter ĝkl of the tetrahedron σ(a0, a1, a2, a3) defined
in (20) satisfies the Ptolemy identity and

(21) [h(a0), h(a1), h(a2), h(a3)] =
ĝ03ĝ12

ĝ02ĝ13
.

Proof. From (19), we obtain

(22) h(x)− h(y)=
x1

x2
−

y1

y2
=

det(x, y)
x2 y2

,

where x =
(
x1 x2

)
and y =

(
y1 y2

)
.

Let ak =
(
αk βk

)
for k = 0, . . . , 3, and let vk = h(ak)= αk/βk . Then (17) and

(22) imply

det(a0, a2)

β0β2

det(a1, a3)

β1β3
=

det(a0, a1)

β0β1

det(a2, a3)

β2β3
+

det(a0, a3)

β0β3

det(a1, a2)

β1β2
,

which is equivalent to the Ptolemy identity ĝ02ĝ13 = ĝ01ĝ23+ ĝ03ĝ12.
Also, using (22), we obtain

[h(a0), h(a1), h(a2), h(a3)] =

det(a0, a3)

β0β3
det(a1, a3)

β1β3

det(a1, a2)

β1β2
det(a0, a2)

β0β2

=
ĝ03ĝ12

ĝ02ĝ13
. �

Note that, by the same calculation as in the proof above, we obtain

[h(a0), h(a3), h(a1), h(a2)] =
ĝ02ĝ13

ĝ01ĝ23
, [h(a0), h(a2), h(a3), h(a1)] = −

ĝ01ĝ23

ĝ03ĝ12
.

If we put zσ = [h(a0), h(a1), h(a2), h(a3)], using the Ptolemy identity, the above
equations are expressed by

(23) zσ =
ĝ03ĝ12

ĝ02ĝ13
,

1
1− zσ

=
ĝ02ĝ13

ĝ01ĝ23
, 1−

1
zσ
=−

ĝ01ĝ23

ĝ03ĝ12
.

The edge parameter ĝ jk defined above satisfies all needed properties of the
long-edge parameter g jk except the coincidence , which ĝ jk satisfies up to sign.
To see this phenomenon, consider the two edges of Figure 9 (left) as in Figure 13,
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which are glued in the triangulation. Assume the chosen representative of am in
Figure 13 satisfies am = −al ∗ ak ∈ C2

\ {0}. (This actually happens often and is
quite important. For example, the minus signs of (49) and (50) in Section 4 show
this situation. This scenario will be discussed in depth in a later article.) Then the
edge parameters satisfy

ĝ01 = det(al, ak)= det(al ∗ ak, ak)=− det(am, ak)=−ĝ′01.

To obtain the long-edge parameter g jk , we assign certain signs to the edge
parameters

g jk =±ĝ jk,

so that the consistency property holds. Due to Lemma 6 of [Inoue and Kabaya
2014], any choice of values of g jk determines the same complex volume. Actually,
in Section 3, we do not need the exact values of g jk , but we use the existence of
them.

The relations of the edge parameters in (23) become

(24) zσ =±
g03g12

g02g13
,

1
1− zσ

=±
g02g13

g01g23
, 1−

1
zσ
=±

g01g23

g03g12
.

Using (24), we define integers p and q by

(25)
{

pπ i =− log zσ + log g03+ log g12− log g02− log g13,

qπ i = log(1− zσ )+ log g02+ log g13− log g01− log g23.

Now we consider the tetrahedron with the signed coordinate σ(a0, a1, a2, a3) and
the signed triples σ [zσ ; p, q] ∈ P̂(C). (The extended pre-Bloch group is denoted
by P̂(C) here. For the definition, see Definition 1.6 of [Zickert 2009].) To consider
all signed triples corresponding to all tetrahedra in the triangulation, we denote the
triple by σt [z

σt
t ; pt , qt ], where t is the index of tetrahedra. We define a function

L̂ : P̂(C)→ C/π2Z by

(26) [z; p, q] 7→ Li2(z)+ 1
2 log z log(1− z)+ π i

2
(q log z+ p log(1− z))− π

2

6
,

where Li2(z)=−
∫ z

0
1
t log(1− t)dt is the dilogarithm function. (Well-definedness

of L̂ was proved in [Neumann 2004].) Recall that, for a boundary-parabolic
representation ρ, the hyperbolic volume vol(ρ) and the Chern–Simons invariant
cs(ρ) were already defined in [Zickert 2009]. We call vol(ρ)+ i cs(ρ) the complex
volume of ρ. The following theorem is one of the main results of [Inoue and Kabaya
2014].

Theorem 2.11 [Zickert 2009; Inoue and Kabaya 2014]. For a given boundary-
parabolic representation ρ and the shadow-coloring induced by ρ, the complex
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volume of ρ is calculated by∑
t

σt L̂[zσt
t ; pt , qt ] ≡ i(vol(ρ)+ i cs(ρ)) (mod π2),

where t is over all tetrahedra of the triangulation defined in Section 2C.

Proof. See Theorem 5 of [Inoue and Kabaya 2014]. �

Note that the removal of the tetrahedra in (15) and (16) does not have any
effect on the complex volume. For example, if we let [z; p, q] and −[z′; p′, q ′]
be the corresponding triples of the tetrahedron (h(al), h(s), h(s ∗ al), h(p)) and
−(h(ak), h(s), h(s ∗ al), h(p)) in (15), respectively, and put {gkl}, {g′kl} the sets of
long-edge parameters of the two tetrahedra, respectively, then, from h(al)= h(ak),
we obtain z= z′. Furthermore, we can choose long-edge parameters so that gkl = g′kl
holds for all pairs of edges sharing the same coordinate, which induces p = p′,
q = q ′ and L̂[z; p, q] − L̂[z′; p′, q ′] = 0.

