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THIRD-ORDER PDES INVOLVING FRACTIONAL LAPLACIANS

WEI DAI AND GUOLIN QIN

In this paper, we are concerned with the third-order equations{
(−1)

3
2 u = u

d+3
d−3 , x ∈ Rd,

u ∈ C3(Rd), u(x) > 0, x ∈ Rd,

and (−1)
3
2 u =

(
1
|x|6 ∗ |u|

2
)

u, x ∈ Rd,

u ∈ C3(Rd), u(x) > 0, x ∈ Rd, d ≥ 7,

with Ḣ
3
2 -critical nonlinearity. By showing the equivalence between the

PDEs and the corresponding integral equations and using results from
Chen et al. (2006) and Dai et al. (2018), we prove that positive classical
solutions u to the above equations are radially symmetric about some point
x0 ∈ Rd and derive the explicit forms for u.

1. Introduction

In this paper, we mainly consider the positive classical solutions to the following
third-order conformal invariant equation with Ḣ

3
2 -critical nonlinearity:

(1-1)

{
(−1)

3
2 u = u

d+3
d−3 , x ∈ Rd ,

u ∈ C3(Rd), u(x) > 0, x ∈ Rd ,

where d ≥ 4 and the nonlocal fractional Laplacian (−1)
1
2 can be defined by Fourier

transform, that is,

(1-2)
∧

(−1)
1
2 f (ξ) := (2π |ξ |) f̂ (ξ),

with f̂ (ξ) :=
∫

Rd f (x)e−2π i x ·ξ dx . If f is in the Schwartz space S of rapidly
decreasing C∞ functions in Rd , then (−1)

1
2 f can also be defined equivalently by
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(1-3) (−1)
α
2 f (x)= Cα,d P.V.

∫
Rd

f (x)− f (y)
|x − y|d+α

dy

:= Cα,d lim
ε→0

∫
|y−x |≥ε

f (x)− f (y)
|x − y|d+α

dy

with α = 1, where the constant Cα,d =
(∫

Rd (1− cos(2πζ1))/|ζ |
d+αdζ

)−1. For
general 0< α < 2, the definition (1-3) for (−1)

α
2 f can be extended and it is well

defined for f ∈ C1,1
loc ∩Lα(R

d) (see [Chen et al. 2015; 2017; Dai et al. 2017; Zhuo
et al. 2014]) with

Lα(Rd) :=

{
f : Rd

→ R |
∫

Rd

| f (x)|
1+ |x |d+α

dx <∞
}
.

Throughout this paper, we define

(−1)
3
2 u := (−1)

1
2 (−1u)

by definition (1-3) (with f = −1u) provided that 1u ∈ C1,1
loc ∩L1(R

d) (i.e., (c)
and (d) in Theorems 1.1 and 1.3), otherwise we will define (−1)

3
2 u by Fourier

transform (i.e., (a) and (b) in Theorems 1.1 and 1.3). See the extension method of
defining (−1)

α
2 in [Caffarelli and Silvestre 2007]. The equation (1-1) is Ḣ

3
2 -critical

in the sense that both it and the Ḣ
3
2 norm are invariant under the same scaling

uρ(x)= ρ(d−3)/2u(ρx),

where the homogeneous Sobolev norm is defined as

‖u‖
Ḣ

3
2 (Rd )
:= ‖(−1)

3
4 u‖L2(Rd ) =

(∫
Rd
|ξ |3|û(ξ)|2dξ

) 1
2

.

The quantitative and qualitative properties of solutions to fractional order or
higher order conformally invariant equations of the form

(1-4) (−1)
α
2 u = u

d+α
d−α

have been extensively studied. In the special case α = 2, (1-4) becomes the well-
known Yamabe problem (for related results, please see Gidas, Ni and Nirenberg
[Gidas et al. 1979] and Caffarelli, Gidas and Spruck [Caffarelli et al. 1989]); for
d = 2, Chen and Li [2010] classified all the positive smooth solutions with finite
total curvature of the equation

(1-5)

{
−1u = e2u, x ∈ R2,∫

R2 e2u dx <∞.

In general, when α= d , under some assumptions, Chang and Yang [1997] classified
the smooth solutions to

(1-6) (−1)
d
2 u = (d − 1)!edu .
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For α = 4, Lin [1998] proved the classification results for all the positive smooth
solutions of (1-4) (d ≥ 5) and all the smooth solutions of

(1-7)

{
12u = 6e4u, x ∈ R4,∫

R4 e4u dx <∞, u(x)= o(|x |2) as |x | →∞.

Xu [2006] obtained similar results to Chang and Yang [1997] and Lin [1998] for
(1-7) under the assumption 1u(x)→ 0 as |x |→∞. For α ∈ (0, d] an even integer,
Wei and Xu [1999] classified the positive smooth solutions of (1-4), they also
established the classification results for the smooth solutions of (1-6) with finite
total curvature under the assumption u(x) = o(|x |2) as |x | → ∞. Zhu [2004]
classified all the smooth solutions with finite total curvature of the problem

(1-8)

{
(−1)

3
2 u = 2e3u, x ∈ R3,∫

R3 e3u dx <∞, u(x)= o(|x |2) as |x | →∞.

In [Chen et al. 2006], by developing the method of moving planes in integral forms,
Chen, Li and Ou classified all the positive L2d/(d−α)

loc solutions to the equivalent
integral equation of PDE (1-4). As a consequence, they obtained the classification
results for positive weak solutions to PDE (1-4), moreover, they also derived
classification results for positive smooth solutions to (1-4) provided α ∈ (0, d) is
an even integer. For more literature on the quantitative and qualitative properties
of solutions to fractional order or higher order conformally invariant PDE and IE
problems, please refer to [Chen and Li 2010; Chen et al. 2017; Dai et al. 2017; Xu
2005]. One should observe that, when α ∈ (0, d) is an odd integer, the classification
for positive smooth solutions to (1-4) is still open.

By proving the equivalence between PDE (1-1) and the integral equation

(1-9) u(x)=
∫

Rd

R3,d

|x − y|d−3 u
d+3
d−3 (y) dy

and using the results for IE (1-9) from [Chen et al. 2006], we will study the
classification of positive smooth solutions to the third-order equation (1-1) under
assumptions which are similar to (or even weaker than) those in [Chen et al. 2017;
Lin 1998; Xu 2006; Zhu 2004].

Our classification result for (1-1) is the following theorem.

Theorem 1.1. Assume d ≥ 4 and u is a positive solution of (1-1). If u satisfies one
of the four assumptions

(a)
∫

Rd u
2d

d−3 dx <∞ and 1u(x)→ 0 as |x | →∞,

(b)
∫

Rd u
2d

d−3 dx <∞ and there exists some τ < 3 such that u(x) = O(|x |τ ) as
|x | →∞,
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(c) 1u ∈ C1,1
loc ∩L1(R

d) and 1u ≤ 0 in Rd,

(d) 1u ∈ C1,1
loc ∩L1(R

d),
∫

Rd
u(d+3)/(d−3)

|x |d−3 dx <∞ and u(x)= o(|x |2) as |x | →∞,

then u is radially symmetric and monotone decreasing about some point x0 ∈ Rd; in
particular, the positive solution u must assume the form

u(x)=
( 1

R3,d I
( d−3

2

)) d−3
6
(

λ

1+λ2|x−x0|
2

) d−3
2

for some λ > 0,

where Rm,d := 0(
d−m

2 )/(π
d
2 2m0(m

2 )) with 0< m < d and

I (s) :=
π

d
20(1

2(d − 2s))
0(d − s)

for 0< s < d
2 .

Remark 1.2. In Theorem 1.1, we should observe that the integrable condition∫
Rd

u
d+3
d−3

|x |d−3 dx <∞

in (d) is much weaker than the condition
∫

Rd u
2d

d−3 dx <∞ in (a) and (b). In fact,
one immediately has∫

|x |≥1

u
d+3
d−3 (x)
|x |d−3 dx ≤

(∫
|x |≥1

u
2d

d−3 dx
) d+3

2d
(∫
|x |≥1

1
|x |2d dx

) d−3
2d

<∞,

provided that
∫

Rd u
2d

d−3 dx < ∞. The assumption 1u ∈ C1,1
loc in (c) and (d) in

Theorem 1.1 can also be replaced by weaker assumptions 1u ∈ C1,ε
loc or u ∈ C3,ε

loc
for arbitrarily small ε > 0.

We also consider the classification of positive classical solutions to the following
third-order Ḣ

3
2 -critical static Hartree equation with nonlocal nonlinearity:

(1-10)

(−1)
3
2 u =

(
1
|x |6 ∗ |u|

2
)

u, x ∈ Rd ,

u ∈ C3(Rd), u(x) > 0, x ∈ Rd , d ≥ 7.