3. Optimistic limit

In this section, we will use the result of Section 2 to redefine the optimistic limit
of [Cho et al. 2014] and construct a solution of H. At first, we consider a given
boundary-parabolic representation ρ and fix its shadow-coloring of a link diagram D.
For the diagram, define the sides of the diagram to be the lines connecting two
adjacent crossings. (The word edge is more common than side here. However, we
want to keep the word edge for the edges of a triangulation.) For example, the
diagram in Figure 14 has eight sides. We assign z1, . . . , zn to sides of D as in
Figure 14 and call them side variables.

1

2

3

4

Figure 14. Sides of a link diagram.
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Figure 15. A crossing j with arc-colors and side variables.

For the crossing j in Figure 15, let ze, z f , zg, zh be side variables and let al, ak

be the arc-colors. If h(ak) 6= h(al), then we define the potential function Vj of the
crossing j by

(27) Vj (ze, z f , zg, zh)= Li2
( z f

ze

)
−Li2

( z f

zg

)
+Li2

( zh
zg

)
−Li2

( zh
ze

)
.

On the other hand, if h(al)= h(ak) in Figure 15, then we introduce new variables
w

j
e , w

j
f , w

j
g of the crossing j and define

(28) Vj (ze, z f , zg, zh, w
j
e , w

j
f , w

j
g)

=− logw j
e log ze+ logw j

f log z f − logw j
g log zg + log(w j

ew
j
g/w

j
f ) log zh .

For notational convenience, we put w j
h := w

j
ew

j
g/w

j
f . (In (28), we can choose any

three variables among w j
e , w

j
f , w

j
g, w

j
h free variables.) We call the crossing j in

Figure 15 degenerate when h(al)= h(ak) holds. In particular, when the degenerate
crossing forms a kink, as in Figure 16, we put

Vj (ze, z f , zg, w
j
e , w

j
f )

=− logw j
e log ze+ logw j

f log z f − logw j
f log z f + log(w j

ew
j
f /w

j
f ) log zg

=− logw j
e log ze+ logw j

e log zg.

Consider the crossing j in Figure 15 and place the octahedron Aj Bj Cj Dj Ej Fj as
in Figure 7. When the crossing j is nondegenerate, in other words h(ak) 6= h(al),
we consider Figure 7 (center) and assign shape parameters z f /ze, zg/z f , zh/zg

and ze/zh to the horizontal edges Aj Bj , Bj Cj , Cj Dj , Dj Aj , respectively. On the
other hand, if the crossing j is degenerate, in other words h(ak)= h(al), then we

Figure 16. A kink.
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consider Figure 7 (right) and assign shape parameters w j
e , w

j
f , w

j
g and w j

h to the
edges Aj Fj , Bj Ej , Cj Fj and Dj Ej , respectively.5

The potential function V (z1, . . . , zn, w
j
k , . . .) of the link diagram D is defined by

V (z1, . . . , zn, w
j
k , . . .)=

∑
j

Vj ,

where j is over all crossings. For example, if h(a1) 6= h(a2) in Figure 14, then
a4 = a1 ∗ a2 implies6 h(a4) 6= h(a2), a2 = a1 ∗ a3 implies7 h(a2) 6= h(a3) 6= h(a1),
a2 = a3 ∗ a4 implies h(a4) 6= h(a3), a4 = a3 ∗ a1 implies h(a4) 6= h(a1), and the
potential function becomes

(29) V (z1, . . . , z8)=
{

Li2
( z5

z7

)
−Li2

( z5
z8

)
+Li2

( z4
z8

)
−Li2

( z4
z7

)}
+

{
Li2
( z1

z3

)
−Li2

( z1
z4

)
+Li2

( z8
z4

)
−Li2

( z8
z3

)}
+

{
Li2
( z3

z6

)
−Li2

( z3
z5

)
+Li2

( z2
z5

)
−Li2

( z2
z6

)}
+

{
Li2
( z6

z1

)
−Li2

( z6
z2

)
+Li2

( z7
z2

)
−Li2

( z7
z1

)}
.

Note that, if h(al) 6= h(ak) for any crossing j in Figure 15, then the definition of
the potential function above coincides with the definition in Section 2 of [Cho et al.
2014]. Therefore, the above definition is a slight modification of the previous one.

On the other hand, if h(a1)= h(a2) in Figure 14, then a1∗a2= a1. This equation
and the relations at crossings induce8 a1 = a2 = a3 = a4, and the potential function
becomes

V (z1, . . . , z8, w
1
8, w

1
4, w

1
7, w

2
4, w

2
8, w

2
3, w

3
6, w

3
3, w

3
5, w

4
2, w

4
7, w

4
1)=

− logw1
8 log z8+ logw1

4 log z4− logw1
7 log z7+ logw1

5 log z5

− logw2
4 log z4+ logw2

8 log z8− logw2
3 log z3+ logw2

1 log z1

− logw3
6 log z6+ logw3

3 log z3− logw3
5 log z5+ logw3

2 log z2

− logw4
2 log z2+ logw4

7 log z7− logw4
1 log z1+ logw4

6 log z6,

5 Note that, when h(ak) = h(al ), by adding one more edge Bj Dj to Figure 7 (right), we obtain
another subdivision of the octahedron with five tetrahedra. (This subdivision was already used in [Cho
2016b].) Focusing on the middle tetrahedron that contains all horizontal edges, we obtain w j

ew
j
g =

w
j
f w

j
h . Furthermore, the shape-parameters assigned to Dj Fj and Bj Fj are (1− 1/w j

e )/(1−w
j
g) and

(1− 1/w j
g)/(1−w

j
e ), respectively.

6 If h(a4)= h(a2), then h(a2 ∗ a2)= h(a2)= h(a4)= h(a1 ∗ a2) induces h(a2)= h(a1), which
is a contradiction.

7 If h(a2)= h(a3), then h(a3 ∗a3)= h(a3)= h(a2)= h(a1 ∗a3) induces h(a2)= h(a3)= h(a1),
which is a contradiction. Likewise, if h(a1)=h(a3), then h(a2)=h(a1∗a3)=h(a1) is a contradiction.