The solution u to problem (1-10) is also a stationary solution to the Ḣ
3
2 -critical

focusing fractional order dynamic Schrödinger–Hartree equation

(1-11) i∂t u+ (−1)
3
2 u =

(
1
|x |6
∗ |u|2

)
u, (t, x) ∈ R×Rd ,

where d ≥ 7. The Hartree equation has many interesting applications in the quantum
theory of large systems of nonrelativistic bosonic atoms and molecules (see, e.g.,
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[Fröhlich and Lenzmann 2004]). PDEs of the type (1-10) also arise in the Hartree–
Fock theory of the nonlinear Schrödinger equations (see [Lieb and Simon 1977]).

There is lots of literature on the quantitative and qualitative properties of solutions
to fractional order or higher order Hartree equations of the form

(1-12) (−1)
α
2 u =

(
1
|x |2α

∗ |u|2
)

u

and various related Choquard equations, please see [Cao and Dai 2017; Dai et al.
2018; Liu 2009; Ma and Zhao 2010]. Cao and Dai [2017] classified all the positive
C4 solutions to the Ḣ 2-critical biharmonic equation (1-12) with α = 4; they also
derived Liouville theorems in the subcritical cases. For general 0< α < d

2 , Dai et
al. [2018] classified all the positive L2d/(d−α) integrable solutions to the equivalent
integral equation of PDE (1-12). As a consequence, they obtained the classification
results for positive weak solutions to PDE (1-12).

By proving the equivalence between PDE (1-10) and the integral equation

(1-13) u(x)=
∫

Rd

R3,d

|x − y|d−3

(∫
Rd

1
|y− z|6

|u(z)|2 dz
)

u(y) dy

and using the results for IE (1-13) from [Dai et al. 2018], we establish the following
classification theorem for positive smooth solutions of PDE (1-10) under similar
assumptions as in Theorem 1.1.

Theorem 1.3. Assume u is a positive solution of (1-10) such that
∫

Rd u
2d

d−3 dx <∞.
If u satisfies one of the four assumptions

(a) 1u(x)→ 0 as |x | →∞,

(b) there exists some τ < 3 such that u(x)= O(|x |τ ) as |x | →∞,

(c) 1u ∈ C1,1
loc ∩L1(R

d) and 1u ≤ 0 in Rd,

(d) 1u ∈ C1,1
loc ∩L1(R

d) and u(x)= o(|x |2) as |x | →∞,

then u is radially symmetric and monotone decreasing about some point x0 ∈ Rd; in
particular, the positive solution u must assume the following form:

u(x)=

√
1

R3,d I (3)I
( d−3

2

)( λ

1+ λ2|x − x0|2

) d−3
2

for some λ > 0.

The rest of our paper is organized as follows. In Section 2, we carry out our
proof for Theorem 1.1. Section 3 is devoted to proving Theorem 1.3.

In the following, we will use C to denote a general positive constant that may
depend on d and u, and whose value may differ from line to line.
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2. Proof of Theorem 1.1

Lemma 2.1 (Hardy–Littlewood–Sobolev inequality, [Lieb 1983]). Letting d ≥ 1,
0< s < d and 1< p < q <∞ be such that d

q =
d
p − s, we have∥∥∥∥∫

Rd

f (y)
|x − y|d−s dy

∥∥∥∥
Lq (Rd )

≤ Cd,s,p,q‖ f ‖L p(Rd )

for all f ∈ L p(Rd).

Define

(2-1) v(x) := −
∫

Rd

R3,d

|x − y|d−3 u
d+3
d−3 (y) dy, w(x) := u(x)+ v(x),

where the Riesz potential’s constants Rm,d = 0((d −m)/2)/(π
d
2 2m0(m/2)) with

0 < m < d. Since u is a solution to (1-1), we get immediately (−1)
3
2w ≡ 0 and

hence 12w ≡ 0 in Rd.
Under the following four entirely different assumptions (a), (b), (c) and (d) on

u, we will prove that the solution u to PDE (1-1) always satisfies the equivalent
integral equation.

(a) Suppose 1u→ 0 as |x | →∞. By the Hardy–Littlewood–Sobolev inequality,

(2-2) ‖1v‖L2d/(d+1)(Rd ) =

Cd

∥∥∥∥∫
Rd

1
|x−y|d−1 u

d+3
d−3 (y) dy

∥∥∥∥
L2d/(d+1)(Rd )

≤ C̃d‖u‖
d+3
d−3
L2d/(d−3)(Rd )

.

Now assume z ∈ Rd is arbitrary. We can infer from 1v ∈ L2d/(d+1)(Rd) that there
exists a sequence of radii rk→∞ such that

(2-3) rk ·

∫
∂Brk (z)

|1v(x)|
2d

d+1 dσ → 0, as k→∞.