8 The relation a4 = a1 ∗ a2 induces a4 = a1, a4 = a3 ∗ a1 induces a4 = a3, and a2 = a3 ∗ a4
induces a2 = a4.
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where w1
5 = w

1
8w

1
7/w

1
4 , w2

1 = w
2
4w

2
3/w

2
8 , w3

2 = w
3
6w

3
5/w

3
3 and w4

6 = w
4
2w

4
1/w

4
7 .

For the potential function V (z1, . . . , zn, w
j
k , . . .), let H be the set of equations

(30) H :=
{

exp
(

zk
∂V
∂zk

)
= 1, exp

(
w

j
k
∂V
∂w

j
k

)
= 1 | k = 1, . . . , n, j : degenerate

}
,

and S={(z1, . . . , zn, w
j
k , . . .)} be the solution set of H. Here, solutions are assumed

to satisfy the properties that zk 6= 0 for all k = 1, . . . , n and z f /ze 6= 1, zg/z f 6= 1,
zh/zg 6= 1, ze/zh 6= 1, zg/ze 6= 1, zh/z f 6= 1 in Figure 15 for any nondegenerate
crossing, and w j

k 6= 0 for any degenerate crossing j and the index k. (All these
assumptions are essential to avoid singularity of the equations in H and log 0 in the
formula V0 defined in (1). Even though we allow w

j
k = 1 here, the value we are

interested in always satisfies w j
k 6= 1.)

Proposition 3.1. For the arc-coloring of a link diagram D induced by ρ and
the potential function V (z1, . . . , zn, w

j
k , . . .), the set H induces the whole set of

hyperbolicity equations of the octahedral triangulation defined in Section 2C.

The hyperbolicity equations consist of Thurston’s gluing equations of edges and
the completeness condition.

Proof of Proposition 3.1. For the case where no crossing is degenerate, this proposi-
tion was already proved in Section 3 of [Cho et al. 2014]. To see the main idea,
check Figures 10–13 and equations (3.1)–(3.3) of [Cho et al. 2014]. Equation (3.1)
is a completeness condition along a meridian of a certain annulus, and (3.2)–(3.3)
are gluing equations of certain edges. These three types of equations induce all the
other gluing equations.

Therefore, we consider the case when the crossing j in Figure 15 is degenerate.
Then, the three equations

(31) exp
(
w j

e
∂V
∂w

j
e

)
=

zh
ze
=1, exp

(
w

j
f
∂V
∂w

j
f

)
=

z f

zh
=1, exp

(
w j

g
∂V
∂w

j
g

)
=

zh
zg
=1

induce ze = z f = zg = zh . This guarantees the gluing equations of horizontal edges
trivially by the assigning rule of shape parameters. (Note that the shape parameters
assigned to the horizontal edges of the octahedron at a degenerate crossing are
always 1.)

There are four possible cases of gluing pattern as in Figure 17, and we assume
the crossing j is degenerate and j + 1 is nondegenerate. (The case when both of j
and j + 1 are degenerate can be proved similarly.)

The part of the potential function V containing zk in Figure 17 (top left) is

V (a)
= logw j

k log zk +Li2
( ze

zk

)
−Li2

( z f

zk

)
,
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ze
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Figure 17. Four cases of a gluing pattern.

and

exp
(

zk
∂V
∂zk

)
= exp

(
zk
∂V (a)

∂zk

)
= w

j
k

(
1− ze

zk

)(
1−

z f

zk

)−1
= 1

is equivalent to the following completeness condition

1
w

j
k

(
1− ze

zk

)−1(
1−

z f

zk

)
= 1

along a meridian m in Figure 18 (top left). (Compare it with Figure 11 of [Cho et al.
2014].) Here, aj , bj , cj , b j+1, c j+1, d j+1 in Figure 18 (top left) are the points of
the cusp diagram, which lie on the edges Aj Ej , Bj Ej , Cj Ej , B j+1F j+1, C j+1F j+1,
D j+1F j+1 of Figure 7 (left), respectively.

The part of the potential function V containing zk in Figure 17 (top right) is

V (b)
=− logw j

k log zk −Li2
( zk

ze

)
+Li2

( zk
z f

)
,

and

exp
(

zk
∂V
∂zk

)
= exp

(
zk
∂V (b)

∂zk

)
=

1

w
j
k

(
1−

zk

ze

)(
1−

zk

z f

)−1
= 1

is equivalent to the completeness condition

1

w
j
k

(
1−

zk

z f

)−1(
1−

zk

ze

)
= 1

along a meridian m in Figure 18 (top right). Here, bj , cj , dj , a j+1, b j+1, c j+1 in
Figure 18 (top right) are the points of the cusp diagram, which lie on the edges Bj Fj ,
Cj Fj , Dj Fj , A j+1E j+1, B j+1E j+1, C j+1E j+1 of Figure 7 (left), respectively. (To
simplify the cusp diagram in Figure 18 (top right), we subdivided the polygon
Aj Bj Cj Dj Fj in Figure 7 (right) into three tetrahedra by adding the edge Bj Dj .)