Since 1w is harmonic in Rd, the mean value property yields that

(2-4) 1w(z)=−
∫
∂Brk (z)

1w(x) dσ,

where −
∫
∂Brk (z)

1w(x) dσ is the integral average of 1w over the sphere |x− z| = rk .
Therefore, by the Jensen inequality and (2-4), we get

|1w(z)|
2d

d+1 ≤

(
−

∫
∂Brk (z)

(
|1u(x)| + |1v(x)|

)
dσ
) 2d

d+1

(2-5)

≤ Cd

{
−

∫
∂Brk (z)

|1u(x)|
2d

d+1 dσ +−
∫
∂Brk (z)

|1v(x)|
2d

d+1 dσ
}
.
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Letting k→∞ in (2-5), we can deduce from (2-3) and the assumption 1u→ 0 as
|x | →∞ that

(2-6) 1w(z)= 0.

Since z ∈ Rd is arbitrarily chosen, we actually have 1w ≡ 0 in Rd.
Applying Hardy–Littlewood–Sobolev inequality again, we deduce that

(2-7) ‖v‖L2d/(d−3)(Rd ) ≤ Cd‖u
d+3
d−3 ‖L2d/(d+3)(Rd ) ≤ Cd‖u‖

d+3
d−3
L2d/(d−3)(Rd )

.

Since w ∈ L2d/(d−3)(Rd) is harmonic in Rd, the Gagliardo–Nirenberg interpolation
inequality implies that

(2-8) ‖∇w‖L2d/(d−1)(Rd ) ≤ Cd‖w‖
1
2
L2d/(d−3)(Rd )

‖1w‖
1
2
L2d/(d+1)(Rd )

= 0,

thus we arrive at w ≡ 0 in Rd. That is, u also satisfies the integral equation

(2-9) u(x)=
∫

Rd

R3,d

|x − y|d−3 u
d+3
d−3 (y) dy.

(b) Suppose there exists some τ < 3 such that u(x)= O(|x |τ ) as |x |→∞. Without
loss of generality, we may assume τ > 2. By the Hölder inequality, we have for |x |
sufficiently large,

|v(x)| ≤ Cd

[∫
|x−y|≥1

1
|x − y|d−3 u

d+3
d−3 (y) dy

+

∫
|x−y|≤1

1
|x − y|d−3 u

d+3
d−3 (y) dy

]
≤ Cd +Cd,δ

(
sup
B1(x)

u
)1+δ
≤ C |x |(1+δ)τ ,

where δ > 0 is fixed sufficiently small such that τ < (1+ δ)τ < 3. It follows that
w(x)= O(|x |τ̃ ) with τ̃ := (1+ δ)τ < 3.

Since 1w is harmonic in Rd, from the mean value property, we get that, for any
x ∈ Rd and s > 0,

(2-10) 1w(x)=
d

ωd−1sd

∫
|y−x |≤s

1w(y) dy =
d

ωd−1sd

∫
|y−x |=s

∂w

∂s
(y) dσ,

where ωd−1 is the area of the unit sphere in Rd. By integrating with respect to s
from 0 to r in (2-10), we have

(2-11) r2

2d
1w(x)= 1

ωd−1rd−1

∫
|y−x |=r

w(y) dσ −w(x).
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Therefore, we can deduce from w(x) = O(|x |τ̃ ) and (2-11) that, for any x ∈ Rd

with |x | sufficiently large and r = |x |/2,

(2-12) |1w(x)| ≤ 2d
r2

{
sup

1
2 |x |≤|y|≤

3
2 |x |
|w(y)| + |w(x)|

}
≤ C |x |τ̃−2,

that is, 1w(x)= O(|x |τ̃−2) as |x | →∞. Thus, by gradient estimates for harmonic
functions, we have

(2-13) 1w(x)≡ C for all x ∈ Rd ,

which implies thatw(x)−C/(2d)|x |2 is harmonic in Rd. Sincew(x)−C/(2d)|x |2=
O(|x |τ̃ ), by gradient estimates for harmonic functions, w must be a quadratic
polynomial, that is,

(2-14) w(x)=
∑
i, j

ai j xi x j +
∑

i

bi xi + c.

Since w ∈ L2d/(d−3)(Rd), all the coefficients ai j , bi and c in (2-14) must be zero,
that is w(x)≡ 0 in Rd, thus u also satisfies the equivalent integral equation (2-9).

(c) Suppose 1u ∈ C1,1
loc ∩L1(R

d) and 1u ≤ 0 in Rd. We will prove the classical
solution u to PDE (1-1) also satisfies the equivalent integral equation (2-9) using
the ideas from [Chen et al. 2015; Zhuo et al. 2014]. To this end, we will need the
following two lemmas established in [Chen et al. 2017; Silvestre 2007; Zhuo et al.
2014].

Lemma 2.2 (maximum principle, [Chen et al. 2017; Silvestre 2007]). Let � be a
bounded domain in Rd and 0< α < 2. Assume that u ∈ Lα ∩C1,1

loc (�) and is lower
semicontinuous on �. If (−1)

α
2 u ≥ 0 in � and u ≥ 0 in Rd

\�, then u ≥ 0 in Rd.
Moreover, if u = 0 at some point in �, then u = 0 almost everywhere in Rd. These
conclusions also hold for an unbounded domain � if we assume further that

lim inf
|x |→∞

u(x)≥ 0.

Lemma 2.3 (Liouville theorem, [Zhuo et al. 2014]). Assume d ≥ 2 and 0< α < 2.
Let u be a strong solution of{

(−1)
α
2 u = 0, x ∈ Rd ,

u(x)≥ 0, x ∈ Rd ,

then u ≡ C ≥ 0.

Remark 2.4. Lemma 2.2 has been established first by Silvestre [2007] without
the assumption u ∈ C1,1

loc (�). In [Chen et al. 2017], Chen, Li and Li provided a
much more elementary and simpler proof for Lemma 2.2 under the assumption
u ∈ C1,1

loc (�).
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First, assume u is a positive solution to (1-1) satisfying 1u ∈ C1,1
loc ∩L1(R

d) and
1u ≤ 0 in Rd; we will show that −1u also satisfies the integral equation

(2-15) −1u =
∫

Rd

R1,d

|x − y|d−1 u
d+3
d−3 (y) dy+C1,

where C1 ≥ 0 is a constant.
For arbitrary R > 0, let

(2-16) ṽR(x)=
∫

BR(0)
G1

R(x, y)u
d+3
d−3 (y) dy,

where the Green’s function for (−1)
1
2 on BR(0) is given by

(2-17) G1
R(x, y)=

Cd

|x − y|d−1

∫ tR
sR

0

1

b
1
2 (1+ b)

d
2

db, if x, y ∈ BR(0)

with sR = |x − y|2/R2, tR = (1− |x |2/R2)(1− |y|2/R2), and G1
R(x, y) = 0 if x

or y ∈ Rd
\ BR(0) (see [Kulczycki 1997]).

Then, we can derive

(2-18)

{
(−1)1/2ṽR(x)= u

d+3
d−3 (x), x ∈ BR(0),

ṽR(x)= 0, x ∈ Rd
\ BR(0).

Letting w̃R(x)=−1u(x)− ṽR(x), by (1-1) and (2-18), we have

(2-19)

{
(−1)1/2w̃R(x)= 0, x ∈ BR(0),

w̃R(x)≥ 0, x ∈ Rd
\ BR(0).

By Lemma 2.2, we deduce that for any R > 0,

(2-20) w̃R(x)=−1u(x)− ṽR(x)≥ 0, for all x ∈ Rd .

Now, for each fixed x ∈ Rd, letting R→∞ in (2-20), we have

(2-21) −1u(x)≥
∫

Rd

R1,d

|x − y|d−1 u
d+3
d−3 (y) dy =: ṽ(x) > 0.

Taking x = 0 in (2-21), we get

(2-22)
∫

Rd

u
d+3
d−3 (y)
|y|d−1 dy <∞,

and it follows easily that
∫

Rd |u(x)|/(1+ |x |d) dx <∞, and hence u ∈ Lα for any
α > 0. One can easily observe that ṽ is a solution of

(2-23) (−1)
1
2 ṽ(x)= u

d+3
d−3 (x), x ∈ Rd .
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Define w̃(x)=−1u(x)− ṽ(x), then it satisfies

(2-24)

{
(−1)

1
2 w̃(x)= 0, x ∈ Rd ,

w̃(x)≥ 0 x ∈ Rd .

From Lemma 2.3, we can deduce that

(2-25) w̃(x)=−1u(x)− ṽ(x)≡ C1 ≥ 0.

Therefore, we have proved (2-15), that is,

(2-26) −1u =
∫

Rd

R1,d

|x − y|d−1 u
d+3
d−3 (y) dy+C1 =: f (u)≥ C1 ≥ 0.