The part of the potential function V containing zk in Figure 17 (bottom left) is

V (c)
=− logw j

k log zk +Li2
( ze

zk

)
−Li2

( z f

zk

)
,
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aj = cj+1

bj+1

cj

bj = dj+1

m

m

bj+1

cj

Figure 18. Four cusp diagrams from Figure 17.

and

exp
(

zk
∂V
∂zk

)
= exp

(
zk
∂V (c)

∂zk

)
=

1

w
j
k

(
1−

ze

zk

)(
1−

z f

zk

)−1
= 1

is equivalent to the gluing equation

w
j
k

(
1−

ze

zk

)−1(
1−

z f

zk

)
= 1

of cj = c j+1 in Figure 18 (bottom left). (Compare it with Figure 12 of [Cho et al.
2014].) Here, bj , cj , dj , b j+1, c j+1, d j+1 in Figure 18 (bottom left) are the
points of the cusp diagram, which lie on the edges Bj Fj , Cj Fj , Dj Fj , B j+1F j+1,
C j+1F j+1, D j+1F j+1 of Figure 7 (left), respectively, and the edges dj cj and bj cj are
identified to b j+1c j+1 and d j+1c j+1, respectively. (To simplify the cusp diagram in
Figure 18 (bottom left), we subdivided the polygon Aj Bj Cj Dj Fj in Figure 7 (right)
into three tetrahedra by adding the edge Bj Dj .)

The part of the potential function V containing zk in Figure 17 (bottom right) is

V (d)
= logw j

k log zk −Li2
( zk

ze

)
+Li2

( zk

z f

)
,
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s ∗ al

al

zk

Figure 19. A region-coloring.

and

exp
(

zk
∂V
∂zk

)
= exp

(
zk
∂V (d)

∂zk

)
= w

j
k

(
1−

zk

ze

)(
1−

zk

z f

)−1
= 1

is equivalent to the gluing equation

w
j
k

(
1−

zk

ze

)(
1−

zk

z f

)−1
= 1

of bj = b j+1 in Figure 18 (bottom right). (Compare it with Figure 13 of [Cho et al.
2014].) Here, aj , bj , cj , a j+1, b j+1, c j+1 in Figure 18 (bottom right) are the
points of the cusp diagram, which lie on the edges Aj Ej , Bj Ej , Cj Ej , A j+1E j+1,
B j+1E j+1, C j+1E j+1 of Figure 7 (left), respectively, and the edges aj bj and cj bj

are identified to c j+1b j+1 and a j+1b j+1, respectively.
Note that the case when both of the crossings j and j + 1 in Figure 17 are

degenerate can be proved in the same way.
On the other hand, it was already shown in [Cho et al. 2014] that all hyperbolicity

equations are induced by these types of equations (see the discussion that follows
Lemma 3.1 of [Cho et al. 2014]), so the proof is done. �

In [Cho et al. 2014], we could not prove the existence of a solution of H, in
other words S 6=∅, so we assumed it. However, the following theorem proves the
existence by directly constructing one solution from the given boundary-parabolic
representation ρ together with the shadow-coloring.

Theorem 3.2. Consider a shadow-coloring of a link diagram D induced by ρ and
the potential function V (z1, . . . , zn, w

j
k , . . .) from D. For each side of D with the

side variable zk , arc-color al and the region-color s, as in Figure 19, we define

(32) z(0)k :=
det(al, p)
det(al, s)

.

Also, if the positive crossing j in Figure 20 (left) is degenerate, then we define

(33)

(w j
e )
(0)
: =

det(s, p)
det(s ∗ ak, p)

, (w
j
f )
(0)
: =

det((s ∗ al) ∗ ak, p)
det(s ∗ ak, p)

,

(w j
g)
(0)
: =

det((s ∗ al) ∗ ak, p)
det(s ∗ al, p)

, (w
j
h)
(0)
: =

det(s, p)
det(s ∗ al, p)

,
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Figure 20. Crossings with shadow-colors and side-variables for a
positive crossing (left) and a negative crossing (right).

and, if the negative crossing j in Figure 20 (right) is degenerate, then we define

(w j
e )
(0)
:=

det(s ∗ al, p)
det((s ∗ al) ∗ ak, p)

, (w
j
f )
(0)
:=

det(s ∗ ak, p)
det((s ∗ al) ∗ ak, p)

,

(w j
g)
(0)
:=

det(s ∗ ak, p)
det(s, p)

, (w
j
h)
(0)
:=

det(s ∗ al, p)
det(s, p)

.

Then z(0)k 6= 0, 1,∞, (w j
k )
(0)
6= 0, 1 for all possible j, k, and

(z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .) ∈ S.

Note that the ± signs in the arc-colors of Figure 20 appear due to the repre-
sentatives of the colors in C2

\ {0}. However, ± does not change the value of z(0)k
because

det(±al, p)
det(±al, s)

=
det(al, p)
det(al, s)

= z(0)k .

Likewise, the value of (w j
k )
(0) does not depend on the choice of ± because the

representatives of region-colors are uniquely determined from the fact s∗(±a)= s∗a
for any s, a ∈ C2

\ {0}.

Proof of Theorem 3.2. First, when the crossing j in Figure 20 is degenerate, we
will show

(34) z(0)e = z(0)f = z(0)g = z(0)h ,

which satisfies (31). Using h(ak)= h(al), we put ak =
(
α β

)
and al =

(
c α c β

)
=

c ak for some constant c ∈C\{0}. Then we obtain al ∗ak = al and, if j is a positive
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crossing, then

z(0)e =
c det(ak, p)
c det(ak, s)

=
det(al, p)
det(al, s)

= z(0)h ,

z(0)f =
det(±al ∗ ak, p)

det(±al ∗ ak, s ∗ ak)
=

det(al ∗ ak, p)
det(al ∗ ak, s ∗ ak)

=
det(al, p)
det(al, s)

= z(0)h ,

z(0)g =
c det(ak, p)

c det(ak, s ∗ al)
=

det(al, p)
det(al, s ∗ al)

= z(0)h .

If j is a negative crossing, then by exchanging the indices e ↔ g in the above
calculation, we obtain the same result.

Note that Lemma 2.4 and the definition of p in Section 2C guarantee z(0)k 6=

0, 1,∞ and (w j
k )
(0)
6= 0, 1, so we will concentrate on proving

(z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .) ∈ S.