Next, we will prove u also satisfies the equivalent integral equation (2-9). For
arbitrary R > 0, let

(2-27) vR(x)=
∫

BR(0)
G2

R(x, y) f (u)(y) dy,

where the Green’s function for −1 on BR(0) is given by

G2
R(x, y)= Cd

[
1

|x−y|d−2 −
1(

|x |·|Rx/|x |2−y/R|
)d−2

]
if x, y ∈ BR(0),

and G2
R(x, y)= 0 if x or y ∈ Rd

\ BR(0). Then, we can get

(2-28)

{
−1vR(x)= f (u)(x), x ∈ BR(0),

vR(x)= 0, x ∈ Rd
\ BR(0).

Let wR(x)= u(x)− vR(x), by (2-26) and (2-28), we have

(2-29)

{
−1wR(x)= 0, x ∈ BR(0),

wR(x) > 0, x ∈ Rd
\ BR(0).

By the maximum principle, we deduce that for any R > 0,

(2-30) wR(x)= u(x)− vR(x) > 0, for all x ∈ Rd .

Now, for each fixed x ∈ Rd, letting R→∞ in (2-30), we have

(2-31) u(x)≥
∫

Rd

R2,d

|x − y|d−2 f (u)(y) dy =: V (x) > 0.

Taking x = 0 in (2-31), we get

(2-32)
∫

Rd

C1

|y|d−2 dy ≤
∫

Rd

f (u)(y)
|y|d−2 dy <∞,
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and it follows easily that C1 = 0, and hence

−1u = f (u)=
∫

Rd

R1,d

|x − y|d−1 u
d+3
d−3 (y) dy.

One can easily observe that V is a solution of

(2-33) −1V (x)= f (u)(x), x ∈ Rd .

Define W (x)= u(x)− V (x), then it satisfies

(2-34)

{
−1W (x)= 0, x ∈ Rd ,

W (x)≥ 0 x ∈ Rd .

From the Liouville theorem for harmonic functions, we can deduce that

(2-35) W (x)= u(x)− V (x)≡ C2 ≥ 0.

Therefore, we have proved that

(2-36) u(x)=
∫

Rd

R2,d

|x − y|d−2 f (u)(y) dy+C2 ≥ C2 ≥ 0.

Now (2-22) implies that

(2-37)
∫

Rd

C
d+3
d−3
2 (y)
|y|d−1 dy ≤

∫
Rd

u
d+3
d−3 (y)
|y|d−1 dy <∞,

from which we can infer that C2 = 0. Thus, by using the formula

(2-38)
∫

Rd

1
|x − y|d−2 ·

1
|y|d−1 dy =

R3,d

R1,d R2,d
·

1
|x |d−3

(see [Stein 1970]) and direct calculations, we finally deduce from (2-36) that

u(x)=
∫

Rd

R2,d

|x − y|d−2

∫
Rd

R1,d

|y− z|d−1 u
d+3
d−3 (z) dz dy(2-39)

=

∫
Rd

R3,d

|x − z|d−3 u
d+3
d−3 (z) dz,

that is, u also satisfies the equivalent integral equation (2-9).

(d) Suppose 1u ∈ C1,1
loc ∩L1(R

d),∫
Rd

u
d+3
d−3

|x |d−3 dx <∞

and u(x)= o(|x |2) as |x | →∞. By the above proof under assumption (c), we only
need to prove the super-harmonic property −1u ≥ 0 under assumption (d).
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For that purpose, we will first estimate the upper bound for −v(x). Since one
can verify that

(2-40) 1v(x)=
∫

Rd

(d − 3)R3,d

|x − y|d−1 u
d+3
d−3 (y) dy ≥ 0,

we deduce that, for |x | sufficiently large,

0≤−v(x)=
∫

Rd

R3,d

|x − y|d−3 u
d+3
d−3 (y) dy

=

∫
|y−x |≥ |x |6

R3,d

|x − y|d−3 u
d+3
d−3 (y) dy+

∫
|y−x |< |x |6

R3,d

|x − y|d−3 u
d+3
d−3 (y) dy

≤ 7d−3 R3,d

∫
|y−x |≥ |x |6

u
d+3
d−3 (y)
|y|d−3 dy+

|x |2

36

∫
|y−x |< |x |6

R3,d

|x − y|d−1 u
d+3
d−3 (y) dy

≤ Cd

∫
Rd

u
d+3
d−3 (y)
|y|d−3 dy+

|x |2

36(d − 3)
1v(x).

As a consequence, we deduce from the assumption∫
Rd

u
d+3
d−3

|x |d−3 dx <∞

that, as |x | →∞,

(2-41) 0≤−v(x)≤ O(1)+
|x |2

36(d − 3)
1v(x).

Next, we can deduce from (2-11) that, for any x ∈ Rd with |x | sufficiently large
and r = |x |/2,

1w(x)≤
2d
r2

{
sup

1
2 |x |≤|y|≤

3
2 |x |
w(y)− u(x)− v(x)

}
(2-42)

≤
2d
r2

{
sup

1
2 |x |≤|y|≤

3
2 |x |

u(y)− v(x)
}
.

Therefore, we get from (2-40), (2-41), (2-42) and the assumption u(x)= o(|x |2) as
|x | →∞ that, as |x | →∞,

1w(x)=1u(x)+1v(x)≤ 8d
|x |2

{
o(|x |2)+ O(1)+ |x |2

36(d−3)
1v(x)

}
(2-43)

≤ o(1)+ d
4(d−3)

1v(x).
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We can deduce from (2-43) that

(2-44) lim sup
|x |→∞

1u(x)≤ 0, that is , lim inf
|x |→∞

(−1u(x))≥ 0.

Therefore, from (1-1), (2-44) and the maximum principle (Lemma 2.2), we can infer

(2-45) −1u ≥ 0 in Rd.

In conclusion, we have proved respectively under the four different assumptions
(a), (b), (c) and (d) on u that the classical solution u to PDE (1-1) always satisfies
the equivalent integral equation (2-9). Applying [Chen et al. 2006, Theorem 1.1]
(u ∈ L2d/(d−3)

loc (Rd) was assumed therein) to integral equation (2-9), we deduce
immediately that u is radially symmetric and monotone decreasing about some
point x0 ∈ Rd and thus assumes the form

(2-46) u(x)=
(

1
R3,d I

( d−3
2

)) d−3
6
(

λ

1+λ2|x−x0|2

) d−3
2

for some positive constant λ, where

I (s) :=
π

d
20
( d−2s

2

)
0(d − s)

for 0< s < d
2 . This concludes the proof of Theorem 1.1.

Remark 2.5. In the proof of Theorem 1.1 under assumption (d), one crucial step
is to deduce 1u ≤ 0 from the assumptions∫

Rd

u
d+3
d−3

|x |d−3 dx <∞

and u(x)= o(|x |2) as |x | →∞, where the fractional Laplacian (−1)
1
2 is given by

definition (1-3). Suppose (−1)
1
2 can be defined in terms of the Fourier transform,

that is, ∧

(−1)
1
2 f (ξ) := (2π |ξ |) f̂ (ξ)

with f̂ (ξ) :=
∫

Rd f (x)e−2π i x ·ξ dx , then the super-harmonic property 1u ≤ 0 can
be deduced directly from

∫
Rd u(d+3)/(d−3)/|x |d−1 dx <∞. Indeed, we only need

to show that
∫

Rd (−1u)φdx ≥ 0 for any nontrivial 0 ≤ φ ∈ C∞0 (R
d). To this end,

we define

ψ(x) := (−1)−
1
2φ(x)=

∫
Rd

R1,d

|x − y|d−1φ(y) dy ≥ 0,

then ψ ∈ C∞(Rd) and satisfy (2π |ξ |)ψ̂(ξ)= φ̂(ξ) (see [Stein 1970]). Moreover,
one can easily verify that ψ(x) ∼ 1/|x |d−1 for |x | large enough, thus we have
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Rd u

d+3
d−3ψ dx <∞ provided

∫
Rd u

d+3
d−3 /|x |d−1 dx <∞. Therefore, we may multiply

both sides of the PDE (1-1) by ψ and integrate, then by Parseval’s formula, we get

∞>

∫
Rd

u
d+3
d−3ψdx=

∫
Rd
(−1)

3
2 u·ψdx=

∫
Rd
(2π |ξ |)−̂1u· ¯̂ψdξ=

∫
Rd
(−1u)·φ dx≥0.

3. Proof of Theorem 1.3

We define

v(x) :=−
∫

Rd

R3,d

|x − y|d−3

(∫
Rd

1
|y− z|6

|u(z)|2 dz
)

u(y) dy,

w(x) :=u(x)+ v(x).