Consider the positive crossing j in Figure 20 (top left) and assume it is nonde-
generate. Also consider the tetrahedra in Figures 9 (left) and 10 (left), and assign
variables ze, z f , zg, zh to sides of the link diagram as in Figure 20 (top left). Then,
using (21) and (32), the shape parameters assigned to the horizontal edges Aj Bj

and Dj Aj are
1 6= [h(s ∗ ak), h(p), h(±al ∗ ak), h(ak)]

=
det(s, ak)

det(s ∗ ak,±al ∗ ak)

det(p,±al ∗ ak)

det(p, ak)
=

z(0)f

z(0)e
,

1 6= [h(s), h(p), h(ak), h(al)] =
det(s, al)

det(s, ak)

det(p, ak)

det(p, al)
=

z(0)e

z(0)h

,

respectively. Likewise, the shape parameters assigned to Bj Cj and Cj Dj are z(0)g /z(0)f
and z(0)h /z(0)g respectively. Furthermore, for any a, b ∈ C2

\ {0}, we can easily show
that h(a ∗ b− a)= h(b). If z(0)g /z(0)e = det(ak, s)/det(ak, s ∗ al)= 1, then h(ak)=

h(s ∗ al − s) = h(al), which is contradiction. Therefore, we obtain z(0)g /z(0)e 6= 1,
and z(0)h /z(0)f 6= 1 can be obtained similarly.

We can verify the same holds for nondegenerate negative crossings j in the
same way.

Now consider the case when the positive crossing j in Figure 20 (top left) is
degenerate. (See Figures 7 (right) and 11 (left).) Then, using (21) and (33), the shape
parameters assigned to the edges Fj Aj , Ej Bj , Fj Cj and Ej Dj in Figure 7 (right) are

[h(ak), h(s), h(p), h(s ∗ al)][h(ak), h(s ∗ ak), h((s ∗ al) ∗ ak), h(p)]

=
det(s, p)

det(s ∗ ak, p)
= (w j

e )
(0),

[h(±al ∗ ak), h(p), h((s ∗ al) ∗ ak), h(s ∗ ak)] =
det(p, (s ∗ al) ∗ ak)

det(p, s ∗ ak)
= (w

j
f )
(0),
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[h(ak), h((s ∗ al) ∗ ak), h(p), h(s ∗ ak)][h(ak), h(s ∗ al), h(s), h(p)]

=
det((s ∗ al) ∗ ak, p)

det(s ∗ al, p)
= (w j

g)
(0),

[h(al), h(p), h(s), h(s ∗ al)] =
det(p, s)

det(p, s ∗ al)
= (w

j
h)
(0),

respectively. We can verify the same holds for degenerate negative crossings j in
the same way.

Therefore (z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .) satisfies the hyperbolicity equations of

octahedral triangulation defined in Section 2C and, from Proposition 3.1, we
get that (z(0)1 , . . . , z(0)n , (w

j
k )
(0), . . .) is a solution of H. By the definition of S,

we obtain (z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .) ∈ S. �

To get the complex volume of ρ from the potential function V (z1,...,zn,(w
j
k ),...),

we modify it to

(35) V0(z1, . . . , zn, (w
j
k ), . . .) := V (z1, . . . , zn, (w

j
k ), . . .)

−

∑
k

(
zk
∂V
∂zk

)
log zk −

∑
j :degenerate

k

(
w

j
k
∂V

∂w
j
k

)
logw j

k .

This modification guarantees the invariance of the value under the choice of any log-
branch. (See Lemma 2.1 of [Cho et al. 2014].) Note that V0(z

(0)
1 , . . . , z

(0)
n , (w

j
k )
(0), . . .)

means the evaluation of the function V0(z1, . . . , zn, (w
j
k ), . . .) at

(z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .).

Theorem 3.3. Consider a hyperbolic link L , the shadow-coloring induced by ρ,
the potential function V (z1, . . . , zn, (w

j
k ), . . .) and the solution

(z(0)1 , . . . , z(0)n , (w
j
k )
(0), . . .) ∈ S

defined in Theorem 3.2. Then,

(36) V0(z
(0)
1 , . . . , z(0)n , (w

j
k )
(0), . . .)≡ i(vol(ρ)+ i cs(ρ)) (mod π2).

Proof. When the crossing j is degenerate, direct calculation shows that the potential
function Vj of the crossing defined at (28) satisfies

(37) (Vj )0(z, z, z, z, w1, w2, w3)= 0,

for any nonzero values of z, w1, w2, w3. To simplify the potential function, we
rearrange the side variables z1, . . . , zn to z1, . . . , zr , zr+1, z1

r+1, z2
r+1, z3

r+1, . . . ,

zt , . . . , z3
t so that all endpoints of sides with variables z1, . . . , zr are nondegener-

ate crossings and the degenerate crossings induce z(0)r+1 = (z
1
r+1)

(0)
= (z2

r+1)
(0)
=

(z3
r+1)

(0), . . . , z(0)t = . . .= (z3
t )
(0). (Refer to (34).) Then we define the simplified
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potential function V̂ by

V̂ (z1, . . . , zt) :=
∑

j :nondegenerate

Vj (z1, . . . , zr , zr+1, zr+1, zr+1, zr+1, . . . , zt , zt , zt , zt).

Note that V̂ is obtained from V by removing the potential functions (28) of the
degenerate crossings and substituting the side variables ze, z f , zg, zh around the
degenerate crossing with ze. From (37), we have

V̂0(z
(0)
1 , . . . , z(0)t )= V0(z

(0)
1 , . . . , z(0)n , (w

j
k )
(0), . . .),

which suggests V̂ is just a simplification of V with the same value. Therefore, from
now on, we will use only V̂ and substitute the side variables of the link diagram
z1

r+1, z2
r+1, z3

r+1 with zr+1 and z1
t , . . . , z3

t with zt , etc, except at Lemma 3.4 below.
Also, we remove octahedra (15) or (16) placed at all degenerate crossings (in other
words, the octahedra in Figure 10) because they do not have any effect on the
complex volume. (See the comment below the proof of Theorem 2.11.)