(3-1)

Since u is a solution to (1-10), we get immediately (−1)
3
2w≡0 and hence12w≡0

in Rd.
Our goal is to show under the following four entirely different assumptions (a),

(b), (c) and (d) that the solution u to PDE (1-10) always satisfies the equivalent
integral equation

(3-2) u(x)=−v(x)=
∫

Rd

R3,d

|x − y|d−3

(∫
Rd

1
|y−z|6

|u(z)|2 dz
)

u(y) dy.

(a) Suppose1u→0 as |x |→∞. The key ingredients are showing v∈ L2d/(d−3)(Rd)

and 1v ∈ L2d/(d+1)(Rd).
Indeed, let P(x) := 1/|x |6∗|u|2, then by the Hardy–Littlewood–Sobolev inequal-

ity, one has

(3-3) ‖P‖Ld/3(Rd ) ≤ C‖u2
‖Ld/(d−3)(Rd ) ≤ C‖u‖2L2d/(d−3)(Rd )

.

Therefore, by using Hardy–Littlewood–Sobolev inequality again, we get

‖v‖L2d/(d−3)(Rd ) ≤ Cd‖Pu‖L2d/(d+3)(Rd ) ≤ Cd‖P‖Ld/(3)(Rd )‖u‖L2d/(d−3)(Rd )(3-4)

≤ Cd‖u‖3
L

2d
d−3 (Rd )

,

‖1v‖
L

2d
d+1 (Rd )

= Cd

∥∥∥∫
Rd

P(y)u(y)
|x − y|d−1 dy

∥∥∥
L

2d
d+1 (Rd )

(3-5)

≤ C̃d‖Pu‖
L

2d
d+3 (Rd )

≤ C̃d‖u‖3
L

2d
d−3 (Rd )

.

The rest of the proof is similar to the proof of Theorem 1.1 under assumption (a) in
Section 2.

(b) Suppose there exists some τ < 3 such that u(x)= O(|x |τ ) as |x |→∞. Without
loss of generality, we may assume τ > 2. The key ingredient is proving w(x) =
O(|x |τ̃ ) for some τ < τ̃ < 3.
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In fact, using Hölder’s inequality, one can verify that for |x | large enough,

P(x)≤
∫
|x−y|≥1

1
|x − y|6

|u(y)|2 dy+
∫
|x−y|≤1

1
|x − y|6

|u(y)|2 dy(3-6)

≤ Cd +Cd
(

sup
B1(x)

u
)2
≤ C |x |2τ .

Therefore, by P ∈ L
d
3 (Rd) and the Hölder inequality, we have for |x | sufficiently

large,

(3-7) |v(x)| ≤ Cd

[∫
|x−y|≥1

1
|x−y|d−3 P(y)u(y) dy

+

∫
|x−y|≤1

1
|x−y|d−3 P(y)u(y) dy

]
≤ Cd +Cd,δ

(
sup
B1(x)

u
)(

sup
B1(x)

P
)δ
≤ C |x |(1+2δ)τ ,

where δ > 0 is fixed sufficiently small such that τ < (1+ 2δ)τ < 3. It follows that
w(x) = O(|x |τ̃ ) with τ̃ := (1+ 2δ)τ < 3. The rest of the proof is similar to the
proof of Theorem 1.1 under assumption (b) in Section 2.

(c) The proof is similar to the proof of Theorem 1.1 under assumption (c) in
Section 2.

(d) Suppose1u ∈C1,1
loc ∩L1(R

d) and u(x)=o(|x |2) as |x |→∞. The key ingredient
is proving

∫
Rd P(x)u(x)/|x |d−3 dx <∞. Indeed, we have∫

Rd

P(x)u(x)
|x |d−3 dx ≤

∫
|x |≤1

1
|x |d−3 dx · ‖Pu‖L∞(B1)

+

(∫
|x |>1

1
|x |2d dx

) d−3
2d

‖P‖Ld/3‖u‖L2d/(d−3) <∞.

The rest of the proof is similar to the proof of Theorem 1.1 under assumption (d) in
Section 2.

In conclusion, we have proved respectively under the four different assumptions
(a), (b), (c) and (d) on u that the classical solution u to PDE (1-10) always satisfies
the equivalent integral equation (3-2). Applying [Dai et al. 2018, Theorem 1.4]
(u ∈ L

2d
d−3 (Rd) was assumed therein) to integral equation (3-2), we deduce imme-

diately that u is radially symmetric and monotone decreasing about some point
x0 ∈ Rd and thus assumes the form

(3-8) u(x)=

√
1

R3,d I (3)I
( d−3

2

)( λ

1+λ2|x−x0|2

)d−3
2

for some positive constant λ. This concludes the proof of Theorem 1.3.
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