Now we will follow ideas of the proof of Theorem 1.2 in [Cho et al. 2014].
However, due to the degenerate crossings, we will improve the proof to cover more
general cases. At first, we define rk by

(38) rkπ i = zk
∂ V̂
∂zk

∣∣∣∣
z1=z(0)1 ,...,zt=z(0)t

,

for k = 1, . . . , t , where |z1=z(0)1 ,...,zt=z(0)t
means the evaluation of the equation at

(z(0)1 , . . . , z(0)t ). Unlike [Cho et al. 2014], we cannot guarantee rk is an even integer
yet, so we need the following lemma.

Lemma 3.4. For the value z(0)k defined in Theorem 3.2, (z(0)1 , . . . , z(0)t ) is a solution
of the set of equations

Ĥ=
{

exp
(

zk
∂ V̂
∂zk

)
= 1 | k = 1, . . . , t

}
.

Proof. For a degenerate crossing j , from (28),

Vj (zk, zk, zk, zk, w
j
e , w

j
f , w

j
g)= (− logw j

e + logw j
f − logw j

g + logw j
h) log zk .

Therefore, using w j
fw

j
h/(w

j
ew

j
g)= 1, we obtain

exp
(

zk
∂Vj

∂zk
(zk, zk, zk, zk, w

j
e , w

j
f , w

j
g)
)
= 1.

This equation implies that, if we substitute the variables z1
r+1, z2

r+1, z3
r+1 with zr+1

and z1
t , . . . , z3

t with zt , etc., in the equation of H, it becomes Ĥ. Thus, Theorem 3.2
induces this lemma. �
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Figure 21. Long-edge parameters of nonhorizontal edges.

As a corollary of Lemma 3.4, now we know rk defined in (38) is an even integer.
To avoid redundant complicated indices, we use zk instead of z(0)k in this proof

from now on. Using the even integer rk , we can denote V0(z1, . . . , zt) by

(39) V̂0(z1, . . . , zt)= V̂ (z1, . . . , zt)−

t∑
k=1

rkπ i log zk .

Now we introduce notations αm, βm, γl, δj for the long-edge parameters defined
in (20). We assign αm and βm to nonhorizontal edges as in Figure 21, where m is over
all sides of the link diagram. (Recall that the edges Aj Bj , Bj Cj , Cj Dj and Dj Aj

in Figure 21 were named horizontal edges.) We also assign γl to horizontal edges,
where l is over all regions, and δj to the edge Ej Fj inside the octahedron. Although
we have αa = αc and βb = βd because of the gluing, we use αa for the tetrahedra
Ej Fj Aj Bj and Ej Fj Aj Dj , αc for Ej Fj Cj Bj and Ej Fj Cj Dj , βb for Ej Fj Aj Bj and
Ej Fj Cj Bj , and βd for Ej Fj Cj Dj and Ej Fj Aj Dj . Note that the labeling is consistent
even when some crossing is degenerate because, when the crossing j in Figure 21 is
degenerate, we obtain za = zb = zc = zd and, after removing the octahedron of the
crossing, the long-edge parameters satisfy αa=αb=αc=αd and βa=βb=βc=βd .
Now consider a side with variable zk and two possible cases in Figure 22. We

consider the case when the crossing is nondegenerate, or equivalently, za 6= zk 6= zb.
(If it is degenerate, we assume there is a degenerated octahedron9 at the crossing.)
For m=a, b, let σm

k ∈{±1} be the sign of the tetrahedron10 between the sides zk and
zm , and um

k be the shape parameter of the tetrahedron assigned to the horizontal edge.
We put τm

k = 1 when zk is the numerator of (um
k )
σm

k and τm
k =−1 otherwise. We also

9 An octahedron is called degenerate when two vertices at the top and the bottom coincide.
10 The sign of a tetrahedron is the sign of the coordinate in (13) or (14).
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Figure 22. Two cases with respect to zk .

define pm
k and qm

k by (25) so that σm
k [(u

m
k )
σm

k ; pm
k , qm

k ] becomes the element of P̂(C)
corresponding to the tetrahedron. Then 1

2

∑
1≤k,m≤t σ

m
k [(u

m
k )
σm

k ; pm
k , qm

k ] is the
element11 of B̂(C) corresponding to the octahedral triangulation in Section 2C, and

(40)
1
2

∑
1≤k,m≤t

σm
k L̂[(um

k )
σm

k ; pm
k , qm

k ] ≡ i(vol(ρ)+ i cs(ρ)) (mod π2),

from Theorem 2.11.
By definition, we know

(41) ua
k =

zk

za
, ub

k =
zb

zk
.

In the case of Figure 22 (left), we have

σ a
k = 1, σ b

k =−1 and τ a
k = τ

b
k = 1.

Using (25) and Figure 23 (left), we decide pm
k and qm

k as follows:{
log(zk/za)+ pa

kπ i = (logαk − logβk)− (logαa − logβa),

log(zk/zb)+ pb
kπ i = (logαk − logβk)− (logαb− logβb),

(42)

{
− log(1− zk/za)+ qa

k π i = logβk + logαa − log γ1− log δ1,

− log(1− zk/zb)+ qb
kπ i = logβk + logαb− log γ2− log δ1.

(43)

In the case of Figure 22 (right), we have

σ a
k =−1, σ b

k = 1 and τ a
k = τ

b
k =−1.

Using (25) and Figure 23 (right), we decide pm
k and qm

k as follows:

(44)

{
log(za/zk)+ pa

kπ i = (logαa − logβa)− (logαk − logβk),

log(zb/zk)+ pb
kπ i = (logαb− logβb)− (logαk − logβk),

11 The coefficient 1
2 appears because the same tetrahedron is counted twice in the summation.
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Figure 23. Tetrahedra of Figure 22.

(45)

{
− log(1− za/zk)+ qa

k π i = logβa + logαk − log γ1− log δ1,

− log(1− zb/zk)+ qb
kπ i = logβb+ logαk − log γ2− log δ1.

The equations (42) and (44) hold for all (nondegenerate and degenerate) crossings,
so we get the following observation.

Observation 3.5. We have

logαk − logβk ≡ log zk + A (mod π i),

for all k = 1, . . . , t , where A is a complex constant number independent of k.

Note that, by (27), the potential function V̂ is expressed by

(46) V̂ (z1, . . . , zt)=
1
2

∑
1≤k,m≤t

σm
k Li2((um

k )
σm

k )=
1
2

t∑
k=1

∑
m=a,...,d

σm
k Li2((um

k )
σm

k ),

where the range of the index m is determined by k and we define the range of m by
m = a, . . . , d12 from now on. Recall that rk was defined in (38). Direct calculation
shows

rkπ i =−
∑

m=a,...,d

σm
k τ

m
k log(1− (um

k )
σm

k ).

Combining (43) and (45), we obtain∑
m=a,b

σm
k τ

m
k

{
− log(1− (um

k )
σm

k )+ qm
k π i

}
=− log γ1+ log γ2,

12 The range m = a, . . . , d means that each side with one of the side variables za, . . . , zd shares a
nondegenerate crossing with a side with zk .
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for both cases in Figure 22. (Note that αa = αb in (43) and βa = βb in (45).)
Therefore, we obtain∑

m=a,...,d

σm
k τ

m
k

{
− log(1− (um

k )
σm

k )+ qm
k π i

}
= 0,

and
(47) rkπ i =−

∑
m=a,...,d

σm
k τ

m
k qm

k π i.

Lemma 3.6. For all possible k and m, we have

(48) 1
2

∑
1≤k,m≤t

σm
k qm

k π i log(um
k )
σm

k ≡−

t∑
k=1

rkπ i log zk (mod 2π2).

Proof. Note that, by definition, σm
k = σ

k
m , τm

k =−τ
k
m and

(um
k )
σm

k =

( zk
zm

)τm
k
= (zk)

τm
k (zm)

τ k
m .

Using the above and (47), we can directly calculate

1
2

t∑
k=1

∑
m=a,...,d

σm
k qm

k π i log(um
k )
σm

k ≡

t∑
k=1

( ∑
m=a,...,d

σm
k τ

m
k qm

k π i
)

log zk (mod 2π2)

=−

t∑
k=1

rkπ i log zk . �

Lemma 3.7. For all possible k and m, we have

1
2

∑
1≤k,m≤t

σm
k log

(
1− (um

k )
σm

k
)(

log(um
k )
σm

k + pm
k π i

)
≡−

t∑
k=1

rkπ i log zl (mod 2π2).

Proof. From (42) and (44), we have

log(um
k )
σm

k + pm
k π i = τm

k (logαk − logβk)+ τ
k
m(logαm − logβm).

Therefore,
1
2

∑
1≤k,m≤t

σm
k log

(
1− (um

k )
σm

k
)(

log(um
k )
σm

k + pm
k π i

)
=

t∑
k=1

( ∑
m=a,...,d

σm
k τ

m
k log(1− (um

k )
σm

k )

)
(logαk − logβk)

=−

t∑
k=1

rkπ i(logαk − logβk).

Note that t∑
k=1

rkπ i =
t∑

k=1

zk
∂ V̂
∂zk
= 0
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because V̂ is expressed by the summation of certain forms of Li2(za/zb) and

za
∂Li2(za/zb)

∂za
+ zb

∂Li2(za/zb)

∂zb
=− log

(
1− za

zb

)
+ log

(
1− za

zb

)
= 0.

By using Observation 3.5, the above, and the fact that rk is even, we have

−

t∑
k=1

rkπ i(logαk − logβk)≡−

t∑
k=1

rkπ i(log zk + A)

=−

t∑
k=1

rkπ i log zk (mod 2π2). �

Combining (40), (46), Lemma 3.6 and Lemma 3.7, we complete the proof of
Theorem 3.3 as follows:

i(vol(ρ)+ i cs(ρ))

≡
1
2

∑
1≤k,m≤t

σm
k L̂[(um

k )
σm

k ; pm
k , qm

k ]

=
1
2

∑
1≤k,m≤t

σm
k

(
Li2
(
(um

k )
σm

k
)
−
π2

6

)
+

1
4

∑
1≤k,m≤t

σm
k qm

k π i log(um
k )
σm

k

+
1
4

∑
1≤k,m≤t

σm
k log

(
1− (um

k )
σm

k
)(

log(um
k )
σm

k + pm
k π i

)
≡ V̂ (z1, . . . , zn)−

t∑
k=1

rkπ i log zk = V̂0(z1, . . . , zt) (mod π2). �

4. Examples

4A. A figure-eight knot 41. For the figure-eight knot diagram in Figure 24, let the
elements of P corresponding to the arcs be

a1 =
(
0 t
)
, a2 =

(
1 0

)
, a3 =

(
−t 1+ t

)
, a4 =

(
−t t

)
,

where t is a solution of t2
+ t + 1= 0. These elements satisfy

(49) a1 ∗ a2 = a4, a3 ∗ a4 = a2, a1 ∗ a3 =−a2, a3 ∗ a1 = a4,

where the identities are expressed in C2
\ {0}, not in P = (C2

\ {0})/±. Let
ρ : π1(41)→ PSL(2,C) be the boundary-parabolic representation determined by
a1, . . . , a4. We define the shadow-coloring of Figure 24 induced by ρ by letting

s1 =
(
1 1

)
, s2 =

(
0 1

)
, s3 =

(
−t − 1 t + 2

)
,

s4 =
(
−2t − 1 2t + 3

)
, s5 =

(
−2t − 1 t + 4

)
, s6 =

(
1 t + 2

)
,

and p =
(
2 1

)
. Direct calculation shows this shadow-coloring satisfies (5) in

Lemma 2.4. (However, this does not satisfy (6).)
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s1

s2

s3

s4

s5

s6

Figure 24. A figure-eight knot 41 with parameters.

All values of h(a1), . . . , h(a4) are different, therefore the potential function
V (z1, . . . , z8) of Figure 24 is (29). Applying Theorem 3.2, we obtain

z(0)1 =
det(a1, p)
det(a1, s6)

= 2, z(0)2 =
det(a1, p)
det(a1, s5)

=
−2

2t + 1
,

z(0)3 =
det(a2, p)
det(a2, s6)

=
1

t + 2
, z(0)4 =

det(a2, p)
det(a2, s1)

= 1,

z(0)5 =
det(a3, p)
det(a3, s4)

=−3t − 2, z(0)6 =
det(a3, p)
det(a3, s5)

=
3t + 2

2t
,

z(0)7 =
det(a4, p)
det(a4, s4)

=
3
2
, z(0)8 =

det(a4, p)
det(a4, s3)

= 3,

and (z(0)1 , . . . , z(0)8 ) becomes a solution of H = {exp(zk
∂V
∂zk
) = 1 | k = 1, . . . , 8}.

Applying Theorem 3.3, we obtain

V0(z
(0)
1 , . . . , z(0)8 )≡ i(vol(ρ)+ i cs(ρ)) (mod π2),

and numerical calculation verifies it by

V0(z
(0)
1 , . . . , z(0)8 )={

i(2.0299...+ 0 i)= i(vol(41)+ i cs(41)) if t = 1
2(−1−

√
3 i),

i(−2.0299...+ 0 i)= i(−vol(41)+ i cs(41)) if t = 1
2(−1+

√
3 i).

4B. Trefoil knot 31. For the trefoil knot diagram in Figure 25, let the elements of
P corresponding to the arcs be

a1 =
(
1 0

)
, a2 =

(
0 1

)
, a3 = a4 =

(
−1 1

)
.
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s1
s2

s5
s3 s4

a4

1 2

3

4

Figure 25. A trefoil knot 31 with parameters.

(Note that crossing 4 is degenerate.) These elements satisfy

(50) a4 ∗ a2 =−a1, a2 ∗ a1 = a3, a1 ∗ a4 = a2, a4 ∗ a3 = a3,

where the identities are expressed in C2
\ {0}, not in P = (C2

\ {0})/±. Let
ρ : π1(31)→ PSL(2,C) be the boundary-parabolic representation determined by
a1, a2, a3, a4. We define the shadow-coloring of Figure 24 induced by ρ by letting

s1 =
(
−1 2

)
, s2=

(
1 2

)
, s3 =

(
−1 3

)
,

s4 =
(
0 1

)
, s5 =

(
1 1

)
, s6 =

(
−2 3

)
,

and p =
(
2 1

)
. Direct calculation shows this shadow-coloring satisfies (5) in

Lemma 2.4. (However, this does not satisfy (6).)
All values of h(a1), h(a2), h(a3)= h(a4) are different, hence the potential func-

tion V of Figure 25 is

V (z1, . . . , z8, w
4
6, w

4
7)= Li2

(
z2

z5

)
−Li2

(
z2

z4

)
+Li2

(
z1

z4

)
−Li2

(
z1

z5

)
+Li2

(
z6

z3

)
−Li2

(
z6

z2

)
+Li2

(
z5

z2

)
−Li2

(
z5

z3

)
+Li2

(
z4

z1

)
−Li2

(
z4

z8

)
+Li2

(
z3

z8

)
−Li2

(
z3

z1

)
− logw4

6 log z6+ logw4
6 log z8,

and the simplified potential function V̂ defined in the proof of Theorem 3.3 is

V̂ (z1, . . . , z6)= Li2
( z2

z5

)
−Li2

( z2
z4

)
+Li2

( z1
z4

)
−Li2

( z1
z5

)
+Li2

( z6
z3

)
−Li2

( z6
z2

)
+Li2

( z5
z2

)
−Li2

( z5
z3

)
+Li2

( z4
z1

)
−Li2

( z4
z6

)
+Li2

( z3
z6

)
−Li2

( z3
z1

)
.
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Applying Theorem 3.2, we obtain

z(0)1 =
det(a4, p)
det(a4, s5)

=
3
2
, z(0)2 =

det(a1, p)
det(a1, s2)

=
1
2
,

z(0)3 =
det(a1, p)
det(a1, s5)

= 1, z(0)4 =
det(a2, p)
det(a2, s3)

=−2,

z(0)5 =
det(a2, p)
det(a2, s5)

= 2, z(0)6 = z(0)7 = z(0)8 =
det(a3, p)
det(a3, s4)

= 3,

(w4
6)
(0)
=

det(s1, p)
det(s4, p)

=
5
2
, (w4

7)
(0)
=

det(s1, p)
det(s6, p)

=
5
8
.

Note that (z(0)1 , . . . , z(0)8 , (w4
6)
(0), (w4

7)
(0)) and (z(0)1 , . . . , z(0)6 ) are solutions of

H=
{

exp
(

zk
∂V
∂zk

)
= 1, exp

(
w

j
k
∂V
∂w

j
k

)
= 1 | j = 4, k = 1, . . . , 8

}
and Ĥ=

{
exp

(
zk
∂ V̂
∂zk

)
= 1 | k = 1, . . . , 6

}
,

respectively. Applying Theorem 3.3, we obtain

V0(z
(0)
1 , . . . , (w4

7)
(0))≡ V̂0(z

(0)
1 , . . . , z(0)6 )≡ i(vol(ρ)+ i cs(ρ)) (mod π2),

and numerical calculation verifies it by

V̂0(z
(0)
1 , . . . , z(0)6 )= i(0+ 1.6449...i),

where vol(31)= 0 holds trivially and 1.6449...= π2/6 holds numerically.
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